utils.h revision 3fb3ca8c7ca439d408449a395897395c0faae8d1
1// Copyright 2011 the V8 project authors. All rights reserved.
2// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions are
4// met:
5//
6//     * Redistributions of source code must retain the above copyright
7//       notice, this list of conditions and the following disclaimer.
8//     * Redistributions in binary form must reproduce the above
9//       copyright notice, this list of conditions and the following
10//       disclaimer in the documentation and/or other materials provided
11//       with the distribution.
12//     * Neither the name of Google Inc. nor the names of its
13//       contributors may be used to endorse or promote products derived
14//       from this software without specific prior written permission.
15//
16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28#ifndef V8_UTILS_H_
29#define V8_UTILS_H_
30
31#include <stdlib.h>
32#include <string.h>
33
34#include "globals.h"
35#include "checks.h"
36#include "allocation.h"
37
38namespace v8 {
39namespace internal {
40
41// ----------------------------------------------------------------------------
42// General helper functions
43
44#define IS_POWER_OF_TWO(x) (((x) & ((x) - 1)) == 0)
45
46// Returns true iff x is a power of 2 (or zero). Cannot be used with the
47// maximally negative value of the type T (the -1 overflows).
48template <typename T>
49static inline bool IsPowerOf2(T x) {
50  return IS_POWER_OF_TWO(x);
51}
52
53
54// X must be a power of 2.  Returns the number of trailing zeros.
55static inline int WhichPowerOf2(uint32_t x) {
56  ASSERT(IsPowerOf2(x));
57  ASSERT(x != 0);
58  int bits = 0;
59#ifdef DEBUG
60  int original_x = x;
61#endif
62  if (x >= 0x10000) {
63    bits += 16;
64    x >>= 16;
65  }
66  if (x >= 0x100) {
67    bits += 8;
68    x >>= 8;
69  }
70  if (x >= 0x10) {
71    bits += 4;
72    x >>= 4;
73  }
74  switch (x) {
75    default: UNREACHABLE();
76    case 8: bits++;  // Fall through.
77    case 4: bits++;  // Fall through.
78    case 2: bits++;  // Fall through.
79    case 1: break;
80  }
81  ASSERT_EQ(1 << bits, original_x);
82  return bits;
83  return 0;
84}
85
86
87// The C++ standard leaves the semantics of '>>' undefined for
88// negative signed operands. Most implementations do the right thing,
89// though.
90static inline int ArithmeticShiftRight(int x, int s) {
91  return x >> s;
92}
93
94
95// Compute the 0-relative offset of some absolute value x of type T.
96// This allows conversion of Addresses and integral types into
97// 0-relative int offsets.
98template <typename T>
99static inline intptr_t OffsetFrom(T x) {
100  return x - static_cast<T>(0);
101}
102
103
104// Compute the absolute value of type T for some 0-relative offset x.
105// This allows conversion of 0-relative int offsets into Addresses and
106// integral types.
107template <typename T>
108static inline T AddressFrom(intptr_t x) {
109  return static_cast<T>(static_cast<T>(0) + x);
110}
111
112
113// Return the largest multiple of m which is <= x.
114template <typename T>
115static inline T RoundDown(T x, int m) {
116  ASSERT(IsPowerOf2(m));
117  return AddressFrom<T>(OffsetFrom(x) & -m);
118}
119
120
121// Return the smallest multiple of m which is >= x.
122template <typename T>
123static inline T RoundUp(T x, int m) {
124  return RoundDown(x + m - 1, m);
125}
126
127
128template <typename T>
129static int Compare(const T& a, const T& b) {
130  if (a == b)
131    return 0;
132  else if (a < b)
133    return -1;
134  else
135    return 1;
136}
137
138
139template <typename T>
140static int PointerValueCompare(const T* a, const T* b) {
141  return Compare<T>(*a, *b);
142}
143
144
145// Returns the smallest power of two which is >= x. If you pass in a
146// number that is already a power of two, it is returned as is.
