s_span.c revision c8e714df013cdf360602f9cc96d26cb732b19a32
1/*
2 * Mesa 3-D graphics library
3 * Version:  7.5
4 *
5 * Copyright (C) 1999-2008  Brian Paul   All Rights Reserved.
6 * Copyright (C) 2009  VMware, Inc.  All Rights Reserved.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the "Software"),
10 * to deal in the Software without restriction, including without limitation
11 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
12 * and/or sell copies of the Software, and to permit persons to whom the
13 * Software is furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice shall be included
16 * in all copies or substantial portions of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
21 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
22 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
23 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 */
25
26
27/**
28 * \file swrast/s_span.c
29 * \brief Span processing functions used by all rasterization functions.
30 * This is where all the per-fragment tests are performed
31 * \author Brian Paul
32 */
33
34#include "main/glheader.h"
35#include "main/colormac.h"
36#include "main/macros.h"
37#include "main/imports.h"
38#include "main/image.h"
39
40#include "s_atifragshader.h"
41#include "s_alpha.h"
42#include "s_blend.h"
43#include "s_context.h"
44#include "s_depth.h"
45#include "s_fog.h"
46#include "s_logic.h"
47#include "s_masking.h"
48#include "s_fragprog.h"
49#include "s_span.h"
50#include "s_stencil.h"
51#include "s_texcombine.h"
52
53
54/**
55 * Set default fragment attributes for the span using the
56 * current raster values.  Used prior to glDraw/CopyPixels
57 * and glBitmap.
58 */
59void
60_swrast_span_default_attribs(GLcontext *ctx, SWspan *span)
61{
62   GLchan r, g, b, a;
63   /* Z*/
64   {
65      const GLfloat depthMax = ctx->DrawBuffer->_DepthMaxF;
66      if (ctx->DrawBuffer->Visual.depthBits <= 16)
67         span->z = FloatToFixed(ctx->Current.RasterPos[2] * depthMax + 0.5F);
68      else {
69         GLfloat tmpf = ctx->Current.RasterPos[2] * depthMax;
70         tmpf = MIN2(tmpf, depthMax);
71         span->z = (GLint)tmpf;
72      }
73      span->zStep = 0;
74      span->interpMask |= SPAN_Z;
75   }
76
77   /* W (for perspective correction) */
78   span->attrStart[FRAG_ATTRIB_WPOS][3] = 1.0;
79   span->attrStepX[FRAG_ATTRIB_WPOS][3] = 0.0;
80   span->attrStepY[FRAG_ATTRIB_WPOS][3] = 0.0;
81
82   /* primary color, or color index */
83   UNCLAMPED_FLOAT_TO_CHAN(r, ctx->Current.RasterColor[0]);
84   UNCLAMPED_FLOAT_TO_CHAN(g, ctx->Current.RasterColor[1]);
85   UNCLAMPED_FLOAT_TO_CHAN(b, ctx->Current.RasterColor[2]);
86   UNCLAMPED_FLOAT_TO_CHAN(a, ctx->Current.RasterColor[3]);
87#if CHAN_TYPE == GL_FLOAT
88   span->red = r;
89   span->green = g;
90   span->blue = b;
91   span->alpha = a;
92#else
93   span->red   = IntToFixed(r);
94   span->green = IntToFixed(g);
95   span->blue  = IntToFixed(b);
96   span->alpha = IntToFixed(a);
97#endif
98   span->redStep = 0;
99   span->greenStep = 0;
100   span->blueStep = 0;
101   span->alphaStep = 0;
102   span->interpMask |= SPAN_RGBA;
103
104   COPY_4V(span->attrStart[FRAG_ATTRIB_COL0], ctx->Current.RasterColor);
105   ASSIGN_4V(span->attrStepX[FRAG_ATTRIB_COL0], 0.0, 0.0, 0.0, 0.0);
106   ASSIGN_4V(span->attrStepY[FRAG_ATTRIB_COL0], 0.0, 0.0, 0.0, 0.0);
107
108   /* Secondary color */
109   if (ctx->Light.Enabled || ctx->Fog.ColorSumEnabled)
110   {
111      COPY_4V(span->attrStart[FRAG_ATTRIB_COL1], ctx->Current.RasterSecondaryColor);
112      ASSIGN_4V(span->attrStepX[FRAG_ATTRIB_COL1], 0.0, 0.0, 0.0, 0.0);
113      ASSIGN_4V(span->attrStepY[FRAG_ATTRIB_COL1], 0.0, 0.0, 0.0, 0.0);
114   }
115
116   /* fog */
117   {
118      const SWcontext *swrast = SWRAST_CONTEXT(ctx);
119      GLfloat fogVal; /* a coord or a blend factor */
120      if (swrast->_PreferPixelFog) {
121         /* fog blend factors will be computed from fog coordinates per pixel */
122         fogVal = ctx->Current.RasterDistance;
123      }
124      else {
125         /* fog blend factor should be computed from fogcoord now */
126         fogVal = _swrast_z_to_fogfactor(ctx, ctx->Current.RasterDistance);
127      }
128      span->attrStart[FRAG_ATTRIB_FOGC][0] = fogVal;
129      span->attrStepX[FRAG_ATTRIB_FOGC][0] = 0.0;
130      span->attrStepY[FRAG_ATTRIB_FOGC][0] = 0.0;
131   }
132
133   /* texcoords */
134   {
135      GLuint i;
136      for (i = 0; i < ctx->Const.MaxTextureCoordUnits; i++) {
137         const GLuint attr = FRAG_ATTRIB_TEX0 + i;
138         const GLfloat *tc = ctx->Current.RasterTexCoords[i];
139         if (ctx->FragmentProgram._Current || ctx->ATIFragmentShader._Enabled) {
140            COPY_4V(span->attrStart[attr], tc);
141         }
142         else if (tc[3] > 0.0F) {
143            /* use (s/q, t/q, r/q, 1) */
144            span->attrStart[attr][0] = tc[0] / tc[3];
145            span->attrStart[attr][1] = tc[1] / tc[3];
146            span->attrStart[attr][2] = tc[2] / tc[3];
147            span->attrStart[attr][3] = 1.0;
148         }
149         else {
150            ASSIGN_4V(span->attrStart[attr], 0.0F, 0.0F, 0.0F, 1.0F);
151         }
152         ASSIGN_4V(span->attrStepX[attr], 0.0F, 0.0F, 0.0F, 0.0F);
153         ASSIGN_4V(span->attrStepY[attr], 0.0F, 0.0F, 0.0F, 0.0F);
154      }
155   }
156}
157
158
159/**
160 * Interpolate the active attributes (and'd with attrMask) to
161 * fill in span->array->attribs[].
162 * Perspective correction will be done.  The point/line/triangle function
163 * should have computed attrStart/Step values for FRAG_ATTRIB_WPOS[3]!
164 */
165static INLINE void
166interpolate_active_attribs(GLcontext *ctx, SWspan *span, GLbitfield attrMask)
167{
168   const SWcontext *swrast = SWRAST_CONTEXT(ctx);
169
170   /*
171    * Don't overwrite existing array values, such as colors that may have
172    * been produced by glDraw/CopyPixels.
