1//===-- llvm/Value.h - Definition of the Value class ------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file declares the Value class.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_IR_VALUE_H
15#define LLVM_IR_VALUE_H
16
17#include "llvm/ADT/iterator_range.h"
18#include "llvm/IR/Use.h"
19#include "llvm/Support/CBindingWrapping.h"
20#include "llvm/Support/Casting.h"
21#include "llvm-c/Types.h"
22#include <cassert>
23#include <iterator>
24
25namespace llvm {
26
27class APInt;
28class Argument;
29class BasicBlock;
30class Constant;
31class ConstantData;
32class ConstantAggregate;
33class DataLayout;
34class Function;
35class GlobalAlias;
36class GlobalIFunc;
37class GlobalIndirectSymbol;
38class GlobalObject;
39class GlobalValue;
40class GlobalVariable;
41class InlineAsm;
42class Instruction;
43class LLVMContext;
44class Module;
45class ModuleSlotTracker;
46class raw_ostream;
47class StringRef;
48class Twine;
49class Type;
50
51template<typename ValueTy> class StringMapEntry;
52typedef StringMapEntry<Value*> ValueName;
53
54//===----------------------------------------------------------------------===//
55//                                 Value Class
56//===----------------------------------------------------------------------===//
57
58/// \brief LLVM Value Representation
59///
60/// This is a very important LLVM class. It is the base class of all values
61/// computed by a program that may be used as operands to other values. Value is
62/// the super class of other important classes such as Instruction and Function.
63/// All Values have a Type. Type is not a subclass of Value. Some values can
64/// have a name and they belong to some Module.  Setting the name on the Value
65/// automatically updates the module's symbol table.
66///
67/// Every value has a "use list" that keeps track of which other Values are
68/// using this Value.  A Value can also have an arbitrary number of ValueHandle
69/// objects that watch it and listen to RAUW and Destroy events.  See
70/// llvm/IR/ValueHandle.h for details.
71class Value {
72  Type *VTy;
73  Use *UseList;
74
75  friend class ValueAsMetadata; // Allow access to IsUsedByMD.
76  friend class ValueHandleBase;
77
78  const unsigned char SubclassID;   // Subclass identifier (for isa/dyn_cast)
79  unsigned char HasValueHandle : 1; // Has a ValueHandle pointing to this?
80
81protected:
82  /// \brief Hold subclass data that can be dropped.
83  ///
84  /// This member is similar to SubclassData, however it is for holding
85  /// information which may be used to aid optimization, but which may be
86  /// cleared to zero without affecting conservative interpretation.
87  unsigned char SubclassOptionalData : 7;
88
89private:
90  /// \brief Hold arbitrary subclass data.
91  ///
92  /// This member is defined by this class, but is not used for anything.
93  /// Subclasses can use it to hold whatever state they find useful.  This
94  /// field is initialized to zero by the ctor.
95  unsigned short SubclassData;
96
97protected:
98  /// \brief The number of operands in the subclass.
99  ///
100  /// This member is defined by this class, but not used for anything.
101  /// Subclasses can use it to store their number of operands, if they have
102  /// any.
103  ///
104  /// This is stored here to save space in User on 64-bit hosts.  Since most
105  /// instances of Value have operands, 32-bit hosts aren't significantly
106  /// affected.
107  ///
108  /// Note, this should *NOT* be used directly by any class other than User.
109  /// User uses this value to find the Use list.
110  enum : unsigned { NumUserOperandsBits = 28 };
111  unsigned NumUserOperands : NumUserOperandsBits;
112
113  // Use the same type as the bitfield above so that MSVC will pack them.