147// Implementation is from "Hacker's Delight" by Henry S. Warren, Jr.,
148// figure 3-3, page 48, where the function is called clp2.
149static inline uint32_t RoundUpToPowerOf2(uint32_t x) {
150  ASSERT(x <= 0x80000000u);
151  x = x - 1;
152  x = x | (x >> 1);
153  x = x | (x >> 2);
154  x = x | (x >> 4);
155  x = x | (x >> 8);
156  x = x | (x >> 16);
157  return x + 1;
158}
159
160
161
162template <typename T>
163static inline bool IsAligned(T value, T alignment) {
164  ASSERT(IsPowerOf2(alignment));
165  return (value & (alignment - 1)) == 0;
166}
167
168
169// Returns true if (addr + offset) is aligned.
170static inline bool IsAddressAligned(Address addr,
171                                    intptr_t alignment,
172                                    int offset) {
173  intptr_t offs = OffsetFrom(addr + offset);
174  return IsAligned(offs, alignment);
175}
176
177
178// Returns the maximum of the two parameters.
179template <typename T>
180static T Max(T a, T b) {
181  return a < b ? b : a;
182}
183
184
185// Returns the minimum of the two parameters.
186template <typename T>
187static T Min(T a, T b) {
188  return a < b ? a : b;
189}
190
191
192inline int StrLength(const char* string) {
193  size_t length = strlen(string);
194  ASSERT(length == static_cast<size_t>(static_cast<int>(length)));
195  return static_cast<int>(length);
196}
197
198
199// ----------------------------------------------------------------------------
200// BitField is a help template for encoding and decode bitfield with
201// unsigned content.
202template<class T, int shift, int size>
203class BitField {
204 public:
205  // Tells whether the provided value fits into the bit field.
206  static bool is_valid(T value) {
207    return (static_cast<uint32_t>(value) & ~((1U << (size)) - 1)) == 0;
208  }
209
210  // Returns a uint32_t mask of bit field.
211  static uint32_t mask() {
212    // To use all bits of a uint32 in a bitfield without compiler warnings we
213    // have to compute 2^32 without using a shift count of 32.
214    return ((1U << shift) << size) - (1U << shift);
215  }
216
217  // Returns a uint32_t with the bit field value encoded.
218  static uint32_t encode(T value) {
219    ASSERT(is_valid(value));
220    return static_cast<uint32_t>(value) << shift;
221  }
222
223  // Returns a uint32_t with the bit field value updated.
224  static uint32_t update(uint32_t previous, T value) {
225    return (previous & ~mask()) | encode(value);
226  }
227
228  // Extracts the bit field from the value.
229  static T decode(uint32_t value) {
230    return static_cast<T>((value & mask()) >> shift);
231  }
232
233  // Value for the field with all bits set.
234  static T max() {
235    return decode(mask());
236  }
237};
238
239
240// ----------------------------------------------------------------------------
241// Hash function.
242
243// Thomas Wang, Integer Hash Functions.
244// http://www.concentric.net/~Ttwang/tech/inthash.htm
245static inline uint32_t ComputeIntegerHash(uint32_t key) {
246  uint32_t hash = key;
247  hash = ~hash + (hash << 15);  // hash = (hash << 15) - hash - 1;
248  hash = hash ^ (hash >> 12);
249  hash = hash + (hash << 2);
250  hash = hash ^ (hash >> 4);
251  hash = hash * 2057;  // hash = (hash + (hash << 3)) + (hash << 11);
252  hash = hash ^ (hash >> 16);
253  return hash;
254}
255
256
257static inline uint32_t ComputePointerHash(void* ptr) {
258  return ComputeIntegerHash(
259      static_cast<uint32_t>(reinterpret_cast<intptr_t>(ptr)));
260}
261
262
263// ----------------------------------------------------------------------------
264// Miscellaneous
265
266// A static resource holds a static instance that can be reserved in
267// a local scope using an instance of Access.  Attempts to re-reserve
268// the instance will cause an error.
