s_span.c revision bbb042f0b809ebb754547397b8f22a5751c275da
1/*
2 * Mesa 3-D graphics library
3 * Version:  7.1
4 *
5 * Copyright (C) 1999-2007  Brian Paul   All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included
15 * in all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
20 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
21 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
22 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25
26/**
27 * \file swrast/s_span.c
28 * \brief Span processing functions used by all rasterization functions.
29 * This is where all the per-fragment tests are performed
30 * \author Brian Paul
31 */
32
33#include "glheader.h"
34#include "colormac.h"
35#include "context.h"
36#include "macros.h"
37#include "imports.h"
38#include "image.h"
39
40#include "s_atifragshader.h"
41#include "s_alpha.h"
42#include "s_blend.h"
43#include "s_context.h"
44#include "s_depth.h"
45#include "s_fog.h"
46#include "s_logic.h"
47#include "s_masking.h"
48#include "s_fragprog.h"
49#include "s_span.h"
50#include "s_stencil.h"
51#include "s_texcombine.h"
52
53
54/**
55 * Set default fragment attributes for the span using the
56 * current raster values.  Used prior to glDraw/CopyPixels
57 * and glBitmap.
58 */
59void
60_swrast_span_default_attribs(GLcontext *ctx, SWspan *span)
61{
62   /* Z*/
63   {
64      const GLfloat depthMax = ctx->DrawBuffer->_DepthMaxF;
65      if (ctx->DrawBuffer->Visual.depthBits <= 16)
66         span->z = FloatToFixed(ctx->Current.RasterPos[2] * depthMax + 0.5F);
67      else {
68         GLfloat tmpf = ctx->Current.RasterPos[2] * depthMax;
69         tmpf = MIN2(tmpf, depthMax);
70         span->z = (GLint)tmpf;
71      }
72      span->zStep = 0;
73      span->interpMask |= SPAN_Z;
74   }
75
76   /* W (for perspective correction) */
77   span->attrStart[FRAG_ATTRIB_WPOS][3] = 1.0;
78   span->attrStepX[FRAG_ATTRIB_WPOS][3] = 0.0;
79   span->attrStepY[FRAG_ATTRIB_WPOS][3] = 0.0;
80
81   /* primary color, or color index */
82   if (ctx->Visual.rgbMode) {
83      GLchan r, g, b, a;
84      UNCLAMPED_FLOAT_TO_CHAN(r, ctx->Current.RasterColor[0]);
85      UNCLAMPED_FLOAT_TO_CHAN(g, ctx->Current.RasterColor[1]);
86      UNCLAMPED_FLOAT_TO_CHAN(b, ctx->Current.RasterColor[2]);
87      UNCLAMPED_FLOAT_TO_CHAN(a, ctx->Current.RasterColor[3]);
88#if CHAN_TYPE == GL_FLOAT
89      span->red = r;
90      span->green = g;
91      span->blue = b;
92      span->alpha = a;
93#else
94      span->red   = IntToFixed(r);
95      span->green = IntToFixed(g);
96      span->blue  = IntToFixed(b);
97      span->alpha = IntToFixed(a);
98#endif
99      span->redStep = 0;
100      span->greenStep = 0;
101      span->blueStep = 0;
102      span->alphaStep = 0;
103      span->interpMask |= SPAN_RGBA;
104
105      COPY_4V(span->attrStart[FRAG_ATTRIB_COL0], ctx->Current.RasterColor);
106      ASSIGN_4V(span->attrStepX[FRAG_ATTRIB_COL0], 0.0, 0.0, 0.0, 0.0);
107      ASSIGN_4V(span->attrStepY[FRAG_ATTRIB_COL0], 0.0, 0.0, 0.0, 0.0);
108   }
109   else {
110      span->index = FloatToFixed(ctx->Current.RasterIndex);
111      span->indexStep = 0;
112      span->interpMask |= SPAN_INDEX;
113   }
114
115   /* Secondary color */
116   if (ctx->Visual.rgbMode && (ctx->Light.Enabled || ctx->Fog.ColorSumEnabled))
117   {
118      COPY_4V(span->attrStart[FRAG_ATTRIB_COL1], ctx->Current.RasterSecondaryColor);
119      ASSIGN_4V(span->attrStepX[FRAG_ATTRIB_COL1], 0.0, 0.0, 0.0, 0.0);
120      ASSIGN_4V(span->attrStepY[FRAG_ATTRIB_COL1], 0.0, 0.0, 0.0, 0.0);
121   }
122
123   /* fog */
124   {
125      const SWcontext *swrast = SWRAST_CONTEXT(ctx);
126      GLfloat fogVal; /* a coord or a blend factor */
127      if (swrast->_PreferPixelFog) {
128         /* fog blend factors will be computed from fog coordinates per pixel */
129         fogVal = ctx->Current.RasterDistance;
130      }
131      else {
132         /* fog blend factor should be computed from fogcoord now */
133         fogVal = _swrast_z_to_fogfactor(ctx, ctx->Current.RasterDistance);
134      }
135      span->attrStart[FRAG_ATTRIB_FOGC][0] = fogVal;
136      span->attrStepX[FRAG_ATTRIB_FOGC][0] = 0.0;
137      span->attrStepY[FRAG_ATTRIB_FOGC][0] = 0.0;
138   }
139
140   /* texcoords */
141   {
142      GLuint i;
143      for (i = 0; i < ctx->Const.MaxTextureCoordUnits; i++) {
144         const GLuint attr = FRAG_ATTRIB_TEX0 + i;
145         const GLfloat *tc = ctx->Current.RasterTexCoords[i];
146         if (ctx->FragmentProgram._Current || ctx->ATIFragmentShader._Enabled) {
147            COPY_4V(span->attrStart[attr], tc);
148         }
149         else if (tc[3] > 0.0F) {
150            /* use (s/q, t/q, r/q, 1) */
151            span->attrStart[attr][0] = tc[0] / tc[3];
152            span->attrStart[attr][1] = tc[1] / tc[3];
153            span->attrStart[attr][2] = tc[2] / tc[3];
154            span->attrStart[attr][3] = 1.0;
155         }
156         else {
157            ASSIGN_4V(span->attrStart[attr], 0.0F, 0.0F, 0.0F, 1.0F);
158         }
159         ASSIGN_4V(span->attrStepX[attr], 0.0F, 0.0F, 0.0F, 0.0F);
160         ASSIGN_4V(span->attrStepY[attr], 0.0F, 0.0F, 0.0F, 0.0F);
161      }
162   }
163}
164
165
166/**
167 * Interpolate the active attributes (and'd with attrMask) to
168 * fill in span->array->attribs[].
169 * Perspective correction will be done.  The point/line/triangle function
170 * should have computed attrStart/Step values for FRAG_ATTRIB_WPOS[3]!
171 */
172static INLINE void
173interpolate_active_attribs(GLcontext *ctx, SWspan *span, GLbitfield attrMask)
174{
175   const SWcontext *swrast = SWRAST_CONTEXT(ctx);
176
177   /*
178    * Don't overwrite existing array values, such as colors that may have
179    * been produced by glDraw/CopyPixels.
180    */
181   attrMask &= ~span->arrayAttribs;
182
183   ATTRIB_LOOP_BEGIN
184      if (attrMask & (1 << attr)) {
185         const GLfloat dwdx = span->attrStepX[FRAG_ATTRIB_WPOS][3];
186         GLfloat w = span->attrStart[FRAG_ATTRIB_WPOS][3];
187         const GLfloat dv0dx = span->attrStepX[attr][0];
188         const GLfloat dv1dx = span->attrStepX[attr][1];
189         const GLfloat dv2dx = span->attrStepX[attr][2];
190         const GLfloat dv3dx = span->attrStepX[attr][3];
191         GLfloat v0 = span->attrStart[attr][0];
192         GLfloat v1 = span->attrStart[attr][1];
193         GLfloat v2 = span->attrStart[attr][2];
194         GLfloat v3 = span->attrStart[attr][3];
195         GLuint k;
196         for (k = 0; k < span->end; k++) {
197            const GLfloat invW = 1.0f / w;
198            span->array->attribs[attr][k][0] = v0 * invW;
199            span->array->attribs[attr][k][1] = v1 * invW;
200            span->array->attribs[attr][k][2] = v2 * invW;
201            span->array->attribs[attr][k][3] = v3 * invW;
202            v0 += dv0dx;
203            v1 += dv1dx;
204            v2 += dv2dx;
205            v3 += dv3dx;
206            w += dwdx;
207         }
208         ASSERT((span->arrayAttribs & (1 << attr)) == 0);
209         span->arrayAttribs |= (1 << attr);
210      }
211   ATTRIB_LOOP_END
212}
213
214
215/**
216 * Interpolate primary colors to fill in the span->array->rgba8 (or rgb16)
217 * color array.