173    */
174   attrMask &= ~span->arrayAttribs;
175
176   ATTRIB_LOOP_BEGIN
177      if (attrMask & (1 << attr)) {
178         const GLfloat dwdx = span->attrStepX[FRAG_ATTRIB_WPOS][3];
179         GLfloat w = span->attrStart[FRAG_ATTRIB_WPOS][3];
180         const GLfloat dv0dx = span->attrStepX[attr][0];
181         const GLfloat dv1dx = span->attrStepX[attr][1];
182         const GLfloat dv2dx = span->attrStepX[attr][2];
183         const GLfloat dv3dx = span->attrStepX[attr][3];
184         GLfloat v0 = span->attrStart[attr][0] + span->leftClip * dv0dx;
185         GLfloat v1 = span->attrStart[attr][1] + span->leftClip * dv1dx;
186         GLfloat v2 = span->attrStart[attr][2] + span->leftClip * dv2dx;
187         GLfloat v3 = span->attrStart[attr][3] + span->leftClip * dv3dx;
188         GLuint k;
189         for (k = 0; k < span->end; k++) {
190            const GLfloat invW = 1.0f / w;
191            span->array->attribs[attr][k][0] = v0 * invW;
192            span->array->attribs[attr][k][1] = v1 * invW;
193            span->array->attribs[attr][k][2] = v2 * invW;
194            span->array->attribs[attr][k][3] = v3 * invW;
195            v0 += dv0dx;
196            v1 += dv1dx;
197            v2 += dv2dx;
198            v3 += dv3dx;
199            w += dwdx;
200         }
201         ASSERT((span->arrayAttribs & (1 << attr)) == 0);
202         span->arrayAttribs |= (1 << attr);
203      }
204   ATTRIB_LOOP_END
205}
206
207
208/**
209 * Interpolate primary colors to fill in the span->array->rgba8 (or rgb16)
210 * color array.
211 */
212static INLINE void
213interpolate_int_colors(GLcontext *ctx, SWspan *span)
214{
215   const GLuint n = span->end;
216   GLuint i;
217
218#if CHAN_BITS != 32
219   ASSERT(!(span->arrayMask & SPAN_RGBA));
220#endif
221
222   switch (span->array->ChanType) {
223#if CHAN_BITS != 32
224   case GL_UNSIGNED_BYTE:
225      {
226         GLubyte (*rgba)[4] = span->array->rgba8;
227         if (span->interpMask & SPAN_FLAT) {
228            GLubyte color[4];
229            color[RCOMP] = FixedToInt(span->red);
230            color[GCOMP] = FixedToInt(span->green);
231            color[BCOMP] = FixedToInt(span->blue);
232            color[ACOMP] = FixedToInt(span->alpha);
233            for (i = 0; i < n; i++) {
234               COPY_4UBV(rgba[i], color);
235            }
236         }
237         else {
238            GLfixed r = span->red;
239            GLfixed g = span->green;
240            GLfixed b = span->blue;
241            GLfixed a = span->alpha;
242            GLint dr = span->redStep;
243            GLint dg = span->greenStep;
244            GLint db = span->blueStep;
245            GLint da = span->alphaStep;
246            for (i = 0; i < n; i++) {
247               rgba[i][RCOMP] = FixedToChan(r);
248               rgba[i][GCOMP] = FixedToChan(g);
249               rgba[i][BCOMP] = FixedToChan(b);
250               rgba[i][ACOMP] = FixedToChan(a);
251               r += dr;
252               g += dg;
253               b += db;
254               a += da;
255            }
256         }
257      }
258      break;
259   case GL_UNSIGNED_SHORT:
260      {
261         GLushort (*rgba)[4] = span->array->rgba16;
262         if (span->interpMask & SPAN_FLAT) {
263            GLushort color[4];
264            color[RCOMP] = FixedToInt(span->red);
265            color[GCOMP] = FixedToInt(span->green);
266            color[BCOMP] = FixedToInt(span->blue);
267            color[ACOMP] = FixedToInt(span->alpha);
268            for (i = 0; i < n; i++) {
269               COPY_4V(rgba[i], color);
270            }
271         }
272         else {
273            GLushort (*rgba)[4] = span->array->rgba16;
274            GLfixed r, g, b, a;
275            GLint dr, dg, db, da;
276            r = span->red;
277            g = span->green;
278            b = span->blue;
279            a = span->alpha;
280            dr = span->redStep;
281            dg = span->greenStep;
282            db = span->blueStep;
283            da = span->alphaStep;
284            for (i = 0; i < n; i++) {
285               rgba[i][RCOMP] = FixedToChan(r);
286               rgba[i][GCOMP] = FixedToChan(g);
287               rgba[i][BCOMP] = FixedToChan(b);
288               rgba[i][ACOMP] = FixedToChan(a);
289               r += dr;
290               g += dg;
291               b += db;
292               a += da;
293            }
294         }
295      }
296      break;
297#endif
298   case GL_FLOAT:
299      interpolate_active_attribs(ctx, span, FRAG_BIT_COL0);
300      break;
301   default:
302      _mesa_problem(NULL, "bad datatype in interpolate_int_colors");
303   }
304   span->arrayMask |= SPAN_RGBA;
305}
306
307
308/**
309 * Populate the FRAG_ATTRIB_COL0 array.
310 */
311static INLINE void
312interpolate_float_colors(SWspan *span)
313{
314   GLfloat (*col0)[4] = span->array->attribs[FRAG_ATTRIB_COL0];
315   const GLuint n = span->end;
316   GLuint i;
317
318   assert(!(span->arrayAttribs & FRAG_BIT_COL0));
319
320   if (span->arrayMask & SPAN_RGBA) {
321      /* convert array of int colors */
322      for (i = 0; i < n; i++) {
323         col0[i][0] = UBYTE_TO_FLOAT(span->array->rgba8[i][0]);
324         col0[i][1] = UBYTE_TO_FLOAT(span->array->rgba8[i][1]);
325         col0[i][2] = UBYTE_TO_FLOAT(span->array->rgba8[i][2]);
326         col0[i][3] = UBYTE_TO_FLOAT(span->array->rgba8[i][3]);
327      }
328   }
329   else {
330      /* interpolate red/green/blue/alpha to get float colors */
331      ASSERT(span->interpMask & SPAN_RGBA);
332      if (span->interpMask & SPAN_FLAT) {
333         GLfloat r = FixedToFloat(span->red);
334         GLfloat g = FixedToFloat(span->green);
335         GLfloat b = FixedToFloat(span->blue);
336         GLfloat a = FixedToFloat(span->alpha);
337         for (i = 0; i < n; i++) {
338            ASSIGN_4V(col0[i], r, g, b, a);
339         }
340      }
341      else {
342         GLfloat r = FixedToFloat(span->red);
343         GLfloat g = FixedToFloat(span->green);
344         GLfloat b = FixedToFloat(span->blue);
345         GLfloat a = FixedToFloat(span->alpha);
346         GLfloat dr = FixedToFloat(span->redStep);
347         GLfloat dg = FixedToFloat(span->greenStep);
348         GLfloat db = FixedToFloat(span->blueStep);
349         GLfloat da = FixedToFloat(span->alphaStep);
350         for (i = 0; i < n; i++) {
351            col0[i][0] = r;
352            col0[i][1] = g;
353            col0[i][2] = b;
354            col0[i][3] = a;
355            r += dr;
356            g += dg;
357            b += db;
358            a += da;
359         }
360      }
361   }
362
363   span->arrayAttribs |= FRAG_BIT_COL0;
364   span->array->ChanType = GL_FLOAT;
365}
366
367
368
369/**
370 * Fill in the span.zArray array from the span->z, zStep values.
