macro-assembler-ppc.h revision 958fae7ec3f466955f8e5b50fa5b8d38b9e91675
1// Copyright 2014 the V8 project authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#ifndef V8_PPC_MACRO_ASSEMBLER_PPC_H_
6#define V8_PPC_MACRO_ASSEMBLER_PPC_H_
7
8#include "src/assembler.h"
9#include "src/bailout-reason.h"
10#include "src/frames.h"
11#include "src/globals.h"
12
13namespace v8 {
14namespace internal {
15
16// ----------------------------------------------------------------------------
17// Static helper functions
18
19// Generate a MemOperand for loading a field from an object.
20inline MemOperand FieldMemOperand(Register object, int offset) {
21  return MemOperand(object, offset - kHeapObjectTag);
22}
23
24
25// Flags used for AllocateHeapNumber
26enum TaggingMode {
27  // Tag the result.
28  TAG_RESULT,
29  // Don't tag
30  DONT_TAG_RESULT
31};
32
33
34enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET };
35enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK };
36enum PointersToHereCheck {
37  kPointersToHereMaybeInteresting,
38  kPointersToHereAreAlwaysInteresting
39};
40enum LinkRegisterStatus { kLRHasNotBeenSaved, kLRHasBeenSaved };
41
42
43Register GetRegisterThatIsNotOneOf(Register reg1, Register reg2 = no_reg,
44                                   Register reg3 = no_reg,
45                                   Register reg4 = no_reg,
46                                   Register reg5 = no_reg,
47                                   Register reg6 = no_reg);
48
49
50#ifdef DEBUG
51bool AreAliased(Register reg1, Register reg2, Register reg3 = no_reg,
52                Register reg4 = no_reg, Register reg5 = no_reg,
53                Register reg6 = no_reg, Register reg7 = no_reg,
54                Register reg8 = no_reg);
55#endif
56
57// These exist to provide portability between 32 and 64bit
58#if V8_TARGET_ARCH_PPC64
59#define LoadPU ldu
60#define LoadPX ldx
61#define LoadPUX ldux
62#define StorePU stdu
63#define StorePX stdx
64#define StorePUX stdux
65#define ShiftLeftImm sldi
66#define ShiftRightImm srdi
67#define ClearLeftImm clrldi
68#define ClearRightImm clrrdi
69#define ShiftRightArithImm sradi
70#define ShiftLeft_ sld
71#define ShiftRight_ srd
72#define ShiftRightArith srad
73#define Mul mulld
74#define Div divd
75#else
76#define LoadPU lwzu
77#define LoadPX lwzx
78#define LoadPUX lwzux
79#define StorePU stwu
80#define StorePX stwx
81#define StorePUX stwux
82#define ShiftLeftImm slwi
83#define ShiftRightImm srwi
84#define ClearLeftImm clrlwi
85#define ClearRightImm clrrwi
86#define ShiftRightArithImm srawi
87#define ShiftLeft_ slw
88#define ShiftRight_ srw
89#define ShiftRightArith sraw
90#define Mul mullw
91#define Div divw
92#endif
93
94
95// MacroAssembler implements a collection of frequently used macros.
96class MacroAssembler : public Assembler {
97 public:
98  // The isolate parameter can be NULL if the macro assembler should
99  // not use isolate-dependent functionality. In this case, it's the
100  // responsibility of the caller to never invoke such function on the
101  // macro assembler.
102  MacroAssembler(Isolate* isolate, void* buffer, int size);
103
104
105  // Returns the size of a call in instructions. Note, the value returned is
106  // only valid as long as no entries are added to the constant pool between
107  // checking the call size and emitting the actual call.
108  static int CallSize(Register target);
109  int CallSize(Address target, RelocInfo::Mode rmode, Condition cond = al);
110  static int CallSizeNotPredictableCodeSize(Address target,
111                                            RelocInfo::Mode rmode,
112                                            Condition cond = al);
113
114  // Jump, Call, and Ret pseudo instructions implementing inter-working.
115  void Jump(Register target);
116  void JumpToJSEntry(Register target);
117  void Jump(Address target, RelocInfo::Mode rmode, Condition cond = al,
118            CRegister cr = cr7);
119  void Jump(Handle<Code> code, RelocInfo::Mode rmode, Condition cond = al);
120  void Call(Register target);
121  void CallJSEntry(Register target);
122  void Call(Address target, RelocInfo::Mode rmode, Condition cond = al);
123  int CallSize(Handle<Code> code,
124               RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
125               TypeFeedbackId ast_id = TypeFeedbackId::None(),
126               Condition cond = al);
127  void Call(Handle<Code> code, RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
128            TypeFeedbackId ast_id = TypeFeedbackId::None(),
129            Condition cond = al);
130  void Ret(Condition cond = al);
131
132  // Emit code to discard a non-negative number of pointer-sized elements
133  // from the stack, clobbering only the sp register.
134  void Drop(int count, Condition cond = al);
135
136  void Ret(int drop, Condition cond = al);
137
138  void Call(Label* target);
139
140  // Emit call to the code we are currently generating.
141  void CallSelf() {
142    Handle<Code> self(reinterpret_cast<Code**>(CodeObject().location()));
143    Call(self, RelocInfo::CODE_TARGET);
144  }
145
146  // Register move. May do nothing if the registers are identical.
147  void Move(Register dst, Handle<Object> value);
148  void Move(Register dst, Register src, Condition cond = al);
149  void Move(DoubleRegister dst, DoubleRegister src);
150
151  void MultiPush(RegList regs);
152  void MultiPop(RegList regs);
153
154  // Load an object from the root table.
155  void LoadRoot(Register destination, Heap::RootListIndex index,
156                Condition cond = al);
157  // Store an object to the root table.
158  void StoreRoot(Register source, Heap::RootListIndex index,
159                 Condition cond = al);
160
161  // ---------------------------------------------------------------------------
162  // GC Support
163
164  void IncrementalMarkingRecordWriteHelper(Register object, Register value,
165                                           Register address);
166
167  enum RememberedSetFinalAction { kReturnAtEnd, kFallThroughAtEnd };
168
169  // Record in the remembered set the fact that we have a pointer to new space
170  // at the address pointed to by the addr register.  Only works if addr is not
171  // in new space.
172  void RememberedSetHelper(Register object,  // Used for debug code.
173                           Register addr, Register scratch,
174                           SaveFPRegsMode save_fp,
175                           RememberedSetFinalAction and_then);
176
177  void CheckPageFlag(Register object, Register scratch, int mask, Condition cc,
178                     Label* condition_met);
179
180  void CheckMapDeprecated(Handle<Map> map, Register scratch,
181                          Label* if_deprecated);
182
183  // Check if object is in new space.  Jumps if the object is not in new space.
184  // The register scratch can be object itself, but scratch will be clobbered.
185  void JumpIfNotInNewSpace(Register object, Register scratch, Label* branch) {
186    InNewSpace(object, scratch, ne, branch);
187  }
188
189  // Check if object is in new space.  Jumps if the object is in new space.
190  // The register scratch can be object itself, but it will be clobbered.
191  void JumpIfInNewSpace(Register object, Register scratch, Label* branch) {
192    InNewSpace(object, scratch, eq, branch);
193  }
194
195  // Check if an object has a given incremental marking color.
196  void HasColor(Register object, Register scratch0, Register scratch1,
197                Label* has_color, int first_bit, int second_bit);
198
199  void JumpIfBlack(Register object, Register scratch0, Register scratch1,
200                   Label* on_black);
201
202  // Checks the color of an object.  If the object is already grey or black
203  // then we just fall through, since it is already live.  If it is white and
204  // we can determine that it doesn't need to be scanned, then we just mark it
205  // black and fall through.  For the rest we jump to the label so the
206  // incremental marker can fix its assumptions.
207  void EnsureNotWhite(Register object, Register scratch1, Register scratch2,
208                      Register scratch3, Label* object_is_white_and_not_data);
209
210  // Detects conservatively whether an object is data-only, i.e. it does need to
211  // be scanned by the garbage collector.
212  void JumpIfDataObject(Register value, Register scratch,
213                        Label* not_data_object);
214
215  // Notify the garbage collector that we wrote a pointer into an object.
216  // |object| is the object being stored into, |value| is the object being
217  // stored.  value and scratch registers are clobbered by the operation.
218  // The offset is the offset from the start of the object, not the offset from
219  // the tagged HeapObject pointer.  For use with FieldOperand(reg, off).
