1//===----- llvm/unittest/ADT/SCCIteratorTest.cpp - SCCIterator tests ------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9 10#include <limits.h> 11#include "llvm/ADT/GraphTraits.h" 12#include "llvm/ADT/SCCIterator.h" 13#include "gtest/gtest.h" 14 15using namespace llvm; 16 17namespace llvm { 18 19/// Graph<N> - A graph with N nodes. Note that N can be at most 8. 20template <unsigned N> 21class Graph { 22private: 23 // Disable copying. 24 Graph(const Graph&); 25 Graph& operator=(const Graph&); 26 27 static void ValidateIndex(unsigned Idx) { 28 assert(Idx < N && "Invalid node index!"); 29 } 30public: 31 32 /// NodeSubset - A subset of the graph's nodes. 33 class NodeSubset { 34 typedef unsigned char BitVector; // Where the limitation N <= 8 comes from. 35 BitVector Elements; 36 NodeSubset(BitVector e) : Elements(e) {} 37 public: 38 /// NodeSubset - Default constructor, creates an empty subset. 39 NodeSubset() : Elements(0) { 40 assert(N <= sizeof(BitVector)*CHAR_BIT && "Graph too big!"); 41 } 42 /// NodeSubset - Copy constructor. 43 NodeSubset(const NodeSubset &other) : Elements(other.Elements) {} 44 45 /// Comparison operators. 46 bool operator==(const NodeSubset &other) const { 47 return other.Elements == this->Elements; 48 } 49 bool operator!=(const NodeSubset &other) const { 50 return !(*this == other); 51 } 52 53 /// AddNode - Add the node with the given index to the subset. 54 void AddNode(unsigned Idx) { 55 ValidateIndex(Idx); 56 Elements |= 1U << Idx; 57 } 58 59 /// DeleteNode - Remove the node with the given index from the subset. 60 void DeleteNode(unsigned Idx) { 61 ValidateIndex(Idx); 62 Elements &= ~(1U << Idx); 63 } 64 65 /// count - Return true if the node with the given index is in the subset. 66 bool count(unsigned Idx) { 67 ValidateIndex(Idx); 68 return (Elements & (1U << Idx)) != 0; 69 } 70 71 /// isEmpty - Return true if this is the empty set. 72 bool isEmpty() const { 73 return Elements == 0; 74 } 75 76 /// isSubsetOf - Return true if this set is a subset of the given one. 77 bool isSubsetOf(const NodeSubset &other) const { 78 return (this->Elements | other.Elements) == other.Elements; 79 } 80 81 /// Complement - Return the complement of this subset. 82 NodeSubset Complement() const { 83 return ~(unsigned)this->Elements & ((1U << N) - 1); 84 } 85 86 /// Join - Return the union of this subset and the given one. 87 NodeSubset Join(const NodeSubset &other) const { 88 return this->Elements | other.Elements; 89 } 90 91 /// Meet - Return the intersection of this subset and the given one. 92 NodeSubset Meet(const NodeSubset &other) const { 93 return this->Elements & other.Elements; 94 } 95 }; 96 97 /// NodeType - Node index and set of children of the node. 98 typedef std::pair<unsigned, NodeSubset> NodeType; 99 100private: 101 /// Nodes - The list of nodes for this graph. 102 NodeType Nodes[N]; 103public: 104 105 /// Graph - Default constructor. Creates an empty graph. 106 Graph() { 107 // Let each node know which node it is. This allows us to find the start of 108 // the Nodes array given a pointer to any element of it. 109 for (unsigned i = 0; i != N; ++i) 110 Nodes[i].first = i; 111 } 112 113 /// AddEdge - Add an edge from the node with index FromIdx to the node with 114 /// index ToIdx. 115 void AddEdge(unsigned FromIdx, unsigned ToIdx) { 116 ValidateIndex(FromIdx); 117 Nodes[FromIdx].second.AddNode(ToIdx); 118 } 119 120 /// DeleteEdge - Remove the edge (if any) from the node with index FromIdx to 121 /// the node with index ToIdx. 122 void DeleteEdge(unsigned FromIdx, unsigned ToIdx) { 123 ValidateIndex(FromIdx); 124 Nodes[FromIdx].second.DeleteNode(ToIdx); 125 } 126 127 /// AccessNode - Get a pointer to the node with the given index. 