s_span.c revision 60121c41ce9ee50ff8d8476d4eb04867adf9b8c5
1/*
2 * Mesa 3-D graphics library
3 * Version:  7.5
4 *
5 * Copyright (C) 1999-2008  Brian Paul   All Rights Reserved.
6 * Copyright (C) 2009  VMware, Inc.  All Rights Reserved.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the "Software"),
10 * to deal in the Software without restriction, including without limitation
11 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
12 * and/or sell copies of the Software, and to permit persons to whom the
13 * Software is furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice shall be included
16 * in all copies or substantial portions of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
21 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
22 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
23 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 */
25
26
27/**
28 * \file swrast/s_span.c
29 * \brief Span processing functions used by all rasterization functions.
30 * This is where all the per-fragment tests are performed
31 * \author Brian Paul
32 */
33
34#include "main/glheader.h"
35#include "main/colormac.h"
36#include "main/context.h"
37#include "main/macros.h"
38#include "main/imports.h"
39#include "main/image.h"
40
41#include "s_atifragshader.h"
42#include "s_alpha.h"
43#include "s_blend.h"
44#include "s_context.h"
45#include "s_depth.h"
46#include "s_fog.h"
47#include "s_logic.h"
48#include "s_masking.h"
49#include "s_fragprog.h"
50#include "s_span.h"
51#include "s_stencil.h"
52#include "s_texcombine.h"
53
54
55/**
56 * Set default fragment attributes for the span using the
57 * current raster values.  Used prior to glDraw/CopyPixels
58 * and glBitmap.
59 */
60void
61_swrast_span_default_attribs(GLcontext *ctx, SWspan *span)
62{
63   GLchan r, g, b, a;
64   /* Z*/
65   {
66      const GLfloat depthMax = ctx->DrawBuffer->_DepthMaxF;
67      if (ctx->DrawBuffer->Visual.depthBits <= 16)
68         span->z = FloatToFixed(ctx->Current.RasterPos[2] * depthMax + 0.5F);
69      else {
70         GLfloat tmpf = ctx->Current.RasterPos[2] * depthMax;
71         tmpf = MIN2(tmpf, depthMax);
72         span->z = (GLint)tmpf;
73      }
74      span->zStep = 0;
75      span->interpMask |= SPAN_Z;
76   }
77
78   /* W (for perspective correction) */
79   span->attrStart[FRAG_ATTRIB_WPOS][3] = 1.0;
80   span->attrStepX[FRAG_ATTRIB_WPOS][3] = 0.0;
81   span->attrStepY[FRAG_ATTRIB_WPOS][3] = 0.0;
82
83   /* primary color, or color index */
84   UNCLAMPED_FLOAT_TO_CHAN(r, ctx->Current.RasterColor[0]);
85   UNCLAMPED_FLOAT_TO_CHAN(g, ctx->Current.RasterColor[1]);
86   UNCLAMPED_FLOAT_TO_CHAN(b, ctx->Current.RasterColor[2]);
87   UNCLAMPED_FLOAT_TO_CHAN(a, ctx->Current.RasterColor[3]);
88#if CHAN_TYPE == GL_FLOAT
89   span->red = r;
90   span->green = g;
91   span->blue = b;
92   span->alpha = a;
93#else
94   span->red   = IntToFixed(r);
95   span->green = IntToFixed(g);
96   span->blue  = IntToFixed(b);
97   span->alpha = IntToFixed(a);
98#endif
99   span->redStep = 0;
100   span->greenStep = 0;
101   span->blueStep = 0;
102   span->alphaStep = 0;
103   span->interpMask |= SPAN_RGBA;
104
105   COPY_4V(span->attrStart[FRAG_ATTRIB_COL0], ctx->Current.RasterColor);
106   ASSIGN_4V(span->attrStepX[FRAG_ATTRIB_COL0], 0.0, 0.0, 0.0, 0.0);
107   ASSIGN_4V(span->attrStepY[FRAG_ATTRIB_COL0], 0.0, 0.0, 0.0, 0.0);
108
109   /* Secondary color */
110   if (ctx->Light.Enabled || ctx->Fog.ColorSumEnabled)
111   {
112      COPY_4V(span->attrStart[FRAG_ATTRIB_COL1], ctx->Current.RasterSecondaryColor);
113      ASSIGN_4V(span->attrStepX[FRAG_ATTRIB_COL1], 0.0, 0.0, 0.0, 0.0);
114      ASSIGN_4V(span->attrStepY[FRAG_ATTRIB_COL1], 0.0, 0.0, 0.0, 0.0);
115   }
116
117   /* fog */
118   {
119      const SWcontext *swrast = SWRAST_CONTEXT(ctx);
120      GLfloat fogVal; /* a coord or a blend factor */
121      if (swrast->_PreferPixelFog) {
122         /* fog blend factors will be computed from fog coordinates per pixel */
123         fogVal = ctx->Current.RasterDistance;
124      }
125      else {
126         /* fog blend factor should be computed from fogcoord now */
127         fogVal = _swrast_z_to_fogfactor(ctx, ctx->Current.RasterDistance);
128      }
129      span->attrStart[FRAG_ATTRIB_FOGC][0] = fogVal;
130      span->attrStepX[FRAG_ATTRIB_FOGC][0] = 0.0;
131      span->attrStepY[FRAG_ATTRIB_FOGC][0] = 0.0;
132   }
133
134   /* texcoords */
135   {
136      GLuint i;
137      for (i = 0; i < ctx->Const.MaxTextureCoordUnits; i++) {
138         const GLuint attr = FRAG_ATTRIB_TEX0 + i;
139         const GLfloat *tc = ctx->Current.RasterTexCoords[i];
140         if (ctx->FragmentProgram._Current || ctx->ATIFragmentShader._Enabled) {
141            COPY_4V(span->attrStart[attr], tc);
142         }
143         else if (tc[3] > 0.0F) {
144            /* use (s/q, t/q, r/q, 1) */
145            span->attrStart[attr][0] = tc[0] / tc[3];
146            span->attrStart[attr][1] = tc[1] / tc[3];
147            span->attrStart[attr][2] = tc[2] / tc[3];
148            span->attrStart[attr][3] = 1.0;
149         }
150         else {
151            ASSIGN_4V(span->attrStart[attr], 0.0F, 0.0F, 0.0F, 1.0F);
152         }
153         ASSIGN_4V(span->attrStepX[attr], 0.0F, 0.0F, 0.0F, 0.0F);
154         ASSIGN_4V(span->attrStepY[attr], 0.0F, 0.0F, 0.0F, 0.0F);
155      }
156   }
157}
158
159
160/**
161 * Interpolate the active attributes (and'd with attrMask) to
162 * fill in span->array->attribs[].
163 * Perspective correction will be done.  The point/line/triangle function
164 * should have computed attrStart/Step values for FRAG_ATTRIB_WPOS[3]!
165 */
166static INLINE void
167interpolate_active_attribs(GLcontext *ctx, SWspan *span, GLbitfield attrMask)
168{
169   const SWcontext *swrast = SWRAST_CONTEXT(ctx);
170
171   /*
172    * Don't overwrite existing array values, such as colors that may have
173    * been produced by glDraw/CopyPixels.
