13d32d768cd8b66c49c070495c08f7933b9dd2423robertphillips/*
23d32d768cd8b66c49c070495c08f7933b9dd2423robertphillips * Copyright 2015 Google Inc.
33d32d768cd8b66c49c070495c08f7933b9dd2423robertphillips *
43d32d768cd8b66c49c070495c08f7933b9dd2423robertphillips * Use of this source code is governed by a BSD-style license that can be
53d32d768cd8b66c49c070495c08f7933b9dd2423robertphillips * found in the LICENSE file.
63d32d768cd8b66c49c070495c08f7933b9dd2423robertphillips */
73d32d768cd8b66c49c070495c08f7933b9dd2423robertphillips
83d32d768cd8b66c49c070495c08f7933b9dd2423robertphillips#include "SkPoint3.h"
93d32d768cd8b66c49c070495c08f7933b9dd2423robertphillips
103d32d768cd8b66c49c070495c08f7933b9dd2423robertphillips// Returns the square of the Euclidian distance to (x,y,z).
113d32d768cd8b66c49c070495c08f7933b9dd2423robertphillipsstatic inline float get_length_squared(float x, float y, float z) {
123d32d768cd8b66c49c070495c08f7933b9dd2423robertphillips    return x * x + y * y + z * z;
133d32d768cd8b66c49c070495c08f7933b9dd2423robertphillips}
143d32d768cd8b66c49c070495c08f7933b9dd2423robertphillips
153d32d768cd8b66c49c070495c08f7933b9dd2423robertphillips// Calculates the square of the Euclidian distance to (x,y,z) and stores it in
163d32d768cd8b66c49c070495c08f7933b9dd2423robertphillips// *lengthSquared.  Returns true if the distance is judged to be "nearly zero".
173d32d768cd8b66c49c070495c08f7933b9dd2423robertphillips//
183d32d768cd8b66c49c070495c08f7933b9dd2423robertphillips// This logic is encapsulated in a helper method to make it explicit that we
193d32d768cd8b66c49c070495c08f7933b9dd2423robertphillips// always perform this check in the same manner, to avoid inconsistencies
203d32d768cd8b66c49c070495c08f7933b9dd2423robertphillips// (see http://code.google.com/p/skia/issues/detail?id=560 ).
213d32d768cd8b66c49c070495c08f7933b9dd2423robertphillipsstatic inline bool is_length_nearly_zero(float x, float y, float z, float *lengthSquared) {
223d32d768cd8b66c49c070495c08f7933b9dd2423robertphillips    *lengthSquared = get_length_squared(x, y, z);
233d32d768cd8b66c49c070495c08f7933b9dd2423robertphillips    return *lengthSquared <= (SK_ScalarNearlyZero * SK_ScalarNearlyZero);
243d32d768cd8b66c49c070495c08f7933b9dd2423robertphillips}
253d32d768cd8b66c49c070495c08f7933b9dd2423robertphillips
263d32d768cd8b66c49c070495c08f7933b9dd2423robertphillipsSkScalar SkPoint3::Length(SkScalar x, SkScalar y, SkScalar z) {
273d32d768cd8b66c49c070495c08f7933b9dd2423robertphillips    float magSq = get_length_squared(x, y, z);
283d32d768cd8b66c49c070495c08f7933b9dd2423robertphillips    if (SkScalarIsFinite(magSq)) {
293d32d768cd8b66c49c070495c08f7933b9dd2423robertphillips        return sk_float_sqrt(magSq);
303d32d768cd8b66c49c070495c08f7933b9dd2423robertphillips    } else {
313d32d768cd8b66c49c070495c08f7933b9dd2423robertphillips        double xx = x;
323d32d768cd8b66c49c070495c08f7933b9dd2423robertphillips        double yy = y;
333d32d768cd8b66c49c070495c08f7933b9dd2423robertphillips        double zz = z;
343d32d768cd8b66c49c070495c08f7933b9dd2423robertphillips        return (float)sqrt(xx * xx + yy * yy + zz * zz);
353d32d768cd8b66c49c070495c08f7933b9dd2423robertphillips    }
363d32d768cd8b66c49c070495c08f7933b9dd2423robertphillips}
373d32d768cd8b66c49c070495c08f7933b9dd2423robertphillips
383d32d768cd8b66c49c070495c08f7933b9dd2423robertphillips/*
393d32d768cd8b66c49c070495c08f7933b9dd2423robertphillips *  We have to worry about 2 tricky conditions:
403d32d768cd8b66c49c070495c08f7933b9dd2423robertphillips *  1. underflow of magSq (compared against nearlyzero^2)
413d32d768cd8b66c49c070495c08f7933b9dd2423robertphillips *  2. overflow of magSq (compared w/ isfinite)
423d32d768cd8b66c49c070495c08f7933b9dd2423robertphillips *
433d32d768cd8b66c49c070495c08f7933b9dd2423robertphillips *  If we underflow, we return false. If we overflow, we compute again using
443d32d768cd8b66c49c070495c08f7933b9dd2423robertphillips *  doubles, which is much slower (3x in a desktop test) but will not overflow.