371 */
372void
373_swrast_span_interpolate_z( const GLcontext *ctx, SWspan *span )
374{
375   const GLuint n = span->end;
376   GLuint i;
377
378   ASSERT(!(span->arrayMask & SPAN_Z));
379
380   if (ctx->DrawBuffer->Visual.depthBits <= 16) {
381      GLfixed zval = span->z;
382      GLuint *z = span->array->z;
383      for (i = 0; i < n; i++) {
384         z[i] = FixedToInt(zval);
385         zval += span->zStep;
386      }
387   }
388   else {
389      /* Deep Z buffer, no fixed->int shift */
390      GLuint zval = span->z;
391      GLuint *z = span->array->z;
392      for (i = 0; i < n; i++) {
393         z[i] = zval;
394         zval += span->zStep;
395      }
396   }
397   span->interpMask &= ~SPAN_Z;
398   span->arrayMask |= SPAN_Z;
399}
400
401
402/**
403 * Compute mipmap LOD from partial derivatives.
404 * This the ideal solution, as given in the OpenGL spec.
405 */
406GLfloat
407_swrast_compute_lambda(GLfloat dsdx, GLfloat dsdy, GLfloat dtdx, GLfloat dtdy,
408                       GLfloat dqdx, GLfloat dqdy, GLfloat texW, GLfloat texH,
409                       GLfloat s, GLfloat t, GLfloat q, GLfloat invQ)
410{
411   GLfloat dudx = texW * ((s + dsdx) / (q + dqdx) - s * invQ);
412   GLfloat dvdx = texH * ((t + dtdx) / (q + dqdx) - t * invQ);
413   GLfloat dudy = texW * ((s + dsdy) / (q + dqdy) - s * invQ);
414   GLfloat dvdy = texH * ((t + dtdy) / (q + dqdy) - t * invQ);
415   GLfloat x = SQRTF(dudx * dudx + dvdx * dvdx);
416   GLfloat y = SQRTF(dudy * dudy + dvdy * dvdy);
417   GLfloat rho = MAX2(x, y);
418   GLfloat lambda = LOG2(rho);
419   return lambda;
420}
421
422
423/**
424 * Compute mipmap LOD from partial derivatives.
425 * This is a faster approximation than above function.
426 */
427#if 0
428GLfloat
429_swrast_compute_lambda(GLfloat dsdx, GLfloat dsdy, GLfloat dtdx, GLfloat dtdy,
430                     GLfloat dqdx, GLfloat dqdy, GLfloat texW, GLfloat texH,
431                     GLfloat s, GLfloat t, GLfloat q, GLfloat invQ)
432{
433   GLfloat dsdx2 = (s + dsdx) / (q + dqdx) - s * invQ;
434   GLfloat dtdx2 = (t + dtdx) / (q + dqdx) - t * invQ;
435   GLfloat dsdy2 = (s + dsdy) / (q + dqdy) - s * invQ;
436   GLfloat dtdy2 = (t + dtdy) / (q + dqdy) - t * invQ;
437   GLfloat maxU, maxV, rho, lambda;
438   dsdx2 = FABSF(dsdx2);
439   dsdy2 = FABSF(dsdy2);
440   dtdx2 = FABSF(dtdx2);
441   dtdy2 = FABSF(dtdy2);
442   maxU = MAX2(dsdx2, dsdy2) * texW;
443   maxV = MAX2(dtdx2, dtdy2) * texH;
444   rho = MAX2(maxU, maxV);
445   lambda = LOG2(rho);
446   return lambda;
447}
448#endif
449
450
451/**
452 * Fill in the span.array->attrib[FRAG_ATTRIB_TEXn] arrays from the
453 * using the attrStart/Step values.
454 *
455 * This function only used during fixed-function fragment processing.
456 *
457 * Note: in the places where we divide by Q (or mult by invQ) we're
458 * really doing two things: perspective correction and texcoord
459 * projection.  Remember, for texcoord (s,t,r,q) we need to index
460 * texels with (s/q, t/q, r/q).
461 */
462static void
463interpolate_texcoords(GLcontext *ctx, SWspan *span)
464{
465   const GLuint maxUnit
466      = (ctx->Texture._EnabledCoordUnits > 1) ? ctx->Const.MaxTextureUnits : 1;
467   GLuint u;
468
469   /* XXX CoordUnits vs. ImageUnits */
470   for (u = 0; u < maxUnit; u++) {
471      if (ctx->Texture._EnabledCoordUnits & (1 << u)) {
472         const GLuint attr = FRAG_ATTRIB_TEX0 + u;
473         const struct gl_texture_object *obj = ctx->Texture.Unit[u]._Current;
474         GLfloat texW, texH;
475         GLboolean needLambda;
476         GLfloat (*texcoord)[4] = span->array->attribs[attr];
477         GLfloat *lambda = span->array->lambda[u];
478         const GLfloat dsdx = span->attrStepX[attr][0];
479         const GLfloat dsdy = span->attrStepY[attr][0];
480         const GLfloat dtdx = span->attrStepX[attr][1];
481         const GLfloat dtdy = span->attrStepY[attr][1];
482         const GLfloat drdx = span->attrStepX[attr][2];
483         const GLfloat dqdx = span->attrStepX[attr][3];
484         const GLfloat dqdy = span->attrStepY[attr][3];
485         GLfloat s = span->attrStart[attr][0] + span->leftClip * dsdx;
486         GLfloat t = span->attrStart[attr][1] + span->leftClip * dtdx;
487         GLfloat r = span->attrStart[attr][2] + span->leftClip * drdx;
488         GLfloat q = span->attrStart[attr][3] + span->leftClip * dqdx;
489
490         if (obj) {
491            const struct gl_texture_image *img = obj->Image[0][obj->BaseLevel];
492            needLambda = (obj->MinFilter != obj->MagFilter)
493               || ctx->FragmentProgram._Current;
494            texW = img->WidthScale;
495            texH = img->HeightScale;
496         }
497         else {
498            /* using a fragment program */
499            texW = 1.0;
500            texH = 1.0;
501            needLambda = GL_FALSE;
502         }
503
504         if (needLambda) {
505            GLuint i;
506            if (ctx->FragmentProgram._Current
507                || ctx->ATIFragmentShader._Enabled) {
508               /* do perspective correction but don't divide s, t, r by q */
509               const GLfloat dwdx = span->attrStepX[FRAG_ATTRIB_WPOS][3];
510               GLfloat w = span->attrStart[FRAG_ATTRIB_WPOS][3] + span->leftClip * dwdx;
511               for (i = 0; i < span->end; i++) {
512                  const GLfloat invW = 1.0F / w;
513                  texcoord[i][0] = s * invW;
514                  texcoord[i][1] = t * invW;
515                  texcoord[i][2] = r * invW;
516                  texcoord[i][3] = q * invW;
517                  lambda[i] = _swrast_compute_lambda(dsdx, dsdy, dtdx, dtdy,
518                                                     dqdx, dqdy, texW, texH,
519                                                     s, t, q, invW);
520                  s += dsdx;
521                  t += dtdx;
522                  r += drdx;
523                  q += dqdx;
524                  w += dwdx;
525               }
526            }
527            else {
528               for (i = 0; i < span->end; i++) {
529                  const GLfloat invQ = (q == 0.0F) ? 1.0F : (1.0F / q);
530                  texcoord[i][0] = s * invQ;
531                  texcoord[i][1] = t * invQ;
532                  texcoord[i][2] = r * invQ;
533                  texcoord[i][3] = q;
534                  lambda[i] = _swrast_compute_lambda(dsdx, dsdy, dtdx, dtdy,
535                                                     dqdx, dqdy, texW, texH,
536                                                     s, t, q, invQ);
537                  s += dsdx;
538                  t += dtdx;
539                  r += drdx;