218 */
219static INLINE void
220interpolate_int_colors(GLcontext *ctx, SWspan *span)
221{
222   const GLuint n = span->end;
223   GLuint i;
224
225#if CHAN_BITS != 32
226   ASSERT(!(span->arrayMask & SPAN_RGBA));
227#endif
228
229   switch (span->array->ChanType) {
230#if CHAN_BITS != 32
231   case GL_UNSIGNED_BYTE:
232      {
233         GLubyte (*rgba)[4] = span->array->rgba8;
234         if (span->interpMask & SPAN_FLAT) {
235            GLubyte color[4];
236            color[RCOMP] = FixedToInt(span->red);
237            color[GCOMP] = FixedToInt(span->green);
238            color[BCOMP] = FixedToInt(span->blue);
239            color[ACOMP] = FixedToInt(span->alpha);
240            for (i = 0; i < n; i++) {
241               COPY_4UBV(rgba[i], color);
242            }
243         }
244         else {
245            GLfixed r = span->red;
246            GLfixed g = span->green;
247            GLfixed b = span->blue;
248            GLfixed a = span->alpha;
249            GLint dr = span->redStep;
250            GLint dg = span->greenStep;
251            GLint db = span->blueStep;
252            GLint da = span->alphaStep;
253            for (i = 0; i < n; i++) {
254               rgba[i][RCOMP] = FixedToChan(r);
255               rgba[i][GCOMP] = FixedToChan(g);
256               rgba[i][BCOMP] = FixedToChan(b);
257               rgba[i][ACOMP] = FixedToChan(a);
258               r += dr;
259               g += dg;
260               b += db;
261               a += da;
262            }
263         }
264      }
265      break;
266   case GL_UNSIGNED_SHORT:
267      {
268         GLushort (*rgba)[4] = span->array->rgba16;
269         if (span->interpMask & SPAN_FLAT) {
270            GLushort color[4];
271            color[RCOMP] = FixedToInt(span->red);
272            color[GCOMP] = FixedToInt(span->green);
273            color[BCOMP] = FixedToInt(span->blue);
274            color[ACOMP] = FixedToInt(span->alpha);
275            for (i = 0; i < n; i++) {
276               COPY_4V(rgba[i], color);
277            }
278         }
279         else {
280            GLushort (*rgba)[4] = span->array->rgba16;
281            GLfixed r, g, b, a;
282            GLint dr, dg, db, da;
283            r = span->red;
284            g = span->green;
285            b = span->blue;
286            a = span->alpha;
287            dr = span->redStep;
288            dg = span->greenStep;
289            db = span->blueStep;
290            da = span->alphaStep;
291            for (i = 0; i < n; i++) {
292               rgba[i][RCOMP] = FixedToChan(r);
293               rgba[i][GCOMP] = FixedToChan(g);
294               rgba[i][BCOMP] = FixedToChan(b);
295               rgba[i][ACOMP] = FixedToChan(a);
296               r += dr;
297               g += dg;
298               b += db;
299               a += da;
300            }
301         }
302      }
303      break;
304#endif
305   case GL_FLOAT:
306      interpolate_active_attribs(ctx, span, FRAG_BIT_COL0);
307      break;
308   default:
309      _mesa_problem(NULL, "bad datatype in interpolate_int_colors");
310   }
311   span->arrayMask |= SPAN_RGBA;
312}
313
314
315/**
316 * Populate the FRAG_ATTRIB_COL0 array.
317 */
318static INLINE void
319interpolate_float_colors(SWspan *span)
320{
321   GLfloat (*col0)[4] = span->array->attribs[FRAG_ATTRIB_COL0];
322   const GLuint n = span->end;
323   GLuint i;
324
325   assert(!(span->arrayAttribs & FRAG_BIT_COL0));
326
327   if (span->arrayMask & SPAN_RGBA) {
328      /* convert array of int colors */
329      for (i = 0; i < n; i++) {
330         col0[i][0] = UBYTE_TO_FLOAT(span->array->rgba8[i][0]);
331         col0[i][1] = UBYTE_TO_FLOAT(span->array->rgba8[i][1]);
332         col0[i][2] = UBYTE_TO_FLOAT(span->array->rgba8[i][2]);
333         col0[i][3] = UBYTE_TO_FLOAT(span->array->rgba8[i][3]);
334      }
335   }
336   else {
337      /* interpolate red/green/blue/alpha to get float colors */
338      ASSERT(span->interpMask & SPAN_RGBA);
339      if (span->interpMask & SPAN_FLAT) {
340         GLfloat r = FixedToFloat(span->red);
341         GLfloat g = FixedToFloat(span->green);
342         GLfloat b = FixedToFloat(span->blue);
343         GLfloat a = FixedToFloat(span->alpha);
344         for (i = 0; i < n; i++) {
345            ASSIGN_4V(col0[i], r, g, b, a);
346         }
347      }
348      else {
349         GLfloat r = FixedToFloat(span->red);
350         GLfloat g = FixedToFloat(span->green);
351         GLfloat b = FixedToFloat(span->blue);
352         GLfloat a = FixedToFloat(span->alpha);
353         GLfloat dr = FixedToFloat(span->redStep);
354         GLfloat dg = FixedToFloat(span->greenStep);
355         GLfloat db = FixedToFloat(span->blueStep);
356         GLfloat da = FixedToFloat(span->alphaStep);
357         for (i = 0; i < n; i++) {
358            col0[i][0] = r;
359            col0[i][1] = g;
360            col0[i][2] = b;
361            col0[i][3] = a;
362            r += dr;
363            g += dg;
364            b += db;
365            a += da;
366         }
367      }
368   }
369
370   span->arrayAttribs |= FRAG_BIT_COL0;
371   span->array->ChanType = GL_FLOAT;
372}
373
374
375
376/* Fill in the span.color.index array from the interpolation values */
377static INLINE void
378interpolate_indexes(GLcontext *ctx, SWspan *span)
379{
380   GLfixed index = span->index;
381   const GLint indexStep = span->indexStep;
382   const GLuint n = span->end;
383   GLuint *indexes = span->array->index;
384   GLuint i;
385   (void) ctx;
386
387   ASSERT(!(span->arrayMask & SPAN_INDEX));
388
389   if ((span->interpMask & SPAN_FLAT) || (indexStep == 0)) {
390      /* constant color */
391      index = FixedToInt(index);
392      for (i = 0; i < n; i++) {
393         indexes[i] = index;
394      }
395   }
396   else {
397      /* interpolate */
398      for (i = 0; i < n; i++) {
399         indexes[i] = FixedToInt(index);
400         index += indexStep;
401      }
402   }
403   span->arrayMask |= SPAN_INDEX;
404   span->interpMask &= ~SPAN_INDEX;
405}
406
407
408/**
409 * Fill in the span.zArray array from the span->z, zStep values.
410 */
411void
412_swrast_span_interpolate_z( const GLcontext *ctx, SWspan *span )
413{
414   const GLuint n = span->end;
415   GLuint i;
416
417   ASSERT(!(span->arrayMask & SPAN_Z));
418
419   if (ctx->DrawBuffer->Visual.depthBits <= 16) {
420      GLfixed zval = span->z;
421      GLuint *z = span->array->z;
422      for (i = 0; i < n; i++) {
423         z[i] = FixedToInt(zval);
424         zval += span->zStep;
425      }
426   }
427   else {
428      /* Deep Z buffer, no fixed->int shift */
429      GLuint zval = span->z;
430      GLuint *z = span->array->z;
431      for (i = 0; i < n; i++) {
432         z[i] = zval;
433         zval += span->zStep;
434      }
435   }
436   span->interpMask &= ~SPAN_Z;
437   span->arrayMask |= SPAN_Z;
438}
439
440
441/**
442 * Compute mipmap LOD from partial derivatives.
443 * This the ideal solution, as given in the OpenGL spec.