220  void RecordWriteField(
221      Register object, int offset, Register value, Register scratch,
222      LinkRegisterStatus lr_status, SaveFPRegsMode save_fp,
223      RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
224      SmiCheck smi_check = INLINE_SMI_CHECK,
225      PointersToHereCheck pointers_to_here_check_for_value =
226          kPointersToHereMaybeInteresting);
227
228  // As above, but the offset has the tag presubtracted.  For use with
229  // MemOperand(reg, off).
230  inline void RecordWriteContextSlot(
231      Register context, int offset, Register value, Register scratch,
232      LinkRegisterStatus lr_status, SaveFPRegsMode save_fp,
233      RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
234      SmiCheck smi_check = INLINE_SMI_CHECK,
235      PointersToHereCheck pointers_to_here_check_for_value =
236          kPointersToHereMaybeInteresting) {
237    RecordWriteField(context, offset + kHeapObjectTag, value, scratch,
238                     lr_status, save_fp, remembered_set_action, smi_check,
239                     pointers_to_here_check_for_value);
240  }
241
242  void RecordWriteForMap(Register object, Register map, Register dst,
243                         LinkRegisterStatus lr_status, SaveFPRegsMode save_fp);
244
245  // For a given |object| notify the garbage collector that the slot |address|
246  // has been written.  |value| is the object being stored. The value and
247  // address registers are clobbered by the operation.
248  void RecordWrite(
249      Register object, Register address, Register value,
250      LinkRegisterStatus lr_status, SaveFPRegsMode save_fp,
251      RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
252      SmiCheck smi_check = INLINE_SMI_CHECK,
253      PointersToHereCheck pointers_to_here_check_for_value =
254          kPointersToHereMaybeInteresting);
255
256  void Push(Register src) { push(src); }
257
258  // Push a handle.
259  void Push(Handle<Object> handle);
260  void Push(Smi* smi) { Push(Handle<Smi>(smi, isolate())); }
261
262  // Push two registers.  Pushes leftmost register first (to highest address).
263  void Push(Register src1, Register src2) {
264    StorePU(src2, MemOperand(sp, -2 * kPointerSize));
265    StoreP(src1, MemOperand(sp, kPointerSize));
266  }
267
268  // Push three registers.  Pushes leftmost register first (to highest address).
269  void Push(Register src1, Register src2, Register src3) {
270    StorePU(src3, MemOperand(sp, -3 * kPointerSize));
271    StoreP(src2, MemOperand(sp, kPointerSize));
272    StoreP(src1, MemOperand(sp, 2 * kPointerSize));
273  }
274
275  // Push four registers.  Pushes leftmost register first (to highest address).
276  void Push(Register src1, Register src2, Register src3, Register src4) {
277    StorePU(src4, MemOperand(sp, -4 * kPointerSize));
278    StoreP(src3, MemOperand(sp, kPointerSize));
279    StoreP(src2, MemOperand(sp, 2 * kPointerSize));
280    StoreP(src1, MemOperand(sp, 3 * kPointerSize));
281  }
282
283  // Push five registers.  Pushes leftmost register first (to highest address).
284  void Push(Register src1, Register src2, Register src3, Register src4,
285            Register src5) {
286    StorePU(src5, MemOperand(sp, -5 * kPointerSize));
287    StoreP(src4, MemOperand(sp, kPointerSize));
288    StoreP(src3, MemOperand(sp, 2 * kPointerSize));
289    StoreP(src2, MemOperand(sp, 3 * kPointerSize));
290    StoreP(src1, MemOperand(sp, 4 * kPointerSize));
291  }
292
293  void Pop(Register dst) { pop(dst); }
294
295  // Pop two registers. Pops rightmost register first (from lower address).
296  void Pop(Register src1, Register src2) {
297    LoadP(src2, MemOperand(sp, 0));
298    LoadP(src1, MemOperand(sp, kPointerSize));
299    addi(sp, sp, Operand(2 * kPointerSize));
300  }
301
302  // Pop three registers.  Pops rightmost register first (from lower address).
303  void Pop(Register src1, Register src2, Register src3) {
304    LoadP(src3, MemOperand(sp, 0));
305    LoadP(src2, MemOperand(sp, kPointerSize));
306    LoadP(src1, MemOperand(sp, 2 * kPointerSize));
307    addi(sp, sp, Operand(3 * kPointerSize));
308  }
309
310  // Pop four registers.  Pops rightmost register first (from lower address).
311  void Pop(Register src1, Register src2, Register src3, Register src4) {
312    LoadP(src4, MemOperand(sp, 0));
313    LoadP(src3, MemOperand(sp, kPointerSize));
314    LoadP(src2, MemOperand(sp, 2 * kPointerSize));
315    LoadP(src1, MemOperand(sp, 3 * kPointerSize));
316    addi(sp, sp, Operand(4 * kPointerSize));
317  }
318
319  // Pop five registers.  Pops rightmost register first (from lower address).
320  void Pop(Register src1, Register src2, Register src3, Register src4,
321           Register src5) {
322    LoadP(src5, MemOperand(sp, 0));
323    LoadP(src4, MemOperand(sp, kPointerSize));
324    LoadP(src3, MemOperand(sp, 2 * kPointerSize));
325    LoadP(src2, MemOperand(sp, 3 * kPointerSize));
326    LoadP(src1, MemOperand(sp, 4 * kPointerSize));
327    addi(sp, sp, Operand(5 * kPointerSize));
328  }
329
330  // Push a fixed frame, consisting of lr, fp, context and
331  // JS function / marker id if marker_reg is a valid register.
332  void PushFixedFrame(Register marker_reg = no_reg);
333  void PopFixedFrame(Register marker_reg = no_reg);
334
335  // Push and pop the registers that can hold pointers, as defined by the
336  // RegList constant kSafepointSavedRegisters.
337  void PushSafepointRegisters();
338  void PopSafepointRegisters();
339  // Store value in register src in the safepoint stack slot for
340  // register dst.
341  void StoreToSafepointRegisterSlot(Register src, Register dst);
342  // Load the value of the src register from its safepoint stack slot
343  // into register dst.
344  void LoadFromSafepointRegisterSlot(Register dst, Register src);
345
346  // Flush the I-cache from asm code. You should use CpuFeatures::FlushICache
347  // from C.
348  // Does not handle errors.
349  void FlushICache(Register address, size_t size, Register scratch);
350
351  // If the value is a NaN, canonicalize the value else, do nothing.
352  void CanonicalizeNaN(const DoubleRegister dst, const DoubleRegister src);
353  void CanonicalizeNaN(const DoubleRegister value) {
354    CanonicalizeNaN(value, value);
355  }
356
357  // Converts the integer (untagged smi) in |src| to a double, storing
358  // the result to |double_dst|
359  void ConvertIntToDouble(Register src, DoubleRegister double_dst);
360
361  // Converts the unsigned integer (untagged smi) in |src| to
362  // a double, storing the result to |double_dst|
363  void ConvertUnsignedIntToDouble(Register src, DoubleRegister double_dst);
364
365  // Converts the integer (untagged smi) in |src| to
366  // a float, storing the result in |dst|
367  // Warning: The value in |int_scrach| will be changed in the process!
368  void ConvertIntToFloat(const DoubleRegister dst, const Register src,
369                         const Register int_scratch);
370
371  // Converts the double_input to an integer.  Note that, upon return,
372  // the contents of double_dst will also hold the fixed point representation.
373  void ConvertDoubleToInt64(const DoubleRegister double_input,
374#if !V8_TARGET_ARCH_PPC64
375                            const Register dst_hi,
376#endif
377                            const Register dst, const DoubleRegister double_dst,
378                            FPRoundingMode rounding_mode = kRoundToZero);
379
380  // Generates function and stub prologue code.
381  void StubPrologue(int prologue_offset = 0);
382  void Prologue(bool code_pre_aging, int prologue_offset = 0);
383
384  // Enter exit frame.
385  // stack_space - extra stack space, used for alignment before call to C.
386  void EnterExitFrame(bool save_doubles, int stack_space = 0);
387
388  // Leave the current exit frame. Expects the return value in r0.
389  // Expect the number of values, pushed prior to the exit frame, to
390  // remove in a register (or no_reg, if there is nothing to remove).
391  void LeaveExitFrame(bool save_doubles, Register argument_count,
392                      bool restore_context);
393
394  // Get the actual activation frame alignment for target environment.
395  static int ActivationFrameAlignment();
396
397  void LoadContext(Register dst, int context_chain_length);
398
399  // Conditionally load the cached Array transitioned map of type
400  // transitioned_kind from the native context if the map in register
401  // map_in_out is the cached Array map in the native context of
402  // expected_kind.