269template <typename T>
270class StaticResource {
271 public:
272  StaticResource() : is_reserved_(false)  {}
273
274 private:
275  template <typename S> friend class Access;
276  T instance_;
277  bool is_reserved_;
278};
279
280
281// Locally scoped access to a static resource.
282template <typename T>
283class Access {
284 public:
285  explicit Access(StaticResource<T>* resource)
286    : resource_(resource)
287    , instance_(&resource->instance_) {
288    ASSERT(!resource->is_reserved_);
289    resource->is_reserved_ = true;
290  }
291
292  ~Access() {
293    resource_->is_reserved_ = false;
294    resource_ = NULL;
295    instance_ = NULL;
296  }
297
298  T* value()  { return instance_; }
299  T* operator -> ()  { return instance_; }
300
301 private:
302  StaticResource<T>* resource_;
303  T* instance_;
304};
305
306
307template <typename T>
308class Vector {
309 public:
310  Vector() : start_(NULL), length_(0) {}
311  Vector(T* data, int length) : start_(data), length_(length) {
312    ASSERT(length == 0 || (length > 0 && data != NULL));
313  }
314
315  static Vector<T> New(int length) {
316    return Vector<T>(NewArray<T>(length), length);
317  }
318
319  // Returns a vector using the same backing storage as this one,
320  // spanning from and including 'from', to but not including 'to'.
321  Vector<T> SubVector(int from, int to) {
322    ASSERT(to <= length_);
323    ASSERT(from < to);
324    ASSERT(0 <= from);
325    return Vector<T>(start() + from, to - from);
326  }
327
328  // Returns the length of the vector.
329  int length() const { return length_; }
330
331  // Returns whether or not the vector is empty.
332  bool is_empty() const { return length_ == 0; }
333
334  // Returns the pointer to the start of the data in the vector.
335  T* start() const { return start_; }
336
337  // Access individual vector elements - checks bounds in debug mode.
338  T& operator[](int index) const {
339    ASSERT(0 <= index && index < length_);
340    return start_[index];
341  }
342
343  const T& at(int index) const { return operator[](index); }
344
345  T& first() { return start_[0]; }
346
347  T& last() { return start_[length_ - 1]; }
348
349  // Returns a clone of this vector with a new backing store.
350  Vector<T> Clone() const {
351    T* result = NewArray<T>(length_);
352    for (int i = 0; i < length_; i++) result[i] = start_[i];
353    return Vector<T>(result, length_);
354  }
355
356  void Sort(int (*cmp)(const T*, const T*)) {
357    typedef int (*RawComparer)(const void*, const void*);
358    qsort(start(),
359          length(),
360          sizeof(T),
361          reinterpret_cast<RawComparer>(cmp));
362  }
363
364  void Sort() {
365    Sort(PointerValueCompare<T>);
366  }
367
368  void Truncate(int length) {
369    ASSERT(length <= length_);
370    length_ = length;
371  }
372
373  // Releases the array underlying this vector. Once disposed the
374  // vector is empty.
375  void Dispose() {
376    DeleteArray(start_);
377    start_ = NULL;
378    length_ = 0;
379  }
380
381  inline Vector<T> operator+(int offset) {
382    ASSERT(offset < length_);
383    return Vector<T>(start_ + offset, length_ - offset);
384  }
385
386  // Factory method for creating empty vectors.
387  static Vector<T> empty() { return Vector<T>(NULL, 0); }
388
389  template<typename S>
390  static Vector<T> cast(Vector<S> input) {
391    return Vector<T>(reinterpret_cast<T*>(input.start()),
392                     input.length() * sizeof(S) / sizeof(T));
393  }
394
395 protected:
396  void set_start(T* start) { start_ = start; }
397
398 private:
399  T* start_;
400  int length_;
401};
402
403
404// A pointer that can only be set once and doesn't allow NULL values.