540                  q += dqdx;
541               }
542            }
543            span->arrayMask |= SPAN_LAMBDA;
544         }
545         else {
546            GLuint i;
547            if (ctx->FragmentProgram._Current ||
548                ctx->ATIFragmentShader._Enabled) {
549               /* do perspective correction but don't divide s, t, r by q */
550               const GLfloat dwdx = span->attrStepX[FRAG_ATTRIB_WPOS][3];
551               GLfloat w = span->attrStart[FRAG_ATTRIB_WPOS][3] + span->leftClip * dwdx;
552               for (i = 0; i < span->end; i++) {
553                  const GLfloat invW = 1.0F / w;
554                  texcoord[i][0] = s * invW;
555                  texcoord[i][1] = t * invW;
556                  texcoord[i][2] = r * invW;
557                  texcoord[i][3] = q * invW;
558                  lambda[i] = 0.0;
559                  s += dsdx;
560                  t += dtdx;
561                  r += drdx;
562                  q += dqdx;
563                  w += dwdx;
564               }
565            }
566            else if (dqdx == 0.0F) {
567               /* Ortho projection or polygon's parallel to window X axis */
568               const GLfloat invQ = (q == 0.0F) ? 1.0F : (1.0F / q);
569               for (i = 0; i < span->end; i++) {
570                  texcoord[i][0] = s * invQ;
571                  texcoord[i][1] = t * invQ;
572                  texcoord[i][2] = r * invQ;
573                  texcoord[i][3] = q;
574                  lambda[i] = 0.0;
575                  s += dsdx;
576                  t += dtdx;
577                  r += drdx;
578               }
579            }
580            else {
581               for (i = 0; i < span->end; i++) {
582                  const GLfloat invQ = (q == 0.0F) ? 1.0F : (1.0F / q);
583                  texcoord[i][0] = s * invQ;
584                  texcoord[i][1] = t * invQ;
585                  texcoord[i][2] = r * invQ;
586                  texcoord[i][3] = q;
587                  lambda[i] = 0.0;
588                  s += dsdx;
589                  t += dtdx;
590                  r += drdx;
591                  q += dqdx;
592               }
593            }
594         } /* lambda */
595      } /* if */
596   } /* for */
597}
598
599
600/**
601 * Fill in the arrays->attribs[FRAG_ATTRIB_WPOS] array.
602 */
603static INLINE void
604interpolate_wpos(GLcontext *ctx, SWspan *span)
605{
606   GLfloat (*wpos)[4] = span->array->attribs[FRAG_ATTRIB_WPOS];
607   GLuint i;
608   const GLfloat zScale = 1.0F / ctx->DrawBuffer->_DepthMaxF;
609   GLfloat w, dw;
610
611   if (span->arrayMask & SPAN_XY) {
612      for (i = 0; i < span->end; i++) {
613         wpos[i][0] = (GLfloat) span->array->x[i];
614         wpos[i][1] = (GLfloat) span->array->y[i];
615      }
616   }
617   else {
618      for (i = 0; i < span->end; i++) {
619         wpos[i][0] = (GLfloat) span->x + i;
620         wpos[i][1] = (GLfloat) span->y;
621      }
622   }
623
624   dw = span->attrStepX[FRAG_ATTRIB_WPOS][3];
625   w = span->attrStart[FRAG_ATTRIB_WPOS][3] + span->leftClip * dw;
626   for (i = 0; i < span->end; i++) {
627      wpos[i][2] = (GLfloat) span->array->z[i] * zScale;
628      wpos[i][3] = w;
629      w += dw;
630   }
631}
632
633
634/**
635 * Apply the current polygon stipple pattern to a span of pixels.
636 */
637static INLINE void
638stipple_polygon_span(GLcontext *ctx, SWspan *span)
639{
640   GLubyte *mask = span->array->mask;
641
642   ASSERT(ctx->Polygon.StippleFlag);
643
644   if (span->arrayMask & SPAN_XY) {
645      /* arrays of x/y pixel coords */
646      GLuint i;
647      for (i = 0; i < span->end; i++) {
648         const GLint col = span->array->x[i] % 32;
649         const GLint row = span->array->y[i] % 32;
650         const GLuint stipple = ctx->PolygonStipple[row];
651         if (((1 << col) & stipple) == 0) {
652            mask[i] = 0;
653         }
654      }
655   }
656   else {
657      /* horizontal span of pixels */
658      const GLuint highBit = 1 << 31;
659      const GLuint stipple = ctx->PolygonStipple[span->y % 32];
660      GLuint i, m = highBit >> (GLuint) (span->x % 32);
661      for (i = 0; i < span->end; i++) {
662         if ((m & stipple) == 0) {
663            mask[i] = 0;
664         }
665         m = m >> 1;
666         if (m == 0) {
667            m = highBit;
668         }
669      }
670   }
671   span->writeAll = GL_FALSE;
672}
673
674
675/**
676 * Clip a pixel span to the current buffer/window boundaries:
677 * DrawBuffer->_Xmin, _Xmax, _Ymin, _Ymax.  This will accomplish
678 * window clipping and scissoring.
679 * Return:   GL_TRUE   some pixels still visible
680 *           GL_FALSE  nothing visible
681 */
682static INLINE GLuint
683clip_span( GLcontext *ctx, SWspan *span )
684{
685   const GLint xmin = ctx->DrawBuffer->_Xmin;
686   const GLint xmax = ctx->DrawBuffer->_Xmax;
687   const GLint ymin = ctx->DrawBuffer->_Ymin;
688   const GLint ymax = ctx->DrawBuffer->_Ymax;
689
690   span->leftClip = 0;
691
692   if (span->arrayMask & SPAN_XY) {
693      /* arrays of x/y pixel coords */
694      const GLint *x = span->array->x;
695      const GLint *y = span->array->y;
696      const GLint n = span->end;
697      GLubyte *mask = span->array->mask;
698      GLint i;
699      if (span->arrayMask & SPAN_MASK) {
700         /* note: using & intead of && to reduce branches */
701         for (i = 0; i < n; i++) {
702            mask[i] &= (x[i] >= xmin) & (x[i] < xmax)
703                     & (y[i] >= ymin) & (y[i] < ymax);
704         }
705      }
706      else {
707         /* note: using & intead of && to reduce branches */
708         for (i = 0; i < n; i++) {
709            mask[i] = (x[i] >= xmin) & (x[i] < xmax)
710                    & (y[i] >= ymin) & (y[i] < ymax);
711         }
712      }
713      return GL_TRUE;  /* some pixels visible */
714   }
715   else {
716      /* horizontal span of pixels */
717      const GLint x = span->x;
718      const GLint y = span->y;
719      GLint n = span->end;
720
721      /* Trivial rejection tests */
722      if (y < ymin || y >= ymax || x + n <= xmin || x >= xmax) {
723         span->end = 0;
724         return GL_FALSE;  /* all pixels clipped */
725      }
726
727      /* Clip to right */
728      if (x + n > xmax) {
729         ASSERT(x < xmax);
730         n = span->end = xmax - x;
731      }
732
733      /* Clip to the left */
734      if (x < xmin) {
735         const GLint leftClip = xmin - x;
736         GLuint i;
737
738         ASSERT(leftClip > 0);
739         ASSERT(x + n > xmin);
740
741         /* Clip 'leftClip' pixels from the left side.