453d32d768cd8b66c49c070495c08f7933b9dd2423robertphillips */
463d32d768cd8b66c49c070495c08f7933b9dd2423robertphillipsbool SkPoint3::normalize() {
473d32d768cd8b66c49c070495c08f7933b9dd2423robertphillips    float magSq;
483d32d768cd8b66c49c070495c08f7933b9dd2423robertphillips    if (is_length_nearly_zero(fX, fY, fZ, &magSq)) {
493d32d768cd8b66c49c070495c08f7933b9dd2423robertphillips        this->set(0, 0, 0);
503d32d768cd8b66c49c070495c08f7933b9dd2423robertphillips        return false;
513d32d768cd8b66c49c070495c08f7933b9dd2423robertphillips    }
523d32d768cd8b66c49c070495c08f7933b9dd2423robertphillips
533d32d768cd8b66c49c070495c08f7933b9dd2423robertphillips    float scale;
543d32d768cd8b66c49c070495c08f7933b9dd2423robertphillips    if (SkScalarIsFinite(magSq)) {
553d32d768cd8b66c49c070495c08f7933b9dd2423robertphillips        scale = 1.0f / sk_float_sqrt(magSq);
563d32d768cd8b66c49c070495c08f7933b9dd2423robertphillips    } else {
573d32d768cd8b66c49c070495c08f7933b9dd2423robertphillips        // our magSq step overflowed to infinity, so use doubles instead.
583d32d768cd8b66c49c070495c08f7933b9dd2423robertphillips        // much slower, but needed when x, y or z is very large, otherwise we
593d32d768cd8b66c49c070495c08f7933b9dd2423robertphillips        // divide by inf. and return (0,0,0) vector.
603d32d768cd8b66c49c070495c08f7933b9dd2423robertphillips        double xx = fX;
613d32d768cd8b66c49c070495c08f7933b9dd2423robertphillips        double yy = fY;
623d32d768cd8b66c49c070495c08f7933b9dd2423robertphillips        double zz = fZ;
633d32d768cd8b66c49c070495c08f7933b9dd2423robertphillips#ifdef SK_CPU_FLUSH_TO_ZERO
643d32d768cd8b66c49c070495c08f7933b9dd2423robertphillips        // The iOS ARM processor discards small denormalized numbers to go faster.
653d32d768cd8b66c49c070495c08f7933b9dd2423robertphillips        // Casting this to a float would cause the scale to go to zero. Keeping it
663d32d768cd8b66c49c070495c08f7933b9dd2423robertphillips        // as a double for the multiply keeps the scale non-zero.
673d32d768cd8b66c49c070495c08f7933b9dd2423robertphillips        double dscale = 1.0f / sqrt(xx * xx + yy * yy + zz * zz);
683d32d768cd8b66c49c070495c08f7933b9dd2423robertphillips        fX = x * dscale;
693d32d768cd8b66c49c070495c08f7933b9dd2423robertphillips        fY = y * dscale;
703d32d768cd8b66c49c070495c08f7933b9dd2423robertphillips        fZ = z * dscale;
713d32d768cd8b66c49c070495c08f7933b9dd2423robertphillips        return true;
723d32d768cd8b66c49c070495c08f7933b9dd2423robertphillips#else
733d32d768cd8b66c49c070495c08f7933b9dd2423robertphillips        scale = (float)(1.0f / sqrt(xx * xx + yy * yy + zz * zz));
743d32d768cd8b66c49c070495c08f7933b9dd2423robertphillips#endif
753d32d768cd8b66c49c070495c08f7933b9dd2423robertphillips    }
763d32d768cd8b66c49c070495c08f7933b9dd2423robertphillips    fX *= scale;
773d32d768cd8b66c49c070495c08f7933b9dd2423robertphillips    fY *= scale;
783d32d768cd8b66c49c070495c08f7933b9dd2423robertphillips    fZ *= scale;
793d32d768cd8b66c49c070495c08f7933b9dd2423robertphillips    return true;
803d32d768cd8b66c49c070495c08f7933b9dd2423robertphillips}
81