174    */
175   attrMask &= ~span->arrayAttribs;
176
177   ATTRIB_LOOP_BEGIN
178      if (attrMask & (1 << attr)) {
179         const GLfloat dwdx = span->attrStepX[FRAG_ATTRIB_WPOS][3];
180         GLfloat w = span->attrStart[FRAG_ATTRIB_WPOS][3];
181         const GLfloat dv0dx = span->attrStepX[attr][0];
182         const GLfloat dv1dx = span->attrStepX[attr][1];
183         const GLfloat dv2dx = span->attrStepX[attr][2];
184         const GLfloat dv3dx = span->attrStepX[attr][3];
185         GLfloat v0 = span->attrStart[attr][0] + span->leftClip * dv0dx;
186         GLfloat v1 = span->attrStart[attr][1] + span->leftClip * dv1dx;
187         GLfloat v2 = span->attrStart[attr][2] + span->leftClip * dv2dx;
188         GLfloat v3 = span->attrStart[attr][3] + span->leftClip * dv3dx;
189         GLuint k;
190         for (k = 0; k < span->end; k++) {
191            const GLfloat invW = 1.0f / w;
192            span->array->attribs[attr][k][0] = v0 * invW;
193            span->array->attribs[attr][k][1] = v1 * invW;
194            span->array->attribs[attr][k][2] = v2 * invW;
195            span->array->attribs[attr][k][3] = v3 * invW;
196            v0 += dv0dx;
197            v1 += dv1dx;
198            v2 += dv2dx;
199            v3 += dv3dx;
200            w += dwdx;
201         }
202         ASSERT((span->arrayAttribs & (1 << attr)) == 0);
203         span->arrayAttribs |= (1 << attr);
204      }
205   ATTRIB_LOOP_END
206}
207
208
209/**
210 * Interpolate primary colors to fill in the span->array->rgba8 (or rgb16)
211 * color array.
212 */
213static INLINE void
214interpolate_int_colors(GLcontext *ctx, SWspan *span)
215{
216   const GLuint n = span->end;
217   GLuint i;
218
219#if CHAN_BITS != 32
220   ASSERT(!(span->arrayMask & SPAN_RGBA));
221#endif
222
223   switch (span->array->ChanType) {
224#if CHAN_BITS != 32
225   case GL_UNSIGNED_BYTE:
226      {
227         GLubyte (*rgba)[4] = span->array->rgba8;
228         if (span->interpMask & SPAN_FLAT) {
229            GLubyte color[4];
230            color[RCOMP] = FixedToInt(span->red);
231            color[GCOMP] = FixedToInt(span->green);
232            color[BCOMP] = FixedToInt(span->blue);
233            color[ACOMP] = FixedToInt(span->alpha);
234            for (i = 0; i < n; i++) {
235               COPY_4UBV(rgba[i], color);
236            }
237         }
238         else {
239            GLfixed r = span->red;
240            GLfixed g = span->green;
241            GLfixed b = span->blue;
242            GLfixed a = span->alpha;
243            GLint dr = span->redStep;
244            GLint dg = span->greenStep;
245            GLint db = span->blueStep;
246            GLint da = span->alphaStep;
247            for (i = 0; i < n; i++) {
248               rgba[i][RCOMP] = FixedToChan(r);
249               rgba[i][GCOMP] = FixedToChan(g);
250               rgba[i][BCOMP] = FixedToChan(b);
251               rgba[i][ACOMP] = FixedToChan(a);
252               r += dr;
253               g += dg;
254               b += db;
255               a += da;
256            }
257         }
258      }
259      break;
260   case GL_UNSIGNED_SHORT:
261      {
262         GLushort (*rgba)[4] = span->array->rgba16;
263         if (span->interpMask & SPAN_FLAT) {
264            GLushort color[4];
265            color[RCOMP] = FixedToInt(span->red);
266            color[GCOMP] = FixedToInt(span->green);
267            color[BCOMP] = FixedToInt(span->blue);
268            color[ACOMP] = FixedToInt(span->alpha);
269            for (i = 0; i < n; i++) {
270               COPY_4V(rgba[i], color);
271            }
272         }
273         else {
274            GLushort (*rgba)[4] = span->array->rgba16;
275            GLfixed r, g, b, a;
276            GLint dr, dg, db, da;
277            r = span->red;
278            g = span->green;
279            b = span->blue;
280            a = span->alpha;
281            dr = span->redStep;
282            dg = span->greenStep;
283            db = span->blueStep;
284            da = span->alphaStep;
285            for (i = 0; i < n; i++) {
286               rgba[i][RCOMP] = FixedToChan(r);
287               rgba[i][GCOMP] = FixedToChan(g);
288               rgba[i][BCOMP] = FixedToChan(b);
289               rgba[i][ACOMP] = FixedToChan(a);
290               r += dr;
291               g += dg;
292               b += db;
293               a += da;
294            }
295         }
296      }
297      break;
298#endif
299   case GL_FLOAT:
300      interpolate_active_attribs(ctx, span, FRAG_BIT_COL0);
301      break;
302   default:
303      _mesa_problem(NULL, "bad datatype in interpolate_int_colors");
304   }
305   span->arrayMask |= SPAN_RGBA;
306}
307
308
309/**
310 * Populate the FRAG_ATTRIB_COL0 array.
311 */
312static INLINE void
313interpolate_float_colors(SWspan *span)
314{
315   GLfloat (*col0)[4] = span->array->attribs[FRAG_ATTRIB_COL0];
316   const GLuint n = span->end;
317   GLuint i;
318
319   assert(!(span->arrayAttribs & FRAG_BIT_COL0));
320
321   if (span->arrayMask & SPAN_RGBA) {
322      /* convert array of int colors */
323      for (i = 0; i < n; i++) {
324         col0[i][0] = UBYTE_TO_FLOAT(span->array->rgba8[i][0]);
325         col0[i][1] = UBYTE_TO_FLOAT(span->array->rgba8[i][1]);
326         col0[i][2] = UBYTE_TO_FLOAT(span->array->rgba8[i][2]);
327         col0[i][3] = UBYTE_TO_FLOAT(span->array->rgba8[i][3]);
328      }
329   }
330   else {
331      /* interpolate red/green/blue/alpha to get float colors */
332      ASSERT(span->interpMask & SPAN_RGBA);
333      if (span->interpMask & SPAN_FLAT) {
334         GLfloat r = FixedToFloat(span->red);
335         GLfloat g = FixedToFloat(span->green);
336         GLfloat b = FixedToFloat(span->blue);
337         GLfloat a = FixedToFloat(span->alpha);
338         for (i = 0; i < n; i++) {
339            ASSIGN_4V(col0[i], r, g, b, a);
340         }
341      }
342      else {
343         GLfloat r = FixedToFloat(span->red);
344         GLfloat g = FixedToFloat(span->green);
345         GLfloat b = FixedToFloat(span->blue);
346         GLfloat a = FixedToFloat(span->alpha);
347         GLfloat dr = FixedToFloat(span->redStep);
348         GLfloat dg = FixedToFloat(span->greenStep);
349         GLfloat db = FixedToFloat(span->blueStep);
350         GLfloat da = FixedToFloat(span->alphaStep);
351         for (i = 0; i < n; i++) {
352            col0[i][0] = r;
353            col0[i][1] = g;
354            col0[i][2] = b;
355            col0[i][3] = a;
356            r += dr;
357            g += dg;
358            b += db;
359            a += da;
360         }
361      }
362   }
363
364   span->arrayAttribs |= FRAG_BIT_COL0;
365   span->array->ChanType = GL_FLOAT;
366}
367
368
369
370/**
371 * Fill in the span.zArray array from the span->z, zStep values.
