s_span.c revision b9080dd5493eb23af6c5c494550c7b1cb481ca7b
1/*
2 * Mesa 3-D graphics library
3 * Version:  6.5.3
4 *
5 * Copyright (C) 1999-2007  Brian Paul   All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included
15 * in all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
20 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
21 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
22 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25
26/**
27 * \file swrast/s_span.c
28 * \brief Span processing functions used by all rasterization functions.
29 * This is where all the per-fragment tests are performed
30 * \author Brian Paul
31 */
32
33#include "glheader.h"
34#include "colormac.h"
35#include "context.h"
36#include "macros.h"
37#include "imports.h"
38#include "image.h"
39
40#include "s_atifragshader.h"
41#include "s_alpha.h"
42#include "s_blend.h"
43#include "s_context.h"
44#include "s_depth.h"
45#include "s_fog.h"
46#include "s_logic.h"
47#include "s_masking.h"
48#include "s_fragprog.h"
49#include "s_span.h"
50#include "s_stencil.h"
51#include "s_texcombine.h"
52
53
54/**
55 * Set default fragment attributes for the span using the
56 * current raster values.  Used prior to glDraw/CopyPixels
57 * and glBitmap.
58 */
59void
60_swrast_span_default_attribs(GLcontext *ctx, SWspan *span)
61{
62   /* Z*/
63   {
64      const GLfloat depthMax = ctx->DrawBuffer->_DepthMaxF;
65      if (ctx->DrawBuffer->Visual.depthBits <= 16)
66         span->z = FloatToFixed(ctx->Current.RasterPos[2] * depthMax + 0.5F);
67      else
68         span->z = (GLint) (ctx->Current.RasterPos[2] * depthMax + 0.5F);
69      span->zStep = 0;
70      span->interpMask |= SPAN_Z;
71   }
72
73   /* W (for perspective correction) */
74   span->attrStart[FRAG_ATTRIB_WPOS][3] = 1.0;
75   span->attrStepX[FRAG_ATTRIB_WPOS][3] = 0.0;
76   span->attrStepY[FRAG_ATTRIB_WPOS][3] = 0.0;
77
78   /* primary color, or color index */
79   if (ctx->Visual.rgbMode) {
80      GLchan r, g, b, a;
81      UNCLAMPED_FLOAT_TO_CHAN(r, ctx->Current.RasterColor[0]);
82      UNCLAMPED_FLOAT_TO_CHAN(g, ctx->Current.RasterColor[1]);
83      UNCLAMPED_FLOAT_TO_CHAN(b, ctx->Current.RasterColor[2]);
84      UNCLAMPED_FLOAT_TO_CHAN(a, ctx->Current.RasterColor[3]);
85#if CHAN_TYPE == GL_FLOAT
86      span->red = r;
87      span->green = g;
88      span->blue = b;
89      span->alpha = a;
90#else
91      span->red   = IntToFixed(r);
92      span->green = IntToFixed(g);
93      span->blue  = IntToFixed(b);
94      span->alpha = IntToFixed(a);
95#endif
96      span->redStep = 0;
97      span->greenStep = 0;
98      span->blueStep = 0;
99      span->alphaStep = 0;
100      span->interpMask |= SPAN_RGBA;
101
102      COPY_4V(span->attrStart[FRAG_ATTRIB_COL0], ctx->Current.RasterColor);
103      ASSIGN_4V(span->attrStepX[FRAG_ATTRIB_COL0], 0.0, 0.0, 0.0, 0.0);
104      ASSIGN_4V(span->attrStepY[FRAG_ATTRIB_COL0], 0.0, 0.0, 0.0, 0.0);
105   }
106   else {
107      span->index = FloatToFixed(ctx->Current.RasterIndex);
108      span->indexStep = 0;
109      span->interpMask |= SPAN_INDEX;
110   }
111
112   /* Secondary color */
113   if (ctx->Visual.rgbMode && (ctx->Light.Enabled || ctx->Fog.ColorSumEnabled))
114   {
115      COPY_4V(span->attrStart[FRAG_ATTRIB_COL1], ctx->Current.RasterSecondaryColor);
116      ASSIGN_4V(span->attrStepX[FRAG_ATTRIB_COL1], 0.0, 0.0, 0.0, 0.0);
117      ASSIGN_4V(span->attrStepY[FRAG_ATTRIB_COL1], 0.0, 0.0, 0.0, 0.0);
118   }
119
120   /* fog */
121   {
122      const SWcontext *swrast = SWRAST_CONTEXT(ctx);
123      GLfloat fogVal; /* a coord or a blend factor */
124      if (swrast->_PreferPixelFog) {
125         /* fog blend factors will be computed from fog coordinates per pixel */
126         fogVal = ctx->Current.RasterDistance;
127      }
128      else {
129         /* fog blend factor should be computed from fogcoord now */
130         fogVal = _swrast_z_to_fogfactor(ctx, ctx->Current.RasterDistance);
131      }
132      span->attrStart[FRAG_ATTRIB_FOGC][0] = fogVal;
133      span->attrStepX[FRAG_ATTRIB_FOGC][0] = 0.0;
134      span->attrStepY[FRAG_ATTRIB_FOGC][0] = 0.0;
135   }
136
137   /* texcoords */
138   {
139      GLuint i;
140      for (i = 0; i < ctx->Const.MaxTextureCoordUnits; i++) {
141         const GLuint attr = FRAG_ATTRIB_TEX0 + i;
142         const GLfloat *tc = ctx->Current.RasterTexCoords[i];
143         if (ctx->FragmentProgram._Current || ctx->ATIFragmentShader._Enabled) {
144            COPY_4V(span->attrStart[attr], tc);
145         }
146         else if (tc[3] > 0.0F) {
147            /* use (s/q, t/q, r/q, 1) */
148            span->attrStart[attr][0] = tc[0] / tc[3];
149            span->attrStart[attr][1] = tc[1] / tc[3];
150            span->attrStart[attr][2] = tc[2] / tc[3];
151            span->attrStart[attr][3] = 1.0;
152         }
153         else {
154            ASSIGN_4V(span->attrStart[attr], 0.0F, 0.0F, 0.0F, 1.0F);
155         }
156         ASSIGN_4V(span->attrStepX[attr], 0.0F, 0.0F, 0.0F, 0.0F);
157         ASSIGN_4V(span->attrStepY[attr], 0.0F, 0.0F, 0.0F, 0.0F);
158      }
159   }
160}
161
162
163/**
164 * Interpolate the active attributes (and'd with attrMask) to
165 * fill in span->array->attribs[].
166 * Perspective correction will be done.  The point/line/triangle function
167 * should have computed attrStart/Step values for FRAG_ATTRIB_WPOS[3]!
168 */
169static INLINE void
170interpolate_active_attribs(GLcontext *ctx, SWspan *span, GLbitfield attrMask)
171{
172   const SWcontext *swrast = SWRAST_CONTEXT(ctx);
173
174   ATTRIB_LOOP_BEGIN
175      if (attrMask & (1 << attr)) {
176         const GLfloat dwdx = span->attrStepX[FRAG_ATTRIB_WPOS][3];
177         GLfloat w = span->attrStart[FRAG_ATTRIB_WPOS][3];
178         const GLfloat dv0dx = span->attrStepX[attr][0];
179         const GLfloat dv1dx = span->attrStepX[attr][1];
180         const GLfloat dv2dx = span->attrStepX[attr][2];
181         const GLfloat dv3dx = span->attrStepX[attr][3];
182         GLfloat v0 = span->attrStart[attr][0];
183         GLfloat v1 = span->attrStart[attr][1];
184         GLfloat v2 = span->attrStart[attr][2];
185         GLfloat v3 = span->attrStart[attr][3];
186         GLuint k;
187         for (k = 0; k < span->end; k++) {
188            const GLfloat invW = 1.0f / w;
189            span->array->attribs[attr][k][0] = v0 * invW;
190            span->array->attribs[attr][k][1] = v1 * invW;
191            span->array->attribs[attr][k][2] = v2 * invW;
192            span->array->attribs[attr][k][3] = v3 * invW;
193            v0 += dv0dx;
194            v1 += dv1dx;
195            v2 += dv2dx;
196            v3 += dv3dx;
197            w += dwdx;
198         }
199         span->arrayAttribs |= (1 << attr);
200      }
201   ATTRIB_LOOP_END
202}
203
204
205/**
206 * Interpolate primary colors to fill in the span->array->rgba8 (or rgb16)
207 * color array.
