decimal.py revision 53663a695ef2bb96ac0252cd4cc4aa40d4f953be
1# Copyright (c) 2004 Python Software Foundation.
2# All rights reserved.
3
4# Written by Eric Price <eprice at tjhsst.edu>
5#    and Facundo Batista <facundo at taniquetil.com.ar>
6#    and Raymond Hettinger <python at rcn.com>
7#    and Aahz <aahz at pobox.com>
8#    and Tim Peters
9
10# This module is currently Py2.3 compatible and should be kept that way
11# unless a major compelling advantage arises.  IOW, 2.3 compatibility is
12# strongly preferred, but not guaranteed.
13
14# Also, this module should be kept in sync with the latest updates of
15# the IBM specification as it evolves.  Those updates will be treated
16# as bug fixes (deviation from the spec is a compatibility, usability
17# bug) and will be backported.  At this point the spec is stabilizing
18# and the updates are becoming fewer, smaller, and less significant.
19
20"""
21This is a Py2.3 implementation of decimal floating point arithmetic based on
22the General Decimal Arithmetic Specification:
23
24    www2.hursley.ibm.com/decimal/decarith.html
25
26and IEEE standard 854-1987:
27
28    www.cs.berkeley.edu/~ejr/projects/754/private/drafts/854-1987/dir.html
29
30Decimal floating point has finite precision with arbitrarily large bounds.
31
32The purpose of this module is to support arithmetic using familiar
33"schoolhouse" rules and to avoid some of the tricky representation
34issues associated with binary floating point.  The package is especially
35useful for financial applications or for contexts where users have
36expectations that are at odds with binary floating point (for instance,
37in binary floating point, 1.00 % 0.1 gives 0.09999999999999995 instead
38of the expected Decimal('0.00') returned by decimal floating point).
39
40Here are some examples of using the decimal module:
41
42>>> from decimal import *
43>>> setcontext(ExtendedContext)
44>>> Decimal(0)
45Decimal('0')
46>>> Decimal('1')
47Decimal('1')
48>>> Decimal('-.0123')
49Decimal('-0.0123')
50>>> Decimal(123456)
51Decimal('123456')
52>>> Decimal('123.45e12345678901234567890')
53Decimal('1.2345E+12345678901234567892')
54>>> Decimal('1.33') + Decimal('1.27')
55Decimal('2.60')
56>>> Decimal('12.34') + Decimal('3.87') - Decimal('18.41')
57Decimal('-2.20')
58>>> dig = Decimal(1)
59>>> print dig / Decimal(3)
600.333333333
61>>> getcontext().prec = 18
62>>> print dig / Decimal(3)
630.333333333333333333
64>>> print dig.sqrt()
651
66>>> print Decimal(3).sqrt()
671.73205080756887729
68>>> print Decimal(3) ** 123
694.85192780976896427E+58
70>>> inf = Decimal(1) / Decimal(0)
71>>> print inf
72Infinity
73>>> neginf = Decimal(-1) / Decimal(0)
74>>> print neginf
75-Infinity
76>>> print neginf + inf
77NaN
78>>> print neginf * inf
79-Infinity
80>>> print dig / 0
81Infinity
82>>> getcontext().traps[DivisionByZero] = 1
83>>> print dig / 0
84Traceback (most recent call last):
85  ...
86  ...
87  ...
88DivisionByZero: x / 0
89>>> c = Context()
90>>> c.traps[InvalidOperation] = 0
91>>> print c.flags[InvalidOperation]
920
93>>> c.divide(Decimal(0), Decimal(0))
94Decimal('NaN')
95>>> c.traps[InvalidOperation] = 1
96>>> print c.flags[InvalidOperation]
971
98>>> c.flags[InvalidOperation] = 0
99>>> print c.flags[InvalidOperation]
1000
101>>> print c.divide(Decimal(0), Decimal(0))
102Traceback (most recent call last):
103  ...
104  ...
105  ...
106InvalidOperation: 0 / 0
107>>> print c.flags[InvalidOperation]
1081
109>>> c.flags[InvalidOperation] = 0
110>>> c.traps[InvalidOperation] = 0
111>>> print c.divide(Decimal(0), Decimal(0))
112NaN
113>>> print c.flags[InvalidOperation]
1141
115>>>
116"""
117
118__all__ = [
119    # Two major classes
120    'Decimal', 'Context',
121
122    # Contexts
123    'DefaultContext', 'BasicContext', 'ExtendedContext',
124
125    # Exceptions
126    'DecimalException', 'Clamped', 'InvalidOperation', 'DivisionByZero',
127    'Inexact', 'Rounded', 'Subnormal', 'Overflow', 'Underflow',
128
129    # Constants for use in setting up contexts
130    'ROUND_DOWN', 'ROUND_HALF_UP', 'ROUND_HALF_EVEN', 'ROUND_CEILING',
131    'ROUND_FLOOR', 'ROUND_UP', 'ROUND_HALF_DOWN', 'ROUND_05UP',
132
133    # Functions for manipulating contexts
134    'setcontext', 'getcontext', 'localcontext'
135]
136
137import copy as _copy
138
139try:
140    from collections import namedtuple as _namedtuple
141    DecimalTuple = _namedtuple('DecimalTuple', 'sign digits exponent')
142except ImportError:
143    DecimalTuple = lambda *args: args
144
145# Rounding
146ROUND_DOWN = 'ROUND_DOWN'
147ROUND_HALF_UP = 'ROUND_HALF_UP'
148ROUND_HALF_EVEN = 'ROUND_HALF_EVEN'
149ROUND_CEILING = 'ROUND_CEILING'
150ROUND_FLOOR = 'ROUND_FLOOR'
151ROUND_UP = 'ROUND_UP'
152ROUND_HALF_DOWN = 'ROUND_HALF_DOWN'
153ROUND_05UP = 'ROUND_05UP'
154
155# Errors
156
157class DecimalException(ArithmeticError):
158    """Base exception class.
159
160    Used exceptions derive from this.
161    If an exception derives from another exception besides this (such as
162    Underflow (Inexact, Rounded, Subnormal) that indicates that it is only
163    called if the others are present.  This isn't actually used for
164    anything, though.
165
166    handle  -- Called when context._raise_error is called and the
167               trap_enabler is set.  First argument is self, second is the
168               context.  More arguments can be given, those being after
169               the explanation in _raise_error (For example,
170               context._raise_error(NewError, '(-x)!', self._sign) would
171               call NewError().handle(context, self._sign).)
172
173    To define a new exception, it should be sufficient to have it derive
174    from DecimalException.
175    """
176    def handle(self, context, *args):
177        pass
178
179
180class Clamped(DecimalException):
181    """Exponent of a 0 changed to fit bounds.
182
183    This occurs and signals clamped if the exponent of a result has been
184    altered in order to fit the constraints of a specific concrete
185    representation.  This may occur when the exponent of a zero result would
186    be outside the bounds of a representation, or when a large normal
187    number would have an encoded exponent that cannot be represented.  In
188    this latter case, the exponent is reduced to fit and the corresponding
189    number of zero digits are appended to the coefficient ("fold-down").
190    """
191
192class InvalidOperation(DecimalException):
193    """An invalid operation was performed.
194
195    Various bad things cause this:
196
197    Something creates a signaling NaN
198    -INF + INF
199    0 * (+-)INF
200    (+-)INF / (+-)INF
201    x % 0
202    (+-)INF % x
203    x._rescale( non-integer )
204    sqrt(-x) , x > 0
205    0 ** 0
206    x ** (non-integer)
207    x ** (+-)INF
208    An operand is invalid
209
210    The result of the operation after these is a quiet positive NaN,
211    except when the cause is a signaling NaN, in which case the result is
212    also a quiet NaN, but with the original sign, and an optional
213    diagnostic information.
214    """
215    def handle(self, context, *args):
216        if args:
217            ans = _dec_from_triple(args[0]._sign, args[0]._int, 'n', True)
218            return ans._fix_nan(context)
219        return NaN
220
221class ConversionSyntax(InvalidOperation):
222    """Trying to convert badly formed string.
223
224    This occurs and signals invalid-operation if an string is being
225    converted to a number and it does not conform to the numeric string
226    syntax.  The result is [0,qNaN].
227    """
228    def handle(self, context, *args):
229        return NaN
230
231class DivisionByZero(DecimalException, ZeroDivisionError):
232    """Division by 0.
233
234    This occurs and signals division-by-zero if division of a finite number
235    by zero was attempted (during a divide-integer or divide operation, or a
236    power operation with negative right-hand operand), and the dividend was
237    not zero.
238
239    The result of the operation is [sign,inf], where sign is the exclusive
240    or of the signs of the operands for divide, or is 1 for an odd power of
241    -0, for power.
242    """
243
244    def handle(self, context, sign, *args):
245        return Infsign[sign]
246
247class DivisionImpossible(InvalidOperation):
248    """Cannot perform the division adequately.
249
250    This occurs and signals invalid-operation if the integer result of a
251    divide-integer or remainder operation had too many digits (would be
252    longer than precision).  The result is [0,qNaN].
253    """
254
255    def handle(self, context, *args):
256        return NaN
257
258class DivisionUndefined(InvalidOperation, ZeroDivisionError):
259    """Undefined result of division.
260
261    This occurs and signals invalid-operation if division by zero was
262    attempted (during a divide-integer, divide, or remainder operation), and
263    the dividend is also zero.  The result is [0,qNaN].
264    """
265
266    def handle(self, context, *args):
267        return NaN
268
269class Inexact(DecimalException):
270    """Had to round, losing information.
271
272    This occurs and signals inexact whenever the result of an operation is
273    not exact (that is, it needed to be rounded and any discarded digits
274    were non-zero), or if an overflow or underflow condition occurs.  The
275    result in all cases is unchanged.
276
277    The inexact signal may be tested (or trapped) to determine if a given
278    operation (or sequence of operations) was inexact.
279    """
280
281class InvalidContext(InvalidOperation):
282    """Invalid context.  Unknown rounding, for example.
283
284    This occurs and signals invalid-operation if an invalid context was
285    detected during an operation.  This can occur if contexts are not checked
286    on creation and either the precision exceeds the capability of the
287    underlying concrete representation or an unknown or unsupported rounding
288    was specified.  These aspects of the context need only be checked when
289    the values are required to be used.  The result is [0,qNaN].
290    """
291
292    def handle(self, context, *args):
293        return NaN
294
295class Rounded(DecimalException):
296    """Number got rounded (not  necessarily changed during rounding).
297
298    This occurs and signals rounded whenever the result of an operation is
299    rounded (that is, some zero or non-zero digits were discarded from the
300    coefficient), or if an overflow or underflow condition occurs.  The
301    result in all cases is unchanged.
302
303    The rounded signal may be tested (or trapped) to determine if a given
304    operation (or sequence of operations) caused a loss of precision.
305    """
306
307class Subnormal(DecimalException):
308    """Exponent < Emin before rounding.
309
310    This occurs and signals subnormal whenever the result of a conversion or
311    operation is subnormal (that is, its adjusted exponent is less than
312    Emin, before any rounding).  The result in all cases is unchanged.
313
314    The subnormal signal may be tested (or trapped) to determine if a given
315    or operation (or sequence of operations) yielded a subnormal result.
316    """
317
318class Overflow(Inexact, Rounded):
319    """Numerical overflow.
320
321    This occurs and signals overflow if the adjusted exponent of a result
322    (from a conversion or from an operation that is not an attempt to divide
323    by zero), after rounding, would be greater than the largest value that
324    can be handled by the implementation (the value Emax).
325
326    The result depends on the rounding mode:
327
328    For round-half-up and round-half-even (and for round-half-down and
329    round-up, if implemented), the result of the operation is [sign,inf],
330    where sign is the sign of the intermediate result.  For round-down, the
331    result is the largest finite number that can be represented in the
332    current precision, with the sign of the intermediate result.  For
333    round-ceiling, the result is the same as for round-down if the sign of
334    the intermediate result is 1, or is [0,inf] otherwise.  For round-floor,
335    the result is the same as for round-down if the sign of the intermediate
336    result is 0, or is [1,inf] otherwise.  In all cases, Inexact and Rounded
337    will also be raised.
338    """
339
340    def handle(self, context, sign, *args):
341        if context.rounding in (ROUND_HALF_UP, ROUND_HALF_EVEN,
342                                ROUND_HALF_DOWN, ROUND_UP):
343            return Infsign[sign]
344        if sign == 0:
345            if context.rounding == ROUND_CEILING:
346                return Infsign[sign]
347            return _dec_from_triple(sign, '9'*context.prec,
348                            context.Emax-context.prec+1)
349        if sign == 1:
350            if context.rounding == ROUND_FLOOR:
351                return Infsign[sign]
352            return _dec_from_triple(sign, '9'*context.prec,
353                             context.Emax-context.prec+1)
354
355
356class Underflow(Inexact, Rounded, Subnormal):
357    """Numerical underflow with result rounded to 0.
358
359    This occurs and signals underflow if a result is inexact and the
360    adjusted exponent of the result would be smaller (more negative) than
361    the smallest value that can be handled by the implementation (the value
362    Emin).  That is, the result is both inexact and subnormal.
363
364    The result after an underflow will be a subnormal number rounded, if
365    necessary, so that its exponent is not less than Etiny.  This may result
366    in 0 with the sign of the intermediate result and an exponent of Etiny.
367
368    In all cases, Inexact, Rounded, and Subnormal will also be raised.
369    """
370
371# List of public traps and flags
372_signals = [Clamped, DivisionByZero, Inexact, Overflow, Rounded,
373           Underflow, InvalidOperation, Subnormal]
374
375# Map conditions (per the spec) to signals
376_condition_map = {ConversionSyntax:InvalidOperation,
377                  DivisionImpossible:InvalidOperation,
378                  DivisionUndefined:InvalidOperation,
379                  InvalidContext:InvalidOperation}
380
381##### Context Functions ##################################################
382
383# The getcontext() and setcontext() function manage access to a thread-local
384# current context.  Py2.4 offers direct support for thread locals.  If that
385# is not available, use threading.currentThread() which is slower but will
386# work for older Pythons.  If threads are not part of the build, create a
387# mock threading object with threading.local() returning the module namespace.
388
389try:
390    import threading
391except ImportError:
392    # Python was compiled without threads; create a mock object instead
393    import sys
394    class MockThreading(object):
395        def local(self, sys=sys):
396            return sys.modules[__name__]
397    threading = MockThreading()
398    del sys, MockThreading
399
400try:
401    threading.local
402
403except AttributeError:
404
405    # To fix reloading, force it to create a new context
406    # Old contexts have different exceptions in their dicts, making problems.
407    if hasattr(threading.currentThread(), '__decimal_context__'):
408        del threading.currentThread().__decimal_context__
409
410    def setcontext(context):
411        """Set this thread's context to context."""
412        if context in (DefaultContext, BasicContext, ExtendedContext):
413            context = context.copy()
414            context.clear_flags()
415        threading.currentThread().__decimal_context__ = context
416
417    def getcontext():
418        """Returns this thread's context.
419
420        If this thread does not yet have a context, returns
421        a new context and sets this thread's context.
422        New contexts are copies of DefaultContext.
423        """
424        try:
425            return threading.currentThread().__decimal_context__
426        except AttributeError:
427            context = Context()
428            threading.currentThread().__decimal_context__ = context
429            return context
430
431else:
432
433    local = threading.local()
434    if hasattr(local, '__decimal_context__'):
435        del local.__decimal_context__
436
437    def getcontext(_local=local):
438        """Returns this thread's context.
439
440        If this thread does not yet have a context, returns
441        a new context and sets this thread's context.
442        New contexts are copies of DefaultContext.
443        """
444        try:
445            return _local.__decimal_context__
446        except AttributeError:
447            context = Context()
448            _local.__decimal_context__ = context
449            return context
450
451    def setcontext(context, _local=local):
452        """Set this thread's context to context."""
453        if context in (DefaultContext, BasicContext, ExtendedContext):
454            context = context.copy()
455            context.clear_flags()
456        _local.__decimal_context__ = context
457
458    del threading, local        # Don't contaminate the namespace
459
460def localcontext(ctx=None):
461    """Return a context manager for a copy of the supplied context
462
463    Uses a copy of the current context if no context is specified
464    The returned context manager creates a local decimal context
465    in a with statement:
466        def sin(x):
467             with localcontext() as ctx:
468                 ctx.prec += 2
469                 # Rest of sin calculation algorithm
470                 # uses a precision 2 greater than normal
471             return +s  # Convert result to normal precision
472
473         def sin(x):
474             with localcontext(ExtendedContext):
475                 # Rest of sin calculation algorithm
476                 # uses the Extended Context from the
477                 # General Decimal Arithmetic Specification
478             return +s  # Convert result to normal context
479
480    >>> setcontext(DefaultContext)
481    >>> print getcontext().prec
482    28
483    >>> with localcontext():
484    ...     ctx = getcontext()
485    ...     ctx.prec += 2
486    ...     print ctx.prec
487    ...
488    30
489    >>> with localcontext(ExtendedContext):
490    ...     print getcontext().prec
491    ...
492    9
493    >>> print getcontext().prec
494    28
495    """
496    if ctx is None: ctx = getcontext()
497    return _ContextManager(ctx)
498
499
500##### Decimal class #######################################################
501
502class Decimal(object):
503    """Floating point class for decimal arithmetic."""
504
505    __slots__ = ('_exp','_int','_sign', '_is_special')
506    # Generally, the value of the Decimal instance is given by
507    #  (-1)**_sign * _int * 10**_exp
508    # Special values are signified by _is_special == True
509
510    # We're immutable, so use __new__ not __init__
511    def __new__(cls, value="0", context=None):
512        """Create a decimal point instance.
513
514        >>> Decimal('3.14')              # string input
515        Decimal('3.14')
516        >>> Decimal((0, (3, 1, 4), -2))  # tuple (sign, digit_tuple, exponent)
517        Decimal('3.14')
518        >>> Decimal(314)                 # int or long
519        Decimal('314')
520        >>> Decimal(Decimal(314))        # another decimal instance
521        Decimal('314')
522        >>> Decimal('  3.14  \\n')        # leading and trailing whitespace okay
523        Decimal('3.14')
524        """
525
526        # Note that the coefficient, self._int, is actually stored as
527        # a string rather than as a tuple of digits.  This speeds up
528        # the "digits to integer" and "integer to digits" conversions
529        # that are used in almost every arithmetic operation on
530        # Decimals.  This is an internal detail: the as_tuple function
531        # and the Decimal constructor still deal with tuples of
532        # digits.
533
534        self = object.__new__(cls)
535
536        # From a string
537        # REs insist on real strings, so we can too.
538        if isinstance(value, basestring):
539            m = _parser(value.strip())
540            if m is None:
541                if context is None:
542                    context = getcontext()
543                return context._raise_error(ConversionSyntax,
544                                "Invalid literal for Decimal: %r" % value)
545
546            if m.group('sign') == "-":
547                self._sign = 1
548            else:
549                self._sign = 0
550            intpart = m.group('int')
551            if intpart is not None:
552                # finite number
553                fracpart = m.group('frac')
554                exp = int(m.group('exp') or '0')
555                if fracpart is not None:
556                    self._int = str((intpart+fracpart).lstrip('0') or '0')
557                    self._exp = exp - len(fracpart)
558                else:
559                    self._int = str(intpart.lstrip('0') or '0')
560                    self._exp = exp
561                self._is_special = False
562            else:
563                diag = m.group('diag')
564                if diag is not None:
565                    # NaN
566                    self._int = str(diag.lstrip('0'))
567                    if m.group('signal'):
568                        self._exp = 'N'
569                    else:
570                        self._exp = 'n'
571                else:
572                    # infinity
573                    self._int = '0'
574                    self._exp = 'F'
575                self._is_special = True
576            return self
577
578        # From an integer
579        if isinstance(value, (int,long)):
580            if value >= 0:
581                self._sign = 0
582            else:
583                self._sign = 1
584            self._exp = 0
585            self._int = str(abs(value))
586            self._is_special = False
587            return self
588
589        # From another decimal
590        if isinstance(value, Decimal):
591            self._exp  = value._exp
592            self._sign = value._sign
593            self._int  = value._int
594            self._is_special  = value._is_special
595            return self
596
597        # From an internal working value
598        if isinstance(value, _WorkRep):
599            self._sign = value.sign
600            self._int = str(value.int)
601            self._exp = int(value.exp)
602            self._is_special = False
603            return self
604
605        # tuple/list conversion (possibly from as_tuple())
606        if isinstance(value, (list,tuple)):
607            if len(value) != 3:
608                raise ValueError('Invalid tuple size in creation of Decimal '
609                                 'from list or tuple.  The list or tuple '
610                                 'should have exactly three elements.')
611            # process sign.  The isinstance test rejects floats
612            if not (isinstance(value[0], (int, long)) and value[0] in (0,1)):
613                raise ValueError("Invalid sign.  The first value in the tuple "
614                                 "should be an integer; either 0 for a "
615                                 "positive number or 1 for a negative number.")
616            self._sign = value[0]
617            if value[2] == 'F':
618                # infinity: value[1] is ignored
619                self._int = '0'
620                self._exp = value[2]
621                self._is_special = True
622            else:
623                # process and validate the digits in value[1]
624                digits = []
625                for digit in value[1]:
626                    if isinstance(digit, (int, long)) and 0 <= digit <= 9:
627                        # skip leading zeros
628                        if digits or digit != 0:
629                            digits.append(digit)
630                    else:
631                        raise ValueError("The second value in the tuple must "
632                                         "be composed of integers in the range "
633                                         "0 through 9.")
634                if value[2] in ('n', 'N'):
635                    # NaN: digits form the diagnostic
636                    self._int = ''.join(map(str, digits))
637                    self._exp = value[2]
638                    self._is_special = True
639                elif isinstance(value[2], (int, long)):
640                    # finite number: digits give the coefficient
641                    self._int = ''.join(map(str, digits or [0]))
642                    self._exp = value[2]
643                    self._is_special = False
644                else:
645                    raise ValueError("The third value in the tuple must "
646                                     "be an integer, or one of the "
647                                     "strings 'F', 'n', 'N'.")
648            return self
649
650        if isinstance(value, float):
651            raise TypeError("Cannot convert float to Decimal.  " +
652                            "First convert the float to a string")
653
654        raise TypeError("Cannot convert %r to Decimal" % value)
655
656    def _isnan(self):
657        """Returns whether the number is not actually one.
658
659        0 if a number
660        1 if NaN
661        2 if sNaN
662        """
663        if self._is_special:
664            exp = self._exp
665            if exp == 'n':
666                return 1
667            elif exp == 'N':
668                return 2
669        return 0
670
671    def _isinfinity(self):
672        """Returns whether the number is infinite
673
674        0 if finite or not a number
675        1 if +INF
676        -1 if -INF
677        """
678        if self._exp == 'F':
679            if self._sign:
680                return -1
681            return 1
682        return 0
683
684    def _check_nans(self, other=None, context=None):
685        """Returns whether the number is not actually one.
686
687        if self, other are sNaN, signal
688        if self, other are NaN return nan
689        return 0
690
691        Done before operations.
692        """
693
694        self_is_nan = self._isnan()
695        if other is None:
696            other_is_nan = False
697        else:
698            other_is_nan = other._isnan()
699
700        if self_is_nan or other_is_nan:
701            if context is None:
702                context = getcontext()
703
704            if self_is_nan == 2:
705                return context._raise_error(InvalidOperation, 'sNaN',
706                                        self)
707            if other_is_nan == 2:
708                return context._raise_error(InvalidOperation, 'sNaN',
709                                        other)
710            if self_is_nan:
711                return self._fix_nan(context)
712
713            return other._fix_nan(context)
714        return 0
715
716    def _compare_check_nans(self, other, context):
717        """Version of _check_nans used for the signaling comparisons
718        compare_signal, __le__, __lt__, __ge__, __gt__.
719
720        Signal InvalidOperation if either self or other is a (quiet
721        or signaling) NaN.  Signaling NaNs take precedence over quiet
722        NaNs.
723
724        Return 0 if neither operand is a NaN.
725
726        """
727        if context is None:
728            context = getcontext()
729
730        if self._is_special or other._is_special:
731            if self.is_snan():
732                return context._raise_error(InvalidOperation,
733                                            'comparison involving sNaN',
734                                            self)
735            elif other.is_snan():
736                return context._raise_error(InvalidOperation,
737                                            'comparison involving sNaN',
738                                            other)
739            elif self.is_qnan():
740                return context._raise_error(InvalidOperation,
741                                            'comparison involving NaN',
742                                            self)
743            elif other.is_qnan():
744                return context._raise_error(InvalidOperation,
745                                            'comparison involving NaN',
746                                            other)
747        return 0
748
749    def __nonzero__(self):
750        """Return True if self is nonzero; otherwise return False.
751
752        NaNs and infinities are considered nonzero.
753        """
754        return self._is_special or self._int != '0'
755
756    def _cmp(self, other):
757        """Compare the two non-NaN decimal instances self and other.
