176d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman/*
276d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman * Copyright (c) 2009 Joshua Oreman <oremanj@rwcr.net>.
376d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman *
476d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman * This program is free software; you can redistribute it and/or
576d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman * modify it under the terms of the GNU General Public License as
676d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman * published by the Free Software Foundation; either version 2 of the
776d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman * License, or any later version.
876d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman *
976d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman * This program is distributed in the hope that it will be useful, but
1076d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman * WITHOUT ANY WARRANTY; without even the implied warranty of
1176d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
1276d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman * General Public License for more details.
1376d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman *
1476d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman * You should have received a copy of the GNU General Public License
1576d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman * along with this program; if not, write to the Free Software
1676d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
1776d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman */
1876d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman
1976d05dc695b06c4e987bb8078f78032441e1430cGreg HartmanFILE_LICENCE ( GPL2_OR_LATER );
2076d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman
2176d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman#include <gpxe/crypto.h>
2276d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman#include <gpxe/sha1.h>
2376d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman#include <gpxe/hmac.h>
2476d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman#include <stdint.h>
2576d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman#include <byteswap.h>
2676d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman
2776d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman/**
2876d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman * SHA1 pseudorandom function for creating derived keys
2976d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman *
3076d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman * @v key	Master key with which this call is associated
3176d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman * @v key_len	Length of key
3276d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman * @v label	NUL-terminated ASCII string describing purpose of PRF data
3376d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman * @v data	Further data that should be included in the PRF
3476d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman * @v data_len	Length of further PRF data
3576d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman * @v prf_len	Bytes of PRF to generate
3676d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman * @ret prf	Pseudorandom function bytes
3776d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman *
3876d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman * This is the PRF variant used by 802.11, defined in IEEE 802.11-2007
3976d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman * 8.5.5.1. EAP-FAST uses a different SHA1-based PRF, and TLS uses an
4076d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman * MD5-based PRF.
4176d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman */
4276d05dc695b06c4e987bb8078f78032441e1430cGreg Hartmanvoid prf_sha1 ( const void *key, size_t key_len, const char *label,
4376d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman		const void *data, size_t data_len, void *prf, size_t prf_len )
4476d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman{
4576d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman	u32 blk;
4676d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman	u8 keym[key_len];	/* modifiable copy of key */
4776d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman	u8 in[strlen ( label ) + 1 + data_len + 1]; /* message to HMAC */
4876d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman	u8 *in_blknr;		/* pointer to last byte of in, block number */
4976d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman	u8 out[SHA1_SIZE];	/* HMAC-SHA1 result */
5076d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman	u8 sha1_ctx[SHA1_CTX_SIZE]; /* SHA1 context */
5176d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman	const size_t label_len = strlen ( label );
5276d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman
5376d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman	/* The HMAC-SHA-1 is calculated using the given key on the
5476d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman	   message text `label', followed by a NUL, followed by one
5576d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman	   byte indicating the block number (0 for first). */
5676d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman
5776d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman	memcpy ( keym, key, key_len );
5876d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman
5976d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman	memcpy ( in, label, strlen ( label ) + 1 );
6076d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman	memcpy ( in + label_len + 1, data, data_len );
6176d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman	in_blknr = in + label_len + 1 + data_len;
6276d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman
6376d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman	for ( blk = 0 ;; blk++ ) {
6476d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman		*in_blknr = blk;
6576d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman
6676d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman		hmac_init ( &sha1_algorithm, sha1_ctx, keym, &key_len );
6776d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman		hmac_update ( &sha1_algorithm, sha1_ctx, in, sizeof ( in ) );
6876d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman		hmac_final ( &sha1_algorithm, sha1_ctx, keym, &key_len, out );
6976d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman
7076d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman		if ( prf_len <= SHA1_SIZE ) {
7176d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman			memcpy ( prf, out, prf_len );
7276d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman			break;
7376d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman		}
7476d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman
7576d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman		memcpy ( prf, out, SHA1_SIZE );
7676d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman		prf_len -= SHA1_SIZE;
7776d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman		prf += SHA1_SIZE;
7876d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman	}
7976d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman}
8076d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman
8176d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman/**
8276d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman * PBKDF2 key derivation function inner block operation
8376d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman *
8476d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman * @v passphrase	Passphrase from which to derive key
8576d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman * @v pass_len		Length of passphrase
8676d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman * @v salt		Salt to include in key
8776d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman * @v salt_len		Length of salt
8876d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman * @v iterations	Number of iterations of SHA1 to perform
8976d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman * @v blocknr		Index of this block, starting at 1
9076d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman * @ret block		SHA1_SIZE bytes of PBKDF2 data
9176d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman *
9276d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman * The operation of this function is described in RFC 2898.