444 */
445#if 0
446static GLfloat
447compute_lambda(GLfloat dsdx, GLfloat dsdy, GLfloat dtdx, GLfloat dtdy,
448               GLfloat dqdx, GLfloat dqdy, GLfloat texW, GLfloat texH,
449               GLfloat s, GLfloat t, GLfloat q, GLfloat invQ)
450{
451   GLfloat dudx = texW * ((s + dsdx) / (q + dqdx) - s * invQ);
452   GLfloat dvdx = texH * ((t + dtdx) / (q + dqdx) - t * invQ);
453   GLfloat dudy = texW * ((s + dsdy) / (q + dqdy) - s * invQ);
454   GLfloat dvdy = texH * ((t + dtdy) / (q + dqdy) - t * invQ);
455   GLfloat x = SQRTF(dudx * dudx + dvdx * dvdx);
456   GLfloat y = SQRTF(dudy * dudy + dvdy * dvdy);
457   GLfloat rho = MAX2(x, y);
458   GLfloat lambda = LOG2(rho);
459   return lambda;
460}
461#endif
462
463
464/**
465 * Compute mipmap LOD from partial derivatives.
466 * This is a faster approximation than above function.
467 */
468GLfloat
469_swrast_compute_lambda(GLfloat dsdx, GLfloat dsdy, GLfloat dtdx, GLfloat dtdy,
470                     GLfloat dqdx, GLfloat dqdy, GLfloat texW, GLfloat texH,
471                     GLfloat s, GLfloat t, GLfloat q, GLfloat invQ)
472{
473   GLfloat dsdx2 = (s + dsdx) / (q + dqdx) - s * invQ;
474   GLfloat dtdx2 = (t + dtdx) / (q + dqdx) - t * invQ;
475   GLfloat dsdy2 = (s + dsdy) / (q + dqdy) - s * invQ;
476   GLfloat dtdy2 = (t + dtdy) / (q + dqdy) - t * invQ;
477   GLfloat maxU, maxV, rho, lambda;
478   dsdx2 = FABSF(dsdx2);
479   dsdy2 = FABSF(dsdy2);
480   dtdx2 = FABSF(dtdx2);
481   dtdy2 = FABSF(dtdy2);
482   maxU = MAX2(dsdx2, dsdy2) * texW;
483   maxV = MAX2(dtdx2, dtdy2) * texH;
484   rho = MAX2(maxU, maxV);
485   lambda = LOG2(rho);
486   return lambda;
487}
488
489
490/**
491 * Fill in the span.array->attrib[FRAG_ATTRIB_TEXn] arrays from the
492 * using the attrStart/Step values.
493 *
494 * This function only used during fixed-function fragment processing.
495 *
496 * Note: in the places where we divide by Q (or mult by invQ) we're
497 * really doing two things: perspective correction and texcoord
498 * projection.  Remember, for texcoord (s,t,r,q) we need to index
499 * texels with (s/q, t/q, r/q).
500 */
501static void
502interpolate_texcoords(GLcontext *ctx, SWspan *span)
503{
504   const GLuint maxUnit
505      = (ctx->Texture._EnabledCoordUnits > 1) ? ctx->Const.MaxTextureUnits : 1;
506   GLuint u;
507
508   /* XXX CoordUnits vs. ImageUnits */
509   for (u = 0; u < maxUnit; u++) {
510      if (ctx->Texture._EnabledCoordUnits & (1 << u)) {
511         const GLuint attr = FRAG_ATTRIB_TEX0 + u;
512         const struct gl_texture_object *obj = ctx->Texture.Unit[u]._Current;
513         GLfloat texW, texH;
514         GLboolean needLambda;
515         GLfloat (*texcoord)[4] = span->array->attribs[attr];
516         GLfloat *lambda = span->array->lambda[u];
517         const GLfloat dsdx = span->attrStepX[attr][0];
518         const GLfloat dsdy = span->attrStepY[attr][0];
519         const GLfloat dtdx = span->attrStepX[attr][1];
520         const GLfloat dtdy = span->attrStepY[attr][1];
521         const GLfloat drdx = span->attrStepX[attr][2];
522         const GLfloat dqdx = span->attrStepX[attr][3];
523         const GLfloat dqdy = span->attrStepY[attr][3];
524         GLfloat s = span->attrStart[attr][0];
525         GLfloat t = span->attrStart[attr][1];
526         GLfloat r = span->attrStart[attr][2];
527         GLfloat q = span->attrStart[attr][3];
528
529         if (obj) {
530            const struct gl_texture_image *img = obj->Image[0][obj->BaseLevel];
531            needLambda = (obj->MinFilter != obj->MagFilter)
532               || ctx->FragmentProgram._Current;
533            texW = img->WidthScale;
534            texH = img->HeightScale;
535         }
536         else {
537            /* using a fragment program */
538            texW = 1.0;
539            texH = 1.0;
540            needLambda = GL_FALSE;
541         }
542
543         if (needLambda) {
544            GLuint i;
545            if (ctx->FragmentProgram._Current
546                || ctx->ATIFragmentShader._Enabled) {
547               /* do perspective correction but don't divide s, t, r by q */
548               const GLfloat dwdx = span->attrStepX[FRAG_ATTRIB_WPOS][3];
549               GLfloat w = span->attrStart[FRAG_ATTRIB_WPOS][3];
550               for (i = 0; i < span->end; i++) {
551                  const GLfloat invW = 1.0F / w;
552                  texcoord[i][0] = s * invW;
553                  texcoord[i][1] = t * invW;
554                  texcoord[i][2] = r * invW;
555                  texcoord[i][3] = q * invW;
556                  lambda[i] = _swrast_compute_lambda(dsdx, dsdy, dtdx, dtdy,
557                                                     dqdx, dqdy, texW, texH,
558                                                     s, t, q, invW);
559                  s += dsdx;
560                  t += dtdx;
561                  r += drdx;
562                  q += dqdx;
563                  w += dwdx;
564               }
565            }
566            else {
567               for (i = 0; i < span->end; i++) {
568                  const GLfloat invQ = (q == 0.0F) ? 1.0F : (1.0F / q);
569                  texcoord[i][0] = s * invQ;
570                  texcoord[i][1] = t * invQ;
571                  texcoord[i][2] = r * invQ;
572                  texcoord[i][3] = q;
573                  lambda[i] = _swrast_compute_lambda(dsdx, dsdy, dtdx, dtdy,
574                                                     dqdx, dqdy, texW, texH,
575                                                     s, t, q, invQ);
576                  s += dsdx;
577                  t += dtdx;
578                  r += drdx;
579                  q += dqdx;
580               }
581            }
582            span->arrayMask |= SPAN_LAMBDA;
583         }
584         else {
585            GLuint i;
586            if (ctx->FragmentProgram._Current ||
587                ctx->ATIFragmentShader._Enabled) {
588               /* do perspective correction but don't divide s, t, r by q */
589               const GLfloat dwdx = span->attrStepX[FRAG_ATTRIB_WPOS][3];
590               GLfloat w = span->attrStart[FRAG_ATTRIB_WPOS][3];
591               for (i = 0; i < span->end; i++) {
592                  const GLfloat invW = 1.0F / w;
593                  texcoord[i][0] = s * invW;
594                  texcoord[i][1] = t * invW;
595                  texcoord[i][2] = r * invW;
596                  texcoord[i][3] = q * invW;
597                  lambda[i] = 0.0;
598                  s += dsdx;
599                  t += dtdx;
600                  r += drdx;
601                  q += dqdx;
602                  w += dwdx;
603               }
604            }
605            else if (dqdx == 0.0F) {
606               /* Ortho projection or polygon's parallel to window X axis */
607               const GLfloat invQ = (q == 0.0F) ? 1.0F : (1.0F / q);
608               for (i = 0; i < span->end; i++) {
609                  texcoord[i][0] = s * invQ;
610                  texcoord[i][1] = t * invQ;
611                  texcoord[i][2] = r * invQ;
612                  texcoord[i][3] = q;
613                  lambda[i] = 0.0;
614                  s += dsdx;
615                  t += dtdx;
616                  r += drdx;
617               }
618            }
619            else {
620               for (i = 0; i < span->end; i++) {
621                  const GLfloat invQ = (q == 0.0F) ? 1.0F : (1.0F / q);
622                  texcoord[i][0] = s * invQ;
623                  texcoord[i][1] = t * invQ;
624                  texcoord[i][2] = r * invQ;
625                  texcoord[i][3] = q;
626                  lambda[i] = 0.0;
627                  s += dsdx;
628                  t += dtdx;
629                  r += drdx;
630                  q += dqdx;
631               }
632            }
633         } /* lambda */
634      } /* if */
635   } /* for */
636}
637
638
639/**
640 * Fill in the arrays->attribs[FRAG_ATTRIB_WPOS] array.