758
759        Returns -1 if self < other, 0 if self == other and 1
760        if self > other.  This routine is for internal use only."""
761
762        if self._is_special or other._is_special:
763            return cmp(self._isinfinity(), other._isinfinity())
764
765        # check for zeros;  note that cmp(0, -0) should return 0
766        if not self:
767            if not other:
768                return 0
769            else:
770                return -((-1)**other._sign)
771        if not other:
772            return (-1)**self._sign
773
774        # If different signs, neg one is less
775        if other._sign < self._sign:
776            return -1
777        if self._sign < other._sign:
778            return 1
779
780        self_adjusted = self.adjusted()
781        other_adjusted = other.adjusted()
782        if self_adjusted == other_adjusted:
783            self_padded = self._int + '0'*(self._exp - other._exp)
784            other_padded = other._int + '0'*(other._exp - self._exp)
785            return cmp(self_padded, other_padded) * (-1)**self._sign
786        elif self_adjusted > other_adjusted:
787            return (-1)**self._sign
788        else: # self_adjusted < other_adjusted
789            return -((-1)**self._sign)
790
791    # Note: The Decimal standard doesn't cover rich comparisons for
792    # Decimals.  In particular, the specification is silent on the
793    # subject of what should happen for a comparison involving a NaN.
794    # We take the following approach:
795    #
796    #   == comparisons involving a NaN always return False
797    #   != comparisons involving a NaN always return True
798    #   <, >, <= and >= comparisons involving a (quiet or signaling)
799    #      NaN signal InvalidOperation, and return False if the
800    #      InvalidOperation is not trapped.
801    #
802    # This behavior is designed to conform as closely as possible to
803    # that specified by IEEE 754.
804
805    def __eq__(self, other):
806        other = _convert_other(other)
807        if other is NotImplemented:
808            return other
809        if self.is_nan() or other.is_nan():
810            return False
811        return self._cmp(other) == 0
812
813    def __ne__(self, other):
814        other = _convert_other(other)
815        if other is NotImplemented:
816            return other
817        if self.is_nan() or other.is_nan():
818            return True
819        return self._cmp(other) != 0
820
821    def __lt__(self, other, context=None):
822        other = _convert_other(other)
823        if other is NotImplemented:
824            return other
825        ans = self._compare_check_nans(other, context)
826        if ans:
827            return False
828        return self._cmp(other) < 0
829
830    def __le__(self, other, context=None):
831        other = _convert_other(other)
832        if other is NotImplemented:
833            return other
834        ans = self._compare_check_nans(other, context)
835        if ans:
836            return False
837        return self._cmp(other) <= 0
838
839    def __gt__(self, other, context=None):
840        other = _convert_other(other)
841        if other is NotImplemented:
842            return other
843        ans = self._compare_check_nans(other, context)
844        if ans:
845            return False
846        return self._cmp(other) > 0
847
848    def __ge__(self, other, context=None):
849        other = _convert_other(other)
850        if other is NotImplemented:
851            return other
852        ans = self._compare_check_nans(other, context)
853        if ans:
854            return False
855        return self._cmp(other) >= 0
856
857    def compare(self, other, context=None):
858        """Compares one to another.
859
860        -1 => a < b
861        0  => a = b
862        1  => a > b
863        NaN => one is NaN
864        Like __cmp__, but returns Decimal instances.
865        """
866        other = _convert_other(other, raiseit=True)
867
868        # Compare(NaN, NaN) = NaN
869        if (self._is_special or other and other._is_special):
870            ans = self._check_nans(other, context)
871            if ans:
872                return ans
873
874        return Decimal(self._cmp(other))
875
876    def __hash__(self):
877        """x.__hash__() <==> hash(x)"""
878        # Decimal integers must hash the same as the ints
879        #
880        # The hash of a nonspecial noninteger Decimal must depend only
881        # on the value of that Decimal, and not on its representation.
882        # For example: hash(Decimal('100E-1')) == hash(Decimal('10')).
883        if self._is_special:
884            if self._isnan():
885                raise TypeError('Cannot hash a NaN value.')
886            return hash(str(self))
887        if not self:
888            return 0
889        if self._isinteger():
890            op = _WorkRep(self.to_integral_value())
891            # to make computation feasible for Decimals with large
892            # exponent, we use the fact that hash(n) == hash(m) for
893            # any two nonzero integers n and m such that (i) n and m
894            # have the same sign, and (ii) n is congruent to m modulo
895            # 2**64-1.  So we can replace hash((-1)**s*c*10**e) with
896            # hash((-1)**s*c*pow(10, e, 2**64-1).
897            return hash((-1)**op.sign*op.int*pow(10, op.exp, 2**64-1))
898        # The value of a nonzero nonspecial Decimal instance is
899        # faithfully represented by the triple consisting of its sign,
900        # its adjusted exponent, and its coefficient with trailing
901        # zeros removed.
902        return hash((self._sign,
903                     self._exp+len(self._int),
904                     self._int.rstrip('0')))
905
906    def as_tuple(self):
907        """Represents the number as a triple tuple.
908
909        To show the internals exactly as they are.
910        """
911        return DecimalTuple(self._sign, tuple(map(int, self._int)), self._exp)
912
913    def __repr__(self):
914        """Represents the number as an instance of Decimal."""
915        # Invariant:  eval(repr(d)) == d
916        return "Decimal('%s')" % str(self)
917
918    def __str__(self, eng=False, context=None):
919        """Return string representation of the number in scientific notation.
920
921        Captures all of the information in the underlying representation.
922        """
923
924        sign = ['', '-'][self._sign]
925        if self._is_special:
926            if self._exp == 'F':
927                return sign + 'Infinity'
928            elif self._exp == 'n':
929                return sign + 'NaN' + self._int
930            else: # self._exp == 'N'
931                return sign + 'sNaN' + self._int
932
933        # number of digits of self._int to left of decimal point
934        leftdigits = self._exp + len(self._int)
935
936        # dotplace is number of digits of self._int to the left of the
937        # decimal point in the mantissa of the output string (that is,
938        # after adjusting the exponent)
939        if self._exp <= 0 and leftdigits > -6:
940            # no exponent required
941            dotplace = leftdigits
942        elif not eng:
943            # usual scientific notation: 1 digit on left of the point
944            dotplace = 1
945        elif self._int == '0':
946            # engineering notation, zero
947            dotplace = (leftdigits + 1) % 3 - 1
948        else:
949            # engineering notation, nonzero
950            dotplace = (leftdigits - 1) % 3 + 1
951
952        if dotplace <= 0:
953            intpart = '0'
954            fracpart = '.' + '0'*(-dotplace) + self._int
955        elif dotplace >= len(self._int):
956            intpart = self._int+'0'*(dotplace-len(self._int))
957            fracpart = ''
958        else:
959            intpart = self._int[:dotplace]
960            fracpart = '.' + self._int[dotplace:]
961        if leftdigits == dotplace:
962            exp = ''
963        else:
964            if context is None:
965                context = getcontext()
966            exp = ['e', 'E'][context.capitals] + "%+d" % (leftdigits-dotplace)
967
968        return sign + intpart + fracpart + exp
969
970    def to_eng_string(self, context=None):
971        """Convert to engineering-type string.
972
973        Engineering notation has an exponent which is a multiple of 3, so there
974        are up to 3 digits left of the decimal place.
975
976        Same rules for when in exponential and when as a value as in __str__.
977        """
978        return self.__str__(eng=True, context=context)
979
980    def __neg__(self, context=None):
981        """Returns a copy with the sign switched.
982
983        Rounds, if it has reason.
984        """
985        if self._is_special:
986            ans = self._check_nans(context=context)
987            if ans:
988                return ans
989
990        if not self:
991            # -Decimal('0') is Decimal('0'), not Decimal('-0')
992            ans = self.copy_abs()
993        else:
994            ans = self.copy_negate()
995
996        if context is None:
997            context = getcontext()
998        return ans._fix(context)
999
1000    def __pos__(self, context=None):
1001        """Returns a copy, unless it is a sNaN.
1002
1003        Rounds the number (if more then precision digits)
1004        """
1005        if self._is_special:
1006            ans = self._check_nans(context=context)
1007            if ans:
1008                return ans
1009
1010        if not self:
1011            # + (-0) = 0
1012            ans = self.copy_abs()
1013        else:
1014            ans = Decimal(self)
1015
1016        if context is None:
1017            context = getcontext()
1018        return ans._fix(context)
1019
1020    def __abs__(self, round=True, context=None):
1021        """Returns the absolute value of self.
1022
1023        If the keyword argument 'round' is false, do not round.  The
1024        expression self.__abs__(round=False) is equivalent to
1025        self.copy_abs().
1026        """
1027        if not round:
1028            return self.copy_abs()
1029
1030        if self._is_special:
1031            ans = self._check_nans(context=context)
1032            if ans:
1033                return ans
1034
1035        if self._sign:
1036            ans = self.__neg__(context=context)
1037        else:
1038            ans = self.__pos__(context=context)
1039
1040        return ans
1041
1042    def __add__(self, other, context=None):
1043        """Returns self + other.
1044
1045        -INF + INF (or the reverse) cause InvalidOperation errors.
1046        """
1047        other = _convert_other(other)
1048        if other is NotImplemented:
1049            return other
1050
1051        if context is None:
1052            context = getcontext()
1053
1054        if self._is_special or other._is_special:
1055            ans = self._check_nans(other, context)
1056            if ans:
1057                return ans
1058
1059            if self._isinfinity():
1060                # If both INF, same sign => same as both, opposite => error.
1061                if self._sign != other._sign and other._isinfinity():
1062                    return context._raise_error(InvalidOperation, '-INF + INF')
1063                return Decimal(self)
1064            if other._isinfinity():
1065                return Decimal(other)  # Can't both be infinity here
1066
1067        exp = min(self._exp, other._exp)
1068        negativezero = 0
1069        if context.rounding == ROUND_FLOOR and self._sign != other._sign:
1070            # If the answer is 0, the sign should be negative, in this case.
1071            negativezero = 1
1072
1073        if not self and not other:
1074            sign = min(self._sign, other._sign)
1075            if negativezero:
1076                sign = 1
1077            ans = _dec_from_triple(sign, '0', exp)
1078            ans = ans._fix(context)
1079            return ans
1080        if not self:
1081            exp = max(exp, other._exp - context.prec-1)
1082            ans = other._rescale(exp, context.rounding)
1083            ans = ans._fix(context)
1084            return ans
1085        if not other:
1086            exp = max(exp, self._exp - context.prec-1)
1087            ans = self._rescale(exp, context.rounding)
1088            ans = ans._fix(context)
1089            return ans
1090
1091        op1 = _WorkRep(self)
1092        op2 = _WorkRep(other)
1093        op1, op2 = _normalize(op1, op2, context.prec)
1094
1095        result = _WorkRep()
1096        if op1.sign != op2.sign:
1097            # Equal and opposite
1098            if op1.int == op2.int:
1099                ans = _dec_from_triple(negativezero, '0', exp)
1100                ans = ans._fix(context)
1101                return ans
1102            if op1.int < op2.int:
1103                op1, op2 = op2, op1
1104                # OK, now abs(op1) > abs(op2)
1105            if op1.sign == 1:
1106                result.sign = 1
1107                op1.sign, op2.sign = op2.sign, op1.sign
1108            else:
1109                result.sign = 0
1110                # So we know the sign, and op1 > 0.
1111        elif op1.sign == 1:
1112            result.sign = 1
1113            op1.sign, op2.sign = (0, 0)
1114        else:
1115            result.sign = 0
1116        # Now, op1 > abs(op2) > 0
1117
1118        if op2.sign == 0:
1119            result.int = op1.int + op2.int
1120        else:
1121            result.int = op1.int - op2.int
1122
1123        result.exp = op1.exp
1124        ans = Decimal(result)
1125        ans = ans._fix(context)
1126        return ans
1127
1128    __radd__ = __add__
1129
1130    def __sub__(self, other, context=None):
1131        """Return self - other"""
1132        other = _convert_other(other)
1133        if other is NotImplemented:
1134            return other
1135
1136        if self._is_special or other._is_special:
1137            ans = self._check_nans(other, context=context)
1138            if ans:
1139                return ans
1140
1141        # self - other is computed as self + other.copy_negate()
1142        return self.__add__(other.copy_negate(), context=context)
1143
1144    def __rsub__(self, other, context=None):
1145        """Return other - self"""
1146        other = _convert_other(other)
1147        if other is NotImplemented:
1148            return other
1149
1150        return other.__sub__(self, context=context)
1151
1152    def __mul__(self, other, context=None):
1153        """Return self * other.
1154
1155        (+-) INF * 0 (or its reverse) raise InvalidOperation.
1156        """
1157        other = _convert_other(other)
1158        if other is NotImplemented:
1159            return other
1160
1161        if context is None:
1162            context = getcontext()
1163
1164        resultsign = self._sign ^ other._sign
1165
1166        if self._is_special or other._is_special:
1167            ans = self._check_nans(other, context)
1168            if ans:
1169                return ans
1170
1171            if self._isinfinity():
1172                if not other:
1173                    return context._raise_error(InvalidOperation, '(+-)INF * 0')
1174                return Infsign[resultsign]
1175
1176            if other._isinfinity():
1177                if not self:
1178                    return context._raise_error(InvalidOperation, '0 * (+-)INF')
1179                return Infsign[resultsign]
1180
1181        resultexp = self._exp + other._exp
1182
1183        # Special case for multiplying by zero
1184        if not self or not other:
1185            ans = _dec_from_triple(resultsign, '0', resultexp)
1186            # Fixing in case the exponent is out of bounds
1187            ans = ans._fix(context)
1188            return ans
1189
1190        # Special case for multiplying by power of 10
1191        if self._int == '1':
1192            ans = _dec_from_triple(resultsign, other._int, resultexp)
1193            ans = ans._fix(context)
1194            return ans
1195        if other._int == '1':
1196            ans = _dec_from_triple(resultsign, self._int, resultexp)
1197            ans = ans._fix(context)
1198            return ans
1199
1200        op1 = _WorkRep(self)
1201        op2 = _WorkRep(other)
1202
1203        ans = _dec_from_triple(resultsign, str(op1.int * op2.int), resultexp)
1204        ans = ans._fix(context)
1205
1206        return ans
1207    __rmul__ = __mul__
1208
1209    def __truediv__(self, other, context=None):
1210        """Return self / other."""
1211        other = _convert_other(other)
1212        if other is NotImplemented:
1213            return NotImplemented
1214
1215        if context is None:
1216            context = getcontext()
1217
1218        sign = self._sign ^ other._sign
1219
1220        if self._is_special or other._is_special:
1221            ans = self._check_nans(other, context)
1222            if ans:
1223                return ans
1224
1225            if self._isinfinity() and other._isinfinity():
1226                return context._raise_error(InvalidOperation, '(+-)INF/(+-)INF')
1227
1228            if self._isinfinity():
1229                return Infsign[sign]
1230
1231            if other._isinfinity():
1232                context._raise_error(Clamped, 'Division by infinity')
1233                return _dec_from_triple(sign, '0', context.Etiny())
1234
1235        # Special cases for zeroes
1236        if not other:
1237            if not self:
1238                return context._raise_error(DivisionUndefined, '0 / 0')
1239            return context._raise_error(DivisionByZero, 'x / 0', sign)
1240
1241        if not self:
1242            exp = self._exp - other._exp
1243            coeff = 0
1244        else:
1245            # OK, so neither = 0, INF or NaN
1246            shift = len(other._int) - len(self._int) + context.prec + 1
1247            exp = self._exp - other._exp - shift
1248            op1 = _WorkRep(self)
1249            op2 = _WorkRep(other)
1250            if shift >= 0:
1251                coeff, remainder = divmod(op1.int * 10**shift, op2.int)
1252            else:
1253                coeff, remainder = divmod(op1.int, op2.int * 10**-shift)
1254            if remainder:
1255                # result is not exact; adjust to ensure correct rounding
1256                if coeff % 5 == 0:
1257                    coeff += 1
1258            else:
1259                # result is exact; get as close to ideal exponent as possible
1260                ideal_exp = self._exp - other._exp
1261                while exp < ideal_exp and coeff % 10 == 0:
1262                    coeff //= 10
1263                    exp += 1
1264
1265        ans = _dec_from_triple(sign, str(coeff), exp)
1266        return ans._fix(context)
1267
1268    def _divide(self, other, context):
1269        """Return (self // other, self % other), to context.prec precision.
1270
1271        Assumes that neither self nor other is a NaN, that self is not
1272        infinite and that other is nonzero.
1273        """
1274        sign = self._sign ^ other._sign
1275        if other._isinfinity():
1276            ideal_exp = self._exp
1277        else:
1278            ideal_exp = min(self._exp, other._exp)
1279
1280        expdiff = self.adjusted() - other.adjusted()
1281        if not self or other._isinfinity() or expdiff <= -2:
1282            return (_dec_from_triple(sign, '0', 0),
1283                    self._rescale(ideal_exp, context.rounding))
1284        if expdiff <= context.prec:
1285            op1 = _WorkRep(self)
1286            op2 = _WorkRep(other)
1287            if op1.exp >= op2.exp:
1288                op1.int *= 10**(op1.exp - op2.exp)
1289            else:
1290                op2.int *= 10**(op2.exp - op1.exp)
1291            q, r = divmod(op1.int, op2.int)
1292            if q < 10**context.prec:
1293                return (_dec_from_triple(sign, str(q), 0),
1294                        _dec_from_triple(self._sign, str(r), ideal_exp))
1295
1296        # Here the quotient is too large to be representable
1297        ans = context._raise_error(DivisionImpossible,
1298                                   'quotient too large in //, % or divmod')
1299        return ans, ans
1300
1301    def __rtruediv__(self, other, context=None):
1302        """Swaps self/other and returns __truediv__."""
1303        other = _convert_other(other)
1304        if other is NotImplemented:
1305            return other
1306        return other.__truediv__(self, context=context)
1307
1308    __div__ = __truediv__
1309    __rdiv__ = __rtruediv__
1310
1311    def __divmod__(self, other, context=None):
1312        """
1313        Return (self // other, self % other)
1314        """
1315        other = _convert_other(other)
1316        if other is NotImplemented:
1317            return other
1318
1319        if context is None:
1320            context = getcontext()
1321
1322        ans = self._check_nans(other, context)
1323        if ans:
1324            return (ans, ans)
1325
1326        sign = self._sign ^ other._sign
1327        if self._isinfinity():
1328            if other._isinfinity():
1329                ans = context._raise_error(InvalidOperation, 'divmod(INF, INF)')
1330                return ans, ans
1331            else:
1332                return (Infsign[sign],
1333                        context._raise_error(InvalidOperation, 'INF % x'))
1334
1335        if not other:
1336            if not self:
1337                ans = context._raise_error(DivisionUndefined, 'divmod(0, 0)')
1338                return ans, ans
1339            else:
1340                return (context._raise_error(DivisionByZero, 'x // 0', sign),
1341                        context._raise_error(InvalidOperation, 'x % 0'))
1342
1343        quotient, remainder = self._divide(other, context)
1344        remainder = remainder._fix(context)
1345        return quotient, remainder
1346
1347    def __rdivmod__(self, other, context=None):
1348        """Swaps self/other and returns __divmod__."""
1349        other = _convert_other(other)
1350        if other is NotImplemented:
1351            return other
1352        return other.__divmod__(self, context=context)
1353
1354    def __mod__(self, other, context=None):
1355        """
1356        self % other
1357        """
1358        other = _convert_other(other)
1359        if other is NotImplemented:
1360            return other
1361
1362        if context is None:
1363            context = getcontext()
1364
1365        ans = self._check_nans(other, context)
1366        if ans:
1367            return ans
1368
1369        if self._isinfinity():
1370            return context._raise_error(InvalidOperation, 'INF % x')
1371        elif not other:
1372            if self:
1373                return context._raise_error(InvalidOperation, 'x % 0')
1374            else:
1375                return context._raise_error(DivisionUndefined, '0 % 0')
1376
1377        remainder = self._divide(other, context)[1]
1378        remainder = remainder._fix(context)
1379        return remainder
1380
1381    def __rmod__(self, other, context=None):
1382        """Swaps self/other and returns __mod__."""
1383        other = _convert_other(other)
1384        if other is NotImplemented:
1385            return other
1386        return other.__mod__(self, context=context)
1387
1388    def remainder_near(self, other, context=None):
1389        """
1390        Remainder nearest to 0-  abs(remainder-near) <= other/2
1391        """
1392        if context is None:
1393            context = getcontext()
1394
1395        other = _convert_other(other, raiseit=True)
1396
1397        ans = self._check_nans(other, context)
1398        if ans:
1399            return ans
1400
1401        # self == +/-infinity -> InvalidOperation
1402        if self._isinfinity():
1403            return context._raise_error(InvalidOperation,
1404                                        'remainder_near(infinity, x)')
1405
1406        # other == 0 -> either InvalidOperation or DivisionUndefined
1407        if not other:
1408            if self:
1409                return context._raise_error(InvalidOperation,
1410                                            'remainder_near(x, 0)')
1411            else:
1412                return context._raise_error(DivisionUndefined,
1413                                            'remainder_near(0, 0)')
1414
1415        # other = +/-infinity -> remainder = self
1416        if other._isinfinity():
1417            ans = Decimal(self)
1418            return ans._fix(context)
1419
1420        # self = 0 -> remainder = self, with ideal exponent
1421        ideal_exponent = min(self._exp, other._exp)
1422        if not self:
1423            ans = _dec_from_triple(self._sign, '0', ideal_exponent)
1424            return ans._fix(context)
1425
1426        # catch most cases of large or small quotient
1427        expdiff = self.adjusted() - other.adjusted()
1428        if expdiff >= context.prec + 1:
1429            # expdiff >= prec+1 => abs(self/other) > 10**prec
1430            return context._raise_error(DivisionImpossible)
1431        if expdiff <= -2:
1432            # expdiff <= -2 => abs(self/other) < 0.1
1433            ans = self._rescale(ideal_exponent, context.rounding)
1434            return ans._fix(context)
1435
1436        # adjust both arguments to have the same exponent, then divide
1437        op1 = _WorkRep(self)
1438        op2 = _WorkRep(other)
1439        if op1.exp >= op2.exp:
1440            op1.int *= 10**(op1.exp - op2.exp)
1441        else:
1442            op2.int *= 10**(op2.exp - op1.exp)
1443        q, r = divmod(op1.int, op2.int)
1444        # remainder is r*10**ideal_exponent; other is +/-op2.int *
1445        # 10**ideal_exponent.   Apply correction to ensure that
1446        # abs(remainder) <= abs(other)/2
1447        if 2*r + (q&1) > op2.int:
1448            r -= op2.int
1449            q += 1
1450
1451        if q >= 10**context.prec:
1452            return context._raise_error(DivisionImpossible)
1453
1454        # result has same sign as self unless r is negative
1455        sign = self._sign
1456        if r < 0:
1457            sign = 1-sign
1458            r = -r
1459
1460        ans = _dec_from_triple(sign, str(r), ideal_exponent)
1461        return ans._fix(context)
1462
1463    def __floordiv__(self, other, context=None):
1464        """self // other"""
1465        other = _convert_other(other)
1466        if other is NotImplemented:
1467            return other
1468
1469        if context is None:
1470            context = getcontext()
1471
1472        ans = self._check_nans(other, context)
1473        if ans:
1474            return ans
1475
1476        if self._isinfinity():
1477            if other._isinfinity():
1478                return context._raise_error(InvalidOperation, 'INF // INF')
1479            else:
1480                return Infsign[self._sign ^ other._sign]
1481
1482        if not other:
1483            if self:
1484                return context._raise_error(DivisionByZero, 'x // 0',
1485                                            self._sign ^ other._sign)
1486            else:
1487                return context._raise_error(DivisionUndefined, '0 // 0')
1488
1489        return self._divide(other, context)[0]
1490
1491    def __rfloordiv__(self, other, context=None):
1492        """Swaps self/other and returns __floordiv__."""
1493        other = _convert_other(other)
1494        if other is NotImplemented:
1495            return other
1496        return other.__floordiv__(self, context=context)
1497
1498    def __float__(self):
1499        """Float representation."""
1500        return float(str(self))
1501
1502    def __int__(self):
1503        """Converts self to an int, truncating if necessary."""
1504        if self._is_special:
1505            if self._isnan():
1506                context = getcontext()
1507                return context._raise_error(InvalidContext)
1508            elif self._isinfinity():
1509                raise OverflowError("Cannot convert infinity to int")
1510        s = (-1)**self._sign
1511        if self._exp >= 0:
1512            return s*int(self._int)*10**self._exp
1513        else:
1514            return s*int(self._int[:self._exp] or '0')
1515
1516    __trunc__ = __int__
1517
1518    @property
1519    def real(self):
1520        return self
1521
1522    @property
1523    def imag(self):
1524        return Decimal(0)
1525
1526    def conjugate(self):
1527        return self
1528
1529    def __complex__(self):
1530        return complex(float(self))
1531
1532    def __long__(self):
1533        """Converts to a long.
