SimplifyCFG.cpp revision e602f473062a91e6ac9aa17097de8b5cd75b0852
1//===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Peephole optimize the CFG.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "simplifycfg"
15#include "llvm/Transforms/Utils/Local.h"
16#include "llvm/Constants.h"
17#include "llvm/Instructions.h"
18#include "llvm/IntrinsicInst.h"
19#include "llvm/Type.h"
20#include "llvm/DerivedTypes.h"
21#include "llvm/GlobalVariable.h"
22#include "llvm/Analysis/InstructionSimplify.h"
23#include "llvm/Analysis/ValueTracking.h"
24#include "llvm/Target/TargetData.h"
25#include "llvm/Transforms/Utils/BasicBlockUtils.h"
26#include "llvm/ADT/DenseMap.h"
27#include "llvm/ADT/SmallVector.h"
28#include "llvm/ADT/SmallPtrSet.h"
29#include "llvm/ADT/Statistic.h"
30#include "llvm/ADT/STLExtras.h"
31#include "llvm/Support/CFG.h"
32#include "llvm/Support/CommandLine.h"
33#include "llvm/Support/ConstantRange.h"
34#include "llvm/Support/Debug.h"
35#include "llvm/Support/IRBuilder.h"
36#include "llvm/Support/NoFolder.h"
37#include "llvm/Support/raw_ostream.h"
38#include <algorithm>
39#include <set>
40#include <map>
41using namespace llvm;
42
43static cl::opt<unsigned>
44PHINodeFoldingThreshold("phi-node-folding-threshold", cl::Hidden, cl::init(1),
45   cl::desc("Control the amount of phi node folding to perform (default = 1)"));
46
47static cl::opt<bool>
48DupRet("simplifycfg-dup-ret", cl::Hidden, cl::init(false),
49       cl::desc("Duplicate return instructions into unconditional branches"));
50
51STATISTIC(NumSpeculations, "Number of speculative executed instructions");
52
53namespace {
54class SimplifyCFGOpt {
55  const TargetData *const TD;
56
57  Value *isValueEqualityComparison(TerminatorInst *TI);
58  BasicBlock *GetValueEqualityComparisonCases(TerminatorInst *TI,
59    std::vector<std::pair<ConstantInt*, BasicBlock*> > &Cases);
60  bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
61                                                     BasicBlock *Pred,
62                                                     IRBuilder<> &Builder);
63  bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
64                                           IRBuilder<> &Builder);
65
66  bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
67  bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder);
68  bool SimplifyUnwind(UnwindInst *UI, IRBuilder<> &Builder);
69  bool SimplifyUnreachable(UnreachableInst *UI);
70  bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
71  bool SimplifyIndirectBr(IndirectBrInst *IBI);
72  bool SimplifyUncondBranch(BranchInst *BI, IRBuilder <> &Builder);
73  bool SimplifyCondBranch(BranchInst *BI, IRBuilder <>&Builder);
74
75public:
76  explicit SimplifyCFGOpt(const TargetData *td) : TD(td) {}
77  bool run(BasicBlock *BB);
78};
79}
80
81/// SafeToMergeTerminators - Return true if it is safe to merge these two
82/// terminator instructions together.
83///
84static bool SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2) {
85  if (SI1 == SI2) return false;  // Can't merge with self!
86
87  // It is not safe to merge these two switch instructions if they have a common
88  // successor, and if that successor has a PHI node, and if *that* PHI node has
89  // conflicting incoming values from the two switch blocks.
90  BasicBlock *SI1BB = SI1->getParent();
91  BasicBlock *SI2BB = SI2->getParent();
92  SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
93
94  for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I)
95    if (SI1Succs.count(*I))
96      for (BasicBlock::iterator BBI = (*I)->begin();
97           isa<PHINode>(BBI); ++BBI) {
98        PHINode *PN = cast<PHINode>(BBI);
99        if (PN->getIncomingValueForBlock(SI1BB) !=
100            PN->getIncomingValueForBlock(SI2BB))
101          return false;
102      }
103
104  return true;
105}
106
107/// AddPredecessorToBlock - Update PHI nodes in Succ to indicate that there will
108/// now be entries in it from the 'NewPred' block.  The values that will be
109/// flowing into the PHI nodes will be the same as those coming in from
110/// ExistPred, an existing predecessor of Succ.
111static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
112                                  BasicBlock *ExistPred) {
113  if (!isa<PHINode>(Succ->begin())) return; // Quick exit if nothing to do
114
115  PHINode *PN;
116  for (BasicBlock::iterator I = Succ->begin();
117       (PN = dyn_cast<PHINode>(I)); ++I)
118    PN->addIncoming(PN->getIncomingValueForBlock(ExistPred), NewPred);
119}
120
121
122/// GetIfCondition - Given a basic block (BB) with two predecessors (and at
123/// least one PHI node in it), check to see if the merge at this block is due
124/// to an "if condition".  If so, return the boolean condition that determines
125/// which entry into BB will be taken.  Also, return by references the block
126/// that will be entered from if the condition is true, and the block that will
127/// be entered if the condition is false.
128///
129/// This does no checking to see if the true/false blocks have large or unsavory
130/// instructions in them.
131static Value *GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue,
132                             BasicBlock *&IfFalse) {
133  PHINode *SomePHI = cast<PHINode>(BB->begin());
134  assert(SomePHI->getNumIncomingValues() == 2 &&
135         "Function can only handle blocks with 2 predecessors!");
136  BasicBlock *Pred1 = SomePHI->getIncomingBlock(0);
137  BasicBlock *Pred2 = SomePHI->getIncomingBlock(1);
138
139  // We can only handle branches.  Other control flow will be lowered to
140  // branches if possible anyway.
141  BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator());
142  BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator());
143  if (Pred1Br == 0 || Pred2Br == 0)
144    return 0;
145
146  // Eliminate code duplication by ensuring that Pred1Br is conditional if
147  // either are.
148  if (Pred2Br->isConditional()) {
149    // If both branches are conditional, we don't have an "if statement".  In
150    // reality, we could transform this case, but since the condition will be
151    // required anyway, we stand no chance of eliminating it, so the xform is
152    // probably not profitable.
153    if (Pred1Br->isConditional())
154      return 0;
155
156    std::swap(Pred1, Pred2);
157    std::swap(Pred1Br, Pred2Br);
158  }
159
160  if (Pred1Br->isConditional()) {
161    // The only thing we have to watch out for here is to make sure that Pred2
162    // doesn't have incoming edges from other blocks.  If it does, the condition
163    // doesn't dominate BB.
164    if (Pred2->getSinglePredecessor() == 0)
165      return 0;
166
167    // If we found a conditional branch predecessor, make sure that it branches
168    // to BB and Pred2Br.  If it doesn't, this isn't an "if statement".
169    if (Pred1Br->getSuccessor(0) == BB &&
170        Pred1Br->getSuccessor(1) == Pred2) {
171      IfTrue = Pred1;
172      IfFalse = Pred2;
173    } else if (Pred1Br->getSuccessor(0) == Pred2 &&
174               Pred1Br->getSuccessor(1) == BB) {
175      IfTrue = Pred2;
176      IfFalse = Pred1;
177    } else {
178      // We know that one arm of the conditional goes to BB, so the other must
179      // go somewhere unrelated, and this must not be an "if statement".
180      return 0;
181    }
182
183    return Pred1Br->getCondition();
184  }
185
186  // Ok, if we got here, both predecessors end with an unconditional branch to
187  // BB.  Don't panic!  If both blocks only have a single (identical)
188  // predecessor, and THAT is a conditional branch, then we're all ok!
189  BasicBlock *CommonPred = Pred1->getSinglePredecessor();
190  if (CommonPred == 0 || CommonPred != Pred2->getSinglePredecessor())
191    return 0;
192
193  // Otherwise, if this is a conditional branch, then we can use it!
194  BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator());
195  if (BI == 0) return 0;
196
197  assert(BI->isConditional() && "Two successors but not conditional?");
198  if (BI->getSuccessor(0) == Pred1) {
199    IfTrue = Pred1;
200    IfFalse = Pred2;
201  } else {
202    IfTrue = Pred2;
203    IfFalse = Pred1;
204  }
205  return BI->getCondition();
206}
207
208/// DominatesMergePoint - If we have a merge point of an "if condition" as
209/// accepted above, return true if the specified value dominates the block.  We
210/// don't handle the true generality of domination here, just a special case
211/// which works well enough for us.
212///
213/// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
214/// see if V (which must be an instruction) and its recursive operands
215/// that do not dominate BB have a combined cost lower than CostRemaining and
216/// are non-trapping.  If both are true, the instruction is inserted into the
217/// set and true is returned.
218///
219/// The cost for most non-trapping instructions is defined as 1 except for
220/// Select whose cost is 2.
221///
222/// After this function returns, CostRemaining is decreased by the cost of
223/// V plus its non-dominating operands.  If that cost is greater than
224/// CostRemaining, false is returned and CostRemaining is undefined.
225static bool DominatesMergePoint(Value *V, BasicBlock *BB,
226                                SmallPtrSet<Instruction*, 4> *AggressiveInsts,
227                                unsigned &CostRemaining) {
228  Instruction *I = dyn_cast<Instruction>(V);
229  if (!I) {
230    // Non-instructions all dominate instructions, but not all constantexprs
231    // can be executed unconditionally.
232    if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
233      if (C->canTrap())
234        return false;
235    return true;
236  }
237  BasicBlock *PBB = I->getParent();
238
239  // We don't want to allow weird loops that might have the "if condition" in
240  // the bottom of this block.
241  if (PBB == BB) return false;
242
243  // If this instruction is defined in a block that contains an unconditional
244  // branch to BB, then it must be in the 'conditional' part of the "if
245  // statement".  If not, it definitely dominates the region.
246  BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
247  if (BI == 0 || BI->isConditional() || BI->getSuccessor(0) != BB)
248    return true;
249
250  // If we aren't allowing aggressive promotion anymore, then don't consider
251  // instructions in the 'if region'.
252  if (AggressiveInsts == 0) return false;
253
254  // If we have seen this instruction before, don't count it again.
255  if (AggressiveInsts->count(I)) return true;
256
257  // Okay, it looks like the instruction IS in the "condition".  Check to
258  // see if it's a cheap instruction to unconditionally compute, and if it
259  // only uses stuff defined outside of the condition.  If so, hoist it out.
260  if (!I->isSafeToSpeculativelyExecute())
261    return false;
262
263  unsigned Cost = 0;
264
265  switch (I->getOpcode()) {
266  default: return false;  // Cannot hoist this out safely.
267  case Instruction::Load:
268    // We have to check to make sure there are no instructions before the
269    // load in its basic block, as we are going to hoist the load out to its
270    // predecessor.
271    if (PBB->getFirstNonPHIOrDbg() != I)
272      return false;
273    Cost = 1;
274    break;
275  case Instruction::GetElementPtr:
276    // GEPs are cheap if all indices are constant.
277    if (!cast<GetElementPtrInst>(I)->hasAllConstantIndices())
278      return false;
279    Cost = 1;
280    break;
281  case Instruction::Add:
282  case Instruction::Sub:
283  case Instruction::And:
284  case Instruction::Or:
285  case Instruction::Xor:
286  case Instruction::Shl:
287  case Instruction::LShr:
288  case Instruction::AShr:
289  case Instruction::ICmp:
290  case Instruction::Trunc:
291  case Instruction::ZExt:
292  case Instruction::SExt:
293    Cost = 1;
294    break;   // These are all cheap and non-trapping instructions.
295
296  case Instruction::Select:
297    Cost = 2;
298    break;
299  }
300
301  if (Cost > CostRemaining)
302    return false;
303
304  CostRemaining -= Cost;
305
306  // Okay, we can only really hoist these out if their operands do
307  // not take us over the cost threshold.
308  for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
309    if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining))
310      return false;
311  // Okay, it's safe to do this!  Remember this instruction.
312  AggressiveInsts->insert(I);
313  return true;
314}
315
316/// GetConstantInt - Extract ConstantInt from value, looking through IntToPtr
317/// and PointerNullValue. Return NULL if value is not a constant int.
318static ConstantInt *GetConstantInt(Value *V, const TargetData *TD) {
319  // Normal constant int.
320  ConstantInt *CI = dyn_cast<ConstantInt>(V);
321  if (CI || !TD || !isa<Constant>(V) || !V->getType()->isPointerTy())
322    return CI;
323
324  // This is some kind of pointer constant. Turn it into a pointer-sized
325  // ConstantInt if possible.
326  IntegerType *PtrTy = TD->getIntPtrType(V->getContext());
327
328  // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
329  if (isa<ConstantPointerNull>(V))
330    return ConstantInt::get(PtrTy, 0);
331
332  // IntToPtr const int.
333  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
334    if (CE->getOpcode() == Instruction::IntToPtr)
335      if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
336        // The constant is very likely to have the right type already.
337        if (CI->getType() == PtrTy)
338          return CI;
339        else
340          return cast<ConstantInt>
341            (ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false));
342      }
343  return 0;
344}
345
346/// GatherConstantCompares - Given a potentially 'or'd or 'and'd together
347/// collection of icmp eq/ne instructions that compare a value against a
348/// constant, return the value being compared, and stick the constant into the
349/// Values vector.
350static Value *
351GatherConstantCompares(Value *V, std::vector<ConstantInt*> &Vals, Value *&Extra,
352                       const TargetData *TD, bool isEQ, unsigned &UsedICmps) {
353  Instruction *I = dyn_cast<Instruction>(V);
354  if (I == 0) return 0;
355
356  // If this is an icmp against a constant, handle this as one of the cases.
357  if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) {
358    if (ConstantInt *C = GetConstantInt(I->getOperand(1), TD)) {
359      if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ:ICmpInst::ICMP_NE)) {
360        UsedICmps++;
361        Vals.push_back(C);
362        return I->getOperand(0);
363      }
364
365      // If we have "x ult 3" comparison, for example, then we can add 0,1,2 to
366      // the set.
367      ConstantRange Span =
368        ConstantRange::makeICmpRegion(ICI->getPredicate(), C->getValue());
369
370      // If this is an and/!= check then we want to optimize "x ugt 2" into
371      // x != 0 && x != 1.
372      if (!isEQ)
373        Span = Span.inverse();
374
375      // If there are a ton of values, we don't want to make a ginormous switch.
376      if (Span.getSetSize().ugt(8) || Span.isEmptySet() ||
377          // We don't handle wrapped sets yet.
378          Span.isWrappedSet())
379        return 0;
380
381      for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
382        Vals.push_back(ConstantInt::get(V->getContext(), Tmp));
383      UsedICmps++;
384      return I->getOperand(0);
385    }
386    return 0;
387  }
388
389  // Otherwise, we can only handle an | or &, depending on isEQ.