9376d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman */
9476d05dc695b06c4e987bb8078f78032441e1430cGreg Hartmanstatic void pbkdf2_sha1_f ( const void *passphrase, size_t pass_len,
9576d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman			    const void *salt, size_t salt_len,
9676d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman			    int iterations, u32 blocknr, u8 *block )
9776d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman{
9876d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman	u8 pass[pass_len];	/* modifiable passphrase */
9976d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman	u8 in[salt_len + 4];	/* input buffer to first round */
10076d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman	u8 last[SHA1_SIZE];	/* output of round N, input of N+1 */
10176d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman	u8 sha1_ctx[SHA1_CTX_SIZE];
10276d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman	u8 *next_in = in;	/* changed to `last' after first round */
10376d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman	int next_size = sizeof ( in );
10476d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman	int i, j;
10576d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman
10676d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman	blocknr = htonl ( blocknr );
10776d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman
10876d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman	memcpy ( pass, passphrase, pass_len );
10976d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman	memcpy ( in, salt, salt_len );
11076d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman	memcpy ( in + salt_len, &blocknr, 4 );
11176d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman	memset ( block, 0, SHA1_SIZE );
11276d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman
11376d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman	for ( i = 0; i < iterations; i++ ) {
11476d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman		hmac_init ( &sha1_algorithm, sha1_ctx, pass, &pass_len );
11576d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman		hmac_update ( &sha1_algorithm, sha1_ctx, next_in, next_size );
11676d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman		hmac_final ( &sha1_algorithm, sha1_ctx, pass, &pass_len, last );
11776d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman
11876d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman		for ( j = 0; j < SHA1_SIZE; j++ ) {
11976d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman			block[j] ^= last[j];
12076d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman		}
12176d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman
12276d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman		next_in = last;
12376d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman		next_size = SHA1_SIZE;
12476d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman	}
12576d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman}
12676d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman
12776d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman/**
12876d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman * PBKDF2 key derivation function using SHA1
12976d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman *
13076d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman * @v passphrase	Passphrase from which to derive key
13176d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman * @v pass_len		Length of passphrase
13276d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman * @v salt		Salt to include in key
13376d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman * @v salt_len		Length of salt
13476d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman * @v iterations	Number of iterations of SHA1 to perform
13576d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman * @v key_len		Length of key to generate
13676d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman * @ret key		Generated key bytes
13776d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman *
13876d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman * This is used most notably in 802.11 WPA passphrase hashing, in
13976d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman * which case the salt is the SSID, 4096 iterations are used, and a
14076d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman * 32-byte key is generated that serves as the Pairwise Master Key for
14176d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman * EAPOL authentication.
14276d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman *
14376d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman * The operation of this function is further described in RFC 2898.
14476d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman */
14576d05dc695b06c4e987bb8078f78032441e1430cGreg Hartmanvoid pbkdf2_sha1 ( const void *passphrase, size_t pass_len,
14676d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman		   const void *salt, size_t salt_len,
14776d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman		   int iterations, void *key, size_t key_len )
14876d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman{
14976d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman	u32 blocks = ( key_len + SHA1_SIZE - 1 ) / SHA1_SIZE;
15076d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman	u32 blk;
15176d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman	u8 buf[SHA1_SIZE];
15276d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman
15376d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman	for ( blk = 1; blk <= blocks; blk++ ) {
15476d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman		pbkdf2_sha1_f ( passphrase, pass_len, salt, salt_len,
15576d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman				iterations, blk, buf );
15676d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman		if ( key_len <= SHA1_SIZE ) {
15776d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman			memcpy ( key, buf, key_len );
15876d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman			break;
15976d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman		}
16076d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman
16176d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman		memcpy ( key, buf, SHA1_SIZE );
16276d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman		key_len -= SHA1_SIZE;
16376d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman		key += SHA1_SIZE;
16476d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman	}
16576d05dc695b06c4e987bb8078f78032441e1430cGreg Hartman}
166