1534
1535        Equivalent to long(int(self))
1536        """
1537        return long(self.__int__())
1538
1539    def _fix_nan(self, context):
1540        """Decapitate the payload of a NaN to fit the context"""
1541        payload = self._int
1542
1543        # maximum length of payload is precision if _clamp=0,
1544        # precision-1 if _clamp=1.
1545        max_payload_len = context.prec - context._clamp
1546        if len(payload) > max_payload_len:
1547            payload = payload[len(payload)-max_payload_len:].lstrip('0')
1548            return _dec_from_triple(self._sign, payload, self._exp, True)
1549        return Decimal(self)
1550
1551    def _fix(self, context):
1552        """Round if it is necessary to keep self within prec precision.
1553
1554        Rounds and fixes the exponent.  Does not raise on a sNaN.
1555
1556        Arguments:
1557        self - Decimal instance
1558        context - context used.
1559        """
1560
1561        if self._is_special:
1562            if self._isnan():
1563                # decapitate payload if necessary
1564                return self._fix_nan(context)
1565            else:
1566                # self is +/-Infinity; return unaltered
1567                return Decimal(self)
1568
1569        # if self is zero then exponent should be between Etiny and
1570        # Emax if _clamp==0, and between Etiny and Etop if _clamp==1.
1571        Etiny = context.Etiny()
1572        Etop = context.Etop()
1573        if not self:
1574            exp_max = [context.Emax, Etop][context._clamp]
1575            new_exp = min(max(self._exp, Etiny), exp_max)
1576            if new_exp != self._exp:
1577                context._raise_error(Clamped)
1578                return _dec_from_triple(self._sign, '0', new_exp)
1579            else:
1580                return Decimal(self)
1581
1582        # exp_min is the smallest allowable exponent of the result,
1583        # equal to max(self.adjusted()-context.prec+1, Etiny)
1584        exp_min = len(self._int) + self._exp - context.prec
1585        if exp_min > Etop:
1586            # overflow: exp_min > Etop iff self.adjusted() > Emax
1587            context._raise_error(Inexact)
1588            context._raise_error(Rounded)
1589            return context._raise_error(Overflow, 'above Emax', self._sign)
1590        self_is_subnormal = exp_min < Etiny
1591        if self_is_subnormal:
1592            context._raise_error(Subnormal)
1593            exp_min = Etiny
1594
1595        # round if self has too many digits
1596        if self._exp < exp_min:
1597            context._raise_error(Rounded)
1598            digits = len(self._int) + self._exp - exp_min
1599            if digits < 0:
1600                self = _dec_from_triple(self._sign, '1', exp_min-1)
1601                digits = 0
1602            this_function = getattr(self, self._pick_rounding_function[context.rounding])
1603            changed = this_function(digits)
1604            coeff = self._int[:digits] or '0'
1605            if changed == 1:
1606                coeff = str(int(coeff)+1)
1607            ans = _dec_from_triple(self._sign, coeff, exp_min)
1608
1609            if changed:
1610                context._raise_error(Inexact)
1611                if self_is_subnormal:
1612                    context._raise_error(Underflow)
1613                    if not ans:
1614                        # raise Clamped on underflow to 0
1615                        context._raise_error(Clamped)
1616                elif len(ans._int) == context.prec+1:
1617                    # we get here only if rescaling rounds the
1618                    # cofficient up to exactly 10**context.prec
1619                    if ans._exp < Etop:
1620                        ans = _dec_from_triple(ans._sign,
1621                                                   ans._int[:-1], ans._exp+1)
1622                    else:
1623                        # Inexact and Rounded have already been raised
1624                        ans = context._raise_error(Overflow, 'above Emax',
1625                                                   self._sign)
1626            return ans
1627
1628        # fold down if _clamp == 1 and self has too few digits
1629        if context._clamp == 1 and self._exp > Etop:
1630            context._raise_error(Clamped)
1631            self_padded = self._int + '0'*(self._exp - Etop)
1632            return _dec_from_triple(self._sign, self_padded, Etop)
1633
1634        # here self was representable to begin with; return unchanged
1635        return Decimal(self)
1636
1637    _pick_rounding_function = {}
1638
1639    # for each of the rounding functions below:
1640    #   self is a finite, nonzero Decimal
1641    #   prec is an integer satisfying 0 <= prec < len(self._int)
1642    #
1643    # each function returns either -1, 0, or 1, as follows:
1644    #   1 indicates that self should be rounded up (away from zero)
1645    #   0 indicates that self should be truncated, and that all the
1646    #     digits to be truncated are zeros (so the value is unchanged)
1647    #  -1 indicates that there are nonzero digits to be truncated
1648
1649    def _round_down(self, prec):
1650        """Also known as round-towards-0, truncate."""
1651        if _all_zeros(self._int, prec):
1652            return 0
1653        else:
1654            return -1
1655
1656    def _round_up(self, prec):
1657        """Rounds away from 0."""
1658        return -self._round_down(prec)
1659
1660    def _round_half_up(self, prec):
1661        """Rounds 5 up (away from 0)"""
1662        if self._int[prec] in '56789':
1663            return 1
1664        elif _all_zeros(self._int, prec):
1665            return 0
1666        else:
1667            return -1
1668
1669    def _round_half_down(self, prec):
1670        """Round 5 down"""
1671        if _exact_half(self._int, prec):
1672            return -1
1673        else:
1674            return self._round_half_up(prec)
1675
1676    def _round_half_even(self, prec):
1677        """Round 5 to even, rest to nearest."""
1678        if _exact_half(self._int, prec) and \
1679                (prec == 0 or self._int[prec-1] in '02468'):
1680            return -1
1681        else:
1682            return self._round_half_up(prec)
1683
1684    def _round_ceiling(self, prec):
1685        """Rounds up (not away from 0 if negative.)"""
1686        if self._sign:
1687            return self._round_down(prec)
1688        else:
1689            return -self._round_down(prec)
1690
1691    def _round_floor(self, prec):
1692        """Rounds down (not towards 0 if negative)"""
1693        if not self._sign:
1694            return self._round_down(prec)
1695        else:
1696            return -self._round_down(prec)
1697
1698    def _round_05up(self, prec):
1699        """Round down unless digit prec-1 is 0 or 5."""
1700        if prec and self._int[prec-1] not in '05':
1701            return self._round_down(prec)
1702        else:
1703            return -self._round_down(prec)
1704
1705    def fma(self, other, third, context=None):
1706        """Fused multiply-add.
1707
1708        Returns self*other+third with no rounding of the intermediate
1709        product self*other.
1710
1711        self and other are multiplied together, with no rounding of
1712        the result.  The third operand is then added to the result,
1713        and a single final rounding is performed.
1714        """
1715
1716        other = _convert_other(other, raiseit=True)
1717
1718        # compute product; raise InvalidOperation if either operand is
1719        # a signaling NaN or if the product is zero times infinity.
1720        if self._is_special or other._is_special:
1721            if context is None:
1722                context = getcontext()
1723            if self._exp == 'N':
1724                return context._raise_error(InvalidOperation, 'sNaN', self)
1725            if other._exp == 'N':
1726                return context._raise_error(InvalidOperation, 'sNaN', other)
1727            if self._exp == 'n':
1728                product = self
1729            elif other._exp == 'n':
1730                product = other
1731            elif self._exp == 'F':
1732                if not other:
1733                    return context._raise_error(InvalidOperation,
1734                                                'INF * 0 in fma')
1735                product = Infsign[self._sign ^ other._sign]
1736            elif other._exp == 'F':
1737                if not self:
1738                    return context._raise_error(InvalidOperation,
1739                                                '0 * INF in fma')
1740                product = Infsign[self._sign ^ other._sign]
1741        else:
1742            product = _dec_from_triple(self._sign ^ other._sign,
1743                                       str(int(self._int) * int(other._int)),
1744                                       self._exp + other._exp)
1745
1746        third = _convert_other(third, raiseit=True)
1747        return product.__add__(third, context)
1748
1749    def _power_modulo(self, other, modulo, context=None):
1750        """Three argument version of __pow__"""
1751
1752        # if can't convert other and modulo to Decimal, raise
1753        # TypeError; there's no point returning NotImplemented (no
1754        # equivalent of __rpow__ for three argument pow)
1755        other = _convert_other(other, raiseit=True)
1756        modulo = _convert_other(modulo, raiseit=True)
1757
1758        if context is None:
1759            context = getcontext()
1760
1761        # deal with NaNs: if there are any sNaNs then first one wins,
1762        # (i.e. behaviour for NaNs is identical to that of fma)
1763        self_is_nan = self._isnan()
1764        other_is_nan = other._isnan()
1765        modulo_is_nan = modulo._isnan()
1766        if self_is_nan or other_is_nan or modulo_is_nan:
1767            if self_is_nan == 2:
1768                return context._raise_error(InvalidOperation, 'sNaN',
1769                                        self)
1770            if other_is_nan == 2:
1771                return context._raise_error(InvalidOperation, 'sNaN',
1772                                        other)
1773            if modulo_is_nan == 2:
1774                return context._raise_error(InvalidOperation, 'sNaN',
1775                                        modulo)
1776            if self_is_nan:
1777                return self._fix_nan(context)
1778            if other_is_nan:
1779                return other._fix_nan(context)
1780            return modulo._fix_nan(context)
1781
1782        # check inputs: we apply same restrictions as Python's pow()
1783        if not (self._isinteger() and
1784                other._isinteger() and
1785                modulo._isinteger()):
1786            return context._raise_error(InvalidOperation,
1787                                        'pow() 3rd argument not allowed '
1788                                        'unless all arguments are integers')
1789        if other < 0:
1790            return context._raise_error(InvalidOperation,
1791                                        'pow() 2nd argument cannot be '
1792                                        'negative when 3rd argument specified')
1793        if not modulo:
1794            return context._raise_error(InvalidOperation,
1795                                        'pow() 3rd argument cannot be 0')
1796
1797        # additional restriction for decimal: the modulus must be less
1798        # than 10**prec in absolute value
1799        if modulo.adjusted() >= context.prec:
1800            return context._raise_error(InvalidOperation,
1801                                        'insufficient precision: pow() 3rd '
1802                                        'argument must not have more than '
1803                                        'precision digits')
1804
1805        # define 0**0 == NaN, for consistency with two-argument pow
1806        # (even though it hurts!)
1807        if not other and not self:
1808            return context._raise_error(InvalidOperation,
1809                                        'at least one of pow() 1st argument '
1810                                        'and 2nd argument must be nonzero ;'
1811                                        '0**0 is not defined')
1812
1813        # compute sign of result
1814        if other._iseven():
1815            sign = 0
1816        else:
1817            sign = self._sign
1818
1819        # convert modulo to a Python integer, and self and other to
1820        # Decimal integers (i.e. force their exponents to be >= 0)
1821        modulo = abs(int(modulo))
1822        base = _WorkRep(self.to_integral_value())
1823        exponent = _WorkRep(other.to_integral_value())
1824
1825        # compute result using integer pow()
1826        base = (base.int % modulo * pow(10, base.exp, modulo)) % modulo
1827        for i in xrange(exponent.exp):
1828            base = pow(base, 10, modulo)
1829        base = pow(base, exponent.int, modulo)
1830
1831        return _dec_from_triple(sign, str(base), 0)
1832
1833    def _power_exact(self, other, p):
1834        """Attempt to compute self**other exactly.
1835
1836        Given Decimals self and other and an integer p, attempt to
1837        compute an exact result for the power self**other, with p
1838        digits of precision.  Return None if self**other is not
1839        exactly representable in p digits.
1840
1841        Assumes that elimination of special cases has already been
1842        performed: self and other must both be nonspecial; self must
1843        be positive and not numerically equal to 1; other must be
1844        nonzero.  For efficiency, other._exp should not be too large,
1845        so that 10**abs(other._exp) is a feasible calculation."""
1846
1847        # In the comments below, we write x for the value of self and
1848        # y for the value of other.  Write x = xc*10**xe and y =
1849        # yc*10**ye.
1850
1851        # The main purpose of this method is to identify the *failure*
1852        # of x**y to be exactly representable with as little effort as
1853        # possible.  So we look for cheap and easy tests that
1854        # eliminate the possibility of x**y being exact.  Only if all
1855        # these tests are passed do we go on to actually compute x**y.
1856
1857        # Here's the main idea.  First normalize both x and y.  We
1858        # express y as a rational m/n, with m and n relatively prime
1859        # and n>0.  Then for x**y to be exactly representable (at
1860        # *any* precision), xc must be the nth power of a positive
1861        # integer and xe must be divisible by n.  If m is negative
1862        # then additionally xc must be a power of either 2 or 5, hence
1863        # a power of 2**n or 5**n.
1864        #
1865        # There's a limit to how small |y| can be: if y=m/n as above
1866        # then:
1867        #
1868        #  (1) if xc != 1 then for the result to be representable we
1869        #      need xc**(1/n) >= 2, and hence also xc**|y| >= 2.  So
1870        #      if |y| <= 1/nbits(xc) then xc < 2**nbits(xc) <=
1871        #      2**(1/|y|), hence xc**|y| < 2 and the result is not
1872        #      representable.
1873        #
1874        #  (2) if xe != 0, |xe|*(1/n) >= 1, so |xe|*|y| >= 1.  Hence if
1875        #      |y| < 1/|xe| then the result is not representable.
1876        #
1877        # Note that since x is not equal to 1, at least one of (1) and
1878        # (2) must apply.  Now |y| < 1/nbits(xc) iff |yc|*nbits(xc) <
1879        # 10**-ye iff len(str(|yc|*nbits(xc)) <= -ye.
1880        #
1881        # There's also a limit to how large y can be, at least if it's
1882        # positive: the normalized result will have coefficient xc**y,
1883        # so if it's representable then xc**y < 10**p, and y <
1884        # p/log10(xc).  Hence if y*log10(xc) >= p then the result is
1885        # not exactly representable.
1886
1887        # if len(str(abs(yc*xe)) <= -ye then abs(yc*xe) < 10**-ye,
1888        # so |y| < 1/xe and the result is not representable.
1889        # Similarly, len(str(abs(yc)*xc_bits)) <= -ye implies |y|
1890        # < 1/nbits(xc).
1891
1892        x = _WorkRep(self)
1893        xc, xe = x.int, x.exp
1894        while xc % 10 == 0:
1895            xc //= 10
1896            xe += 1
1897
1898        y = _WorkRep(other)
1899        yc, ye = y.int, y.exp
1900        while yc % 10 == 0:
1901            yc //= 10
1902            ye += 1
1903
1904        # case where xc == 1: result is 10**(xe*y), with xe*y
1905        # required to be an integer
1906        if xc == 1:
1907            if ye >= 0:
1908                exponent = xe*yc*10**ye
1909            else:
1910                exponent, remainder = divmod(xe*yc, 10**-ye)
1911                if remainder:
1912                    return None
1913            if y.sign == 1:
1914                exponent = -exponent
1915            # if other is a nonnegative integer, use ideal exponent
1916            if other._isinteger() and other._sign == 0:
1917                ideal_exponent = self._exp*int(other)
1918                zeros = min(exponent-ideal_exponent, p-1)
1919            else:
1920                zeros = 0
1921            return _dec_from_triple(0, '1' + '0'*zeros, exponent-zeros)
1922
1923        # case where y is negative: xc must be either a power
1924        # of 2 or a power of 5.
1925        if y.sign == 1:
1926            last_digit = xc % 10
1927            if last_digit in (2,4,6,8):
1928                # quick test for power of 2
1929                if xc & -xc != xc:
1930                    return None
1931                # now xc is a power of 2; e is its exponent
1932                e = _nbits(xc)-1
1933                # find e*y and xe*y; both must be integers
1934                if ye >= 0:
1935                    y_as_int = yc*10**ye
1936                    e = e*y_as_int
1937                    xe = xe*y_as_int
1938                else:
1939                    ten_pow = 10**-ye
1940                    e, remainder = divmod(e*yc, ten_pow)
1941                    if remainder:
1942                        return None
1943                    xe, remainder = divmod(xe*yc, ten_pow)
1944                    if remainder:
1945                        return None
1946
1947                if e*65 >= p*93: # 93/65 > log(10)/log(5)
1948                    return None
1949                xc = 5**e
1950
1951            elif last_digit == 5:
1952                # e >= log_5(xc) if xc is a power of 5; we have
1953                # equality all the way up to xc=5**2658
1954                e = _nbits(xc)*28//65
1955                xc, remainder = divmod(5**e, xc)
1956                if remainder:
1957                    return None
1958                while xc % 5 == 0:
1959                    xc //= 5
1960                    e -= 1
1961                if ye >= 0:
1962                    y_as_integer = yc*10**ye
1963                    e = e*y_as_integer
1964                    xe = xe*y_as_integer
1965                else:
1966                    ten_pow = 10**-ye
1967                    e, remainder = divmod(e*yc, ten_pow)
1968                    if remainder:
1969                        return None
1970                    xe, remainder = divmod(xe*yc, ten_pow)
1971                    if remainder:
1972                        return None
1973                if e*3 >= p*10: # 10/3 > log(10)/log(2)
1974                    return None
1975                xc = 2**e
1976            else:
1977                return None
1978
1979            if xc >= 10**p:
1980                return None
1981            xe = -e-xe
1982            return _dec_from_triple(0, str(xc), xe)
1983
1984        # now y is positive; find m and n such that y = m/n
1985        if ye >= 0:
1986            m, n = yc*10**ye, 1
1987        else:
1988            if xe != 0 and len(str(abs(yc*xe))) <= -ye:
1989                return None
1990            xc_bits = _nbits(xc)
1991            if xc != 1 and len(str(abs(yc)*xc_bits)) <= -ye:
1992                return None
1993            m, n = yc, 10**(-ye)
1994            while m % 2 == n % 2 == 0:
1995                m //= 2
1996                n //= 2
1997            while m % 5 == n % 5 == 0:
1998                m //= 5
1999                n //= 5
2000
2001        # compute nth root of xc*10**xe
2002        if n > 1:
2003            # if 1 < xc < 2**n then xc isn't an nth power
2004            if xc != 1 and xc_bits <= n:
2005                return None
2006
2007            xe, rem = divmod(xe, n)
2008            if rem != 0:
2009                return None
2010
2011            # compute nth root of xc using Newton's method
2012            a = 1L << -(-_nbits(xc)//n) # initial estimate
2013            while True:
2014                q, r = divmod(xc, a**(n-1))
2015                if a <= q:
2016                    break
2017                else:
2018                    a = (a*(n-1) + q)//n
2019            if not (a == q and r == 0):
2020                return None
2021            xc = a
2022
2023        # now xc*10**xe is the nth root of the original xc*10**xe
2024        # compute mth power of xc*10**xe
2025
2026        # if m > p*100//_log10_lb(xc) then m > p/log10(xc), hence xc**m >
2027        # 10**p and the result is not representable.
2028        if xc > 1 and m > p*100//_log10_lb(xc):
2029            return None
2030        xc = xc**m
2031        xe *= m
2032        if xc > 10**p:
2033            return None
2034
2035        # by this point the result *is* exactly representable
2036        # adjust the exponent to get as close as possible to the ideal
2037        # exponent, if necessary
2038        str_xc = str(xc)
2039        if other._isinteger() and other._sign == 0:
2040            ideal_exponent = self._exp*int(other)
2041            zeros = min(xe-ideal_exponent, p-len(str_xc))
2042        else:
2043            zeros = 0
2044        return _dec_from_triple(0, str_xc+'0'*zeros, xe-zeros)
2045
2046    def __pow__(self, other, modulo=None, context=None):
2047        """Return self ** other [ % modulo].
2048
2049        With two arguments, compute self**other.
2050
2051        With three arguments, compute (self**other) % modulo.  For the
2052        three argument form, the following restrictions on the
2053        arguments hold:
2054
2055         - all three arguments must be integral
2056         - other must be nonnegative
2057         - either self or other (or both) must be nonzero
2058         - modulo must be nonzero and must have at most p digits,
2059           where p is the context precision.
2060
2061        If any of these restrictions is violated the InvalidOperation
2062        flag is raised.
2063
2064        The result of pow(self, other, modulo) is identical to the
2065        result that would be obtained by computing (self**other) %
2066        modulo with unbounded precision, but is computed more
2067        efficiently.  It is always exact.
2068        """
2069
2070        if modulo is not None:
2071            return self._power_modulo(other, modulo, context)
2072
2073        other = _convert_other(other)
2074        if other is NotImplemented:
2075            return other
2076
2077        if context is None:
2078            context = getcontext()
2079
2080        # either argument is a NaN => result is NaN
2081        ans = self._check_nans(other, context)
2082        if ans:
2083            return ans
2084
2085        # 0**0 = NaN (!), x**0 = 1 for nonzero x (including +/-Infinity)
2086        if not other:
2087            if not self:
2088                return context._raise_error(InvalidOperation, '0 ** 0')
2089            else:
2090                return Dec_p1
2091
2092        # result has sign 1 iff self._sign is 1 and other is an odd integer
2093        result_sign = 0
2094        if self._sign == 1:
2095            if other._isinteger():
2096                if not other._iseven():
2097                    result_sign = 1
2098            else:
2099                # -ve**noninteger = NaN
2100                # (-0)**noninteger = 0**noninteger
2101                if self:
2102                    return context._raise_error(InvalidOperation,
2103                        'x ** y with x negative and y not an integer')
2104            # negate self, without doing any unwanted rounding
2105            self = self.copy_negate()
2106
2107        # 0**(+ve or Inf)= 0; 0**(-ve or -Inf) = Infinity
2108        if not self:
2109            if other._sign == 0:
2110                return _dec_from_triple(result_sign, '0', 0)
2111            else:
2112                return Infsign[result_sign]
2113
2114        # Inf**(+ve or Inf) = Inf; Inf**(-ve or -Inf) = 0
2115        if self._isinfinity():
2116            if other._sign == 0:
2117                return Infsign[result_sign]
2118            else:
2119                return _dec_from_triple(result_sign, '0', 0)
2120
2121        # 1**other = 1, but the choice of exponent and the flags
2122        # depend on the exponent of self, and on whether other is a
2123        # positive integer, a negative integer, or neither
2124        if self == Dec_p1:
2125            if other._isinteger():
2126                # exp = max(self._exp*max(int(other), 0),
2127                # 1-context.prec) but evaluating int(other) directly
2128                # is dangerous until we know other is small (other
2129                # could be 1e999999999)
2130                if other._sign == 1:
2131                    multiplier = 0
2132                elif other > context.prec:
2133                    multiplier = context.prec
2134                else:
2135                    multiplier = int(other)
2136
2137                exp = self._exp * multiplier
2138                if exp < 1-context.prec:
2139                    exp = 1-context.prec
2140                    context._raise_error(Rounded)
2141            else:
2142                context._raise_error(Inexact)
2143                context._raise_error(Rounded)
2144                exp = 1-context.prec
2145
2146            return _dec_from_triple(result_sign, '1'+'0'*-exp, exp)
2147
2148        # compute adjusted exponent of self
2149        self_adj = self.adjusted()
2150
2151        # self ** infinity is infinity if self > 1, 0 if self < 1
2152        # self ** -infinity is infinity if self < 1, 0 if self > 1
2153        if other._isinfinity():
2154            if (other._sign == 0) == (self_adj < 0):
2155                return _dec_from_triple(result_sign, '0', 0)
2156            else:
2157                return Infsign[result_sign]
2158
2159        # from here on, the result always goes through the call
2160        # to _fix at the end of this function.
2161        ans = None
2162
2163        # crude test to catch cases of extreme overflow/underflow.  If
2164        # log10(self)*other >= 10**bound and bound >= len(str(Emax))
2165        # then 10**bound >= 10**len(str(Emax)) >= Emax+1 and hence
2166        # self**other >= 10**(Emax+1), so overflow occurs.  The test
2167        # for underflow is similar.
2168        bound = self._log10_exp_bound() + other.adjusted()
2169        if (self_adj >= 0) == (other._sign == 0):
2170            # self > 1 and other +ve, or self < 1 and other -ve
2171            # possibility of overflow
2172            if bound >= len(str(context.Emax)):
2173                ans = _dec_from_triple(result_sign, '1', context.Emax+1)
2174        else:
2175            # self > 1 and other -ve, or self < 1 and other +ve
2176            # possibility of underflow to 0
2177            Etiny = context.Etiny()
2178            if bound >= len(str(-Etiny)):
2179                ans = _dec_from_triple(result_sign, '1', Etiny-1)
2180
2181        # try for an exact result with precision +1
2182        if ans is None:
2183            ans = self._power_exact(other, context.prec + 1)
2184            if ans is not None and result_sign == 1:
2185                ans = _dec_from_triple(1, ans._int, ans._exp)
2186
2187        # usual case: inexact result, x**y computed directly as exp(y*log(x))
2188        if ans is None:
2189            p = context.prec
2190            x = _WorkRep(self)
2191            xc, xe = x.int, x.exp
2192            y = _WorkRep(other)
2193            yc, ye = y.int, y.exp
2194            if y.sign == 1:
2195                yc = -yc
2196
2197            # compute correctly rounded result:  start with precision +3,
2198            # then increase precision until result is unambiguously roundable
2199            extra = 3
2200            while True:
2201                coeff, exp = _dpower(xc, xe, yc, ye, p+extra)
2202                if coeff % (5*10**(len(str(coeff))-p-1)):
2203                    break
2204                extra += 3
2205
2206            ans = _dec_from_triple(result_sign, str(coeff), exp)
2207
2208        # the specification says that for non-integer other we need to
2209        # raise Inexact, even when the result is actually exact.  In
2210        # the same way, we need to raise Underflow here if the result
2211        # is subnormal.  (The call to _fix will take care of raising
2212        # Rounded and Subnormal, as usual.)