208 */
209static INLINE void
210interpolate_int_colors(GLcontext *ctx, SWspan *span)
211{
212   const GLuint n = span->end;
213   GLuint i;
214
215#if CHAN_BITS != 32
216   ASSERT(!(span->arrayMask & SPAN_RGBA));
217#endif
218
219   switch (span->array->ChanType) {
220#if CHAN_BITS != 32
221   case GL_UNSIGNED_BYTE:
222      {
223         GLubyte (*rgba)[4] = span->array->rgba8;
224         if (span->interpMask & SPAN_FLAT) {
225            GLubyte color[4];
226            color[RCOMP] = FixedToInt(span->red);
227            color[GCOMP] = FixedToInt(span->green);
228            color[BCOMP] = FixedToInt(span->blue);
229            color[ACOMP] = FixedToInt(span->alpha);
230            for (i = 0; i < n; i++) {
231               COPY_4UBV(rgba[i], color);
232            }
233         }
234         else {
235            GLfixed r = span->red;
236            GLfixed g = span->green;
237            GLfixed b = span->blue;
238            GLfixed a = span->alpha;
239            GLint dr = span->redStep;
240            GLint dg = span->greenStep;
241            GLint db = span->blueStep;
242            GLint da = span->alphaStep;
243            for (i = 0; i < n; i++) {
244               rgba[i][RCOMP] = FixedToChan(r);
245               rgba[i][GCOMP] = FixedToChan(g);
246               rgba[i][BCOMP] = FixedToChan(b);
247               rgba[i][ACOMP] = FixedToChan(a);
248               r += dr;
249               g += dg;
250               b += db;
251               a += da;
252            }
253         }
254      }
255      break;
256   case GL_UNSIGNED_SHORT:
257      {
258         GLushort (*rgba)[4] = span->array->rgba16;
259         if (span->interpMask & SPAN_FLAT) {
260            GLushort color[4];
261            color[RCOMP] = FixedToInt(span->red);
262            color[GCOMP] = FixedToInt(span->green);
263            color[BCOMP] = FixedToInt(span->blue);
264            color[ACOMP] = FixedToInt(span->alpha);
265            for (i = 0; i < n; i++) {
266               COPY_4V(rgba[i], color);
267            }
268         }
269         else {
270            GLushort (*rgba)[4] = span->array->rgba16;
271            GLfixed r, g, b, a;
272            GLint dr, dg, db, da;
273            r = span->red;
274            g = span->green;
275            b = span->blue;
276            a = span->alpha;
277            dr = span->redStep;
278            dg = span->greenStep;
279            db = span->blueStep;
280            da = span->alphaStep;
281            for (i = 0; i < n; i++) {
282               rgba[i][RCOMP] = FixedToChan(r);
283               rgba[i][GCOMP] = FixedToChan(g);
284               rgba[i][BCOMP] = FixedToChan(b);
285               rgba[i][ACOMP] = FixedToChan(a);
286               r += dr;
287               g += dg;
288               b += db;
289               a += da;
290            }
291         }
292      }
293      break;
294#endif
295   case GL_FLOAT:
296      interpolate_active_attribs(ctx, span, FRAG_BIT_COL0);
297      break;
298   default:
299      _mesa_problem(NULL, "bad datatype in interpolate_int_colors");
300   }
301   span->arrayMask |= SPAN_RGBA;
302}
303
304
305/**
306 * Populate the FRAG_ATTRIB_COL0 array.
307 */
308static INLINE void
309interpolate_float_colors(SWspan *span)
310{
311   GLfloat (*col0)[4] = span->array->attribs[FRAG_ATTRIB_COL0];
312   const GLuint n = span->end;
313   GLuint i;
314
315   assert(!(span->arrayAttribs & FRAG_BIT_COL0));
316
317   if (span->arrayMask & SPAN_RGBA) {
318      /* convert array of int colors */
319      for (i = 0; i < n; i++) {
320         col0[i][0] = UBYTE_TO_FLOAT(span->array->rgba8[i][0]);
321         col0[i][1] = UBYTE_TO_FLOAT(span->array->rgba8[i][1]);
322         col0[i][2] = UBYTE_TO_FLOAT(span->array->rgba8[i][2]);
323         col0[i][3] = UBYTE_TO_FLOAT(span->array->rgba8[i][3]);
324      }
325   }
326   else {
327      /* interpolate red/green/blue/alpha to get float colors */
328      ASSERT(span->interpMask & SPAN_RGBA);
329      if (span->interpMask & SPAN_FLAT) {
330         GLfloat r = FixedToFloat(span->red);
331         GLfloat g = FixedToFloat(span->green);
332         GLfloat b = FixedToFloat(span->blue);
333         GLfloat a = FixedToFloat(span->alpha);
334         for (i = 0; i < n; i++) {
335            ASSIGN_4V(col0[i], r, g, b, a);
336         }
337      }
338      else {
339         GLfloat r = FixedToFloat(span->red);
340         GLfloat g = FixedToFloat(span->green);
341         GLfloat b = FixedToFloat(span->blue);
342         GLfloat a = FixedToFloat(span->alpha);
343         GLfloat dr = FixedToFloat(span->redStep);
344         GLfloat dg = FixedToFloat(span->greenStep);
345         GLfloat db = FixedToFloat(span->blueStep);
346         GLfloat da = FixedToFloat(span->alphaStep);
347         for (i = 0; i < n; i++) {
348            col0[i][0] = r;
349            col0[i][1] = g;
350            col0[i][2] = b;
351            col0[i][3] = a;
352            r += dr;
353            g += dg;
354            b += db;
355            a += da;
356         }
357      }
358   }
359
360   span->arrayAttribs |= FRAG_BIT_COL0;
361   span->array->ChanType = GL_FLOAT;
362}
363
364
365
366/* Fill in the span.color.index array from the interpolation values */
367static INLINE void
368interpolate_indexes(GLcontext *ctx, SWspan *span)
369{
370   GLfixed index = span->index;
371   const GLint indexStep = span->indexStep;
372   const GLuint n = span->end;
373   GLuint *indexes = span->array->index;
374   GLuint i;
375   (void) ctx;
376
377   ASSERT(!(span->arrayMask & SPAN_INDEX));
378
379   if ((span->interpMask & SPAN_FLAT) || (indexStep == 0)) {
380      /* constant color */
381      index = FixedToInt(index);
382      for (i = 0; i < n; i++) {
383         indexes[i] = index;
384      }
385   }
386   else {
387      /* interpolate */
388      for (i = 0; i < n; i++) {
389         indexes[i] = FixedToInt(index);
390         index += indexStep;
391      }
392   }
393   span->arrayMask |= SPAN_INDEX;
394   span->interpMask &= ~SPAN_INDEX;
395}
396
397
398/**
399 * Fill in the span.zArray array from the span->z, zStep values.
400 */
401void
402_swrast_span_interpolate_z( const GLcontext *ctx, SWspan *span )
403{
404   const GLuint n = span->end;
405   GLuint i;
406
407   ASSERT(!(span->arrayMask & SPAN_Z));
408
409   if (ctx->DrawBuffer->Visual.depthBits <= 16) {
410      GLfixed zval = span->z;
411      GLuint *z = span->array->z;
412      for (i = 0; i < n; i++) {
413         z[i] = FixedToInt(zval);
414         zval += span->zStep;
415      }
416   }
417   else {
418      /* Deep Z buffer, no fixed->int shift */
419      GLuint zval = span->z;
420      GLuint *z = span->array->z;
421      for (i = 0; i < n; i++) {
422         z[i] = zval;
423         zval += span->zStep;
424      }
425   }
426   span->interpMask &= ~SPAN_Z;
427   span->arrayMask |= SPAN_Z;
428}
429
430
431/**
432 * Compute mipmap LOD from partial derivatives.
433 * This the ideal solution, as given in the OpenGL spec.