390  if (I->getOpcode() != (isEQ ? Instruction::Or : Instruction::And))
391    return 0;
392
393  unsigned NumValsBeforeLHS = Vals.size();
394  unsigned UsedICmpsBeforeLHS = UsedICmps;
395  if (Value *LHS = GatherConstantCompares(I->getOperand(0), Vals, Extra, TD,
396                                          isEQ, UsedICmps)) {
397    unsigned NumVals = Vals.size();
398    unsigned UsedICmpsBeforeRHS = UsedICmps;
399    if (Value *RHS = GatherConstantCompares(I->getOperand(1), Vals, Extra, TD,
400                                            isEQ, UsedICmps)) {
401      if (LHS == RHS)
402        return LHS;
403      Vals.resize(NumVals);
404      UsedICmps = UsedICmpsBeforeRHS;
405    }
406
407    // The RHS of the or/and can't be folded in and we haven't used "Extra" yet,
408    // set it and return success.
409    if (Extra == 0 || Extra == I->getOperand(1)) {
410      Extra = I->getOperand(1);
411      return LHS;
412    }
413
414    Vals.resize(NumValsBeforeLHS);
415    UsedICmps = UsedICmpsBeforeLHS;
416    return 0;
417  }
418
419  // If the LHS can't be folded in, but Extra is available and RHS can, try to
420  // use LHS as Extra.
421  if (Extra == 0 || Extra == I->getOperand(0)) {
422    Value *OldExtra = Extra;
423    Extra = I->getOperand(0);
424    if (Value *RHS = GatherConstantCompares(I->getOperand(1), Vals, Extra, TD,
425                                            isEQ, UsedICmps))
426      return RHS;
427    assert(Vals.size() == NumValsBeforeLHS);
428    Extra = OldExtra;
429  }
430
431  return 0;
432}
433
434static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) {
435  Instruction* Cond = 0;
436  if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
437    Cond = dyn_cast<Instruction>(SI->getCondition());
438  } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
439    if (BI->isConditional())
440      Cond = dyn_cast<Instruction>(BI->getCondition());
441  } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
442    Cond = dyn_cast<Instruction>(IBI->getAddress());
443  }
444
445  TI->eraseFromParent();
446  if (Cond) RecursivelyDeleteTriviallyDeadInstructions(Cond);
447}
448
449/// isValueEqualityComparison - Return true if the specified terminator checks
450/// to see if a value is equal to constant integer value.
451Value *SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst *TI) {
452  Value *CV = 0;
453  if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
454    // Do not permit merging of large switch instructions into their
455    // predecessors unless there is only one predecessor.
456    if (SI->getNumSuccessors()*std::distance(pred_begin(SI->getParent()),
457                                             pred_end(SI->getParent())) <= 128)
458      CV = SI->getCondition();
459  } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
460    if (BI->isConditional() && BI->getCondition()->hasOneUse())
461      if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition()))
462        if ((ICI->getPredicate() == ICmpInst::ICMP_EQ ||
463             ICI->getPredicate() == ICmpInst::ICMP_NE) &&
464            GetConstantInt(ICI->getOperand(1), TD))
465          CV = ICI->getOperand(0);
466
467  // Unwrap any lossless ptrtoint cast.
468  if (TD && CV && CV->getType() == TD->getIntPtrType(CV->getContext()))
469    if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV))
470      CV = PTII->getOperand(0);
471  return CV;
472}
473
474/// GetValueEqualityComparisonCases - Given a value comparison instruction,
475/// decode all of the 'cases' that it represents and return the 'default' block.
476BasicBlock *SimplifyCFGOpt::
477GetValueEqualityComparisonCases(TerminatorInst *TI,
478                                std::vector<std::pair<ConstantInt*,
479                                                      BasicBlock*> > &Cases) {
480  if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
481    Cases.reserve(SI->getNumCases());
482    for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
483      Cases.push_back(std::make_pair(SI->getCaseValue(i), SI->getSuccessor(i)));
484    return SI->getDefaultDest();
485  }
486
487  BranchInst *BI = cast<BranchInst>(TI);
488  ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
489  Cases.push_back(std::make_pair(GetConstantInt(ICI->getOperand(1), TD),
490                                 BI->getSuccessor(ICI->getPredicate() ==
491                                                  ICmpInst::ICMP_NE)));
492  return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
493}
494
495
496/// EliminateBlockCases - Given a vector of bb/value pairs, remove any entries
497/// in the list that match the specified block.
498static void EliminateBlockCases(BasicBlock *BB,
499               std::vector<std::pair<ConstantInt*, BasicBlock*> > &Cases) {
500  for (unsigned i = 0, e = Cases.size(); i != e; ++i)
501    if (Cases[i].second == BB) {
502      Cases.erase(Cases.begin()+i);
503      --i; --e;
504    }
505}
506
507/// ValuesOverlap - Return true if there are any keys in C1 that exist in C2 as
508/// well.
509static bool
510ValuesOverlap(std::vector<std::pair<ConstantInt*, BasicBlock*> > &C1,
511              std::vector<std::pair<ConstantInt*, BasicBlock*> > &C2) {
512  std::vector<std::pair<ConstantInt*, BasicBlock*> > *V1 = &C1, *V2 = &C2;
513
514  // Make V1 be smaller than V2.
515  if (V1->size() > V2->size())
516    std::swap(V1, V2);
517
518  if (V1->size() == 0) return false;
519  if (V1->size() == 1) {
520    // Just scan V2.
521    ConstantInt *TheVal = (*V1)[0].first;
522    for (unsigned i = 0, e = V2->size(); i != e; ++i)
523      if (TheVal == (*V2)[i].first)
524        return true;
525  }
526
527  // Otherwise, just sort both lists and compare element by element.
528  array_pod_sort(V1->begin(), V1->end());
529  array_pod_sort(V2->begin(), V2->end());
530  unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
531  while (i1 != e1 && i2 != e2) {
532    if ((*V1)[i1].first == (*V2)[i2].first)
533      return true;
534    if ((*V1)[i1].first < (*V2)[i2].first)
535      ++i1;
536    else
537      ++i2;
538  }
539  return false;
540}
541
542/// SimplifyEqualityComparisonWithOnlyPredecessor - If TI is known to be a
543/// terminator instruction and its block is known to only have a single
544/// predecessor block, check to see if that predecessor is also a value
545/// comparison with the same value, and if that comparison determines the
546/// outcome of this comparison.  If so, simplify TI.  This does a very limited
547/// form of jump threading.
548bool SimplifyCFGOpt::
549SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
550                                              BasicBlock *Pred,
551                                              IRBuilder<> &Builder) {
552  Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
553  if (!PredVal) return false;  // Not a value comparison in predecessor.
554
555  Value *ThisVal = isValueEqualityComparison(TI);
556  assert(ThisVal && "This isn't a value comparison!!");
557  if (ThisVal != PredVal) return false;  // Different predicates.
558
559  // Find out information about when control will move from Pred to TI's block.
560  std::vector<std::pair<ConstantInt*, BasicBlock*> > PredCases;
561  BasicBlock *PredDef = GetValueEqualityComparisonCases(Pred->getTerminator(),
562                                                        PredCases);
563  EliminateBlockCases(PredDef, PredCases);  // Remove default from cases.
564
565  // Find information about how control leaves this block.
566  std::vector<std::pair<ConstantInt*, BasicBlock*> > ThisCases;
567  BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
568  EliminateBlockCases(ThisDef, ThisCases);  // Remove default from cases.
569
570  // If TI's block is the default block from Pred's comparison, potentially
571  // simplify TI based on this knowledge.
572  if (PredDef == TI->getParent()) {
573    // If we are here, we know that the value is none of those cases listed in
574    // PredCases.  If there are any cases in ThisCases that are in PredCases, we
575    // can simplify TI.
576    if (!ValuesOverlap(PredCases, ThisCases))
577      return false;
578
579    if (isa<BranchInst>(TI)) {
580      // Okay, one of the successors of this condbr is dead.  Convert it to a
581      // uncond br.
582      assert(ThisCases.size() == 1 && "Branch can only have one case!");
583      // Insert the new branch.
584      Instruction *NI = Builder.CreateBr(ThisDef);
585      (void) NI;
586
587      // Remove PHI node entries for the dead edge.
588      ThisCases[0].second->removePredecessor(TI->getParent());
589
590      DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
591           << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n");
592
593      EraseTerminatorInstAndDCECond(TI);
594      return true;
595    }
596
597    SwitchInst *SI = cast<SwitchInst>(TI);
598    // Okay, TI has cases that are statically dead, prune them away.
599    SmallPtrSet<Constant*, 16> DeadCases;
600    for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
601      DeadCases.insert(PredCases[i].first);
602
603    DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
604                 << "Through successor TI: " << *TI);
605
606    for (unsigned i = SI->getNumCases()-1; i != 0; --i)
607      if (DeadCases.count(SI->getCaseValue(i))) {
608        SI->getSuccessor(i)->removePredecessor(TI->getParent());
609        SI->removeCase(i);
610      }
611
612    DEBUG(dbgs() << "Leaving: " << *TI << "\n");
613    return true;
614  }
615
616  // Otherwise, TI's block must correspond to some matched value.  Find out
617  // which value (or set of values) this is.
618  ConstantInt *TIV = 0;
619  BasicBlock *TIBB = TI->getParent();
620  for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
621    if (PredCases[i].second == TIBB) {
622      if (TIV != 0)
623        return false;  // Cannot handle multiple values coming to this block.
624      TIV = PredCases[i].first;
625    }
626  assert(TIV && "No edge from pred to succ?");
627
628  // Okay, we found the one constant that our value can be if we get into TI's
629  // BB.  Find out which successor will unconditionally be branched to.
630  BasicBlock *TheRealDest = 0;
631  for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
632    if (ThisCases[i].first == TIV) {
633      TheRealDest = ThisCases[i].second;
634      break;
635    }
636
637  // If not handled by any explicit cases, it is handled by the default case.
638  if (TheRealDest == 0) TheRealDest = ThisDef;
639
640  // Remove PHI node entries for dead edges.
641  BasicBlock *CheckEdge = TheRealDest;
642  for (succ_iterator SI = succ_begin(TIBB), e = succ_end(TIBB); SI != e; ++SI)
643    if (*SI != CheckEdge)
644      (*SI)->removePredecessor(TIBB);
645    else
646      CheckEdge = 0;
647
648  // Insert the new branch.
649  Instruction *NI = Builder.CreateBr(TheRealDest);
650  (void) NI;
651
652  DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
653            << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n");
654
655  EraseTerminatorInstAndDCECond(TI);
656  return true;
657}
658
659namespace {
660  /// ConstantIntOrdering - This class implements a stable ordering of constant
661  /// integers that does not depend on their address.  This is important for
662  /// applications that sort ConstantInt's to ensure uniqueness.
663  struct ConstantIntOrdering {
664    bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
665      return LHS->getValue().ult(RHS->getValue());
666    }
667  };
668}
669
670static int ConstantIntSortPredicate(const void *P1, const void *P2) {
671  const ConstantInt *LHS = *(const ConstantInt**)P1;
672  const ConstantInt *RHS = *(const ConstantInt**)P2;
673  if (LHS->getValue().ult(RHS->getValue()))
674    return 1;
675  if (LHS->getValue() == RHS->getValue())
676    return 0;
677  return -1;
678}
679
680/// FoldValueComparisonIntoPredecessors - The specified terminator is a value
681/// equality comparison instruction (either a switch or a branch on "X == c").
682/// See if any of the predecessors of the terminator block are value comparisons
683/// on the same value.  If so, and if safe to do so, fold them together.
684bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
685                                                         IRBuilder<> &Builder) {
686  BasicBlock *BB = TI->getParent();
687  Value *CV = isValueEqualityComparison(TI);  // CondVal
688  assert(CV && "Not a comparison?");
689  bool Changed = false;
690
691  SmallVector<BasicBlock*, 16> Preds(pred_begin(BB), pred_end(BB));
692  while (!Preds.empty()) {
693    BasicBlock *Pred = Preds.pop_back_val();
694
695    // See if the predecessor is a comparison with the same value.
696    TerminatorInst *PTI = Pred->getTerminator();
697    Value *PCV = isValueEqualityComparison(PTI);  // PredCondVal
698
699    if (PCV == CV && SafeToMergeTerminators(TI, PTI)) {
700      // Figure out which 'cases' to copy from SI to PSI.
701      std::vector<std::pair<ConstantInt*, BasicBlock*> > BBCases;
702      BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
703
704      std::vector<std::pair<ConstantInt*, BasicBlock*> > PredCases;
705      BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
706
707      // Based on whether the default edge from PTI goes to BB or not, fill in
708      // PredCases and PredDefault with the new switch cases we would like to
709      // build.
710      SmallVector<BasicBlock*, 8> NewSuccessors;
711
712      if (PredDefault == BB) {
713        // If this is the default destination from PTI, only the edges in TI
714        // that don't occur in PTI, or that branch to BB will be activated.
715        std::set<ConstantInt*, ConstantIntOrdering> PTIHandled;
716        for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
717          if (PredCases[i].second != BB)
718            PTIHandled.insert(PredCases[i].first);
719          else {
720            // The default destination is BB, we don't need explicit targets.
721            std::swap(PredCases[i], PredCases.back());
722            PredCases.pop_back();
723            --i; --e;
724          }
725
726        // Reconstruct the new switch statement we will be building.
727        if (PredDefault != BBDefault) {
728          PredDefault->removePredecessor(Pred);
729          PredDefault = BBDefault;
730          NewSuccessors.push_back(BBDefault);
731        }
732        for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
733          if (!PTIHandled.count(BBCases[i].first) &&
734              BBCases[i].second != BBDefault) {
735            PredCases.push_back(BBCases[i]);
736            NewSuccessors.push_back(BBCases[i].second);
737          }
738
739      } else {
740        // If this is not the default destination from PSI, only the edges
741        // in SI that occur in PSI with a destination of BB will be
742        // activated.
743        std::set<ConstantInt*, ConstantIntOrdering> PTIHandled;
744        for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
745          if (PredCases[i].second == BB) {
746            PTIHandled.insert(PredCases[i].first);
747            std::swap(PredCases[i], PredCases.back());
748            PredCases.pop_back();
749            --i; --e;
750          }
751
752        // Okay, now we know which constants were sent to BB from the
753        // predecessor.  Figure out where they will all go now.
754        for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
755          if (PTIHandled.count(BBCases[i].first)) {
756            // If this is one we are capable of getting...
757            PredCases.push_back(BBCases[i]);
758            NewSuccessors.push_back(BBCases[i].second);
759            PTIHandled.erase(BBCases[i].first);// This constant is taken care of
760          }
761
762        // If there are any constants vectored to BB that TI doesn't handle,
763        // they must go to the default destination of TI.