405template<typename T>
406class SetOncePointer {
407 public:
408  SetOncePointer() : pointer_(NULL) { }
409
410  bool is_set() const { return pointer_ != NULL; }
411
412  T* get() const {
413    ASSERT(pointer_ != NULL);
414    return pointer_;
415  }
416
417  void set(T* value) {
418    ASSERT(pointer_ == NULL && value != NULL);
419    pointer_ = value;
420  }
421
422 private:
423  T* pointer_;
424};
425
426
427template <typename T, int kSize>
428class EmbeddedVector : public Vector<T> {
429 public:
430  EmbeddedVector() : Vector<T>(buffer_, kSize) { }
431
432  explicit EmbeddedVector(T initial_value) : Vector<T>(buffer_, kSize) {
433    for (int i = 0; i < kSize; ++i) {
434      buffer_[i] = initial_value;
435    }
436  }
437
438  // When copying, make underlying Vector to reference our buffer.
439  EmbeddedVector(const EmbeddedVector& rhs)
440      : Vector<T>(rhs) {
441    memcpy(buffer_, rhs.buffer_, sizeof(T) * kSize);
442    set_start(buffer_);
443  }
444
445  EmbeddedVector& operator=(const EmbeddedVector& rhs) {
446    if (this == &rhs) return *this;
447    Vector<T>::operator=(rhs);
448    memcpy(buffer_, rhs.buffer_, sizeof(T) * kSize);
449    this->set_start(buffer_);
450    return *this;
451  }
452
453 private:
454  T buffer_[kSize];
455};
456
457
458template <typename T>
459class ScopedVector : public Vector<T> {
460 public:
461  explicit ScopedVector(int length) : Vector<T>(NewArray<T>(length), length) { }
462  ~ScopedVector() {
463    DeleteArray(this->start());
464  }
465
466 private:
467  DISALLOW_IMPLICIT_CONSTRUCTORS(ScopedVector);
468};
469
470
471inline Vector<const char> CStrVector(const char* data) {
472  return Vector<const char>(data, StrLength(data));
473}
474
475inline Vector<char> MutableCStrVector(char* data) {
476  return Vector<char>(data, StrLength(data));
477}
478
479inline Vector<char> MutableCStrVector(char* data, int max) {
480  int length = StrLength(data);
481  return Vector<char>(data, (length < max) ? length : max);
482}
483
484
485/*
486 * A class that collects values into a backing store.
487 * Specialized versions of the class can allow access to the backing store
488 * in different ways.
489 * There is no guarantee that the backing store is contiguous (and, as a
490 * consequence, no guarantees that consecutively added elements are adjacent
491 * in memory). The collector may move elements unless it has guaranteed not
492 * to.
493 */
494template <typename T, int growth_factor = 2, int max_growth = 1 * MB>
495class Collector {
496 public:
497  explicit Collector(int initial_capacity = kMinCapacity)
498      : index_(0), size_(0) {
499    if (initial_capacity < kMinCapacity) {
500      initial_capacity = kMinCapacity;
501    }
502    current_chunk_ = Vector<T>::New(initial_capacity);
503  }
504
505  virtual ~Collector() {
506    // Free backing store (in reverse allocation order).
507    current_chunk_.Dispose();
508    for (int i = chunks_.length() - 1; i >= 0; i--) {
509      chunks_.at(i).Dispose();
510    }
511  }
512
513  // Add a single element.
514  inline void Add(T value) {
515    if (index_ >= current_chunk_.length()) {
516      Grow(1);
517    }
518    current_chunk_[index_] = value;
519    index_++;
520    size_++;
521  }
522
523  // Add a block of contiguous elements and return a Vector backed by the
524  // memory area.
525  // A basic Collector will keep this vector valid as long as the Collector
526  // is alive.
527  inline Vector<T> AddBlock(int size, T initial_value) {
528    ASSERT(size > 0);
529    if (size > current_chunk_.length() - index_) {
530      Grow(size);
531    }
532    T* position = current_chunk_.start() + index_;
533    index_ += size;
534    size_ += size;
535    for (int i = 0; i < size; i++) {
536      position[i] = initial_value;
537    }
538    return Vector<T>(position, size);
539  }
540
541
542  // Add a contiguous block of elements and return a vector backed
543  // by the added block.