2213        if not other._isinteger():
2214            context._raise_error(Inexact)
2215            # pad with zeros up to length context.prec+1 if necessary
2216            if len(ans._int) <= context.prec:
2217                expdiff = context.prec+1 - len(ans._int)
2218                ans = _dec_from_triple(ans._sign, ans._int+'0'*expdiff,
2219                                       ans._exp-expdiff)
2220            if ans.adjusted() < context.Emin:
2221                context._raise_error(Underflow)
2222
2223        # unlike exp, ln and log10, the power function respects the
2224        # rounding mode; no need to use ROUND_HALF_EVEN here
2225        ans = ans._fix(context)
2226        return ans
2227
2228    def __rpow__(self, other, context=None):
2229        """Swaps self/other and returns __pow__."""
2230        other = _convert_other(other)
2231        if other is NotImplemented:
2232            return other
2233        return other.__pow__(self, context=context)
2234
2235    def normalize(self, context=None):
2236        """Normalize- strip trailing 0s, change anything equal to 0 to 0e0"""
2237
2238        if context is None:
2239            context = getcontext()
2240
2241        if self._is_special:
2242            ans = self._check_nans(context=context)
2243            if ans:
2244                return ans
2245
2246        dup = self._fix(context)
2247        if dup._isinfinity():
2248            return dup
2249
2250        if not dup:
2251            return _dec_from_triple(dup._sign, '0', 0)
2252        exp_max = [context.Emax, context.Etop()][context._clamp]
2253        end = len(dup._int)
2254        exp = dup._exp
2255        while dup._int[end-1] == '0' and exp < exp_max:
2256            exp += 1
2257            end -= 1
2258        return _dec_from_triple(dup._sign, dup._int[:end], exp)
2259
2260    def quantize(self, exp, rounding=None, context=None, watchexp=True):
2261        """Quantize self so its exponent is the same as that of exp.
2262
2263        Similar to self._rescale(exp._exp) but with error checking.
2264        """
2265        exp = _convert_other(exp, raiseit=True)
2266
2267        if context is None:
2268            context = getcontext()
2269        if rounding is None:
2270            rounding = context.rounding
2271
2272        if self._is_special or exp._is_special:
2273            ans = self._check_nans(exp, context)
2274            if ans:
2275                return ans
2276
2277            if exp._isinfinity() or self._isinfinity():
2278                if exp._isinfinity() and self._isinfinity():
2279                    return Decimal(self)  # if both are inf, it is OK
2280                return context._raise_error(InvalidOperation,
2281                                        'quantize with one INF')
2282
2283        # if we're not watching exponents, do a simple rescale
2284        if not watchexp:
2285            ans = self._rescale(exp._exp, rounding)
2286            # raise Inexact and Rounded where appropriate
2287            if ans._exp > self._exp:
2288                context._raise_error(Rounded)
2289                if ans != self:
2290                    context._raise_error(Inexact)
2291            return ans
2292
2293        # exp._exp should be between Etiny and Emax
2294        if not (context.Etiny() <= exp._exp <= context.Emax):
2295            return context._raise_error(InvalidOperation,
2296                   'target exponent out of bounds in quantize')
2297
2298        if not self:
2299            ans = _dec_from_triple(self._sign, '0', exp._exp)
2300            return ans._fix(context)
2301
2302        self_adjusted = self.adjusted()
2303        if self_adjusted > context.Emax:
2304            return context._raise_error(InvalidOperation,
2305                                        'exponent of quantize result too large for current context')
2306        if self_adjusted - exp._exp + 1 > context.prec:
2307            return context._raise_error(InvalidOperation,
2308                                        'quantize result has too many digits for current context')
2309
2310        ans = self._rescale(exp._exp, rounding)
2311        if ans.adjusted() > context.Emax:
2312            return context._raise_error(InvalidOperation,
2313                                        'exponent of quantize result too large for current context')
2314        if len(ans._int) > context.prec:
2315            return context._raise_error(InvalidOperation,
2316                                        'quantize result has too many digits for current context')
2317
2318        # raise appropriate flags
2319        if ans._exp > self._exp:
2320            context._raise_error(Rounded)
2321            if ans != self:
2322                context._raise_error(Inexact)
2323        if ans and ans.adjusted() < context.Emin:
2324            context._raise_error(Subnormal)
2325
2326        # call to fix takes care of any necessary folddown
2327        ans = ans._fix(context)
2328        return ans
2329
2330    def same_quantum(self, other):
2331        """Return True if self and other have the same exponent; otherwise
2332        return False.
2333
2334        If either operand is a special value, the following rules are used:
2335           * return True if both operands are infinities
2336           * return True if both operands are NaNs
2337           * otherwise, return False.
2338        """
2339        other = _convert_other(other, raiseit=True)
2340        if self._is_special or other._is_special:
2341            return (self.is_nan() and other.is_nan() or
2342                    self.is_infinite() and other.is_infinite())
2343        return self._exp == other._exp
2344
2345    def _rescale(self, exp, rounding):
2346        """Rescale self so that the exponent is exp, either by padding with zeros
2347        or by truncating digits, using the given rounding mode.
2348
2349        Specials are returned without change.  This operation is
2350        quiet: it raises no flags, and uses no information from the
2351        context.
2352
2353        exp = exp to scale to (an integer)
2354        rounding = rounding mode
2355        """
2356        if self._is_special:
2357            return Decimal(self)
2358        if not self:
2359            return _dec_from_triple(self._sign, '0', exp)
2360
2361        if self._exp >= exp:
2362            # pad answer with zeros if necessary
2363            return _dec_from_triple(self._sign,
2364                                        self._int + '0'*(self._exp - exp), exp)
2365
2366        # too many digits; round and lose data.  If self.adjusted() <
2367        # exp-1, replace self by 10**(exp-1) before rounding
2368        digits = len(self._int) + self._exp - exp
2369        if digits < 0:
2370            self = _dec_from_triple(self._sign, '1', exp-1)
2371            digits = 0
2372        this_function = getattr(self, self._pick_rounding_function[rounding])
2373        changed = this_function(digits)
2374        coeff = self._int[:digits] or '0'
2375        if changed == 1:
2376            coeff = str(int(coeff)+1)
2377        return _dec_from_triple(self._sign, coeff, exp)
2378
2379    def _round(self, places, rounding):
2380        """Round a nonzero, nonspecial Decimal to a fixed number of
2381        significant figures, using the given rounding mode.
2382
2383        Infinities, NaNs and zeros are returned unaltered.
2384
2385        This operation is quiet: it raises no flags, and uses no
2386        information from the context.
2387
2388        """
2389        if places <= 0:
2390            raise ValueError("argument should be at least 1 in _round")
2391        if self._is_special or not self:
2392            return Decimal(self)
2393        ans = self._rescale(self.adjusted()+1-places, rounding)
2394        # it can happen that the rescale alters the adjusted exponent;
2395        # for example when rounding 99.97 to 3 significant figures.
2396        # When this happens we end up with an extra 0 at the end of
2397        # the number; a second rescale fixes this.
2398        if ans.adjusted() != self.adjusted():
2399            ans = ans._rescale(ans.adjusted()+1-places, rounding)
2400        return ans
2401
2402    def to_integral_exact(self, rounding=None, context=None):
2403        """Rounds to a nearby integer.
2404
2405        If no rounding mode is specified, take the rounding mode from
2406        the context.  This method raises the Rounded and Inexact flags
2407        when appropriate.
2408
2409        See also: to_integral_value, which does exactly the same as
2410        this method except that it doesn't raise Inexact or Rounded.
2411        """
2412        if self._is_special:
2413            ans = self._check_nans(context=context)
2414            if ans:
2415                return ans
2416            return Decimal(self)
2417        if self._exp >= 0:
2418            return Decimal(self)
2419        if not self:
2420            return _dec_from_triple(self._sign, '0', 0)
2421        if context is None:
2422            context = getcontext()
2423        if rounding is None:
2424            rounding = context.rounding
2425        context._raise_error(Rounded)
2426        ans = self._rescale(0, rounding)
2427        if ans != self:
2428            context._raise_error(Inexact)
2429        return ans
2430
2431    def to_integral_value(self, rounding=None, context=None):
2432        """Rounds to the nearest integer, without raising inexact, rounded."""
2433        if context is None:
2434            context = getcontext()
2435        if rounding is None:
2436            rounding = context.rounding
2437        if self._is_special:
2438            ans = self._check_nans(context=context)
2439            if ans:
2440                return ans
2441            return Decimal(self)
2442        if self._exp >= 0:
2443            return Decimal(self)
2444        else:
2445            return self._rescale(0, rounding)
2446
2447    # the method name changed, but we provide also the old one, for compatibility
2448    to_integral = to_integral_value
2449
2450    def sqrt(self, context=None):
2451        """Return the square root of self."""
2452        if context is None:
2453            context = getcontext()
2454
2455        if self._is_special:
2456            ans = self._check_nans(context=context)
2457            if ans:
2458                return ans
2459
2460            if self._isinfinity() and self._sign == 0:
2461                return Decimal(self)
2462
2463        if not self:
2464            # exponent = self._exp // 2.  sqrt(-0) = -0
2465            ans = _dec_from_triple(self._sign, '0', self._exp // 2)
2466            return ans._fix(context)
2467
2468        if self._sign == 1:
2469            return context._raise_error(InvalidOperation, 'sqrt(-x), x > 0')
2470
2471        # At this point self represents a positive number.  Let p be
2472        # the desired precision and express self in the form c*100**e
2473        # with c a positive real number and e an integer, c and e
2474        # being chosen so that 100**(p-1) <= c < 100**p.  Then the
2475        # (exact) square root of self is sqrt(c)*10**e, and 10**(p-1)
2476        # <= sqrt(c) < 10**p, so the closest representable Decimal at
2477        # precision p is n*10**e where n = round_half_even(sqrt(c)),
2478        # the closest integer to sqrt(c) with the even integer chosen
2479        # in the case of a tie.
2480        #
2481        # To ensure correct rounding in all cases, we use the
2482        # following trick: we compute the square root to an extra
2483        # place (precision p+1 instead of precision p), rounding down.
2484        # Then, if the result is inexact and its last digit is 0 or 5,
2485        # we increase the last digit to 1 or 6 respectively; if it's
2486        # exact we leave the last digit alone.  Now the final round to
2487        # p places (or fewer in the case of underflow) will round
2488        # correctly and raise the appropriate flags.
2489
2490        # use an extra digit of precision
2491        prec = context.prec+1
2492
2493        # write argument in the form c*100**e where e = self._exp//2
2494        # is the 'ideal' exponent, to be used if the square root is
2495        # exactly representable.  l is the number of 'digits' of c in
2496        # base 100, so that 100**(l-1) <= c < 100**l.
2497        op = _WorkRep(self)
2498        e = op.exp >> 1
2499        if op.exp & 1:
2500            c = op.int * 10
2501            l = (len(self._int) >> 1) + 1
2502        else:
2503            c = op.int
2504            l = len(self._int)+1 >> 1
2505
2506        # rescale so that c has exactly prec base 100 'digits'
2507        shift = prec-l
2508        if shift >= 0:
2509            c *= 100**shift
2510            exact = True
2511        else:
2512            c, remainder = divmod(c, 100**-shift)
2513            exact = not remainder
2514        e -= shift
2515
2516        # find n = floor(sqrt(c)) using Newton's method
2517        n = 10**prec
2518        while True:
2519            q = c//n
2520            if n <= q:
2521                break
2522            else:
2523                n = n + q >> 1
2524        exact = exact and n*n == c
2525
2526        if exact:
2527            # result is exact; rescale to use ideal exponent e
2528            if shift >= 0:
2529                # assert n % 10**shift == 0
2530                n //= 10**shift
2531            else:
2532                n *= 10**-shift
2533            e += shift
2534        else:
2535            # result is not exact; fix last digit as described above
2536            if n % 5 == 0:
2537                n += 1
2538
2539        ans = _dec_from_triple(0, str(n), e)
2540
2541        # round, and fit to current context
2542        context = context._shallow_copy()
2543        rounding = context._set_rounding(ROUND_HALF_EVEN)
2544        ans = ans._fix(context)
2545        context.rounding = rounding
2546
2547        return ans
2548
2549    def max(self, other, context=None):
2550        """Returns the larger value.
2551
2552        Like max(self, other) except if one is not a number, returns
2553        NaN (and signals if one is sNaN).  Also rounds.
2554        """
2555        other = _convert_other(other, raiseit=True)
2556
2557        if context is None:
2558            context = getcontext()
2559
2560        if self._is_special or other._is_special:
2561            # If one operand is a quiet NaN and the other is number, then the
2562            # number is always returned
2563            sn = self._isnan()
2564            on = other._isnan()
2565            if sn or on:
2566                if on == 1 and sn != 2:
2567                    return self._fix_nan(context)
2568                if sn == 1 and on != 2:
2569                    return other._fix_nan(context)
2570                return self._check_nans(other, context)
2571
2572        c = self._cmp(other)
2573        if c == 0:
2574            # If both operands are finite and equal in numerical value
2575            # then an ordering is applied:
2576            #
2577            # If the signs differ then max returns the operand with the
2578            # positive sign and min returns the operand with the negative sign
2579            #
2580            # If the signs are the same then the exponent is used to select
2581            # the result.  This is exactly the ordering used in compare_total.
2582            c = self.compare_total(other)
2583
2584        if c == -1:
2585            ans = other
2586        else:
2587            ans = self
2588
2589        return ans._fix(context)
2590
2591    def min(self, other, context=None):
2592        """Returns the smaller value.
2593
2594        Like min(self, other) except if one is not a number, returns
2595        NaN (and signals if one is sNaN).  Also rounds.
2596        """
2597        other = _convert_other(other, raiseit=True)
2598
2599        if context is None:
2600            context = getcontext()
2601
2602        if self._is_special or other._is_special:
2603            # If one operand is a quiet NaN and the other is number, then the
2604            # number is always returned
2605            sn = self._isnan()
2606            on = other._isnan()
2607            if sn or on:
2608                if on == 1 and sn != 2:
2609                    return self._fix_nan(context)
2610                if sn == 1 and on != 2:
2611                    return other._fix_nan(context)
2612                return self._check_nans(other, context)
2613
2614        c = self._cmp(other)
2615        if c == 0:
2616            c = self.compare_total(other)
2617
2618        if c == -1:
2619            ans = self
2620        else:
2621            ans = other
2622
2623        return ans._fix(context)
2624
2625    def _isinteger(self):
2626        """Returns whether self is an integer"""
2627        if self._is_special:
2628            return False
2629        if self._exp >= 0:
2630            return True
2631        rest = self._int[self._exp:]
2632        return rest == '0'*len(rest)
2633
2634    def _iseven(self):
2635        """Returns True if self is even.  Assumes self is an integer."""
2636        if not self or self._exp > 0:
2637            return True
2638        return self._int[-1+self._exp] in '02468'
2639
2640    def adjusted(self):
2641        """Return the adjusted exponent of self"""
2642        try:
2643            return self._exp + len(self._int) - 1
2644        # If NaN or Infinity, self._exp is string
2645        except TypeError:
2646            return 0
2647
2648    def canonical(self, context=None):
2649        """Returns the same Decimal object.
2650
2651        As we do not have different encodings for the same number, the
2652        received object already is in its canonical form.
2653        """
2654        return self
2655
2656    def compare_signal(self, other, context=None):
2657        """Compares self to the other operand numerically.
2658
2659        It's pretty much like compare(), but all NaNs signal, with signaling
2660        NaNs taking precedence over quiet NaNs.
2661        """
2662        other = _convert_other(other, raiseit = True)
2663        ans = self._compare_check_nans(other, context)
2664        if ans:
2665            return ans
2666        return self.compare(other, context=context)
2667
2668    def compare_total(self, other):
2669        """Compares self to other using the abstract representations.
2670
2671        This is not like the standard compare, which use their numerical
2672        value. Note that a total ordering is defined for all possible abstract
2673        representations.
2674        """
2675        # if one is negative and the other is positive, it's easy
2676        if self._sign and not other._sign:
2677            return Dec_n1
2678        if not self._sign and other._sign:
2679            return Dec_p1
2680        sign = self._sign
2681
2682        # let's handle both NaN types
2683        self_nan = self._isnan()
2684        other_nan = other._isnan()
2685        if self_nan or other_nan:
2686            if self_nan == other_nan:
2687                if self._int < other._int:
2688                    if sign:
2689                        return Dec_p1
2690                    else:
2691                        return Dec_n1
2692                if self._int > other._int:
2693                    if sign:
2694                        return Dec_n1
2695                    else:
2696                        return Dec_p1
2697                return Dec_0
2698
2699            if sign:
2700                if self_nan == 1:
2701                    return Dec_n1
2702                if other_nan == 1:
2703                    return Dec_p1
2704                if self_nan == 2:
2705                    return Dec_n1
2706                if other_nan == 2:
2707                    return Dec_p1
2708            else:
2709                if self_nan == 1:
2710                    return Dec_p1
2711                if other_nan == 1:
2712                    return Dec_n1
2713                if self_nan == 2:
2714                    return Dec_p1
2715                if other_nan == 2:
2716                    return Dec_n1
2717
2718        if self < other:
2719            return Dec_n1
2720        if self > other:
2721            return Dec_p1
2722
2723        if self._exp < other._exp:
2724            if sign:
2725                return Dec_p1
2726            else:
2727                return Dec_n1
2728        if self._exp > other._exp:
2729            if sign:
2730                return Dec_n1
2731            else:
2732                return Dec_p1
2733        return Dec_0
2734
2735
2736    def compare_total_mag(self, other):
2737        """Compares self to other using abstract repr., ignoring sign.
2738
2739        Like compare_total, but with operand's sign ignored and assumed to be 0.
2740        """
2741        s = self.copy_abs()
2742        o = other.copy_abs()
2743        return s.compare_total(o)
2744
2745    def copy_abs(self):
2746        """Returns a copy with the sign set to 0. """
2747        return _dec_from_triple(0, self._int, self._exp, self._is_special)
2748
2749    def copy_negate(self):
2750        """Returns a copy with the sign inverted."""
2751        if self._sign:
2752            return _dec_from_triple(0, self._int, self._exp, self._is_special)
2753        else:
2754            return _dec_from_triple(1, self._int, self._exp, self._is_special)
2755
2756    def copy_sign(self, other):
2757        """Returns self with the sign of other."""
2758        return _dec_from_triple(other._sign, self._int,
2759                                self._exp, self._is_special)
2760
2761    def exp(self, context=None):
2762        """Returns e ** self."""
2763
2764        if context is None:
2765            context = getcontext()
2766
2767        # exp(NaN) = NaN
2768        ans = self._check_nans(context=context)
2769        if ans:
2770            return ans
2771
2772        # exp(-Infinity) = 0
2773        if self._isinfinity() == -1:
2774            return Dec_0
2775
2776        # exp(0) = 1
2777        if not self:
2778            return Dec_p1
2779
2780        # exp(Infinity) = Infinity
2781        if self._isinfinity() == 1:
2782            return Decimal(self)
2783
2784        # the result is now guaranteed to be inexact (the true
2785        # mathematical result is transcendental). There's no need to
2786        # raise Rounded and Inexact here---they'll always be raised as
2787        # a result of the call to _fix.
2788        p = context.prec
2789        adj = self.adjusted()
2790
2791        # we only need to do any computation for quite a small range
2792        # of adjusted exponents---for example, -29 <= adj <= 10 for
2793        # the default context.  For smaller exponent the result is
2794        # indistinguishable from 1 at the given precision, while for
2795        # larger exponent the result either overflows or underflows.
2796        if self._sign == 0 and adj > len(str((context.Emax+1)*3)):
2797            # overflow
2798            ans = _dec_from_triple(0, '1', context.Emax+1)
2799        elif self._sign == 1 and adj > len(str((-context.Etiny()+1)*3)):
2800            # underflow to 0
2801            ans = _dec_from_triple(0, '1', context.Etiny()-1)
2802        elif self._sign == 0 and adj < -p:
2803            # p+1 digits; final round will raise correct flags
2804            ans = _dec_from_triple(0, '1' + '0'*(p-1) + '1', -p)
2805        elif self._sign == 1 and adj < -p-1:
2806            # p+1 digits; final round will raise correct flags
2807            ans = _dec_from_triple(0, '9'*(p+1), -p-1)
2808        # general case
2809        else:
2810            op = _WorkRep(self)
2811            c, e = op.int, op.exp
2812            if op.sign == 1:
2813                c = -c
2814
2815            # compute correctly rounded result: increase precision by
2816            # 3 digits at a time until we get an unambiguously
2817            # roundable result
2818            extra = 3
2819            while True:
2820                coeff, exp = _dexp(c, e, p+extra)
2821                if coeff % (5*10**(len(str(coeff))-p-1)):
2822                    break
2823                extra += 3
2824
2825            ans = _dec_from_triple(0, str(coeff), exp)
2826
2827        # at this stage, ans should round correctly with *any*
2828        # rounding mode, not just with ROUND_HALF_EVEN
2829        context = context._shallow_copy()
2830        rounding = context._set_rounding(ROUND_HALF_EVEN)
2831        ans = ans._fix(context)
2832        context.rounding = rounding
2833
2834        return ans
2835
2836    def is_canonical(self):
2837        """Return True if self is canonical; otherwise return False.
2838
2839        Currently, the encoding of a Decimal instance is always
2840        canonical, so this method returns True for any Decimal.
2841        """
2842        return True
2843
2844    def is_finite(self):
2845        """Return True if self is finite; otherwise return False.
2846
2847        A Decimal instance is considered finite if it is neither
2848        infinite nor a NaN.
2849        """
2850        return not self._is_special
2851
2852    def is_infinite(self):
2853        """Return True if self is infinite; otherwise return False."""
2854        return self._exp == 'F'
2855
2856    def is_nan(self):
2857        """Return True if self is a qNaN or sNaN; otherwise return False."""
2858        return self._exp in ('n', 'N')
2859
2860    def is_normal(self, context=None):
2861        """Return True if self is a normal number; otherwise return False."""
2862        if self._is_special or not self:
2863            return False
2864        if context is None:
2865            context = getcontext()
2866        return context.Emin <= self.adjusted() <= context.Emax
2867
2868    def is_qnan(self):
2869        """Return True if self is a quiet NaN; otherwise return False."""
2870        return self._exp == 'n'
2871
2872    def is_signed(self):
2873        """Return True if self is negative; otherwise return False."""
2874        return self._sign == 1
2875
2876    def is_snan(self):
2877        """Return True if self is a signaling NaN; otherwise return False."""
2878        return self._exp == 'N'
2879
2880    def is_subnormal(self, context=None):
2881        """Return True if self is subnormal; otherwise return False."""
2882        if self._is_special or not self:
2883            return False
2884        if context is None:
2885            context = getcontext()
2886        return self.adjusted() < context.Emin
2887
2888    def is_zero(self):
2889        """Return True if self is a zero; otherwise return False."""
2890        return not self._is_special and self._int == '0'
2891
2892    def _ln_exp_bound(self):
2893        """Compute a lower bound for the adjusted exponent of self.ln().
2894        In other words, compute r such that self.ln() >= 10**r.  Assumes
2895        that self is finite and positive and that self != 1.
2896        """
2897
2898        # for 0.1 <= x <= 10 we use the inequalities 1-1/x <= ln(x) <= x-1
2899        adj = self._exp + len(self._int) - 1
2900        if adj >= 1:
2901            # argument >= 10; we use 23/10 = 2.3 as a lower bound for ln(10)
2902            return len(str(adj*23//10)) - 1
2903        if adj <= -2:
2904            # argument <= 0.1
2905            return len(str((-1-adj)*23//10)) - 1
2906        op = _WorkRep(self)
2907        c, e = op.int, op.exp
2908        if adj == 0:
2909            # 1 < self < 10
2910            num = str(c-10**-e)
2911            den = str(c)
2912            return len(num) - len(den) - (num < den)
2913        # adj == -1, 0.1 <= self < 1
2914        return e + len(str(10**-e - c)) - 1
2915
2916
2917    def ln(self, context=None):
2918        """Returns the natural (base e) logarithm of self."""