764        for (std::set<ConstantInt*, ConstantIntOrdering>::iterator I =
765                                    PTIHandled.begin(),
766               E = PTIHandled.end(); I != E; ++I) {
767          PredCases.push_back(std::make_pair(*I, BBDefault));
768          NewSuccessors.push_back(BBDefault);
769        }
770      }
771
772      // Okay, at this point, we know which new successor Pred will get.  Make
773      // sure we update the number of entries in the PHI nodes for these
774      // successors.
775      for (unsigned i = 0, e = NewSuccessors.size(); i != e; ++i)
776        AddPredecessorToBlock(NewSuccessors[i], Pred, BB);
777
778      Builder.SetInsertPoint(PTI);
779      // Convert pointer to int before we switch.
780      if (CV->getType()->isPointerTy()) {
781        assert(TD && "Cannot switch on pointer without TargetData");
782        CV = Builder.CreatePtrToInt(CV, TD->getIntPtrType(CV->getContext()),
783                                    "magicptr");
784      }
785
786      // Now that the successors are updated, create the new Switch instruction.
787      SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault,
788                                               PredCases.size());
789      NewSI->setDebugLoc(PTI->getDebugLoc());
790      for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
791        NewSI->addCase(PredCases[i].first, PredCases[i].second);
792
793      EraseTerminatorInstAndDCECond(PTI);
794
795      // Okay, last check.  If BB is still a successor of PSI, then we must
796      // have an infinite loop case.  If so, add an infinitely looping block
797      // to handle the case to preserve the behavior of the code.
798      BasicBlock *InfLoopBlock = 0;
799      for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
800        if (NewSI->getSuccessor(i) == BB) {
801          if (InfLoopBlock == 0) {
802            // Insert it at the end of the function, because it's either code,
803            // or it won't matter if it's hot. :)
804            InfLoopBlock = BasicBlock::Create(BB->getContext(),
805                                              "infloop", BB->getParent());
806            BranchInst::Create(InfLoopBlock, InfLoopBlock);
807          }
808          NewSI->setSuccessor(i, InfLoopBlock);
809        }
810
811      Changed = true;
812    }
813  }
814  return Changed;
815}
816
817// isSafeToHoistInvoke - If we would need to insert a select that uses the
818// value of this invoke (comments in HoistThenElseCodeToIf explain why we
819// would need to do this), we can't hoist the invoke, as there is nowhere
820// to put the select in this case.
821static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
822                                Instruction *I1, Instruction *I2) {
823  for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
824    PHINode *PN;
825    for (BasicBlock::iterator BBI = SI->begin();
826         (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
827      Value *BB1V = PN->getIncomingValueForBlock(BB1);
828      Value *BB2V = PN->getIncomingValueForBlock(BB2);
829      if (BB1V != BB2V && (BB1V==I1 || BB2V==I2)) {
830        return false;
831      }
832    }
833  }
834  return true;
835}
836
837/// HoistThenElseCodeToIf - Given a conditional branch that goes to BB1 and
838/// BB2, hoist any common code in the two blocks up into the branch block.  The
839/// caller of this function guarantees that BI's block dominates BB1 and BB2.
840static bool HoistThenElseCodeToIf(BranchInst *BI) {
841  // This does very trivial matching, with limited scanning, to find identical
842  // instructions in the two blocks.  In particular, we don't want to get into
843  // O(M*N) situations here where M and N are the sizes of BB1 and BB2.  As
844  // such, we currently just scan for obviously identical instructions in an
845  // identical order.
846  BasicBlock *BB1 = BI->getSuccessor(0);  // The true destination.
847  BasicBlock *BB2 = BI->getSuccessor(1);  // The false destination
848
849  BasicBlock::iterator BB1_Itr = BB1->begin();
850  BasicBlock::iterator BB2_Itr = BB2->begin();
851
852  Instruction *I1 = BB1_Itr++, *I2 = BB2_Itr++;
853  // Skip debug info if it is not identical.
854  DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
855  DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
856  if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
857    while (isa<DbgInfoIntrinsic>(I1))
858      I1 = BB1_Itr++;
859    while (isa<DbgInfoIntrinsic>(I2))
860      I2 = BB2_Itr++;
861  }
862  if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) ||
863      (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)))
864    return false;
865
866  // If we get here, we can hoist at least one instruction.
867  BasicBlock *BIParent = BI->getParent();
868
869  do {
870    // If we are hoisting the terminator instruction, don't move one (making a
871    // broken BB), instead clone it, and remove BI.
872    if (isa<TerminatorInst>(I1))
873      goto HoistTerminator;
874
875    // For a normal instruction, we just move one to right before the branch,
876    // then replace all uses of the other with the first.  Finally, we remove
877    // the now redundant second instruction.
878    BIParent->getInstList().splice(BI, BB1->getInstList(), I1);
879    if (!I2->use_empty())
880      I2->replaceAllUsesWith(I1);
881    I1->intersectOptionalDataWith(I2);
882    I2->eraseFromParent();
883
884    I1 = BB1_Itr++;
885    I2 = BB2_Itr++;
886    // Skip debug info if it is not identical.
887    DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
888    DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
889    if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
890      while (isa<DbgInfoIntrinsic>(I1))
891        I1 = BB1_Itr++;
892      while (isa<DbgInfoIntrinsic>(I2))
893        I2 = BB2_Itr++;
894    }
895  } while (I1->isIdenticalToWhenDefined(I2));
896
897  return true;
898
899HoistTerminator:
900  // It may not be possible to hoist an invoke.
901  if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
902    return true;
903
904  // Okay, it is safe to hoist the terminator.
905  Instruction *NT = I1->clone();
906  BIParent->getInstList().insert(BI, NT);
907  if (!NT->getType()->isVoidTy()) {
908    I1->replaceAllUsesWith(NT);
909    I2->replaceAllUsesWith(NT);
910    NT->takeName(I1);
911  }
912
913  IRBuilder<true, NoFolder> Builder(NT);
914  // Hoisting one of the terminators from our successor is a great thing.
915  // Unfortunately, the successors of the if/else blocks may have PHI nodes in
916  // them.  If they do, all PHI entries for BB1/BB2 must agree for all PHI
917  // nodes, so we insert select instruction to compute the final result.
918  std::map<std::pair<Value*,Value*>, SelectInst*> InsertedSelects;
919  for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
920    PHINode *PN;
921    for (BasicBlock::iterator BBI = SI->begin();
922         (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
923      Value *BB1V = PN->getIncomingValueForBlock(BB1);
924      Value *BB2V = PN->getIncomingValueForBlock(BB2);
925      if (BB1V == BB2V) continue;
926
927      // These values do not agree.  Insert a select instruction before NT
928      // that determines the right value.
929      SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
930      if (SI == 0)
931        SI = cast<SelectInst>
932          (Builder.CreateSelect(BI->getCondition(), BB1V, BB2V,
933                                BB1V->getName()+"."+BB2V->getName()));
934
935      // Make the PHI node use the select for all incoming values for BB1/BB2
936      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
937        if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2)
938          PN->setIncomingValue(i, SI);
939    }
940  }
941
942  // Update any PHI nodes in our new successors.
943  for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI)
944    AddPredecessorToBlock(*SI, BIParent, BB1);
945
946  EraseTerminatorInstAndDCECond(BI);
947  return true;
948}
949
950/// SpeculativelyExecuteBB - Given a conditional branch that goes to BB1
951/// and an BB2 and the only successor of BB1 is BB2, hoist simple code
952/// (for now, restricted to a single instruction that's side effect free) from
953/// the BB1 into the branch block to speculatively execute it.
954static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *BB1) {
955  // Only speculatively execution a single instruction (not counting the
956  // terminator) for now.
957  Instruction *HInst = NULL;
958  Instruction *Term = BB1->getTerminator();
959  for (BasicBlock::iterator BBI = BB1->begin(), BBE = BB1->end();
960       BBI != BBE; ++BBI) {
961    Instruction *I = BBI;
962    // Skip debug info.
963    if (isa<DbgInfoIntrinsic>(I)) continue;
964    if (I == Term) break;
965
966    if (HInst)
967      return false;
968    HInst = I;
969  }
970  if (!HInst)
971    return false;
972
973  // Be conservative for now. FP select instruction can often be expensive.
974  Value *BrCond = BI->getCondition();
975  if (isa<FCmpInst>(BrCond))
976    return false;
977
978  // If BB1 is actually on the false edge of the conditional branch, remember
979  // to swap the select operands later.
980  bool Invert = false;
981  if (BB1 != BI->getSuccessor(0)) {
982    assert(BB1 == BI->getSuccessor(1) && "No edge from 'if' block?");
983    Invert = true;
984  }
985
986  // Turn
987  // BB:
988  //     %t1 = icmp
989  //     br i1 %t1, label %BB1, label %BB2
990  // BB1:
991  //     %t3 = add %t2, c
992  //     br label BB2
993  // BB2:
994  // =>
995  // BB:
996  //     %t1 = icmp
997  //     %t4 = add %t2, c
998  //     %t3 = select i1 %t1, %t2, %t3
999  switch (HInst->getOpcode()) {
1000  default: return false;  // Not safe / profitable to hoist.
1001  case Instruction::Add:
1002  case Instruction::Sub:
1003    // Not worth doing for vector ops.
1004    if (HInst->getType()->isVectorTy())
1005      return false;
1006    break;
1007  case Instruction::And:
1008  case Instruction::Or:
1009  case Instruction::Xor:
1010  case Instruction::Shl:
1011  case Instruction::LShr:
1012  case Instruction::AShr:
1013    // Don't mess with vector operations.
1014    if (HInst->getType()->isVectorTy())
1015      return false;
1016    break;   // These are all cheap and non-trapping instructions.
1017  }
1018
1019  // If the instruction is obviously dead, don't try to predicate it.
1020  if (HInst->use_empty()) {
1021    HInst->eraseFromParent();
1022    return true;
1023  }
1024
1025  // Can we speculatively execute the instruction? And what is the value
1026  // if the condition is false? Consider the phi uses, if the incoming value
1027  // from the "if" block are all the same V, then V is the value of the
1028  // select if the condition is false.
1029  BasicBlock *BIParent = BI->getParent();
1030  SmallVector<PHINode*, 4> PHIUses;
1031  Value *FalseV = NULL;
1032
1033  BasicBlock *BB2 = BB1->getTerminator()->getSuccessor(0);
1034  for (Value::use_iterator UI = HInst->use_begin(), E = HInst->use_end();
1035       UI != E; ++UI) {
1036    // Ignore any user that is not a PHI node in BB2.  These can only occur in
1037    // unreachable blocks, because they would not be dominated by the instr.
1038    PHINode *PN = dyn_cast<PHINode>(*UI);
1039    if (!PN || PN->getParent() != BB2)
1040      return false;
1041    PHIUses.push_back(PN);
1042
1043    Value *PHIV = PN->getIncomingValueForBlock(BIParent);
1044    if (!FalseV)
1045      FalseV = PHIV;
1046    else if (FalseV != PHIV)
1047      return false;  // Inconsistent value when condition is false.
1048  }
1049
1050  assert(FalseV && "Must have at least one user, and it must be a PHI");
1051
1052  // Do not hoist the instruction if any of its operands are defined but not
1053  // used in this BB. The transformation will prevent the operand from
1054  // being sunk into the use block.
1055  for (User::op_iterator i = HInst->op_begin(), e = HInst->op_end();
1056       i != e; ++i) {
1057    Instruction *OpI = dyn_cast<Instruction>(*i);
1058    if (OpI && OpI->getParent() == BIParent &&
1059        !OpI->isUsedInBasicBlock(BIParent))
1060      return false;
1061  }
1062
1063  // If we get here, we can hoist the instruction. Try to place it
1064  // before the icmp instruction preceding the conditional branch.
1065  BasicBlock::iterator InsertPos = BI;
1066  if (InsertPos != BIParent->begin())
1067    --InsertPos;
1068  // Skip debug info between condition and branch.
1069  while (InsertPos != BIParent->begin() && isa<DbgInfoIntrinsic>(InsertPos))
1070    --InsertPos;
1071  if (InsertPos == BrCond && !isa<PHINode>(BrCond)) {
1072    SmallPtrSet<Instruction *, 4> BB1Insns;
1073    for(BasicBlock::iterator BB1I = BB1->begin(), BB1E = BB1->end();
1074        BB1I != BB1E; ++BB1I)
1075      BB1Insns.insert(BB1I);
1076    for(Value::use_iterator UI = BrCond->use_begin(), UE = BrCond->use_end();
1077        UI != UE; ++UI) {
1078      Instruction *Use = cast<Instruction>(*UI);
1079      if (!BB1Insns.count(Use)) continue;
1080
1081      // If BrCond uses the instruction that place it just before
1082      // branch instruction.
1083      InsertPos = BI;
1084      break;
1085    }
1086  } else
1087    InsertPos = BI;
1088  BIParent->getInstList().splice(InsertPos, BB1->getInstList(), HInst);
1089
1090  // Create a select whose true value is the speculatively executed value and
1091  // false value is the previously determined FalseV.
1092  IRBuilder<true, NoFolder> Builder(BI);
1093  SelectInst *SI;
1094  if (Invert)
1095    SI = cast<SelectInst>
1096      (Builder.CreateSelect(BrCond, FalseV, HInst,
1097                            FalseV->getName() + "." + HInst->getName()));
1098  else
1099    SI = cast<SelectInst>
1100      (Builder.CreateSelect(BrCond, HInst, FalseV,
1101                            HInst->getName() + "." + FalseV->getName()));
1102
1103  // Make the PHI node use the select for all incoming values for "then" and
1104  // "if" blocks.
1105  for (unsigned i = 0, e = PHIUses.size(); i != e; ++i) {
1106    PHINode *PN = PHIUses[i];
1107    for (unsigned j = 0, ee = PN->getNumIncomingValues(); j != ee; ++j)
1108      if (PN->getIncomingBlock(j) == BB1 || PN->getIncomingBlock(j) == BIParent)
1109        PN->setIncomingValue(j, SI);
1110  }
1111
1112  ++NumSpeculations;
1113  return true;
1114}
1115
1116/// BlockIsSimpleEnoughToThreadThrough - Return true if we can thread a branch
1117/// across this block.
1118static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
1119  BranchInst *BI = cast<BranchInst>(BB->getTerminator());
1120  unsigned Size = 0;
1121
1122  for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
1123    if (isa<DbgInfoIntrinsic>(BBI))
1124      continue;
1125    if (Size > 10) return false;  // Don't clone large BB's.
1126    ++Size;
1127
1128    // We can only support instructions that do not define values that are
1129    // live outside of the current basic block.