544  // A basic Collector will keep this vector valid as long as the Collector
545  // is alive.
546  inline Vector<T> AddBlock(Vector<const T> source) {
547    if (source.length() > current_chunk_.length() - index_) {
548      Grow(source.length());
549    }
550    T* position = current_chunk_.start() + index_;
551    index_ += source.length();
552    size_ += source.length();
553    for (int i = 0; i < source.length(); i++) {
554      position[i] = source[i];
555    }
556    return Vector<T>(position, source.length());
557  }
558
559
560  // Write the contents of the collector into the provided vector.
561  void WriteTo(Vector<T> destination) {
562    ASSERT(size_ <= destination.length());
563    int position = 0;
564    for (int i = 0; i < chunks_.length(); i++) {
565      Vector<T> chunk = chunks_.at(i);
566      for (int j = 0; j < chunk.length(); j++) {
567        destination[position] = chunk[j];
568        position++;
569      }
570    }
571    for (int i = 0; i < index_; i++) {
572      destination[position] = current_chunk_[i];
573      position++;
574    }
575  }
576
577  // Allocate a single contiguous vector, copy all the collected
578  // elements to the vector, and return it.
579  // The caller is responsible for freeing the memory of the returned
580  // vector (e.g., using Vector::Dispose).
581  Vector<T> ToVector() {
582    Vector<T> new_store = Vector<T>::New(size_);
583    WriteTo(new_store);
584    return new_store;
585  }
586
587  // Resets the collector to be empty.
588  virtual void Reset();
589
590  // Total number of elements added to collector so far.
591  inline int size() { return size_; }
592
593 protected:
594  static const int kMinCapacity = 16;
595  List<Vector<T> > chunks_;
596  Vector<T> current_chunk_;  // Block of memory currently being written into.
597  int index_;  // Current index in current chunk.
598  int size_;  // Total number of elements in collector.
599
600  // Creates a new current chunk, and stores the old chunk in the chunks_ list.
601  void Grow(int min_capacity) {
602    ASSERT(growth_factor > 1);
603    int growth = current_chunk_.length() * (growth_factor - 1);
604    if (growth > max_growth) {
605      growth = max_growth;
606    }
607    int new_capacity = current_chunk_.length() + growth;
608    if (new_capacity < min_capacity) {
609      new_capacity = min_capacity + growth;
610    }
611    Vector<T> new_chunk = Vector<T>::New(new_capacity);
612    int new_index = PrepareGrow(new_chunk);
613    if (index_ > 0) {
614      chunks_.Add(current_chunk_.SubVector(0, index_));
615    } else {
616      // Can happen if the call to PrepareGrow moves everything into
617      // the new chunk.
618      current_chunk_.Dispose();
619    }
620    current_chunk_ = new_chunk;
621    index_ = new_index;
622    ASSERT(index_ + min_capacity <= current_chunk_.length());
623  }
624
625  // Before replacing the current chunk, give a subclass the option to move
626  // some of the current data into the new chunk. The function may update
627  // the current index_ value to represent data no longer in the current chunk.
628  // Returns the initial index of the new chunk (after copied data).
629  virtual int PrepareGrow(Vector<T> new_chunk)  {
630    return 0;
631  }
632};
633
634
635/*
636 * A collector that allows sequences of values to be guaranteed to
637 * stay consecutive.
638 * If the backing store grows while a sequence is active, the current
639 * sequence might be moved, but after the sequence is ended, it will
640 * not move again.
641 * NOTICE: Blocks allocated using Collector::AddBlock(int) can move
642 * as well, if inside an active sequence where another element is added.
