1//===----- llvm/unittest/ADT/SCCIteratorTest.cpp - SCCIterator tests ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#include <limits.h>
11#include "llvm/ADT/GraphTraits.h"
12#include "llvm/ADT/SCCIterator.h"
13#include "gtest/gtest.h"
14
15using namespace llvm;
16
17namespace llvm {
18
19/// Graph<N> - A graph with N nodes.  Note that N can be at most 8.
20template <unsigned N>
21class Graph {
22private:
23  // Disable copying.
24  Graph(const Graph&);
25  Graph& operator=(const Graph&);
26
27  static void ValidateIndex(unsigned Idx) {
28    assert(Idx < N && "Invalid node index!");
29  }
30public:
31
32  /// NodeSubset - A subset of the graph's nodes.
33  class NodeSubset {
34    typedef unsigned char BitVector; // Where the limitation N <= 8 comes from.
35    BitVector Elements;
36    NodeSubset(BitVector e) : Elements(e) {}
37  public:
38    /// NodeSubset - Default constructor, creates an empty subset.
39    NodeSubset() : Elements(0) {
40      assert(N <= sizeof(BitVector)*CHAR_BIT && "Graph too big!");
41    }
42    /// NodeSubset - Copy constructor.
43    NodeSubset(const NodeSubset &other) : Elements(other.Elements) {}
44
45    /// Comparison operators.
46    bool operator==(const NodeSubset &other) const {
47      return other.Elements == this->Elements;
48    }
49    bool operator!=(const NodeSubset &other) const {
50      return !(*this == other);
51    }
52
53    /// AddNode - Add the node with the given index to the subset.
54    void AddNode(unsigned Idx) {
55      ValidateIndex(Idx);
56      Elements |= 1U << Idx;
57    }
58
59    /// DeleteNode - Remove the node with the given index from the subset.
60    void DeleteNode(unsigned Idx) {
61      ValidateIndex(Idx);
62      Elements &= ~(1U << Idx);
63    }
64
65    /// count - Return true if the node with the given index is in the subset.
66    bool count(unsigned Idx) {
67      ValidateIndex(Idx);
68      return (Elements & (1U << Idx)) != 0;
69    }
70
71    /// isEmpty - Return true if this is the empty set.
72    bool isEmpty() const {
73      return Elements == 0;
74    }
75
76    /// isSubsetOf - Return true if this set is a subset of the given one.
77    bool isSubsetOf(const NodeSubset &other) const {
78      return (this->Elements | other.Elements) == other.Elements;
79    }
80
81    /// Complement - Return the complement of this subset.
82    NodeSubset Complement() const {
83      return ~(unsigned)this->Elements & ((1U << N) - 1);
84    }
85
86    /// Join - Return the union of this subset and the given one.
87    NodeSubset Join(const NodeSubset &other) const {
88      return this->Elements | other.Elements;
89    }
90
91    /// Meet - Return the intersection of this subset and the given one.
92    NodeSubset Meet(const NodeSubset &other) const {
93      return this->Elements & other.Elements;
94    }
95  };
96
97  /// NodeType - Node index and set of children of the node.
98  typedef std::pair<unsigned, NodeSubset> NodeType;
99
100private:
101  /// Nodes - The list of nodes for this graph.
102  NodeType Nodes[N];
103public:
104
105  /// Graph - Default constructor.  Creates an empty graph.
106  Graph() {
107    // Let each node know which node it is.  This allows us to find the start of
108    // the Nodes array given a pointer to any element of it.
109    for (unsigned i = 0; i != N; ++i)
110      Nodes[i].first = i;
111  }
112
113  /// AddEdge - Add an edge from the node with index FromIdx to the node with
114  /// index ToIdx.
115  void AddEdge(unsigned FromIdx, unsigned ToIdx) {
116    ValidateIndex(FromIdx);
117    Nodes[FromIdx].second.AddNode(ToIdx);
118  }
119
120  /// DeleteEdge - Remove the edge (if any) from the node with index FromIdx to
121  /// the node with index ToIdx.
122  void DeleteEdge(unsigned FromIdx, unsigned ToIdx) {
123    ValidateIndex(FromIdx);
124    Nodes[FromIdx].second.DeleteNode(ToIdx);
125  }
126
127  /// AccessNode - Get a pointer to the node with the given index.
128  NodeType *AccessNode(unsigned Idx) const {
129    ValidateIndex(Idx);
130    // The constant cast is needed when working with GraphTraits, which insists
131    // on taking a constant Graph.