742          * The span->leftClip field will be applied when we interpolate
743          * fragment attributes.
744          * For arrays of values, shift them left.
745          */
746         for (i = 0; i < FRAG_ATTRIB_MAX; i++) {
747            if (span->interpMask & (1 << i)) {
748               GLuint j;
749               for (j = 0; j < 4; j++) {
750                  span->attrStart[i][j] += leftClip * span->attrStepX[i][j];
751               }
752            }
753         }
754
755         span->red += leftClip * span->redStep;
756         span->green += leftClip * span->greenStep;
757         span->blue += leftClip * span->blueStep;
758         span->alpha += leftClip * span->alphaStep;
759         span->index += leftClip * span->indexStep;
760         span->z += leftClip * span->zStep;
761         span->intTex[0] += leftClip * span->intTexStep[0];
762         span->intTex[1] += leftClip * span->intTexStep[1];
763
764#define SHIFT_ARRAY(ARRAY, SHIFT, LEN) \
765         memcpy(ARRAY, ARRAY + (SHIFT), (LEN) * sizeof(ARRAY[0]))
766
767         for (i = 0; i < FRAG_ATTRIB_MAX; i++) {
768            if (span->arrayAttribs & (1 << i)) {
769               /* shift array elements left by 'leftClip' */
770               SHIFT_ARRAY(span->array->attribs[i], leftClip, n - leftClip);
771            }
772         }
773
774         SHIFT_ARRAY(span->array->mask, leftClip, n - leftClip);
775         SHIFT_ARRAY(span->array->rgba8, leftClip, n - leftClip);
776         SHIFT_ARRAY(span->array->rgba16, leftClip, n - leftClip);
777         SHIFT_ARRAY(span->array->x, leftClip, n - leftClip);
778         SHIFT_ARRAY(span->array->y, leftClip, n - leftClip);
779         SHIFT_ARRAY(span->array->z, leftClip, n - leftClip);
780         SHIFT_ARRAY(span->array->index, leftClip, n - leftClip);
781         for (i = 0; i < MAX_TEXTURE_COORD_UNITS; i++) {
782            SHIFT_ARRAY(span->array->lambda[i], leftClip, n - leftClip);
783         }
784         SHIFT_ARRAY(span->array->coverage, leftClip, n - leftClip);
785
786#undef SHIFT_ARRAY
787
788         span->leftClip = leftClip;
789         span->x = xmin;
790         span->end -= leftClip;
791         span->writeAll = GL_FALSE;
792      }
793
794      ASSERT(span->x >= xmin);
795      ASSERT(span->x + span->end <= xmax);
796      ASSERT(span->y >= ymin);
797      ASSERT(span->y < ymax);
798
799      return GL_TRUE;  /* some pixels visible */
800   }
801}
802
803
804/**
805 * Add specular colors to primary colors.
806 * Only called during fixed-function operation.
807 * Result is float color array (FRAG_ATTRIB_COL0).
808 */
809static INLINE void
810add_specular(GLcontext *ctx, SWspan *span)
811{
812   const SWcontext *swrast = SWRAST_CONTEXT(ctx);
813   const GLubyte *mask = span->array->mask;
814   GLfloat (*col0)[4] = span->array->attribs[FRAG_ATTRIB_COL0];
815   GLfloat (*col1)[4] = span->array->attribs[FRAG_ATTRIB_COL1];
816   GLuint i;
817
818   ASSERT(!ctx->FragmentProgram._Current);
819   ASSERT(span->arrayMask & SPAN_RGBA);
820   ASSERT(swrast->_ActiveAttribMask & FRAG_BIT_COL1);
821   (void) swrast; /* silence warning */
822
823   if (span->array->ChanType == GL_FLOAT) {
824      if ((span->arrayAttribs & FRAG_BIT_COL0) == 0) {
825         interpolate_active_attribs(ctx, span, FRAG_BIT_COL0);
826      }
827   }
828   else {
829      /* need float colors */
830      if ((span->arrayAttribs & FRAG_BIT_COL0) == 0) {
831         interpolate_float_colors(span);
832      }
833   }
834
835   if ((span->arrayAttribs & FRAG_BIT_COL1) == 0) {
836      /* XXX could avoid this and interpolate COL1 in the loop below */
837      interpolate_active_attribs(ctx, span, FRAG_BIT_COL1);
838   }
839
840   ASSERT(span->arrayAttribs & FRAG_BIT_COL0);
841   ASSERT(span->arrayAttribs & FRAG_BIT_COL1);
842
843   for (i = 0; i < span->end; i++) {
844      if (mask[i]) {
845         col0[i][0] += col1[i][0];
846         col0[i][1] += col1[i][1];
847         col0[i][2] += col1[i][2];
848      }
849   }
850
851   span->array->ChanType = GL_FLOAT;
852}
853
854
855/**
856 * Apply antialiasing coverage value to alpha values.
857 */
858static INLINE void
859apply_aa_coverage(SWspan *span)
860{
861   const GLfloat *coverage = span->array->coverage;
862   GLuint i;
863   if (span->array->ChanType == GL_UNSIGNED_BYTE) {
864      GLubyte (*rgba)[4] = span->array->rgba8;
865      for (i = 0; i < span->end; i++) {
866         const GLfloat a = rgba[i][ACOMP] * coverage[i];
867         rgba[i][ACOMP] = (GLubyte) CLAMP(a, 0.0, 255.0);
868         ASSERT(coverage[i] >= 0.0);
869         ASSERT(coverage[i] <= 1.0);
870      }
871   }
872   else if (span->array->ChanType == GL_UNSIGNED_SHORT) {
873      GLushort (*rgba)[4] = span->array->rgba16;
874      for (i = 0; i < span->end; i++) {
875         const GLfloat a = rgba[i][ACOMP] * coverage[i];
876         rgba[i][ACOMP] = (GLushort) CLAMP(a, 0.0, 65535.0);
877      }
878   }
879   else {
880      GLfloat (*rgba)[4] = span->array->attribs[FRAG_ATTRIB_COL0];
881      for (i = 0; i < span->end; i++) {
882         rgba[i][ACOMP] = rgba[i][ACOMP] * coverage[i];
883         /* clamp later */
884      }
885   }
886}
887
888
889/**
890 * Clamp span's float colors to [0,1]
891 */
892static INLINE void
893clamp_colors(SWspan *span)
894{
895   GLfloat (*rgba)[4] = span->array->attribs[FRAG_ATTRIB_COL0];
896   GLuint i;
897   ASSERT(span->array->ChanType == GL_FLOAT);
898   for (i = 0; i < span->end; i++) {
899      rgba[i][RCOMP] = CLAMP(rgba[i][RCOMP], 0.0F, 1.0F);
900      rgba[i][GCOMP] = CLAMP(rgba[i][GCOMP], 0.0F, 1.0F);
901      rgba[i][BCOMP] = CLAMP(rgba[i][BCOMP], 0.0F, 1.0F);
902      rgba[i][ACOMP] = CLAMP(rgba[i][ACOMP], 0.0F, 1.0F);
903   }
904}
905
906
907/**
908 * Convert the span's color arrays to the given type.