2919
2920        if context is None:
2921            context = getcontext()
2922
2923        # ln(NaN) = NaN
2924        ans = self._check_nans(context=context)
2925        if ans:
2926            return ans
2927
2928        # ln(0.0) == -Infinity
2929        if not self:
2930            return negInf
2931
2932        # ln(Infinity) = Infinity
2933        if self._isinfinity() == 1:
2934            return Inf
2935
2936        # ln(1.0) == 0.0
2937        if self == Dec_p1:
2938            return Dec_0
2939
2940        # ln(negative) raises InvalidOperation
2941        if self._sign == 1:
2942            return context._raise_error(InvalidOperation,
2943                                        'ln of a negative value')
2944
2945        # result is irrational, so necessarily inexact
2946        op = _WorkRep(self)
2947        c, e = op.int, op.exp
2948        p = context.prec
2949
2950        # correctly rounded result: repeatedly increase precision by 3
2951        # until we get an unambiguously roundable result
2952        places = p - self._ln_exp_bound() + 2 # at least p+3 places
2953        while True:
2954            coeff = _dlog(c, e, places)
2955            # assert len(str(abs(coeff)))-p >= 1
2956            if coeff % (5*10**(len(str(abs(coeff)))-p-1)):
2957                break
2958            places += 3
2959        ans = _dec_from_triple(int(coeff<0), str(abs(coeff)), -places)
2960
2961        context = context._shallow_copy()
2962        rounding = context._set_rounding(ROUND_HALF_EVEN)
2963        ans = ans._fix(context)
2964        context.rounding = rounding
2965        return ans
2966
2967    def _log10_exp_bound(self):
2968        """Compute a lower bound for the adjusted exponent of self.log10().
2969        In other words, find r such that self.log10() >= 10**r.
2970        Assumes that self is finite and positive and that self != 1.
2971        """
2972
2973        # For x >= 10 or x < 0.1 we only need a bound on the integer
2974        # part of log10(self), and this comes directly from the
2975        # exponent of x.  For 0.1 <= x <= 10 we use the inequalities
2976        # 1-1/x <= log(x) <= x-1. If x > 1 we have |log10(x)| >
2977        # (1-1/x)/2.31 > 0.  If x < 1 then |log10(x)| > (1-x)/2.31 > 0
2978
2979        adj = self._exp + len(self._int) - 1
2980        if adj >= 1:
2981            # self >= 10
2982            return len(str(adj))-1
2983        if adj <= -2:
2984            # self < 0.1
2985            return len(str(-1-adj))-1
2986        op = _WorkRep(self)
2987        c, e = op.int, op.exp
2988        if adj == 0:
2989            # 1 < self < 10
2990            num = str(c-10**-e)
2991            den = str(231*c)
2992            return len(num) - len(den) - (num < den) + 2
2993        # adj == -1, 0.1 <= self < 1
2994        num = str(10**-e-c)
2995        return len(num) + e - (num < "231") - 1
2996
2997    def log10(self, context=None):
2998        """Returns the base 10 logarithm of self."""
2999
3000        if context is None:
3001            context = getcontext()
3002
3003        # log10(NaN) = NaN
3004        ans = self._check_nans(context=context)
3005        if ans:
3006            return ans
3007
3008        # log10(0.0) == -Infinity
3009        if not self:
3010            return negInf
3011
3012        # log10(Infinity) = Infinity
3013        if self._isinfinity() == 1:
3014            return Inf
3015
3016        # log10(negative or -Infinity) raises InvalidOperation
3017        if self._sign == 1:
3018            return context._raise_error(InvalidOperation,
3019                                        'log10 of a negative value')
3020
3021        # log10(10**n) = n
3022        if self._int[0] == '1' and self._int[1:] == '0'*(len(self._int) - 1):
3023            # answer may need rounding
3024            ans = Decimal(self._exp + len(self._int) - 1)
3025        else:
3026            # result is irrational, so necessarily inexact
3027            op = _WorkRep(self)
3028            c, e = op.int, op.exp
3029            p = context.prec
3030
3031            # correctly rounded result: repeatedly increase precision
3032            # until result is unambiguously roundable
3033            places = p-self._log10_exp_bound()+2
3034            while True:
3035                coeff = _dlog10(c, e, places)
3036                # assert len(str(abs(coeff)))-p >= 1
3037                if coeff % (5*10**(len(str(abs(coeff)))-p-1)):
3038                    break
3039                places += 3
3040            ans = _dec_from_triple(int(coeff<0), str(abs(coeff)), -places)
3041
3042        context = context._shallow_copy()
3043        rounding = context._set_rounding(ROUND_HALF_EVEN)
3044        ans = ans._fix(context)
3045        context.rounding = rounding
3046        return ans
3047
3048    def logb(self, context=None):
3049        """ Returns the exponent of the magnitude of self's MSD.
3050
3051        The result is the integer which is the exponent of the magnitude
3052        of the most significant digit of self (as though it were truncated
3053        to a single digit while maintaining the value of that digit and
3054        without limiting the resulting exponent).
3055        """
3056        # logb(NaN) = NaN
3057        ans = self._check_nans(context=context)
3058        if ans:
3059            return ans
3060
3061        if context is None:
3062            context = getcontext()
3063
3064        # logb(+/-Inf) = +Inf
3065        if self._isinfinity():
3066            return Inf
3067
3068        # logb(0) = -Inf, DivisionByZero
3069        if not self:
3070            return context._raise_error(DivisionByZero, 'logb(0)', 1)
3071
3072        # otherwise, simply return the adjusted exponent of self, as a
3073        # Decimal.  Note that no attempt is made to fit the result
3074        # into the current context.
3075        return Decimal(self.adjusted())
3076
3077    def _islogical(self):
3078        """Return True if self is a logical operand.
3079
3080        For being logical, it must be a finite number with a sign of 0,
3081        an exponent of 0, and a coefficient whose digits must all be
3082        either 0 or 1.
3083        """
3084        if self._sign != 0 or self._exp != 0:
3085            return False
3086        for dig in self._int:
3087            if dig not in '01':
3088                return False
3089        return True
3090
3091    def _fill_logical(self, context, opa, opb):
3092        dif = context.prec - len(opa)
3093        if dif > 0:
3094            opa = '0'*dif + opa
3095        elif dif < 0:
3096            opa = opa[-context.prec:]
3097        dif = context.prec - len(opb)
3098        if dif > 0:
3099            opb = '0'*dif + opb
3100        elif dif < 0:
3101            opb = opb[-context.prec:]
3102        return opa, opb
3103
3104    def logical_and(self, other, context=None):
3105        """Applies an 'and' operation between self and other's digits."""
3106        if context is None:
3107            context = getcontext()
3108        if not self._islogical() or not other._islogical():
3109            return context._raise_error(InvalidOperation)
3110
3111        # fill to context.prec
3112        (opa, opb) = self._fill_logical(context, self._int, other._int)
3113
3114        # make the operation, and clean starting zeroes
3115        result = "".join([str(int(a)&int(b)) for a,b in zip(opa,opb)])
3116        return _dec_from_triple(0, result.lstrip('0') or '0', 0)
3117
3118    def logical_invert(self, context=None):
3119        """Invert all its digits."""
3120        if context is None:
3121            context = getcontext()
3122        return self.logical_xor(_dec_from_triple(0,'1'*context.prec,0),
3123                                context)
3124
3125    def logical_or(self, other, context=None):
3126        """Applies an 'or' operation between self and other's digits."""
3127        if context is None:
3128            context = getcontext()
3129        if not self._islogical() or not other._islogical():
3130            return context._raise_error(InvalidOperation)
3131
3132        # fill to context.prec
3133        (opa, opb) = self._fill_logical(context, self._int, other._int)
3134
3135        # make the operation, and clean starting zeroes
3136        result = "".join(str(int(a)|int(b)) for a,b in zip(opa,opb))
3137        return _dec_from_triple(0, result.lstrip('0') or '0', 0)
3138
3139    def logical_xor(self, other, context=None):
3140        """Applies an 'xor' operation between self and other's digits."""
3141        if context is None:
3142            context = getcontext()
3143        if not self._islogical() or not other._islogical():
3144            return context._raise_error(InvalidOperation)
3145
3146        # fill to context.prec
3147        (opa, opb) = self._fill_logical(context, self._int, other._int)
3148
3149        # make the operation, and clean starting zeroes
3150        result = "".join(str(int(a)^int(b)) for a,b in zip(opa,opb))
3151        return _dec_from_triple(0, result.lstrip('0') or '0', 0)
3152
3153    def max_mag(self, other, context=None):
3154        """Compares the values numerically with their sign ignored."""
3155        other = _convert_other(other, raiseit=True)
3156
3157        if context is None:
3158            context = getcontext()
3159
3160        if self._is_special or other._is_special:
3161            # If one operand is a quiet NaN and the other is number, then the
3162            # number is always returned
3163            sn = self._isnan()
3164            on = other._isnan()
3165            if sn or on:
3166                if on == 1 and sn != 2:
3167                    return self._fix_nan(context)
3168                if sn == 1 and on != 2:
3169                    return other._fix_nan(context)
3170                return self._check_nans(other, context)
3171
3172        c = self.copy_abs()._cmp(other.copy_abs())
3173        if c == 0:
3174            c = self.compare_total(other)
3175
3176        if c == -1:
3177            ans = other
3178        else:
3179            ans = self
3180
3181        return ans._fix(context)
3182
3183    def min_mag(self, other, context=None):
3184        """Compares the values numerically with their sign ignored."""
3185        other = _convert_other(other, raiseit=True)
3186
3187        if context is None:
3188            context = getcontext()
3189
3190        if self._is_special or other._is_special:
3191            # If one operand is a quiet NaN and the other is number, then the
3192            # number is always returned
3193            sn = self._isnan()
3194            on = other._isnan()
3195            if sn or on:
3196                if on == 1 and sn != 2:
3197                    return self._fix_nan(context)
3198                if sn == 1 and on != 2:
3199                    return other._fix_nan(context)
3200                return self._check_nans(other, context)
3201
3202        c = self.copy_abs()._cmp(other.copy_abs())
3203        if c == 0:
3204            c = self.compare_total(other)
3205
3206        if c == -1:
3207            ans = self
3208        else:
3209            ans = other
3210
3211        return ans._fix(context)
3212
3213    def next_minus(self, context=None):
3214        """Returns the largest representable number smaller than itself."""
3215        if context is None:
3216            context = getcontext()
3217
3218        ans = self._check_nans(context=context)
3219        if ans:
3220            return ans
3221
3222        if self._isinfinity() == -1:
3223            return negInf
3224        if self._isinfinity() == 1:
3225            return _dec_from_triple(0, '9'*context.prec, context.Etop())
3226
3227        context = context.copy()
3228        context._set_rounding(ROUND_FLOOR)
3229        context._ignore_all_flags()
3230        new_self = self._fix(context)
3231        if new_self != self:
3232            return new_self
3233        return self.__sub__(_dec_from_triple(0, '1', context.Etiny()-1),
3234                            context)
3235
3236    def next_plus(self, context=None):
3237        """Returns the smallest representable number larger than itself."""
3238        if context is None:
3239            context = getcontext()
3240
3241        ans = self._check_nans(context=context)
3242        if ans:
3243            return ans
3244
3245        if self._isinfinity() == 1:
3246            return Inf
3247        if self._isinfinity() == -1:
3248            return _dec_from_triple(1, '9'*context.prec, context.Etop())
3249
3250        context = context.copy()
3251        context._set_rounding(ROUND_CEILING)
3252        context._ignore_all_flags()
3253        new_self = self._fix(context)
3254        if new_self != self:
3255            return new_self
3256        return self.__add__(_dec_from_triple(0, '1', context.Etiny()-1),
3257                            context)
3258
3259    def next_toward(self, other, context=None):
3260        """Returns the number closest to self, in the direction towards other.
3261
3262        The result is the closest representable number to self
3263        (excluding self) that is in the direction towards other,
3264        unless both have the same value.  If the two operands are
3265        numerically equal, then the result is a copy of self with the
3266        sign set to be the same as the sign of other.
3267        """
3268        other = _convert_other(other, raiseit=True)
3269
3270        if context is None:
3271            context = getcontext()
3272
3273        ans = self._check_nans(other, context)
3274        if ans:
3275            return ans
3276
3277        comparison = self._cmp(other)
3278        if comparison == 0:
3279            return self.copy_sign(other)
3280
3281        if comparison == -1:
3282            ans = self.next_plus(context)
3283        else: # comparison == 1
3284            ans = self.next_minus(context)
3285
3286        # decide which flags to raise using value of ans
3287        if ans._isinfinity():
3288            context._raise_error(Overflow,
3289                                 'Infinite result from next_toward',
3290                                 ans._sign)
3291            context._raise_error(Rounded)
3292            context._raise_error(Inexact)
3293        elif ans.adjusted() < context.Emin:
3294            context._raise_error(Underflow)
3295            context._raise_error(Subnormal)
3296            context._raise_error(Rounded)
3297            context._raise_error(Inexact)
3298            # if precision == 1 then we don't raise Clamped for a
3299            # result 0E-Etiny.
3300            if not ans:
3301                context._raise_error(Clamped)
3302
3303        return ans
3304
3305    def number_class(self, context=None):
3306        """Returns an indication of the class of self.
3307
3308        The class is one of the following strings:
3309          sNaN
3310          NaN
3311          -Infinity
3312          -Normal
3313          -Subnormal
3314          -Zero
3315          +Zero
3316          +Subnormal
3317          +Normal
3318          +Infinity
3319        """
3320        if self.is_snan():
3321            return "sNaN"
3322        if self.is_qnan():
3323            return "NaN"
3324        inf = self._isinfinity()
3325        if inf == 1:
3326            return "+Infinity"
3327        if inf == -1:
3328            return "-Infinity"
3329        if self.is_zero():
3330            if self._sign:
3331                return "-Zero"
3332            else:
3333                return "+Zero"
3334        if context is None:
3335            context = getcontext()
3336        if self.is_subnormal(context=context):
3337            if self._sign:
3338                return "-Subnormal"
3339            else:
3340                return "+Subnormal"
3341        # just a normal, regular, boring number, :)
3342        if self._sign:
3343            return "-Normal"
3344        else:
3345            return "+Normal"
3346
3347    def radix(self):
3348        """Just returns 10, as this is Decimal, :)"""
3349        return Decimal(10)
3350
3351    def rotate(self, other, context=None):
3352        """Returns a rotated copy of self, value-of-other times."""
3353        if context is None:
3354            context = getcontext()
3355
3356        ans = self._check_nans(other, context)
3357        if ans:
3358            return ans
3359
3360        if other._exp != 0:
3361            return context._raise_error(InvalidOperation)
3362        if not (-context.prec <= int(other) <= context.prec):
3363            return context._raise_error(InvalidOperation)
3364
3365        if self._isinfinity():
3366            return Decimal(self)
3367
3368        # get values, pad if necessary
3369        torot = int(other)
3370        rotdig = self._int
3371        topad = context.prec - len(rotdig)
3372        if topad:
3373            rotdig = '0'*topad + rotdig
3374
3375        # let's rotate!
3376        rotated = rotdig[torot:] + rotdig[:torot]
3377        return _dec_from_triple(self._sign,
3378                                rotated.lstrip('0') or '0', self._exp)
3379
3380    def scaleb (self, other, context=None):
3381        """Returns self operand after adding the second value to its exp."""
3382        if context is None:
3383            context = getcontext()
3384
3385        ans = self._check_nans(other, context)
3386        if ans:
3387            return ans
3388
3389        if other._exp != 0:
3390            return context._raise_error(InvalidOperation)
3391        liminf = -2 * (context.Emax + context.prec)
3392        limsup =  2 * (context.Emax + context.prec)
3393        if not (liminf <= int(other) <= limsup):
3394            return context._raise_error(InvalidOperation)
3395
3396        if self._isinfinity():
3397            return Decimal(self)
3398
3399        d = _dec_from_triple(self._sign, self._int, self._exp + int(other))
3400        d = d._fix(context)
3401        return d
3402
3403    def shift(self, other, context=None):
3404        """Returns a shifted copy of self, value-of-other times."""
3405        if context is None:
3406            context = getcontext()
3407
3408        ans = self._check_nans(other, context)
3409        if ans:
3410            return ans
3411
3412        if other._exp != 0:
3413            return context._raise_error(InvalidOperation)
3414        if not (-context.prec <= int(other) <= context.prec):
3415            return context._raise_error(InvalidOperation)
3416
3417        if self._isinfinity():
3418            return Decimal(self)
3419
3420        # get values, pad if necessary
3421        torot = int(other)
3422        if not torot:
3423            return Decimal(self)
3424        rotdig = self._int
3425        topad = context.prec - len(rotdig)
3426        if topad:
3427            rotdig = '0'*topad + rotdig
3428
3429        # let's shift!
3430        if torot < 0:
3431            rotated = rotdig[:torot]
3432        else:
3433            rotated = rotdig + '0'*torot
3434            rotated = rotated[-context.prec:]
3435
3436        return _dec_from_triple(self._sign,
3437                                    rotated.lstrip('0') or '0', self._exp)
3438
3439    # Support for pickling, copy, and deepcopy
3440    def __reduce__(self):
3441        return (self.__class__, (str(self),))
3442
3443    def __copy__(self):
3444        if type(self) == Decimal:
3445            return self     # I'm immutable; therefore I am my own clone
3446        return self.__class__(str(self))
3447
3448    def __deepcopy__(self, memo):
3449        if type(self) == Decimal:
3450            return self     # My components are also immutable
3451        return self.__class__(str(self))
3452
3453    # PEP 3101 support.  See also _parse_format_specifier and _format_align
3454    def __format__(self, specifier, context=None):
3455        """Format a Decimal instance according to the given specifier.
3456
3457        The specifier should be a standard format specifier, with the
3458        form described in PEP 3101.  Formatting types 'e', 'E', 'f',
3459        'F', 'g', 'G', and '%' are supported.  If the formatting type
3460        is omitted it defaults to 'g' or 'G', depending on the value
3461        of context.capitals.
3462
3463        At this time the 'n' format specifier type (which is supposed
3464        to use the current locale) is not supported.
3465        """
3466
3467        # Note: PEP 3101 says that if the type is not present then
3468        # there should be at least one digit after the decimal point.
3469        # We take the liberty of ignoring this requirement for
3470        # Decimal---it's presumably there to make sure that
3471        # format(float, '') behaves similarly to str(float).
3472        if context is None:
3473            context = getcontext()
3474
3475        spec = _parse_format_specifier(specifier)
3476
3477        # special values don't care about the type or precision...
3478        if self._is_special:
3479            return _format_align(str(self), spec)
3480
3481        # a type of None defaults to 'g' or 'G', depending on context
3482        # if type is '%', adjust exponent of self accordingly
3483        if spec['type'] is None:
3484            spec['type'] = ['g', 'G'][context.capitals]
3485        elif spec['type'] == '%':
3486            self = _dec_from_triple(self._sign, self._int, self._exp+2)
3487
3488        # round if necessary, taking rounding mode from the context
3489        rounding = context.rounding
3490        precision = spec['precision']
3491        if precision is not None:
3492            if spec['type'] in 'eE':
3493                self = self._round(precision+1, rounding)
3494            elif spec['type'] in 'gG':
3495                if len(self._int) > precision:
3496                    self = self._round(precision, rounding)
3497            elif spec['type'] in 'fF%':
3498                self = self._rescale(-precision, rounding)
3499        # special case: zeros with a positive exponent can't be
3500        # represented in fixed point; rescale them to 0e0.
3501        elif not self and self._exp > 0 and spec['type'] in 'fF%':
3502            self = self._rescale(0, rounding)
3503
3504        # figure out placement of the decimal point
3505        leftdigits = self._exp + len(self._int)
3506        if spec['type'] in 'fF%':
3507            dotplace = leftdigits
3508        elif spec['type'] in 'eE':
3509            if not self and precision is not None:
3510                dotplace = 1 - precision
3511            else:
3512                dotplace = 1
3513        elif spec['type'] in 'gG':
3514            if self._exp <= 0 and leftdigits > -6:
3515                dotplace = leftdigits
3516            else:
3517                dotplace = 1
3518
3519        # figure out main part of numeric string...
3520        if dotplace <= 0:
3521            num = '0.' + '0'*(-dotplace) + self._int
3522        elif dotplace >= len(self._int):
3523            # make sure we're not padding a '0' with extra zeros on the right
3524            assert dotplace==len(self._int) or self._int != '0'
3525            num = self._int + '0'*(dotplace-len(self._int))
3526        else:
3527            num = self._int[:dotplace] + '.' + self._int[dotplace:]
3528
3529        # ...then the trailing exponent, or trailing '%'
3530        if leftdigits != dotplace or spec['type'] in 'eE':
3531            echar = {'E': 'E', 'e': 'e', 'G': 'E', 'g': 'e'}[spec['type']]
3532            num = num + "{0}{1:+}".format(echar, leftdigits-dotplace)
3533        elif spec['type'] == '%':
3534            num = num + '%'
3535
3536        # add sign
3537        if self._sign == 1:
3538            num = '-' + num
3539        return _format_align(num, spec)
3540
3541
3542def _dec_from_triple(sign, coefficient, exponent, special=False):
3543    """Create a decimal instance directly, without any validation,
3544    normalization (e.g. removal of leading zeros) or argument
3545    conversion.
3546
3547    This function is for *internal use only*.
3548    """
3549
3550    self = object.__new__(Decimal)
3551    self._sign = sign
3552    self._int = coefficient
3553    self._exp = exponent
3554    self._is_special = special
3555
3556    return self
3557
3558##### Context class #######################################################
3559
3560
3561# get rounding method function:
3562rounding_functions = [name for name in Decimal.__dict__.keys()
3563                                    if name.startswith('_round_')]
3564for name in rounding_functions:
3565    # name is like _round_half_even, goes to the global ROUND_HALF_EVEN value.
3566    globalname = name[1:].upper()
3567    val = globals()[globalname]
3568    Decimal._pick_rounding_function[val] = name
3569
3570del name, val, globalname, rounding_functions
3571
3572class _ContextManager(object):
3573    """Context manager class to support localcontext().
3574
3575      Sets a copy of the supplied context in __enter__() and restores
3576      the previous decimal context in __exit__()
3577    """
3578    def __init__(self, new_context):
3579        self.new_context = new_context.copy()
3580    def __enter__(self):
3581        self.saved_context = getcontext()
3582        setcontext(self.new_context)
3583        return self.new_context
3584    def __exit__(self, t, v, tb):
3585        setcontext(self.saved_context)
3586
3587class Context(object):
3588    """Contains the context for a Decimal instance.
3589
3590    Contains:
3591    prec - precision (for use in rounding, division, square roots..)
3592    rounding - rounding type (how you round)
3593    traps - If traps[exception] = 1, then the exception is
3594                    raised when it is caused.  Otherwise, a value is
3595                    substituted in.
3596    flags  - When an exception is caused, flags[exception] is set.
3597             (Whether or not the trap_enabler is set)
3598             Should be reset by user of Decimal instance.
3599    Emin -   Minimum exponent
3600    Emax -   Maximum exponent
3601    capitals -      If 1, 1*10^1 is printed as 1E+1.
3602                    If 0, printed as 1e1
3603    _clamp - If 1, change exponents if too high (Default 0)
3604    """
3605
3606    def __init__(self, prec=None, rounding=None,
3607                 traps=None, flags=None,
3608                 Emin=None, Emax=None,
3609                 capitals=None, _clamp=0,
3610                 _ignored_flags=None):
3611        if flags is None:
3612            flags = []
3613        if _ignored_flags is None:
3614            _ignored_flags = []
3615        if not isinstance(flags, dict):
3616            flags = dict([(s, int(s in flags)) for s in _signals])
3617            del s
3618        if traps is not None and not isinstance(traps, dict):
3619            traps = dict([(s, int(s in traps)) for s in _signals])
3620            del s
3621        for name, val in locals().items():
3622            if val is None:
3623                setattr(self, name, _copy.copy(getattr(DefaultContext, name)))
3624            else:
3625                setattr(self, name, val)
3626        del self.self
3627
3628    def __repr__(self):
3629        """Show the current context."""
3630        s = []
3631        s.append('Context(prec=%(prec)d, rounding=%(rounding)s, '
3632                 'Emin=%(Emin)d, Emax=%(Emax)d, capitals=%(capitals)d'
3633                 % vars(self))
3634        names = [f.__name__ for f, v in self.flags.items() if v]
3635        s.append('flags=[' + ', '.join(names) + ']')
3636        names = [t.__name__ for t, v in self.traps.items() if v]
3637        s.append('traps=[' + ', '.join(names) + ']')
3638        return ', '.join(s) + ')'
3639
3640    def clear_flags(self):
3641        """Reset all flags to zero"""
3642        for flag in self.flags:
3643            self.flags[flag] = 0
3644
3645    def _shallow_copy(self):
3646        """Returns a shallow copy from self."""
3647        nc = Context(self.prec, self.rounding, self.traps,
3648                     self.flags, self.Emin, self.Emax,
3649                     self.capitals, self._clamp, self._ignored_flags)
3650        return nc
3651
3652    def copy(self):
3653        """Returns a deep copy from self."""