132    return const_cast<NodeType *>(&Nodes[Idx]);
133  }
134
135  /// NodesReachableFrom - Return the set of all nodes reachable from the given
136  /// node.
137  NodeSubset NodesReachableFrom(unsigned Idx) const {
138    // This algorithm doesn't scale, but that doesn't matter given the small
139    // size of our graphs.
140    NodeSubset Reachable;
141
142    // The initial node is reachable.
143    Reachable.AddNode(Idx);
144    do {
145      NodeSubset Previous(Reachable);
146
147      // Add in all nodes which are children of a reachable node.
148      for (unsigned i = 0; i != N; ++i)
149        if (Previous.count(i))
150          Reachable = Reachable.Join(Nodes[i].second);
151
152      // If nothing changed then we have found all reachable nodes.
153      if (Reachable == Previous)
154        return Reachable;
155
156      // Rinse and repeat.
157    } while (1);
158  }
159
160  /// ChildIterator - Visit all children of a node.
161  class ChildIterator {
162    friend class Graph;
163
164    /// FirstNode - Pointer to first node in the graph's Nodes array.
165    NodeType *FirstNode;
166    /// Children - Set of nodes which are children of this one and that haven't
167    /// yet been visited.
168    NodeSubset Children;
169
170    ChildIterator(); // Disable default constructor.
171  protected:
172    ChildIterator(NodeType *F, NodeSubset C) : FirstNode(F), Children(C) {}
173
174  public:
175    /// ChildIterator - Copy constructor.
176    ChildIterator(const ChildIterator& other) : FirstNode(other.FirstNode),
177      Children(other.Children) {}
178
179    /// Comparison operators.
180    bool operator==(const ChildIterator &other) const {
181      return other.FirstNode == this->FirstNode &&
182        other.Children == this->Children;
183    }
184    bool operator!=(const ChildIterator &other) const {
185      return !(*this == other);
186    }
187
188    /// Prefix increment operator.
189    ChildIterator& operator++() {
190      // Find the next unvisited child node.
191      for (unsigned i = 0; i != N; ++i)
192        if (Children.count(i)) {
193          // Remove that child - it has been visited.  This is the increment!
194          Children.DeleteNode(i);
195          return *this;
196        }
197      assert(false && "Incrementing end iterator!");
198      return *this; // Avoid compiler warnings.
199    }
200
201    /// Postfix increment operator.
202    ChildIterator operator++(int) {
203      ChildIterator Result(*this);
204      ++(*this);
205      return Result;
206    }
207
208    /// Dereference operator.
209    NodeType *operator*() {
210      // Find the next unvisited child node.
211      for (unsigned i = 0; i != N; ++i)
212        if (Children.count(i))
213          // Return a pointer to it.
214          return FirstNode + i;
215      assert(false && "Dereferencing end iterator!");
216      return 0; // Avoid compiler warning.
217    }
218  };
219
220  /// child_begin - Return an iterator pointing to the first child of the given
221  /// node.
222  static ChildIterator child_begin(NodeType *Parent) {
223    return ChildIterator(Parent - Parent->first, Parent->second);
224  }
225
226  /// child_end - Return the end iterator for children of the given node.
227  static ChildIterator child_end(NodeType *Parent) {
228    return ChildIterator(Parent - Parent->first, NodeSubset());
229  }
230};
231
232template <unsigned N>
233struct GraphTraits<Graph<N> > {
234  typedef typename Graph<N>::NodeType NodeType;
235  typedef typename Graph<N>::ChildIterator ChildIteratorType;
236
237 static inline NodeType *getEntryNode(const Graph<N> &G) { return G.AccessNode(0); }
238 static inline ChildIteratorType child_begin(NodeType *Node) {
239   return Graph<N>::child_begin(Node);
240 }
241 static inline ChildIteratorType child_end(NodeType *Node) {
242   return Graph<N>::child_end(Node);
243 }
244};
245
246TEST(SCCIteratorTest, AllSmallGraphs) {
247  // Test SCC computation against every graph with NUM_NODES nodes or less.
248  // Since SCC considers every node to have an implicit self-edge, we only
249  // create graphs for which every node has a self-edge.
250#define NUM_NODES 4
251#define NUM_GRAPHS (NUM_NODES * (NUM_NODES - 1))
252  typedef Graph<NUM_NODES> GT;
253
254  /// Enumerate all graphs using NUM_GRAPHS bits.