434 */
435#if 0
436static GLfloat
437compute_lambda(GLfloat dsdx, GLfloat dsdy, GLfloat dtdx, GLfloat dtdy,
438               GLfloat dqdx, GLfloat dqdy, GLfloat texW, GLfloat texH,
439               GLfloat s, GLfloat t, GLfloat q, GLfloat invQ)
440{
441   GLfloat dudx = texW * ((s + dsdx) / (q + dqdx) - s * invQ);
442   GLfloat dvdx = texH * ((t + dtdx) / (q + dqdx) - t * invQ);
443   GLfloat dudy = texW * ((s + dsdy) / (q + dqdy) - s * invQ);
444   GLfloat dvdy = texH * ((t + dtdy) / (q + dqdy) - t * invQ);
445   GLfloat x = SQRTF(dudx * dudx + dvdx * dvdx);
446   GLfloat y = SQRTF(dudy * dudy + dvdy * dvdy);
447   GLfloat rho = MAX2(x, y);
448   GLfloat lambda = LOG2(rho);
449   return lambda;
450}
451#endif
452
453
454/**
455 * Compute mipmap LOD from partial derivatives.
456 * This is a faster approximation than above function.
457 */
458GLfloat
459_swrast_compute_lambda(GLfloat dsdx, GLfloat dsdy, GLfloat dtdx, GLfloat dtdy,
460                     GLfloat dqdx, GLfloat dqdy, GLfloat texW, GLfloat texH,
461                     GLfloat s, GLfloat t, GLfloat q, GLfloat invQ)
462{
463   GLfloat dsdx2 = (s + dsdx) / (q + dqdx) - s * invQ;
464   GLfloat dtdx2 = (t + dtdx) / (q + dqdx) - t * invQ;
465   GLfloat dsdy2 = (s + dsdy) / (q + dqdy) - s * invQ;
466   GLfloat dtdy2 = (t + dtdy) / (q + dqdy) - t * invQ;
467   GLfloat maxU, maxV, rho, lambda;
468   dsdx2 = FABSF(dsdx2);
469   dsdy2 = FABSF(dsdy2);
470   dtdx2 = FABSF(dtdx2);
471   dtdy2 = FABSF(dtdy2);
472   maxU = MAX2(dsdx2, dsdy2) * texW;
473   maxV = MAX2(dtdx2, dtdy2) * texH;
474   rho = MAX2(maxU, maxV);
475   lambda = LOG2(rho);
476   return lambda;
477}
478
479
480/**
481 * Fill in the span.array->attrib[FRAG_ATTRIB_TEXn] arrays from the
482 * using the attrStart/Step values.
483 *
484 * This function only used during fixed-function fragment processing.
485 *
486 * Note: in the places where we divide by Q (or mult by invQ) we're
487 * really doing two things: perspective correction and texcoord
488 * projection.  Remember, for texcoord (s,t,r,q) we need to index
489 * texels with (s/q, t/q, r/q).
490 */
491static void
492interpolate_texcoords(GLcontext *ctx, SWspan *span)
493{
494   const GLuint maxUnit
495      = (ctx->Texture._EnabledCoordUnits > 1) ? ctx->Const.MaxTextureUnits : 1;
496   GLuint u;
497
498   /* XXX CoordUnits vs. ImageUnits */
499   for (u = 0; u < maxUnit; u++) {
500      if (ctx->Texture._EnabledCoordUnits & (1 << u)) {
501         const GLuint attr = FRAG_ATTRIB_TEX0 + u;
502         const struct gl_texture_object *obj = ctx->Texture.Unit[u]._Current;
503         GLfloat texW, texH;
504         GLboolean needLambda;
505         GLfloat (*texcoord)[4] = span->array->attribs[attr];
506         GLfloat *lambda = span->array->lambda[u];
507         const GLfloat dsdx = span->attrStepX[attr][0];
508         const GLfloat dsdy = span->attrStepY[attr][0];
509         const GLfloat dtdx = span->attrStepX[attr][1];
510         const GLfloat dtdy = span->attrStepY[attr][1];
511         const GLfloat drdx = span->attrStepX[attr][2];
512         const GLfloat dqdx = span->attrStepX[attr][3];
513         const GLfloat dqdy = span->attrStepY[attr][3];
514         GLfloat s = span->attrStart[attr][0];
515         GLfloat t = span->attrStart[attr][1];
516         GLfloat r = span->attrStart[attr][2];
517         GLfloat q = span->attrStart[attr][3];
518
519         if (obj) {
520            const struct gl_texture_image *img = obj->Image[0][obj->BaseLevel];
521            needLambda = (obj->MinFilter != obj->MagFilter)
522               || ctx->FragmentProgram._Current;
523            texW = img->WidthScale;
524            texH = img->HeightScale;
525         }
526         else {
527            /* using a fragment program */
528            texW = 1.0;
529            texH = 1.0;
530            needLambda = GL_FALSE;
531         }
532
533         if (needLambda) {
534            GLuint i;
535            if (ctx->FragmentProgram._Current
536                || ctx->ATIFragmentShader._Enabled) {
537               /* do perspective correction but don't divide s, t, r by q */
538               const GLfloat dwdx = span->attrStepX[FRAG_ATTRIB_WPOS][3];
539               GLfloat w = span->attrStart[FRAG_ATTRIB_WPOS][3];
540               for (i = 0; i < span->end; i++) {
541                  const GLfloat invW = 1.0F / w;
542                  texcoord[i][0] = s * invW;
543                  texcoord[i][1] = t * invW;
544                  texcoord[i][2] = r * invW;
545                  texcoord[i][3] = q * invW;
546                  lambda[i] = _swrast_compute_lambda(dsdx, dsdy, dtdx, dtdy,
547                                                     dqdx, dqdy, texW, texH,
548                                                     s, t, q, invW);
549                  s += dsdx;
550                  t += dtdx;
551                  r += drdx;
552                  q += dqdx;
553                  w += dwdx;
554               }
555            }
556            else {
557               for (i = 0; i < span->end; i++) {
558                  const GLfloat invQ = (q == 0.0F) ? 1.0F : (1.0F / q);
559                  texcoord[i][0] = s * invQ;
560                  texcoord[i][1] = t * invQ;
561                  texcoord[i][2] = r * invQ;
562                  texcoord[i][3] = q;
563                  lambda[i] = _swrast_compute_lambda(dsdx, dsdy, dtdx, dtdy,
564                                                     dqdx, dqdy, texW, texH,
565                                                     s, t, q, invQ);
566                  s += dsdx;
567                  t += dtdx;
568                  r += drdx;
569                  q += dqdx;
570               }
571            }
572            span->arrayMask |= SPAN_LAMBDA;
573         }
574         else {
575            GLuint i;
576            if (ctx->FragmentProgram._Current ||
577                ctx->ATIFragmentShader._Enabled) {
578               /* do perspective correction but don't divide s, t, r by q */
579               const GLfloat dwdx = span->attrStepX[FRAG_ATTRIB_WPOS][3];
580               GLfloat w = span->attrStart[FRAG_ATTRIB_WPOS][3];
581               for (i = 0; i < span->end; i++) {
582                  const GLfloat invW = 1.0F / w;
583                  texcoord[i][0] = s * invW;
584                  texcoord[i][1] = t * invW;
585                  texcoord[i][2] = r * invW;
586                  texcoord[i][3] = q * invW;
587                  lambda[i] = 0.0;
588                  s += dsdx;
589                  t += dtdx;
590                  r += drdx;
591                  q += dqdx;
592                  w += dwdx;
593               }
594            }
595            else if (dqdx == 0.0F) {
596               /* Ortho projection or polygon's parallel to window X axis */
597               const GLfloat invQ = (q == 0.0F) ? 1.0F : (1.0F / q);
598               for (i = 0; i < span->end; i++) {
599                  texcoord[i][0] = s * invQ;
600                  texcoord[i][1] = t * invQ;
601                  texcoord[i][2] = r * invQ;
602                  texcoord[i][3] = q;
603                  lambda[i] = 0.0;
604                  s += dsdx;
605                  t += dtdx;
606                  r += drdx;
607               }
608            }
609            else {
610               for (i = 0; i < span->end; i++) {
611                  const GLfloat invQ = (q == 0.0F) ? 1.0F : (1.0F / q);
612                  texcoord[i][0] = s * invQ;
613                  texcoord[i][1] = t * invQ;
614                  texcoord[i][2] = r * invQ;
615                  texcoord[i][3] = q;
616                  lambda[i] = 0.0;
617                  s += dsdx;
618                  t += dtdx;
619                  r += drdx;
620                  q += dqdx;
621               }
622            }
623         } /* lambda */
624      } /* if */
625   } /* for */
626}
627
628
629/**
630 * Fill in the arrays->attribs[FRAG_ATTRIB_WPOS] array.