3654        nc = Context(self.prec, self.rounding, self.traps.copy(),
3655                     self.flags.copy(), self.Emin, self.Emax,
3656                     self.capitals, self._clamp, self._ignored_flags)
3657        return nc
3658    __copy__ = copy
3659
3660    def _raise_error(self, condition, explanation = None, *args):
3661        """Handles an error
3662
3663        If the flag is in _ignored_flags, returns the default response.
3664        Otherwise, it sets the flag, then, if the corresponding
3665        trap_enabler is set, it reaises the exception.  Otherwise, it returns
3666        the default value after setting the flag.
3667        """
3668        error = _condition_map.get(condition, condition)
3669        if error in self._ignored_flags:
3670            # Don't touch the flag
3671            return error().handle(self, *args)
3672
3673        self.flags[error] = 1
3674        if not self.traps[error]:
3675            # The errors define how to handle themselves.
3676            return condition().handle(self, *args)
3677
3678        # Errors should only be risked on copies of the context
3679        # self._ignored_flags = []
3680        raise error(explanation)
3681
3682    def _ignore_all_flags(self):
3683        """Ignore all flags, if they are raised"""
3684        return self._ignore_flags(*_signals)
3685
3686    def _ignore_flags(self, *flags):
3687        """Ignore the flags, if they are raised"""
3688        # Do not mutate-- This way, copies of a context leave the original
3689        # alone.
3690        self._ignored_flags = (self._ignored_flags + list(flags))
3691        return list(flags)
3692
3693    def _regard_flags(self, *flags):
3694        """Stop ignoring the flags, if they are raised"""
3695        if flags and isinstance(flags[0], (tuple,list)):
3696            flags = flags[0]
3697        for flag in flags:
3698            self._ignored_flags.remove(flag)
3699
3700    # We inherit object.__hash__, so we must deny this explicitly
3701    __hash__ = None
3702
3703    def Etiny(self):
3704        """Returns Etiny (= Emin - prec + 1)"""
3705        return int(self.Emin - self.prec + 1)
3706
3707    def Etop(self):
3708        """Returns maximum exponent (= Emax - prec + 1)"""
3709        return int(self.Emax - self.prec + 1)
3710
3711    def _set_rounding(self, type):
3712        """Sets the rounding type.
3713
3714        Sets the rounding type, and returns the current (previous)
3715        rounding type.  Often used like:
3716
3717        context = context.copy()
3718        # so you don't change the calling context
3719        # if an error occurs in the middle.
3720        rounding = context._set_rounding(ROUND_UP)
3721        val = self.__sub__(other, context=context)
3722        context._set_rounding(rounding)
3723
3724        This will make it round up for that operation.
3725        """
3726        rounding = self.rounding
3727        self.rounding= type
3728        return rounding
3729
3730    def create_decimal(self, num='0'):
3731        """Creates a new Decimal instance but using self as context.
3732
3733        This method implements the to-number operation of the
3734        IBM Decimal specification."""
3735
3736        if isinstance(num, basestring) and num != num.strip():
3737            return self._raise_error(ConversionSyntax,
3738                                     "no trailing or leading whitespace is "
3739                                     "permitted.")
3740
3741        d = Decimal(num, context=self)
3742        if d._isnan() and len(d._int) > self.prec - self._clamp:
3743            return self._raise_error(ConversionSyntax,
3744                                     "diagnostic info too long in NaN")
3745        return d._fix(self)
3746
3747    # Methods
3748    def abs(self, a):
3749        """Returns the absolute value of the operand.
3750
3751        If the operand is negative, the result is the same as using the minus
3752        operation on the operand.  Otherwise, the result is the same as using
3753        the plus operation on the operand.
3754
3755        >>> ExtendedContext.abs(Decimal('2.1'))
3756        Decimal('2.1')
3757        >>> ExtendedContext.abs(Decimal('-100'))
3758        Decimal('100')
3759        >>> ExtendedContext.abs(Decimal('101.5'))
3760        Decimal('101.5')
3761        >>> ExtendedContext.abs(Decimal('-101.5'))
3762        Decimal('101.5')
3763        """
3764        return a.__abs__(context=self)
3765
3766    def add(self, a, b):
3767        """Return the sum of the two operands.
3768
3769        >>> ExtendedContext.add(Decimal('12'), Decimal('7.00'))
3770        Decimal('19.00')
3771        >>> ExtendedContext.add(Decimal('1E+2'), Decimal('1.01E+4'))
3772        Decimal('1.02E+4')
3773        """
3774        return a.__add__(b, context=self)
3775
3776    def _apply(self, a):
3777        return str(a._fix(self))
3778
3779    def canonical(self, a):
3780        """Returns the same Decimal object.
3781
3782        As we do not have different encodings for the same number, the
3783        received object already is in its canonical form.
3784
3785        >>> ExtendedContext.canonical(Decimal('2.50'))
3786        Decimal('2.50')
3787        """
3788        return a.canonical(context=self)
3789
3790    def compare(self, a, b):
3791        """Compares values numerically.
3792
3793        If the signs of the operands differ, a value representing each operand
3794        ('-1' if the operand is less than zero, '0' if the operand is zero or
3795        negative zero, or '1' if the operand is greater than zero) is used in
3796        place of that operand for the comparison instead of the actual
3797        operand.
3798
3799        The comparison is then effected by subtracting the second operand from
3800        the first and then returning a value according to the result of the
3801        subtraction: '-1' if the result is less than zero, '0' if the result is
3802        zero or negative zero, or '1' if the result is greater than zero.
3803
3804        >>> ExtendedContext.compare(Decimal('2.1'), Decimal('3'))
3805        Decimal('-1')
3806        >>> ExtendedContext.compare(Decimal('2.1'), Decimal('2.1'))
3807        Decimal('0')
3808        >>> ExtendedContext.compare(Decimal('2.1'), Decimal('2.10'))
3809        Decimal('0')
3810        >>> ExtendedContext.compare(Decimal('3'), Decimal('2.1'))
3811        Decimal('1')
3812        >>> ExtendedContext.compare(Decimal('2.1'), Decimal('-3'))
3813        Decimal('1')
3814        >>> ExtendedContext.compare(Decimal('-3'), Decimal('2.1'))
3815        Decimal('-1')
3816        """
3817        return a.compare(b, context=self)
3818
3819    def compare_signal(self, a, b):
3820        """Compares the values of the two operands numerically.
3821
3822        It's pretty much like compare(), but all NaNs signal, with signaling
3823        NaNs taking precedence over quiet NaNs.
3824
3825        >>> c = ExtendedContext
3826        >>> c.compare_signal(Decimal('2.1'), Decimal('3'))
3827        Decimal('-1')
3828        >>> c.compare_signal(Decimal('2.1'), Decimal('2.1'))
3829        Decimal('0')
3830        >>> c.flags[InvalidOperation] = 0
3831        >>> print c.flags[InvalidOperation]
3832        0
3833        >>> c.compare_signal(Decimal('NaN'), Decimal('2.1'))
3834        Decimal('NaN')
3835        >>> print c.flags[InvalidOperation]
3836        1
3837        >>> c.flags[InvalidOperation] = 0
3838        >>> print c.flags[InvalidOperation]
3839        0
3840        >>> c.compare_signal(Decimal('sNaN'), Decimal('2.1'))
3841        Decimal('NaN')
3842        >>> print c.flags[InvalidOperation]
3843        1
3844        """
3845        return a.compare_signal(b, context=self)
3846
3847    def compare_total(self, a, b):
3848        """Compares two operands using their abstract representation.
3849
3850        This is not like the standard compare, which use their numerical
3851        value. Note that a total ordering is defined for all possible abstract
3852        representations.
3853
3854        >>> ExtendedContext.compare_total(Decimal('12.73'), Decimal('127.9'))
3855        Decimal('-1')
3856        >>> ExtendedContext.compare_total(Decimal('-127'),  Decimal('12'))
3857        Decimal('-1')
3858        >>> ExtendedContext.compare_total(Decimal('12.30'), Decimal('12.3'))
3859        Decimal('-1')
3860        >>> ExtendedContext.compare_total(Decimal('12.30'), Decimal('12.30'))
3861        Decimal('0')
3862        >>> ExtendedContext.compare_total(Decimal('12.3'),  Decimal('12.300'))
3863        Decimal('1')
3864        >>> ExtendedContext.compare_total(Decimal('12.3'),  Decimal('NaN'))
3865        Decimal('-1')
3866        """
3867        return a.compare_total(b)
3868
3869    def compare_total_mag(self, a, b):
3870        """Compares two operands using their abstract representation ignoring sign.
3871
3872        Like compare_total, but with operand's sign ignored and assumed to be 0.
3873        """
3874        return a.compare_total_mag(b)
3875
3876    def copy_abs(self, a):
3877        """Returns a copy of the operand with the sign set to 0.
3878
3879        >>> ExtendedContext.copy_abs(Decimal('2.1'))
3880        Decimal('2.1')
3881        >>> ExtendedContext.copy_abs(Decimal('-100'))
3882        Decimal('100')
3883        """
3884        return a.copy_abs()
3885
3886    def copy_decimal(self, a):
3887        """Returns a copy of the decimal objet.
3888
3889        >>> ExtendedContext.copy_decimal(Decimal('2.1'))
3890        Decimal('2.1')
3891        >>> ExtendedContext.copy_decimal(Decimal('-1.00'))
3892        Decimal('-1.00')
3893        """
3894        return Decimal(a)
3895
3896    def copy_negate(self, a):
3897        """Returns a copy of the operand with the sign inverted.
3898
3899        >>> ExtendedContext.copy_negate(Decimal('101.5'))
3900        Decimal('-101.5')
3901        >>> ExtendedContext.copy_negate(Decimal('-101.5'))
3902        Decimal('101.5')
3903        """
3904        return a.copy_negate()
3905
3906    def copy_sign(self, a, b):
3907        """Copies the second operand's sign to the first one.
3908
3909        In detail, it returns a copy of the first operand with the sign
3910        equal to the sign of the second operand.
3911
3912        >>> ExtendedContext.copy_sign(Decimal( '1.50'), Decimal('7.33'))
3913        Decimal('1.50')
3914        >>> ExtendedContext.copy_sign(Decimal('-1.50'), Decimal('7.33'))
3915        Decimal('1.50')
3916        >>> ExtendedContext.copy_sign(Decimal( '1.50'), Decimal('-7.33'))
3917        Decimal('-1.50')
3918        >>> ExtendedContext.copy_sign(Decimal('-1.50'), Decimal('-7.33'))
3919        Decimal('-1.50')
3920        """
3921        return a.copy_sign(b)
3922
3923    def divide(self, a, b):
3924        """Decimal division in a specified context.
3925
3926        >>> ExtendedContext.divide(Decimal('1'), Decimal('3'))
3927        Decimal('0.333333333')
3928        >>> ExtendedContext.divide(Decimal('2'), Decimal('3'))
3929        Decimal('0.666666667')
3930        >>> ExtendedContext.divide(Decimal('5'), Decimal('2'))
3931        Decimal('2.5')
3932        >>> ExtendedContext.divide(Decimal('1'), Decimal('10'))
3933        Decimal('0.1')
3934        >>> ExtendedContext.divide(Decimal('12'), Decimal('12'))
3935        Decimal('1')
3936        >>> ExtendedContext.divide(Decimal('8.00'), Decimal('2'))
3937        Decimal('4.00')
3938        >>> ExtendedContext.divide(Decimal('2.400'), Decimal('2.0'))
3939        Decimal('1.20')
3940        >>> ExtendedContext.divide(Decimal('1000'), Decimal('100'))
3941        Decimal('10')
3942        >>> ExtendedContext.divide(Decimal('1000'), Decimal('1'))
3943        Decimal('1000')
3944        >>> ExtendedContext.divide(Decimal('2.40E+6'), Decimal('2'))
3945        Decimal('1.20E+6')
3946        """
3947        return a.__div__(b, context=self)
3948
3949    def divide_int(self, a, b):
3950        """Divides two numbers and returns the integer part of the result.
3951
3952        >>> ExtendedContext.divide_int(Decimal('2'), Decimal('3'))
3953        Decimal('0')
3954        >>> ExtendedContext.divide_int(Decimal('10'), Decimal('3'))
3955        Decimal('3')
3956        >>> ExtendedContext.divide_int(Decimal('1'), Decimal('0.3'))
3957        Decimal('3')
3958        """
3959        return a.__floordiv__(b, context=self)
3960
3961    def divmod(self, a, b):
3962        return a.__divmod__(b, context=self)
3963
3964    def exp(self, a):
3965        """Returns e ** a.
3966
3967        >>> c = ExtendedContext.copy()
3968        >>> c.Emin = -999
3969        >>> c.Emax = 999
3970        >>> c.exp(Decimal('-Infinity'))
3971        Decimal('0')
3972        >>> c.exp(Decimal('-1'))
3973        Decimal('0.367879441')
3974        >>> c.exp(Decimal('0'))
3975        Decimal('1')
3976        >>> c.exp(Decimal('1'))
3977        Decimal('2.71828183')
3978        >>> c.exp(Decimal('0.693147181'))
3979        Decimal('2.00000000')
3980        >>> c.exp(Decimal('+Infinity'))
3981        Decimal('Infinity')
3982        """
3983        return a.exp(context=self)
3984
3985    def fma(self, a, b, c):
3986        """Returns a multiplied by b, plus c.
3987
3988        The first two operands are multiplied together, using multiply,
3989        the third operand is then added to the result of that
3990        multiplication, using add, all with only one final rounding.
3991
3992        >>> ExtendedContext.fma(Decimal('3'), Decimal('5'), Decimal('7'))
3993        Decimal('22')
3994        >>> ExtendedContext.fma(Decimal('3'), Decimal('-5'), Decimal('7'))
3995        Decimal('-8')
3996        >>> ExtendedContext.fma(Decimal('888565290'), Decimal('1557.96930'), Decimal('-86087.7578'))
3997        Decimal('1.38435736E+12')
3998        """
3999        return a.fma(b, c, context=self)
4000
4001    def is_canonical(self, a):
4002        """Return True if the operand is canonical; otherwise return False.
4003
4004        Currently, the encoding of a Decimal instance is always
4005        canonical, so this method returns True for any Decimal.
4006
4007        >>> ExtendedContext.is_canonical(Decimal('2.50'))
4008        True
4009        """
4010        return a.is_canonical()
4011
4012    def is_finite(self, a):
4013        """Return True if the operand is finite; otherwise return False.
4014
4015        A Decimal instance is considered finite if it is neither
4016        infinite nor a NaN.
4017
4018        >>> ExtendedContext.is_finite(Decimal('2.50'))
4019        True
4020        >>> ExtendedContext.is_finite(Decimal('-0.3'))
4021        True
4022        >>> ExtendedContext.is_finite(Decimal('0'))
4023        True
4024        >>> ExtendedContext.is_finite(Decimal('Inf'))
4025        False
4026        >>> ExtendedContext.is_finite(Decimal('NaN'))
4027        False
4028        """
4029        return a.is_finite()
4030
4031    def is_infinite(self, a):
4032        """Return True if the operand is infinite; otherwise return False.
4033
4034        >>> ExtendedContext.is_infinite(Decimal('2.50'))
4035        False
4036        >>> ExtendedContext.is_infinite(Decimal('-Inf'))
4037        True
4038        >>> ExtendedContext.is_infinite(Decimal('NaN'))
4039        False
4040        """
4041        return a.is_infinite()
4042
4043    def is_nan(self, a):
4044        """Return True if the operand is a qNaN or sNaN;
4045        otherwise return False.
4046
4047        >>> ExtendedContext.is_nan(Decimal('2.50'))
4048        False
4049        >>> ExtendedContext.is_nan(Decimal('NaN'))
4050        True
4051        >>> ExtendedContext.is_nan(Decimal('-sNaN'))
4052        True
4053        """
4054        return a.is_nan()
4055
4056    def is_normal(self, a):
4057        """Return True if the operand is a normal number;
4058        otherwise return False.
4059
4060        >>> c = ExtendedContext.copy()
4061        >>> c.Emin = -999
4062        >>> c.Emax = 999
4063        >>> c.is_normal(Decimal('2.50'))
4064        True
4065        >>> c.is_normal(Decimal('0.1E-999'))
4066        False
4067        >>> c.is_normal(Decimal('0.00'))
4068        False
4069        >>> c.is_normal(Decimal('-Inf'))
4070        False
4071        >>> c.is_normal(Decimal('NaN'))
4072        False
4073        """
4074        return a.is_normal(context=self)
4075
4076    def is_qnan(self, a):
4077        """Return True if the operand is a quiet NaN; otherwise return False.
4078
4079        >>> ExtendedContext.is_qnan(Decimal('2.50'))
4080        False
4081        >>> ExtendedContext.is_qnan(Decimal('NaN'))
4082        True
4083        >>> ExtendedContext.is_qnan(Decimal('sNaN'))
4084        False
4085        """
4086        return a.is_qnan()
4087
4088    def is_signed(self, a):
4089        """Return True if the operand is negative; otherwise return False.
4090
4091        >>> ExtendedContext.is_signed(Decimal('2.50'))
4092        False
4093        >>> ExtendedContext.is_signed(Decimal('-12'))
4094        True
4095        >>> ExtendedContext.is_signed(Decimal('-0'))
4096        True
4097        """
4098        return a.is_signed()
4099
4100    def is_snan(self, a):
4101        """Return True if the operand is a signaling NaN;
4102        otherwise return False.
4103
4104        >>> ExtendedContext.is_snan(Decimal('2.50'))
4105        False
4106        >>> ExtendedContext.is_snan(Decimal('NaN'))
4107        False
4108        >>> ExtendedContext.is_snan(Decimal('sNaN'))
4109        True
4110        """
4111        return a.is_snan()
4112
4113    def is_subnormal(self, a):
4114        """Return True if the operand is subnormal; otherwise return False.
4115
4116        >>> c = ExtendedContext.copy()
4117        >>> c.Emin = -999
4118        >>> c.Emax = 999
4119        >>> c.is_subnormal(Decimal('2.50'))
4120        False
4121        >>> c.is_subnormal(Decimal('0.1E-999'))
4122        True
4123        >>> c.is_subnormal(Decimal('0.00'))
4124        False
4125        >>> c.is_subnormal(Decimal('-Inf'))
4126        False
4127        >>> c.is_subnormal(Decimal('NaN'))
4128        False
4129        """
4130        return a.is_subnormal(context=self)
4131
4132    def is_zero(self, a):
4133        """Return True if the operand is a zero; otherwise return False.
4134
4135        >>> ExtendedContext.is_zero(Decimal('0'))
4136        True
4137        >>> ExtendedContext.is_zero(Decimal('2.50'))
4138        False
4139        >>> ExtendedContext.is_zero(Decimal('-0E+2'))
4140        True
4141        """
4142        return a.is_zero()
4143
4144    def ln(self, a):
4145        """Returns the natural (base e) logarithm of the operand.
4146
4147        >>> c = ExtendedContext.copy()
4148        >>> c.Emin = -999
4149        >>> c.Emax = 999
4150        >>> c.ln(Decimal('0'))
4151        Decimal('-Infinity')
4152        >>> c.ln(Decimal('1.000'))
4153        Decimal('0')
4154        >>> c.ln(Decimal('2.71828183'))
4155        Decimal('1.00000000')
4156        >>> c.ln(Decimal('10'))
4157        Decimal('2.30258509')
4158        >>> c.ln(Decimal('+Infinity'))
4159        Decimal('Infinity')
4160        """
4161        return a.ln(context=self)
4162
4163    def log10(self, a):
4164        """Returns the base 10 logarithm of the operand.
4165
4166        >>> c = ExtendedContext.copy()
4167        >>> c.Emin = -999
4168        >>> c.Emax = 999
4169        >>> c.log10(Decimal('0'))
4170        Decimal('-Infinity')
4171        >>> c.log10(Decimal('0.001'))
4172        Decimal('-3')
4173        >>> c.log10(Decimal('1.000'))
4174        Decimal('0')
4175        >>> c.log10(Decimal('2'))
4176        Decimal('0.301029996')
4177        >>> c.log10(Decimal('10'))
4178        Decimal('1')
4179        >>> c.log10(Decimal('70'))
4180        Decimal('1.84509804')
4181        >>> c.log10(Decimal('+Infinity'))
4182        Decimal('Infinity')
4183        """
4184        return a.log10(context=self)
4185
4186    def logb(self, a):
4187        """ Returns the exponent of the magnitude of the operand's MSD.
4188
4189        The result is the integer which is the exponent of the magnitude
4190        of the most significant digit of the operand (as though the
4191        operand were truncated to a single digit while maintaining the
4192        value of that digit and without limiting the resulting exponent).
4193
4194        >>> ExtendedContext.logb(Decimal('250'))
4195        Decimal('2')
4196        >>> ExtendedContext.logb(Decimal('2.50'))
4197        Decimal('0')
4198        >>> ExtendedContext.logb(Decimal('0.03'))
4199        Decimal('-2')
4200        >>> ExtendedContext.logb(Decimal('0'))
4201        Decimal('-Infinity')
4202        """
4203        return a.logb(context=self)
4204
4205    def logical_and(self, a, b):
4206        """Applies the logical operation 'and' between each operand's digits.
4207
4208        The operands must be both logical numbers.
4209
4210        >>> ExtendedContext.logical_and(Decimal('0'), Decimal('0'))
4211        Decimal('0')
4212        >>> ExtendedContext.logical_and(Decimal('0'), Decimal('1'))
4213        Decimal('0')
4214        >>> ExtendedContext.logical_and(Decimal('1'), Decimal('0'))
4215        Decimal('0')
4216        >>> ExtendedContext.logical_and(Decimal('1'), Decimal('1'))
4217        Decimal('1')
4218        >>> ExtendedContext.logical_and(Decimal('1100'), Decimal('1010'))
4219        Decimal('1000')
4220        >>> ExtendedContext.logical_and(Decimal('1111'), Decimal('10'))
4221        Decimal('10')
4222        """
4223        return a.logical_and(b, context=self)
4224
4225    def logical_invert(self, a):
4226        """Invert all the digits in the operand.
4227
4228        The operand must be a logical number.
4229
4230        >>> ExtendedContext.logical_invert(Decimal('0'))
4231        Decimal('111111111')
4232        >>> ExtendedContext.logical_invert(Decimal('1'))
4233        Decimal('111111110')
4234        >>> ExtendedContext.logical_invert(Decimal('111111111'))
4235        Decimal('0')
4236        >>> ExtendedContext.logical_invert(Decimal('101010101'))
4237        Decimal('10101010')
4238        """
4239        return a.logical_invert(context=self)
4240
4241    def logical_or(self, a, b):
4242        """Applies the logical operation 'or' between each operand's digits.
4243
4244        The operands must be both logical numbers.
4245
4246        >>> ExtendedContext.logical_or(Decimal('0'), Decimal('0'))
4247        Decimal('0')
4248        >>> ExtendedContext.logical_or(Decimal('0'), Decimal('1'))
4249        Decimal('1')
4250        >>> ExtendedContext.logical_or(Decimal('1'), Decimal('0'))
4251        Decimal('1')
4252        >>> ExtendedContext.logical_or(Decimal('1'), Decimal('1'))
4253        Decimal('1')
4254        >>> ExtendedContext.logical_or(Decimal('1100'), Decimal('1010'))
4255        Decimal('1110')
4256        >>> ExtendedContext.logical_or(Decimal('1110'), Decimal('10'))
4257        Decimal('1110')
4258        """
4259        return a.logical_or(b, context=self)
4260
4261    def logical_xor(self, a, b):
4262        """Applies the logical operation 'xor' between each operand's digits.
4263
4264        The operands must be both logical numbers.
4265
4266        >>> ExtendedContext.logical_xor(Decimal('0'), Decimal('0'))
4267        Decimal('0')
4268        >>> ExtendedContext.logical_xor(Decimal('0'), Decimal('1'))
4269        Decimal('1')
4270        >>> ExtendedContext.logical_xor(Decimal('1'), Decimal('0'))
4271        Decimal('1')
4272        >>> ExtendedContext.logical_xor(Decimal('1'), Decimal('1'))
4273        Decimal('0')
4274        >>> ExtendedContext.logical_xor(Decimal('1100'), Decimal('1010'))
4275        Decimal('110')
4276        >>> ExtendedContext.logical_xor(Decimal('1111'), Decimal('10'))
4277        Decimal('1101')
4278        """
4279        return a.logical_xor(b, context=self)
4280
4281    def max(self, a,b):
4282        """max compares two values numerically and returns the maximum.
4283
4284        If either operand is a NaN then the general rules apply.
4285        Otherwise, the operands are compared as though by the compare
4286        operation.  If they are numerically equal then the left-hand operand
4287        is chosen as the result.  Otherwise the maximum (closer to positive
4288        infinity) of the two operands is chosen as the result.