909 * The only way 'output' can be greater than zero is when we have a fragment
910 * program that writes to gl_FragData[1] or higher.
911 * \param output  which fragment program color output is being processed
912 */
913static INLINE void
914convert_color_type(SWspan *span, GLenum newType, GLuint output)
915{
916   GLvoid *src, *dst;
917
918   if (output > 0 || span->array->ChanType == GL_FLOAT) {
919      src = span->array->attribs[FRAG_ATTRIB_COL0 + output];
920      span->array->ChanType = GL_FLOAT;
921   }
922   else if (span->array->ChanType == GL_UNSIGNED_BYTE) {
923      src = span->array->rgba8;
924   }
925   else {
926      ASSERT(span->array->ChanType == GL_UNSIGNED_SHORT);
927      src = span->array->rgba16;
928   }
929
930   if (newType == GL_UNSIGNED_BYTE) {
931      dst = span->array->rgba8;
932   }
933   else if (newType == GL_UNSIGNED_SHORT) {
934      dst = span->array->rgba16;
935   }
936   else {
937      dst = span->array->attribs[FRAG_ATTRIB_COL0];
938   }
939
940   _mesa_convert_colors(span->array->ChanType, src,
941                        newType, dst,
942                        span->end, span->array->mask);
943
944   span->array->ChanType = newType;
945   span->array->rgba = dst;
946}
947
948
949
950/**
951 * Apply fragment shader, fragment program or normal texturing to span.
952 */
953static INLINE void
954shade_texture_span(GLcontext *ctx, SWspan *span)
955{
956   GLbitfield inputsRead;
957
958   /* Determine which fragment attributes are actually needed */
959   if (ctx->FragmentProgram._Current) {
960      inputsRead = ctx->FragmentProgram._Current->Base.InputsRead;
961   }
962   else {
963      /* XXX we could be a bit smarter about this */
964      inputsRead = ~0;
965   }
966
967   if (ctx->FragmentProgram._Current ||
968       ctx->ATIFragmentShader._Enabled) {
969      /* programmable shading */
970      if (span->primitive == GL_BITMAP && span->array->ChanType != GL_FLOAT) {
971         convert_color_type(span, GL_FLOAT, 0);
972      }
973      else {
974         span->array->rgba = (void *) span->array->attribs[FRAG_ATTRIB_COL0];
975      }
976
977      if (span->primitive != GL_POINT ||
978	  (span->interpMask & SPAN_RGBA) ||
979	  ctx->Point.PointSprite) {
980         /* for single-pixel points, we populated the arrays already */
981         interpolate_active_attribs(ctx, span, ~0);
982      }
983      span->array->ChanType = GL_FLOAT;
984
985      if (!(span->arrayMask & SPAN_Z))
986         _swrast_span_interpolate_z (ctx, span);
987
988#if 0
989      if (inputsRead & FRAG_BIT_WPOS)
990#else
991      /* XXX always interpolate wpos so that DDX/DDY work */
992#endif
993         interpolate_wpos(ctx, span);
994
995      /* Run fragment program/shader now */
996      if (ctx->FragmentProgram._Current) {
997         _swrast_exec_fragment_program(ctx, span);
998      }
999      else {
1000         ASSERT(ctx->ATIFragmentShader._Enabled);
1001         _swrast_exec_fragment_shader(ctx, span);
1002      }
1003   }
1004   else if (ctx->Texture._EnabledCoordUnits) {
1005      /* conventional texturing */
1006
1007#if CHAN_BITS == 32
1008      if ((span->arrayAttribs & FRAG_BIT_COL0) == 0) {
1009         interpolate_int_colors(ctx, span);
1010      }
1011#else
1012      if (!(span->arrayMask & SPAN_RGBA))
1013         interpolate_int_colors(ctx, span);
1014#endif
1015      if ((span->arrayAttribs & FRAG_BITS_TEX_ANY) == 0x0)
1016         interpolate_texcoords(ctx, span);
1017
1018      _swrast_texture_span(ctx, span);
1019   }
1020}
1021
1022
1023
1024/**
1025 * Apply all the per-fragment operations to a span.
1026 * This now includes texturing (_swrast_write_texture_span() is history).
1027 * This function may modify any of the array values in the span.
1028 * span->interpMask and span->arrayMask may be changed but will be restored
1029 * to their original values before returning.
1030 */
1031void
1032_swrast_write_rgba_span( GLcontext *ctx, SWspan *span)
1033{
1034   const SWcontext *swrast = SWRAST_CONTEXT(ctx);
1035   const GLuint *colorMask = (GLuint *) ctx->Color.ColorMask;
1036   const GLbitfield origInterpMask = span->interpMask;
1037   const GLbitfield origArrayMask = span->arrayMask;
1038   const GLbitfield origArrayAttribs = span->arrayAttribs;
1039   const GLenum origChanType = span->array->ChanType;
1040   void * const origRgba = span->array->rgba;
1041   const GLboolean shader = (ctx->FragmentProgram._Current
1042                             || ctx->ATIFragmentShader._Enabled);
1043   const GLboolean shaderOrTexture = shader || ctx->Texture._EnabledCoordUnits;
1044   struct gl_framebuffer *fb = ctx->DrawBuffer;
1045
1046   /*
1047   printf("%s()  interp 0x%x  array 0x%x\n", __FUNCTION__,
1048          span->interpMask, span->arrayMask);
1049   */
1050
1051   ASSERT(span->primitive == GL_POINT ||
1052          span->primitive == GL_LINE ||
1053	  span->primitive == GL_POLYGON ||
1054          span->primitive == GL_BITMAP);
1055
1056   /* Fragment write masks */
1057   if (span->arrayMask & SPAN_MASK) {
1058      /* mask was initialized by caller, probably glBitmap */
1059      span->writeAll = GL_FALSE;
1060   }
1061   else {
1062      memset(span->array->mask, 1, span->end);
1063      span->writeAll = GL_TRUE;
1064   }
1065
1066   /* Clip to window/scissor box */
1067   if (!clip_span(ctx, span)) {
1068      return;
1069   }
1070
1071   ASSERT(span->end <= MAX_WIDTH);
1072
1073   /* Depth bounds test */
1074   if (ctx->Depth.BoundsTest && fb->Visual.depthBits > 0) {
1075      if (!_swrast_depth_bounds_test(ctx, span)) {
1076         return;
1077      }
1078   }
1079
1080#ifdef DEBUG
1081   /* Make sure all fragments are within window bounds */
1082   if (span->arrayMask & SPAN_XY) {
1083      /* array of pixel locations */
1084      GLuint i;
1085      for (i = 0; i < span->end; i++) {
1086         if (span->array->mask[i]) {
1087            assert(span->array->x[i] >= fb->_Xmin);
1088            assert(span->array->x[i] < fb->_Xmax);
1089            assert(span->array->y[i] >= fb->_Ymin);
1090            assert(span->array->y[i] < fb->_Ymax);
1091         }
1092      }
1093   }
1094#endif
1095
1096   /* Polygon Stippling */
1097   if (ctx->Polygon.StippleFlag && span->primitive == GL_POLYGON) {
1098      stipple_polygon_span(ctx, span);
1099   }
1100
1101   /* This is the normal place to compute the fragment color/Z
1102    * from texturing or shading.