641 */
642static INLINE void
643interpolate_wpos(GLcontext *ctx, SWspan *span)
644{
645   GLfloat (*wpos)[4] = span->array->attribs[FRAG_ATTRIB_WPOS];
646   GLuint i;
647   const GLfloat zScale = 1.0 / ctx->DrawBuffer->_DepthMaxF;
648   GLfloat w, dw;
649
650   if (span->arrayMask & SPAN_XY) {
651      for (i = 0; i < span->end; i++) {
652         wpos[i][0] = (GLfloat) span->array->x[i];
653         wpos[i][1] = (GLfloat) span->array->y[i];
654      }
655   }
656   else {
657      for (i = 0; i < span->end; i++) {
658         wpos[i][0] = (GLfloat) span->x + i;
659         wpos[i][1] = (GLfloat) span->y;
660      }
661   }
662
663   w = span->attrStart[FRAG_ATTRIB_WPOS][3];
664   dw = span->attrStepX[FRAG_ATTRIB_WPOS][3];
665   for (i = 0; i < span->end; i++) {
666      wpos[i][2] = (GLfloat) span->array->z[i] * zScale;
667      wpos[i][3] = w;
668      w += dw;
669   }
670}
671
672
673/**
674 * Apply the current polygon stipple pattern to a span of pixels.
675 */
676static INLINE void
677stipple_polygon_span(GLcontext *ctx, SWspan *span)
678{
679   GLubyte *mask = span->array->mask;
680
681   ASSERT(ctx->Polygon.StippleFlag);
682
683   if (span->arrayMask & SPAN_XY) {
684      /* arrays of x/y pixel coords */
685      GLuint i;
686      for (i = 0; i < span->end; i++) {
687         const GLint col = span->array->x[i] % 32;
688         const GLint row = span->array->y[i] % 32;
689         const GLuint stipple = ctx->PolygonStipple[row];
690         if (((1 << col) & stipple) == 0) {
691            mask[i] = 0;
692         }
693      }
694   }
695   else {
696      /* horizontal span of pixels */
697      const GLuint highBit = 1 << 31;
698      const GLuint stipple = ctx->PolygonStipple[span->y % 32];
699      GLuint i, m = highBit >> (GLuint) (span->x % 32);
700      for (i = 0; i < span->end; i++) {
701         if ((m & stipple) == 0) {
702            mask[i] = 0;
703         }
704         m = m >> 1;
705         if (m == 0) {
706            m = highBit;
707         }
708      }
709   }
710   span->writeAll = GL_FALSE;
711}
712
713
714/**
715 * Clip a pixel span to the current buffer/window boundaries:
716 * DrawBuffer->_Xmin, _Xmax, _Ymin, _Ymax.  This will accomplish
717 * window clipping and scissoring.
718 * Return:   GL_TRUE   some pixels still visible
719 *           GL_FALSE  nothing visible
720 */
721static INLINE GLuint
722clip_span( GLcontext *ctx, SWspan *span )
723{
724   const GLint xmin = ctx->DrawBuffer->_Xmin;
725   const GLint xmax = ctx->DrawBuffer->_Xmax;
726   const GLint ymin = ctx->DrawBuffer->_Ymin;
727   const GLint ymax = ctx->DrawBuffer->_Ymax;
728
729   if (span->arrayMask & SPAN_XY) {
730      /* arrays of x/y pixel coords */
731      const GLint *x = span->array->x;
732      const GLint *y = span->array->y;
733      const GLint n = span->end;
734      GLubyte *mask = span->array->mask;
735      GLint i;
736      if (span->arrayMask & SPAN_MASK) {
737         /* note: using & intead of && to reduce branches */
738         for (i = 0; i < n; i++) {
739            mask[i] &= (x[i] >= xmin) & (x[i] < xmax)
740                     & (y[i] >= ymin) & (y[i] < ymax);
741         }
742      }
743      else {
744         /* note: using & intead of && to reduce branches */
745         for (i = 0; i < n; i++) {
746            mask[i] = (x[i] >= xmin) & (x[i] < xmax)
747                    & (y[i] >= ymin) & (y[i] < ymax);
748         }
749      }
750      return GL_TRUE;  /* some pixels visible */
751   }
752   else {
753      /* horizontal span of pixels */
754      const GLint x = span->x;
755      const GLint y = span->y;
756      const GLint n = span->end;
757
758      /* Trivial rejection tests */
759      if (y < ymin || y >= ymax || x + n <= xmin || x >= xmax) {
760         span->end = 0;
761         return GL_FALSE;  /* all pixels clipped */
762      }
763
764      /* Clip to the left */
765      if (x < xmin) {
766         ASSERT(x + n > xmin);
767         span->writeAll = GL_FALSE;
768         _mesa_bzero(span->array->mask, (xmin - x) * sizeof(GLubyte));
769      }
770
771      /* Clip to right */
772      if (x + n > xmax) {
773         ASSERT(x < xmax);
774         span->end = xmax - x;
775      }
776
777      return GL_TRUE;  /* some pixels visible */
778   }
779}
780
781
782/**
783 * Apply all the per-fragment opertions to a span of color index fragments
784 * and write them to the enabled color drawbuffers.
785 * The 'span' parameter can be considered to be const.  Note that
786 * span->interpMask and span->arrayMask may be changed but will be restored
787 * to their original values before returning.
788 */
789void
790_swrast_write_index_span( GLcontext *ctx, SWspan *span)
791{
792   const SWcontext *swrast = SWRAST_CONTEXT(ctx);
793   const GLbitfield origInterpMask = span->interpMask;
794   const GLbitfield origArrayMask = span->arrayMask;
795   struct gl_framebuffer *fb = ctx->DrawBuffer;
796
797   ASSERT(span->end <= MAX_WIDTH);
798   ASSERT(span->primitive == GL_POINT  ||  span->primitive == GL_LINE ||
799	  span->primitive == GL_POLYGON  ||  span->primitive == GL_BITMAP);
800   ASSERT((span->interpMask | span->arrayMask) & SPAN_INDEX);
801   /*
802   ASSERT((span->interpMask & span->arrayMask) == 0);
803   */
804
805   if (span->arrayMask & SPAN_MASK) {
806      /* mask was initialized by caller, probably glBitmap */
807      span->writeAll = GL_FALSE;
808   }
809   else {
810      _mesa_memset(span->array->mask, 1, span->end);
811      span->writeAll = GL_TRUE;
812   }
813
814   /* Clipping */
815   if ((swrast->_RasterMask & CLIP_BIT) || (span->primitive != GL_POLYGON)) {
816      if (!clip_span(ctx, span)) {
817         return;
818      }
819   }
820
821   /* Depth bounds test */
822   if (ctx->Depth.BoundsTest && fb->Visual.depthBits > 0) {
823      if (!_swrast_depth_bounds_test(ctx, span)) {
824         return;
825      }
826   }
827
828#ifdef DEBUG
829   /* Make sure all fragments are within window bounds */
830   if (span->arrayMask & SPAN_XY) {
831      GLuint i;
832      for (i = 0; i < span->end; i++) {
833         if (span->array->mask[i]) {
834            assert(span->array->x[i] >= fb->_Xmin);
835            assert(span->array->x[i] < fb->_Xmax);
836            assert(span->array->y[i] >= fb->_Ymin);
837            assert(span->array->y[i] < fb->_Ymax);
838         }
839      }
840   }
841#endif
842
843   /* Polygon Stippling */
844   if (ctx->Polygon.StippleFlag && span->primitive == GL_POLYGON) {
845      stipple_polygon_span(ctx, span);
846   }
847
848   /* Stencil and Z testing */
849   if (ctx->Depth.Test || ctx->Stencil.Enabled) {
850      if (!(span->arrayMask & SPAN_Z))
851         _swrast_span_interpolate_z(ctx, span);
852
853      if (ctx->Stencil.Enabled) {
854         if (!_swrast_stencil_and_ztest_span(ctx, span)) {
855            span->arrayMask = origArrayMask;
856            return;
857         }
858      }
859      else {
860         ASSERT(ctx->Depth.Test);
861         if (!_swrast_depth_test_span(ctx, span)) {