114  unsigned IsUsedByMD : 1;
115  unsigned HasName : 1;
116  unsigned HasHungOffUses : 1;
117  unsigned HasDescriptor : 1;
118
119private:
120  template <typename UseT> // UseT == 'Use' or 'const Use'
121  class use_iterator_impl
122      : public std::iterator<std::forward_iterator_tag, UseT *> {
123    UseT *U;
124    explicit use_iterator_impl(UseT *u) : U(u) {}
125    friend class Value;
126
127  public:
128    use_iterator_impl() : U() {}
129
130    bool operator==(const use_iterator_impl &x) const { return U == x.U; }
131    bool operator!=(const use_iterator_impl &x) const { return !operator==(x); }
132
133    use_iterator_impl &operator++() { // Preincrement
134      assert(U && "Cannot increment end iterator!");
135      U = U->getNext();
136      return *this;
137    }
138
139    use_iterator_impl operator++(int) { // Postincrement
140      auto tmp = *this;
141      ++*this;
142      return tmp;
143    }
144
145    UseT &operator*() const {
146      assert(U && "Cannot dereference end iterator!");
147      return *U;
148    }
149
150    UseT *operator->() const { return &operator*(); }
151
152    operator use_iterator_impl<const UseT>() const {
153      return use_iterator_impl<const UseT>(U);
154    }
155  };
156
157  template <typename UserTy> // UserTy == 'User' or 'const User'
158  class user_iterator_impl
159      : public std::iterator<std::forward_iterator_tag, UserTy *> {
160    use_iterator_impl<Use> UI;
161    explicit user_iterator_impl(Use *U) : UI(U) {}
162    friend class Value;
163
164  public:
165    user_iterator_impl() = default;
166
167    bool operator==(const user_iterator_impl &x) const { return UI == x.UI; }
168    bool operator!=(const user_iterator_impl &x) const { return !operator==(x); }
169
170    /// \brief Returns true if this iterator is equal to user_end() on the value.
171    bool atEnd() const { return *this == user_iterator_impl(); }
172
173    user_iterator_impl &operator++() { // Preincrement
174      ++UI;
175      return *this;
176    }
177
178    user_iterator_impl operator++(int) { // Postincrement
179      auto tmp = *this;
180      ++*this;
181      return tmp;
182    }
183
184    // Retrieve a pointer to the current User.
185    UserTy *operator*() const {
186      return UI->getUser();
187    }
188
189    UserTy *operator->() const { return operator*(); }
190
191    operator user_iterator_impl<const UserTy>() const {
192      return user_iterator_impl<const UserTy>(*UI);
193    }
194
195    Use &getUse() const { return *UI; }
196  };
197
198protected:
199  Value(Type *Ty, unsigned scid);
200
201public:
202  Value(const Value &) = delete;
203  void operator=(const Value &) = delete;
204  virtual ~Value();
205
206  /// \brief Support for debugging, callable in GDB: V->dump()
207  void dump() const;
208
209  /// \brief Implement operator<< on Value.
210  /// @{
211  void print(raw_ostream &O, bool IsForDebug = false) const;
212  void print(raw_ostream &O, ModuleSlotTracker &MST,
213             bool IsForDebug = false) const;
214  /// @}
215
216  /// \brief Print the name of this Value out to the specified raw_ostream.
217  ///
218  /// This is useful when you just want to print 'int %reg126', not the
219  /// instruction that generated it. If you specify a Module for context, then
220  /// even constanst get pretty-printed; for example, the type of a null
221  /// pointer is printed symbolically.
222  /// @{
223  void printAsOperand(raw_ostream &O, bool PrintType = true,
224                      const Module *M = nullptr) const;
225  void printAsOperand(raw_ostream &O, bool PrintType,
226                      ModuleSlotTracker &MST) const;
227  /// @}
228
229  /// \brief All values are typed, get the type of this value.
230  Type *getType() const { return VTy; }
231
232  /// \brief All values hold a context through their type.
233  LLVMContext &getContext() const;
234
235  // \brief All values can potentially be named.
236  bool hasName() const { return HasName; }
237  ValueName *getValueName() const;
238  void setValueName(ValueName *VN);
239
240private:
241  void destroyValueName();
242  void doRAUW(Value *New, bool NoMetadata);
243  void setNameImpl(const Twine &Name);
244
245public:
246  /// \brief Return a constant reference to the value's name.
247  ///
248  /// This is cheap and guaranteed to return the same reference as long as the
249  /// value is not modified.
250  StringRef getName() const;
251
252  /// \brief Change the name of the value.
253  ///
254  /// Choose a new unique name if the provided name is taken.
255  ///
256  /// \param Name The new name; or "" if the value's name should be removed.