403  void LoadTransitionedArrayMapConditional(ElementsKind expected_kind,
404                                           ElementsKind transitioned_kind,
405                                           Register map_in_out,
406                                           Register scratch,
407                                           Label* no_map_match);
408
409  void LoadGlobalFunction(int index, Register function);
410
411  // Load the initial map from the global function. The registers
412  // function and map can be the same, function is then overwritten.
413  void LoadGlobalFunctionInitialMap(Register function, Register map,
414                                    Register scratch);
415
416  void InitializeRootRegister() {
417    ExternalReference roots_array_start =
418        ExternalReference::roots_array_start(isolate());
419    mov(kRootRegister, Operand(roots_array_start));
420  }
421
422  // ----------------------------------------------------------------
423  // new PPC macro-assembler interfaces that are slightly higher level
424  // than assembler-ppc and may generate variable length sequences
425
426  // load a literal signed int value <value> to GPR <dst>
427  void LoadIntLiteral(Register dst, int value);
428
429  // load an SMI value <value> to GPR <dst>
430  void LoadSmiLiteral(Register dst, Smi* smi);
431
432  // load a literal double value <value> to FPR <result>
433  void LoadDoubleLiteral(DoubleRegister result, double value, Register scratch);
434
435  void LoadWord(Register dst, const MemOperand& mem, Register scratch);
436
437  void LoadWordArith(Register dst, const MemOperand& mem,
438                     Register scratch = no_reg);
439
440  void StoreWord(Register src, const MemOperand& mem, Register scratch);
441
442  void LoadHalfWord(Register dst, const MemOperand& mem, Register scratch);
443
444  void StoreHalfWord(Register src, const MemOperand& mem, Register scratch);
445
446  void LoadByte(Register dst, const MemOperand& mem, Register scratch);
447
448  void StoreByte(Register src, const MemOperand& mem, Register scratch);
449
450  void LoadRepresentation(Register dst, const MemOperand& mem, Representation r,
451                          Register scratch = no_reg);
452
453  void StoreRepresentation(Register src, const MemOperand& mem,
454                           Representation r, Register scratch = no_reg);
455
456  // Move values between integer and floating point registers.
457  void MovIntToDouble(DoubleRegister dst, Register src, Register scratch);
458  void MovUnsignedIntToDouble(DoubleRegister dst, Register src,
459                              Register scratch);
460  void MovInt64ToDouble(DoubleRegister dst,
461#if !V8_TARGET_ARCH_PPC64
462                        Register src_hi,
463#endif
464                        Register src);
465#if V8_TARGET_ARCH_PPC64
466  void MovInt64ComponentsToDouble(DoubleRegister dst, Register src_hi,
467                                  Register src_lo, Register scratch);
468#endif
469  void MovDoubleLowToInt(Register dst, DoubleRegister src);
470  void MovDoubleHighToInt(Register dst, DoubleRegister src);
471  void MovDoubleToInt64(
472#if !V8_TARGET_ARCH_PPC64
473      Register dst_hi,
474#endif
475      Register dst, DoubleRegister src);
476
477  void Add(Register dst, Register src, intptr_t value, Register scratch);
478  void Cmpi(Register src1, const Operand& src2, Register scratch,
479            CRegister cr = cr7);
480  void Cmpli(Register src1, const Operand& src2, Register scratch,
481             CRegister cr = cr7);
482  void Cmpwi(Register src1, const Operand& src2, Register scratch,
483             CRegister cr = cr7);
484  void Cmplwi(Register src1, const Operand& src2, Register scratch,
485              CRegister cr = cr7);
486  void And(Register ra, Register rs, const Operand& rb, RCBit rc = LeaveRC);
487  void Or(Register ra, Register rs, const Operand& rb, RCBit rc = LeaveRC);
488  void Xor(Register ra, Register rs, const Operand& rb, RCBit rc = LeaveRC);
489
490  void AddSmiLiteral(Register dst, Register src, Smi* smi, Register scratch);
491  void SubSmiLiteral(Register dst, Register src, Smi* smi, Register scratch);
492  void CmpSmiLiteral(Register src1, Smi* smi, Register scratch,
493                     CRegister cr = cr7);
494  void CmplSmiLiteral(Register src1, Smi* smi, Register scratch,
495                      CRegister cr = cr7);
496  void AndSmiLiteral(Register dst, Register src, Smi* smi, Register scratch,
497                     RCBit rc = LeaveRC);
498
499  // Set new rounding mode RN to FPSCR
500  void SetRoundingMode(FPRoundingMode RN);
501
502  // reset rounding mode to default (kRoundToNearest)
503  void ResetRoundingMode();
504
505  // These exist to provide portability between 32 and 64bit
506  void LoadP(Register dst, const MemOperand& mem, Register scratch = no_reg);
507  void StoreP(Register src, const MemOperand& mem, Register scratch = no_reg);
508
509  // ---------------------------------------------------------------------------
510  // JavaScript invokes
511
512  // Invoke the JavaScript function code by either calling or jumping.
513  void InvokeCode(Register code, const ParameterCount& expected,
514                  const ParameterCount& actual, InvokeFlag flag,
515                  const CallWrapper& call_wrapper);
516
517  // Invoke the JavaScript function in the given register. Changes the
518  // current context to the context in the function before invoking.
519  void InvokeFunction(Register function, const ParameterCount& actual,
520                      InvokeFlag flag, const CallWrapper& call_wrapper);
521
522  void InvokeFunction(Register function, const ParameterCount& expected,
523                      const ParameterCount& actual, InvokeFlag flag,
524                      const CallWrapper& call_wrapper);
525
526  void InvokeFunction(Handle<JSFunction> function,
527                      const ParameterCount& expected,
528                      const ParameterCount& actual, InvokeFlag flag,
529                      const CallWrapper& call_wrapper);
530
531  void IsObjectJSObjectType(Register heap_object, Register map,
532                            Register scratch, Label* fail);
533
534  void IsInstanceJSObjectType(Register map, Register scratch, Label* fail);
535
536  void IsObjectJSStringType(Register object, Register scratch, Label* fail);
537
538  void IsObjectNameType(Register object, Register scratch, Label* fail);
539
540  // ---------------------------------------------------------------------------
541  // Debugger Support
542
543  void DebugBreak();
544
545  // ---------------------------------------------------------------------------
546  // Exception handling
547
548  // Push a new try handler and link into try handler chain.
549  void PushTryHandler(StackHandler::Kind kind, int handler_index);
550
551  // Unlink the stack handler on top of the stack from the try handler chain.
552  // Must preserve the result register.
553  void PopTryHandler();
554
555  // Passes thrown value to the handler of top of the try handler chain.
556  void Throw(Register value);
557
558  // Propagates an uncatchable exception to the top of the current JS stack's
559  // handler chain.
560  void ThrowUncatchable(Register value);
561
562  // ---------------------------------------------------------------------------
563  // Inline caching support
564
565  // Generate code for checking access rights - used for security checks
566  // on access to global objects across environments. The holder register
567  // is left untouched, whereas both scratch registers are clobbered.
568  void CheckAccessGlobalProxy(Register holder_reg, Register scratch,
569                              Label* miss);
570
571  void GetNumberHash(Register t0, Register scratch);
572
573  void LoadFromNumberDictionary(Label* miss, Register elements, Register key,
574                                Register result, Register t0, Register t1,
575                                Register t2);
576
577
578  inline void MarkCode(NopMarkerTypes type) { nop(type); }
579
580  // Check if the given instruction is a 'type' marker.
581  // i.e. check if is is a mov r<type>, r<type> (referenced as nop(type))
582  // These instructions are generated to mark special location in the code,
583  // like some special IC code.
584  static inline bool IsMarkedCode(Instr instr, int type) {
585    DCHECK((FIRST_IC_MARKER <= type) && (type < LAST_CODE_MARKER));
586    return IsNop(instr, type);
587  }
588
589
590  static inline int GetCodeMarker(Instr instr) {
591    int dst_reg_offset = 12;
592    int dst_mask = 0xf << dst_reg_offset;
593    int src_mask = 0xf;
594    int dst_reg = (instr & dst_mask) >> dst_reg_offset;
595    int src_reg = instr & src_mask;
596    uint32_t non_register_mask = ~(dst_mask | src_mask);
597    uint32_t mov_mask = al | 13 << 21;
598
599    // Return <n> if we have a mov rn rn, else return -1.
