test_cmath.py revision 6f34109384f3a78d5f4f8bdd418a89caca19631e
1from test.test_support import run_unittest
2from test.test_math import parse_testfile, test_file
3import unittest
4import os, sys
5import cmath, math
6from cmath import phase, polar, rect, pi
7
8INF = float('inf')
9NAN = float('nan')
10
11complex_zeros = [complex(x, y) for x in [0.0, -0.0] for y in [0.0, -0.0]]
12complex_infinities = [complex(x, y) for x, y in [
13        (INF, 0.0),  # 1st quadrant
14        (INF, 2.3),
15        (INF, INF),
16        (2.3, INF),
17        (0.0, INF),
18        (-0.0, INF), # 2nd quadrant
19        (-2.3, INF),
20        (-INF, INF),
21        (-INF, 2.3),
22        (-INF, 0.0),
23        (-INF, -0.0), # 3rd quadrant
24        (-INF, -2.3),
25        (-INF, -INF),
26        (-2.3, -INF),
27        (-0.0, -INF),
28        (0.0, -INF), # 4th quadrant
29        (2.3, -INF),
30        (INF, -INF),
31        (INF, -2.3),
32        (INF, -0.0)
33        ]]
34complex_nans = [complex(x, y) for x, y in [
35        (NAN, -INF),
36        (NAN, -2.3),
37        (NAN, -0.0),
38        (NAN, 0.0),
39        (NAN, 2.3),
40        (NAN, INF),
41        (-INF, NAN),
42        (-2.3, NAN),
43        (-0.0, NAN),
44        (0.0, NAN),
45        (2.3, NAN),
46        (INF, NAN)
47        ]]
48
49def almostEqualF(a, b, rel_err=2e-15, abs_err = 5e-323):
50    """Determine whether floating-point values a and b are equal to within
51    a (small) rounding error.  The default values for rel_err and
52    abs_err are chosen to be suitable for platforms where a float is
53    represented by an IEEE 754 double.  They allow an error of between
54    9 and 19 ulps."""
55
56    # special values testing
57    if math.isnan(a):
58        return math.isnan(b)
59    if math.isinf(a):
60        return a == b
61
62    # if both a and b are zero, check whether they have the same sign
63    # (in theory there are examples where it would be legitimate for a
64    # and b to have opposite signs; in practice these hardly ever
65    # occur).
66    if not a and not b:
67        return math.copysign(1., a) == math.copysign(1., b)
68
69    # if a-b overflows, or b is infinite, return False.  Again, in
70    # theory there are examples where a is within a few ulps of the
71    # max representable float, and then b could legitimately be
72    # infinite.  In practice these examples are rare.
73    try:
74        absolute_error = abs(b-a)
75    except OverflowError:
76        return False
77    else:
78        return absolute_error <= max(abs_err, rel_err * abs(a))
79
80class CMathTests(unittest.TestCase):
81    # list of all functions in cmath
82    test_functions = [getattr(cmath, fname) for fname in [
83            'acos', 'acosh', 'asin', 'asinh', 'atan', 'atanh',
84            'cos', 'cosh', 'exp', 'log', 'log10', 'sin', 'sinh',
85            'sqrt', 'tan', 'tanh']]
86    # test first and second arguments independently for 2-argument log
87    test_functions.append(lambda x : cmath.log(x, 1729. + 0j))
88    test_functions.append(lambda x : cmath.log(14.-27j, x))
89
90    def setUp(self):
91        self.test_values = open(test_file)
92
93    def tearDown(self):
94        self.test_values.close()
95
96    def rAssertAlmostEqual(self, a, b, rel_err = 2e-15, abs_err = 5e-323):
97        """Check that two floating-point numbers are almost equal."""