372 */
373void
374_swrast_span_interpolate_z( const GLcontext *ctx, SWspan *span )
375{
376   const GLuint n = span->end;
377   GLuint i;
378
379   ASSERT(!(span->arrayMask & SPAN_Z));
380
381   if (ctx->DrawBuffer->Visual.depthBits <= 16) {
382      GLfixed zval = span->z;
383      GLuint *z = span->array->z;
384      for (i = 0; i < n; i++) {
385         z[i] = FixedToInt(zval);
386         zval += span->zStep;
387      }
388   }
389   else {
390      /* Deep Z buffer, no fixed->int shift */
391      GLuint zval = span->z;
392      GLuint *z = span->array->z;
393      for (i = 0; i < n; i++) {
394         z[i] = zval;
395         zval += span->zStep;
396      }
397   }
398   span->interpMask &= ~SPAN_Z;
399   span->arrayMask |= SPAN_Z;
400}
401
402
403/**
404 * Compute mipmap LOD from partial derivatives.
405 * This the ideal solution, as given in the OpenGL spec.
406 */
407GLfloat
408_swrast_compute_lambda(GLfloat dsdx, GLfloat dsdy, GLfloat dtdx, GLfloat dtdy,
409                       GLfloat dqdx, GLfloat dqdy, GLfloat texW, GLfloat texH,
410                       GLfloat s, GLfloat t, GLfloat q, GLfloat invQ)
411{
412   GLfloat dudx = texW * ((s + dsdx) / (q + dqdx) - s * invQ);
413   GLfloat dvdx = texH * ((t + dtdx) / (q + dqdx) - t * invQ);
414   GLfloat dudy = texW * ((s + dsdy) / (q + dqdy) - s * invQ);
415   GLfloat dvdy = texH * ((t + dtdy) / (q + dqdy) - t * invQ);
416   GLfloat x = SQRTF(dudx * dudx + dvdx * dvdx);
417   GLfloat y = SQRTF(dudy * dudy + dvdy * dvdy);
418   GLfloat rho = MAX2(x, y);
419   GLfloat lambda = LOG2(rho);
420   return lambda;
421}
422
423
424/**
425 * Compute mipmap LOD from partial derivatives.
426 * This is a faster approximation than above function.
427 */
428#if 0
429GLfloat
430_swrast_compute_lambda(GLfloat dsdx, GLfloat dsdy, GLfloat dtdx, GLfloat dtdy,
431                     GLfloat dqdx, GLfloat dqdy, GLfloat texW, GLfloat texH,
432                     GLfloat s, GLfloat t, GLfloat q, GLfloat invQ)
433{
434   GLfloat dsdx2 = (s + dsdx) / (q + dqdx) - s * invQ;
435   GLfloat dtdx2 = (t + dtdx) / (q + dqdx) - t * invQ;
436   GLfloat dsdy2 = (s + dsdy) / (q + dqdy) - s * invQ;
437   GLfloat dtdy2 = (t + dtdy) / (q + dqdy) - t * invQ;
438   GLfloat maxU, maxV, rho, lambda;
439   dsdx2 = FABSF(dsdx2);
440   dsdy2 = FABSF(dsdy2);
441   dtdx2 = FABSF(dtdx2);
442   dtdy2 = FABSF(dtdy2);
443   maxU = MAX2(dsdx2, dsdy2) * texW;
444   maxV = MAX2(dtdx2, dtdy2) * texH;
445   rho = MAX2(maxU, maxV);
446   lambda = LOG2(rho);
447   return lambda;
448}
449#endif
450
451
452/**
453 * Fill in the span.array->attrib[FRAG_ATTRIB_TEXn] arrays from the
454 * using the attrStart/Step values.
455 *
456 * This function only used during fixed-function fragment processing.
457 *
458 * Note: in the places where we divide by Q (or mult by invQ) we're
459 * really doing two things: perspective correction and texcoord
460 * projection.  Remember, for texcoord (s,t,r,q) we need to index
461 * texels with (s/q, t/q, r/q).
462 */
463static void
464interpolate_texcoords(GLcontext *ctx, SWspan *span)
465{
466   const GLuint maxUnit
467      = (ctx->Texture._EnabledCoordUnits > 1) ? ctx->Const.MaxTextureUnits : 1;
468   GLuint u;
469
470   /* XXX CoordUnits vs. ImageUnits */
471   for (u = 0; u < maxUnit; u++) {
472      if (ctx->Texture._EnabledCoordUnits & (1 << u)) {
473         const GLuint attr = FRAG_ATTRIB_TEX0 + u;
474         const struct gl_texture_object *obj = ctx->Texture.Unit[u]._Current;
475         GLfloat texW, texH;
476         GLboolean needLambda;
477         GLfloat (*texcoord)[4] = span->array->attribs[attr];
478         GLfloat *lambda = span->array->lambda[u];
479         const GLfloat dsdx = span->attrStepX[attr][0];
480         const GLfloat dsdy = span->attrStepY[attr][0];
481         const GLfloat dtdx = span->attrStepX[attr][1];
482         const GLfloat dtdy = span->attrStepY[attr][1];
483         const GLfloat drdx = span->attrStepX[attr][2];
484         const GLfloat dqdx = span->attrStepX[attr][3];
485         const GLfloat dqdy = span->attrStepY[attr][3];
486         GLfloat s = span->attrStart[attr][0] + span->leftClip * dsdx;
487         GLfloat t = span->attrStart[attr][1] + span->leftClip * dtdx;
488         GLfloat r = span->attrStart[attr][2] + span->leftClip * drdx;
489         GLfloat q = span->attrStart[attr][3] + span->leftClip * dqdx;
490
491         if (obj) {
492            const struct gl_texture_image *img = obj->Image[0][obj->BaseLevel];
493            needLambda = (obj->MinFilter != obj->MagFilter)
494               || ctx->FragmentProgram._Current;
495            texW = img->WidthScale;
496            texH = img->HeightScale;
497         }
498         else {
499            /* using a fragment program */
500            texW = 1.0;
501            texH = 1.0;
502            needLambda = GL_FALSE;
503         }
504
505         if (needLambda) {
506            GLuint i;
507            if (ctx->FragmentProgram._Current
508                || ctx->ATIFragmentShader._Enabled) {
509               /* do perspective correction but don't divide s, t, r by q */
510               const GLfloat dwdx = span->attrStepX[FRAG_ATTRIB_WPOS][3];
511               GLfloat w = span->attrStart[FRAG_ATTRIB_WPOS][3] + span->leftClip * dwdx;
512               for (i = 0; i < span->end; i++) {
513                  const GLfloat invW = 1.0F / w;
514                  texcoord[i][0] = s * invW;
515                  texcoord[i][1] = t * invW;
516                  texcoord[i][2] = r * invW;
517                  texcoord[i][3] = q * invW;
518                  lambda[i] = _swrast_compute_lambda(dsdx, dsdy, dtdx, dtdy,
519                                                     dqdx, dqdy, texW, texH,
520                                                     s, t, q, invW);
521                  s += dsdx;
522                  t += dtdx;
523                  r += drdx;
524                  q += dqdx;
525                  w += dwdx;
526               }
527            }
528            else {
529               for (i = 0; i < span->end; i++) {
530                  const GLfloat invQ = (q == 0.0F) ? 1.0F : (1.0F / q);
531                  texcoord[i][0] = s * invQ;
532                  texcoord[i][1] = t * invQ;
533                  texcoord[i][2] = r * invQ;
534                  texcoord[i][3] = q;
535                  lambda[i] = _swrast_compute_lambda(dsdx, dsdy, dtdx, dtdy,
536                                                     dqdx, dqdy, texW, texH,
537                                                     s, t, q, invQ);
538                  s += dsdx;
539                  t += dtdx;
540                  r += drdx;