257  void setName(const Twine &Name);
258
259  /// \brief Transfer the name from V to this value.
260  ///
261  /// After taking V's name, sets V's name to empty.
262  ///
263  /// \note It is an error to call V->takeName(V).
264  void takeName(Value *V);
265
266  /// \brief Change all uses of this to point to a new Value.
267  ///
268  /// Go through the uses list for this definition and make each use point to
269  /// "V" instead of "this".  After this completes, 'this's use list is
270  /// guaranteed to be empty.
271  void replaceAllUsesWith(Value *V);
272
273  /// \brief Change non-metadata uses of this to point to a new Value.
274  ///
275  /// Go through the uses list for this definition and make each use point to
276  /// "V" instead of "this". This function skips metadata entries in the list.
277  void replaceNonMetadataUsesWith(Value *V);
278
279  /// replaceUsesOutsideBlock - Go through the uses list for this definition and
280  /// make each use point to "V" instead of "this" when the use is outside the
281  /// block. 'This's use list is expected to have at least one element.
282  /// Unlike replaceAllUsesWith this function does not support basic block
283  /// values or constant users.
284  void replaceUsesOutsideBlock(Value *V, BasicBlock *BB);
285
286  //----------------------------------------------------------------------
287  // Methods for handling the chain of uses of this Value.
288  //
289  // Materializing a function can introduce new uses, so these methods come in
290  // two variants:
291  // The methods that start with materialized_ check the uses that are
292  // currently known given which functions are materialized. Be very careful
293  // when using them since you might not get all uses.
294  // The methods that don't start with materialized_ assert that modules is
295  // fully materialized.
296  void assertModuleIsMaterialized() const;
297
298  bool use_empty() const {
299    assertModuleIsMaterialized();
300    return UseList == nullptr;
301  }
302
303  typedef use_iterator_impl<Use> use_iterator;
304  typedef use_iterator_impl<const Use> const_use_iterator;
305  use_iterator materialized_use_begin() { return use_iterator(UseList); }
306  const_use_iterator materialized_use_begin() const {
307    return const_use_iterator(UseList);
308  }
309  use_iterator use_begin() {
310    assertModuleIsMaterialized();
311    return materialized_use_begin();
312  }
313  const_use_iterator use_begin() const {
314    assertModuleIsMaterialized();
315    return materialized_use_begin();
316  }
317  use_iterator use_end() { return use_iterator(); }
318  const_use_iterator use_end() const { return const_use_iterator(); }
319  iterator_range<use_iterator> materialized_uses() {
320    return make_range(materialized_use_begin(), use_end());
321  }
322  iterator_range<const_use_iterator> materialized_uses() const {
323    return make_range(materialized_use_begin(), use_end());
324  }
325  iterator_range<use_iterator> uses() {
326    assertModuleIsMaterialized();
327    return materialized_uses();
328  }
329  iterator_range<const_use_iterator> uses() const {
330    assertModuleIsMaterialized();
331    return materialized_uses();
332  }
333
334  bool user_empty() const {
335    assertModuleIsMaterialized();
336    return UseList == nullptr;
337  }
338
339  typedef user_iterator_impl<User> user_iterator;
340  typedef user_iterator_impl<const User> const_user_iterator;
341  user_iterator materialized_user_begin() { return user_iterator(UseList); }
342  const_user_iterator materialized_user_begin() const {
343    return const_user_iterator(UseList);
344  }
345  user_iterator user_begin() {
346    assertModuleIsMaterialized();
347    return materialized_user_begin();
348  }
349  const_user_iterator user_begin() const {
350    assertModuleIsMaterialized();
351    return materialized_user_begin();
352  }
353  user_iterator user_end() { return user_iterator(); }
354  const_user_iterator user_end() const { return const_user_iterator(); }
355  User *user_back() {
356    assertModuleIsMaterialized();
357    return *materialized_user_begin();
358  }
359  const User *user_back() const {
360    assertModuleIsMaterialized();
361    return *materialized_user_begin();
362  }
363  iterator_range<user_iterator> materialized_users() {
364    return make_range(materialized_user_begin(), user_end());
365  }
366  iterator_range<const_user_iterator> materialized_users() const {
367    return make_range(materialized_user_begin(), user_end());
368  }
369  iterator_range<user_iterator> users() {
370    assertModuleIsMaterialized();
371    return materialized_users();
372  }
373  iterator_range<const_user_iterator> users() const {
374    assertModuleIsMaterialized();
375    return materialized_users();
376  }
377
378  /// \brief Return true if there is exactly one user of this value.