98
99        # special values testing
100        if math.isnan(a):
101            if math.isnan(b):
102                return
103            self.fail("%s should be nan" % repr(b))
104
105        if math.isinf(a):
106            if a == b:
107                return
108            self.fail("finite result where infinity excpected: "
109                      "expected %s, got %s" % (repr(a), repr(b)))
110
111        if not a and not b:
112            if math.atan2(a, -1.) != math.atan2(b, -1.):
113                self.fail("zero has wrong sign: expected %s, got %s" %
114                          (repr(a), repr(b)))
115
116        # test passes if either the absolute error or the relative
117        # error is sufficiently small.  The defaults amount to an
118        # error of between 9 ulps and 19 ulps on an IEEE-754 compliant
119        # machine.
120
121        try:
122            absolute_error = abs(b-a)
123        except OverflowError:
124            pass
125        else:
126            if absolute_error <= max(abs_err, rel_err * abs(a)):
127                return
128        self.fail("%s and %s are not sufficiently close" % (repr(a), repr(b)))
129
130    def test_constants(self):
131        e_expected = 2.71828182845904523536
132        pi_expected = 3.14159265358979323846
133        self.rAssertAlmostEqual(cmath.pi, pi_expected, 9,
134            "cmath.pi is %s; should be %s" % (cmath.pi, pi_expected))
135        self.rAssertAlmostEqual(cmath.e,  e_expected, 9,
136            "cmath.e is %s; should be %s" % (cmath.e, e_expected))
137
138    def test_user_object(self):
139        # Test automatic calling of __complex__ and __float__ by cmath
140        # functions
141
142        # some random values to use as test values; we avoid values
143        # for which any of the functions in cmath is undefined
144        # (i.e. 0., 1., -1., 1j, -1j) or would cause overflow
145        cx_arg = 4.419414439 + 1.497100113j
146        flt_arg = -6.131677725
147
148        # a variety of non-complex numbers, used to check that
149        # non-complex return values from __complex__ give an error
150        non_complexes = ["not complex", 1, 5L, 2., None,
151                         object(), NotImplemented]
152
153        # Now we introduce a variety of classes whose instances might
154        # end up being passed to the cmath functions
155
156        # usual case: new-style class implementing __complex__
157        class MyComplex(object):
158            def __init__(self, value):
159                self.value = value
160            def __complex__(self):
161                return self.value
162
163        # old-style class implementing __complex__
164        class MyComplexOS:
165            def __init__(self, value):
166                self.value = value
167            def __complex__(self):
168                return self.value
169
170        # classes for which __complex__ raises an exception
171        class SomeException(Exception):
172            pass
173        class MyComplexException(object):
174            def __complex__(self):
175                raise SomeException
176        class MyComplexExceptionOS:
177            def __complex__(self):
178                raise SomeException
179
180        # some classes not providing __float__ or __complex__
181        class NeitherComplexNorFloat(object):
182            pass
183        class NeitherComplexNorFloatOS:
184            pass
185        class MyInt(object):
186            def __int__(self): return 2
187            def __long__(self): return 2L
188            def __index__(self): return 2
189        class MyIntOS:
190            def __int__(self): return 2
191            def __long__(self): return 2L
192            def __index__(self): return 2
193
194        # other possible combinations of __float__ and __complex__
195        # that should work
196        class FloatAndComplex(object):
197            def __float__(self):
198                return flt_arg
199            def __complex__(self):
200                return cx_arg
201        class FloatAndComplexOS:
202            def __float__(self):
203                return flt_arg
204            def __complex__(self):
205                return cx_arg
206        class JustFloat(object):
207            def __float__(self):
208                return flt_arg
209        class JustFloatOS:
210            def __float__(self):
211                return flt_arg
212
213        for f in self.test_functions:
214            # usual usage
215            self.assertEqual(f(MyComplex(cx_arg)), f(cx_arg))
216            self.assertEqual(f(MyComplexOS(cx_arg)), f(cx_arg))
217            # other combinations of __float__ and __complex__
218            self.assertEqual(f(FloatAndComplex()), f(cx_arg))
219            self.assertEqual(f(FloatAndComplexOS()), f(cx_arg))
220            self.assertEqual(f(JustFloat()), f(flt_arg))
221            self.assertEqual(f(JustFloatOS()), f(flt_arg))
222            # TypeError should be raised for classes not providing
223            # either __complex__ or __float__, even if they provide
224            # __int__, __long__ or __index__.  An old-style class
225            # currently raises AttributeError instead of a TypeError;
226            # this could be considered a bug.