4289
4290        >>> ExtendedContext.max(Decimal('3'), Decimal('2'))
4291        Decimal('3')
4292        >>> ExtendedContext.max(Decimal('-10'), Decimal('3'))
4293        Decimal('3')
4294        >>> ExtendedContext.max(Decimal('1.0'), Decimal('1'))
4295        Decimal('1')
4296        >>> ExtendedContext.max(Decimal('7'), Decimal('NaN'))
4297        Decimal('7')
4298        """
4299        return a.max(b, context=self)
4300
4301    def max_mag(self, a, b):
4302        """Compares the values numerically with their sign ignored."""
4303        return a.max_mag(b, context=self)
4304
4305    def min(self, a,b):
4306        """min compares two values numerically and returns the minimum.
4307
4308        If either operand is a NaN then the general rules apply.
4309        Otherwise, the operands are compared as though by the compare
4310        operation.  If they are numerically equal then the left-hand operand
4311        is chosen as the result.  Otherwise the minimum (closer to negative
4312        infinity) of the two operands is chosen as the result.
4313
4314        >>> ExtendedContext.min(Decimal('3'), Decimal('2'))
4315        Decimal('2')
4316        >>> ExtendedContext.min(Decimal('-10'), Decimal('3'))
4317        Decimal('-10')
4318        >>> ExtendedContext.min(Decimal('1.0'), Decimal('1'))
4319        Decimal('1.0')
4320        >>> ExtendedContext.min(Decimal('7'), Decimal('NaN'))
4321        Decimal('7')
4322        """
4323        return a.min(b, context=self)
4324
4325    def min_mag(self, a, b):
4326        """Compares the values numerically with their sign ignored."""
4327        return a.min_mag(b, context=self)
4328
4329    def minus(self, a):
4330        """Minus corresponds to unary prefix minus in Python.
4331
4332        The operation is evaluated using the same rules as subtract; the
4333        operation minus(a) is calculated as subtract('0', a) where the '0'
4334        has the same exponent as the operand.
4335
4336        >>> ExtendedContext.minus(Decimal('1.3'))
4337        Decimal('-1.3')
4338        >>> ExtendedContext.minus(Decimal('-1.3'))
4339        Decimal('1.3')
4340        """
4341        return a.__neg__(context=self)
4342
4343    def multiply(self, a, b):
4344        """multiply multiplies two operands.
4345
4346        If either operand is a special value then the general rules apply.
4347        Otherwise, the operands are multiplied together ('long multiplication'),
4348        resulting in a number which may be as long as the sum of the lengths
4349        of the two operands.
4350
4351        >>> ExtendedContext.multiply(Decimal('1.20'), Decimal('3'))
4352        Decimal('3.60')
4353        >>> ExtendedContext.multiply(Decimal('7'), Decimal('3'))
4354        Decimal('21')
4355        >>> ExtendedContext.multiply(Decimal('0.9'), Decimal('0.8'))
4356        Decimal('0.72')
4357        >>> ExtendedContext.multiply(Decimal('0.9'), Decimal('-0'))
4358        Decimal('-0.0')
4359        >>> ExtendedContext.multiply(Decimal('654321'), Decimal('654321'))
4360        Decimal('4.28135971E+11')
4361        """
4362        return a.__mul__(b, context=self)
4363
4364    def next_minus(self, a):
4365        """Returns the largest representable number smaller than a.
4366
4367        >>> c = ExtendedContext.copy()
4368        >>> c.Emin = -999
4369        >>> c.Emax = 999
4370        >>> ExtendedContext.next_minus(Decimal('1'))
4371        Decimal('0.999999999')
4372        >>> c.next_minus(Decimal('1E-1007'))
4373        Decimal('0E-1007')
4374        >>> ExtendedContext.next_minus(Decimal('-1.00000003'))
4375        Decimal('-1.00000004')
4376        >>> c.next_minus(Decimal('Infinity'))
4377        Decimal('9.99999999E+999')
4378        """
4379        return a.next_minus(context=self)
4380
4381    def next_plus(self, a):
4382        """Returns the smallest representable number larger than a.
4383
4384        >>> c = ExtendedContext.copy()
4385        >>> c.Emin = -999
4386        >>> c.Emax = 999
4387        >>> ExtendedContext.next_plus(Decimal('1'))
4388        Decimal('1.00000001')
4389        >>> c.next_plus(Decimal('-1E-1007'))
4390        Decimal('-0E-1007')
4391        >>> ExtendedContext.next_plus(Decimal('-1.00000003'))
4392        Decimal('-1.00000002')
4393        >>> c.next_plus(Decimal('-Infinity'))
4394        Decimal('-9.99999999E+999')
4395        """
4396        return a.next_plus(context=self)
4397
4398    def next_toward(self, a, b):
4399        """Returns the number closest to a, in direction towards b.
4400
4401        The result is the closest representable number from the first
4402        operand (but not the first operand) that is in the direction
4403        towards the second operand, unless the operands have the same
4404        value.
4405
4406        >>> c = ExtendedContext.copy()
4407        >>> c.Emin = -999
4408        >>> c.Emax = 999
4409        >>> c.next_toward(Decimal('1'), Decimal('2'))
4410        Decimal('1.00000001')
4411        >>> c.next_toward(Decimal('-1E-1007'), Decimal('1'))
4412        Decimal('-0E-1007')
4413        >>> c.next_toward(Decimal('-1.00000003'), Decimal('0'))
4414        Decimal('-1.00000002')
4415        >>> c.next_toward(Decimal('1'), Decimal('0'))
4416        Decimal('0.999999999')
4417        >>> c.next_toward(Decimal('1E-1007'), Decimal('-100'))
4418        Decimal('0E-1007')
4419        >>> c.next_toward(Decimal('-1.00000003'), Decimal('-10'))
4420        Decimal('-1.00000004')
4421        >>> c.next_toward(Decimal('0.00'), Decimal('-0.0000'))
4422        Decimal('-0.00')
4423        """
4424        return a.next_toward(b, context=self)
4425
4426    def normalize(self, a):
4427        """normalize reduces an operand to its simplest form.
4428
4429        Essentially a plus operation with all trailing zeros removed from the
4430        result.
4431
4432        >>> ExtendedContext.normalize(Decimal('2.1'))
4433        Decimal('2.1')
4434        >>> ExtendedContext.normalize(Decimal('-2.0'))
4435        Decimal('-2')
4436        >>> ExtendedContext.normalize(Decimal('1.200'))
4437        Decimal('1.2')
4438        >>> ExtendedContext.normalize(Decimal('-120'))
4439        Decimal('-1.2E+2')
4440        >>> ExtendedContext.normalize(Decimal('120.00'))
4441        Decimal('1.2E+2')
4442        >>> ExtendedContext.normalize(Decimal('0.00'))
4443        Decimal('0')
4444        """
4445        return a.normalize(context=self)
4446
4447    def number_class(self, a):
4448        """Returns an indication of the class of the operand.
4449
4450        The class is one of the following strings:
4451          -sNaN
4452          -NaN
4453          -Infinity
4454          -Normal
4455          -Subnormal
4456          -Zero
4457          +Zero
4458          +Subnormal
4459          +Normal
4460          +Infinity
4461
4462        >>> c = Context(ExtendedContext)
4463        >>> c.Emin = -999
4464        >>> c.Emax = 999
4465        >>> c.number_class(Decimal('Infinity'))
4466        '+Infinity'
4467        >>> c.number_class(Decimal('1E-10'))
4468        '+Normal'
4469        >>> c.number_class(Decimal('2.50'))
4470        '+Normal'
4471        >>> c.number_class(Decimal('0.1E-999'))
4472        '+Subnormal'
4473        >>> c.number_class(Decimal('0'))
4474        '+Zero'
4475        >>> c.number_class(Decimal('-0'))
4476        '-Zero'
4477        >>> c.number_class(Decimal('-0.1E-999'))
4478        '-Subnormal'
4479        >>> c.number_class(Decimal('-1E-10'))
4480        '-Normal'
4481        >>> c.number_class(Decimal('-2.50'))
4482        '-Normal'
4483        >>> c.number_class(Decimal('-Infinity'))
4484        '-Infinity'
4485        >>> c.number_class(Decimal('NaN'))
4486        'NaN'
4487        >>> c.number_class(Decimal('-NaN'))
4488        'NaN'
4489        >>> c.number_class(Decimal('sNaN'))
4490        'sNaN'
4491        """
4492        return a.number_class(context=self)
4493
4494    def plus(self, a):
4495        """Plus corresponds to unary prefix plus in Python.
4496
4497        The operation is evaluated using the same rules as add; the
4498        operation plus(a) is calculated as add('0', a) where the '0'
4499        has the same exponent as the operand.
4500
4501        >>> ExtendedContext.plus(Decimal('1.3'))
4502        Decimal('1.3')
4503        >>> ExtendedContext.plus(Decimal('-1.3'))
4504        Decimal('-1.3')
4505        """
4506        return a.__pos__(context=self)
4507
4508    def power(self, a, b, modulo=None):
4509        """Raises a to the power of b, to modulo if given.
4510
4511        With two arguments, compute a**b.  If a is negative then b
4512        must be integral.  The result will be inexact unless b is
4513        integral and the result is finite and can be expressed exactly
4514        in 'precision' digits.
4515
4516        With three arguments, compute (a**b) % modulo.  For the
4517        three argument form, the following restrictions on the
4518        arguments hold:
4519
4520         - all three arguments must be integral
4521         - b must be nonnegative
4522         - at least one of a or b must be nonzero
4523         - modulo must be nonzero and have at most 'precision' digits
4524
4525        The result of pow(a, b, modulo) is identical to the result
4526        that would be obtained by computing (a**b) % modulo with
4527        unbounded precision, but is computed more efficiently.  It is
4528        always exact.
4529
4530        >>> c = ExtendedContext.copy()
4531        >>> c.Emin = -999
4532        >>> c.Emax = 999
4533        >>> c.power(Decimal('2'), Decimal('3'))
4534        Decimal('8')
4535        >>> c.power(Decimal('-2'), Decimal('3'))
4536        Decimal('-8')
4537        >>> c.power(Decimal('2'), Decimal('-3'))
4538        Decimal('0.125')
4539        >>> c.power(Decimal('1.7'), Decimal('8'))
4540        Decimal('69.7575744')
4541        >>> c.power(Decimal('10'), Decimal('0.301029996'))
4542        Decimal('2.00000000')
4543        >>> c.power(Decimal('Infinity'), Decimal('-1'))
4544        Decimal('0')
4545        >>> c.power(Decimal('Infinity'), Decimal('0'))
4546        Decimal('1')
4547        >>> c.power(Decimal('Infinity'), Decimal('1'))
4548        Decimal('Infinity')
4549        >>> c.power(Decimal('-Infinity'), Decimal('-1'))
4550        Decimal('-0')
4551        >>> c.power(Decimal('-Infinity'), Decimal('0'))
4552        Decimal('1')
4553        >>> c.power(Decimal('-Infinity'), Decimal('1'))
4554        Decimal('-Infinity')
4555        >>> c.power(Decimal('-Infinity'), Decimal('2'))
4556        Decimal('Infinity')
4557        >>> c.power(Decimal('0'), Decimal('0'))
4558        Decimal('NaN')
4559
4560        >>> c.power(Decimal('3'), Decimal('7'), Decimal('16'))
4561        Decimal('11')
4562        >>> c.power(Decimal('-3'), Decimal('7'), Decimal('16'))
4563        Decimal('-11')
4564        >>> c.power(Decimal('-3'), Decimal('8'), Decimal('16'))
4565        Decimal('1')
4566        >>> c.power(Decimal('3'), Decimal('7'), Decimal('-16'))
4567        Decimal('11')
4568        >>> c.power(Decimal('23E12345'), Decimal('67E189'), Decimal('123456789'))
4569        Decimal('11729830')
4570        >>> c.power(Decimal('-0'), Decimal('17'), Decimal('1729'))
4571        Decimal('-0')
4572        >>> c.power(Decimal('-23'), Decimal('0'), Decimal('65537'))
4573        Decimal('1')
4574        """
4575        return a.__pow__(b, modulo, context=self)
4576
4577    def quantize(self, a, b):
4578        """Returns a value equal to 'a' (rounded), having the exponent of 'b'.
4579
4580        The coefficient of the result is derived from that of the left-hand
4581        operand.  It may be rounded using the current rounding setting (if the
4582        exponent is being increased), multiplied by a positive power of ten (if
4583        the exponent is being decreased), or is unchanged (if the exponent is
4584        already equal to that of the right-hand operand).
4585
4586        Unlike other operations, if the length of the coefficient after the
4587        quantize operation would be greater than precision then an Invalid
4588        operation condition is raised.  This guarantees that, unless there is
4589        an error condition, the exponent of the result of a quantize is always
4590        equal to that of the right-hand operand.
4591
4592        Also unlike other operations, quantize will never raise Underflow, even
4593        if the result is subnormal and inexact.
4594
4595        >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('0.001'))
4596        Decimal('2.170')
4597        >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('0.01'))
4598        Decimal('2.17')
4599        >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('0.1'))
4600        Decimal('2.2')
4601        >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('1e+0'))
4602        Decimal('2')
4603        >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('1e+1'))
4604        Decimal('0E+1')
4605        >>> ExtendedContext.quantize(Decimal('-Inf'), Decimal('Infinity'))
4606        Decimal('-Infinity')
4607        >>> ExtendedContext.quantize(Decimal('2'), Decimal('Infinity'))
4608        Decimal('NaN')
4609        >>> ExtendedContext.quantize(Decimal('-0.1'), Decimal('1'))
4610        Decimal('-0')
4611        >>> ExtendedContext.quantize(Decimal('-0'), Decimal('1e+5'))
4612        Decimal('-0E+5')
4613        >>> ExtendedContext.quantize(Decimal('+35236450.6'), Decimal('1e-2'))
4614        Decimal('NaN')
4615        >>> ExtendedContext.quantize(Decimal('-35236450.6'), Decimal('1e-2'))
4616        Decimal('NaN')
4617        >>> ExtendedContext.quantize(Decimal('217'), Decimal('1e-1'))
4618        Decimal('217.0')
4619        >>> ExtendedContext.quantize(Decimal('217'), Decimal('1e-0'))
4620        Decimal('217')
4621        >>> ExtendedContext.quantize(Decimal('217'), Decimal('1e+1'))
4622        Decimal('2.2E+2')
4623        >>> ExtendedContext.quantize(Decimal('217'), Decimal('1e+2'))
4624        Decimal('2E+2')
4625        """
4626        return a.quantize(b, context=self)
4627
4628    def radix(self):
4629        """Just returns 10, as this is Decimal, :)
4630
4631        >>> ExtendedContext.radix()
4632        Decimal('10')
4633        """
4634        return Decimal(10)
4635
4636    def remainder(self, a, b):
4637        """Returns the remainder from integer division.
4638
4639        The result is the residue of the dividend after the operation of
4640        calculating integer division as described for divide-integer, rounded
4641        to precision digits if necessary.  The sign of the result, if
4642        non-zero, is the same as that of the original dividend.
4643
4644        This operation will fail under the same conditions as integer division
4645        (that is, if integer division on the same two operands would fail, the
4646        remainder cannot be calculated).
4647
4648        >>> ExtendedContext.remainder(Decimal('2.1'), Decimal('3'))
4649        Decimal('2.1')
4650        >>> ExtendedContext.remainder(Decimal('10'), Decimal('3'))
4651        Decimal('1')
4652        >>> ExtendedContext.remainder(Decimal('-10'), Decimal('3'))
4653        Decimal('-1')
4654        >>> ExtendedContext.remainder(Decimal('10.2'), Decimal('1'))
4655        Decimal('0.2')
4656        >>> ExtendedContext.remainder(Decimal('10'), Decimal('0.3'))
4657        Decimal('0.1')
4658        >>> ExtendedContext.remainder(Decimal('3.6'), Decimal('1.3'))
4659        Decimal('1.0')
4660        """
4661        return a.__mod__(b, context=self)
4662
4663    def remainder_near(self, a, b):
4664        """Returns to be "a - b * n", where n is the integer nearest the exact
4665        value of "x / b" (if two integers are equally near then the even one
4666        is chosen).  If the result is equal to 0 then its sign will be the
4667        sign of a.
4668
4669        This operation will fail under the same conditions as integer division
4670        (that is, if integer division on the same two operands would fail, the
4671        remainder cannot be calculated).
4672
4673        >>> ExtendedContext.remainder_near(Decimal('2.1'), Decimal('3'))
4674        Decimal('-0.9')
4675        >>> ExtendedContext.remainder_near(Decimal('10'), Decimal('6'))
4676        Decimal('-2')
4677        >>> ExtendedContext.remainder_near(Decimal('10'), Decimal('3'))
4678        Decimal('1')
4679        >>> ExtendedContext.remainder_near(Decimal('-10'), Decimal('3'))
4680        Decimal('-1')
4681        >>> ExtendedContext.remainder_near(Decimal('10.2'), Decimal('1'))
4682        Decimal('0.2')
4683        >>> ExtendedContext.remainder_near(Decimal('10'), Decimal('0.3'))
4684        Decimal('0.1')
4685        >>> ExtendedContext.remainder_near(Decimal('3.6'), Decimal('1.3'))
4686        Decimal('-0.3')
4687        """
4688        return a.remainder_near(b, context=self)
4689
4690    def rotate(self, a, b):
4691        """Returns a rotated copy of a, b times.
4692
4693        The coefficient of the result is a rotated copy of the digits in
4694        the coefficient of the first operand.  The number of places of
4695        rotation is taken from the absolute value of the second operand,
4696        with the rotation being to the left if the second operand is
4697        positive or to the right otherwise.
4698
4699        >>> ExtendedContext.rotate(Decimal('34'), Decimal('8'))
4700        Decimal('400000003')
4701        >>> ExtendedContext.rotate(Decimal('12'), Decimal('9'))
4702        Decimal('12')
4703        >>> ExtendedContext.rotate(Decimal('123456789'), Decimal('-2'))
4704        Decimal('891234567')
4705        >>> ExtendedContext.rotate(Decimal('123456789'), Decimal('0'))
4706        Decimal('123456789')
4707        >>> ExtendedContext.rotate(Decimal('123456789'), Decimal('+2'))
4708        Decimal('345678912')
4709        """
4710        return a.rotate(b, context=self)
4711
4712    def same_quantum(self, a, b):
4713        """Returns True if the two operands have the same exponent.
4714
4715        The result is never affected by either the sign or the coefficient of
4716        either operand.
4717
4718        >>> ExtendedContext.same_quantum(Decimal('2.17'), Decimal('0.001'))
4719        False
4720        >>> ExtendedContext.same_quantum(Decimal('2.17'), Decimal('0.01'))
4721        True
4722        >>> ExtendedContext.same_quantum(Decimal('2.17'), Decimal('1'))
4723        False
4724        >>> ExtendedContext.same_quantum(Decimal('Inf'), Decimal('-Inf'))
4725        True
4726        """
4727        return a.same_quantum(b)
4728
4729    def scaleb (self, a, b):
4730        """Returns the first operand after adding the second value its exp.
4731
4732        >>> ExtendedContext.scaleb(Decimal('7.50'), Decimal('-2'))
4733        Decimal('0.0750')
4734        >>> ExtendedContext.scaleb(Decimal('7.50'), Decimal('0'))
4735        Decimal('7.50')
4736        >>> ExtendedContext.scaleb(Decimal('7.50'), Decimal('3'))
4737        Decimal('7.50E+3')
4738        """
4739        return a.scaleb (b, context=self)
4740
4741    def shift(self, a, b):
4742        """Returns a shifted copy of a, b times.
4743
4744        The coefficient of the result is a shifted copy of the digits
4745        in the coefficient of the first operand.  The number of places
4746        to shift is taken from the absolute value of the second operand,
4747        with the shift being to the left if the second operand is
4748        positive or to the right otherwise.  Digits shifted into the
4749        coefficient are zeros.
4750
4751        >>> ExtendedContext.shift(Decimal('34'), Decimal('8'))
4752        Decimal('400000000')
4753        >>> ExtendedContext.shift(Decimal('12'), Decimal('9'))
4754        Decimal('0')
4755        >>> ExtendedContext.shift(Decimal('123456789'), Decimal('-2'))
4756        Decimal('1234567')
4757        >>> ExtendedContext.shift(Decimal('123456789'), Decimal('0'))
4758        Decimal('123456789')
4759        >>> ExtendedContext.shift(Decimal('123456789'), Decimal('+2'))
4760        Decimal('345678900')
4761        """
4762        return a.shift(b, context=self)
4763
4764    def sqrt(self, a):
4765        """Square root of a non-negative number to context precision.
4766
4767        If the result must be inexact, it is rounded using the round-half-even
4768        algorithm.
4769
4770        >>> ExtendedContext.sqrt(Decimal('0'))
4771        Decimal('0')
4772        >>> ExtendedContext.sqrt(Decimal('-0'))
4773        Decimal('-0')
4774        >>> ExtendedContext.sqrt(Decimal('0.39'))
4775        Decimal('0.624499800')
4776        >>> ExtendedContext.sqrt(Decimal('100'))
4777        Decimal('10')
4778        >>> ExtendedContext.sqrt(Decimal('1'))
4779        Decimal('1')
4780        >>> ExtendedContext.sqrt(Decimal('1.0'))
4781        Decimal('1.0')
4782        >>> ExtendedContext.sqrt(Decimal('1.00'))
4783        Decimal('1.0')
4784        >>> ExtendedContext.sqrt(Decimal('7'))
4785        Decimal('2.64575131')
4786        >>> ExtendedContext.sqrt(Decimal('10'))
4787        Decimal('3.16227766')
4788        >>> ExtendedContext.prec
4789        9
4790        """
4791        return a.sqrt(context=self)
4792
4793    def subtract(self, a, b):
4794        """Return the difference between the two operands.
4795
4796        >>> ExtendedContext.subtract(Decimal('1.3'), Decimal('1.07'))
4797        Decimal('0.23')
4798        >>> ExtendedContext.subtract(Decimal('1.3'), Decimal('1.30'))
4799        Decimal('0.00')
4800        >>> ExtendedContext.subtract(Decimal('1.3'), Decimal('2.07'))
4801        Decimal('-0.77')
4802        """
4803        return a.__sub__(b, context=self)
4804
4805    def to_eng_string(self, a):
4806        """Converts a number to a string, using scientific notation.
4807
4808        The operation is not affected by the context.
4809        """
4810        return a.to_eng_string(context=self)
4811
4812    def to_sci_string(self, a):
4813        """Converts a number to a string, using scientific notation.
4814
4815        The operation is not affected by the context.
4816        """
4817        return a.__str__(context=self)
4818
4819    def to_integral_exact(self, a):
4820        """Rounds to an integer.
4821
4822        When the operand has a negative exponent, the result is the same
4823        as using the quantize() operation using the given operand as the
4824        left-hand-operand, 1E+0 as the right-hand-operand, and the precision
4825        of the operand as the precision setting; Inexact and Rounded flags
4826        are allowed in this operation.  The rounding mode is taken from the
4827        context.
4828
4829        >>> ExtendedContext.to_integral_exact(Decimal('2.1'))
4830        Decimal('2')
4831        >>> ExtendedContext.to_integral_exact(Decimal('100'))
4832        Decimal('100')
4833        >>> ExtendedContext.to_integral_exact(Decimal('100.0'))
4834        Decimal('100')
4835        >>> ExtendedContext.to_integral_exact(Decimal('101.5'))
4836        Decimal('102')
4837        >>> ExtendedContext.to_integral_exact(Decimal('-101.5'))
4838        Decimal('-102')
4839        >>> ExtendedContext.to_integral_exact(Decimal('10E+5'))
4840        Decimal('1.0E+6')
4841        >>> ExtendedContext.to_integral_exact(Decimal('7.89E+77'))
4842        Decimal('7.89E+77')
4843        >>> ExtendedContext.to_integral_exact(Decimal('-Inf'))
4844        Decimal('-Infinity')
4845        """
4846        return a.to_integral_exact(context=self)
4847
4848    def to_integral_value(self, a):
4849        """Rounds to an integer.
4850
4851        When the operand has a negative exponent, the result is the same
4852        as using the quantize() operation using the given operand as the
4853        left-hand-operand, 1E+0 as the right-hand-operand, and the precision
4854        of the operand as the precision setting, except that no flags will
4855        be set.  The rounding mode is taken from the context.