379  ///
380  /// This is specialized because it is a common request and does not require
381  /// traversing the whole use list.
382  bool hasOneUse() const {
383    const_use_iterator I = use_begin(), E = use_end();
384    if (I == E) return false;
385    return ++I == E;
386  }
387
388  /// \brief Return true if this Value has exactly N users.
389  bool hasNUses(unsigned N) const;
390
391  /// \brief Return true if this value has N users or more.
392  ///
393  /// This is logically equivalent to getNumUses() >= N.
394  bool hasNUsesOrMore(unsigned N) const;
395
396  /// \brief Check if this value is used in the specified basic block.
397  bool isUsedInBasicBlock(const BasicBlock *BB) const;
398
399  /// \brief This method computes the number of uses of this Value.
400  ///
401  /// This is a linear time operation.  Use hasOneUse, hasNUses, or
402  /// hasNUsesOrMore to check for specific values.
403  unsigned getNumUses() const;
404
405  /// \brief This method should only be used by the Use class.
406  void addUse(Use &U) { U.addToList(&UseList); }
407
408  /// \brief Concrete subclass of this.
409  ///
410  /// An enumeration for keeping track of the concrete subclass of Value that
411  /// is actually instantiated. Values of this enumeration are kept in the
412  /// Value classes SubclassID field. They are used for concrete type
413  /// identification.
414  enum ValueTy {
415#define HANDLE_VALUE(Name) Name##Val,
416#include "llvm/IR/Value.def"
417
418    // Markers:
419#define HANDLE_CONSTANT_MARKER(Marker, Constant) Marker = Constant##Val,
420#include "llvm/IR/Value.def"
421  };
422
423  /// \brief Return an ID for the concrete type of this object.
424  ///
425  /// This is used to implement the classof checks.  This should not be used
426  /// for any other purpose, as the values may change as LLVM evolves.  Also,
427  /// note that for instructions, the Instruction's opcode is added to
428  /// InstructionVal. So this means three things:
429  /// # there is no value with code InstructionVal (no opcode==0).
430  /// # there are more possible values for the value type than in ValueTy enum.
431  /// # the InstructionVal enumerator must be the highest valued enumerator in
432  ///   the ValueTy enum.
433  unsigned getValueID() const {
434    return SubclassID;
435  }
436
437  /// \brief Return the raw optional flags value contained in this value.
438  ///
439  /// This should only be used when testing two Values for equivalence.
440  unsigned getRawSubclassOptionalData() const {
441    return SubclassOptionalData;
442  }
443
444  /// \brief Clear the optional flags contained in this value.
445  void clearSubclassOptionalData() {
446    SubclassOptionalData = 0;
447  }
448
449  /// \brief Check the optional flags for equality.
450  bool hasSameSubclassOptionalData(const Value *V) const {
451    return SubclassOptionalData == V->SubclassOptionalData;
452  }
453
454  /// \brief Return true if there is a value handle associated with this value.
455  bool hasValueHandle() const { return HasValueHandle; }
456
457  /// \brief Return true if there is metadata referencing this value.
458  bool isUsedByMetadata() const { return IsUsedByMD; }
459
460  /// \brief Return true if this value is a swifterror value.
461  ///
462  /// swifterror values can be either a function argument or an alloca with a
463  /// swifterror attribute.
464  bool isSwiftError() const;
465
466  /// \brief Strip off pointer casts, all-zero GEPs, and aliases.
467  ///
468  /// Returns the original uncasted value.  If this is called on a non-pointer
469  /// value, it returns 'this'.
470  Value *stripPointerCasts();
471  const Value *stripPointerCasts() const {
472    return const_cast<Value*>(this)->stripPointerCasts();
473  }
474
475  /// \brief Strip off pointer casts and all-zero GEPs.