1130    for (Value::use_iterator UI = BBI->use_begin(), E = BBI->use_end();
1131         UI != E; ++UI) {
1132      Instruction *U = cast<Instruction>(*UI);
1133      if (U->getParent() != BB || isa<PHINode>(U)) return false;
1134    }
1135
1136    // Looks ok, continue checking.
1137  }
1138
1139  return true;
1140}
1141
1142/// FoldCondBranchOnPHI - If we have a conditional branch on a PHI node value
1143/// that is defined in the same block as the branch and if any PHI entries are
1144/// constants, thread edges corresponding to that entry to be branches to their
1145/// ultimate destination.
1146static bool FoldCondBranchOnPHI(BranchInst *BI, const TargetData *TD) {
1147  BasicBlock *BB = BI->getParent();
1148  PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
1149  // NOTE: we currently cannot transform this case if the PHI node is used
1150  // outside of the block.
1151  if (!PN || PN->getParent() != BB || !PN->hasOneUse())
1152    return false;
1153
1154  // Degenerate case of a single entry PHI.
1155  if (PN->getNumIncomingValues() == 1) {
1156    FoldSingleEntryPHINodes(PN->getParent());
1157    return true;
1158  }
1159
1160  // Now we know that this block has multiple preds and two succs.
1161  if (!BlockIsSimpleEnoughToThreadThrough(BB)) return false;
1162
1163  // Okay, this is a simple enough basic block.  See if any phi values are
1164  // constants.
1165  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1166    ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i));
1167    if (CB == 0 || !CB->getType()->isIntegerTy(1)) continue;
1168
1169    // Okay, we now know that all edges from PredBB should be revectored to
1170    // branch to RealDest.
1171    BasicBlock *PredBB = PN->getIncomingBlock(i);
1172    BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
1173
1174    if (RealDest == BB) continue;  // Skip self loops.
1175    // Skip if the predecessor's terminator is an indirect branch.
1176    if (isa<IndirectBrInst>(PredBB->getTerminator())) continue;
1177
1178    // The dest block might have PHI nodes, other predecessors and other
1179    // difficult cases.  Instead of being smart about this, just insert a new
1180    // block that jumps to the destination block, effectively splitting
1181    // the edge we are about to create.
1182    BasicBlock *EdgeBB = BasicBlock::Create(BB->getContext(),
1183                                            RealDest->getName()+".critedge",
1184                                            RealDest->getParent(), RealDest);
1185    BranchInst::Create(RealDest, EdgeBB);
1186
1187    // Update PHI nodes.
1188    AddPredecessorToBlock(RealDest, EdgeBB, BB);
1189
1190    // BB may have instructions that are being threaded over.  Clone these
1191    // instructions into EdgeBB.  We know that there will be no uses of the
1192    // cloned instructions outside of EdgeBB.
1193    BasicBlock::iterator InsertPt = EdgeBB->begin();
1194    DenseMap<Value*, Value*> TranslateMap;  // Track translated values.
1195    for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
1196      if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
1197        TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
1198        continue;
1199      }
1200      // Clone the instruction.
1201      Instruction *N = BBI->clone();
1202      if (BBI->hasName()) N->setName(BBI->getName()+".c");
1203
1204      // Update operands due to translation.
1205      for (User::op_iterator i = N->op_begin(), e = N->op_end();
1206           i != e; ++i) {
1207        DenseMap<Value*, Value*>::iterator PI = TranslateMap.find(*i);
1208        if (PI != TranslateMap.end())
1209          *i = PI->second;
1210      }
1211
1212      // Check for trivial simplification.
1213      if (Value *V = SimplifyInstruction(N, TD)) {
1214        TranslateMap[BBI] = V;
1215        delete N;   // Instruction folded away, don't need actual inst
1216      } else {
1217        // Insert the new instruction into its new home.
1218        EdgeBB->getInstList().insert(InsertPt, N);
1219        if (!BBI->use_empty())
1220          TranslateMap[BBI] = N;
1221      }
1222    }
1223
1224    // Loop over all of the edges from PredBB to BB, changing them to branch
1225    // to EdgeBB instead.
1226    TerminatorInst *PredBBTI = PredBB->getTerminator();
1227    for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
1228      if (PredBBTI->getSuccessor(i) == BB) {
1229        BB->removePredecessor(PredBB);
1230        PredBBTI->setSuccessor(i, EdgeBB);
1231      }
1232
1233    // Recurse, simplifying any other constants.
1234    return FoldCondBranchOnPHI(BI, TD) | true;
1235  }
1236
1237  return false;
1238}
1239
1240/// FoldTwoEntryPHINode - Given a BB that starts with the specified two-entry
1241/// PHI node, see if we can eliminate it.
1242static bool FoldTwoEntryPHINode(PHINode *PN, const TargetData *TD) {
1243  // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
1244  // statement", which has a very simple dominance structure.  Basically, we
1245  // are trying to find the condition that is being branched on, which
1246  // subsequently causes this merge to happen.  We really want control
1247  // dependence information for this check, but simplifycfg can't keep it up
1248  // to date, and this catches most of the cases we care about anyway.
1249  BasicBlock *BB = PN->getParent();
1250  BasicBlock *IfTrue, *IfFalse;
1251  Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
1252  if (!IfCond ||
1253      // Don't bother if the branch will be constant folded trivially.
1254      isa<ConstantInt>(IfCond))
1255    return false;
1256
1257  // Okay, we found that we can merge this two-entry phi node into a select.
1258  // Doing so would require us to fold *all* two entry phi nodes in this block.
1259  // At some point this becomes non-profitable (particularly if the target
1260  // doesn't support cmov's).  Only do this transformation if there are two or
1261  // fewer PHI nodes in this block.
1262  unsigned NumPhis = 0;
1263  for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
1264    if (NumPhis > 2)
1265      return false;
1266
1267  // Loop over the PHI's seeing if we can promote them all to select
1268  // instructions.  While we are at it, keep track of the instructions
1269  // that need to be moved to the dominating block.
1270  SmallPtrSet<Instruction*, 4> AggressiveInsts;
1271  unsigned MaxCostVal0 = PHINodeFoldingThreshold,
1272           MaxCostVal1 = PHINodeFoldingThreshold;
1273
1274  for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
1275    PHINode *PN = cast<PHINode>(II++);
1276    if (Value *V = SimplifyInstruction(PN, TD)) {
1277      PN->replaceAllUsesWith(V);
1278      PN->eraseFromParent();
1279      continue;
1280    }
1281
1282    if (!DominatesMergePoint(PN->getIncomingValue(0), BB, &AggressiveInsts,
1283                             MaxCostVal0) ||
1284        !DominatesMergePoint(PN->getIncomingValue(1), BB, &AggressiveInsts,
1285                             MaxCostVal1))
1286      return false;
1287  }
1288
1289  // If we folded the the first phi, PN dangles at this point.  Refresh it.  If
1290  // we ran out of PHIs then we simplified them all.
1291  PN = dyn_cast<PHINode>(BB->begin());
1292  if (PN == 0) return true;
1293
1294  // Don't fold i1 branches on PHIs which contain binary operators.  These can
1295  // often be turned into switches and other things.
1296  if (PN->getType()->isIntegerTy(1) &&
1297      (isa<BinaryOperator>(PN->getIncomingValue(0)) ||
1298       isa<BinaryOperator>(PN->getIncomingValue(1)) ||
1299       isa<BinaryOperator>(IfCond)))
1300    return false;
1301
1302  // If we all PHI nodes are promotable, check to make sure that all
1303  // instructions in the predecessor blocks can be promoted as well.  If
1304  // not, we won't be able to get rid of the control flow, so it's not
1305  // worth promoting to select instructions.
1306  BasicBlock *DomBlock = 0;
1307  BasicBlock *IfBlock1 = PN->getIncomingBlock(0);
1308  BasicBlock *IfBlock2 = PN->getIncomingBlock(1);
1309  if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) {
1310    IfBlock1 = 0;
1311  } else {
1312    DomBlock = *pred_begin(IfBlock1);
1313    for (BasicBlock::iterator I = IfBlock1->begin();!isa<TerminatorInst>(I);++I)
1314      if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) {
1315        // This is not an aggressive instruction that we can promote.
1316        // Because of this, we won't be able to get rid of the control
1317        // flow, so the xform is not worth it.
1318        return false;
1319      }
1320  }
1321
1322  if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) {
1323    IfBlock2 = 0;
1324  } else {
1325    DomBlock = *pred_begin(IfBlock2);
1326    for (BasicBlock::iterator I = IfBlock2->begin();!isa<TerminatorInst>(I);++I)
1327      if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) {
1328        // This is not an aggressive instruction that we can promote.
1329        // Because of this, we won't be able to get rid of the control
1330        // flow, so the xform is not worth it.
1331        return false;
1332      }
1333  }
1334
1335  DEBUG(dbgs() << "FOUND IF CONDITION!  " << *IfCond << "  T: "
1336               << IfTrue->getName() << "  F: " << IfFalse->getName() << "\n");
1337
1338  // If we can still promote the PHI nodes after this gauntlet of tests,
1339  // do all of the PHI's now.
1340  Instruction *InsertPt = DomBlock->getTerminator();
1341  IRBuilder<true, NoFolder> Builder(InsertPt);
1342
1343  // Move all 'aggressive' instructions, which are defined in the
1344  // conditional parts of the if's up to the dominating block.
1345  if (IfBlock1)
1346    DomBlock->getInstList().splice(InsertPt,
1347                                   IfBlock1->getInstList(), IfBlock1->begin(),
1348                                   IfBlock1->getTerminator());
1349  if (IfBlock2)
1350    DomBlock->getInstList().splice(InsertPt,
1351                                   IfBlock2->getInstList(), IfBlock2->begin(),
1352                                   IfBlock2->getTerminator());
1353
1354  while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
1355    // Change the PHI node into a select instruction.
1356    Value *TrueVal  = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
1357    Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
1358
1359    SelectInst *NV =
1360      cast<SelectInst>(Builder.CreateSelect(IfCond, TrueVal, FalseVal, ""));
1361    PN->replaceAllUsesWith(NV);
1362    NV->takeName(PN);
1363    PN->eraseFromParent();
1364  }
1365
1366  // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement
1367  // has been flattened.  Change DomBlock to jump directly to our new block to
1368  // avoid other simplifycfg's kicking in on the diamond.
1369  TerminatorInst *OldTI = DomBlock->getTerminator();
1370  Builder.SetInsertPoint(OldTI);
1371  Builder.CreateBr(BB);
1372  OldTI->eraseFromParent();
1373  return true;
1374}
1375
1376/// SimplifyCondBranchToTwoReturns - If we found a conditional branch that goes
1377/// to two returning blocks, try to merge them together into one return,
1378/// introducing a select if the return values disagree.
1379static bool SimplifyCondBranchToTwoReturns(BranchInst *BI,
1380                                           IRBuilder<> &Builder) {
1381  assert(BI->isConditional() && "Must be a conditional branch");
1382  BasicBlock *TrueSucc = BI->getSuccessor(0);
1383  BasicBlock *FalseSucc = BI->getSuccessor(1);
1384  ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator());
1385  ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator());
1386
1387  // Check to ensure both blocks are empty (just a return) or optionally empty
1388  // with PHI nodes.  If there are other instructions, merging would cause extra
1389  // computation on one path or the other.
1390  if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator())
1391    return false;
1392  if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator())
1393    return false;
1394
1395  Builder.SetInsertPoint(BI);
1396  // Okay, we found a branch that is going to two return nodes.  If
1397  // there is no return value for this function, just change the
1398  // branch into a return.
1399  if (FalseRet->getNumOperands() == 0) {
1400    TrueSucc->removePredecessor(BI->getParent());
1401    FalseSucc->removePredecessor(BI->getParent());
1402    Builder.CreateRetVoid();
1403    EraseTerminatorInstAndDCECond(BI);
1404    return true;
1405  }
1406
1407  // Otherwise, figure out what the true and false return values are
1408  // so we can insert a new select instruction.
1409  Value *TrueValue = TrueRet->getReturnValue();
1410  Value *FalseValue = FalseRet->getReturnValue();
1411
1412  // Unwrap any PHI nodes in the return blocks.
1413  if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue))
1414    if (TVPN->getParent() == TrueSucc)
1415      TrueValue = TVPN->getIncomingValueForBlock(BI->getParent());
1416  if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue))
1417    if (FVPN->getParent() == FalseSucc)
1418      FalseValue = FVPN->getIncomingValueForBlock(BI->getParent());
1419
1420  // In order for this transformation to be safe, we must be able to
1421  // unconditionally execute both operands to the return.  This is
1422  // normally the case, but we could have a potentially-trapping
1423  // constant expression that prevents this transformation from being
1424  // safe.
1425  if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue))
1426    if (TCV->canTrap())
1427      return false;
1428  if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue))
1429    if (FCV->canTrap())
1430      return false;
1431
1432  // Okay, we collected all the mapped values and checked them for sanity, and
1433  // defined to really do this transformation.  First, update the CFG.
1434  TrueSucc->removePredecessor(BI->getParent());
1435  FalseSucc->removePredecessor(BI->getParent());
1436
1437  // Insert select instructions where needed.
1438  Value *BrCond = BI->getCondition();
1439  if (TrueValue) {
1440    // Insert a select if the results differ.
1441    if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) {
1442    } else if (isa<UndefValue>(TrueValue)) {
1443      TrueValue = FalseValue;
1444    } else {
1445      TrueValue = Builder.CreateSelect(BrCond, TrueValue,
1446                                       FalseValue, "retval");
1447    }
1448  }
1449
1450  Value *RI = !TrueValue ?
1451    Builder.CreateRetVoid() : Builder.CreateRet(TrueValue);
1452
1453  (void) RI;
1454
1455  DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
1456               << "\n  " << *BI << "NewRet = " << *RI
1457               << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: "<< *FalseSucc);
1458
1459  EraseTerminatorInstAndDCECond(BI);
1460
1461  return true;
1462}
1463
1464/// FoldBranchToCommonDest - If this basic block is simple enough, and if a
1465/// predecessor branches to us and one of our successors, fold the block into
1466/// the predecessor and use logical operations to pick the right destination.
1467bool llvm::FoldBranchToCommonDest(BranchInst *BI) {
1468  BasicBlock *BB = BI->getParent();
1469
1470  Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
1471  if (Cond == 0 || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
1472    Cond->getParent() != BB || !Cond->hasOneUse())
1473  return false;
1474
1475  // Only allow this if the condition is a simple instruction that can be
1476  // executed unconditionally.  It must be in the same block as the branch, and
1477  // must be at the front of the block.
1478  BasicBlock::iterator FrontIt = BB->front();
1479
1480  // Ignore dbg intrinsics.