541                  q += dqdx;
542               }
543            }
544            span->arrayMask |= SPAN_LAMBDA;
545         }
546         else {
547            GLuint i;
548            if (ctx->FragmentProgram._Current ||
549                ctx->ATIFragmentShader._Enabled) {
550               /* do perspective correction but don't divide s, t, r by q */
551               const GLfloat dwdx = span->attrStepX[FRAG_ATTRIB_WPOS][3];
552               GLfloat w = span->attrStart[FRAG_ATTRIB_WPOS][3] + span->leftClip * dwdx;
553               for (i = 0; i < span->end; i++) {
554                  const GLfloat invW = 1.0F / w;
555                  texcoord[i][0] = s * invW;
556                  texcoord[i][1] = t * invW;
557                  texcoord[i][2] = r * invW;
558                  texcoord[i][3] = q * invW;
559                  lambda[i] = 0.0;
560                  s += dsdx;
561                  t += dtdx;
562                  r += drdx;
563                  q += dqdx;
564                  w += dwdx;
565               }
566            }
567            else if (dqdx == 0.0F) {
568               /* Ortho projection or polygon's parallel to window X axis */
569               const GLfloat invQ = (q == 0.0F) ? 1.0F : (1.0F / q);
570               for (i = 0; i < span->end; i++) {
571                  texcoord[i][0] = s * invQ;
572                  texcoord[i][1] = t * invQ;
573                  texcoord[i][2] = r * invQ;
574                  texcoord[i][3] = q;
575                  lambda[i] = 0.0;
576                  s += dsdx;
577                  t += dtdx;
578                  r += drdx;
579               }
580            }
581            else {
582               for (i = 0; i < span->end; i++) {
583                  const GLfloat invQ = (q == 0.0F) ? 1.0F : (1.0F / q);
584                  texcoord[i][0] = s * invQ;
585                  texcoord[i][1] = t * invQ;
586                  texcoord[i][2] = r * invQ;
587                  texcoord[i][3] = q;
588                  lambda[i] = 0.0;
589                  s += dsdx;
590                  t += dtdx;
591                  r += drdx;
592                  q += dqdx;
593               }
594            }
595         } /* lambda */
596      } /* if */
597   } /* for */
598}
599
600
601/**
602 * Fill in the arrays->attribs[FRAG_ATTRIB_WPOS] array.
603 */
604static INLINE void
605interpolate_wpos(GLcontext *ctx, SWspan *span)
606{
607   GLfloat (*wpos)[4] = span->array->attribs[FRAG_ATTRIB_WPOS];
608   GLuint i;
609   const GLfloat zScale = 1.0F / ctx->DrawBuffer->_DepthMaxF;
610   GLfloat w, dw;
611
612   if (span->arrayMask & SPAN_XY) {
613      for (i = 0; i < span->end; i++) {
614         wpos[i][0] = (GLfloat) span->array->x[i];
615         wpos[i][1] = (GLfloat) span->array->y[i];
616      }
617   }
618   else {
619      for (i = 0; i < span->end; i++) {
620         wpos[i][0] = (GLfloat) span->x + i;
621         wpos[i][1] = (GLfloat) span->y;
622      }
623   }
624
625   dw = span->attrStepX[FRAG_ATTRIB_WPOS][3];
626   w = span->attrStart[FRAG_ATTRIB_WPOS][3] + span->leftClip * dw;
627   for (i = 0; i < span->end; i++) {
628      wpos[i][2] = (GLfloat) span->array->z[i] * zScale;
629      wpos[i][3] = w;
630      w += dw;
631   }
632}
633
634
635/**
636 * Apply the current polygon stipple pattern to a span of pixels.
637 */
638static INLINE void
639stipple_polygon_span(GLcontext *ctx, SWspan *span)
640{
641   GLubyte *mask = span->array->mask;
642
643   ASSERT(ctx->Polygon.StippleFlag);
644
645   if (span->arrayMask & SPAN_XY) {
646      /* arrays of x/y pixel coords */
647      GLuint i;
648      for (i = 0; i < span->end; i++) {
649         const GLint col = span->array->x[i] % 32;
650         const GLint row = span->array->y[i] % 32;
651         const GLuint stipple = ctx->PolygonStipple[row];
652         if (((1 << col) & stipple) == 0) {
653            mask[i] = 0;
654         }
655      }
656   }
657   else {
658      /* horizontal span of pixels */
659      const GLuint highBit = 1 << 31;
660      const GLuint stipple = ctx->PolygonStipple[span->y % 32];
661      GLuint i, m = highBit >> (GLuint) (span->x % 32);
662      for (i = 0; i < span->end; i++) {
663         if ((m & stipple) == 0) {
664            mask[i] = 0;
665         }
666         m = m >> 1;
667         if (m == 0) {
668            m = highBit;
669         }
670      }
671   }
672   span->writeAll = GL_FALSE;
673}
674
675
676/**
677 * Clip a pixel span to the current buffer/window boundaries:
678 * DrawBuffer->_Xmin, _Xmax, _Ymin, _Ymax.  This will accomplish
679 * window clipping and scissoring.
680 * Return:   GL_TRUE   some pixels still visible
681 *           GL_FALSE  nothing visible
682 */
683static INLINE GLuint
684clip_span( GLcontext *ctx, SWspan *span )
685{
686   const GLint xmin = ctx->DrawBuffer->_Xmin;
687   const GLint xmax = ctx->DrawBuffer->_Xmax;
688   const GLint ymin = ctx->DrawBuffer->_Ymin;
689   const GLint ymax = ctx->DrawBuffer->_Ymax;
690
691   span->leftClip = 0;
692
693   if (span->arrayMask & SPAN_XY) {
694      /* arrays of x/y pixel coords */
695      const GLint *x = span->array->x;
696      const GLint *y = span->array->y;
697      const GLint n = span->end;
698      GLubyte *mask = span->array->mask;
699      GLint i;
700      if (span->arrayMask & SPAN_MASK) {
701         /* note: using & intead of && to reduce branches */
702         for (i = 0; i < n; i++) {
703            mask[i] &= (x[i] >= xmin) & (x[i] < xmax)
704                     & (y[i] >= ymin) & (y[i] < ymax);
705         }
706      }
707      else {
708         /* note: using & intead of && to reduce branches */
709         for (i = 0; i < n; i++) {
710            mask[i] = (x[i] >= xmin) & (x[i] < xmax)
711                    & (y[i] >= ymin) & (y[i] < ymax);
712         }
713      }
714      return GL_TRUE;  /* some pixels visible */
715   }
716   else {
717      /* horizontal span of pixels */
718      const GLint x = span->x;
719      const GLint y = span->y;
720      GLint n = span->end;
721
722      /* Trivial rejection tests */
723      if (y < ymin || y >= ymax || x + n <= xmin || x >= xmax) {
724         span->end = 0;
725         return GL_FALSE;  /* all pixels clipped */
726      }
727
728      /* Clip to right */
729      if (x + n > xmax) {
730         ASSERT(x < xmax);
731         n = span->end = xmax - x;
732      }
733
734      /* Clip to the left */
735      if (x < xmin) {
736         const GLint leftClip = xmin - x;
737         GLuint i;
738
739         ASSERT(leftClip > 0);
740         ASSERT(x + n > xmin);
741
742         /* Clip 'leftClip' pixels from the left side.