476  ///
477  /// Returns the original uncasted value.  If this is called on a non-pointer
478  /// value, it returns 'this'.
479  Value *stripPointerCastsNoFollowAliases();
480  const Value *stripPointerCastsNoFollowAliases() const {
481    return const_cast<Value*>(this)->stripPointerCastsNoFollowAliases();
482  }
483
484  /// \brief Strip off pointer casts and all-constant inbounds GEPs.
485  ///
486  /// Returns the original pointer value.  If this is called on a non-pointer
487  /// value, it returns 'this'.
488  Value *stripInBoundsConstantOffsets();
489  const Value *stripInBoundsConstantOffsets() const {
490    return const_cast<Value*>(this)->stripInBoundsConstantOffsets();
491  }
492
493  /// \brief Accumulate offsets from \a stripInBoundsConstantOffsets().
494  ///
495  /// Stores the resulting constant offset stripped into the APInt provided.
496  /// The provided APInt will be extended or truncated as needed to be the
497  /// correct bitwidth for an offset of this pointer type.
498  ///
499  /// If this is called on a non-pointer value, it returns 'this'.
500  Value *stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL,
501                                                   APInt &Offset);
502  const Value *stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL,
503                                                         APInt &Offset) const {
504    return const_cast<Value *>(this)
505        ->stripAndAccumulateInBoundsConstantOffsets(DL, Offset);
506  }
507
508  /// \brief Strip off pointer casts and inbounds GEPs.
509  ///
510  /// Returns the original pointer value.  If this is called on a non-pointer
511  /// value, it returns 'this'.
512  Value *stripInBoundsOffsets();
513  const Value *stripInBoundsOffsets() const {
514    return const_cast<Value*>(this)->stripInBoundsOffsets();
515  }
516
517  /// \brief Returns the number of bytes known to be dereferenceable for the
518  /// pointer value.
519  ///
520  /// If CanBeNull is set by this function the pointer can either be null or be
521  /// dereferenceable up to the returned number of bytes.
522  unsigned getPointerDereferenceableBytes(const DataLayout &DL,
523                                          bool &CanBeNull) const;
524
525  /// \brief Returns an alignment of the pointer value.
526  ///
527  /// Returns an alignment which is either specified explicitly, e.g. via
528  /// align attribute of a function argument, or guaranteed by DataLayout.
529  unsigned getPointerAlignment(const DataLayout &DL) const;
530
531  /// \brief Translate PHI node to its predecessor from the given basic block.
532  ///
533  /// If this value is a PHI node with CurBB as its parent, return the value in
534  /// the PHI node corresponding to PredBB.  If not, return ourself.  This is
535  /// useful if you want to know the value something has in a predecessor
536  /// block.
537  Value *DoPHITranslation(const BasicBlock *CurBB, const BasicBlock *PredBB);
538
539  const Value *DoPHITranslation(const BasicBlock *CurBB,
540                                const BasicBlock *PredBB) const{
541    return const_cast<Value*>(this)->DoPHITranslation(CurBB, PredBB);
542  }
543
544  /// \brief The maximum alignment for instructions.
545  ///
546  /// This is the greatest alignment value supported by load, store, and alloca
547  /// instructions, and global values.
548  static const unsigned MaxAlignmentExponent = 29;
549  static const unsigned MaximumAlignment = 1u << MaxAlignmentExponent;
550
551  /// \brief Mutate the type of this Value to be of the specified type.
552  ///
553  /// Note that this is an extremely dangerous operation which can create
554  /// completely invalid IR very easily.  It is strongly recommended that you
555  /// recreate IR objects with the right types instead of mutating them in
556  /// place.
557  void mutateType(Type *Ty) {
558    VTy = Ty;
559  }
560
561  /// \brief Sort the use-list.
562  ///
563  /// Sorts the Value's use-list by Cmp using a stable mergesort.  Cmp is
564  /// expected to compare two \a Use references.
565  template <class Compare> void sortUseList(Compare Cmp);
566
567  /// \brief Reverse the use-list.
568  void reverseUseList();
569
570private:
571  /// \brief Merge two lists together.