643 */
644template <typename T, int growth_factor = 2, int max_growth = 1 * MB>
645class SequenceCollector : public Collector<T, growth_factor, max_growth> {
646 public:
647  explicit SequenceCollector(int initial_capacity)
648      : Collector<T, growth_factor, max_growth>(initial_capacity),
649        sequence_start_(kNoSequence) { }
650
651  virtual ~SequenceCollector() {}
652
653  void StartSequence() {
654    ASSERT(sequence_start_ == kNoSequence);
655    sequence_start_ = this->index_;
656  }
657
658  Vector<T> EndSequence() {
659    ASSERT(sequence_start_ != kNoSequence);
660    int sequence_start = sequence_start_;
661    sequence_start_ = kNoSequence;
662    if (sequence_start == this->index_) return Vector<T>();
663    return this->current_chunk_.SubVector(sequence_start, this->index_);
664  }
665
666  // Drops the currently added sequence, and all collected elements in it.
667  void DropSequence() {
668    ASSERT(sequence_start_ != kNoSequence);
669    int sequence_length = this->index_ - sequence_start_;
670    this->index_ = sequence_start_;
671    this->size_ -= sequence_length;
672    sequence_start_ = kNoSequence;
673  }
674
675  virtual void Reset() {
676    sequence_start_ = kNoSequence;
677    this->Collector<T, growth_factor, max_growth>::Reset();
678  }
679
680 private:
681  static const int kNoSequence = -1;
682  int sequence_start_;
683
684  // Move the currently active sequence to the new chunk.
685  virtual int PrepareGrow(Vector<T> new_chunk) {
686    if (sequence_start_ != kNoSequence) {
687      int sequence_length = this->index_ - sequence_start_;
688      // The new chunk is always larger than the current chunk, so there
689      // is room for the copy.
690      ASSERT(sequence_length < new_chunk.length());
691      for (int i = 0; i < sequence_length; i++) {
692        new_chunk[i] = this->current_chunk_[sequence_start_ + i];
693      }
694      this->index_ = sequence_start_;
695      sequence_start_ = 0;
696      return sequence_length;
697    }
698    return 0;
699  }
700};
701
702
703// Compare ASCII/16bit chars to ASCII/16bit chars.
704template <typename lchar, typename rchar>
705static inline int CompareChars(const lchar* lhs, const rchar* rhs, int chars) {
706  const lchar* limit = lhs + chars;
707#ifdef V8_HOST_CAN_READ_UNALIGNED
708  if (sizeof(*lhs) == sizeof(*rhs)) {
709    // Number of characters in a uintptr_t.
710    static const int kStepSize = sizeof(uintptr_t) / sizeof(*lhs);  // NOLINT
711    while (lhs <= limit - kStepSize) {
712      if (*reinterpret_cast<const uintptr_t*>(lhs) !=
713          *reinterpret_cast<const uintptr_t*>(rhs)) {
714        break;
715      }
716      lhs += kStepSize;
717      rhs += kStepSize;
718    }
719  }
720#endif
721  while (lhs < limit) {
722    int r = static_cast<int>(*lhs) - static_cast<int>(*rhs);
723    if (r != 0) return r;
724    ++lhs;
725    ++rhs;
726  }
727  return 0;
728}
729
730
731// Calculate 10^exponent.
732static inline int TenToThe(int exponent) {
733  ASSERT(exponent <= 9);
734  ASSERT(exponent >= 1);
735  int answer = 10;
736  for (int i = 1; i < exponent; i++) answer *= 10;
737  return answer;
738}
739
740
741// The type-based aliasing rule allows the compiler to assume that pointers of
742// different types (for some definition of different) never alias each other.
743// Thus the following code does not work:
744//
745// float f = foo();
746// int fbits = *(int*)(&f);
747//
748// The compiler 'knows' that the int pointer can't refer to f since the types
749// don't match, so the compiler may cache f in a register, leaving random data
750// in fbits.  Using C++ style casts makes no difference, however a pointer to
751// char data is assumed to alias any other pointer.  This is the 'memcpy
752// exception'.
753//
754// Bit_cast uses the memcpy exception to move the bits from a variable of one
755// type of a variable of another type.  Of course the end result is likely to
756// be implementation dependent.  Most compilers (gcc-4.2 and MSVC 2005)
757// will completely optimize BitCast away.
758//
759// There is an additional use for BitCast.