600    int type = ((instr & non_register_mask) == mov_mask) &&
601                       (dst_reg == src_reg) && (FIRST_IC_MARKER <= dst_reg) &&
602                       (dst_reg < LAST_CODE_MARKER)
603                   ? src_reg
604                   : -1;
605    DCHECK((type == -1) ||
606           ((FIRST_IC_MARKER <= type) && (type < LAST_CODE_MARKER)));
607    return type;
608  }
609
610
611  // ---------------------------------------------------------------------------
612  // Allocation support
613
614  // Allocate an object in new space or old pointer space. The object_size is
615  // specified either in bytes or in words if the allocation flag SIZE_IN_WORDS
616  // is passed. If the space is exhausted control continues at the gc_required
617  // label. The allocated object is returned in result. If the flag
618  // tag_allocated_object is true the result is tagged as as a heap object.
619  // All registers are clobbered also when control continues at the gc_required
620  // label.
621  void Allocate(int object_size, Register result, Register scratch1,
622                Register scratch2, Label* gc_required, AllocationFlags flags);
623
624  void Allocate(Register object_size, Register result, Register scratch1,
625                Register scratch2, Label* gc_required, AllocationFlags flags);
626
627  // Undo allocation in new space. The object passed and objects allocated after
628  // it will no longer be allocated. The caller must make sure that no pointers
629  // are left to the object(s) no longer allocated as they would be invalid when
630  // allocation is undone.
631  void UndoAllocationInNewSpace(Register object, Register scratch);
632
633
634  void AllocateTwoByteString(Register result, Register length,
635                             Register scratch1, Register scratch2,
636                             Register scratch3, Label* gc_required);
637  void AllocateOneByteString(Register result, Register length,
638                             Register scratch1, Register scratch2,
639                             Register scratch3, Label* gc_required);
640  void AllocateTwoByteConsString(Register result, Register length,
641                                 Register scratch1, Register scratch2,
642                                 Label* gc_required);
643  void AllocateOneByteConsString(Register result, Register length,
644                                 Register scratch1, Register scratch2,
645                                 Label* gc_required);
646  void AllocateTwoByteSlicedString(Register result, Register length,
647                                   Register scratch1, Register scratch2,
648                                   Label* gc_required);
649  void AllocateOneByteSlicedString(Register result, Register length,
650                                   Register scratch1, Register scratch2,
651                                   Label* gc_required);
652
653  // Allocates a heap number or jumps to the gc_required label if the young
654  // space is full and a scavenge is needed. All registers are clobbered also
655  // when control continues at the gc_required label.
656  void AllocateHeapNumber(Register result, Register scratch1, Register scratch2,
657                          Register heap_number_map, Label* gc_required,
658                          TaggingMode tagging_mode = TAG_RESULT,
659                          MutableMode mode = IMMUTABLE);
660  void AllocateHeapNumberWithValue(Register result, DoubleRegister value,
661                                   Register scratch1, Register scratch2,
662                                   Register heap_number_map,
663                                   Label* gc_required);
664
665  // Copies a fixed number of fields of heap objects from src to dst.
666  void CopyFields(Register dst, Register src, RegList temps, int field_count);
667
668  // Copies a number of bytes from src to dst. All registers are clobbered. On
669  // exit src and dst will point to the place just after where the last byte was
670  // read or written and length will be zero.
671  void CopyBytes(Register src, Register dst, Register length, Register scratch);
672
673  // Initialize fields with filler values.  |count| fields starting at
674  // |start_offset| are overwritten with the value in |filler|.  At the end the
675  // loop, |start_offset| points at the next uninitialized field.  |count| is
676  // assumed to be non-zero.
677  void InitializeNFieldsWithFiller(Register start_offset, Register count,
678                                   Register filler);
679
680  // Initialize fields with filler values.  Fields starting at |start_offset|
681  // not including end_offset are overwritten with the value in |filler|.  At
682  // the end the loop, |start_offset| takes the value of |end_offset|.
683  void InitializeFieldsWithFiller(Register start_offset, Register end_offset,
684                                  Register filler);
685
686  // ---------------------------------------------------------------------------
687  // Support functions.
688
689  // Try to get function prototype of a function and puts the value in
690  // the result register. Checks that the function really is a
691  // function and jumps to the miss label if the fast checks fail. The
692  // function register will be untouched; the other registers may be
693  // clobbered.
694  void TryGetFunctionPrototype(Register function, Register result,
695                               Register scratch, Label* miss,
696                               bool miss_on_bound_function = false);
697
698  // Compare object type for heap object.  heap_object contains a non-Smi
699  // whose object type should be compared with the given type.  This both
700  // sets the flags and leaves the object type in the type_reg register.
701  // It leaves the map in the map register (unless the type_reg and map register
702  // are the same register).  It leaves the heap object in the heap_object
703  // register unless the heap_object register is the same register as one of the
704  // other registers.
705  // Type_reg can be no_reg. In that case ip is used.
706  void CompareObjectType(Register heap_object, Register map, Register type_reg,
707                         InstanceType type);
708
709  // Compare object type for heap object. Branch to false_label if type
710  // is lower than min_type or greater than max_type.
711  // Load map into the register map.
712  void CheckObjectTypeRange(Register heap_object, Register map,
713                            InstanceType min_type, InstanceType max_type,
714                            Label* false_label);
715
716  // Compare instance type in a map.  map contains a valid map object whose
717  // object type should be compared with the given type.  This both
718  // sets the flags and leaves the object type in the type_reg register.
719  void CompareInstanceType(Register map, Register type_reg, InstanceType type);
720
721
722  // Check if a map for a JSObject indicates that the object has fast elements.
723  // Jump to the specified label if it does not.
724  void CheckFastElements(Register map, Register scratch, Label* fail);
725
726  // Check if a map for a JSObject indicates that the object can have both smi
727  // and HeapObject elements.  Jump to the specified label if it does not.
728  void CheckFastObjectElements(Register map, Register scratch, Label* fail);
729
730  // Check if a map for a JSObject indicates that the object has fast smi only
731  // elements.  Jump to the specified label if it does not.
732  void CheckFastSmiElements(Register map, Register scratch, Label* fail);
733
734  // Check to see if maybe_number can be stored as a double in
735  // FastDoubleElements. If it can, store it at the index specified by key in
736  // the FastDoubleElements array elements. Otherwise jump to fail.
737  void StoreNumberToDoubleElements(Register value_reg, Register key_reg,
738                                   Register elements_reg, Register scratch1,
739                                   DoubleRegister double_scratch, Label* fail,
740                                   int elements_offset = 0);
741
742  // Compare an object's map with the specified map and its transitioned
743  // elements maps if mode is ALLOW_ELEMENT_TRANSITION_MAPS. Condition flags are
744  // set with result of map compare. If multiple map compares are required, the
745  // compare sequences branches to early_success.
746  void CompareMap(Register obj, Register scratch, Handle<Map> map,
747                  Label* early_success);
748
749  // As above, but the map of the object is already loaded into the register
750  // which is preserved by the code generated.
751  void CompareMap(Register obj_map, Handle<Map> map, Label* early_success);
752
753  // Check if the map of an object is equal to a specified map and branch to
754  // label if not. Skip the smi check if not required (object is known to be a
755  // heap object). If mode is ALLOW_ELEMENT_TRANSITION_MAPS, then also match
756  // against maps that are ElementsKind transition maps of the specified map.
757  void CheckMap(Register obj, Register scratch, Handle<Map> map, Label* fail,
758                SmiCheckType smi_check_type);
759
760
761  void CheckMap(Register obj, Register scratch, Heap::RootListIndex index,
762                Label* fail, SmiCheckType smi_check_type);
763
764
765  // Check if the map of an object is equal to a specified map and branch to a
766  // specified target if equal. Skip the smi check if not required (object is
767  // known to be a heap object)
768  void DispatchMap(Register obj, Register scratch, Handle<Map> map,
769                   Handle<Code> success, SmiCheckType smi_check_type);
770
771
772  // Compare the object in a register to a value from the root list.
773  // Uses the ip register as scratch.
774  void CompareRoot(Register obj, Heap::RootListIndex index);
775
776
777  // Load and check the instance type of an object for being a string.
778  // Loads the type into the second argument register.
779  // Returns a condition that will be enabled if the object was a string.
780  Condition IsObjectStringType(Register obj, Register type) {
781    LoadP(type, FieldMemOperand(obj, HeapObject::kMapOffset));
782    lbz(type, FieldMemOperand(type, Map::kInstanceTypeOffset));
783    andi(r0, type, Operand(kIsNotStringMask));
784    DCHECK_EQ(0, kStringTag);
785    return eq;
786  }
787
788
789  // Picks out an array index from the hash field.