572  ///
573  /// Merges \c L and \c R using \c Cmp.  To enable stable sorts, always pushes
574  /// "equal" items from L before items from R.
575  ///
576  /// \return the first element in the list.
577  ///
578  /// \note Completely ignores \a Use::Prev (doesn't read, doesn't update).
579  template <class Compare>
580  static Use *mergeUseLists(Use *L, Use *R, Compare Cmp) {
581    Use *Merged;
582    Use **Next = &Merged;
583
584    for (;;) {
585      if (!L) {
586        *Next = R;
587        break;
588      }
589      if (!R) {
590        *Next = L;
591        break;
592      }
593      if (Cmp(*R, *L)) {
594        *Next = R;
595        Next = &R->Next;
596        R = R->Next;
597      } else {
598        *Next = L;
599        Next = &L->Next;
600        L = L->Next;
601      }
602    }
603
604    return Merged;
605  }
606
607  /// \brief Tail-recursive helper for \a mergeUseLists().
608  ///
609  /// \param[out] Next the first element in the list.
610  template <class Compare>
611  static void mergeUseListsImpl(Use *L, Use *R, Use **Next, Compare Cmp);
612
613protected:
614  unsigned short getSubclassDataFromValue() const { return SubclassData; }
615  void setValueSubclassData(unsigned short D) { SubclassData = D; }
616};
617
618inline raw_ostream &operator<<(raw_ostream &OS, const Value &V) {
619  V.print(OS);
620  return OS;
621}
622
623void Use::set(Value *V) {
624  if (Val) removeFromList();
625  Val = V;
626  if (V) V->addUse(*this);
627}
628
629Value *Use::operator=(Value *RHS) {
630  set(RHS);
631  return RHS;
632}
633
634const Use &Use::operator=(const Use &RHS) {
635  set(RHS.Val);
636  return *this;
637}
638
639template <class Compare> void Value::sortUseList(Compare Cmp) {
640  if (!UseList || !UseList->Next)
641    // No need to sort 0 or 1 uses.
642    return;
643
644  // Note: this function completely ignores Prev pointers until the end when
645  // they're fixed en masse.
646
647  // Create a binomial vector of sorted lists, visiting uses one at a time and
648  // merging lists as necessary.
649  const unsigned MaxSlots = 32;
650  Use *Slots[MaxSlots];
651
652  // Collect the first use, turning it into a single-item list.
653  Use *Next = UseList->Next;
654  UseList->Next = nullptr;
655  unsigned NumSlots = 1;
656  Slots[0] = UseList;
657
658  // Collect all but the last use.
659  while (Next->Next) {
660    Use *Current = Next;
661    Next = Current->Next;
662
663    // Turn Current into a single-item list.
664    Current->Next = nullptr;
665
666    // Save Current in the first available slot, merging on collisions.
667    unsigned I;
668    for (I = 0; I < NumSlots; ++I) {
669      if (!Slots[I])
670        break;
671
672      // Merge two lists, doubling the size of Current and emptying slot I.
673      //
674      // Since the uses in Slots[I] originally preceded those in Current, send
675      // Slots[I] in as the left parameter to maintain a stable sort.
676      Current = mergeUseLists(Slots[I], Current, Cmp);
677      Slots[I] = nullptr;
678    }
679    // Check if this is a new slot.
680    if (I == NumSlots) {
681      ++NumSlots;
682      assert(NumSlots <= MaxSlots && "Use list bigger than 2^32");
683    }
684
685    // Found an open slot.
686    Slots[I] = Current;
687  }
688
689  // Merge all the lists together.
690  assert(Next && "Expected one more Use");
691  assert(!Next->Next && "Expected only one Use");
692  UseList = Next;
693  for (unsigned I = 0; I < NumSlots; ++I)
694    if (Slots[I])
695      // Since the uses in Slots[I] originally preceded those in UseList, send
696      // Slots[I] in as the left parameter to maintain a stable sort.
697      UseList = mergeUseLists(Slots[I], UseList, Cmp);
698
699  // Fix the Prev pointers.
700  for (Use *I = UseList, **Prev = &UseList; I; I = I->Next) {
701    I->setPrev(Prev);
702    Prev = &I->Next;
703  }
704}
705
706// isa - Provide some specializations of isa so that we don't have to include
707// the subtype header files to test to see if the value is a subclass...