227            self.assertRaises(TypeError, f, NeitherComplexNorFloat())
228            self.assertRaises(TypeError, f, MyInt())
229            self.assertRaises(Exception, f, NeitherComplexNorFloatOS())
230            self.assertRaises(Exception, f, MyIntOS())
231            # non-complex return value from __complex__ -> TypeError
232            for bad_complex in non_complexes:
233                self.assertRaises(TypeError, f, MyComplex(bad_complex))
234                self.assertRaises(TypeError, f, MyComplexOS(bad_complex))
235            # exceptions in __complex__ should be propagated correctly
236            self.assertRaises(SomeException, f, MyComplexException())
237            self.assertRaises(SomeException, f, MyComplexExceptionOS())
238
239    def test_input_type(self):
240        # ints and longs should be acceptable inputs to all cmath
241        # functions, by virtue of providing a __float__ method
242        for f in self.test_functions:
243            for arg in [2, 2L, 2.]:
244                self.assertEqual(f(arg), f(arg.__float__()))
245
246        # but strings should give a TypeError
247        for f in self.test_functions:
248            for arg in ["a", "long_string", "0", "1j", ""]:
249                self.assertRaises(TypeError, f, arg)
250
251    def test_cmath_matches_math(self):
252        # check that corresponding cmath and math functions are equal
253        # for floats in the appropriate range
254
255        # test_values in (0, 1)
256        test_values = [0.01, 0.1, 0.2, 0.5, 0.9, 0.99]
257
258        # test_values for functions defined on [-1., 1.]
259        unit_interval = test_values + [-x for x in test_values] + \
260            [0., 1., -1.]
261
262        # test_values for log, log10, sqrt
263        positive = test_values + [1.] + [1./x for x in test_values]
264        nonnegative = [0.] + positive
265
266        # test_values for functions defined on the whole real line
267        real_line = [0.] + positive + [-x for x in positive]
268
269        test_functions = {
270            'acos' : unit_interval,
271            'asin' : unit_interval,
272            'atan' : real_line,
273            'cos' : real_line,
274            'cosh' : real_line,
275            'exp' : real_line,
276            'log' : positive,
277            'log10' : positive,
278            'sin' : real_line,
279            'sinh' : real_line,
280            'sqrt' : nonnegative,
281            'tan' : real_line,
282            'tanh' : real_line}
283
284        for fn, values in test_functions.items():
285            float_fn = getattr(math, fn)
286            complex_fn = getattr(cmath, fn)
287            for v in values:
288                z = complex_fn(v)
289                self.rAssertAlmostEqual(float_fn(v), z.real)
290                self.assertEqual(0., z.imag)
291
292        # test two-argument version of log with various bases
293        for base in [0.5, 2., 10.]:
294            for v in positive:
295                z = cmath.log(v, base)
296                self.rAssertAlmostEqual(math.log(v, base), z.real)
297                self.assertEqual(0., z.imag)
298
299    def test_specific_values(self):
300        if not float.__getformat__("double").startswith("IEEE"):
301            return
302
303        def rect_complex(z):
304            """Wrapped version of rect that accepts a complex number instead of
305            two float arguments."""
306            return cmath.rect(z.real, z.imag)
307
308        def polar_complex(z):
309            """Wrapped version of polar that returns a complex number instead of
310            two floats."""