1103    */
1104   if (shaderOrTexture && !swrast->_DeferredTexture) {
1105      shade_texture_span(ctx, span);
1106   }
1107
1108   /* Do the alpha test */
1109   if (ctx->Color.AlphaEnabled) {
1110      if (!_swrast_alpha_test(ctx, span)) {
1111         /* all fragments failed test */
1112         goto end;
1113      }
1114   }
1115
1116   /* Stencil and Z testing */
1117   if (ctx->Stencil._Enabled || ctx->Depth.Test) {
1118      if (!(span->arrayMask & SPAN_Z))
1119         _swrast_span_interpolate_z(ctx, span);
1120
1121      if (ctx->Transform.DepthClamp)
1122	 _swrast_depth_clamp_span(ctx, span);
1123
1124      if (ctx->Stencil._Enabled) {
1125         /* Combined Z/stencil tests */
1126         if (!_swrast_stencil_and_ztest_span(ctx, span)) {
1127            /* all fragments failed test */
1128            goto end;
1129         }
1130      }
1131      else if (fb->Visual.depthBits > 0) {
1132         /* Just regular depth testing */
1133         ASSERT(ctx->Depth.Test);
1134         ASSERT(span->arrayMask & SPAN_Z);
1135         if (!_swrast_depth_test_span(ctx, span)) {
1136            /* all fragments failed test */
1137            goto end;
1138         }
1139      }
1140   }
1141
1142   if (ctx->Query.CurrentOcclusionObject) {
1143      /* update count of 'passed' fragments */
1144      struct gl_query_object *q = ctx->Query.CurrentOcclusionObject;
1145      GLuint i;
1146      for (i = 0; i < span->end; i++)
1147         q->Result += span->array->mask[i];
1148   }
1149
1150   /* We had to wait until now to check for glColorMask(0,0,0,0) because of
1151    * the occlusion test.
1152    */
1153   if (fb->_NumColorDrawBuffers == 1 && colorMask[0] == 0x0) {
1154      /* no colors to write */
1155      goto end;
1156   }
1157
1158   /* If we were able to defer fragment color computation to now, there's
1159    * a good chance that many fragments will have already been killed by
1160    * Z/stencil testing.
1161    */
1162   if (shaderOrTexture && swrast->_DeferredTexture) {
1163      shade_texture_span(ctx, span);
1164   }
1165
1166#if CHAN_BITS == 32
1167   if ((span->arrayAttribs & FRAG_BIT_COL0) == 0) {
1168      interpolate_active_attribs(ctx, span, FRAG_BIT_COL0);
1169   }
1170#else
1171   if ((span->arrayMask & SPAN_RGBA) == 0) {
1172      interpolate_int_colors(ctx, span);
1173   }
1174#endif
1175
1176   ASSERT(span->arrayMask & SPAN_RGBA);
1177
1178   if (span->primitive == GL_BITMAP || !swrast->SpecularVertexAdd) {
1179      /* Add primary and specular (diffuse + specular) colors */
1180      if (!shader) {
1181         if (ctx->Fog.ColorSumEnabled ||
1182             (ctx->Light.Enabled &&
1183              ctx->Light.Model.ColorControl == GL_SEPARATE_SPECULAR_COLOR)) {
1184            add_specular(ctx, span);
1185         }
1186      }
1187   }
1188
1189   /* Fog */
1190   if (swrast->_FogEnabled) {
1191      _swrast_fog_rgba_span(ctx, span);
1192   }
1193
1194   /* Antialias coverage application */
1195   if (span->arrayMask & SPAN_COVERAGE) {
1196      apply_aa_coverage(span);
1197   }
1198
1199   /* Clamp color/alpha values over the range [0.0, 1.0] before storage */
1200   if (ctx->Color.ClampFragmentColor == GL_TRUE &&
1201       span->array->ChanType == GL_FLOAT) {
1202      clamp_colors(span);
1203   }
1204
1205   /*
1206    * Write to renderbuffers.
1207    * Depending on glDrawBuffer() state and the which color outputs are
1208    * written by the fragment shader, we may either replicate one color to
1209    * all renderbuffers or write a different color to each renderbuffer.
1210    * multiFragOutputs=TRUE for the later case.
1211    */
1212   {
1213      const GLuint numBuffers = fb->_NumColorDrawBuffers;
1214      const struct gl_fragment_program *fp = ctx->FragmentProgram._Current;
1215      const GLboolean multiFragOutputs =
1216         (fp && fp->Base.OutputsWritten >= (1 << FRAG_RESULT_DATA0));
1217      GLuint buf;
1218
1219      for (buf = 0; buf < numBuffers; buf++) {
1220         struct gl_renderbuffer *rb = fb->_ColorDrawBuffers[buf];
1221
1222         /* color[fragOutput] will be written to buffer[buf] */
1223
1224         if (rb) {
1225            GLchan rgbaSave[MAX_WIDTH][4];
1226            const GLuint fragOutput = multiFragOutputs ? buf : 0;
1227
1228            /* set span->array->rgba to colors for render buffer's datatype */
1229            if (rb->DataType != span->array->ChanType || fragOutput > 0) {
1230               convert_color_type(span, rb->DataType, fragOutput);
1231            }
1232            else {
1233               if (rb->DataType == GL_UNSIGNED_BYTE) {
1234                  span->array->rgba = span->array->rgba8;
1235               }
1236               else if (rb->DataType == GL_UNSIGNED_SHORT) {
1237                  span->array->rgba = (void *) span->array->rgba16;
1238               }
1239               else {
1240                  span->array->rgba = (void *)
1241                     span->array->attribs[FRAG_ATTRIB_COL0];
1242               }
1243            }
1244
1245            if (!multiFragOutputs && numBuffers > 1) {
1246               /* save colors for second, third renderbuffer writes */
1247               memcpy(rgbaSave, span->array->rgba,
1248                      4 * span->end * sizeof(GLchan));
1249            }
1250
1251            ASSERT(rb->_BaseFormat == GL_RGBA || rb->_BaseFormat == GL_RGB);
1252
1253            if (ctx->Color._LogicOpEnabled) {
1254               _swrast_logicop_rgba_span(ctx, rb, span);
1255            }
1256            else if ((ctx->Color.BlendEnabled >> buf) & 1) {
1257               _swrast_blend_span(ctx, rb, span);
1258            }
1259
1260            if (colorMask[buf] != 0xffffffff) {
1261               _swrast_mask_rgba_span(ctx, rb, span, buf);
1262            }
1263
1264            if (span->arrayMask & SPAN_XY) {
1265               /* array of pixel coords */
1266               ASSERT(rb->PutValues);
1267               rb->PutValues(ctx, rb, span->end,
1268                             span->array->x, span->array->y,
1269                             span->array->rgba, span->array->mask);
1270            }
1271            else {
1272               /* horizontal run of pixels */
1273               ASSERT(rb->PutRow);
1274               rb->PutRow(ctx, rb, span->end, span->x, span->y,
1275                          span->array->rgba,
1276                          span->writeAll ? NULL: span->array->mask);
1277            }
1278
1279            if (!multiFragOutputs && numBuffers > 1) {
1280               /* restore original span values */
1281               memcpy(span->array->rgba, rgbaSave,
1282                      4 * span->end * sizeof(GLchan));
1283            }
1284
1285         } /* if rb */
1286      } /* for buf */
1287   }
1288
1289end:
1290   /* restore these values before returning */
1291   span->interpMask = origInterpMask;
1292   span->arrayMask = origArrayMask;
1293   span->arrayAttribs = origArrayAttribs;
1294   span->array->ChanType = origChanType;
1295   span->array->rgba = origRgba;
1296}
1297
1298
1299/**
1300 * Read RGBA pixels from a renderbuffer.  Clipping will be done to prevent
1301 * reading ouside the buffer's boundaries.