790  // Register use:
791  //   hash - holds the index's hash. Clobbered.
792  //   index - holds the overwritten index on exit.
793  void IndexFromHash(Register hash, Register index);
794
795  // Get the number of least significant bits from a register
796  void GetLeastBitsFromSmi(Register dst, Register src, int num_least_bits);
797  void GetLeastBitsFromInt32(Register dst, Register src, int mun_least_bits);
798
799  // Load the value of a smi object into a double register.
800  void SmiToDouble(DoubleRegister value, Register smi);
801
802  // Check if a double can be exactly represented as a signed 32-bit integer.
803  // CR_EQ in cr7 is set if true.
804  void TestDoubleIsInt32(DoubleRegister double_input, Register scratch1,
805                         Register scratch2, DoubleRegister double_scratch);
806
807  // Try to convert a double to a signed 32-bit integer.
808  // CR_EQ in cr7 is set and result assigned if the conversion is exact.
809  void TryDoubleToInt32Exact(Register result, DoubleRegister double_input,
810                             Register scratch, DoubleRegister double_scratch);
811
812  // Floor a double and writes the value to the result register.
813  // Go to exact if the conversion is exact (to be able to test -0),
814  // fall through calling code if an overflow occurred, else go to done.
815  // In return, input_high is loaded with high bits of input.
816  void TryInt32Floor(Register result, DoubleRegister double_input,
817                     Register input_high, Register scratch,
818                     DoubleRegister double_scratch, Label* done, Label* exact);
819
820  // Performs a truncating conversion of a floating point number as used by
821  // the JS bitwise operations. See ECMA-262 9.5: ToInt32. Goes to 'done' if it
822  // succeeds, otherwise falls through if result is saturated. On return
823  // 'result' either holds answer, or is clobbered on fall through.
824  //
825  // Only public for the test code in test-code-stubs-arm.cc.
826  void TryInlineTruncateDoubleToI(Register result, DoubleRegister input,
827                                  Label* done);
828
829  // Performs a truncating conversion of a floating point number as used by
830  // the JS bitwise operations. See ECMA-262 9.5: ToInt32.
831  // Exits with 'result' holding the answer.
832  void TruncateDoubleToI(Register result, DoubleRegister double_input);
833
834  // Performs a truncating conversion of a heap number as used by
835  // the JS bitwise operations. See ECMA-262 9.5: ToInt32. 'result' and 'input'
836  // must be different registers.  Exits with 'result' holding the answer.
837  void TruncateHeapNumberToI(Register result, Register object);
838
839  // Converts the smi or heap number in object to an int32 using the rules
840  // for ToInt32 as described in ECMAScript 9.5.: the value is truncated
841  // and brought into the range -2^31 .. +2^31 - 1. 'result' and 'input' must be
842  // different registers.
843  void TruncateNumberToI(Register object, Register result,
844                         Register heap_number_map, Register scratch1,
845                         Label* not_int32);
846
847  // Overflow handling functions.
848  // Usage: call the appropriate arithmetic function and then call one of the
849  // flow control functions with the corresponding label.
850
851  // Compute dst = left + right, setting condition codes. dst may be same as
852  // either left or right (or a unique register). left and right must not be
853  // the same register.
854  void AddAndCheckForOverflow(Register dst, Register left, Register right,
855                              Register overflow_dst, Register scratch = r0);
856  void AddAndCheckForOverflow(Register dst, Register left, intptr_t right,
857                              Register overflow_dst, Register scratch = r0);
858
859  // Compute dst = left - right, setting condition codes. dst may be same as
860  // either left or right (or a unique register). left and right must not be
861  // the same register.
862  void SubAndCheckForOverflow(Register dst, Register left, Register right,
863                              Register overflow_dst, Register scratch = r0);
864
865  void BranchOnOverflow(Label* label) { blt(label, cr0); }
866
867  void BranchOnNoOverflow(Label* label) { bge(label, cr0); }
868
869  void RetOnOverflow(void) {
870    Label label;
871
872    blt(&label, cr0);
873    Ret();
874    bind(&label);
875  }
876
877  void RetOnNoOverflow(void) {
878    Label label;
879
880    bge(&label, cr0);
881    Ret();
882    bind(&label);
883  }
884
885  // Pushes <count> double values to <location>, starting from d<first>.
886  void SaveFPRegs(Register location, int first, int count);
887
888  // Pops <count> double values from <location>, starting from d<first>.
889  void RestoreFPRegs(Register location, int first, int count);
890
891  // ---------------------------------------------------------------------------
892  // Runtime calls
893
894  // Call a code stub.
895  void CallStub(CodeStub* stub, TypeFeedbackId ast_id = TypeFeedbackId::None(),
896                Condition cond = al);
897
898  // Call a code stub.
899  void TailCallStub(CodeStub* stub, Condition cond = al);
900
901  // Call a runtime routine.
902  void CallRuntime(const Runtime::Function* f, int num_arguments,
903                   SaveFPRegsMode save_doubles = kDontSaveFPRegs);
904  void CallRuntimeSaveDoubles(Runtime::FunctionId id) {
905    const Runtime::Function* function = Runtime::FunctionForId(id);
906    CallRuntime(function, function->nargs, kSaveFPRegs);
907  }
908
909  // Convenience function: Same as above, but takes the fid instead.
910  void CallRuntime(Runtime::FunctionId id, int num_arguments,
911                   SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
912    CallRuntime(Runtime::FunctionForId(id), num_arguments, save_doubles);
913  }
914
915  // Convenience function: call an external reference.
916  void CallExternalReference(const ExternalReference& ext, int num_arguments);
917
918  // Tail call of a runtime routine (jump).
919  // Like JumpToExternalReference, but also takes care of passing the number
920  // of parameters.
921  void TailCallExternalReference(const ExternalReference& ext,
922                                 int num_arguments, int result_size);
923
924  // Convenience function: tail call a runtime routine (jump).
925  void TailCallRuntime(Runtime::FunctionId fid, int num_arguments,
926                       int result_size);
927
928  int CalculateStackPassedWords(int num_reg_arguments,
929                                int num_double_arguments);
930
931  // Before calling a C-function from generated code, align arguments on stack.
932  // After aligning the frame, non-register arguments must be stored in
933  // sp[0], sp[4], etc., not pushed. The argument count assumes all arguments
934  // are word sized. If double arguments are used, this function assumes that
935  // all double arguments are stored before core registers; otherwise the
936  // correct alignment of the double values is not guaranteed.
937  // Some compilers/platforms require the stack to be aligned when calling
938  // C++ code.
939  // Needs a scratch register to do some arithmetic. This register will be
940  // trashed.
941  void PrepareCallCFunction(int num_reg_arguments, int num_double_registers,
942                            Register scratch);
943  void PrepareCallCFunction(int num_reg_arguments, Register scratch);
944
945  // There are two ways of passing double arguments on ARM, depending on
946  // whether soft or hard floating point ABI is used. These functions
947  // abstract parameter passing for the three different ways we call
948  // C functions from generated code.
949  void MovToFloatParameter(DoubleRegister src);
950  void MovToFloatParameters(DoubleRegister src1, DoubleRegister src2);
951  void MovToFloatResult(DoubleRegister src);
952
953  // Calls a C function and cleans up the space for arguments allocated
954  // by PrepareCallCFunction. The called function is not allowed to trigger a
955  // garbage collection, since that might move the code and invalidate the
956  // return address (unless this is somehow accounted for by the called
957  // function).
958  void CallCFunction(ExternalReference function, int num_arguments);
959  void CallCFunction(Register function, int num_arguments);
960  void CallCFunction(ExternalReference function, int num_reg_arguments,
961                     int num_double_arguments);
962  void CallCFunction(Register function, int num_reg_arguments,
963                     int num_double_arguments);
964
965  void MovFromFloatParameter(DoubleRegister dst);
966  void MovFromFloatResult(DoubleRegister dst);
967
968  // Calls an API function.  Allocates HandleScope, extracts returned value
969  // from handle and propagates exceptions.  Restores context.  stack_space
970  // - space to be unwound on exit (includes the call JS arguments space and
971  // the additional space allocated for the fast call).
972  void CallApiFunctionAndReturn(Register function_address,
973                                ExternalReference thunk_ref, int stack_space,
974                                MemOperand return_value_operand,
975                                MemOperand* context_restore_operand);
976
977  // Jump to a runtime routine.
978  void JumpToExternalReference(const ExternalReference& builtin);
979
980  // Invoke specified builtin JavaScript function. Adds an entry to
981  // the unresolved list if the name does not resolve.