631 */
632static INLINE void
633interpolate_wpos(GLcontext *ctx, SWspan *span)
634{
635   GLfloat (*wpos)[4] = span->array->attribs[FRAG_ATTRIB_WPOS];
636   GLuint i;
637   const GLfloat zScale = 1.0 / ctx->DrawBuffer->_DepthMaxF;
638   GLfloat w, dw;
639
640   if (span->arrayMask & SPAN_XY) {
641      for (i = 0; i < span->end; i++) {
642         wpos[i][0] = (GLfloat) span->array->x[i];
643         wpos[i][1] = (GLfloat) span->array->y[i];
644      }
645   }
646   else {
647      for (i = 0; i < span->end; i++) {
648         wpos[i][0] = (GLfloat) span->x + i;
649         wpos[i][1] = (GLfloat) span->y;
650      }
651   }
652
653   w = span->attrStart[FRAG_ATTRIB_WPOS][3];
654   dw = span->attrStepX[FRAG_ATTRIB_WPOS][3];
655   for (i = 0; i < span->end; i++) {
656      wpos[i][2] = (GLfloat) span->array->z[i] * zScale;
657      wpos[i][3] = w;
658      w += dw;
659   }
660}
661
662
663/**
664 * Apply the current polygon stipple pattern to a span of pixels.
665 */
666static INLINE void
667stipple_polygon_span(GLcontext *ctx, SWspan *span)
668{
669   GLubyte *mask = span->array->mask;
670
671   ASSERT(ctx->Polygon.StippleFlag);
672
673   if (span->arrayMask & SPAN_XY) {
674      /* arrays of x/y pixel coords */
675      GLuint i;
676      for (i = 0; i < span->end; i++) {
677         const GLint col = span->array->x[i] % 32;
678         const GLint row = span->array->y[i] % 32;
679         const GLuint stipple = ctx->PolygonStipple[row];
680         if (((1 << col) & stipple) == 0) {
681            mask[i] = 0;
682         }
683      }
684   }
685   else {
686      /* horizontal span of pixels */
687      const GLuint highBit = 1 << 31;
688      const GLuint stipple = ctx->PolygonStipple[span->y % 32];
689      GLuint i, m = highBit >> (GLuint) (span->x % 32);
690      for (i = 0; i < span->end; i++) {
691         if ((m & stipple) == 0) {
692            mask[i] = 0;
693         }
694         m = m >> 1;
695         if (m == 0) {
696            m = highBit;
697         }
698      }
699   }
700   span->writeAll = GL_FALSE;
701}
702
703
704/**
705 * Clip a pixel span to the current buffer/window boundaries:
706 * DrawBuffer->_Xmin, _Xmax, _Ymin, _Ymax.  This will accomplish
707 * window clipping and scissoring.
708 * Return:   GL_TRUE   some pixels still visible
709 *           GL_FALSE  nothing visible
710 */
711static INLINE GLuint
712clip_span( GLcontext *ctx, SWspan *span )
713{
714   const GLint xmin = ctx->DrawBuffer->_Xmin;
715   const GLint xmax = ctx->DrawBuffer->_Xmax;
716   const GLint ymin = ctx->DrawBuffer->_Ymin;
717   const GLint ymax = ctx->DrawBuffer->_Ymax;
718
719   if (span->arrayMask & SPAN_XY) {
720      /* arrays of x/y pixel coords */
721      const GLint *x = span->array->x;
722      const GLint *y = span->array->y;
723      const GLint n = span->end;
724      GLubyte *mask = span->array->mask;
725      GLint i;
726      if (span->arrayMask & SPAN_MASK) {
727         /* note: using & intead of && to reduce branches */
728         for (i = 0; i < n; i++) {
729            mask[i] &= (x[i] >= xmin) & (x[i] < xmax)
730                     & (y[i] >= ymin) & (y[i] < ymax);
731         }
732      }
733      else {
734         /* note: using & intead of && to reduce branches */
735         for (i = 0; i < n; i++) {
736            mask[i] = (x[i] >= xmin) & (x[i] < xmax)
737                    & (y[i] >= ymin) & (y[i] < ymax);
738         }
739      }
740      return GL_TRUE;  /* some pixels visible */
741   }
742   else {
743      /* horizontal span of pixels */
744      const GLint x = span->x;
745      const GLint y = span->y;
746      const GLint n = span->end;
747
748      /* Trivial rejection tests */
749      if (y < ymin || y >= ymax || x + n <= xmin || x >= xmax) {
750         span->end = 0;
751         return GL_FALSE;  /* all pixels clipped */
752      }
753
754      /* Clip to the left */
755      if (x < xmin) {
756         ASSERT(x + n > xmin);
757         span->writeAll = GL_FALSE;
758         _mesa_bzero(span->array->mask, (xmin - x) * sizeof(GLubyte));
759      }
760
761      /* Clip to right */
762      if (x + n > xmax) {
763         ASSERT(x < xmax);
764         span->end = xmax - x;
765      }
766
767      return GL_TRUE;  /* some pixels visible */
768   }
769}
770
771
772/**
773 * Apply all the per-fragment opertions to a span of color index fragments
774 * and write them to the enabled color drawbuffers.
775 * The 'span' parameter can be considered to be const.  Note that
776 * span->interpMask and span->arrayMask may be changed but will be restored
777 * to their original values before returning.
778 */
779void
780_swrast_write_index_span( GLcontext *ctx, SWspan *span)
781{
782   const SWcontext *swrast = SWRAST_CONTEXT(ctx);
783   const GLbitfield origInterpMask = span->interpMask;
784   const GLbitfield origArrayMask = span->arrayMask;
785
786   ASSERT(span->end <= MAX_WIDTH);
787   ASSERT(span->primitive == GL_POINT  ||  span->primitive == GL_LINE ||
788	  span->primitive == GL_POLYGON  ||  span->primitive == GL_BITMAP);
789   ASSERT((span->interpMask | span->arrayMask) & SPAN_INDEX);
790   /*
791   ASSERT((span->interpMask & span->arrayMask) == 0);
792   */
793
794   if (span->arrayMask & SPAN_MASK) {
795      /* mask was initialized by caller, probably glBitmap */
796      span->writeAll = GL_FALSE;
797   }
798   else {
799      _mesa_memset(span->array->mask, 1, span->end);
800      span->writeAll = GL_TRUE;
801   }
802
803   /* Clipping */
804   if ((swrast->_RasterMask & CLIP_BIT) || (span->primitive != GL_POLYGON)) {
805      if (!clip_span(ctx, span)) {
806         return;
807      }
808   }
809
810   /* Depth bounds test */
811   if (ctx->Depth.BoundsTest && ctx->DrawBuffer->Visual.depthBits > 0) {
812      if (!_swrast_depth_bounds_test(ctx, span)) {
813         return;
814      }
815   }
816
817#ifdef DEBUG
818   /* Make sure all fragments are within window bounds */
819   if (span->arrayMask & SPAN_XY) {
820      GLuint i;
821      for (i = 0; i < span->end; i++) {
822         if (span->array->mask[i]) {
823            assert(span->array->x[i] >= ctx->DrawBuffer->_Xmin);
824            assert(span->array->x[i] < ctx->DrawBuffer->_Xmax);
825            assert(span->array->y[i] >= ctx->DrawBuffer->_Ymin);
826            assert(span->array->y[i] < ctx->DrawBuffer->_Ymax);
827         }
828      }
829   }
830#endif
831
832   /* Polygon Stippling */
833   if (ctx->Polygon.StippleFlag && span->primitive == GL_POLYGON) {
834      stipple_polygon_span(ctx, span);
835   }
836
837   /* Stencil and Z testing */
838   if (ctx->Depth.Test || ctx->Stencil.Enabled) {
839      if (!(span->arrayMask & SPAN_Z))
840         _swrast_span_interpolate_z(ctx, span);
841
842      if (ctx->Stencil.Enabled) {
843         if (!_swrast_stencil_and_ztest_span(ctx, span)) {
844            span->arrayMask = origArrayMask;
845            return;
846         }
847      }
848      else {
849         ASSERT(ctx->Depth.Test);
850         if (!_swrast_depth_test_span(ctx, span)) {
851            span->interpMask = origInterpMask;