1481  while (isa<DbgInfoIntrinsic>(FrontIt)) ++FrontIt;
1482
1483  // Allow a single instruction to be hoisted in addition to the compare
1484  // that feeds the branch.  We later ensure that any values that _it_ uses
1485  // were also live in the predecessor, so that we don't unnecessarily create
1486  // register pressure or inhibit out-of-order execution.
1487  Instruction *BonusInst = 0;
1488  if (&*FrontIt != Cond &&
1489      FrontIt->hasOneUse() && *FrontIt->use_begin() == Cond &&
1490      FrontIt->isSafeToSpeculativelyExecute()) {
1491    BonusInst = &*FrontIt;
1492    ++FrontIt;
1493
1494    // Ignore dbg intrinsics.
1495    while (isa<DbgInfoIntrinsic>(FrontIt)) ++FrontIt;
1496  }
1497
1498  // Only a single bonus inst is allowed.
1499  if (&*FrontIt != Cond)
1500    return false;
1501
1502  // Make sure the instruction after the condition is the cond branch.
1503  BasicBlock::iterator CondIt = Cond; ++CondIt;
1504
1505  // Ingore dbg intrinsics.
1506  while (isa<DbgInfoIntrinsic>(CondIt)) ++CondIt;
1507
1508  if (&*CondIt != BI)
1509    return false;
1510
1511  // Cond is known to be a compare or binary operator.  Check to make sure that
1512  // neither operand is a potentially-trapping constant expression.
1513  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
1514    if (CE->canTrap())
1515      return false;
1516  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1)))
1517    if (CE->canTrap())
1518      return false;
1519
1520  // Finally, don't infinitely unroll conditional loops.
1521  BasicBlock *TrueDest  = BI->getSuccessor(0);
1522  BasicBlock *FalseDest = BI->getSuccessor(1);
1523  if (TrueDest == BB || FalseDest == BB)
1524    return false;
1525
1526  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
1527    BasicBlock *PredBlock = *PI;
1528    BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
1529
1530    // Check that we have two conditional branches.  If there is a PHI node in
1531    // the common successor, verify that the same value flows in from both
1532    // blocks.
1533    if (PBI == 0 || PBI->isUnconditional() || !SafeToMergeTerminators(BI, PBI))
1534      continue;
1535
1536    // Determine if the two branches share a common destination.
1537    Instruction::BinaryOps Opc;
1538    bool InvertPredCond = false;
1539
1540    if (PBI->getSuccessor(0) == TrueDest)
1541      Opc = Instruction::Or;
1542    else if (PBI->getSuccessor(1) == FalseDest)
1543      Opc = Instruction::And;
1544    else if (PBI->getSuccessor(0) == FalseDest)
1545      Opc = Instruction::And, InvertPredCond = true;
1546    else if (PBI->getSuccessor(1) == TrueDest)
1547      Opc = Instruction::Or, InvertPredCond = true;
1548    else
1549      continue;
1550
1551    // Ensure that any values used in the bonus instruction are also used
1552    // by the terminator of the predecessor.  This means that those values
1553    // must already have been resolved, so we won't be inhibiting the
1554    // out-of-order core by speculating them earlier.
1555    if (BonusInst) {
1556      // Collect the values used by the bonus inst
1557      SmallPtrSet<Value*, 4> UsedValues;
1558      for (Instruction::op_iterator OI = BonusInst->op_begin(),
1559           OE = BonusInst->op_end(); OI != OE; ++OI) {
1560        Value* V = *OI;
1561        if (!isa<Constant>(V))
1562          UsedValues.insert(V);
1563      }
1564
1565      SmallVector<std::pair<Value*, unsigned>, 4> Worklist;
1566      Worklist.push_back(std::make_pair(PBI->getOperand(0), 0));
1567
1568      // Walk up to four levels back up the use-def chain of the predecessor's
1569      // terminator to see if all those values were used.  The choice of four
1570      // levels is arbitrary, to provide a compile-time-cost bound.
1571      while (!Worklist.empty()) {
1572        std::pair<Value*, unsigned> Pair = Worklist.back();
1573        Worklist.pop_back();
1574
1575        if (Pair.second >= 4) continue;
1576        UsedValues.erase(Pair.first);
1577        if (UsedValues.empty()) break;
1578
1579        if (Instruction *I = dyn_cast<Instruction>(Pair.first)) {
1580          for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end();
1581               OI != OE; ++OI)
1582            Worklist.push_back(std::make_pair(OI->get(), Pair.second+1));
1583        }
1584      }
1585
1586      if (!UsedValues.empty()) return false;
1587    }
1588
1589    DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
1590    IRBuilder<> Builder(PBI);
1591
1592    // If we need to invert the condition in the pred block to match, do so now.
1593    if (InvertPredCond) {
1594      Value *NewCond = PBI->getCondition();
1595
1596      if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
1597        CmpInst *CI = cast<CmpInst>(NewCond);
1598        CI->setPredicate(CI->getInversePredicate());
1599      } else {
1600        NewCond = Builder.CreateNot(NewCond,
1601                                    PBI->getCondition()->getName()+".not");
1602      }
1603
1604      PBI->setCondition(NewCond);
1605      BasicBlock *OldTrue = PBI->getSuccessor(0);
1606      BasicBlock *OldFalse = PBI->getSuccessor(1);
1607      PBI->setSuccessor(0, OldFalse);
1608      PBI->setSuccessor(1, OldTrue);
1609    }
1610
1611    // If we have a bonus inst, clone it into the predecessor block.
1612    Instruction *NewBonus = 0;
1613    if (BonusInst) {
1614      NewBonus = BonusInst->clone();
1615      PredBlock->getInstList().insert(PBI, NewBonus);
1616      NewBonus->takeName(BonusInst);
1617      BonusInst->setName(BonusInst->getName()+".old");
1618    }
1619
1620    // Clone Cond into the predecessor basic block, and or/and the
1621    // two conditions together.
1622    Instruction *New = Cond->clone();
1623    if (BonusInst) New->replaceUsesOfWith(BonusInst, NewBonus);
1624    PredBlock->getInstList().insert(PBI, New);
1625    New->takeName(Cond);
1626    Cond->setName(New->getName()+".old");
1627
1628    Instruction *NewCond =
1629      cast<Instruction>(Builder.CreateBinOp(Opc, PBI->getCondition(),
1630                                            New, "or.cond"));
1631    PBI->setCondition(NewCond);
1632    if (PBI->getSuccessor(0) == BB) {
1633      AddPredecessorToBlock(TrueDest, PredBlock, BB);
1634      PBI->setSuccessor(0, TrueDest);
1635    }
1636    if (PBI->getSuccessor(1) == BB) {
1637      AddPredecessorToBlock(FalseDest, PredBlock, BB);
1638      PBI->setSuccessor(1, FalseDest);
1639    }
1640
1641    // Copy any debug value intrinsics into the end of PredBlock.
1642    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
1643      if (isa<DbgInfoIntrinsic>(*I))
1644        I->clone()->insertBefore(PBI);
1645
1646    return true;
1647  }
1648  return false;
1649}
1650
1651/// SimplifyCondBranchToCondBranch - If we have a conditional branch as a
1652/// predecessor of another block, this function tries to simplify it.  We know
1653/// that PBI and BI are both conditional branches, and BI is in one of the
1654/// successor blocks of PBI - PBI branches to BI.
1655static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI) {
1656  assert(PBI->isConditional() && BI->isConditional());
1657  BasicBlock *BB = BI->getParent();
1658
1659  // If this block ends with a branch instruction, and if there is a
1660  // predecessor that ends on a branch of the same condition, make
1661  // this conditional branch redundant.
1662  if (PBI->getCondition() == BI->getCondition() &&
1663      PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
1664    // Okay, the outcome of this conditional branch is statically
1665    // knowable.  If this block had a single pred, handle specially.
1666    if (BB->getSinglePredecessor()) {
1667      // Turn this into a branch on constant.
1668      bool CondIsTrue = PBI->getSuccessor(0) == BB;
1669      BI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
1670                                        CondIsTrue));
1671      return true;  // Nuke the branch on constant.
1672    }
1673
1674    // Otherwise, if there are multiple predecessors, insert a PHI that merges
1675    // in the constant and simplify the block result.  Subsequent passes of
1676    // simplifycfg will thread the block.
1677    if (BlockIsSimpleEnoughToThreadThrough(BB)) {
1678      pred_iterator PB = pred_begin(BB), PE = pred_end(BB);
1679      PHINode *NewPN = PHINode::Create(Type::getInt1Ty(BB->getContext()),
1680                                       std::distance(PB, PE),
1681                                       BI->getCondition()->getName() + ".pr",
1682                                       BB->begin());
1683      // Okay, we're going to insert the PHI node.  Since PBI is not the only
1684      // predecessor, compute the PHI'd conditional value for all of the preds.
1685      // Any predecessor where the condition is not computable we keep symbolic.
1686      for (pred_iterator PI = PB; PI != PE; ++PI) {
1687        BasicBlock *P = *PI;
1688        if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) &&
1689            PBI != BI && PBI->isConditional() &&
1690            PBI->getCondition() == BI->getCondition() &&
1691            PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
1692          bool CondIsTrue = PBI->getSuccessor(0) == BB;
1693          NewPN->addIncoming(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
1694                                              CondIsTrue), P);
1695        } else {
1696          NewPN->addIncoming(BI->getCondition(), P);
1697        }
1698      }
1699
1700      BI->setCondition(NewPN);
1701      return true;
1702    }
1703  }
1704
1705  // If this is a conditional branch in an empty block, and if any
1706  // predecessors is a conditional branch to one of our destinations,
1707  // fold the conditions into logical ops and one cond br.
1708  BasicBlock::iterator BBI = BB->begin();
1709  // Ignore dbg intrinsics.
1710  while (isa<DbgInfoIntrinsic>(BBI))
1711    ++BBI;
1712  if (&*BBI != BI)
1713    return false;
1714
1715
1716  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
1717    if (CE->canTrap())
1718      return false;
1719
1720  int PBIOp, BIOp;
1721  if (PBI->getSuccessor(0) == BI->getSuccessor(0))
1722    PBIOp = BIOp = 0;
1723  else if (PBI->getSuccessor(0) == BI->getSuccessor(1))
1724    PBIOp = 0, BIOp = 1;
1725  else if (PBI->getSuccessor(1) == BI->getSuccessor(0))
1726    PBIOp = 1, BIOp = 0;
1727  else if (PBI->getSuccessor(1) == BI->getSuccessor(1))
1728    PBIOp = BIOp = 1;
1729  else
1730    return false;
1731
1732  // Check to make sure that the other destination of this branch
1733  // isn't BB itself.  If so, this is an infinite loop that will
1734  // keep getting unwound.
1735  if (PBI->getSuccessor(PBIOp) == BB)
1736    return false;
1737
1738  // Do not perform this transformation if it would require
1739  // insertion of a large number of select instructions. For targets
1740  // without predication/cmovs, this is a big pessimization.
1741  BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
1742
1743  unsigned NumPhis = 0;
1744  for (BasicBlock::iterator II = CommonDest->begin();
1745       isa<PHINode>(II); ++II, ++NumPhis)
1746    if (NumPhis > 2) // Disable this xform.
1747      return false;
1748
1749  // Finally, if everything is ok, fold the branches to logical ops.
1750  BasicBlock *OtherDest  = BI->getSuccessor(BIOp ^ 1);
1751
1752  DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
1753               << "AND: " << *BI->getParent());
1754
1755
1756  // If OtherDest *is* BB, then BB is a basic block with a single conditional
1757  // branch in it, where one edge (OtherDest) goes back to itself but the other
1758  // exits.  We don't *know* that the program avoids the infinite loop
1759  // (even though that seems likely).  If we do this xform naively, we'll end up
1760  // recursively unpeeling the loop.  Since we know that (after the xform is
1761  // done) that the block *is* infinite if reached, we just make it an obviously
1762  // infinite loop with no cond branch.
1763  if (OtherDest == BB) {
1764    // Insert it at the end of the function, because it's either code,
1765    // or it won't matter if it's hot. :)
1766    BasicBlock *InfLoopBlock = BasicBlock::Create(BB->getContext(),
1767                                                  "infloop", BB->getParent());
1768    BranchInst::Create(InfLoopBlock, InfLoopBlock);
1769    OtherDest = InfLoopBlock;
1770  }
1771
1772  DEBUG(dbgs() << *PBI->getParent()->getParent());
1773
1774  // BI may have other predecessors.  Because of this, we leave
1775  // it alone, but modify PBI.
1776
1777  // Make sure we get to CommonDest on True&True directions.
1778  Value *PBICond = PBI->getCondition();
1779  IRBuilder<true, NoFolder> Builder(PBI);
1780  if (PBIOp)
1781    PBICond = Builder.CreateNot(PBICond, PBICond->getName()+".not");
1782
1783  Value *BICond = BI->getCondition();
1784  if (BIOp)
1785    BICond = Builder.CreateNot(BICond, BICond->getName()+".not");
1786
1787  // Merge the conditions.
1788  Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge");
1789
1790  // Modify PBI to branch on the new condition to the new dests.
1791  PBI->setCondition(Cond);
1792  PBI->setSuccessor(0, CommonDest);
1793  PBI->setSuccessor(1, OtherDest);
1794
1795  // OtherDest may have phi nodes.  If so, add an entry from PBI's
1796  // block that are identical to the entries for BI's block.
1797  AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
1798
1799  // We know that the CommonDest already had an edge from PBI to
1800  // it.  If it has PHIs though, the PHIs may have different
1801  // entries for BB and PBI's BB.  If so, insert a select to make
1802  // them agree.
1803  PHINode *PN;
1804  for (BasicBlock::iterator II = CommonDest->begin();
1805       (PN = dyn_cast<PHINode>(II)); ++II) {
1806    Value *BIV = PN->getIncomingValueForBlock(BB);
1807    unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
1808    Value *PBIV = PN->getIncomingValue(PBBIdx);
1809    if (BIV != PBIV) {
1810      // Insert a select in PBI to pick the right value.
1811      Value *NV = cast<SelectInst>
1812        (Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName()+".mux"));
1813      PN->setIncomingValue(PBBIdx, NV);
1814    }
1815  }
1816
1817  DEBUG(dbgs() << "INTO: " << *PBI->getParent());
1818  DEBUG(dbgs() << *PBI->getParent()->getParent());
1819
1820  // This basic block is probably dead.  We know it has at least
1821  // one fewer predecessor.
1822  return true;
1823}
1824
1825// SimplifyTerminatorOnSelect - Simplifies a terminator by replacing it with a
1826// branch to TrueBB if Cond is true or to FalseBB if Cond is false.
1827// Takes care of updating the successors and removing the old terminator.
1828// Also makes sure not to introduce new successors by assuming that edges to
1829// non-successor TrueBBs and FalseBBs aren't reachable.