982  void InvokeBuiltin(Builtins::JavaScript id, InvokeFlag flag,
983                     const CallWrapper& call_wrapper = NullCallWrapper());
984
985  // Store the code object for the given builtin in the target register and
986  // setup the function in r1.
987  void GetBuiltinEntry(Register target, Builtins::JavaScript id);
988
989  // Store the function for the given builtin in the target register.
990  void GetBuiltinFunction(Register target, Builtins::JavaScript id);
991
992  Handle<Object> CodeObject() {
993    DCHECK(!code_object_.is_null());
994    return code_object_;
995  }
996
997
998  // Emit code for a truncating division by a constant. The dividend register is
999  // unchanged and ip gets clobbered. Dividend and result must be different.
1000  void TruncatingDiv(Register result, Register dividend, int32_t divisor);
1001
1002  // ---------------------------------------------------------------------------
1003  // StatsCounter support
1004
1005  void SetCounter(StatsCounter* counter, int value, Register scratch1,
1006                  Register scratch2);
1007  void IncrementCounter(StatsCounter* counter, int value, Register scratch1,
1008                        Register scratch2);
1009  void DecrementCounter(StatsCounter* counter, int value, Register scratch1,
1010                        Register scratch2);
1011
1012
1013  // ---------------------------------------------------------------------------
1014  // Debugging
1015
1016  // Calls Abort(msg) if the condition cond is not satisfied.
1017  // Use --debug_code to enable.
1018  void Assert(Condition cond, BailoutReason reason, CRegister cr = cr7);
1019  void AssertFastElements(Register elements);
1020
1021  // Like Assert(), but always enabled.
1022  void Check(Condition cond, BailoutReason reason, CRegister cr = cr7);
1023
1024  // Print a message to stdout and abort execution.
1025  void Abort(BailoutReason reason);
1026
1027  // Verify restrictions about code generated in stubs.
1028  void set_generating_stub(bool value) { generating_stub_ = value; }
1029  bool generating_stub() { return generating_stub_; }
1030  void set_has_frame(bool value) { has_frame_ = value; }
1031  bool has_frame() { return has_frame_; }
1032  inline bool AllowThisStubCall(CodeStub* stub);
1033
1034  // ---------------------------------------------------------------------------
1035  // Number utilities
1036
1037  // Check whether the value of reg is a power of two and not zero. If not
1038  // control continues at the label not_power_of_two. If reg is a power of two
1039  // the register scratch contains the value of (reg - 1) when control falls
1040  // through.
1041  void JumpIfNotPowerOfTwoOrZero(Register reg, Register scratch,
1042                                 Label* not_power_of_two_or_zero);
1043  // Check whether the value of reg is a power of two and not zero.
1044  // Control falls through if it is, with scratch containing the mask
1045  // value (reg - 1).
1046  // Otherwise control jumps to the 'zero_and_neg' label if the value of reg is
1047  // zero or negative, or jumps to the 'not_power_of_two' label if the value is
1048  // strictly positive but not a power of two.
1049  void JumpIfNotPowerOfTwoOrZeroAndNeg(Register reg, Register scratch,
1050                                       Label* zero_and_neg,
1051                                       Label* not_power_of_two);
1052
1053  // ---------------------------------------------------------------------------
1054  // Bit testing/extraction
1055  //
1056  // Bit numbering is such that the least significant bit is bit 0
1057  // (for consistency between 32/64-bit).
1058
1059  // Extract consecutive bits (defined by rangeStart - rangeEnd) from src
1060  // and place them into the least significant bits of dst.
1061  inline void ExtractBitRange(Register dst, Register src, int rangeStart,
1062                              int rangeEnd, RCBit rc = LeaveRC) {
1063    DCHECK(rangeStart >= rangeEnd && rangeStart < kBitsPerPointer);
1064    int rotate = (rangeEnd == 0) ? 0 : kBitsPerPointer - rangeEnd;
1065    int width = rangeStart - rangeEnd + 1;
1066#if V8_TARGET_ARCH_PPC64
1067    rldicl(dst, src, rotate, kBitsPerPointer - width, rc);
1068#else
1069    rlwinm(dst, src, rotate, kBitsPerPointer - width, kBitsPerPointer - 1, rc);
1070#endif
1071  }
1072
1073  inline void ExtractBit(Register dst, Register src, uint32_t bitNumber,
1074                         RCBit rc = LeaveRC) {
1075    ExtractBitRange(dst, src, bitNumber, bitNumber, rc);
1076  }
1077
1078  // Extract consecutive bits (defined by mask) from src and place them
1079  // into the least significant bits of dst.
1080  inline void ExtractBitMask(Register dst, Register src, uintptr_t mask,
1081                             RCBit rc = LeaveRC) {
1082    int start = kBitsPerPointer - 1;
1083    int end;
1084    uintptr_t bit = (1L << start);
1085
1086    while (bit && (mask & bit) == 0) {
1087      start--;
1088      bit >>= 1;
1089    }
1090    end = start;
1091    bit >>= 1;
1092
1093    while (bit && (mask & bit)) {
1094      end--;
1095      bit >>= 1;
1096    }
1097
1098    // 1-bits in mask must be contiguous
1099    DCHECK(bit == 0 || (mask & ((bit << 1) - 1)) == 0);
1100
1101    ExtractBitRange(dst, src, start, end, rc);
1102  }
1103
1104  // Test single bit in value.
1105  inline void TestBit(Register value, int bitNumber, Register scratch = r0) {
1106    ExtractBitRange(scratch, value, bitNumber, bitNumber, SetRC);
1107  }
1108
1109  // Test consecutive bit range in value.  Range is defined by
1110  // rangeStart - rangeEnd.
1111  inline void TestBitRange(Register value, int rangeStart, int rangeEnd,
1112                           Register scratch = r0) {
1113    ExtractBitRange(scratch, value, rangeStart, rangeEnd, SetRC);
1114  }
1115
1116  // Test consecutive bit range in value.  Range is defined by mask.
1117  inline void TestBitMask(Register value, uintptr_t mask,
1118                          Register scratch = r0) {
1119    ExtractBitMask(scratch, value, mask, SetRC);
1120  }
1121
1122
1123  // ---------------------------------------------------------------------------
1124  // Smi utilities
1125
1126  // Shift left by 1
1127  void SmiTag(Register reg, RCBit rc = LeaveRC) { SmiTag(reg, reg, rc); }
1128  void SmiTag(Register dst, Register src, RCBit rc = LeaveRC) {
1129    ShiftLeftImm(dst, src, Operand(kSmiShift), rc);
1130  }
1131
1132#if !V8_TARGET_ARCH_PPC64
1133  // Test for overflow < 0: use BranchOnOverflow() or BranchOnNoOverflow().
1134  void SmiTagCheckOverflow(Register reg, Register overflow);
1135  void SmiTagCheckOverflow(Register dst, Register src, Register overflow);
1136
1137  inline void JumpIfNotSmiCandidate(Register value, Register scratch,
1138                                    Label* not_smi_label) {
1139    // High bits must be identical to fit into an Smi
1140    addis(scratch, value, Operand(0x40000000u >> 16));
1141    cmpi(scratch, Operand::Zero());
1142    blt(not_smi_label);
1143  }
1144#endif
1145  inline void TestUnsignedSmiCandidate(Register value, Register scratch) {
1146    // The test is different for unsigned int values. Since we need
1147    // the value to be in the range of a positive smi, we can't
1148    // handle any of the high bits being set in the value.