4856
4857        >>> ExtendedContext.to_integral_value(Decimal('2.1'))
4858        Decimal('2')
4859        >>> ExtendedContext.to_integral_value(Decimal('100'))
4860        Decimal('100')
4861        >>> ExtendedContext.to_integral_value(Decimal('100.0'))
4862        Decimal('100')
4863        >>> ExtendedContext.to_integral_value(Decimal('101.5'))
4864        Decimal('102')
4865        >>> ExtendedContext.to_integral_value(Decimal('-101.5'))
4866        Decimal('-102')
4867        >>> ExtendedContext.to_integral_value(Decimal('10E+5'))
4868        Decimal('1.0E+6')
4869        >>> ExtendedContext.to_integral_value(Decimal('7.89E+77'))
4870        Decimal('7.89E+77')
4871        >>> ExtendedContext.to_integral_value(Decimal('-Inf'))
4872        Decimal('-Infinity')
4873        """
4874        return a.to_integral_value(context=self)
4875
4876    # the method name changed, but we provide also the old one, for compatibility
4877    to_integral = to_integral_value
4878
4879class _WorkRep(object):
4880    __slots__ = ('sign','int','exp')
4881    # sign: 0 or 1
4882    # int:  int or long
4883    # exp:  None, int, or string
4884
4885    def __init__(self, value=None):
4886        if value is None:
4887            self.sign = None
4888            self.int = 0
4889            self.exp = None
4890        elif isinstance(value, Decimal):
4891            self.sign = value._sign
4892            self.int = int(value._int)
4893            self.exp = value._exp
4894        else:
4895            # assert isinstance(value, tuple)
4896            self.sign = value[0]
4897            self.int = value[1]
4898            self.exp = value[2]
4899
4900    def __repr__(self):
4901        return "(%r, %r, %r)" % (self.sign, self.int, self.exp)
4902
4903    __str__ = __repr__
4904
4905
4906
4907def _normalize(op1, op2, prec = 0):
4908    """Normalizes op1, op2 to have the same exp and length of coefficient.
4909
4910    Done during addition.
4911    """
4912    if op1.exp < op2.exp:
4913        tmp = op2
4914        other = op1
4915    else:
4916        tmp = op1
4917        other = op2
4918
4919    # Let exp = min(tmp.exp - 1, tmp.adjusted() - precision - 1).
4920    # Then adding 10**exp to tmp has the same effect (after rounding)
4921    # as adding any positive quantity smaller than 10**exp; similarly
4922    # for subtraction.  So if other is smaller than 10**exp we replace
4923    # it with 10**exp.  This avoids tmp.exp - other.exp getting too large.
4924    tmp_len = len(str(tmp.int))
4925    other_len = len(str(other.int))
4926    exp = tmp.exp + min(-1, tmp_len - prec - 2)
4927    if other_len + other.exp - 1 < exp:
4928        other.int = 1
4929        other.exp = exp
4930
4931    tmp.int *= 10 ** (tmp.exp - other.exp)
4932    tmp.exp = other.exp
4933    return op1, op2
4934
4935##### Integer arithmetic functions used by ln, log10, exp and __pow__ #####
4936
4937# This function from Tim Peters was taken from here:
4938# http://mail.python.org/pipermail/python-list/1999-July/007758.html
4939# The correction being in the function definition is for speed, and
4940# the whole function is not resolved with math.log because of avoiding
4941# the use of floats.
4942def _nbits(n, correction = {
4943        '0': 4, '1': 3, '2': 2, '3': 2,
4944        '4': 1, '5': 1, '6': 1, '7': 1,
4945        '8': 0, '9': 0, 'a': 0, 'b': 0,
4946        'c': 0, 'd': 0, 'e': 0, 'f': 0}):
4947    """Number of bits in binary representation of the positive integer n,
4948    or 0 if n == 0.
4949    """
4950    if n < 0:
4951        raise ValueError("The argument to _nbits should be nonnegative.")
4952    hex_n = "%x" % n
4953    return 4*len(hex_n) - correction[hex_n[0]]
4954
4955def _sqrt_nearest(n, a):
4956    """Closest integer to the square root of the positive integer n.  a is
4957    an initial approximation to the square root.  Any positive integer
4958    will do for a, but the closer a is to the square root of n the
4959    faster convergence will be.
4960
4961    """
4962    if n <= 0 or a <= 0:
4963        raise ValueError("Both arguments to _sqrt_nearest should be positive.")
4964
4965    b=0
4966    while a != b:
4967        b, a = a, a--n//a>>1
4968    return a
4969
4970def _rshift_nearest(x, shift):
4971    """Given an integer x and a nonnegative integer shift, return closest
4972    integer to x / 2**shift; use round-to-even in case of a tie.
4973
4974    """
4975    b, q = 1L << shift, x >> shift
4976    return q + (2*(x & (b-1)) + (q&1) > b)
4977
4978def _div_nearest(a, b):
4979    """Closest integer to a/b, a and b positive integers; rounds to even
4980    in the case of a tie.
4981
4982    """
4983    q, r = divmod(a, b)
4984    return q + (2*r + (q&1) > b)
4985
4986def _ilog(x, M, L = 8):
4987    """Integer approximation to M*log(x/M), with absolute error boundable
4988    in terms only of x/M.
4989
4990    Given positive integers x and M, return an integer approximation to
4991    M * log(x/M).  For L = 8 and 0.1 <= x/M <= 10 the difference
4992    between the approximation and the exact result is at most 22.  For
4993    L = 8 and 1.0 <= x/M <= 10.0 the difference is at most 15.  In
4994    both cases these are upper bounds on the error; it will usually be
4995    much smaller."""
4996
4997    # The basic algorithm is the following: let log1p be the function
4998    # log1p(x) = log(1+x).  Then log(x/M) = log1p((x-M)/M).  We use
4999    # the reduction
5000    #
5001    #    log1p(y) = 2*log1p(y/(1+sqrt(1+y)))
5002    #
5003    # repeatedly until the argument to log1p is small (< 2**-L in
5004    # absolute value).  For small y we can use the Taylor series
5005    # expansion
5006    #
5007    #    log1p(y) ~ y - y**2/2 + y**3/3 - ... - (-y)**T/T
5008    #
5009    # truncating at T such that y**T is small enough.  The whole
5010    # computation is carried out in a form of fixed-point arithmetic,
5011    # with a real number z being represented by an integer
5012    # approximation to z*M.  To avoid loss of precision, the y below
5013    # is actually an integer approximation to 2**R*y*M, where R is the
5014    # number of reductions performed so far.
5015
5016    y = x-M
5017    # argument reduction; R = number of reductions performed
5018    R = 0
5019    while (R <= L and long(abs(y)) << L-R >= M or
5020           R > L and abs(y) >> R-L >= M):
5021        y = _div_nearest(long(M*y) << 1,
5022                         M + _sqrt_nearest(M*(M+_rshift_nearest(y, R)), M))
5023        R += 1
5024
5025    # Taylor series with T terms
5026    T = -int(-10*len(str(M))//(3*L))
5027    yshift = _rshift_nearest(y, R)
5028    w = _div_nearest(M, T)
5029    for k in xrange(T-1, 0, -1):
5030        w = _div_nearest(M, k) - _div_nearest(yshift*w, M)
5031
5032    return _div_nearest(w*y, M)
5033
5034def _dlog10(c, e, p):
5035    """Given integers c, e and p with c > 0, p >= 0, compute an integer
5036    approximation to 10**p * log10(c*10**e), with an absolute error of
5037    at most 1.  Assumes that c*10**e is not exactly 1."""
5038
5039    # increase precision by 2; compensate for this by dividing
5040    # final result by 100
5041    p += 2
5042
5043    # write c*10**e as d*10**f with either:
5044    #   f >= 0 and 1 <= d <= 10, or
5045    #   f <= 0 and 0.1 <= d <= 1.
5046    # Thus for c*10**e close to 1, f = 0
5047    l = len(str(c))
5048    f = e+l - (e+l >= 1)
5049
5050    if p > 0:
5051        M = 10**p
5052        k = e+p-f
5053        if k >= 0:
5054            c *= 10**k
5055        else:
5056            c = _div_nearest(c, 10**-k)
5057
5058        log_d = _ilog(c, M) # error < 5 + 22 = 27
5059        log_10 = _log10_digits(p) # error < 1
5060        log_d = _div_nearest(log_d*M, log_10)
5061        log_tenpower = f*M # exact
5062    else:
5063        log_d = 0  # error < 2.31
5064        log_tenpower = div_nearest(f, 10**-p) # error < 0.5
5065
5066    return _div_nearest(log_tenpower+log_d, 100)
5067
5068def _dlog(c, e, p):
5069    """Given integers c, e and p with c > 0, compute an integer
5070    approximation to 10**p * log(c*10**e), with an absolute error of
5071    at most 1.  Assumes that c*10**e is not exactly 1."""
5072
5073    # Increase precision by 2. The precision increase is compensated
5074    # for at the end with a division by 100.
5075    p += 2
5076
5077    # rewrite c*10**e as d*10**f with either f >= 0 and 1 <= d <= 10,
5078    # or f <= 0 and 0.1 <= d <= 1.  Then we can compute 10**p * log(c*10**e)
5079    # as 10**p * log(d) + 10**p*f * log(10).
5080    l = len(str(c))
5081    f = e+l - (e+l >= 1)
5082
5083    # compute approximation to 10**p*log(d), with error < 27
5084    if p > 0:
5085        k = e+p-f
5086        if k >= 0:
5087            c *= 10**k
5088        else:
5089            c = _div_nearest(c, 10**-k)  # error of <= 0.5 in c
5090
5091        # _ilog magnifies existing error in c by a factor of at most 10
5092        log_d = _ilog(c, 10**p) # error < 5 + 22 = 27
5093    else:
5094        # p <= 0: just approximate the whole thing by 0; error < 2.31
5095        log_d = 0
5096
5097    # compute approximation to f*10**p*log(10), with error < 11.
5098    if f:
5099        extra = len(str(abs(f)))-1
5100        if p + extra >= 0:
5101            # error in f * _log10_digits(p+extra) < |f| * 1 = |f|
5102            # after division, error < |f|/10**extra + 0.5 < 10 + 0.5 < 11
5103            f_log_ten = _div_nearest(f*_log10_digits(p+extra), 10**extra)
5104        else:
5105            f_log_ten = 0
5106    else:
5107        f_log_ten = 0
5108
5109    # error in sum < 11+27 = 38; error after division < 0.38 + 0.5 < 1
5110    return _div_nearest(f_log_ten + log_d, 100)
5111
5112class _Log10Memoize(object):
5113    """Class to compute, store, and allow retrieval of, digits of the
5114    constant log(10) = 2.302585....  This constant is needed by
5115    Decimal.ln, Decimal.log10, Decimal.exp and Decimal.__pow__."""
5116    def __init__(self):
5117        self.digits = "23025850929940456840179914546843642076011014886"
5118
5119    def getdigits(self, p):
5120        """Given an integer p >= 0, return floor(10**p)*log(10).
5121
5122        For example, self.getdigits(3) returns 2302.
5123        """
5124        # digits are stored as a string, for quick conversion to
5125        # integer in the case that we've already computed enough
5126        # digits; the stored digits should always be correct
5127        # (truncated, not rounded to nearest).
5128        if p < 0:
5129            raise ValueError("p should be nonnegative")
5130
5131        if p >= len(self.digits):
5132            # compute p+3, p+6, p+9, ... digits; continue until at
5133            # least one of the extra digits is nonzero
5134            extra = 3
5135            while True:
5136                # compute p+extra digits, correct to within 1ulp
5137                M = 10**(p+extra+2)
5138                digits = str(_div_nearest(_ilog(10*M, M), 100))
5139                if digits[-extra:] != '0'*extra:
5140                    break
5141                extra += 3
5142            # keep all reliable digits so far; remove trailing zeros
5143            # and next nonzero digit
5144            self.digits = digits.rstrip('0')[:-1]
5145        return int(self.digits[:p+1])
5146
5147_log10_digits = _Log10Memoize().getdigits
5148
5149def _iexp(x, M, L=8):
5150    """Given integers x and M, M > 0, such that x/M is small in absolute
5151    value, compute an integer approximation to M*exp(x/M).  For 0 <=
5152    x/M <= 2.4, the absolute error in the result is bounded by 60 (and
5153    is usually much smaller)."""
5154
5155    # Algorithm: to compute exp(z) for a real number z, first divide z
5156    # by a suitable power R of 2 so that |z/2**R| < 2**-L.  Then
5157    # compute expm1(z/2**R) = exp(z/2**R) - 1 using the usual Taylor
5158    # series
5159    #
5160    #     expm1(x) = x + x**2/2! + x**3/3! + ...
5161    #
5162    # Now use the identity
5163    #
5164    #     expm1(2x) = expm1(x)*(expm1(x)+2)
5165    #
5166    # R times to compute the sequence expm1(z/2**R),
5167    # expm1(z/2**(R-1)), ... , exp(z/2), exp(z).
5168
5169    # Find R such that x/2**R/M <= 2**-L
5170    R = _nbits((long(x)<<L)//M)
5171
5172    # Taylor series.  (2**L)**T > M
5173    T = -int(-10*len(str(M))//(3*L))
5174    y = _div_nearest(x, T)
5175    Mshift = long(M)<<R
5176    for i in xrange(T-1, 0, -1):
5177        y = _div_nearest(x*(Mshift + y), Mshift * i)
5178
5179    # Expansion
5180    for k in xrange(R-1, -1, -1):
5181        Mshift = long(M)<<(k+2)
5182        y = _div_nearest(y*(y+Mshift), Mshift)
5183
5184    return M+y
5185
5186def _dexp(c, e, p):
5187    """Compute an approximation to exp(c*10**e), with p decimal places of
5188    precision.
5189
5190    Returns integers d, f such that:
5191
5192      10**(p-1) <= d <= 10**p, and
5193      (d-1)*10**f < exp(c*10**e) < (d+1)*10**f
5194
5195    In other words, d*10**f is an approximation to exp(c*10**e) with p
5196    digits of precision, and with an error in d of at most 1.  This is
5197    almost, but not quite, the same as the error being < 1ulp: when d
5198    = 10**(p-1) the error could be up to 10 ulp."""
5199
5200    # we'll call iexp with M = 10**(p+2), giving p+3 digits of precision
5201    p += 2
5202
5203    # compute log(10) with extra precision = adjusted exponent of c*10**e
5204    extra = max(0, e + len(str(c)) - 1)
5205    q = p + extra
5206
5207    # compute quotient c*10**e/(log(10)) = c*10**(e+q)/(log(10)*10**q),
5208    # rounding down
5209    shift = e+q
5210    if shift >= 0:
5211        cshift = c*10**shift
5212    else:
5213        cshift = c//10**-shift
5214    quot, rem = divmod(cshift, _log10_digits(q))
5215
5216    # reduce remainder back to original precision
5217    rem = _div_nearest(rem, 10**extra)
5218
5219    # error in result of _iexp < 120;  error after division < 0.62
5220    return _div_nearest(_iexp(rem, 10**p), 1000), quot - p + 3
5221
5222def _dpower(xc, xe, yc, ye, p):
5223    """Given integers xc, xe, yc and ye representing Decimals x = xc*10**xe and
5224    y = yc*10**ye, compute x**y.  Returns a pair of integers (c, e) such that:
5225
5226      10**(p-1) <= c <= 10**p, and
5227      (c-1)*10**e < x**y < (c+1)*10**e
5228
5229    in other words, c*10**e is an approximation to x**y with p digits
5230    of precision, and with an error in c of at most 1.  (This is
5231    almost, but not quite, the same as the error being < 1ulp: when c
5232    == 10**(p-1) we can only guarantee error < 10ulp.)
5233
5234    We assume that: x is positive and not equal to 1, and y is nonzero.
5235    """
5236
5237    # Find b such that 10**(b-1) <= |y| <= 10**b
5238    b = len(str(abs(yc))) + ye
5239
5240    # log(x) = lxc*10**(-p-b-1), to p+b+1 places after the decimal point
5241    lxc = _dlog(xc, xe, p+b+1)
5242
5243    # compute product y*log(x) = yc*lxc*10**(-p-b-1+ye) = pc*10**(-p-1)
5244    shift = ye-b
5245    if shift >= 0:
5246        pc = lxc*yc*10**shift
5247    else:
5248        pc = _div_nearest(lxc*yc, 10**-shift)
5249
5250    if pc == 0:
5251        # we prefer a result that isn't exactly 1; this makes it
5252        # easier to compute a correctly rounded result in __pow__
5253        if ((len(str(xc)) + xe >= 1) == (yc > 0)): # if x**y > 1:
5254            coeff, exp = 10**(p-1)+1, 1-p
5255        else:
5256            coeff, exp = 10**p-1, -p
5257    else:
5258        coeff, exp = _dexp(pc, -(p+1), p+1)
5259        coeff = _div_nearest(coeff, 10)
5260        exp += 1
5261
5262    return coeff, exp
5263
5264def _log10_lb(c, correction = {
5265        '1': 100, '2': 70, '3': 53, '4': 40, '5': 31,
5266        '6': 23, '7': 16, '8': 10, '9': 5}):
5267    """Compute a lower bound for 100*log10(c) for a positive integer c."""
5268    if c <= 0:
5269        raise ValueError("The argument to _log10_lb should be nonnegative.")
5270    str_c = str(c)
5271    return 100*len(str_c) - correction[str_c[0]]
5272
5273##### Helper Functions ####################################################
5274
5275def _convert_other(other, raiseit=False):
5276    """Convert other to Decimal.
5277
5278    Verifies that it's ok to use in an implicit construction.
5279    """
5280    if isinstance(other, Decimal):
5281        return other
5282    if isinstance(other, (int, long)):
5283        return Decimal(other)
5284    if raiseit:
5285        raise TypeError("Unable to convert %s to Decimal" % other)
5286    return NotImplemented
5287
5288##### Setup Specific Contexts ############################################
5289
5290# The default context prototype used by Context()
5291# Is mutable, so that new contexts can have different default values
5292
5293DefaultContext = Context(
5294        prec=28, rounding=ROUND_HALF_EVEN,
5295        traps=[DivisionByZero, Overflow, InvalidOperation],
5296        flags=[],
5297        Emax=999999999,
5298        Emin=-999999999,
5299        capitals=1
5300)
5301
5302# Pre-made alternate contexts offered by the specification
5303# Don't change these; the user should be able to select these
5304# contexts and be able to reproduce results from other implementations
5305# of the spec.
5306
5307BasicContext = Context(
5308        prec=9, rounding=ROUND_HALF_UP,
5309        traps=[DivisionByZero, Overflow, InvalidOperation, Clamped, Underflow],
5310        flags=[],
5311)
5312
5313ExtendedContext = Context(
5314        prec=9, rounding=ROUND_HALF_EVEN,
5315        traps=[],
5316        flags=[],
5317)
5318
5319
5320##### crud for parsing strings #############################################
5321#
5322# Regular expression used for parsing numeric strings.  Additional
5323# comments:
5324#
5325# 1. Uncomment the two '\s*' lines to allow leading and/or trailing
5326# whitespace.  But note that the specification disallows whitespace in
5327# a numeric string.
5328#
5329# 2. For finite numbers (not infinities and NaNs) the body of the
5330# number between the optional sign and the optional exponent must have
5331# at least one decimal digit, possibly after the decimal point.  The
5332# lookahead expression '(?=\d|\.\d)' checks this.
5333#
5334# As the flag UNICODE is not enabled here, we're explicitly avoiding any
5335# other meaning for \d than the numbers [0-9].
5336
5337import re
5338_parser = re.compile(r"""        # A numeric string consists of:
5339#    \s*
5340    (?P<sign>[-+])?              # an optional sign, followed by either...
5341    (
5342        (?=[0-9]|\.[0-9])        # ...a number (with at least one digit)
5343        (?P<int>[0-9]*)          # having a (possibly empty) integer part
5344        (\.(?P<frac>[0-9]*))?    # followed by an optional fractional part
5345        (E(?P<exp>[-+]?[0-9]+))? # followed by an optional exponent, or...
5346    |
5347        Inf(inity)?              # ...an infinity, or...
5348    |
5349        (?P<signal>s)?           # ...an (optionally signaling)
5350        NaN                      # NaN
5351        (?P<diag>[0-9]*)         # with (possibly empty) diagnostic info.
5352    )
5353#    \s*
5354    \Z
5355""", re.VERBOSE | re.IGNORECASE).match
5356
5357_all_zeros = re.compile('0*$').match
5358_exact_half = re.compile('50*$').match
5359
5360##### PEP3101 support functions ##############################################
5361# The functions parse_format_specifier and format_align have little to do
5362# with the Decimal class, and could potentially be reused for other pure
5363# Python numeric classes that want to implement __format__
5364#
5365# A format specifier for Decimal looks like:
5366#
5367#   [[fill]align][sign][0][minimumwidth][.precision][type]
5368#
5369
5370_parse_format_specifier_regex = re.compile(r"""\A
5371(?:
5372   (?P<fill>.)?
5373   (?P<align>[<>=^])
5374)?
5375(?P<sign>[-+ ])?
5376(?P<zeropad>0)?
5377(?P<minimumwidth>(?!0)\d+)?
5378(?:\.(?P<precision>0|(?!0)\d+))?
5379(?P<type>[eEfFgG%])?
5380\Z
5381""", re.VERBOSE)
5382
5383del re
5384
5385def _parse_format_specifier(format_spec):
5386    """Parse and validate a format specifier.
5387
5388    Turns a standard numeric format specifier into a dict, with the
5389    following entries:
5390
5391      fill: fill character to pad field to minimum width
5392      align: alignment type, either '<', '>', '=' or '^'
5393      sign: either '+', '-' or ' '
5394      minimumwidth: nonnegative integer giving minimum width
5395      precision: nonnegative integer giving precision, or None
5396      type: one of the characters 'eEfFgG%', or None
5397      unicode: either True or False (always True for Python 3.x)
5398
5399    """
5400    m = _parse_format_specifier_regex.match(format_spec)
5401    if m is None:
5402        raise ValueError("Invalid format specifier: " + format_spec)
5403
5404    # get the dictionary
5405    format_dict = m.groupdict()
5406
5407    # defaults for fill and alignment
5408    fill = format_dict['fill']
5409    align = format_dict['align']
5410    if format_dict.pop('zeropad') is not None:
5411        # in the face of conflict, refuse the temptation to guess
5412        if fill is not None and fill != '0':
5413            raise ValueError("Fill character conflicts with '0'"
5414                             " in format specifier: " + format_spec)
5415        if align is not None and align != '=':
5416            raise ValueError("Alignment conflicts with '0' in "
5417                             "format specifier: " + format_spec)
5418        fill = '0'
5419        align = '='
5420    format_dict['fill'] = fill or ' '
5421    format_dict['align'] = align or '<'
5422
5423    if format_dict['sign'] is None:
5424        format_dict['sign'] = '-'
5425
5426    # turn minimumwidth and precision entries into integers.
5427    # minimumwidth defaults to 0; precision remains None if not given
5428    format_dict['minimumwidth'] = int(format_dict['minimumwidth'] or '0')
5429    if format_dict['precision'] is not None:
5430        format_dict['precision'] = int(format_dict['precision'])
5431
5432    # if format type is 'g' or 'G' then a precision of 0 makes little
5433    # sense; convert it to 1.  Same if format type is unspecified.
5434    if format_dict['precision'] == 0:
5435        if format_dict['type'] in 'gG' or format_dict['type'] is None:
5436            format_dict['precision'] = 1
5437
5438    # record whether return type should be str or unicode
5439    format_dict['unicode'] = isinstance(format_spec, unicode)
5440
5441    return format_dict
5442
5443def _format_align(body, spec_dict):
5444    """Given an unpadded, non-aligned numeric string, add padding and
5445    aligment to conform with the given format specifier dictionary (as
5446    output from parse_format_specifier).
5447
5448    It's assumed that if body is negative then it starts with '-'.
5449    Any leading sign ('-' or '+') is stripped from the body before
5450    applying the alignment and padding rules, and replaced in the
5451    appropriate position.
5452
5453    """
5454    # figure out the sign; we only examine the first character, so if
5455    # body has leading whitespace the results may be surprising.
5456    if len(body) > 0 and body[0] in '-+':
5457        sign = body[0]
5458        body = body[1:]
5459    else:
5460        sign = ''
5461
5462    if sign != '-':
5463        if spec_dict['sign'] in ' +':
5464            sign = spec_dict['sign']
5465        else:
5466            sign = ''
5467
5468    # how much extra space do we have to play with?
5469    minimumwidth = spec_dict['minimumwidth']
5470    fill = spec_dict['fill']
5471    padding = fill*(max(minimumwidth - (len(sign+body)), 0))
5472
5473    align = spec_dict['align']
5474    if align == '<':
5475        result = padding + sign + body
5476    elif align == '>':
5477        result = sign + body + padding
5478    elif align == '=':
5479        result = sign + padding + body
5480    else: #align == '^'
5481        half = len(padding)//2
5482        result = padding[:half] + sign + body + padding[half:]
5483
5484    # make sure that result is unicode if necessary
5485    if spec_dict['unicode']:
5486        result = unicode(result)
5487
5488    return result
5489
5490##### Useful Constants (internal use only) ################################
5491
5492# Reusable defaults
5493Inf = Decimal('Inf')
5494negInf = Decimal('-Inf')
5495NaN = Decimal('NaN')
5496Dec_0 = Decimal(0)
5497Dec_p1 = Decimal(1)
5498Dec_n1 = Decimal(-1)
5499
5500# Infsign[sign] is infinity w/ that sign
5501Infsign = (Inf, negInf)
5502
5503
5504
5505if __name__ == '__main__':
5506    import doctest, sys
5507    doctest.testmod(sys.modules[__name__])
5508