862            span->interpMask = origInterpMask;
863            span->arrayMask = origArrayMask;
864            return;
865         }
866      }
867   }
868
869#if FEATURE_ARB_occlusion_query
870   if (ctx->Query.CurrentOcclusionObject) {
871      /* update count of 'passed' fragments */
872      struct gl_query_object *q = ctx->Query.CurrentOcclusionObject;
873      GLuint i;
874      for (i = 0; i < span->end; i++)
875         q->Result += span->array->mask[i];
876   }
877#endif
878
879   /* we have to wait until after occlusion to do this test */
880   if (ctx->Color.IndexMask == 0) {
881      /* write no pixels */
882      span->arrayMask = origArrayMask;
883      return;
884   }
885
886   /* Interpolate the color indexes if needed */
887   if (swrast->_FogEnabled ||
888       ctx->Color.IndexLogicOpEnabled ||
889       ctx->Color.IndexMask != 0xffffffff ||
890       (span->arrayMask & SPAN_COVERAGE)) {
891      if (!(span->arrayMask & SPAN_INDEX) /*span->interpMask & SPAN_INDEX*/) {
892         interpolate_indexes(ctx, span);
893      }
894   }
895
896   /* Fog */
897   if (swrast->_FogEnabled) {
898      _swrast_fog_ci_span(ctx, span);
899   }
900
901   /* Antialias coverage application */
902   if (span->arrayMask & SPAN_COVERAGE) {
903      const GLfloat *coverage = span->array->coverage;
904      GLuint *index = span->array->index;
905      GLuint i;
906      for (i = 0; i < span->end; i++) {
907         ASSERT(coverage[i] < 16);
908         index[i] = (index[i] & ~0xf) | ((GLuint) coverage[i]);
909      }
910   }
911
912   /*
913    * Write to renderbuffers
914    */
915   {
916      const GLuint numBuffers = fb->_NumColorDrawBuffers;
917      GLuint buf;
918
919      for (buf = 0; buf < numBuffers; buf++) {
920         struct gl_renderbuffer *rb = fb->_ColorDrawBuffers[buf];
921         GLuint indexSave[MAX_WIDTH];
922
923         ASSERT(rb->_BaseFormat == GL_COLOR_INDEX);
924
925         if (numBuffers > 1) {
926            /* save indexes for second, third renderbuffer writes */
927            _mesa_memcpy(indexSave, span->array->index,
928                         span->end * sizeof(indexSave[0]));
929         }
930
931         if (ctx->Color.IndexLogicOpEnabled) {
932            _swrast_logicop_ci_span(ctx, rb, span);
933         }
934
935         if (ctx->Color.IndexMask != 0xffffffff) {
936            _swrast_mask_ci_span(ctx, rb, span);
937         }
938
939         if (!(span->arrayMask & SPAN_INDEX) && span->indexStep == 0) {
940            /* all fragments have same color index */
941            GLubyte index8;
942            GLushort index16;
943            GLuint index32;
944            void *value;
945
946            if (rb->DataType == GL_UNSIGNED_BYTE) {
947               index8 = FixedToInt(span->index);
948               value = &index8;
949            }
950            else if (rb->DataType == GL_UNSIGNED_SHORT) {
951               index16 = FixedToInt(span->index);
952               value = &index16;
953            }
954            else {
955               ASSERT(rb->DataType == GL_UNSIGNED_INT);
956               index32 = FixedToInt(span->index);
957               value = &index32;
958            }
959
960            if (span->arrayMask & SPAN_XY) {
961               rb->PutMonoValues(ctx, rb, span->end, span->array->x,
962                                 span->array->y, value, span->array->mask);
963            }
964            else {
965               rb->PutMonoRow(ctx, rb, span->end, span->x, span->y,
966                              value, span->array->mask);
967            }
968         }
969         else {
970            /* each fragment is a different color */
971            GLubyte index8[MAX_WIDTH];
972            GLushort index16[MAX_WIDTH];
973            void *values;
974
975            if (rb->DataType == GL_UNSIGNED_BYTE) {
976               GLuint k;
977               for (k = 0; k < span->end; k++) {
978                  index8[k] = (GLubyte) span->array->index[k];
979               }
980               values = index8;
981            }
982            else if (rb->DataType == GL_UNSIGNED_SHORT) {
983               GLuint k;
984               for (k = 0; k < span->end; k++) {
985                  index16[k] = (GLushort) span->array->index[k];
986               }
987               values = index16;
988            }
989            else {
990               ASSERT(rb->DataType == GL_UNSIGNED_INT);
991               values = span->array->index;
992            }
993
994            if (span->arrayMask & SPAN_XY) {
995               rb->PutValues(ctx, rb, span->end,
996                             span->array->x, span->array->y,
997                             values, span->array->mask);
998            }
999            else {
1000               rb->PutRow(ctx, rb, span->end, span->x, span->y,
1001                          values, span->array->mask);
1002            }
1003         }
1004
1005         if (buf + 1 < numBuffers) {
1006            /* restore original span values */
1007            _mesa_memcpy(span->array->index, indexSave,
1008                         span->end * sizeof(indexSave[0]));
1009         }
1010      } /* for buf */
1011   }
1012
1013   span->interpMask = origInterpMask;
1014   span->arrayMask = origArrayMask;
1015}
1016
1017
1018/**
1019 * Add specular colors to primary colors.
1020 * Only called during fixed-function operation.
1021 * Result is float color array (FRAG_ATTRIB_COL0).
1022 */
1023static INLINE void
1024add_specular(GLcontext *ctx, SWspan *span)
1025{
1026   const SWcontext *swrast = SWRAST_CONTEXT(ctx);
1027   const GLubyte *mask = span->array->mask;
1028   GLfloat (*col0)[4] = span->array->attribs[FRAG_ATTRIB_COL0];
1029   GLfloat (*col1)[4] = span->array->attribs[FRAG_ATTRIB_COL1];
1030   GLuint i;
1031
1032   ASSERT(!ctx->FragmentProgram._Current);
1033   ASSERT(span->arrayMask & SPAN_RGBA);
1034   ASSERT(swrast->_ActiveAttribMask & FRAG_BIT_COL1);
1035
1036   if (span->array->ChanType == GL_FLOAT) {
1037      if ((span->arrayAttribs & FRAG_BIT_COL0) == 0) {
1038         interpolate_active_attribs(ctx, span, FRAG_BIT_COL0);
1039      }
1040   }
1041   else {
1042      /* need float colors */
1043      if ((span->arrayAttribs & FRAG_BIT_COL0) == 0) {
1044         interpolate_float_colors(span);
1045      }
1046   }
1047
1048   if ((span->arrayAttribs & FRAG_BIT_COL1) == 0) {
1049      /* XXX could avoid this and interpolate COL1 in the loop below */
1050      interpolate_active_attribs(ctx, span, FRAG_BIT_COL1);
1051   }
1052
1053   ASSERT(span->arrayAttribs & FRAG_BIT_COL0);
1054   ASSERT(span->arrayAttribs & FRAG_BIT_COL1);
1055
1056   for (i = 0; i < span->end; i++) {
1057      if (mask[i]) {
1058         col0[i][0] += col1[i][0];
1059         col0[i][1] += col1[i][1];
1060         col0[i][2] += col1[i][2];
1061      }
1062   }
1063
1064   span->array->ChanType = GL_FLOAT;
1065}
1066
1067
1068/**
1069 * Apply antialiasing coverage value to alpha values.