743          * The span->leftClip field will be applied when we interpolate
744          * fragment attributes.
745          * For arrays of values, shift them left.
746          */
747         for (i = 0; i < FRAG_ATTRIB_MAX; i++) {
748            if (span->interpMask & (1 << i)) {
749               GLuint j;
750               for (j = 0; j < 4; j++) {
751                  span->attrStart[i][j] += leftClip * span->attrStepX[i][j];
752               }
753            }
754         }
755
756         span->red += leftClip * span->redStep;
757         span->green += leftClip * span->greenStep;
758         span->blue += leftClip * span->blueStep;
759         span->alpha += leftClip * span->alphaStep;
760         span->index += leftClip * span->indexStep;
761         span->z += leftClip * span->zStep;
762         span->intTex[0] += leftClip * span->intTexStep[0];
763         span->intTex[1] += leftClip * span->intTexStep[1];
764
765#define SHIFT_ARRAY(ARRAY, SHIFT, LEN) \
766         memcpy(ARRAY, ARRAY + (SHIFT), (LEN) * sizeof(ARRAY[0]))
767
768         for (i = 0; i < FRAG_ATTRIB_MAX; i++) {
769            if (span->arrayAttribs & (1 << i)) {
770               /* shift array elements left by 'leftClip' */
771               SHIFT_ARRAY(span->array->attribs[i], leftClip, n - leftClip);
772            }
773         }
774
775         SHIFT_ARRAY(span->array->mask, leftClip, n - leftClip);
776         SHIFT_ARRAY(span->array->rgba8, leftClip, n - leftClip);
777         SHIFT_ARRAY(span->array->rgba16, leftClip, n - leftClip);
778         SHIFT_ARRAY(span->array->x, leftClip, n - leftClip);
779         SHIFT_ARRAY(span->array->y, leftClip, n - leftClip);
780         SHIFT_ARRAY(span->array->z, leftClip, n - leftClip);
781         SHIFT_ARRAY(span->array->index, leftClip, n - leftClip);
782         for (i = 0; i < MAX_TEXTURE_COORD_UNITS; i++) {
783            SHIFT_ARRAY(span->array->lambda[i], leftClip, n - leftClip);
784         }
785         SHIFT_ARRAY(span->array->coverage, leftClip, n - leftClip);
786
787#undef SHIFT_ARRAY
788
789         span->leftClip = leftClip;
790         span->x = xmin;
791         span->end -= leftClip;
792         span->writeAll = GL_FALSE;
793      }
794
795      ASSERT(span->x >= xmin);
796      ASSERT(span->x + span->end <= xmax);
797      ASSERT(span->y >= ymin);
798      ASSERT(span->y < ymax);
799
800      return GL_TRUE;  /* some pixels visible */
801   }
802}
803
804
805/**
806 * Add specular colors to primary colors.
807 * Only called during fixed-function operation.
808 * Result is float color array (FRAG_ATTRIB_COL0).
809 */
810static INLINE void
811add_specular(GLcontext *ctx, SWspan *span)
812{
813   const SWcontext *swrast = SWRAST_CONTEXT(ctx);
814   const GLubyte *mask = span->array->mask;
815   GLfloat (*col0)[4] = span->array->attribs[FRAG_ATTRIB_COL0];
816   GLfloat (*col1)[4] = span->array->attribs[FRAG_ATTRIB_COL1];
817   GLuint i;
818
819   ASSERT(!ctx->FragmentProgram._Current);
820   ASSERT(span->arrayMask & SPAN_RGBA);
821   ASSERT(swrast->_ActiveAttribMask & FRAG_BIT_COL1);
822   (void) swrast; /* silence warning */
823
824   if (span->array->ChanType == GL_FLOAT) {
825      if ((span->arrayAttribs & FRAG_BIT_COL0) == 0) {
826         interpolate_active_attribs(ctx, span, FRAG_BIT_COL0);
827      }
828   }
829   else {
830      /* need float colors */
831      if ((span->arrayAttribs & FRAG_BIT_COL0) == 0) {
832         interpolate_float_colors(span);
833      }
834   }
835
836   if ((span->arrayAttribs & FRAG_BIT_COL1) == 0) {
837      /* XXX could avoid this and interpolate COL1 in the loop below */
838      interpolate_active_attribs(ctx, span, FRAG_BIT_COL1);
839   }
840
841   ASSERT(span->arrayAttribs & FRAG_BIT_COL0);
842   ASSERT(span->arrayAttribs & FRAG_BIT_COL1);
843
844   for (i = 0; i < span->end; i++) {
845      if (mask[i]) {
846         col0[i][0] += col1[i][0];
847         col0[i][1] += col1[i][1];
848         col0[i][2] += col1[i][2];
849      }
850   }
851
852   span->array->ChanType = GL_FLOAT;
853}
854
855
856/**
857 * Apply antialiasing coverage value to alpha values.
858 */
859static INLINE void
860apply_aa_coverage(SWspan *span)
861{
862   const GLfloat *coverage = span->array->coverage;
863   GLuint i;
864   if (span->array->ChanType == GL_UNSIGNED_BYTE) {
865      GLubyte (*rgba)[4] = span->array->rgba8;
866      for (i = 0; i < span->end; i++) {
867         const GLfloat a = rgba[i][ACOMP] * coverage[i];
868         rgba[i][ACOMP] = (GLubyte) CLAMP(a, 0.0, 255.0);
869         ASSERT(coverage[i] >= 0.0);
870         ASSERT(coverage[i] <= 1.0);
871      }
872   }
873   else if (span->array->ChanType == GL_UNSIGNED_SHORT) {
874      GLushort (*rgba)[4] = span->array->rgba16;
875      for (i = 0; i < span->end; i++) {
876         const GLfloat a = rgba[i][ACOMP] * coverage[i];
877         rgba[i][ACOMP] = (GLushort) CLAMP(a, 0.0, 65535.0);
878      }
879   }
880   else {
881      GLfloat (*rgba)[4] = span->array->attribs[FRAG_ATTRIB_COL0];
882      for (i = 0; i < span->end; i++) {
883         rgba[i][ACOMP] = rgba[i][ACOMP] * coverage[i];
884         /* clamp later */
885      }
886   }
887}
888
889
890/**
891 * Clamp span's float colors to [0,1]
892 */
893static INLINE void
894clamp_colors(SWspan *span)
895{
896   GLfloat (*rgba)[4] = span->array->attribs[FRAG_ATTRIB_COL0];
897   GLuint i;
898   ASSERT(span->array->ChanType == GL_FLOAT);
899   for (i = 0; i < span->end; i++) {
900      rgba[i][RCOMP] = CLAMP(rgba[i][RCOMP], 0.0F, 1.0F);
901      rgba[i][GCOMP] = CLAMP(rgba[i][GCOMP], 0.0F, 1.0F);
902      rgba[i][BCOMP] = CLAMP(rgba[i][BCOMP], 0.0F, 1.0F);
903      rgba[i][ACOMP] = CLAMP(rgba[i][ACOMP], 0.0F, 1.0F);
904   }
905}
906
907
908/**
909 * Convert the span's color arrays to the given type.