255  assert(NUM_GRAPHS < sizeof(unsigned) * CHAR_BIT && "Too many graphs!");
256  for (unsigned GraphDescriptor = 0; GraphDescriptor < (1U << NUM_GRAPHS);
257       ++GraphDescriptor) {
258    GT G;
259
260    // Add edges as specified by the descriptor.
261    unsigned DescriptorCopy = GraphDescriptor;
262    for (unsigned i = 0; i != NUM_NODES; ++i)
263      for (unsigned j = 0; j != NUM_NODES; ++j) {
264        // Always add a self-edge.
265        if (i == j) {
266          G.AddEdge(i, j);
267          continue;
268        }
269        if (DescriptorCopy & 1)
270          G.AddEdge(i, j);
271        DescriptorCopy >>= 1;
272      }
273
274    // Test the SCC logic on this graph.
275
276    /// NodesInSomeSCC - Those nodes which are in some SCC.
277    GT::NodeSubset NodesInSomeSCC;
278
279    for (scc_iterator<GT> I = scc_begin(G), E = scc_end(G); I != E; ++I) {
280      std::vector<GT::NodeType*> &SCC = *I;
281
282      // Get the nodes in this SCC as a NodeSubset rather than a vector.
283      GT::NodeSubset NodesInThisSCC;
284      for (unsigned i = 0, e = SCC.size(); i != e; ++i)
285        NodesInThisSCC.AddNode(SCC[i]->first);
286
287      // There should be at least one node in every SCC.
288      EXPECT_FALSE(NodesInThisSCC.isEmpty());
289
290      // Check that every node in the SCC is reachable from every other node in
291      // the SCC.
292      for (unsigned i = 0; i != NUM_NODES; ++i)
293        if (NodesInThisSCC.count(i))
294          EXPECT_TRUE(NodesInThisSCC.isSubsetOf(G.NodesReachableFrom(i)));
295
296      // OK, now that we now that every node in the SCC is reachable from every
297      // other, this means that the set of nodes reachable from any node in the
298      // SCC is the same as the set of nodes reachable from every node in the
299      // SCC.  Check that for every node N not in the SCC but reachable from the
300      // SCC, no element of the SCC is reachable from N.
301      for (unsigned i = 0; i != NUM_NODES; ++i)
302        if (NodesInThisSCC.count(i)) {
303          GT::NodeSubset NodesReachableFromSCC = G.NodesReachableFrom(i);
304          GT::NodeSubset ReachableButNotInSCC =
305            NodesReachableFromSCC.Meet(NodesInThisSCC.Complement());
306
307          for (unsigned j = 0; j != NUM_NODES; ++j)
308            if (ReachableButNotInSCC.count(j))
309              EXPECT_TRUE(G.NodesReachableFrom(j).Meet(NodesInThisSCC).isEmpty());
310
311          // The result must be the same for all other nodes in this SCC, so
312          // there is no point in checking them.
313          break;
314        }
315
316      // This is indeed a SCC: a maximal set of nodes for which each node is
317      // reachable from every other.
318
319      // Check that we didn't already see this SCC.
320      EXPECT_TRUE(NodesInSomeSCC.Meet(NodesInThisSCC).isEmpty());
321
322      NodesInSomeSCC = NodesInSomeSCC.Join(NodesInThisSCC);
323
324      // Check a property that is specific to the LLVM SCC iterator and
325      // guaranteed by it: if a node in SCC S1 has an edge to a node in
326      // SCC S2, then S1 is visited *after* S2.  This means that the set
327      // of nodes reachable from this SCC must be contained either in the
328      // union of this SCC and all previously visited SCC's.
329
330      for (unsigned i = 0; i != NUM_NODES; ++i)
331        if (NodesInThisSCC.count(i)) {
332          GT::NodeSubset NodesReachableFromSCC = G.NodesReachableFrom(i);
333          EXPECT_TRUE(NodesReachableFromSCC.isSubsetOf(NodesInSomeSCC));
334          // The result must be the same for all other nodes in this SCC, so
335          // there is no point in checking them.
336          break;
337        }
338    }
339
340    // Finally, check that the nodes in some SCC are exactly those that are
341    // reachable from the initial node.
342    EXPECT_EQ(NodesInSomeSCC, G.NodesReachableFrom(0));
343  }
344}
345
346}
347