1070 */
1071static INLINE void
1072apply_aa_coverage(SWspan *span)
1073{
1074   const GLfloat *coverage = span->array->coverage;
1075   GLuint i;
1076   if (span->array->ChanType == GL_UNSIGNED_BYTE) {
1077      GLubyte (*rgba)[4] = span->array->rgba8;
1078      for (i = 0; i < span->end; i++) {
1079         const GLfloat a = rgba[i][ACOMP] * coverage[i];
1080         rgba[i][ACOMP] = (GLubyte) CLAMP(a, 0.0, 255.0);
1081         ASSERT(coverage[i] >= 0.0);
1082         ASSERT(coverage[i] <= 1.0);
1083      }
1084   }
1085   else if (span->array->ChanType == GL_UNSIGNED_SHORT) {
1086      GLushort (*rgba)[4] = span->array->rgba16;
1087      for (i = 0; i < span->end; i++) {
1088         const GLfloat a = rgba[i][ACOMP] * coverage[i];
1089         rgba[i][ACOMP] = (GLushort) CLAMP(a, 0.0, 65535.0);
1090      }
1091   }
1092   else {
1093      GLfloat (*rgba)[4] = span->array->attribs[FRAG_ATTRIB_COL0];
1094      for (i = 0; i < span->end; i++) {
1095         rgba[i][ACOMP] = rgba[i][ACOMP] * coverage[i];
1096         /* clamp later */
1097      }
1098   }
1099}
1100
1101
1102/**
1103 * Clamp span's float colors to [0,1]
1104 */
1105static INLINE void
1106clamp_colors(SWspan *span)
1107{
1108   GLfloat (*rgba)[4] = span->array->attribs[FRAG_ATTRIB_COL0];
1109   GLuint i;
1110   ASSERT(span->array->ChanType == GL_FLOAT);
1111   for (i = 0; i < span->end; i++) {
1112      rgba[i][RCOMP] = CLAMP(rgba[i][RCOMP], 0.0F, 1.0F);
1113      rgba[i][GCOMP] = CLAMP(rgba[i][GCOMP], 0.0F, 1.0F);
1114      rgba[i][BCOMP] = CLAMP(rgba[i][BCOMP], 0.0F, 1.0F);
1115      rgba[i][ACOMP] = CLAMP(rgba[i][ACOMP], 0.0F, 1.0F);
1116   }
1117}
1118
1119
1120/**
1121 * Convert the span's color arrays to the given type.
1122 * The only way 'output' can be greater than zero is when we have a fragment
1123 * program that writes to gl_FragData[1] or higher.
1124 * \param output  which fragment program color output is being processed
1125 */
1126static INLINE void
1127convert_color_type(SWspan *span, GLenum newType, GLuint output)
1128{
1129   GLvoid *src, *dst;
1130
1131   if (output > 0 || span->array->ChanType == GL_FLOAT) {
1132      src = span->array->attribs[FRAG_ATTRIB_COL0 + output];
1133      span->array->ChanType = GL_FLOAT;
1134   }
1135   else if (span->array->ChanType == GL_UNSIGNED_BYTE) {
1136      src = span->array->rgba8;
1137   }
1138   else {
1139      ASSERT(span->array->ChanType == GL_UNSIGNED_SHORT);
1140      src = span->array->rgba16;
1141   }
1142
1143   if (newType == GL_UNSIGNED_BYTE) {
1144      dst = span->array->rgba8;
1145   }
1146   else if (newType == GL_UNSIGNED_SHORT) {
1147      dst = span->array->rgba16;
1148   }
1149   else {
1150      dst = span->array->attribs[FRAG_ATTRIB_COL0];
1151   }
1152
1153   _mesa_convert_colors(span->array->ChanType, src,
1154                        newType, dst,
1155                        span->end, span->array->mask);
1156
1157   span->array->ChanType = newType;
1158   span->array->rgba = dst;
1159}
1160
1161
1162
1163/**
1164 * Apply fragment shader, fragment program or normal texturing to span.
1165 */
1166static INLINE void
1167shade_texture_span(GLcontext *ctx, SWspan *span)
1168{
1169   GLbitfield inputsRead;
1170
1171   /* Determine which fragment attributes are actually needed */
1172   if (ctx->FragmentProgram._Current) {
1173      inputsRead = ctx->FragmentProgram._Current->Base.InputsRead;
1174   }
1175   else {
1176      /* XXX we could be a bit smarter about this */
1177      inputsRead = ~0;
1178   }
1179
1180   if (ctx->FragmentProgram._Current ||
1181       ctx->ATIFragmentShader._Enabled) {
1182      /* programmable shading */
1183      if (span->primitive == GL_BITMAP && span->array->ChanType != GL_FLOAT) {
1184         convert_color_type(span, GL_FLOAT, 0);
1185      }
1186      if (span->primitive != GL_POINT ||
1187	  (span->interpMask & SPAN_RGBA) ||
1188	  ctx->Point.PointSprite) {
1189         /* for single-pixel points, we populated the arrays already */
1190         interpolate_active_attribs(ctx, span, ~0);
1191      }
1192      span->array->ChanType = GL_FLOAT;
1193
1194      if (!(span->arrayMask & SPAN_Z))
1195         _swrast_span_interpolate_z (ctx, span);
1196
1197#if 0
1198      if (inputsRead & FRAG_BIT_WPOS)
1199#else
1200      /* XXX always interpolate wpos so that DDX/DDY work */
1201#endif
1202         interpolate_wpos(ctx, span);
1203
1204      /* Run fragment program/shader now */
1205      if (ctx->FragmentProgram._Current) {
1206         _swrast_exec_fragment_program(ctx, span);
1207      }
1208      else {
1209         ASSERT(ctx->ATIFragmentShader._Enabled);
1210         _swrast_exec_fragment_shader(ctx, span);
1211      }
1212   }
1213   else if (ctx->Texture._EnabledUnits) {
1214      /* conventional texturing */
1215
1216#if CHAN_BITS == 32
1217      if ((span->arrayAttribs & FRAG_BIT_COL0) == 0) {
1218         interpolate_int_colors(ctx, span);
1219      }
1220#else
1221      if (!(span->arrayMask & SPAN_RGBA))
1222         interpolate_int_colors(ctx, span);
1223#endif
1224      if ((span->arrayAttribs & FRAG_BITS_TEX_ANY) == 0x0)
1225         interpolate_texcoords(ctx, span);
1226
1227      _swrast_texture_span(ctx, span);
1228   }
1229}
1230
1231
1232
1233/**
1234 * Apply all the per-fragment operations to a span.
1235 * This now includes texturing (_swrast_write_texture_span() is history).
1236 * This function may modify any of the array values in the span.
1237 * span->interpMask and span->arrayMask may be changed but will be restored
1238 * to their original values before returning.
1239 */
1240void
1241_swrast_write_rgba_span( GLcontext *ctx, SWspan *span)
1242{
1243   const SWcontext *swrast = SWRAST_CONTEXT(ctx);
1244   const GLuint colorMask = *((GLuint *) ctx->Color.ColorMask);
1245   const GLbitfield origInterpMask = span->interpMask;
1246   const GLbitfield origArrayMask = span->arrayMask;
1247   const GLbitfield origArrayAttribs = span->arrayAttribs;
1248   const GLenum origChanType = span->array->ChanType;
1249   void * const origRgba = span->array->rgba;
1250   const GLboolean shader = (ctx->FragmentProgram._Current
1251                             || ctx->ATIFragmentShader._Enabled);
1252   const GLboolean shaderOrTexture = shader || ctx->Texture._EnabledUnits;
1253   struct gl_framebuffer *fb = ctx->DrawBuffer;
1254
1255   /*
1256   printf("%s()  interp 0x%x  array 0x%x\n", __FUNCTION__,
1257          span->interpMask, span->arrayMask);
1258   */
1259
1260   ASSERT(span->primitive == GL_POINT ||
1261          span->primitive == GL_LINE ||
1262	  span->primitive == GL_POLYGON ||
1263          span->primitive == GL_BITMAP);
1264   ASSERT(span->end <= MAX_WIDTH);
1265
1266   /* Fragment write masks */
1267   if (span->arrayMask & SPAN_MASK) {
1268      /* mask was initialized by caller, probably glBitmap */
1269      span->writeAll = GL_FALSE;
1270   }
1271   else {
1272      _mesa_memset(span->array->mask, 1, span->end);
1273      span->writeAll = GL_TRUE;
1274   }
1275
1276   /* Clip to window/scissor box */
1277   if ((swrast->_RasterMask & CLIP_BIT) || (span->primitive != GL_POLYGON)) {
1278      if (!clip_span(ctx, span)) {
1279	 return;
1280      }
1281   }
1282
1283#ifdef DEBUG
1284   /* Make sure all fragments are within window bounds */
1285   if (span->arrayMask & SPAN_XY) {
1286      GLuint i;
1287      for (i = 0; i < span->end; i++) {
1288         if (span->array->mask[i]) {
1289            assert(span->array->x[i] >= fb->_Xmin);
1290            assert(span->array->x[i] < fb->_Xmax);
1291            assert(span->array->y[i] >= fb->_Ymin);
1292            assert(span->array->y[i] < fb->_Ymax);
1293         }
1294      }
1295   }
1296#endif
1297
1298   /* Polygon Stippling */
1299   if (ctx->Polygon.StippleFlag && span->primitive == GL_POLYGON) {
1300      stipple_polygon_span(ctx, span);
1301   }
1302
1303   /* This is the normal place to compute the fragment color/Z
1304    * from texturing or shading.