910 * The only way 'output' can be greater than zero is when we have a fragment
911 * program that writes to gl_FragData[1] or higher.
912 * \param output  which fragment program color output is being processed
913 */
914static INLINE void
915convert_color_type(SWspan *span, GLenum newType, GLuint output)
916{
917   GLvoid *src, *dst;
918
919   if (output > 0 || span->array->ChanType == GL_FLOAT) {
920      src = span->array->attribs[FRAG_ATTRIB_COL0 + output];
921      span->array->ChanType = GL_FLOAT;
922   }
923   else if (span->array->ChanType == GL_UNSIGNED_BYTE) {
924      src = span->array->rgba8;
925   }
926   else {
927      ASSERT(span->array->ChanType == GL_UNSIGNED_SHORT);
928      src = span->array->rgba16;
929   }
930
931   if (newType == GL_UNSIGNED_BYTE) {
932      dst = span->array->rgba8;
933   }
934   else if (newType == GL_UNSIGNED_SHORT) {
935      dst = span->array->rgba16;
936   }
937   else {
938      dst = span->array->attribs[FRAG_ATTRIB_COL0];
939   }
940
941   _mesa_convert_colors(span->array->ChanType, src,
942                        newType, dst,
943                        span->end, span->array->mask);
944
945   span->array->ChanType = newType;
946   span->array->rgba = dst;
947}
948
949
950
951/**
952 * Apply fragment shader, fragment program or normal texturing to span.
953 */
954static INLINE void
955shade_texture_span(GLcontext *ctx, SWspan *span)
956{
957   GLbitfield inputsRead;
958
959   /* Determine which fragment attributes are actually needed */
960   if (ctx->FragmentProgram._Current) {
961      inputsRead = ctx->FragmentProgram._Current->Base.InputsRead;
962   }
963   else {
964      /* XXX we could be a bit smarter about this */
965      inputsRead = ~0;
966   }
967
968   if (ctx->FragmentProgram._Current ||
969       ctx->ATIFragmentShader._Enabled) {
970      /* programmable shading */
971      if (span->primitive == GL_BITMAP && span->array->ChanType != GL_FLOAT) {
972         convert_color_type(span, GL_FLOAT, 0);
973      }
974      if (span->primitive != GL_POINT ||
975	  (span->interpMask & SPAN_RGBA) ||
976	  ctx->Point.PointSprite) {
977         /* for single-pixel points, we populated the arrays already */
978         interpolate_active_attribs(ctx, span, ~0);
979      }
980      span->array->ChanType = GL_FLOAT;
981
982      if (!(span->arrayMask & SPAN_Z))
983         _swrast_span_interpolate_z (ctx, span);
984
985#if 0
986      if (inputsRead & FRAG_BIT_WPOS)
987#else
988      /* XXX always interpolate wpos so that DDX/DDY work */
989#endif
990         interpolate_wpos(ctx, span);
991
992      /* Run fragment program/shader now */
993      if (ctx->FragmentProgram._Current) {
994         _swrast_exec_fragment_program(ctx, span);
995      }
996      else {
997         ASSERT(ctx->ATIFragmentShader._Enabled);
998         _swrast_exec_fragment_shader(ctx, span);
999      }
1000   }
1001   else if (ctx->Texture._EnabledCoordUnits) {
1002      /* conventional texturing */
1003
1004#if CHAN_BITS == 32
1005      if ((span->arrayAttribs & FRAG_BIT_COL0) == 0) {
1006         interpolate_int_colors(ctx, span);
1007      }
1008#else
1009      if (!(span->arrayMask & SPAN_RGBA))
1010         interpolate_int_colors(ctx, span);
1011#endif
1012      if ((span->arrayAttribs & FRAG_BITS_TEX_ANY) == 0x0)
1013         interpolate_texcoords(ctx, span);
1014
1015      _swrast_texture_span(ctx, span);
1016   }
1017}
1018
1019
1020
1021/**
1022 * Apply all the per-fragment operations to a span.
1023 * This now includes texturing (_swrast_write_texture_span() is history).
1024 * This function may modify any of the array values in the span.
1025 * span->interpMask and span->arrayMask may be changed but will be restored
1026 * to their original values before returning.
1027 */
1028void
1029_swrast_write_rgba_span( GLcontext *ctx, SWspan *span)
1030{
1031   const SWcontext *swrast = SWRAST_CONTEXT(ctx);
1032   const GLuint *colorMask = (GLuint *) ctx->Color.ColorMask;
1033   const GLbitfield origInterpMask = span->interpMask;
1034   const GLbitfield origArrayMask = span->arrayMask;
1035   const GLbitfield origArrayAttribs = span->arrayAttribs;
1036   const GLenum origChanType = span->array->ChanType;
1037   void * const origRgba = span->array->rgba;
1038   const GLboolean shader = (ctx->FragmentProgram._Current
1039                             || ctx->ATIFragmentShader._Enabled);
1040   const GLboolean shaderOrTexture = shader || ctx->Texture._EnabledCoordUnits;
1041   struct gl_framebuffer *fb = ctx->DrawBuffer;
1042
1043   /*
1044   printf("%s()  interp 0x%x  array 0x%x\n", __FUNCTION__,
1045          span->interpMask, span->arrayMask);
1046   */
1047
1048   ASSERT(span->primitive == GL_POINT ||
1049          span->primitive == GL_LINE ||
1050	  span->primitive == GL_POLYGON ||
1051          span->primitive == GL_BITMAP);
1052
1053   /* Fragment write masks */
1054   if (span->arrayMask & SPAN_MASK) {
1055      /* mask was initialized by caller, probably glBitmap */
1056      span->writeAll = GL_FALSE;
1057   }
1058   else {
1059      memset(span->array->mask, 1, span->end);
1060      span->writeAll = GL_TRUE;
1061   }
1062
1063   /* Clip to window/scissor box */
1064   if (!clip_span(ctx, span)) {
1065      return;
1066   }
1067
1068   ASSERT(span->end <= MAX_WIDTH);
1069
1070   /* Depth bounds test */
1071   if (ctx->Depth.BoundsTest && fb->Visual.depthBits > 0) {
1072      if (!_swrast_depth_bounds_test(ctx, span)) {
1073         return;
1074      }
1075   }
1076
1077#ifdef DEBUG
1078   /* Make sure all fragments are within window bounds */
1079   if (span->arrayMask & SPAN_XY) {
1080      /* array of pixel locations */
1081      GLuint i;
1082      for (i = 0; i < span->end; i++) {
1083         if (span->array->mask[i]) {
1084            assert(span->array->x[i] >= fb->_Xmin);
1085            assert(span->array->x[i] < fb->_Xmax);
1086            assert(span->array->y[i] >= fb->_Ymin);
1087            assert(span->array->y[i] < fb->_Ymax);
1088         }
1089      }
1090   }
1091#endif
1092
1093   /* Polygon Stippling */
1094   if (ctx->Polygon.StippleFlag && span->primitive == GL_POLYGON) {
1095      stipple_polygon_span(ctx, span);
1096   }
1097
1098   /* This is the normal place to compute the fragment color/Z
1099    * from texturing or shading.