1830static bool SimplifyTerminatorOnSelect(TerminatorInst *OldTerm, Value *Cond,
1831                                       BasicBlock *TrueBB, BasicBlock *FalseBB){
1832  // Remove any superfluous successor edges from the CFG.
1833  // First, figure out which successors to preserve.
1834  // If TrueBB and FalseBB are equal, only try to preserve one copy of that
1835  // successor.
1836  BasicBlock *KeepEdge1 = TrueBB;
1837  BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : 0;
1838
1839  // Then remove the rest.
1840  for (unsigned I = 0, E = OldTerm->getNumSuccessors(); I != E; ++I) {
1841    BasicBlock *Succ = OldTerm->getSuccessor(I);
1842    // Make sure only to keep exactly one copy of each edge.
1843    if (Succ == KeepEdge1)
1844      KeepEdge1 = 0;
1845    else if (Succ == KeepEdge2)
1846      KeepEdge2 = 0;
1847    else
1848      Succ->removePredecessor(OldTerm->getParent());
1849  }
1850
1851  IRBuilder<> Builder(OldTerm);
1852  Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
1853
1854  // Insert an appropriate new terminator.
1855  if ((KeepEdge1 == 0) && (KeepEdge2 == 0)) {
1856    if (TrueBB == FalseBB)
1857      // We were only looking for one successor, and it was present.
1858      // Create an unconditional branch to it.
1859      Builder.CreateBr(TrueBB);
1860    else
1861      // We found both of the successors we were looking for.
1862      // Create a conditional branch sharing the condition of the select.
1863      Builder.CreateCondBr(Cond, TrueBB, FalseBB);
1864  } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
1865    // Neither of the selected blocks were successors, so this
1866    // terminator must be unreachable.
1867    new UnreachableInst(OldTerm->getContext(), OldTerm);
1868  } else {
1869    // One of the selected values was a successor, but the other wasn't.
1870    // Insert an unconditional branch to the one that was found;
1871    // the edge to the one that wasn't must be unreachable.
1872    if (KeepEdge1 == 0)
1873      // Only TrueBB was found.
1874      Builder.CreateBr(TrueBB);
1875    else
1876      // Only FalseBB was found.
1877      Builder.CreateBr(FalseBB);
1878  }
1879
1880  EraseTerminatorInstAndDCECond(OldTerm);
1881  return true;
1882}
1883
1884// SimplifySwitchOnSelect - Replaces
1885//   (switch (select cond, X, Y)) on constant X, Y
1886// with a branch - conditional if X and Y lead to distinct BBs,
1887// unconditional otherwise.
1888static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) {
1889  // Check for constant integer values in the select.
1890  ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
1891  ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
1892  if (!TrueVal || !FalseVal)
1893    return false;
1894
1895  // Find the relevant condition and destinations.
1896  Value *Condition = Select->getCondition();
1897  BasicBlock *TrueBB = SI->getSuccessor(SI->findCaseValue(TrueVal));
1898  BasicBlock *FalseBB = SI->getSuccessor(SI->findCaseValue(FalseVal));
1899
1900  // Perform the actual simplification.
1901  return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB);
1902}
1903
1904// SimplifyIndirectBrOnSelect - Replaces
1905//   (indirectbr (select cond, blockaddress(@fn, BlockA),
1906//                             blockaddress(@fn, BlockB)))
1907// with
1908//   (br cond, BlockA, BlockB).
1909static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) {
1910  // Check that both operands of the select are block addresses.
1911  BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
1912  BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
1913  if (!TBA || !FBA)
1914    return false;
1915
1916  // Extract the actual blocks.
1917  BasicBlock *TrueBB = TBA->getBasicBlock();
1918  BasicBlock *FalseBB = FBA->getBasicBlock();
1919
1920  // Perform the actual simplification.
1921  return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB);
1922}
1923
1924/// TryToSimplifyUncondBranchWithICmpInIt - This is called when we find an icmp
1925/// instruction (a seteq/setne with a constant) as the only instruction in a
1926/// block that ends with an uncond branch.  We are looking for a very specific
1927/// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified.  In
1928/// this case, we merge the first two "or's of icmp" into a switch, but then the
1929/// default value goes to an uncond block with a seteq in it, we get something
1930/// like:
1931///
1932///   switch i8 %A, label %DEFAULT [ i8 1, label %end    i8 2, label %end ]
1933/// DEFAULT:
1934///   %tmp = icmp eq i8 %A, 92
1935///   br label %end
1936/// end:
1937///   ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
1938///
1939/// We prefer to split the edge to 'end' so that there is a true/false entry to
1940/// the PHI, merging the third icmp into the switch.
1941static bool TryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI,
1942                                                  const TargetData *TD,
1943                                                  IRBuilder<> &Builder) {
1944  BasicBlock *BB = ICI->getParent();
1945
1946  // If the block has any PHIs in it or the icmp has multiple uses, it is too
1947  // complex.
1948  if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) return false;
1949
1950  Value *V = ICI->getOperand(0);
1951  ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
1952
1953  // The pattern we're looking for is where our only predecessor is a switch on
1954  // 'V' and this block is the default case for the switch.  In this case we can
1955  // fold the compared value into the switch to simplify things.
1956  BasicBlock *Pred = BB->getSinglePredecessor();
1957  if (Pred == 0 || !isa<SwitchInst>(Pred->getTerminator())) return false;
1958
1959  SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
1960  if (SI->getCondition() != V)
1961    return false;
1962
1963  // If BB is reachable on a non-default case, then we simply know the value of
1964  // V in this block.  Substitute it and constant fold the icmp instruction
1965  // away.
1966  if (SI->getDefaultDest() != BB) {
1967    ConstantInt *VVal = SI->findCaseDest(BB);
1968    assert(VVal && "Should have a unique destination value");
1969    ICI->setOperand(0, VVal);
1970
1971    if (Value *V = SimplifyInstruction(ICI, TD)) {
1972      ICI->replaceAllUsesWith(V);
1973      ICI->eraseFromParent();
1974    }
1975    // BB is now empty, so it is likely to simplify away.
1976    return SimplifyCFG(BB) | true;
1977  }
1978
1979  // Ok, the block is reachable from the default dest.  If the constant we're
1980  // comparing exists in one of the other edges, then we can constant fold ICI
1981  // and zap it.
1982  if (SI->findCaseValue(Cst) != 0) {
1983    Value *V;
1984    if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
1985      V = ConstantInt::getFalse(BB->getContext());
1986    else
1987      V = ConstantInt::getTrue(BB->getContext());
1988
1989    ICI->replaceAllUsesWith(V);
1990    ICI->eraseFromParent();
1991    // BB is now empty, so it is likely to simplify away.
1992    return SimplifyCFG(BB) | true;
1993  }
1994
1995  // The use of the icmp has to be in the 'end' block, by the only PHI node in
1996  // the block.
1997  BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
1998  PHINode *PHIUse = dyn_cast<PHINode>(ICI->use_back());
1999  if (PHIUse == 0 || PHIUse != &SuccBlock->front() ||
2000      isa<PHINode>(++BasicBlock::iterator(PHIUse)))
2001    return false;
2002
2003  // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
2004  // true in the PHI.
2005  Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
2006  Constant *NewCst     = ConstantInt::getFalse(BB->getContext());
2007
2008  if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
2009    std::swap(DefaultCst, NewCst);
2010
2011  // Replace ICI (which is used by the PHI for the default value) with true or
2012  // false depending on if it is EQ or NE.
2013  ICI->replaceAllUsesWith(DefaultCst);
2014  ICI->eraseFromParent();
2015
2016  // Okay, the switch goes to this block on a default value.  Add an edge from
2017  // the switch to the merge point on the compared value.
2018  BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "switch.edge",
2019                                         BB->getParent(), BB);
2020  SI->addCase(Cst, NewBB);
2021
2022  // NewBB branches to the phi block, add the uncond branch and the phi entry.
2023  Builder.SetInsertPoint(NewBB);
2024  Builder.SetCurrentDebugLocation(SI->getDebugLoc());
2025  Builder.CreateBr(SuccBlock);
2026  PHIUse->addIncoming(NewCst, NewBB);
2027  return true;
2028}
2029
2030/// SimplifyBranchOnICmpChain - The specified branch is a conditional branch.
2031/// Check to see if it is branching on an or/and chain of icmp instructions, and
2032/// fold it into a switch instruction if so.
2033static bool SimplifyBranchOnICmpChain(BranchInst *BI, const TargetData *TD,
2034                                      IRBuilder<> &Builder) {
2035  Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
2036  if (Cond == 0) return false;
2037
2038
2039  // Change br (X == 0 | X == 1), T, F into a switch instruction.
2040  // If this is a bunch of seteq's or'd together, or if it's a bunch of
2041  // 'setne's and'ed together, collect them.
2042  Value *CompVal = 0;
2043  std::vector<ConstantInt*> Values;
2044  bool TrueWhenEqual = true;
2045  Value *ExtraCase = 0;
2046  unsigned UsedICmps = 0;
2047
2048  if (Cond->getOpcode() == Instruction::Or) {
2049    CompVal = GatherConstantCompares(Cond, Values, ExtraCase, TD, true,
2050                                     UsedICmps);
2051  } else if (Cond->getOpcode() == Instruction::And) {
2052    CompVal = GatherConstantCompares(Cond, Values, ExtraCase, TD, false,
2053                                     UsedICmps);
2054    TrueWhenEqual = false;
2055  }
2056
2057  // If we didn't have a multiply compared value, fail.
2058  if (CompVal == 0) return false;
2059
2060  // Avoid turning single icmps into a switch.
2061  if (UsedICmps <= 1)
2062    return false;
2063
2064  // There might be duplicate constants in the list, which the switch
2065  // instruction can't handle, remove them now.
2066  array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
2067  Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
2068
2069  // If Extra was used, we require at least two switch values to do the
2070  // transformation.  A switch with one value is just an cond branch.
2071  if (ExtraCase && Values.size() < 2) return false;
2072
2073  // Figure out which block is which destination.
2074  BasicBlock *DefaultBB = BI->getSuccessor(1);
2075  BasicBlock *EdgeBB    = BI->getSuccessor(0);
2076  if (!TrueWhenEqual) std::swap(DefaultBB, EdgeBB);
2077
2078  BasicBlock *BB = BI->getParent();
2079
2080  DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
2081               << " cases into SWITCH.  BB is:\n" << *BB);
2082
2083  // If there are any extra values that couldn't be folded into the switch
2084  // then we evaluate them with an explicit branch first.  Split the block
2085  // right before the condbr to handle it.
2086  if (ExtraCase) {
2087    BasicBlock *NewBB = BB->splitBasicBlock(BI, "switch.early.test");
2088    // Remove the uncond branch added to the old block.
2089    TerminatorInst *OldTI = BB->getTerminator();
2090    Builder.SetInsertPoint(OldTI);
2091
2092    if (TrueWhenEqual)
2093      Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
2094    else
2095      Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
2096
2097    OldTI->eraseFromParent();
2098
2099    // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
2100    // for the edge we just added.
2101    AddPredecessorToBlock(EdgeBB, BB, NewBB);
2102
2103    DEBUG(dbgs() << "  ** 'icmp' chain unhandled condition: " << *ExtraCase
2104          << "\nEXTRABB = " << *BB);
2105    BB = NewBB;
2106  }
2107
2108  Builder.SetInsertPoint(BI);
2109  // Convert pointer to int before we switch.
2110  if (CompVal->getType()->isPointerTy()) {
2111    assert(TD && "Cannot switch on pointer without TargetData");
2112    CompVal = Builder.CreatePtrToInt(CompVal,
2113                                     TD->getIntPtrType(CompVal->getContext()),
2114                                     "magicptr");
2115  }
2116
2117  // Create the new switch instruction now.
2118  SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
2119
2120  // Add all of the 'cases' to the switch instruction.
2121  for (unsigned i = 0, e = Values.size(); i != e; ++i)
2122    New->addCase(Values[i], EdgeBB);
2123
2124  // We added edges from PI to the EdgeBB.  As such, if there were any
2125  // PHI nodes in EdgeBB, they need entries to be added corresponding to
2126  // the number of edges added.
2127  for (BasicBlock::iterator BBI = EdgeBB->begin();
2128       isa<PHINode>(BBI); ++BBI) {
2129    PHINode *PN = cast<PHINode>(BBI);
2130    Value *InVal = PN->getIncomingValueForBlock(BB);
2131    for (unsigned i = 0, e = Values.size()-1; i != e; ++i)
2132      PN->addIncoming(InVal, BB);
2133  }
2134
2135  // Erase the old branch instruction.
2136  EraseTerminatorInstAndDCECond(BI);
2137
2138  DEBUG(dbgs() << "  ** 'icmp' chain result is:\n" << *BB << '\n');
2139  return true;
2140}
2141
2142bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
2143  // If this is a trivial landing pad that just continues unwinding the caught
2144  // exception then zap the landing pad, turning its invokes into calls.
2145  BasicBlock *BB = RI->getParent();
2146  LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI());
2147  if (RI->getValue() != LPInst)
2148    // Not a landing pad, or the resume is not unwinding the exception that
2149    // caused control to branch here.
2150    return false;
2151
2152  // Check that there are no other instructions except for debug intrinsics.
2153  BasicBlock::iterator I = LPInst, E = RI;
2154  while (++I != E)
2155    if (!isa<DbgInfoIntrinsic>(I))
2156      return false;
2157
2158  // Turn all invokes that unwind here into calls and delete the basic block.
2159  for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
2160    InvokeInst *II = cast<InvokeInst>((*PI++)->getTerminator());
2161    SmallVector<Value*, 8> Args(II->op_begin(), II->op_end() - 3);
2162    // Insert a call instruction before the invoke.
2163    CallInst *Call = CallInst::Create(II->getCalledValue(), Args, "", II);
2164    Call->takeName(II);
2165    Call->setCallingConv(II->getCallingConv());
2166    Call->setAttributes(II->getAttributes());
2167    Call->setDebugLoc(II->getDebugLoc());
2168
2169    // Anything that used the value produced by the invoke instruction now uses
2170    // the value produced by the call instruction.  Note that we do this even
2171    // for void functions and calls with no uses so that the callgraph edge is
2172    // updated.
2173    II->replaceAllUsesWith(Call);
2174    BB->removePredecessor(II->getParent());
2175
2176    // Insert a branch to the normal destination right before the invoke.
2177    BranchInst::Create(II->getNormalDest(), II);
2178
2179    // Finally, delete the invoke instruction!
2180    II->eraseFromParent();
2181  }
2182
2183  // The landingpad is now unreachable.  Zap it.