311            return complex(*polar(z))
312
313        for id, fn, ar, ai, er, ei, flags in parse_testfile(test_file):
314            arg = complex(ar, ai)
315            expected = complex(er, ei)
316            if fn == 'rect':
317                function = rect_complex
318            elif fn == 'polar':
319                function = polar_complex
320            else:
321                function = getattr(cmath, fn)
322            if 'divide-by-zero' in flags or 'invalid' in flags:
323                try:
324                    actual = function(arg)
325                except ValueError:
326                    continue
327                else:
328                    test_str = "%s: %s(complex(%r, %r))" % (id, fn, ar, ai)
329                    self.fail('ValueError not raised in test %s' % test_str)
330
331            if 'overflow' in flags:
332                try:
333                    actual = function(arg)
334                except OverflowError:
335                    continue
336                else:
337                    test_str = "%s: %s(complex(%r, %r))" % (id, fn, ar, ai)
338                    self.fail('OverflowError not raised in test %s' % test_str)
339
340            actual = function(arg)
341
342            if 'ignore-real-sign' in flags:
343                actual = complex(abs(actual.real), actual.imag)
344                expected = complex(abs(expected.real), expected.imag)
345            if 'ignore-imag-sign' in flags:
346                actual = complex(actual.real, abs(actual.imag))
347                expected = complex(expected.real, abs(expected.imag))
348
349            # for the real part of the log function, we allow an
350            # absolute error of up to 2e-15.
351            if fn in ('log', 'log10'):
352                real_abs_err = 2e-15
353            else:
354                real_abs_err = 5e-323
355
356            if not (almostEqualF(expected.real, actual.real,
357                                 abs_err = real_abs_err) and
358                    almostEqualF(expected.imag, actual.imag)):
359                error_message = (
360                    "%s: %s(complex(%r, %r))\n" % (id, fn, ar, ai) +
361                    "Expected: complex(%r, %r)\n" %
362                                    (expected.real, expected.imag) +
363                    "Received: complex(%r, %r)\n" %
364                                    (actual.real, actual.imag) +
365                    "Received value insufficiently close to expected value.")
366                self.fail(error_message)
367
368    def assertCISEqual(self, a, b):
369        eps = 1E-7
370        if abs(a[0] - b[0]) > eps or abs(a[1] - b[1]) > eps:
371            self.fail((a ,b))
372
373    def test_polar(self):
374        self.assertCISEqual(polar(0), (0., 0.))
375        self.assertCISEqual(polar(1.), (1., 0.))
376        self.assertCISEqual(polar(-1.), (1., pi))
377        self.assertCISEqual(polar(1j), (1., pi/2))
378        self.assertCISEqual(polar(-1j), (1., -pi/2))
379
380    def test_phase(self):
381        self.assertAlmostEqual(phase(0), 0.)
382        self.assertAlmostEqual(phase(1.), 0.)
383        self.assertAlmostEqual(phase(-1.), pi)
384        self.assertAlmostEqual(phase(-1.+1E-300j), pi)
385        self.assertAlmostEqual(phase(-1.-1E-300j), -pi)
386        self.assertAlmostEqual(phase(1j), pi/2)
387        self.assertAlmostEqual(phase(-1j), -pi/2)
388
389        # zeros
390        self.assertEqual(phase(complex(0.0, 0.0)), 0.0)
391        self.assertEqual(phase(complex(0.0, -0.0)), -0.0)
392        self.assertEqual(phase(complex(-0.0, 0.0)), pi)
393        self.assertEqual(phase(complex(-0.0, -0.0)), -pi)
394
395        # infinities
396        self.assertAlmostEqual(phase(complex(-INF, -0.0)), -pi)
397        self.assertAlmostEqual(phase(complex(-INF, -2.3)), -pi)
398        self.assertAlmostEqual(phase(complex(-INF, -INF)), -0.75*pi)
399        self.assertAlmostEqual(phase(complex(-2.3, -INF)), -pi/2)