1305    */
1306   if (shaderOrTexture && !swrast->_DeferredTexture) {
1307      shade_texture_span(ctx, span);
1308   }
1309
1310   /* Do the alpha test */
1311   if (ctx->Color.AlphaEnabled) {
1312      if (!_swrast_alpha_test(ctx, span)) {
1313         goto end;
1314      }
1315   }
1316
1317   /* Stencil and Z testing */
1318   if (ctx->Stencil.Enabled || ctx->Depth.Test) {
1319      if (!(span->arrayMask & SPAN_Z))
1320         _swrast_span_interpolate_z(ctx, span);
1321
1322      if (ctx->Stencil.Enabled && fb->Visual.stencilBits > 0) {
1323         /* Combined Z/stencil tests */
1324         if (!_swrast_stencil_and_ztest_span(ctx, span)) {
1325            goto end;
1326         }
1327      }
1328      else if (fb->Visual.depthBits > 0) {
1329         /* Just regular depth testing */
1330         ASSERT(ctx->Depth.Test);
1331         ASSERT(span->arrayMask & SPAN_Z);
1332         if (!_swrast_depth_test_span(ctx, span)) {
1333            goto end;
1334         }
1335      }
1336   }
1337
1338#if FEATURE_ARB_occlusion_query
1339   if (ctx->Query.CurrentOcclusionObject) {
1340      /* update count of 'passed' fragments */
1341      struct gl_query_object *q = ctx->Query.CurrentOcclusionObject;
1342      GLuint i;
1343      for (i = 0; i < span->end; i++)
1344         q->Result += span->array->mask[i];
1345   }
1346#endif
1347
1348   /* We had to wait until now to check for glColorMask(0,0,0,0) because of
1349    * the occlusion test.
1350    */
1351   if (colorMask == 0x0) {
1352      goto end;
1353   }
1354
1355   /* If we were able to defer fragment color computation to now, there's
1356    * a good chance that many fragments will have already been killed by
1357    * Z/stencil testing.
1358    */
1359   if (shaderOrTexture && swrast->_DeferredTexture) {
1360      shade_texture_span(ctx, span);
1361   }
1362
1363#if CHAN_BITS == 32
1364   if ((span->arrayAttribs & FRAG_BIT_COL0) == 0) {
1365      interpolate_active_attribs(ctx, span, FRAG_BIT_COL0);
1366   }
1367#else
1368   if ((span->arrayMask & SPAN_RGBA) == 0) {
1369      interpolate_int_colors(ctx, span);
1370   }
1371#endif
1372
1373   ASSERT(span->arrayMask & SPAN_RGBA);
1374
1375   if (!shader) {
1376      /* Add base and specular colors */
1377      if (ctx->Fog.ColorSumEnabled ||
1378          (ctx->Light.Enabled &&
1379           ctx->Light.Model.ColorControl == GL_SEPARATE_SPECULAR_COLOR)) {
1380         add_specular(ctx, span);
1381      }
1382   }
1383
1384   /* Fog */
1385   if (swrast->_FogEnabled) {
1386      _swrast_fog_rgba_span(ctx, span);
1387   }
1388
1389   /* Antialias coverage application */
1390   if (span->arrayMask & SPAN_COVERAGE) {
1391      apply_aa_coverage(span);
1392   }
1393
1394   /* Clamp color/alpha values over the range [0.0, 1.0] before storage */
1395   if (ctx->Color.ClampFragmentColor == GL_TRUE &&
1396       span->array->ChanType == GL_FLOAT) {
1397      clamp_colors(span);
1398   }
1399
1400   /*
1401    * Write to renderbuffers
1402    */
1403   {
1404      const struct gl_fragment_program *fp = ctx->FragmentProgram._Current;
1405      const GLuint numBuffers = fb->_NumColorDrawBuffers;
1406      const GLboolean multiFragOutputs = numBuffers > 1;
1407      GLuint buf;
1408
1409      for (buf = 0; buf < numBuffers; buf++) {
1410         struct gl_renderbuffer *rb = fb->_ColorDrawBuffers[buf];
1411
1412         /* color[fragOutput] will be written to buffer[buf] */
1413
1414         if (rb) {
1415            GLchan rgbaSave[MAX_WIDTH][4];
1416            const GLuint fragOutput = multiFragOutputs ? buf : 0;
1417
1418            if (rb->DataType != span->array->ChanType || fragOutput > 0) {
1419               convert_color_type(span, rb->DataType, fragOutput);
1420            }
1421
1422            if (!multiFragOutputs && numBuffers > 1) {
1423               /* save colors for second, third renderbuffer writes */
1424               _mesa_memcpy(rgbaSave, span->array->rgba,
1425                            4 * span->end * sizeof(GLchan));
1426            }
1427
1428            ASSERT(rb->_BaseFormat == GL_RGBA || rb->_BaseFormat == GL_RGB);
1429
1430            if (ctx->Color._LogicOpEnabled) {
1431               _swrast_logicop_rgba_span(ctx, rb, span);
1432            }
1433            else if (ctx->Color.BlendEnabled) {
1434               _swrast_blend_span(ctx, rb, span);
1435            }
1436
1437            if (colorMask != 0xffffffff) {
1438               _swrast_mask_rgba_span(ctx, rb, span);
1439            }
1440
1441            if (span->arrayMask & SPAN_XY) {
1442               /* array of pixel coords */
1443               ASSERT(rb->PutValues);
1444               rb->PutValues(ctx, rb, span->end,
1445                             span->array->x, span->array->y,
1446                             span->array->rgba, span->array->mask);
1447            }
1448            else {
1449               /* horizontal run of pixels */
1450               ASSERT(rb->PutRow);
1451               rb->PutRow(ctx, rb, span->end, span->x, span->y,
1452                          span->array->rgba,
1453                          span->writeAll ? NULL: span->array->mask);
1454            }
1455
1456            if (!multiFragOutputs && numBuffers > 1) {
1457               /* restore original span values */
1458               _mesa_memcpy(span->array->rgba, rgbaSave,
1459                            4 * span->end * sizeof(GLchan));
1460            }
1461
1462         } /* if rb */
1463      } /* for buf */
1464   }
1465
1466end:
1467   /* restore these values before returning */
1468   span->interpMask = origInterpMask;
1469   span->arrayMask = origArrayMask;
1470   span->arrayAttribs = origArrayAttribs;
1471   span->array->ChanType = origChanType;
1472   span->array->rgba = origRgba;
1473}
1474
1475
1476/**
1477 * Read RGBA pixels from a renderbuffer.  Clipping will be done to prevent
1478 * reading ouside the buffer's boundaries.
1479 * \param dstType  datatype for returned colors
1480 * \param rgba  the returned colors
1481 */
1482void
1483_swrast_read_rgba_span( GLcontext *ctx, struct gl_renderbuffer *rb,
1484                        GLuint n, GLint x, GLint y, GLenum dstType,
1485                        GLvoid *rgba)
1486{
1487   const GLint bufWidth = (GLint) rb->Width;
1488   const GLint bufHeight = (GLint) rb->Height;
1489
1490   if (y < 0 || y >= bufHeight || x + (GLint) n < 0 || x >= bufWidth) {
1491      /* completely above, below, or right */
1492      /* XXX maybe leave rgba values undefined? */
1493      _mesa_bzero(rgba, 4 * n * sizeof(GLchan));
1494   }
1495   else {
1496      GLint skip, length;
1497      if (x < 0) {
1498         /* left edge clipping */
1499         skip = -x;
1500         length = (GLint) n - skip;
1501         if (length < 0) {
1502            /* completely left of window */
1503            return;
1504         }
1505         if (length > bufWidth) {
1506            length = bufWidth;
1507         }
1508      }
1509      else if ((GLint) (x + n) > bufWidth) {
1510         /* right edge clipping */
1511         skip = 0;
1512         length = bufWidth - x;
1513         if (length < 0) {
1514            /* completely to right of window */
1515            return;
1516         }
1517      }
1518      else {
1519         /* no clipping */
1520         skip = 0;
1521         length = (GLint) n;
1522      }
1523
1524      ASSERT(rb);
1525      ASSERT(rb->GetRow);
1526      ASSERT(rb->_BaseFormat == GL_RGB || rb->_BaseFormat == GL_RGBA);
1527
1528      if (rb->DataType == dstType) {
1529         rb->GetRow(ctx, rb, length, x + skip, y,
1530                    (GLubyte *) rgba + skip * RGBA_PIXEL_SIZE(rb->DataType));
1531      }
1532      else {
1533         GLuint temp[MAX_WIDTH * 4];
1534         rb->GetRow(ctx, rb, length, x + skip, y, temp);
1535         _mesa_convert_colors(rb->DataType, temp,
1536                   dstType, (GLubyte *) rgba + skip * RGBA_PIXEL_SIZE(dstType),
1537                   length, NULL);
1538      }
1539   }
1540}
1541
1542
1543/**
1544 * Read CI pixels from a renderbuffer.  Clipping will be done to prevent
1545 * reading ouside the buffer's boundaries.