760// Recent gccs will warn when they see casts that may result in breakage due to
761// the type-based aliasing rule.  If you have checked that there is no breakage
762// you can use BitCast to cast one pointer type to another.  This confuses gcc
763// enough that it can no longer see that you have cast one pointer type to
764// another thus avoiding the warning.
765
766// We need different implementations of BitCast for pointer and non-pointer
767// values. We use partial specialization of auxiliary struct to work around
768// issues with template functions overloading.
769template <class Dest, class Source>
770struct BitCastHelper {
771  STATIC_ASSERT(sizeof(Dest) == sizeof(Source));
772
773  INLINE(static Dest cast(const Source& source)) {
774    Dest dest;
775    memcpy(&dest, &source, sizeof(dest));
776    return dest;
777  }
778};
779
780template <class Dest, class Source>
781struct BitCastHelper<Dest, Source*> {
782  INLINE(static Dest cast(Source* source)) {
783    return BitCastHelper<Dest, uintptr_t>::
784        cast(reinterpret_cast<uintptr_t>(source));
785  }
786};
787
788template <class Dest, class Source>
789INLINE(Dest BitCast(const Source& source));
790
791template <class Dest, class Source>
792inline Dest BitCast(const Source& source) {
793  return BitCastHelper<Dest, Source>::cast(source);
794}
795
796
797template<typename ElementType, int NumElements>
798class EmbeddedContainer {
799 public:
800  EmbeddedContainer() : elems_() { }
801
802  int length() { return NumElements; }
803  ElementType& operator[](int i) {
804    ASSERT(i < length());
805    return elems_[i];
806  }
807
808 private:
809  ElementType elems_[NumElements];
810};
811
812
813template<typename ElementType>
814class EmbeddedContainer<ElementType, 0> {
815 public:
816  int length() { return 0; }
817  ElementType& operator[](int i) {
818    UNREACHABLE();
819    static ElementType t = 0;
820    return t;
821  }
822};
823
824
825// Helper class for building result strings in a character buffer. The
826// purpose of the class is to use safe operations that checks the
827// buffer bounds on all operations in debug mode.
828// This simple base class does not allow formatted output.
829class SimpleStringBuilder {
830 public:
831  // Create a string builder with a buffer of the given size. The
832  // buffer is allocated through NewArray<char> and must be
833  // deallocated by the caller of Finalize().
834  explicit SimpleStringBuilder(int size);
835
836  SimpleStringBuilder(char* buffer, int size)
837      : buffer_(buffer, size), position_(0) { }
838
839  ~SimpleStringBuilder() { if (!is_finalized()) Finalize(); }
840
841  int size() const { return buffer_.length(); }
842
843  // Get the current position in the builder.
844  int position() const {
845    ASSERT(!is_finalized());
846    return position_;
847  }
848
849  // Reset the position.
850  void Reset() { position_ = 0; }
851
852  // Add a single character to the builder. It is not allowed to add
853  // 0-characters; use the Finalize() method to terminate the string
854  // instead.
855  void AddCharacter(char c) {
856    ASSERT(c != '\0');
857    ASSERT(!is_finalized() && position_ < buffer_.length());
858    buffer_[position_++] = c;
859  }
860
861  // Add an entire string to the builder. Uses strlen() internally to
862  // compute the length of the input string.
863  void AddString(const char* s);
864
865  // Add the first 'n' characters of the given string 's' to the
866  // builder. The input string must have enough characters.
867  void AddSubstring(const char* s, int n);
868
869  // Add character padding to the builder. If count is non-positive,
870  // nothing is added to the builder.
871  void AddPadding(char c, int count);
872
873  // Add the decimal representation of the value.
874  void AddDecimalInteger(int value);
875
876  // Finalize the string by 0-terminating it and returning the buffer.
877  char* Finalize();
878
879 protected:
880  Vector<char> buffer_;
881  int position_;
882
883  bool is_finalized() const { return position_ < 0; }
884 private:
885  DISALLOW_IMPLICIT_CONSTRUCTORS(SimpleStringBuilder);
886};
887
888} }  // namespace v8::internal
889
890#endif  // V8_UTILS_H_
891