1302 * \param dstType  datatype for returned colors
1303 * \param rgba  the returned colors
1304 */
1305void
1306_swrast_read_rgba_span( GLcontext *ctx, struct gl_renderbuffer *rb,
1307                        GLuint n, GLint x, GLint y, GLenum dstType,
1308                        GLvoid *rgba)
1309{
1310   const GLint bufWidth = (GLint) rb->Width;
1311   const GLint bufHeight = (GLint) rb->Height;
1312
1313   if (y < 0 || y >= bufHeight || x + (GLint) n < 0 || x >= bufWidth) {
1314      /* completely above, below, or right */
1315      /* XXX maybe leave rgba values undefined? */
1316      memset(rgba, 0, 4 * n * sizeof(GLchan));
1317   }
1318   else {
1319      GLint skip, length;
1320      if (x < 0) {
1321         /* left edge clipping */
1322         skip = -x;
1323         length = (GLint) n - skip;
1324         if (length < 0) {
1325            /* completely left of window */
1326            return;
1327         }
1328         if (length > bufWidth) {
1329            length = bufWidth;
1330         }
1331      }
1332      else if ((GLint) (x + n) > bufWidth) {
1333         /* right edge clipping */
1334         skip = 0;
1335         length = bufWidth - x;
1336         if (length < 0) {
1337            /* completely to right of window */
1338            return;
1339         }
1340      }
1341      else {
1342         /* no clipping */
1343         skip = 0;
1344         length = (GLint) n;
1345      }
1346
1347      ASSERT(rb);
1348      ASSERT(rb->GetRow);
1349      ASSERT(rb->_BaseFormat == GL_RGB || rb->_BaseFormat == GL_RGBA);
1350
1351      if (rb->DataType == dstType) {
1352         rb->GetRow(ctx, rb, length, x + skip, y,
1353                    (GLubyte *) rgba + skip * RGBA_PIXEL_SIZE(rb->DataType));
1354      }
1355      else {
1356         GLuint temp[MAX_WIDTH * 4];
1357         rb->GetRow(ctx, rb, length, x + skip, y, temp);
1358         _mesa_convert_colors(rb->DataType, temp,
1359                   dstType, (GLubyte *) rgba + skip * RGBA_PIXEL_SIZE(dstType),
1360                   length, NULL);
1361      }
1362   }
1363}
1364
1365
1366/**
1367 * Wrapper for gl_renderbuffer::GetValues() which does clipping to avoid
1368 * reading values outside the buffer bounds.
1369 * We can use this for reading any format/type of renderbuffer.
1370 * \param valueSize is the size in bytes of each value (pixel) put into the
1371 *                  values array.
1372 */
1373void
1374_swrast_get_values(GLcontext *ctx, struct gl_renderbuffer *rb,
1375                   GLuint count, const GLint x[], const GLint y[],
1376                   void *values, GLuint valueSize)
1377{
1378   GLuint i, inCount = 0, inStart = 0;
1379
1380   for (i = 0; i < count; i++) {
1381      if (x[i] >= 0 && y[i] >= 0 &&
1382	  x[i] < (GLint) rb->Width && y[i] < (GLint) rb->Height) {
1383         /* inside */
1384         if (inCount == 0)
1385            inStart = i;
1386         inCount++;
1387      }
1388      else {
1389         if (inCount > 0) {
1390            /* read [inStart, inStart + inCount) */
1391            rb->GetValues(ctx, rb, inCount, x + inStart, y + inStart,
1392                          (GLubyte *) values + inStart * valueSize);
1393            inCount = 0;
1394         }
1395      }
1396   }
1397   if (inCount > 0) {
1398      /* read last values */
1399      rb->GetValues(ctx, rb, inCount, x + inStart, y + inStart,
1400                    (GLubyte *) values + inStart * valueSize);
1401   }
1402}
1403
1404
1405/**
1406 * Wrapper for gl_renderbuffer::PutRow() which does clipping.
1407 * \param valueSize  size of each value (pixel) in bytes
1408 */
1409void
1410_swrast_put_row(GLcontext *ctx, struct gl_renderbuffer *rb,
1411                GLuint count, GLint x, GLint y,
1412                const GLvoid *values, GLuint valueSize)
1413{
1414   GLint skip = 0;
1415
1416   if (y < 0 || y >= (GLint) rb->Height)
1417      return; /* above or below */
1418
1419   if (x + (GLint) count <= 0 || x >= (GLint) rb->Width)
1420      return; /* entirely left or right */
1421
1422   if ((GLint) (x + count) > (GLint) rb->Width) {
1423      /* right clip */
1424      GLint clip = x + count - rb->Width;
1425      count -= clip;
1426   }
1427
1428   if (x < 0) {
1429      /* left clip */
1430      skip = -x;
1431      x = 0;
1432      count -= skip;
1433   }
1434
1435   rb->PutRow(ctx, rb, count, x, y,
1436              (const GLubyte *) values + skip * valueSize, NULL);
1437}
1438
1439
1440/**
1441 * Wrapper for gl_renderbuffer::GetRow() which does clipping.
1442 * \param valueSize  size of each value (pixel) in bytes
1443 */
1444void
1445_swrast_get_row(GLcontext *ctx, struct gl_renderbuffer *rb,
1446                GLuint count, GLint x, GLint y,
1447                GLvoid *values, GLuint valueSize)
1448{
1449   GLint skip = 0;
1450
1451   if (y < 0 || y >= (GLint) rb->Height)
1452      return; /* above or below */
1453
1454   if (x + (GLint) count <= 0 || x >= (GLint) rb->Width)
1455      return; /* entirely left or right */
1456
1457   if (x + count > rb->Width) {
1458      /* right clip */
1459      GLint clip = x + count - rb->Width;
1460      count -= clip;
1461   }
1462
1463   if (x < 0) {
1464      /* left clip */
1465      skip = -x;
1466      x = 0;
1467      count -= skip;
1468   }
1469
1470   rb->GetRow(ctx, rb, count, x, y, (GLubyte *) values + skip * valueSize);
1471}
1472
1473
1474/**
1475 * Get RGBA pixels from the given renderbuffer.
1476 * Used by blending, logicop and masking functions.
1477 * \return pointer to the colors we read.
1478 */
1479void *
1480_swrast_get_dest_rgba(GLcontext *ctx, struct gl_renderbuffer *rb,
1481                      SWspan *span)
1482{
1483   const GLuint pixelSize = RGBA_PIXEL_SIZE(span->array->ChanType);
1484   void *rbPixels;
1485
1486   /* Point rbPixels to a temporary space */
1487   rbPixels = span->array->attribs[FRAG_ATTRIB_MAX - 1];
1488
1489   /* Get destination values from renderbuffer */
1490   if (span->arrayMask & SPAN_XY) {
1491      _swrast_get_values(ctx, rb, span->end, span->array->x, span->array->y,
1492                         rbPixels, pixelSize);
1493   }
1494   else {
1495      _swrast_get_row(ctx, rb, span->end, span->x, span->y,
1496                      rbPixels, pixelSize);
1497   }
1498
1499   return rbPixels;
1500}
1501