1546 */
1547void
1548_swrast_read_index_span( GLcontext *ctx, struct gl_renderbuffer *rb,
1549                         GLuint n, GLint x, GLint y, GLuint index[] )
1550{
1551   const GLint bufWidth = (GLint) rb->Width;
1552   const GLint bufHeight = (GLint) rb->Height;
1553
1554   if (y < 0 || y >= bufHeight || x + (GLint) n < 0 || x >= bufWidth) {
1555      /* completely above, below, or right */
1556      _mesa_bzero(index, n * sizeof(GLuint));
1557   }
1558   else {
1559      GLint skip, length;
1560      if (x < 0) {
1561         /* left edge clipping */
1562         skip = -x;
1563         length = (GLint) n - skip;
1564         if (length < 0) {
1565            /* completely left of window */
1566            return;
1567         }
1568         if (length > bufWidth) {
1569            length = bufWidth;
1570         }
1571      }
1572      else if ((GLint) (x + n) > bufWidth) {
1573         /* right edge clipping */
1574         skip = 0;
1575         length = bufWidth - x;
1576         if (length < 0) {
1577            /* completely to right of window */
1578            return;
1579         }
1580      }
1581      else {
1582         /* no clipping */
1583         skip = 0;
1584         length = (GLint) n;
1585      }
1586
1587      ASSERT(rb->GetRow);
1588      ASSERT(rb->_BaseFormat == GL_COLOR_INDEX);
1589
1590      if (rb->DataType == GL_UNSIGNED_BYTE) {
1591         GLubyte index8[MAX_WIDTH];
1592         GLint i;
1593         rb->GetRow(ctx, rb, length, x + skip, y, index8);
1594         for (i = 0; i < length; i++)
1595            index[skip + i] = index8[i];
1596      }
1597      else if (rb->DataType == GL_UNSIGNED_SHORT) {
1598         GLushort index16[MAX_WIDTH];
1599         GLint i;
1600         rb->GetRow(ctx, rb, length, x + skip, y, index16);
1601         for (i = 0; i < length; i++)
1602            index[skip + i] = index16[i];
1603      }
1604      else if (rb->DataType == GL_UNSIGNED_INT) {
1605         rb->GetRow(ctx, rb, length, x + skip, y, index + skip);
1606      }
1607   }
1608}
1609
1610
1611/**
1612 * Wrapper for gl_renderbuffer::GetValues() which does clipping to avoid
1613 * reading values outside the buffer bounds.
1614 * We can use this for reading any format/type of renderbuffer.
1615 * \param valueSize is the size in bytes of each value (pixel) put into the
1616 *                  values array.
1617 */
1618void
1619_swrast_get_values(GLcontext *ctx, struct gl_renderbuffer *rb,
1620                   GLuint count, const GLint x[], const GLint y[],
1621                   void *values, GLuint valueSize)
1622{
1623   GLuint i, inCount = 0, inStart = 0;
1624
1625   for (i = 0; i < count; i++) {
1626      if (x[i] >= 0 && y[i] >= 0 &&
1627	  x[i] < (GLint) rb->Width && y[i] < (GLint) rb->Height) {
1628         /* inside */
1629         if (inCount == 0)
1630            inStart = i;
1631         inCount++;
1632      }
1633      else {
1634         if (inCount > 0) {
1635            /* read [inStart, inStart + inCount) */
1636            rb->GetValues(ctx, rb, inCount, x + inStart, y + inStart,
1637                          (GLubyte *) values + inStart * valueSize);
1638            inCount = 0;
1639         }
1640      }
1641   }
1642   if (inCount > 0) {
1643      /* read last values */
1644      rb->GetValues(ctx, rb, inCount, x + inStart, y + inStart,
1645                    (GLubyte *) values + inStart * valueSize);
1646   }
1647}
1648
1649
1650/**
1651 * Wrapper for gl_renderbuffer::PutRow() which does clipping.
1652 * \param valueSize  size of each value (pixel) in bytes
1653 */
1654void
1655_swrast_put_row(GLcontext *ctx, struct gl_renderbuffer *rb,
1656                GLuint count, GLint x, GLint y,
1657                const GLvoid *values, GLuint valueSize)
1658{
1659   GLint skip = 0;
1660
1661   if (y < 0 || y >= (GLint) rb->Height)
1662      return; /* above or below */
1663
1664   if (x + (GLint) count <= 0 || x >= (GLint) rb->Width)
1665      return; /* entirely left or right */
1666
1667   if ((GLint) (x + count) > (GLint) rb->Width) {
1668      /* right clip */
1669      GLint clip = x + count - rb->Width;
1670      count -= clip;
1671   }
1672
1673   if (x < 0) {
1674      /* left clip */
1675      skip = -x;
1676      x = 0;
1677      count -= skip;
1678   }
1679
1680   rb->PutRow(ctx, rb, count, x, y,
1681              (const GLubyte *) values + skip * valueSize, NULL);
1682}
1683
1684
1685/**
1686 * Wrapper for gl_renderbuffer::GetRow() which does clipping.
1687 * \param valueSize  size of each value (pixel) in bytes
1688 */
1689void
1690_swrast_get_row(GLcontext *ctx, struct gl_renderbuffer *rb,
1691                GLuint count, GLint x, GLint y,
1692                GLvoid *values, GLuint valueSize)
1693{
1694   GLint skip = 0;
1695
1696   if (y < 0 || y >= (GLint) rb->Height)
1697      return; /* above or below */
1698
1699   if (x + (GLint) count <= 0 || x >= (GLint) rb->Width)
1700      return; /* entirely left or right */
1701
1702   if (x + count > rb->Width) {
1703      /* right clip */
1704      GLint clip = x + count - rb->Width;
1705      count -= clip;
1706   }
1707
1708   if (x < 0) {
1709      /* left clip */
1710      skip = -x;
1711      x = 0;
1712      count -= skip;
1713   }
1714
1715   rb->GetRow(ctx, rb, count, x, y, (GLubyte *) values + skip * valueSize);
1716}
1717
1718
1719/**
1720 * Get RGBA pixels from the given renderbuffer.  Put the pixel colors into
1721 * the span's specular color arrays.  The specular color arrays should no
1722 * longer be needed by time this function is called.
1723 * Used by blending, logicop and masking functions.
1724 * \return pointer to the colors we read.
1725 */
1726void *
1727_swrast_get_dest_rgba(GLcontext *ctx, struct gl_renderbuffer *rb,
1728                      SWspan *span)
1729{
1730   const GLuint pixelSize = RGBA_PIXEL_SIZE(span->array->ChanType);
1731   void *rbPixels;
1732
1733   /*
1734    * Point rbPixels to a temporary space (use specular color arrays).
1735    */
1736   rbPixels = span->array->attribs[FRAG_ATTRIB_COL1];
1737
1738   /* Get destination values from renderbuffer */
1739   if (span->arrayMask & SPAN_XY) {
1740      _swrast_get_values(ctx, rb, span->end, span->array->x, span->array->y,
1741                         rbPixels, pixelSize);
1742   }
1743   else {
1744      _swrast_get_row(ctx, rb, span->end, span->x, span->y,
1745                      rbPixels, pixelSize);
1746   }
1747
1748   return rbPixels;
1749}
1750