852            span->arrayMask = origArrayMask;
853            return;
854         }
855      }
856   }
857
858#if FEATURE_ARB_occlusion_query
859   if (ctx->Query.CurrentOcclusionObject) {
860      /* update count of 'passed' fragments */
861      struct gl_query_object *q = ctx->Query.CurrentOcclusionObject;
862      GLuint i;
863      for (i = 0; i < span->end; i++)
864         q->Result += span->array->mask[i];
865   }
866#endif
867
868   /* we have to wait until after occlusion to do this test */
869   if (ctx->Color.DrawBuffer == GL_NONE || ctx->Color.IndexMask == 0) {
870      /* write no pixels */
871      span->arrayMask = origArrayMask;
872      return;
873   }
874
875   /* Interpolate the color indexes if needed */
876   if (swrast->_FogEnabled ||
877       ctx->Color.IndexLogicOpEnabled ||
878       ctx->Color.IndexMask != 0xffffffff ||
879       (span->arrayMask & SPAN_COVERAGE)) {
880      if (!(span->arrayMask & SPAN_INDEX) /*span->interpMask & SPAN_INDEX*/) {
881         interpolate_indexes(ctx, span);
882      }
883   }
884
885   /* Fog */
886   if (swrast->_FogEnabled) {
887      _swrast_fog_ci_span(ctx, span);
888   }
889
890   /* Antialias coverage application */
891   if (span->arrayMask & SPAN_COVERAGE) {
892      const GLfloat *coverage = span->array->coverage;
893      GLuint *index = span->array->index;
894      GLuint i;
895      for (i = 0; i < span->end; i++) {
896         ASSERT(coverage[i] < 16);
897         index[i] = (index[i] & ~0xf) | ((GLuint) coverage[i]);
898      }
899   }
900
901   /*
902    * Write to renderbuffers
903    */
904   {
905      struct gl_framebuffer *fb = ctx->DrawBuffer;
906      const GLuint output = 0; /* only frag progs can write to other outputs */
907      const GLuint numDrawBuffers = fb->_NumColorDrawBuffers[output];
908      GLuint indexSave[MAX_WIDTH];
909      GLuint buf;
910
911      if (numDrawBuffers > 1) {
912         /* save indexes for second, third renderbuffer writes */
913         _mesa_memcpy(indexSave, span->array->index,
914                      span->end * sizeof(indexSave[0]));
915      }
916
917      for (buf = 0; buf < fb->_NumColorDrawBuffers[output]; buf++) {
918         struct gl_renderbuffer *rb = fb->_ColorDrawBuffers[output][buf];
919         ASSERT(rb->_BaseFormat == GL_COLOR_INDEX);
920
921         if (ctx->Color.IndexLogicOpEnabled) {
922            _swrast_logicop_ci_span(ctx, rb, span);
923         }
924
925         if (ctx->Color.IndexMask != 0xffffffff) {
926            _swrast_mask_ci_span(ctx, rb, span);
927         }
928
929         if (!(span->arrayMask & SPAN_INDEX) && span->indexStep == 0) {
930            /* all fragments have same color index */
931            GLubyte index8;
932            GLushort index16;
933            GLuint index32;
934            void *value;
935
936            if (rb->DataType == GL_UNSIGNED_BYTE) {
937               index8 = FixedToInt(span->index);
938               value = &index8;
939            }
940            else if (rb->DataType == GL_UNSIGNED_SHORT) {
941               index16 = FixedToInt(span->index);
942               value = &index16;
943            }
944            else {
945               ASSERT(rb->DataType == GL_UNSIGNED_INT);
946               index32 = FixedToInt(span->index);
947               value = &index32;
948            }
949
950            if (span->arrayMask & SPAN_XY) {
951               rb->PutMonoValues(ctx, rb, span->end, span->array->x,
952                                 span->array->y, value, span->array->mask);
953            }
954            else {
955               rb->PutMonoRow(ctx, rb, span->end, span->x, span->y,
956                              value, span->array->mask);
957            }
958         }
959         else {
960            /* each fragment is a different color */
961            GLubyte index8[MAX_WIDTH];
962            GLushort index16[MAX_WIDTH];
963            void *values;
964
965            if (rb->DataType == GL_UNSIGNED_BYTE) {
966               GLuint k;
967               for (k = 0; k < span->end; k++) {
968                  index8[k] = (GLubyte) span->array->index[k];
969               }
970               values = index8;
971            }
972            else if (rb->DataType == GL_UNSIGNED_SHORT) {
973               GLuint k;
974               for (k = 0; k < span->end; k++) {
975                  index16[k] = (GLushort) span->array->index[k];
976               }
977               values = index16;
978            }
979            else {
980               ASSERT(rb->DataType == GL_UNSIGNED_INT);
981               values = span->array->index;
982            }
983
984            if (span->arrayMask & SPAN_XY) {
985               rb->PutValues(ctx, rb, span->end,
986                             span->array->x, span->array->y,
987                             values, span->array->mask);
988            }
989            else {
990               rb->PutRow(ctx, rb, span->end, span->x, span->y,
991                          values, span->array->mask);
992            }
993         }
994
995         if (buf + 1 < numDrawBuffers) {
996            /* restore original span values */
997            _mesa_memcpy(span->array->index, indexSave,
998                         span->end * sizeof(indexSave[0]));
999         }
1000      } /* for buf */
1001   }
1002
1003   span->interpMask = origInterpMask;
1004   span->arrayMask = origArrayMask;
1005}
1006
1007
1008/**
1009 * Add specular colors to primary colors.
1010 * Only called during fixed-function operation.
1011 * Result is float color array (FRAG_ATTRIB_COL0).
1012 */
1013static INLINE void
1014add_specular(GLcontext *ctx, SWspan *span)
1015{
1016   const SWcontext *swrast = SWRAST_CONTEXT(ctx);
1017   const GLubyte *mask = span->array->mask;
1018   GLfloat (*col0)[4] = span->array->attribs[FRAG_ATTRIB_COL0];
1019   GLfloat (*col1)[4] = span->array->attribs[FRAG_ATTRIB_COL1];
1020   GLuint i;
1021
1022   ASSERT(!ctx->FragmentProgram._Current);
1023   ASSERT(span->arrayMask & SPAN_RGBA);
1024   ASSERT(swrast->_ActiveAttribMask & FRAG_BIT_COL1);
1025
1026   if (span->array->ChanType == GL_FLOAT) {
1027      if ((span->arrayAttribs & FRAG_BIT_COL0) == 0) {
1028         interpolate_active_attribs(ctx, span, FRAG_BIT_COL0);
1029      }
1030   }
1031   else {
1032      /* need float colors */
1033      if ((span->arrayAttribs & FRAG_BIT_COL0) == 0) {
1034         interpolate_float_colors(span);
1035      }
1036   }
1037
1038   if ((span->arrayAttribs & FRAG_BIT_COL1) == 0) {
1039      /* XXX could avoid this and interpolate COL1 in the loop below */
1040      interpolate_active_attribs(ctx, span, FRAG_BIT_COL1);
1041   }
1042
1043   ASSERT(span->arrayAttribs & FRAG_BIT_COL0);
1044   ASSERT(span->arrayAttribs & FRAG_BIT_COL1);
1045
1046   for (i = 0; i < span->end; i++) {
1047      if (mask[i]) {
1048         col0[i][0] += col1[i][0];
1049         col0[i][1] += col1[i][1];
1050         col0[i][2] += col1[i][2];
1051      }
1052   }
1053
1054   span->array->ChanType = GL_FLOAT;
1055}
1056
1057
1058/**
1059 * Apply antialiasing coverage value to alpha values.