2184  BB->eraseFromParent();
2185  return true;
2186}
2187
2188bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) {
2189  BasicBlock *BB = RI->getParent();
2190  if (!BB->getFirstNonPHIOrDbg()->isTerminator()) return false;
2191
2192  // Find predecessors that end with branches.
2193  SmallVector<BasicBlock*, 8> UncondBranchPreds;
2194  SmallVector<BranchInst*, 8> CondBranchPreds;
2195  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
2196    BasicBlock *P = *PI;
2197    TerminatorInst *PTI = P->getTerminator();
2198    if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) {
2199      if (BI->isUnconditional())
2200        UncondBranchPreds.push_back(P);
2201      else
2202        CondBranchPreds.push_back(BI);
2203    }
2204  }
2205
2206  // If we found some, do the transformation!
2207  if (!UncondBranchPreds.empty() && DupRet) {
2208    while (!UncondBranchPreds.empty()) {
2209      BasicBlock *Pred = UncondBranchPreds.pop_back_val();
2210      DEBUG(dbgs() << "FOLDING: " << *BB
2211            << "INTO UNCOND BRANCH PRED: " << *Pred);
2212      (void)FoldReturnIntoUncondBranch(RI, BB, Pred);
2213    }
2214
2215    // If we eliminated all predecessors of the block, delete the block now.
2216    if (pred_begin(BB) == pred_end(BB))
2217      // We know there are no successors, so just nuke the block.
2218      BB->eraseFromParent();
2219
2220    return true;
2221  }
2222
2223  // Check out all of the conditional branches going to this return
2224  // instruction.  If any of them just select between returns, change the
2225  // branch itself into a select/return pair.
2226  while (!CondBranchPreds.empty()) {
2227    BranchInst *BI = CondBranchPreds.pop_back_val();
2228
2229    // Check to see if the non-BB successor is also a return block.
2230    if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) &&
2231        isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) &&
2232        SimplifyCondBranchToTwoReturns(BI, Builder))
2233      return true;
2234  }
2235  return false;
2236}
2237
2238bool SimplifyCFGOpt::SimplifyUnwind(UnwindInst *UI, IRBuilder<> &Builder) {
2239  // Check to see if the first instruction in this block is just an unwind.
2240  // If so, replace any invoke instructions which use this as an exception
2241  // destination with call instructions.
2242  BasicBlock *BB = UI->getParent();
2243  if (!BB->getFirstNonPHIOrDbg()->isTerminator()) return false;
2244
2245  bool Changed = false;
2246  SmallVector<BasicBlock*, 8> Preds(pred_begin(BB), pred_end(BB));
2247  while (!Preds.empty()) {
2248    BasicBlock *Pred = Preds.back();
2249    InvokeInst *II = dyn_cast<InvokeInst>(Pred->getTerminator());
2250    if (II && II->getUnwindDest() == BB) {
2251      // Insert a new branch instruction before the invoke, because this
2252      // is now a fall through.
2253      Builder.SetInsertPoint(II);
2254      BranchInst *BI = Builder.CreateBr(II->getNormalDest());
2255      Pred->getInstList().remove(II);   // Take out of symbol table
2256
2257      // Insert the call now.
2258      SmallVector<Value*,8> Args(II->op_begin(), II->op_end()-3);
2259      Builder.SetInsertPoint(BI);
2260      CallInst *CI = Builder.CreateCall(II->getCalledValue(),
2261                                        Args, II->getName());
2262      CI->setCallingConv(II->getCallingConv());
2263      CI->setAttributes(II->getAttributes());
2264      // If the invoke produced a value, the Call now does instead.
2265      II->replaceAllUsesWith(CI);
2266      delete II;
2267      Changed = true;
2268    }
2269
2270    Preds.pop_back();
2271  }
2272
2273  // If this block is now dead (and isn't the entry block), remove it.
2274  if (pred_begin(BB) == pred_end(BB) &&
2275      BB != &BB->getParent()->getEntryBlock()) {
2276    // We know there are no successors, so just nuke the block.
2277    BB->eraseFromParent();
2278    return true;
2279  }
2280
2281  return Changed;
2282}
2283
2284bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) {
2285  BasicBlock *BB = UI->getParent();
2286
2287  bool Changed = false;
2288
2289  // If there are any instructions immediately before the unreachable that can
2290  // be removed, do so.
2291  while (UI != BB->begin()) {
2292    BasicBlock::iterator BBI = UI;
2293    --BBI;
2294    // Do not delete instructions that can have side effects which might cause
2295    // the unreachable to not be reachable; specifically, calls and volatile
2296    // operations may have this effect.
2297    if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) break;
2298
2299    if (BBI->mayHaveSideEffects()) {
2300      if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) {
2301        if (SI->isVolatile())
2302          break;
2303      } else if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
2304        if (LI->isVolatile())
2305          break;
2306      } else if (AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(BBI)) {
2307        if (RMWI->isVolatile())
2308          break;
2309      } else if (AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) {
2310        if (CXI->isVolatile())
2311          break;
2312      } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) &&
2313                 !isa<LandingPadInst>(BBI)) {
2314        break;
2315      }
2316      // Note that deleting LandingPad's here is in fact okay, although it
2317      // involves a bit of subtle reasoning. If this inst is a LandingPad,
2318      // all the predecessors of this block will be the unwind edges of Invokes,
2319      // and we can therefore guarantee this block will be erased.
2320    }
2321
2322    // Delete this instruction (any uses are guaranteed to be dead)
2323    if (!BBI->use_empty())
2324      BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
2325    BBI->eraseFromParent();
2326    Changed = true;
2327  }
2328
2329  // If the unreachable instruction is the first in the block, take a gander
2330  // at all of the predecessors of this instruction, and simplify them.
2331  if (&BB->front() != UI) return Changed;
2332
2333  SmallVector<BasicBlock*, 8> Preds(pred_begin(BB), pred_end(BB));
2334  for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
2335    TerminatorInst *TI = Preds[i]->getTerminator();
2336    IRBuilder<> Builder(TI);
2337    if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
2338      if (BI->isUnconditional()) {
2339        if (BI->getSuccessor(0) == BB) {
2340          new UnreachableInst(TI->getContext(), TI);
2341          TI->eraseFromParent();
2342          Changed = true;
2343        }
2344      } else {
2345        if (BI->getSuccessor(0) == BB) {
2346          Builder.CreateBr(BI->getSuccessor(1));
2347          EraseTerminatorInstAndDCECond(BI);
2348        } else if (BI->getSuccessor(1) == BB) {
2349          Builder.CreateBr(BI->getSuccessor(0));
2350          EraseTerminatorInstAndDCECond(BI);
2351          Changed = true;
2352        }
2353      }
2354    } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
2355      for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
2356        if (SI->getSuccessor(i) == BB) {
2357          BB->removePredecessor(SI->getParent());
2358          SI->removeCase(i);
2359          --i; --e;
2360          Changed = true;
2361        }
2362      // If the default value is unreachable, figure out the most popular
2363      // destination and make it the default.
2364      if (SI->getSuccessor(0) == BB) {
2365        std::map<BasicBlock*, std::pair<unsigned, unsigned> > Popularity;
2366        for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i) {
2367          std::pair<unsigned, unsigned>& entry =
2368              Popularity[SI->getSuccessor(i)];
2369          if (entry.first == 0) {
2370            entry.first = 1;
2371            entry.second = i;
2372          } else {
2373            entry.first++;
2374          }
2375        }
2376
2377        // Find the most popular block.
2378        unsigned MaxPop = 0;
2379        unsigned MaxIndex = 0;
2380        BasicBlock *MaxBlock = 0;
2381        for (std::map<BasicBlock*, std::pair<unsigned, unsigned> >::iterator
2382             I = Popularity.begin(), E = Popularity.end(); I != E; ++I) {
2383          if (I->second.first > MaxPop ||
2384              (I->second.first == MaxPop && MaxIndex > I->second.second)) {
2385            MaxPop = I->second.first;
2386            MaxIndex = I->second.second;
2387            MaxBlock = I->first;
2388          }
2389        }
2390        if (MaxBlock) {
2391          // Make this the new default, allowing us to delete any explicit
2392          // edges to it.
2393          SI->setSuccessor(0, MaxBlock);
2394          Changed = true;
2395
2396          // If MaxBlock has phinodes in it, remove MaxPop-1 entries from
2397          // it.
2398          if (isa<PHINode>(MaxBlock->begin()))
2399            for (unsigned i = 0; i != MaxPop-1; ++i)
2400              MaxBlock->removePredecessor(SI->getParent());
2401
2402          for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
2403            if (SI->getSuccessor(i) == MaxBlock) {
2404              SI->removeCase(i);
2405              --i; --e;
2406            }
2407        }
2408      }
2409    } else if (InvokeInst *II = dyn_cast<InvokeInst>(TI)) {
2410      if (II->getUnwindDest() == BB) {
2411        // Convert the invoke to a call instruction.  This would be a good
2412        // place to note that the call does not throw though.
2413        BranchInst *BI = Builder.CreateBr(II->getNormalDest());
2414        II->removeFromParent();   // Take out of symbol table
2415
2416        // Insert the call now...
2417        SmallVector<Value*, 8> Args(II->op_begin(), II->op_end()-3);
2418        Builder.SetInsertPoint(BI);
2419        CallInst *CI = Builder.CreateCall(II->getCalledValue(),
2420                                          Args, II->getName());
2421        CI->setCallingConv(II->getCallingConv());
2422        CI->setAttributes(II->getAttributes());
2423        // If the invoke produced a value, the call does now instead.
2424        II->replaceAllUsesWith(CI);
2425        delete II;
2426        Changed = true;
2427      }
2428    }
2429  }
2430
2431  // If this block is now dead, remove it.
2432  if (pred_begin(BB) == pred_end(BB) &&
2433      BB != &BB->getParent()->getEntryBlock()) {
2434    // We know there are no successors, so just nuke the block.
2435    BB->eraseFromParent();
2436    return true;
2437  }
2438
2439  return Changed;
2440}
2441
2442/// TurnSwitchRangeIntoICmp - Turns a switch with that contains only a
2443/// integer range comparison into a sub, an icmp and a branch.
2444static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) {
2445  assert(SI->getNumCases() > 2 && "Degenerate switch?");
2446
2447  // Make sure all cases point to the same destination and gather the values.
2448  SmallVector<ConstantInt *, 16> Cases;
2449  Cases.push_back(SI->getCaseValue(1));
2450  for (unsigned I = 2, E = SI->getNumCases(); I != E; ++I) {
2451    if (SI->getSuccessor(I-1) != SI->getSuccessor(I))
2452      return false;
2453    Cases.push_back(SI->getCaseValue(I));
2454  }
2455  assert(Cases.size() == SI->getNumCases()-1 && "Not all cases gathered");
2456
2457  // Sort the case values, then check if they form a range we can transform.
2458  array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
2459  for (unsigned I = 1, E = Cases.size(); I != E; ++I) {
2460    if (Cases[I-1]->getValue() != Cases[I]->getValue()+1)
2461      return false;
2462  }
2463
2464  Constant *Offset = ConstantExpr::getNeg(Cases.back());
2465  Constant *NumCases = ConstantInt::get(Offset->getType(), SI->getNumCases()-1);
2466
2467  Value *Sub = SI->getCondition();
2468  if (!Offset->isNullValue())
2469    Sub = Builder.CreateAdd(Sub, Offset, Sub->getName()+".off");
2470  Value *Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
2471  Builder.CreateCondBr(Cmp, SI->getSuccessor(1), SI->getDefaultDest());
2472
2473  // Prune obsolete incoming values off the successor's PHI nodes.
2474  for (BasicBlock::iterator BBI = SI->getSuccessor(1)->begin();
2475       isa<PHINode>(BBI); ++BBI) {
2476    for (unsigned I = 0, E = SI->getNumCases()-2; I != E; ++I)
2477      cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
2478  }
2479  SI->eraseFromParent();
2480
2481  return true;
2482}
2483
2484/// EliminateDeadSwitchCases - Compute masked bits for the condition of a switch
2485/// and use it to remove dead cases.
2486static bool EliminateDeadSwitchCases(SwitchInst *SI) {
2487  Value *Cond = SI->getCondition();
2488  unsigned Bits = cast<IntegerType>(Cond->getType())->getBitWidth();
2489  APInt KnownZero(Bits, 0), KnownOne(Bits, 0);
2490  ComputeMaskedBits(Cond, APInt::getAllOnesValue(Bits), KnownZero, KnownOne);
2491
2492  // Gather dead cases.
2493  SmallVector<ConstantInt*, 8> DeadCases;
2494  for (unsigned I = 1, E = SI->getNumCases(); I != E; ++I) {
2495    if ((SI->getCaseValue(I)->getValue() & KnownZero) != 0 ||
2496        (SI->getCaseValue(I)->getValue() & KnownOne) != KnownOne) {
2497      DeadCases.push_back(SI->getCaseValue(I));
2498      DEBUG(dbgs() << "SimplifyCFG: switch case '"
2499                   << SI->getCaseValue(I)->getValue() << "' is dead.\n");
2500    }
2501  }
2502
2503  // Remove dead cases from the switch.
2504  for (unsigned I = 0, E = DeadCases.size(); I != E; ++I) {
2505    unsigned Case = SI->findCaseValue(DeadCases[I]);
2506    // Prune unused values from PHI nodes.
2507    SI->getSuccessor(Case)->removePredecessor(SI->getParent());
2508    SI->removeCase(Case);
2509  }
2510
2511  return !DeadCases.empty();
2512}
2513
2514/// FindPHIForConditionForwarding - If BB would be eligible for simplification
2515/// by TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
2516/// by an unconditional branch), look at the phi node for BB in the successor
2517/// block and see if the incoming value is equal to CaseValue. If so, return
2518/// the phi node, and set PhiIndex to BB's index in the phi node.
2519static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue,
2520                                              BasicBlock *BB,
2521                                              int *PhiIndex) {
2522  if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
2523    return NULL; // BB must be empty to be a candidate for simplification.
2524  if (!BB->getSinglePredecessor())
2525    return NULL; // BB must be dominated by the switch.
2526
2527  BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
2528  if (!Branch || !Branch->isUnconditional())
2529    return NULL; // Terminator must be unconditional branch.
2530
2531  BasicBlock *Succ = Branch->getSuccessor(0);
2532
2533  BasicBlock::iterator I = Succ->begin();
2534  while (PHINode *PHI = dyn_cast<PHINode>(I++)) {
2535    int Idx = PHI->getBasicBlockIndex(BB);
2536    assert(Idx >= 0 && "PHI has no entry for predecessor?");
2537
2538    Value *InValue = PHI->getIncomingValue(Idx);
2539    if (InValue != CaseValue) continue;
2540
2541    *PhiIndex = Idx;
2542    return PHI;
2543  }
2544
2545  return NULL;
2546}
2547
2548/// ForwardSwitchConditionToPHI - Try to forward the condition of a switch
2549/// instruction to a phi node dominated by the switch, if that would mean that
2550/// some of the destination blocks of the switch can be folded away.