708//
709template <> struct isa_impl<Constant, Value> {
710  static inline bool doit(const Value &Val) {
711    return Val.getValueID() >= Value::ConstantFirstVal &&
712      Val.getValueID() <= Value::ConstantLastVal;
713  }
714};
715
716template <> struct isa_impl<ConstantData, Value> {
717  static inline bool doit(const Value &Val) {
718    return Val.getValueID() >= Value::ConstantDataFirstVal &&
719           Val.getValueID() <= Value::ConstantDataLastVal;
720  }
721};
722
723template <> struct isa_impl<ConstantAggregate, Value> {
724  static inline bool doit(const Value &Val) {
725    return Val.getValueID() >= Value::ConstantAggregateFirstVal &&
726           Val.getValueID() <= Value::ConstantAggregateLastVal;
727  }
728};
729
730template <> struct isa_impl<Argument, Value> {
731  static inline bool doit (const Value &Val) {
732    return Val.getValueID() == Value::ArgumentVal;
733  }
734};
735
736template <> struct isa_impl<InlineAsm, Value> {
737  static inline bool doit(const Value &Val) {
738    return Val.getValueID() == Value::InlineAsmVal;
739  }
740};
741
742template <> struct isa_impl<Instruction, Value> {
743  static inline bool doit(const Value &Val) {
744    return Val.getValueID() >= Value::InstructionVal;
745  }
746};
747
748template <> struct isa_impl<BasicBlock, Value> {
749  static inline bool doit(const Value &Val) {
750    return Val.getValueID() == Value::BasicBlockVal;
751  }
752};
753
754template <> struct isa_impl<Function, Value> {
755  static inline bool doit(const Value &Val) {
756    return Val.getValueID() == Value::FunctionVal;
757  }
758};
759
760template <> struct isa_impl<GlobalVariable, Value> {
761  static inline bool doit(const Value &Val) {
762    return Val.getValueID() == Value::GlobalVariableVal;
763  }
764};
765
766template <> struct isa_impl<GlobalAlias, Value> {
767  static inline bool doit(const Value &Val) {
768    return Val.getValueID() == Value::GlobalAliasVal;
769  }
770};
771
772template <> struct isa_impl<GlobalIFunc, Value> {
773  static inline bool doit(const Value &Val) {
774    return Val.getValueID() == Value::GlobalIFuncVal;
775  }
776};
777
778template <> struct isa_impl<GlobalIndirectSymbol, Value> {
779  static inline bool doit(const Value &Val) {
780    return isa<GlobalAlias>(Val) || isa<GlobalIFunc>(Val);
781  }
782};
783
784template <> struct isa_impl<GlobalValue, Value> {
785  static inline bool doit(const Value &Val) {
786    return isa<GlobalObject>(Val) || isa<GlobalIndirectSymbol>(Val);
787  }
788};
789
790template <> struct isa_impl<GlobalObject, Value> {
791  static inline bool doit(const Value &Val) {
792    return isa<GlobalVariable>(Val) || isa<Function>(Val);
793  }
794};
795
796// Create wrappers for C Binding types (see CBindingWrapping.h).
797DEFINE_ISA_CONVERSION_FUNCTIONS(Value, LLVMValueRef)
798
799// Specialized opaque value conversions.
800inline Value **unwrap(LLVMValueRef *Vals) {
801  return reinterpret_cast<Value**>(Vals);
802}
803
804template<typename T>
805inline T **unwrap(LLVMValueRef *Vals, unsigned Length) {
806#ifndef NDEBUG
807  for (LLVMValueRef *I = Vals, *E = Vals + Length; I != E; ++I)
808    unwrap<T>(*I); // For side effect of calling assert on invalid usage.
809#endif
810  (void)Length;
811  return reinterpret_cast<T**>(Vals);
812}
813
814inline LLVMValueRef *wrap(const Value **Vals) {
815  return reinterpret_cast<LLVMValueRef*>(const_cast<Value**>(Vals));
816}
817
818} // end namespace llvm
819
820#endif // LLVM_IR_VALUE_H
821