1100    */
1101   if (shaderOrTexture && !swrast->_DeferredTexture) {
1102      shade_texture_span(ctx, span);
1103   }
1104
1105   /* Do the alpha test */
1106   if (ctx->Color.AlphaEnabled) {
1107      if (!_swrast_alpha_test(ctx, span)) {
1108         /* all fragments failed test */
1109         goto end;
1110      }
1111   }
1112
1113   /* Stencil and Z testing */
1114   if (ctx->Stencil._Enabled || ctx->Depth.Test) {
1115      if (!(span->arrayMask & SPAN_Z))
1116         _swrast_span_interpolate_z(ctx, span);
1117
1118      if (ctx->Transform.DepthClamp)
1119	 _swrast_depth_clamp_span(ctx, span);
1120
1121      if (ctx->Stencil._Enabled) {
1122         /* Combined Z/stencil tests */
1123         if (!_swrast_stencil_and_ztest_span(ctx, span)) {
1124            /* all fragments failed test */
1125            goto end;
1126         }
1127      }
1128      else if (fb->Visual.depthBits > 0) {
1129         /* Just regular depth testing */
1130         ASSERT(ctx->Depth.Test);
1131         ASSERT(span->arrayMask & SPAN_Z);
1132         if (!_swrast_depth_test_span(ctx, span)) {
1133            /* all fragments failed test */
1134            goto end;
1135         }
1136      }
1137   }
1138
1139   if (ctx->Query.CurrentOcclusionObject) {
1140      /* update count of 'passed' fragments */
1141      struct gl_query_object *q = ctx->Query.CurrentOcclusionObject;
1142      GLuint i;
1143      for (i = 0; i < span->end; i++)
1144         q->Result += span->array->mask[i];
1145   }
1146
1147   /* We had to wait until now to check for glColorMask(0,0,0,0) because of
1148    * the occlusion test.
1149    */
1150   if (fb->_NumColorDrawBuffers == 1 && colorMask[0] == 0x0) {
1151      /* no colors to write */
1152      goto end;
1153   }
1154
1155   /* If we were able to defer fragment color computation to now, there's
1156    * a good chance that many fragments will have already been killed by
1157    * Z/stencil testing.
1158    */
1159   if (shaderOrTexture && swrast->_DeferredTexture) {
1160      shade_texture_span(ctx, span);
1161   }
1162
1163#if CHAN_BITS == 32
1164   if ((span->arrayAttribs & FRAG_BIT_COL0) == 0) {
1165      interpolate_active_attribs(ctx, span, FRAG_BIT_COL0);
1166   }
1167#else
1168   if ((span->arrayMask & SPAN_RGBA) == 0) {
1169      interpolate_int_colors(ctx, span);
1170   }
1171#endif
1172
1173   ASSERT(span->arrayMask & SPAN_RGBA);
1174
1175   if (span->primitive == GL_BITMAP || !swrast->SpecularVertexAdd) {
1176      /* Add primary and specular (diffuse + specular) colors */
1177      if (!shader) {
1178         if (ctx->Fog.ColorSumEnabled ||
1179             (ctx->Light.Enabled &&
1180              ctx->Light.Model.ColorControl == GL_SEPARATE_SPECULAR_COLOR)) {
1181            add_specular(ctx, span);
1182         }
1183      }
1184   }
1185
1186   /* Fog */
1187   if (swrast->_FogEnabled) {
1188      _swrast_fog_rgba_span(ctx, span);
1189   }
1190
1191   /* Antialias coverage application */
1192   if (span->arrayMask & SPAN_COVERAGE) {
1193      apply_aa_coverage(span);
1194   }
1195
1196   /* Clamp color/alpha values over the range [0.0, 1.0] before storage */
1197   if (ctx->Color.ClampFragmentColor == GL_TRUE &&
1198       span->array->ChanType == GL_FLOAT) {
1199      clamp_colors(span);
1200   }
1201
1202   /*
1203    * Write to renderbuffers.
1204    * Depending on glDrawBuffer() state and the which color outputs are
1205    * written by the fragment shader, we may either replicate one color to
1206    * all renderbuffers or write a different color to each renderbuffer.
1207    * multiFragOutputs=TRUE for the later case.
1208    */
1209   {
1210      const GLuint numBuffers = fb->_NumColorDrawBuffers;
1211      const struct gl_fragment_program *fp = ctx->FragmentProgram._Current;
1212      const GLboolean multiFragOutputs =
1213         (fp && fp->Base.OutputsWritten >= (1 << FRAG_RESULT_DATA0));
1214      GLuint buf;
1215
1216      for (buf = 0; buf < numBuffers; buf++) {
1217         struct gl_renderbuffer *rb = fb->_ColorDrawBuffers[buf];
1218
1219         /* color[fragOutput] will be written to buffer[buf] */
1220
1221         if (rb) {
1222            GLchan rgbaSave[MAX_WIDTH][4];
1223            const GLuint fragOutput = multiFragOutputs ? buf : 0;
1224
1225            if (rb->DataType != span->array->ChanType || fragOutput > 0) {
1226               convert_color_type(span, rb->DataType, fragOutput);
1227            }
1228
1229            if (!multiFragOutputs && numBuffers > 1) {
1230               /* save colors for second, third renderbuffer writes */
1231               memcpy(rgbaSave, span->array->rgba,
1232                      4 * span->end * sizeof(GLchan));
1233            }
1234
1235            ASSERT(rb->_BaseFormat == GL_RGBA || rb->_BaseFormat == GL_RGB);
1236
1237            if (ctx->Color._LogicOpEnabled) {
1238               _swrast_logicop_rgba_span(ctx, rb, span);
1239            }
1240            else if ((ctx->Color.BlendEnabled >> buf) & 1) {
1241               _swrast_blend_span(ctx, rb, span);
1242            }
1243
1244            if (colorMask[buf] != 0xffffffff) {
1245               _swrast_mask_rgba_span(ctx, rb, span, buf);
1246            }
1247
1248            if (span->arrayMask & SPAN_XY) {
1249               /* array of pixel coords */
1250               ASSERT(rb->PutValues);
1251               rb->PutValues(ctx, rb, span->end,
1252                             span->array->x, span->array->y,
1253                             span->array->rgba, span->array->mask);
1254            }
1255            else {
1256               /* horizontal run of pixels */
1257               ASSERT(rb->PutRow);
1258               rb->PutRow(ctx, rb, span->end, span->x, span->y,
1259                          span->array->rgba,
1260                          span->writeAll ? NULL: span->array->mask);
1261            }
1262
1263            if (!multiFragOutputs && numBuffers > 1) {
1264               /* restore original span values */
1265               memcpy(span->array->rgba, rgbaSave,
1266                      4 * span->end * sizeof(GLchan));
1267            }
1268
1269         } /* if rb */
1270      } /* for buf */
1271   }
1272
1273end:
1274   /* restore these values before returning */
1275   span->interpMask = origInterpMask;
1276   span->arrayMask = origArrayMask;
1277   span->arrayAttribs = origArrayAttribs;
1278   span->array->ChanType = origChanType;
1279   span->array->rgba = origRgba;
1280}
1281
1282
1283/**
1284 * Read RGBA pixels from a renderbuffer.  Clipping will be done to prevent
1285 * reading ouside the buffer's boundaries.