2551/// Returns true if a change is made.
2552static bool ForwardSwitchConditionToPHI(SwitchInst *SI) {
2553  typedef DenseMap<PHINode*, SmallVector<int,4> > ForwardingNodesMap;
2554  ForwardingNodesMap ForwardingNodes;
2555
2556  for (unsigned I = 1; I < SI->getNumCases(); ++I) { // 0 is the default case.
2557    ConstantInt *CaseValue = SI->getCaseValue(I);
2558    BasicBlock *CaseDest = SI->getSuccessor(I);
2559
2560    int PhiIndex;
2561    PHINode *PHI = FindPHIForConditionForwarding(CaseValue, CaseDest,
2562                                                 &PhiIndex);
2563    if (!PHI) continue;
2564
2565    ForwardingNodes[PHI].push_back(PhiIndex);
2566  }
2567
2568  bool Changed = false;
2569
2570  for (ForwardingNodesMap::iterator I = ForwardingNodes.begin(),
2571       E = ForwardingNodes.end(); I != E; ++I) {
2572    PHINode *Phi = I->first;
2573    SmallVector<int,4> &Indexes = I->second;
2574
2575    if (Indexes.size() < 2) continue;
2576
2577    for (size_t I = 0, E = Indexes.size(); I != E; ++I)
2578      Phi->setIncomingValue(Indexes[I], SI->getCondition());
2579    Changed = true;
2580  }
2581
2582  return Changed;
2583}
2584
2585bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
2586  // If this switch is too complex to want to look at, ignore it.
2587  if (!isValueEqualityComparison(SI))
2588    return false;
2589
2590  BasicBlock *BB = SI->getParent();
2591
2592  // If we only have one predecessor, and if it is a branch on this value,
2593  // see if that predecessor totally determines the outcome of this switch.
2594  if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
2595    if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
2596      return SimplifyCFG(BB) | true;
2597
2598  Value *Cond = SI->getCondition();
2599  if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
2600    if (SimplifySwitchOnSelect(SI, Select))
2601      return SimplifyCFG(BB) | true;
2602
2603  // If the block only contains the switch, see if we can fold the block
2604  // away into any preds.
2605  BasicBlock::iterator BBI = BB->begin();
2606  // Ignore dbg intrinsics.
2607  while (isa<DbgInfoIntrinsic>(BBI))
2608    ++BBI;
2609  if (SI == &*BBI)
2610    if (FoldValueComparisonIntoPredecessors(SI, Builder))
2611      return SimplifyCFG(BB) | true;
2612
2613  // Try to transform the switch into an icmp and a branch.
2614  if (TurnSwitchRangeIntoICmp(SI, Builder))
2615    return SimplifyCFG(BB) | true;
2616
2617  // Remove unreachable cases.
2618  if (EliminateDeadSwitchCases(SI))
2619    return SimplifyCFG(BB) | true;
2620
2621  if (ForwardSwitchConditionToPHI(SI))
2622    return SimplifyCFG(BB) | true;
2623
2624  return false;
2625}
2626
2627bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) {
2628  BasicBlock *BB = IBI->getParent();
2629  bool Changed = false;
2630
2631  // Eliminate redundant destinations.
2632  SmallPtrSet<Value *, 8> Succs;
2633  for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
2634    BasicBlock *Dest = IBI->getDestination(i);
2635    if (!Dest->hasAddressTaken() || !Succs.insert(Dest)) {
2636      Dest->removePredecessor(BB);
2637      IBI->removeDestination(i);
2638      --i; --e;
2639      Changed = true;
2640    }
2641  }
2642
2643  if (IBI->getNumDestinations() == 0) {
2644    // If the indirectbr has no successors, change it to unreachable.
2645    new UnreachableInst(IBI->getContext(), IBI);
2646    EraseTerminatorInstAndDCECond(IBI);
2647    return true;
2648  }
2649
2650  if (IBI->getNumDestinations() == 1) {
2651    // If the indirectbr has one successor, change it to a direct branch.
2652    BranchInst::Create(IBI->getDestination(0), IBI);
2653    EraseTerminatorInstAndDCECond(IBI);
2654    return true;
2655  }
2656
2657  if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
2658    if (SimplifyIndirectBrOnSelect(IBI, SI))
2659      return SimplifyCFG(BB) | true;
2660  }
2661  return Changed;
2662}
2663
2664bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder){
2665  BasicBlock *BB = BI->getParent();
2666
2667  // If the Terminator is the only non-phi instruction, simplify the block.
2668  BasicBlock::iterator I = BB->getFirstNonPHIOrDbgOrLifetime();
2669  if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
2670      TryToSimplifyUncondBranchFromEmptyBlock(BB))
2671    return true;
2672
2673  // If the only instruction in the block is a seteq/setne comparison
2674  // against a constant, try to simplify the block.
2675  if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
2676    if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
2677      for (++I; isa<DbgInfoIntrinsic>(I); ++I)
2678        ;
2679      if (I->isTerminator()
2680          && TryToSimplifyUncondBranchWithICmpInIt(ICI, TD, Builder))
2681        return true;
2682    }
2683
2684  return false;
2685}
2686
2687
2688bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
2689  BasicBlock *BB = BI->getParent();
2690
2691  // Conditional branch
2692  if (isValueEqualityComparison(BI)) {
2693    // If we only have one predecessor, and if it is a branch on this value,
2694    // see if that predecessor totally determines the outcome of this
2695    // switch.
2696    if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
2697      if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
2698        return SimplifyCFG(BB) | true;
2699
2700    // This block must be empty, except for the setcond inst, if it exists.
2701    // Ignore dbg intrinsics.
2702    BasicBlock::iterator I = BB->begin();
2703    // Ignore dbg intrinsics.
2704    while (isa<DbgInfoIntrinsic>(I))
2705      ++I;
2706    if (&*I == BI) {
2707      if (FoldValueComparisonIntoPredecessors(BI, Builder))
2708        return SimplifyCFG(BB) | true;
2709    } else if (&*I == cast<Instruction>(BI->getCondition())){
2710      ++I;
2711      // Ignore dbg intrinsics.
2712      while (isa<DbgInfoIntrinsic>(I))
2713        ++I;
2714      if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
2715        return SimplifyCFG(BB) | true;
2716    }
2717  }
2718
2719  // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
2720  if (SimplifyBranchOnICmpChain(BI, TD, Builder))
2721    return true;
2722
2723  // We have a conditional branch to two blocks that are only reachable
2724  // from BI.  We know that the condbr dominates the two blocks, so see if
2725  // there is any identical code in the "then" and "else" blocks.  If so, we
2726  // can hoist it up to the branching block.
2727  if (BI->getSuccessor(0)->getSinglePredecessor() != 0) {
2728    if (BI->getSuccessor(1)->getSinglePredecessor() != 0) {
2729      if (HoistThenElseCodeToIf(BI))
2730        return SimplifyCFG(BB) | true;
2731    } else {
2732      // If Successor #1 has multiple preds, we may be able to conditionally
2733      // execute Successor #0 if it branches to successor #1.
2734      TerminatorInst *Succ0TI = BI->getSuccessor(0)->getTerminator();
2735      if (Succ0TI->getNumSuccessors() == 1 &&
2736          Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
2737        if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0)))
2738          return SimplifyCFG(BB) | true;
2739    }
2740  } else if (BI->getSuccessor(1)->getSinglePredecessor() != 0) {
2741    // If Successor #0 has multiple preds, we may be able to conditionally
2742    // execute Successor #1 if it branches to successor #0.
2743    TerminatorInst *Succ1TI = BI->getSuccessor(1)->getTerminator();
2744    if (Succ1TI->getNumSuccessors() == 1 &&
2745        Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
2746      if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1)))
2747        return SimplifyCFG(BB) | true;
2748  }
2749
2750  // If this is a branch on a phi node in the current block, thread control
2751  // through this block if any PHI node entries are constants.
2752  if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
2753    if (PN->getParent() == BI->getParent())
2754      if (FoldCondBranchOnPHI(BI, TD))
2755        return SimplifyCFG(BB) | true;
2756
2757  // If this basic block is ONLY a setcc and a branch, and if a predecessor
2758  // branches to us and one of our successors, fold the setcc into the
2759  // predecessor and use logical operations to pick the right destination.
2760  if (FoldBranchToCommonDest(BI))
2761    return SimplifyCFG(BB) | true;
2762
2763  // Scan predecessor blocks for conditional branches.
2764  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
2765    if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
2766      if (PBI != BI && PBI->isConditional())
2767        if (SimplifyCondBranchToCondBranch(PBI, BI))
2768          return SimplifyCFG(BB) | true;
2769
2770  return false;
2771}
2772
2773/// Check if passing a value to an instruction will cause undefined behavior.
2774static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) {
2775  Constant *C = dyn_cast<Constant>(V);
2776  if (!C)
2777    return false;
2778
2779  if (!I->hasOneUse()) // Only look at single-use instructions, for compile time
2780    return false;
2781
2782  if (C->isNullValue()) {
2783    Instruction *Use = I->use_back();
2784
2785    // Now make sure that there are no instructions in between that can alter
2786    // control flow (eg. calls)
2787    for (BasicBlock::iterator i = ++BasicBlock::iterator(I); &*i != Use; ++i)
2788      if (i == I->getParent()->end() || i->mayHaveSideEffects())
2789        return false;
2790
2791    // Look through GEPs. A load from a GEP derived from NULL is still undefined
2792    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use))
2793      if (GEP->getPointerOperand() == I)
2794        return passingValueIsAlwaysUndefined(V, GEP);
2795
2796    // Look through bitcasts.
2797    if (BitCastInst *BC = dyn_cast<BitCastInst>(Use))
2798      return passingValueIsAlwaysUndefined(V, BC);
2799
2800    // Load from null is undefined.
2801    if (LoadInst *LI = dyn_cast<LoadInst>(Use))
2802      return LI->getPointerAddressSpace() == 0;
2803
2804    // Store to null is undefined.
2805    if (StoreInst *SI = dyn_cast<StoreInst>(Use))
2806      return SI->getPointerAddressSpace() == 0 && SI->getPointerOperand() == I;
2807  }
2808  return false;
2809}
2810
2811/// If BB has an incoming value that will always trigger undefined behavior
2812/// (eg. null pointer derefence), remove the branch leading here.
2813static bool removeUndefIntroducingPredecessor(BasicBlock *BB) {
2814  for (BasicBlock::iterator i = BB->begin();
2815       PHINode *PHI = dyn_cast<PHINode>(i); ++i)
2816    for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i)
2817      if (passingValueIsAlwaysUndefined(PHI->getIncomingValue(i), PHI)) {
2818        TerminatorInst *T = PHI->getIncomingBlock(i)->getTerminator();
2819        IRBuilder<> Builder(T);
2820        if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
2821          BB->removePredecessor(PHI->getIncomingBlock(i));
2822          // Turn uncoditional branches into unreachables and remove the dead
2823          // destination from conditional branches.
2824          if (BI->isUnconditional())
2825            Builder.CreateUnreachable();
2826          else
2827            Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) :
2828                                                         BI->getSuccessor(0));
2829          BI->eraseFromParent();
2830          return true;
2831        }
2832        // TODO: SwitchInst.
2833      }
2834
2835  return false;
2836}
2837
2838bool SimplifyCFGOpt::run(BasicBlock *BB) {
2839  bool Changed = false;
2840
2841  assert(BB && BB->getParent() && "Block not embedded in function!");
2842  assert(BB->getTerminator() && "Degenerate basic block encountered!");
2843
2844  // Remove basic blocks that have no predecessors (except the entry block)...
2845  // or that just have themself as a predecessor.  These are unreachable.
2846  if ((pred_begin(BB) == pred_end(BB) &&
2847       BB != &BB->getParent()->getEntryBlock()) ||
2848      BB->getSinglePredecessor() == BB) {
2849    DEBUG(dbgs() << "Removing BB: \n" << *BB);
2850    DeleteDeadBlock(BB);
2851    return true;
2852  }
2853
2854  // Check to see if we can constant propagate this terminator instruction
2855  // away...
2856  Changed |= ConstantFoldTerminator(BB, true);
2857
2858  // Check for and eliminate duplicate PHI nodes in this block.
2859  Changed |= EliminateDuplicatePHINodes(BB);
2860
2861  // Check for and remove branches that will always cause undefined behavior.
2862  Changed |= removeUndefIntroducingPredecessor(BB);
2863
2864  // Merge basic blocks into their predecessor if there is only one distinct
2865  // pred, and if there is only one distinct successor of the predecessor, and
2866  // if there are no PHI nodes.
2867  //
2868  if (MergeBlockIntoPredecessor(BB))
2869    return true;
2870
2871  IRBuilder<> Builder(BB);
2872
2873  // If there is a trivial two-entry PHI node in this basic block, and we can
2874  // eliminate it, do so now.
2875  if (PHINode *PN = dyn_cast<PHINode>(BB->begin()))
2876    if (PN->getNumIncomingValues() == 2)
2877      Changed |= FoldTwoEntryPHINode(PN, TD);
2878
2879  Builder.SetInsertPoint(BB->getTerminator());
2880  if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
2881    if (BI->isUnconditional()) {
2882      if (SimplifyUncondBranch(BI, Builder)) return true;
2883    } else {
2884      if (SimplifyCondBranch(BI, Builder)) return true;
2885    }
2886  } else if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) {
2887    if (SimplifyResume(RI, Builder)) return true;
2888  } else if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
2889    if (SimplifyReturn(RI, Builder)) return true;
2890  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
2891    if (SimplifySwitch(SI, Builder)) return true;
2892  } else if (UnreachableInst *UI =
2893               dyn_cast<UnreachableInst>(BB->getTerminator())) {
2894    if (SimplifyUnreachable(UI)) return true;
2895  } else if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
2896    if (SimplifyUnwind(UI, Builder)) return true;
2897  } else if (IndirectBrInst *IBI =
2898               dyn_cast<IndirectBrInst>(BB->getTerminator())) {
2899    if (SimplifyIndirectBr(IBI)) return true;
2900  }
2901
2902  return Changed;
2903}
2904
2905/// SimplifyCFG - This function is used to do simplification of a CFG.  For
2906/// example, it adjusts branches to branches to eliminate the extra hop, it
2907/// eliminates unreachable basic blocks, and does other "peephole" optimization
2908/// of the CFG.  It returns true if a modification was made.
2909///
2910bool llvm::SimplifyCFG(BasicBlock *BB, const TargetData *TD) {
2911  return SimplifyCFGOpt(TD).run(BB);
2912}
2913