1060 */
1061static INLINE void
1062apply_aa_coverage(SWspan *span)
1063{
1064   const GLfloat *coverage = span->array->coverage;
1065   GLuint i;
1066   if (span->array->ChanType == GL_UNSIGNED_BYTE) {
1067      GLubyte (*rgba)[4] = span->array->rgba8;
1068      for (i = 0; i < span->end; i++) {
1069         const GLfloat a = rgba[i][ACOMP] * coverage[i];
1070         rgba[i][ACOMP] = (GLubyte) CLAMP(a, 0.0, 255.0);
1071         ASSERT(coverage[i] >= 0.0);
1072         ASSERT(coverage[i] <= 1.0);
1073      }
1074   }
1075   else if (span->array->ChanType == GL_UNSIGNED_SHORT) {
1076      GLushort (*rgba)[4] = span->array->rgba16;
1077      for (i = 0; i < span->end; i++) {
1078         const GLfloat a = rgba[i][ACOMP] * coverage[i];
1079         rgba[i][ACOMP] = (GLushort) CLAMP(a, 0.0, 65535.0);
1080      }
1081   }
1082   else {
1083      GLfloat (*rgba)[4] = span->array->attribs[FRAG_ATTRIB_COL0];
1084      for (i = 0; i < span->end; i++) {
1085         rgba[i][ACOMP] = rgba[i][ACOMP] * coverage[i];
1086         /* clamp later */
1087      }
1088   }
1089}
1090
1091
1092/**
1093 * Clamp span's float colors to [0,1]
1094 */
1095static INLINE void
1096clamp_colors(SWspan *span)
1097{
1098   GLfloat (*rgba)[4] = span->array->attribs[FRAG_ATTRIB_COL0];
1099   GLuint i;
1100   ASSERT(span->array->ChanType == GL_FLOAT);
1101   for (i = 0; i < span->end; i++) {
1102      rgba[i][RCOMP] = CLAMP(rgba[i][RCOMP], 0.0F, 1.0F);
1103      rgba[i][GCOMP] = CLAMP(rgba[i][GCOMP], 0.0F, 1.0F);
1104      rgba[i][BCOMP] = CLAMP(rgba[i][BCOMP], 0.0F, 1.0F);
1105      rgba[i][ACOMP] = CLAMP(rgba[i][ACOMP], 0.0F, 1.0F);
1106   }
1107}
1108
1109
1110/**
1111 * Convert the span's color arrays to the given type.
1112 * The only way 'output' can be greater than one is when we have a fragment
1113 * program that writes to gl_FragData[1] or higher.
1114 * \param output  which fragment program color output is being processed
1115 */
1116static INLINE void
1117convert_color_type(SWspan *span, GLenum newType, GLuint output)
1118{
1119   GLvoid *src, *dst;
1120
1121   if (output > 0 || span->array->ChanType == GL_FLOAT) {
1122      src = span->array->attribs[FRAG_ATTRIB_COL0 + output];
1123      span->array->ChanType = GL_FLOAT;
1124   }
1125   else if (span->array->ChanType == GL_UNSIGNED_BYTE) {
1126      src = span->array->rgba8;
1127   }
1128   else {
1129      ASSERT(span->array->ChanType == GL_UNSIGNED_SHORT);
1130      src = span->array->rgba16;
1131   }
1132
1133   if (newType == GL_UNSIGNED_BYTE) {
1134      dst = span->array->rgba8;
1135   }
1136   else if (newType == GL_UNSIGNED_SHORT) {
1137      dst = span->array->rgba16;
1138   }
1139   else {
1140      dst = span->array->attribs[FRAG_ATTRIB_COL0];
1141   }
1142
1143   _mesa_convert_colors(span->array->ChanType, src,
1144                        newType, dst,
1145                        span->end, span->array->mask);
1146
1147   span->array->ChanType = newType;
1148}
1149
1150
1151
1152/**
1153 * Apply fragment shader, fragment program or normal texturing to span.
1154 */
1155static INLINE void
1156shade_texture_span(GLcontext *ctx, SWspan *span)
1157{
1158   GLbitfield inputsRead;
1159
1160   /* Determine which fragment attributes are actually needed */
1161   if (ctx->FragmentProgram._Current) {
1162      inputsRead = ctx->FragmentProgram._Current->Base.InputsRead;
1163   }
1164   else {
1165      /* XXX we could be a bit smarter about this */
1166      inputsRead = ~0;
1167   }
1168
1169   if (ctx->FragmentProgram._Current ||
1170       ctx->ATIFragmentShader._Enabled) {
1171      /* programmable shading */
1172      if (span->primitive == GL_BITMAP) {
1173         if (span->array->ChanType != GL_FLOAT)
1174            convert_color_type(span, GL_FLOAT, 0);
1175         interpolate_active_attribs(ctx, span, ~FRAG_ATTRIB_COL0);
1176      }
1177      else {
1178         /* point, line, triangle */
1179         interpolate_active_attribs(ctx, span, ~0);
1180      }
1181      span->array->ChanType = GL_FLOAT;
1182
1183      if (!(span->arrayMask & SPAN_Z))
1184         _swrast_span_interpolate_z (ctx, span);
1185
1186#if 0
1187      if (inputsRead & FRAG_BIT_WPOS)
1188#else
1189      /* XXX always interpolate wpos so that DDX/DDY work */
1190#endif
1191         interpolate_wpos(ctx, span);
1192
1193      /* Run fragment program/shader now */
1194      if (ctx->FragmentProgram._Current) {
1195         _swrast_exec_fragment_program(ctx, span);
1196      }
1197      else {
1198         ASSERT(ctx->ATIFragmentShader._Enabled);
1199         _swrast_exec_fragment_shader(ctx, span);
1200      }
1201   }
1202   else if (ctx->Texture._EnabledUnits) {
1203      /* conventional texturing */
1204
1205#if CHAN_BITS == 32
1206      if ((span->arrayAttribs & FRAG_BIT_COL0) == 0) {
1207         interpolate_int_colors(ctx, span);
1208      }
1209#else
1210      if (!(span->arrayMask & SPAN_RGBA))
1211         interpolate_int_colors(ctx, span);
1212#endif
1213      if ((span->arrayAttribs & FRAG_BITS_TEX_ANY) == 0x0)
1214         interpolate_texcoords(ctx, span);
1215
1216      _swrast_texture_span(ctx, span);
1217   }
1218}
1219
1220
1221
1222/**
1223 * Apply all the per-fragment operations to a span.
1224 * This now includes texturing (_swrast_write_texture_span() is history).
1225 * This function may modify any of the array values in the span.
1226 * span->interpMask and span->arrayMask may be changed but will be restored
1227 * to their original values before returning.
1228 */
1229void
1230_swrast_write_rgba_span( GLcontext *ctx, SWspan *span)
1231{
1232   const SWcontext *swrast = SWRAST_CONTEXT(ctx);
1233   const GLuint colorMask = *((GLuint *) ctx->Color.ColorMask);
1234   const GLbitfield origInterpMask = span->interpMask;
1235   const GLbitfield origArrayMask = span->arrayMask;
1236   const GLbitfield origArrayAttribs = span->arrayAttribs;
1237   const GLenum chanType = span->array->ChanType;
1238   const GLboolean shader = (ctx->FragmentProgram._Current
1239                             || ctx->ATIFragmentShader._Enabled);
1240   const GLboolean shaderOrTexture = shader || ctx->Texture._EnabledUnits;
1241   struct gl_framebuffer *fb = ctx->DrawBuffer;
1242   GLuint output;
1243
1244   /*
1245   printf("%s()  interp 0x%x  array 0x%x\n", __FUNCTION__,
1246          span->interpMask, span->arrayMask);
1247   */
1248
1249   ASSERT(span->primitive == GL_POINT ||
1250          span->primitive == GL_LINE ||
1251	  span->primitive == GL_POLYGON ||
1252          span->primitive == GL_BITMAP);
1253   ASSERT(span->end <= MAX_WIDTH);
1254
1255   /* Fragment write masks */
1256   if (span->arrayMask & SPAN_MASK) {
1257      /* mask was initialized by caller, probably glBitmap */
1258      span->writeAll = GL_FALSE;
1259   }
1260   else {
1261      _mesa_memset(span->array->mask, 1, span->end);
1262      span->writeAll = GL_TRUE;
1263   }
1264
1265   /* Clip to window/scissor box */
1266   if ((swrast->_RasterMask & CLIP_BIT) || (span->primitive != GL_POLYGON)) {
1267      if (!clip_span(ctx, span)) {
1268	 return;
1269      }
1270   }
1271
1272#ifdef DEBUG
1273   /* Make sure all fragments are within window bounds */
1274   if (span->arrayMask & SPAN_XY) {
1275      GLuint i;
1276      for (i = 0; i < span->end; i++) {
1277         if (span->array->mask[i]) {
1278            assert(span->array->x[i] >= fb->_Xmin);
1279            assert(span->array->x[i] < fb->_Xmax);
1280            assert(span->array->y[i] >= fb->_Ymin);
1281            assert(span->array->y[i] < fb->_Ymax);
1282         }
1283      }
1284   }
1285#endif
1286
1287   /* Polygon Stippling */
1288   if (ctx->Polygon.StippleFlag && span->primitive == GL_POLYGON) {
1289      stipple_polygon_span(ctx, span);
1290   }
1291
1292   /* This is the normal place to compute the fragment color/Z
1293    * from texturing or shading.