1286 * \param dstType  datatype for returned colors
1287 * \param rgba  the returned colors
1288 */
1289void
1290_swrast_read_rgba_span( GLcontext *ctx, struct gl_renderbuffer *rb,
1291                        GLuint n, GLint x, GLint y, GLenum dstType,
1292                        GLvoid *rgba)
1293{
1294   const GLint bufWidth = (GLint) rb->Width;
1295   const GLint bufHeight = (GLint) rb->Height;
1296
1297   if (y < 0 || y >= bufHeight || x + (GLint) n < 0 || x >= bufWidth) {
1298      /* completely above, below, or right */
1299      /* XXX maybe leave rgba values undefined? */
1300      memset(rgba, 0, 4 * n * sizeof(GLchan));
1301   }
1302   else {
1303      GLint skip, length;
1304      if (x < 0) {
1305         /* left edge clipping */
1306         skip = -x;
1307         length = (GLint) n - skip;
1308         if (length < 0) {
1309            /* completely left of window */
1310            return;
1311         }
1312         if (length > bufWidth) {
1313            length = bufWidth;
1314         }
1315      }
1316      else if ((GLint) (x + n) > bufWidth) {
1317         /* right edge clipping */
1318         skip = 0;
1319         length = bufWidth - x;
1320         if (length < 0) {
1321            /* completely to right of window */
1322            return;
1323         }
1324      }
1325      else {
1326         /* no clipping */
1327         skip = 0;
1328         length = (GLint) n;
1329      }
1330
1331      ASSERT(rb);
1332      ASSERT(rb->GetRow);
1333      ASSERT(rb->_BaseFormat == GL_RGB || rb->_BaseFormat == GL_RGBA);
1334
1335      if (rb->DataType == dstType) {
1336         rb->GetRow(ctx, rb, length, x + skip, y,
1337                    (GLubyte *) rgba + skip * RGBA_PIXEL_SIZE(rb->DataType));
1338      }
1339      else {
1340         GLuint temp[MAX_WIDTH * 4];
1341         rb->GetRow(ctx, rb, length, x + skip, y, temp);
1342         _mesa_convert_colors(rb->DataType, temp,
1343                   dstType, (GLubyte *) rgba + skip * RGBA_PIXEL_SIZE(dstType),
1344                   length, NULL);
1345      }
1346   }
1347}
1348
1349
1350/**
1351 * Wrapper for gl_renderbuffer::GetValues() which does clipping to avoid
1352 * reading values outside the buffer bounds.
1353 * We can use this for reading any format/type of renderbuffer.
1354 * \param valueSize is the size in bytes of each value (pixel) put into the
1355 *                  values array.
1356 */
1357void
1358_swrast_get_values(GLcontext *ctx, struct gl_renderbuffer *rb,
1359                   GLuint count, const GLint x[], const GLint y[],
1360                   void *values, GLuint valueSize)
1361{
1362   GLuint i, inCount = 0, inStart = 0;
1363
1364   for (i = 0; i < count; i++) {
1365      if (x[i] >= 0 && y[i] >= 0 &&
1366	  x[i] < (GLint) rb->Width && y[i] < (GLint) rb->Height) {
1367         /* inside */
1368         if (inCount == 0)
1369            inStart = i;
1370         inCount++;
1371      }
1372      else {
1373         if (inCount > 0) {
1374            /* read [inStart, inStart + inCount) */
1375            rb->GetValues(ctx, rb, inCount, x + inStart, y + inStart,
1376                          (GLubyte *) values + inStart * valueSize);
1377            inCount = 0;
1378         }
1379      }
1380   }
1381   if (inCount > 0) {
1382      /* read last values */
1383      rb->GetValues(ctx, rb, inCount, x + inStart, y + inStart,
1384                    (GLubyte *) values + inStart * valueSize);
1385   }
1386}
1387
1388
1389/**
1390 * Wrapper for gl_renderbuffer::PutRow() which does clipping.
1391 * \param valueSize  size of each value (pixel) in bytes
1392 */
1393void
1394_swrast_put_row(GLcontext *ctx, struct gl_renderbuffer *rb,
1395                GLuint count, GLint x, GLint y,
1396                const GLvoid *values, GLuint valueSize)
1397{
1398   GLint skip = 0;
1399
1400   if (y < 0 || y >= (GLint) rb->Height)
1401      return; /* above or below */
1402
1403   if (x + (GLint) count <= 0 || x >= (GLint) rb->Width)
1404      return; /* entirely left or right */
1405
1406   if ((GLint) (x + count) > (GLint) rb->Width) {
1407      /* right clip */
1408      GLint clip = x + count - rb->Width;
1409      count -= clip;
1410   }
1411
1412   if (x < 0) {
1413      /* left clip */
1414      skip = -x;
1415      x = 0;
1416      count -= skip;
1417   }
1418
1419   rb->PutRow(ctx, rb, count, x, y,
1420              (const GLubyte *) values + skip * valueSize, NULL);
1421}
1422
1423
1424/**
1425 * Wrapper for gl_renderbuffer::GetRow() which does clipping.
1426 * \param valueSize  size of each value (pixel) in bytes
1427 */
1428void
1429_swrast_get_row(GLcontext *ctx, struct gl_renderbuffer *rb,
1430                GLuint count, GLint x, GLint y,
1431                GLvoid *values, GLuint valueSize)
1432{
1433   GLint skip = 0;
1434
1435   if (y < 0 || y >= (GLint) rb->Height)
1436      return; /* above or below */
1437
1438   if (x + (GLint) count <= 0 || x >= (GLint) rb->Width)
1439      return; /* entirely left or right */
1440
1441   if (x + count > rb->Width) {
1442      /* right clip */
1443      GLint clip = x + count - rb->Width;
1444      count -= clip;
1445   }
1446
1447   if (x < 0) {
1448      /* left clip */
1449      skip = -x;
1450      x = 0;
1451      count -= skip;
1452   }
1453
1454   rb->GetRow(ctx, rb, count, x, y, (GLubyte *) values + skip * valueSize);
1455}
1456
1457
1458/**
1459 * Get RGBA pixels from the given renderbuffer.
1460 * Used by blending, logicop and masking functions.
1461 * \return pointer to the colors we read.
1462 */
1463void *
1464_swrast_get_dest_rgba(GLcontext *ctx, struct gl_renderbuffer *rb,
1465                      SWspan *span)
1466{
1467   const GLuint pixelSize = RGBA_PIXEL_SIZE(span->array->ChanType);
1468   void *rbPixels;
1469
1470   /* Point rbPixels to a temporary space */
1471   rbPixels = span->array->attribs[FRAG_ATTRIB_MAX - 1];
1472
1473   /* Get destination values from renderbuffer */
1474   if (span->arrayMask & SPAN_XY) {
1475      _swrast_get_values(ctx, rb, span->end, span->array->x, span->array->y,
1476                         rbPixels, pixelSize);
1477   }
1478   else {
1479      _swrast_get_row(ctx, rb, span->end, span->x, span->y,
1480                      rbPixels, pixelSize);
1481   }
1482
1483   return rbPixels;
1484}
1485