128 NodeType *AccessNode(unsigned Idx) const { 129 ValidateIndex(Idx); 130 // The constant cast is needed when working with GraphTraits, which insists 131 // on taking a constant Graph. 132 return const_cast<NodeType *>(&Nodes[Idx]); 133 } 134 135 /// NodesReachableFrom - Return the set of all nodes reachable from the given 136 /// node. 137 NodeSubset NodesReachableFrom(unsigned Idx) const { 138 // This algorithm doesn't scale, but that doesn't matter given the small 139 // size of our graphs. 140 NodeSubset Reachable; 141 142 // The initial node is reachable. 143 Reachable.AddNode(Idx); 144 do { 145 NodeSubset Previous(Reachable); 146 147 // Add in all nodes which are children of a reachable node. 148 for (unsigned i = 0; i != N; ++i) 149 if (Previous.count(i)) 150 Reachable = Reachable.Join(Nodes[i].second); 151 152 // If nothing changed then we have found all reachable nodes. 153 if (Reachable == Previous) 154 return Reachable; 155 156 // Rinse and repeat. 157 } while (1); 158 } 159 160 /// ChildIterator - Visit all children of a node. 161 class ChildIterator { 162 friend class Graph; 163 164 /// FirstNode - Pointer to first node in the graph's Nodes array. 165 NodeType *FirstNode; 166 /// Children - Set of nodes which are children of this one and that haven't 167 /// yet been visited. 168 NodeSubset Children; 169 170 ChildIterator(); // Disable default constructor. 171 protected: 172 ChildIterator(NodeType *F, NodeSubset C) : FirstNode(F), Children(C) {} 173 174 public: 175 /// ChildIterator - Copy constructor. 176 ChildIterator(const ChildIterator& other) : FirstNode(other.FirstNode), 177 Children(other.Children) {} 178 179 /// Comparison operators. 180 bool operator==(const ChildIterator &other) const { 181 return other.FirstNode == this->FirstNode && 182 other.Children == this->Children; 183 } 184 bool operator!=(const ChildIterator &other) const { 185 return !(*this == other); 186 } 187 188 /// Prefix increment operator. 189 ChildIterator& operator++() { 190 // Find the next unvisited child node. 191 for (unsigned i = 0; i != N; ++i) 192 if (Children.count(i)) { 193 // Remove that child - it has been visited. This is the increment! 194 Children.DeleteNode(i); 195 return *this; 196 } 197 assert(false && "Incrementing end iterator!"); 198 return *this; // Avoid compiler warnings. 199 } 200 201 /// Postfix increment operator. 202 ChildIterator operator++(int) { 203 ChildIterator Result(*this); 204 ++(*this); 205 return Result; 206 } 207 208 /// Dereference operator. 209 NodeType *operator*() { 210 // Find the next unvisited child node. 211 for (unsigned i = 0; i != N; ++i) 212 if (Children.count(i)) 213 // Return a pointer to it. 214 return FirstNode + i; 215 assert(false && "Dereferencing end iterator!"); 216 return 0; // Avoid compiler warning. 217 } 218 }; 219 220 /// child_begin - Return an iterator pointing to the first child of the given 221 /// node. 222 static ChildIterator child_begin(NodeType *Parent) { 223 return ChildIterator(Parent - Parent->first, Parent->second); 224 } 225 226 /// child_end - Return the end iterator for children of the given node. 227 static ChildIterator child_end(NodeType *Parent) { 228 return ChildIterator(Parent - Parent->first, NodeSubset()); 229 } 230}; 231 232template <unsigned N> 233struct GraphTraits<Graph<N> > { 234 typedef typename Graph<N>::NodeType NodeType; 235 typedef typename Graph<N>::ChildIterator ChildIteratorType; 236 237 static inline NodeType *getEntryNode(const Graph<N> &G) { return G.AccessNode(0); } 238 static inline ChildIteratorType child_begin(NodeType *Node) { 239 return Graph<N>::child_begin(Node); 240 } 241 static inline ChildIteratorType child_end(NodeType *Node) { 242 return Graph<N>::child_end(Node); 243 } 244}; 245 246TEST(SCCIteratorTest, AllSmallGraphs) { 247 // Test SCC computation against every graph with NUM_NODES nodes or less. 248 // Since SCC considers every node to have an implicit self-edge, we only 249 // create graphs for which every node has a self-edge. 250#define NUM_NODES 4 251#define NUM_GRAPHS (NUM_NODES * (NUM_NODES - 1)) 252 typedef Graph<NUM_NODES> GT; 253 254 /// Enumerate all graphs using NUM_GRAPHS bits. 255 assert(NUM_GRAPHS < sizeof(unsigned) * CHAR_BIT && "Too many graphs!"); 256 for (unsigned GraphDescriptor = 0; GraphDescriptor < (1U << NUM_GRAPHS); 257 ++GraphDescriptor) { 258 GT G; 259 260 // Add edges as specified by the descriptor. 