1294    */
1295   if (shaderOrTexture && !swrast->_DeferredTexture) {
1296      shade_texture_span(ctx, span);
1297   }
1298
1299   /* Do the alpha test */
1300   if (ctx->Color.AlphaEnabled) {
1301      if (!_swrast_alpha_test(ctx, span)) {
1302         goto end;
1303      }
1304   }
1305
1306   /* Stencil and Z testing */
1307   if (ctx->Stencil.Enabled || ctx->Depth.Test) {
1308      if (!(span->arrayMask & SPAN_Z))
1309         _swrast_span_interpolate_z(ctx, span);
1310
1311      if (ctx->Stencil.Enabled && fb->Visual.stencilBits > 0) {
1312         /* Combined Z/stencil tests */
1313         if (!_swrast_stencil_and_ztest_span(ctx, span)) {
1314            goto end;
1315         }
1316      }
1317      else if (fb->Visual.depthBits > 0) {
1318         /* Just regular depth testing */
1319         ASSERT(ctx->Depth.Test);
1320         ASSERT(span->arrayMask & SPAN_Z);
1321         if (!_swrast_depth_test_span(ctx, span)) {
1322            goto end;
1323         }
1324      }
1325   }
1326
1327#if FEATURE_ARB_occlusion_query
1328   if (ctx->Query.CurrentOcclusionObject) {
1329      /* update count of 'passed' fragments */
1330      struct gl_query_object *q = ctx->Query.CurrentOcclusionObject;
1331      GLuint i;
1332      for (i = 0; i < span->end; i++)
1333         q->Result += span->array->mask[i];
1334   }
1335#endif
1336
1337   /* We had to wait until now to check for glColorMask(0,0,0,0) because of
1338    * the occlusion test.
1339    */
1340   if (colorMask == 0x0) {
1341      goto end;
1342   }
1343
1344   /* If we were able to defer fragment color computation to now, there's
1345    * a good chance that many fragments will have already been killed by
1346    * Z/stencil testing.
1347    */
1348   if (shaderOrTexture && swrast->_DeferredTexture) {
1349      shade_texture_span(ctx, span);
1350   }
1351
1352#if CHAN_BITS == 32
1353   if ((span->arrayAttribs & FRAG_BIT_COL0) == 0) {
1354      interpolate_int_colors(ctx, span);
1355   }
1356#else
1357   if ((span->arrayMask & SPAN_RGBA) == 0) {
1358      interpolate_int_colors(ctx, span);
1359   }
1360#endif
1361
1362   ASSERT(span->arrayMask & SPAN_RGBA);
1363
1364   if (!shader) {
1365      /* Add base and specular colors */
1366      if (ctx->Fog.ColorSumEnabled ||
1367          (ctx->Light.Enabled &&
1368           ctx->Light.Model.ColorControl == GL_SEPARATE_SPECULAR_COLOR)) {
1369         add_specular(ctx, span);
1370      }
1371   }
1372
1373   /* Fog */
1374   if (swrast->_FogEnabled) {
1375      _swrast_fog_rgba_span(ctx, span);
1376   }
1377
1378   /* Antialias coverage application */
1379   if (span->arrayMask & SPAN_COVERAGE) {
1380      apply_aa_coverage(span);
1381   }
1382
1383   /* Clamp color/alpha values over the range [0.0, 1.0] before storage */
1384   if (ctx->Color.ClampFragmentColor == GL_TRUE &&
1385       span->array->ChanType == GL_FLOAT) {
1386      clamp_colors(span);
1387   }
1388
1389   /*
1390    * Write to renderbuffers
1391    */
1392   /* Loop over color outputs (GL_ARB_draw_buffers) written by frag prog */
1393   for (output = 0; output < swrast->_NumColorOutputs; output++) {
1394      if (swrast->_ColorOutputsMask & (1 << output)) {
1395        const GLuint numDrawBuffers = fb->_NumColorDrawBuffers[output];
1396        GLchan rgbaSave[MAX_WIDTH][4];
1397        GLuint buf;
1398
1399        ASSERT(numDrawBuffers > 0);
1400
1401        if (fb->_ColorDrawBuffers[output][0]->DataType
1402            != span->array->ChanType || output > 0) {
1403           convert_color_type(span,
1404                              fb->_ColorDrawBuffers[output][0]->DataType,
1405                              output);
1406        }
1407
1408        if (numDrawBuffers > 1) {
1409           /* save colors for second, third renderbuffer writes */
1410           _mesa_memcpy(rgbaSave, span->array->rgba,
1411                        4 * span->end * sizeof(GLchan));
1412        }
1413
1414        /* Loop over renderbuffers (i.e. GL_FRONT_AND_BACK) */
1415        for (buf = 0; buf < numDrawBuffers; buf++) {
1416           struct gl_renderbuffer *rb = fb->_ColorDrawBuffers[output][buf];
1417           ASSERT(rb->_BaseFormat == GL_RGBA || rb->_BaseFormat == GL_RGB);
1418
1419           if (ctx->Color._LogicOpEnabled) {
1420              _swrast_logicop_rgba_span(ctx, rb, span);
1421           }
1422           else if (ctx->Color.BlendEnabled) {
1423              _swrast_blend_span(ctx, rb, span);
1424           }
1425
1426           if (colorMask != 0xffffffff) {
1427              _swrast_mask_rgba_span(ctx, rb, span);
1428           }
1429
1430           if (span->arrayMask & SPAN_XY) {
1431              /* array of pixel coords */
1432              ASSERT(rb->PutValues);
1433              rb->PutValues(ctx, rb, span->end,
1434                            span->array->x, span->array->y,
1435                            span->array->rgba, span->array->mask);
1436           }
1437           else {
1438              /* horizontal run of pixels */
1439              ASSERT(rb->PutRow);
1440              rb->PutRow(ctx, rb, span->end, span->x, span->y,
1441                         span->array->rgba,
1442                         span->writeAll ? NULL: span->array->mask);
1443           }
1444
1445           if (buf + 1 < numDrawBuffers) {
1446              /* restore original span values */
1447              _mesa_memcpy(span->array->rgba, rgbaSave,
1448                           4 * span->end * sizeof(GLchan));
1449           }
1450        } /* for buf */
1451      } /* if output is written to */
1452   } /* for output */
1453
1454end:
1455   /* restore these values before returning */
1456   span->interpMask = origInterpMask;
1457   span->arrayMask = origArrayMask;
1458   span->arrayAttribs = origArrayAttribs;
1459   span->array->ChanType = chanType;
1460}
1461
1462
1463/**
1464 * Read RGBA pixels from a renderbuffer.  Clipping will be done to prevent
1465 * reading ouside the buffer's boundaries.
1466 * \param dstType  datatype for returned colors
1467 * \param rgba  the returned colors
1468 */
1469void
1470_swrast_read_rgba_span( GLcontext *ctx, struct gl_renderbuffer *rb,
1471                        GLuint n, GLint x, GLint y, GLenum dstType,
1472                        GLvoid *rgba)
1473{
1474   const GLint bufWidth = (GLint) rb->Width;
1475   const GLint bufHeight = (GLint) rb->Height;
1476
1477   if (y < 0 || y >= bufHeight || x + (GLint) n < 0 || x >= bufWidth) {
1478      /* completely above, below, or right */
1479      /* XXX maybe leave rgba values undefined? */
1480      _mesa_bzero(rgba, 4 * n * sizeof(GLchan));
1481   }
1482   else {
1483      GLint skip, length;
1484      if (x < 0) {
1485         /* left edge clipping */
1486         skip = -x;
1487         length = (GLint) n - skip;
1488         if (length < 0) {
1489            /* completely left of window */
1490            return;
1491         }
1492         if (length > bufWidth) {
1493            length = bufWidth;
1494         }
1495      }
1496      else if ((GLint) (x + n) > bufWidth) {
1497         /* right edge clipping */
1498         skip = 0;
1499         length = bufWidth - x;
1500         if (length < 0) {
1501            /* completely to right of window */
1502            return;
1503         }
1504      }
1505      else {
1506         /* no clipping */
1507         skip = 0;
1508         length = (GLint) n;
1509      }
1510
1511      ASSERT(rb);
1512      ASSERT(rb->GetRow);
1513      ASSERT(rb->_BaseFormat == GL_RGB || rb->_BaseFormat == GL_RGBA);
1514
1515      if (rb->DataType == dstType) {
1516         rb->GetRow(ctx, rb, length, x + skip, y,
1517                    (GLubyte *) rgba + skip * RGBA_PIXEL_SIZE(rb->DataType));
1518      }
1519      else {
1520         GLuint temp[MAX_WIDTH * 4];
1521         rb->GetRow(ctx, rb, length, x + skip, y, temp);
1522         _mesa_convert_colors(rb->DataType, temp,
1523                   dstType, (GLubyte *) rgba + skip * RGBA_PIXEL_SIZE(dstType),
1524                   length, NULL);
1525      }
1526   }
1527}
1528
1529
1530/**
1531 * Read CI pixels from a renderbuffer.  Clipping will be done to prevent
1532 * reading ouside the buffer's boundaries.