400        self.assertAlmostEqual(phase(complex(-0.0, -INF)), -pi/2)
401        self.assertAlmostEqual(phase(complex(0.0, -INF)), -pi/2)
402        self.assertAlmostEqual(phase(complex(2.3, -INF)), -pi/2)
403        self.assertAlmostEqual(phase(complex(INF, -INF)), -pi/4)
404        self.assertEqual(phase(complex(INF, -2.3)), -0.0)
405        self.assertEqual(phase(complex(INF, -0.0)), -0.0)
406        self.assertEqual(phase(complex(INF, 0.0)), 0.0)
407        self.assertEqual(phase(complex(INF, 2.3)), 0.0)
408        self.assertAlmostEqual(phase(complex(INF, INF)), pi/4)
409        self.assertAlmostEqual(phase(complex(2.3, INF)), pi/2)
410        self.assertAlmostEqual(phase(complex(0.0, INF)), pi/2)
411        self.assertAlmostEqual(phase(complex(-0.0, INF)), pi/2)
412        self.assertAlmostEqual(phase(complex(-2.3, INF)), pi/2)
413        self.assertAlmostEqual(phase(complex(-INF, INF)), 0.75*pi)
414        self.assertAlmostEqual(phase(complex(-INF, 2.3)), pi)
415        self.assertAlmostEqual(phase(complex(-INF, 0.0)), pi)
416
417        # real or imaginary part NaN
418        for z in complex_nans:
419            self.assert_(math.isnan(phase(z)))
420
421    def test_abs(self):
422        # zeros
423        for z in complex_zeros:
424            self.assertEqual(abs(z), 0.0)
425
426        # infinities
427        for z in complex_infinities:
428            self.assertEqual(abs(z), INF)
429
430        # real or imaginary part NaN
431        self.assertEqual(abs(complex(NAN, -INF)), INF)
432        self.assert_(math.isnan(abs(complex(NAN, -2.3))))
433        self.assert_(math.isnan(abs(complex(NAN, -0.0))))
434        self.assert_(math.isnan(abs(complex(NAN, 0.0))))
435        self.assert_(math.isnan(abs(complex(NAN, 2.3))))
436        self.assertEqual(abs(complex(NAN, INF)), INF)
437        self.assertEqual(abs(complex(-INF, NAN)), INF)
438        self.assert_(math.isnan(abs(complex(-2.3, NAN))))
439        self.assert_(math.isnan(abs(complex(-0.0, NAN))))
440        self.assert_(math.isnan(abs(complex(0.0, NAN))))
441        self.assert_(math.isnan(abs(complex(2.3, NAN))))
442        self.assertEqual(abs(complex(INF, NAN)), INF)
443        self.assert_(math.isnan(abs(complex(NAN, NAN))))
444
445        # result overflows
446        if float.__getformat__("double").startswith("IEEE"):
447            self.assertRaises(OverflowError, abs, complex(1.4e308, 1.4e308))
448
449    def assertCEqual(self, a, b):
450        eps = 1E-7
451        if abs(a.real - b[0]) > eps or abs(a.imag - b[1]) > eps:
452            self.fail((a ,b))
453
454    def test_rect(self):
455        self.assertCEqual(rect(0, 0), (0, 0))
456        self.assertCEqual(rect(1, 0), (1., 0))
457        self.assertCEqual(rect(1, -pi), (-1., 0))
458        self.assertCEqual(rect(1, pi/2), (0, 1.))
459        self.assertCEqual(rect(1, -pi/2), (0, -1.))
460
461    def test_isnan(self):
462        self.failIf(cmath.isnan(1))
463        self.failIf(cmath.isnan(1j))
464        self.failIf(cmath.isnan(INF))
465        self.assert_(cmath.isnan(NAN))
466        self.assert_(cmath.isnan(complex(NAN, 0)))
467        self.assert_(cmath.isnan(complex(0, NAN)))
468        self.assert_(cmath.isnan(complex(NAN, NAN)))
469        self.assert_(cmath.isnan(complex(NAN, INF)))
470        self.assert_(cmath.isnan(complex(INF, NAN)))
471
472    def test_isinf(self):
473        self.failIf(cmath.isinf(1))
474        self.failIf(cmath.isinf(1j))
475        self.failIf(cmath.isinf(NAN))
476        self.assert_(cmath.isinf(INF))
477        self.assert_(cmath.isinf(complex(INF, 0)))
478        self.assert_(cmath.isinf(complex(0, INF)))
479        self.assert_(cmath.isinf(complex(INF, INF)))
480        self.assert_(cmath.isinf(complex(NAN, INF)))
481        self.assert_(cmath.isinf(complex(INF, NAN)))
482
483
484def test_main():
485    run_unittest(CMathTests)
486
487if __name__ == "__main__":
488    test_main()
489