1149    TestBitRange(value, kBitsPerPointer - 1, kBitsPerPointer - 1 - kSmiShift,
1150                 scratch);
1151  }
1152  inline void JumpIfNotUnsignedSmiCandidate(Register value, Register scratch,
1153                                            Label* not_smi_label) {
1154    TestUnsignedSmiCandidate(value, scratch);
1155    bne(not_smi_label, cr0);
1156  }
1157
1158  void SmiUntag(Register reg, RCBit rc = LeaveRC) { SmiUntag(reg, reg, rc); }
1159
1160  void SmiUntag(Register dst, Register src, RCBit rc = LeaveRC) {
1161    ShiftRightArithImm(dst, src, kSmiShift, rc);
1162  }
1163
1164  void SmiToPtrArrayOffset(Register dst, Register src) {
1165#if V8_TARGET_ARCH_PPC64
1166    STATIC_ASSERT(kSmiTag == 0 && kSmiShift > kPointerSizeLog2);
1167    ShiftRightArithImm(dst, src, kSmiShift - kPointerSizeLog2);
1168#else
1169    STATIC_ASSERT(kSmiTag == 0 && kSmiShift < kPointerSizeLog2);
1170    ShiftLeftImm(dst, src, Operand(kPointerSizeLog2 - kSmiShift));
1171#endif
1172  }
1173
1174  void SmiToByteArrayOffset(Register dst, Register src) { SmiUntag(dst, src); }
1175
1176  void SmiToShortArrayOffset(Register dst, Register src) {
1177#if V8_TARGET_ARCH_PPC64
1178    STATIC_ASSERT(kSmiTag == 0 && kSmiShift > 1);
1179    ShiftRightArithImm(dst, src, kSmiShift - 1);
1180#else
1181    STATIC_ASSERT(kSmiTag == 0 && kSmiShift == 1);
1182    if (!dst.is(src)) {
1183      mr(dst, src);
1184    }
1185#endif
1186  }
1187
1188  void SmiToIntArrayOffset(Register dst, Register src) {
1189#if V8_TARGET_ARCH_PPC64
1190    STATIC_ASSERT(kSmiTag == 0 && kSmiShift > 2);
1191    ShiftRightArithImm(dst, src, kSmiShift - 2);
1192#else
1193    STATIC_ASSERT(kSmiTag == 0 && kSmiShift < 2);
1194    ShiftLeftImm(dst, src, Operand(2 - kSmiShift));
1195#endif
1196  }
1197
1198#define SmiToFloatArrayOffset SmiToIntArrayOffset
1199
1200  void SmiToDoubleArrayOffset(Register dst, Register src) {
1201#if V8_TARGET_ARCH_PPC64
1202    STATIC_ASSERT(kSmiTag == 0 && kSmiShift > kDoubleSizeLog2);
1203    ShiftRightArithImm(dst, src, kSmiShift - kDoubleSizeLog2);
1204#else
1205    STATIC_ASSERT(kSmiTag == 0 && kSmiShift < kDoubleSizeLog2);
1206    ShiftLeftImm(dst, src, Operand(kDoubleSizeLog2 - kSmiShift));
1207#endif
1208  }
1209
1210  void SmiToArrayOffset(Register dst, Register src, int elementSizeLog2) {
1211    if (kSmiShift < elementSizeLog2) {
1212      ShiftLeftImm(dst, src, Operand(elementSizeLog2 - kSmiShift));
1213    } else if (kSmiShift > elementSizeLog2) {
1214      ShiftRightArithImm(dst, src, kSmiShift - elementSizeLog2);
1215    } else if (!dst.is(src)) {
1216      mr(dst, src);
1217    }
1218  }
1219
1220  void IndexToArrayOffset(Register dst, Register src, int elementSizeLog2,
1221                          bool isSmi) {
1222    if (isSmi) {
1223      SmiToArrayOffset(dst, src, elementSizeLog2);
1224    } else {
1225      ShiftLeftImm(dst, src, Operand(elementSizeLog2));
1226    }
1227  }
1228
1229  // Untag the source value into destination and jump if source is a smi.
1230  // Souce and destination can be the same register.
1231  void UntagAndJumpIfSmi(Register dst, Register src, Label* smi_case);
1232
1233  // Untag the source value into destination and jump if source is not a smi.
1234  // Souce and destination can be the same register.
1235  void UntagAndJumpIfNotSmi(Register dst, Register src, Label* non_smi_case);
1236
1237  inline void TestIfSmi(Register value, Register scratch) {
1238    TestBit(value, 0, scratch);  // tst(value, Operand(kSmiTagMask));
1239  }
1240
1241  inline void TestIfPositiveSmi(Register value, Register scratch) {
1242    STATIC_ASSERT((kSmiTagMask | kSmiSignMask) ==
1243                  (intptr_t)(1UL << (kBitsPerPointer - 1) | 1));
1244#if V8_TARGET_ARCH_PPC64
1245    rldicl(scratch, value, 1, kBitsPerPointer - 2, SetRC);
1246#else
1247    rlwinm(scratch, value, 1, kBitsPerPointer - 2, kBitsPerPointer - 1, SetRC);
1248#endif
1249  }
1250
1251  // Jump the register contains a smi.
1252  inline void JumpIfSmi(Register value, Label* smi_label) {
1253    TestIfSmi(value, r0);
1254    beq(smi_label, cr0);  // branch if SMI
1255  }
1256  // Jump if either of the registers contain a non-smi.
1257  inline void JumpIfNotSmi(Register value, Label* not_smi_label) {
1258    TestIfSmi(value, r0);
1259    bne(not_smi_label, cr0);
1260  }
1261  // Jump if either of the registers contain a non-smi.
1262  void JumpIfNotBothSmi(Register reg1, Register reg2, Label* on_not_both_smi);
1263  // Jump if either of the registers contain a smi.
1264  void JumpIfEitherSmi(Register reg1, Register reg2, Label* on_either_smi);
1265
1266  // Abort execution if argument is a smi, enabled via --debug-code.
1267  void AssertNotSmi(Register object);
1268  void AssertSmi(Register object);
1269
1270
1271#if V8_TARGET_ARCH_PPC64
1272  inline void TestIfInt32(Register value, Register scratch1, Register scratch2,
1273                          CRegister cr = cr7) {
1274    // High bits must be identical to fit into an 32-bit integer
1275    srawi(scratch1, value, 31);
1276    sradi(scratch2, value, 32);
1277    cmp(scratch1, scratch2, cr);
1278  }
1279#else
1280  inline void TestIfInt32(Register hi_word, Register lo_word, Register scratch,
1281                          CRegister cr = cr7) {
1282    // High bits must be identical to fit into an 32-bit integer
1283    srawi(scratch, lo_word, 31);
1284    cmp(scratch, hi_word, cr);
1285  }
1286#endif
1287
1288  // Abort execution if argument is not a string, enabled via --debug-code.
1289  void AssertString(Register object);
1290
1291  // Abort execution if argument is not a name, enabled via --debug-code.
1292  void AssertName(Register object);
1293
1294  // Abort execution if argument is not undefined or an AllocationSite, enabled
1295  // via --debug-code.
1296  void AssertUndefinedOrAllocationSite(Register object, Register scratch);
1297
1298  // Abort execution if reg is not the root value with the given index,
1299  // enabled via --debug-code.
1300  void AssertIsRoot(Register reg, Heap::RootListIndex index);
1301
1302  // ---------------------------------------------------------------------------
1303  // HeapNumber utilities
1304
1305  void JumpIfNotHeapNumber(Register object, Register heap_number_map,
1306                           Register scratch, Label* on_not_heap_number);
1307
1308  // ---------------------------------------------------------------------------
1309  // String utilities
1310
1311  // Generate code to do a lookup in the number string cache. If the number in
1312  // the register object is found in the cache the generated code falls through
1313  // with the result in the result register. The object and the result register
1314  // can be the same. If the number is not found in the cache the code jumps to
1315  // the label not_found with only the content of register object unchanged.
1316  void LookupNumberStringCache(Register object, Register result,
1317                               Register scratch1, Register scratch2,
1318                               Register scratch3, Label* not_found);
1319
1320  // Checks if both objects are sequential one-byte strings and jumps to label
1321  // if either is not. Assumes that neither object is a smi.
1322  void JumpIfNonSmisNotBothSequentialOneByteStrings(Register object1,
1323                                                    Register object2,
1324                                                    Register scratch1,
1325                                                    Register scratch2,
1326                                                    Label* failure);
1327
1328  // Checks if both objects are sequential one-byte strings and jumps to label
1329  // if either is not.
1330  void JumpIfNotBothSequentialOneByteStrings(Register first, Register second,
1331                                             Register scratch1,
1332                                             Register scratch2,
1333                                             Label* not_flat_one_byte_strings);
1334
1335  // Checks if both instance types are sequential one-byte strings and jumps to
1336  // label if either is not.
1337  void JumpIfBothInstanceTypesAreNotSequentialOneByte(
1338      Register first_object_instance_type, Register second_object_instance_type,
1339      Register scratch1, Register scratch2, Label* failure);
1340
1341  // Check if instance type is sequential one-byte string and jump to label if
1342  // it is not.
1343  void JumpIfInstanceTypeIsNotSequentialOneByte(Register type, Register scratch,
1344                                                Label* failure);
1345
1346  void JumpIfNotUniqueNameInstanceType(Register reg, Label* not_unique_name);
1347
1348  void EmitSeqStringSetCharCheck(Register string, Register index,
1349                                 Register value, uint32_t encoding_mask);
1350
1351  // ---------------------------------------------------------------------------
1352  // Patching helpers.