261 unsigned DescriptorCopy = GraphDescriptor; 262 for (unsigned i = 0; i != NUM_NODES; ++i) 263 for (unsigned j = 0; j != NUM_NODES; ++j) { 264 // Always add a self-edge. 265 if (i == j) { 266 G.AddEdge(i, j); 267 continue; 268 } 269 if (DescriptorCopy & 1) 270 G.AddEdge(i, j); 271 DescriptorCopy >>= 1; 272 } 273 274 // Test the SCC logic on this graph. 275 276 /// NodesInSomeSCC - Those nodes which are in some SCC. 277 GT::NodeSubset NodesInSomeSCC; 278 279 for (scc_iterator<GT> I = scc_begin(G), E = scc_end(G); I != E; ++I) { 280 std::vector<GT::NodeType*> &SCC = *I; 281 282 // Get the nodes in this SCC as a NodeSubset rather than a vector. 283 GT::NodeSubset NodesInThisSCC; 284 for (unsigned i = 0, e = SCC.size(); i != e; ++i) 285 NodesInThisSCC.AddNode(SCC[i]->first); 286 287 // There should be at least one node in every SCC. 288 EXPECT_FALSE(NodesInThisSCC.isEmpty()); 289 290 // Check that every node in the SCC is reachable from every other node in 291 // the SCC. 292 for (unsigned i = 0; i != NUM_NODES; ++i) 293 if (NodesInThisSCC.count(i)) 294 EXPECT_TRUE(NodesInThisSCC.isSubsetOf(G.NodesReachableFrom(i))); 295 296 // OK, now that we now that every node in the SCC is reachable from every 297 // other, this means that the set of nodes reachable from any node in the 298 // SCC is the same as the set of nodes reachable from every node in the 299 // SCC. Check that for every node N not in the SCC but reachable from the 300 // SCC, no element of the SCC is reachable from N. 301 for (unsigned i = 0; i != NUM_NODES; ++i) 302 if (NodesInThisSCC.count(i)) { 303 GT::NodeSubset NodesReachableFromSCC = G.NodesReachableFrom(i); 304 GT::NodeSubset ReachableButNotInSCC = 305 NodesReachableFromSCC.Meet(NodesInThisSCC.Complement()); 306 307 for (unsigned j = 0; j != NUM_NODES; ++j) 308 if (ReachableButNotInSCC.count(j)) 309 EXPECT_TRUE(G.NodesReachableFrom(j).Meet(NodesInThisSCC).isEmpty()); 310 311 // The result must be the same for all other nodes in this SCC, so 312 // there is no point in checking them. 313 break; 314 } 315 316 // This is indeed a SCC: a maximal set of nodes for which each node is 317 // reachable from every other. 318 319 // Check that we didn't already see this SCC. 320 EXPECT_TRUE(NodesInSomeSCC.Meet(NodesInThisSCC).isEmpty()); 321 322 NodesInSomeSCC = NodesInSomeSCC.Join(NodesInThisSCC); 323 324 // Check a property that is specific to the LLVM SCC iterator and 325 // guaranteed by it: if a node in SCC S1 has an edge to a node in 326 // SCC S2, then S1 is visited *after* S2. This means that the set 327 // of nodes reachable from this SCC must be contained either in the 328 // union of this SCC and all previously visited SCC's. 329 330 for (unsigned i = 0; i != NUM_NODES; ++i) 331 if (NodesInThisSCC.count(i)) { 332 GT::NodeSubset NodesReachableFromSCC = G.NodesReachableFrom(i); 333 EXPECT_TRUE(NodesReachableFromSCC.isSubsetOf(NodesInSomeSCC)); 334 // The result must be the same for all other nodes in this SCC, so 335 // there is no point in checking them. 336 break; 337 } 338 } 339 340 // Finally, check that the nodes in some SCC are exactly those that are 341 // reachable from the initial node. 342 EXPECT_EQ(NodesInSomeSCC, G.NodesReachableFrom(0)); 343 } 344} 345 346} 347