1533 */
1534void
1535_swrast_read_index_span( GLcontext *ctx, struct gl_renderbuffer *rb,
1536                         GLuint n, GLint x, GLint y, GLuint index[] )
1537{
1538   const GLint bufWidth = (GLint) rb->Width;
1539   const GLint bufHeight = (GLint) rb->Height;
1540
1541   if (y < 0 || y >= bufHeight || x + (GLint) n < 0 || x >= bufWidth) {
1542      /* completely above, below, or right */
1543      _mesa_bzero(index, n * sizeof(GLuint));
1544   }
1545   else {
1546      GLint skip, length;
1547      if (x < 0) {
1548         /* left edge clipping */
1549         skip = -x;
1550         length = (GLint) n - skip;
1551         if (length < 0) {
1552            /* completely left of window */
1553            return;
1554         }
1555         if (length > bufWidth) {
1556            length = bufWidth;
1557         }
1558      }
1559      else if ((GLint) (x + n) > bufWidth) {
1560         /* right edge clipping */
1561         skip = 0;
1562         length = bufWidth - x;
1563         if (length < 0) {
1564            /* completely to right of window */
1565            return;
1566         }
1567      }
1568      else {
1569         /* no clipping */
1570         skip = 0;
1571         length = (GLint) n;
1572      }
1573
1574      ASSERT(rb->GetRow);
1575      ASSERT(rb->_BaseFormat == GL_COLOR_INDEX);
1576
1577      if (rb->DataType == GL_UNSIGNED_BYTE) {
1578         GLubyte index8[MAX_WIDTH];
1579         GLint i;
1580         rb->GetRow(ctx, rb, length, x + skip, y, index8);
1581         for (i = 0; i < length; i++)
1582            index[skip + i] = index8[i];
1583      }
1584      else if (rb->DataType == GL_UNSIGNED_SHORT) {
1585         GLushort index16[MAX_WIDTH];
1586         GLint i;
1587         rb->GetRow(ctx, rb, length, x + skip, y, index16);
1588         for (i = 0; i < length; i++)
1589            index[skip + i] = index16[i];
1590      }
1591      else if (rb->DataType == GL_UNSIGNED_INT) {
1592         rb->GetRow(ctx, rb, length, x + skip, y, index + skip);
1593      }
1594   }
1595}
1596
1597
1598/**
1599 * Wrapper for gl_renderbuffer::GetValues() which does clipping to avoid
1600 * reading values outside the buffer bounds.
1601 * We can use this for reading any format/type of renderbuffer.
1602 * \param valueSize is the size in bytes of each value (pixel) put into the
1603 *                  values array.
1604 */
1605void
1606_swrast_get_values(GLcontext *ctx, struct gl_renderbuffer *rb,
1607                   GLuint count, const GLint x[], const GLint y[],
1608                   void *values, GLuint valueSize)
1609{
1610   GLuint i, inCount = 0, inStart = 0;
1611
1612   for (i = 0; i < count; i++) {
1613      if (x[i] >= 0 && y[i] >= 0 &&
1614	  x[i] < (GLint) rb->Width && y[i] < (GLint) rb->Height) {
1615         /* inside */
1616         if (inCount == 0)
1617            inStart = i;
1618         inCount++;
1619      }
1620      else {
1621         if (inCount > 0) {
1622            /* read [inStart, inStart + inCount) */
1623            rb->GetValues(ctx, rb, inCount, x + inStart, y + inStart,
1624                          (GLubyte *) values + inStart * valueSize);
1625            inCount = 0;
1626         }
1627      }
1628   }
1629   if (inCount > 0) {
1630      /* read last values */
1631      rb->GetValues(ctx, rb, inCount, x + inStart, y + inStart,
1632                    (GLubyte *) values + inStart * valueSize);
1633   }
1634}
1635
1636
1637/**
1638 * Wrapper for gl_renderbuffer::PutRow() which does clipping.
1639 * \param valueSize  size of each value (pixel) in bytes
1640 */
1641void
1642_swrast_put_row(GLcontext *ctx, struct gl_renderbuffer *rb,
1643                GLuint count, GLint x, GLint y,
1644                const GLvoid *values, GLuint valueSize)
1645{
1646   GLint skip = 0;
1647
1648   if (y < 0 || y >= (GLint) rb->Height)
1649      return; /* above or below */
1650
1651   if (x + (GLint) count <= 0 || x >= (GLint) rb->Width)
1652      return; /* entirely left or right */
1653
1654   if ((GLint) (x + count) > (GLint) rb->Width) {
1655      /* right clip */
1656      GLint clip = x + count - rb->Width;
1657      count -= clip;
1658   }
1659
1660   if (x < 0) {
1661      /* left clip */
1662      skip = -x;
1663      x = 0;
1664      count -= skip;
1665   }
1666
1667   rb->PutRow(ctx, rb, count, x, y,
1668              (const GLubyte *) values + skip * valueSize, NULL);
1669}
1670
1671
1672/**
1673 * Wrapper for gl_renderbuffer::GetRow() which does clipping.
1674 * \param valueSize  size of each value (pixel) in bytes
1675 */
1676void
1677_swrast_get_row(GLcontext *ctx, struct gl_renderbuffer *rb,
1678                GLuint count, GLint x, GLint y,
1679                GLvoid *values, GLuint valueSize)
1680{
1681   GLint skip = 0;
1682
1683   if (y < 0 || y >= (GLint) rb->Height)
1684      return; /* above or below */
1685
1686   if (x + (GLint) count <= 0 || x >= (GLint) rb->Width)
1687      return; /* entirely left or right */
1688
1689   if (x + count > rb->Width) {
1690      /* right clip */
1691      GLint clip = x + count - rb->Width;
1692      count -= clip;
1693   }
1694
1695   if (x < 0) {
1696      /* left clip */
1697      skip = -x;
1698      x = 0;
1699      count -= skip;
1700   }
1701
1702   rb->GetRow(ctx, rb, count, x, y, (GLubyte *) values + skip * valueSize);
1703}
1704
1705
1706/**
1707 * Get RGBA pixels from the given renderbuffer.  Put the pixel colors into
1708 * the span's specular color arrays.  The specular color arrays should no
1709 * longer be needed by time this function is called.
1710 * Used by blending, logicop and masking functions.
1711 * \return pointer to the colors we read.
1712 */
1713void *
1714_swrast_get_dest_rgba(GLcontext *ctx, struct gl_renderbuffer *rb,
1715                      SWspan *span)
1716{
1717   const GLuint pixelSize = RGBA_PIXEL_SIZE(span->array->ChanType);
1718   void *rbPixels;
1719
1720   /*
1721    * Point rbPixels to a temporary space (use specular color arrays).
1722    */
1723   rbPixels = span->array->attribs[FRAG_ATTRIB_COL1];
1724
1725   /* Get destination values from renderbuffer */
1726   if (span->arrayMask & SPAN_XY) {
1727      _swrast_get_values(ctx, rb, span->end, span->array->x, span->array->y,
1728                         rbPixels, pixelSize);
1729   }
1730   else {
1731      _swrast_get_row(ctx, rb, span->end, span->x, span->y,
1732                      rbPixels, pixelSize);
1733   }
1734
1735   return rbPixels;
1736}
1737