1353
1354  // Retrieve/patch the relocated value (lis/ori pair or constant pool load).
1355  void GetRelocatedValue(Register location, Register result, Register scratch);
1356  void SetRelocatedValue(Register location, Register scratch,
1357                         Register new_value);
1358
1359  void ClampUint8(Register output_reg, Register input_reg);
1360
1361  // Saturate a value into 8-bit unsigned integer
1362  //   if input_value < 0, output_value is 0
1363  //   if input_value > 255, output_value is 255
1364  //   otherwise output_value is the (int)input_value (round to nearest)
1365  void ClampDoubleToUint8(Register result_reg, DoubleRegister input_reg,
1366                          DoubleRegister temp_double_reg);
1367
1368
1369  void LoadInstanceDescriptors(Register map, Register descriptors);
1370  void EnumLength(Register dst, Register map);
1371  void NumberOfOwnDescriptors(Register dst, Register map);
1372
1373  template <typename Field>
1374  void DecodeField(Register dst, Register src) {
1375    ExtractBitRange(dst, src, Field::kShift + Field::kSize - 1, Field::kShift);
1376  }
1377
1378  template <typename Field>
1379  void DecodeField(Register reg) {
1380    DecodeField<Field>(reg, reg);
1381  }
1382
1383  template <typename Field>
1384  void DecodeFieldToSmi(Register dst, Register src) {
1385#if V8_TARGET_ARCH_PPC64
1386    DecodeField<Field>(dst, src);
1387    SmiTag(dst);
1388#else
1389    // 32-bit can do this in one instruction:
1390    int start = Field::kSize + kSmiShift - 1;
1391    int end = kSmiShift;
1392    int rotate = kSmiShift - Field::kShift;
1393    if (rotate < 0) {
1394      rotate += kBitsPerPointer;
1395    }
1396    rlwinm(dst, src, rotate, kBitsPerPointer - start - 1,
1397           kBitsPerPointer - end - 1);
1398#endif
1399  }
1400
1401  template <typename Field>
1402  void DecodeFieldToSmi(Register reg) {
1403    DecodeFieldToSmi<Field>(reg, reg);
1404  }
1405
1406  // Activation support.
1407  void EnterFrame(StackFrame::Type type,
1408                  bool load_constant_pool_pointer_reg = false);
1409  // Returns the pc offset at which the frame ends.
1410  int LeaveFrame(StackFrame::Type type, int stack_adjustment = 0);
1411
1412  // Expects object in r0 and returns map with validated enum cache
1413  // in r0.  Assumes that any other register can be used as a scratch.
1414  void CheckEnumCache(Register null_value, Label* call_runtime);
1415
1416  // AllocationMemento support. Arrays may have an associated
1417  // AllocationMemento object that can be checked for in order to pretransition
1418  // to another type.
1419  // On entry, receiver_reg should point to the array object.
1420  // scratch_reg gets clobbered.
1421  // If allocation info is present, condition flags are set to eq.
1422  void TestJSArrayForAllocationMemento(Register receiver_reg,
1423                                       Register scratch_reg,
1424                                       Label* no_memento_found);
1425
1426  void JumpIfJSArrayHasAllocationMemento(Register receiver_reg,
1427                                         Register scratch_reg,
1428                                         Label* memento_found) {
1429    Label no_memento_found;
1430    TestJSArrayForAllocationMemento(receiver_reg, scratch_reg,
1431                                    &no_memento_found);
1432    beq(memento_found);
1433    bind(&no_memento_found);
1434  }
1435
1436  // Jumps to found label if a prototype map has dictionary elements.
1437  void JumpIfDictionaryInPrototypeChain(Register object, Register scratch0,
1438                                        Register scratch1, Label* found);
1439
1440 private:
1441  static const int kSmiShift = kSmiTagSize + kSmiShiftSize;
1442
1443  void CallCFunctionHelper(Register function, int num_reg_arguments,
1444                           int num_double_arguments);
1445
1446  void Jump(intptr_t target, RelocInfo::Mode rmode, Condition cond = al,
1447            CRegister cr = cr7);
1448
1449  // Helper functions for generating invokes.
1450  void InvokePrologue(const ParameterCount& expected,
1451                      const ParameterCount& actual, Handle<Code> code_constant,
1452                      Register code_reg, Label* done,
1453                      bool* definitely_mismatches, InvokeFlag flag,
1454                      const CallWrapper& call_wrapper);
1455
1456  void InitializeNewString(Register string, Register length,
1457                           Heap::RootListIndex map_index, Register scratch1,
1458                           Register scratch2);
1459
1460  // Helper for implementing JumpIfNotInNewSpace and JumpIfInNewSpace.
1461  void InNewSpace(Register object, Register scratch,
1462                  Condition cond,  // eq for new space, ne otherwise.
1463                  Label* branch);
1464
1465  // Helper for finding the mark bits for an address.  Afterwards, the
1466  // bitmap register points at the word with the mark bits and the mask
1467  // the position of the first bit.  Leaves addr_reg unchanged.
1468  inline void GetMarkBits(Register addr_reg, Register bitmap_reg,
1469                          Register mask_reg);
1470
1471  // Helper for throwing exceptions.  Compute a handler address and jump to
1472  // it.  See the implementation for register usage.
1473  void JumpToHandlerEntry();
1474
1475  // Compute memory operands for safepoint stack slots.
1476  static int SafepointRegisterStackIndex(int reg_code);
1477  MemOperand SafepointRegisterSlot(Register reg);
1478  MemOperand SafepointRegistersAndDoublesSlot(Register reg);
1479
1480#if V8_OOL_CONSTANT_POOL
1481  // Loads the constant pool pointer (kConstantPoolRegister).
1482  enum CodeObjectAccessMethod { CAN_USE_IP, CONSTRUCT_INTERNAL_REFERENCE };
1483  void LoadConstantPoolPointerRegister(CodeObjectAccessMethod access_method,
1484                                       int ip_code_entry_delta = 0);
1485#endif
1486
1487  bool generating_stub_;
1488  bool has_frame_;
1489  // This handle will be patched with the code object on installation.
1490  Handle<Object> code_object_;
1491
1492  // Needs access to SafepointRegisterStackIndex for compiled frame
1493  // traversal.
1494  friend class StandardFrame;
1495};
1496
1497
1498// The code patcher is used to patch (typically) small parts of code e.g. for
1499// debugging and other types of instrumentation. When using the code patcher
1500// the exact number of bytes specified must be emitted. It is not legal to emit
1501// relocation information. If any of these constraints are violated it causes
1502// an assertion to fail.
1503class CodePatcher {
1504 public:
1505  enum FlushICache { FLUSH, DONT_FLUSH };
1506
1507  CodePatcher(byte* address, int instructions, FlushICache flush_cache = FLUSH);
1508  virtual ~CodePatcher();
1509
1510  // Macro assembler to emit code.
1511  MacroAssembler* masm() { return &masm_; }
1512
1513  // Emit an instruction directly.
1514  void Emit(Instr instr);
1515
1516  // Emit the condition part of an instruction leaving the rest of the current
1517  // instruction unchanged.
1518  void EmitCondition(Condition cond);
1519
1520 private:
1521  byte* address_;            // The address of the code being patched.
1522  int size_;                 // Number of bytes of the expected patch size.
1523  MacroAssembler masm_;      // Macro assembler used to generate the code.
1524  FlushICache flush_cache_;  // Whether to flush the I cache after patching.
1525};
1526
1527
1528// -----------------------------------------------------------------------------
1529// Static helper functions.
1530
1531inline MemOperand ContextOperand(Register context, int index) {
1532  return MemOperand(context, Context::SlotOffset(index));
1533}
1534
1535
1536inline MemOperand GlobalObjectOperand() {
1537  return ContextOperand(cp, Context::GLOBAL_OBJECT_INDEX);
1538}
1539
1540
1541#ifdef GENERATED_CODE_COVERAGE
1542#define CODE_COVERAGE_STRINGIFY(x) #x
1543#define CODE_COVERAGE_TOSTRING(x) CODE_COVERAGE_STRINGIFY(x)
1544#define __FILE_LINE__ __FILE__ ":" CODE_COVERAGE_TOSTRING(__LINE__)
1545#define ACCESS_MASM(masm)    \
1546  masm->stop(__FILE_LINE__); \
1547  masm->
1548#else
1549#define ACCESS_MASM(masm) masm->
1550#endif
1551}
1552}  // namespace v8::internal
1553
1554#endif  // V8_PPC_MACRO_ASSEMBLER_PPC_H_
1555