utils.h revision 592a9fc1d8ea420377a2e7efd0600e20b058be2b
1// Copyright 2011 the V8 project authors. All rights reserved.
2// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions are
4// met:
5//
6//     * Redistributions of source code must retain the above copyright
7//       notice, this list of conditions and the following disclaimer.
8//     * Redistributions in binary form must reproduce the above
9//       copyright notice, this list of conditions and the following
10//       disclaimer in the documentation and/or other materials provided
11//       with the distribution.
12//     * Neither the name of Google Inc. nor the names of its
13//       contributors may be used to endorse or promote products derived
14//       from this software without specific prior written permission.
15//
16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28#ifndef V8_UTILS_H_
29#define V8_UTILS_H_
30
31#include <stdlib.h>
32#include <string.h>
33#include <climits>
34
35#include "globals.h"
36#include "checks.h"
37#include "allocation.h"
38
39namespace v8 {
40namespace internal {
41
42// ----------------------------------------------------------------------------
43// General helper functions
44
45#define IS_POWER_OF_TWO(x) (((x) & ((x) - 1)) == 0)
46
47// Returns true iff x is a power of 2 (or zero). Cannot be used with the
48// maximally negative value of the type T (the -1 overflows).
49template <typename T>
50inline bool IsPowerOf2(T x) {
51  return IS_POWER_OF_TWO(x);
52}
53
54
55// X must be a power of 2.  Returns the number of trailing zeros.
56inline int WhichPowerOf2(uint32_t x) {
57  ASSERT(IsPowerOf2(x));
58  ASSERT(x != 0);
59  int bits = 0;
60#ifdef DEBUG
61  int original_x = x;
62#endif
63  if (x >= 0x10000) {
64    bits += 16;
65    x >>= 16;
66  }
67  if (x >= 0x100) {
68    bits += 8;
69    x >>= 8;
70  }
71  if (x >= 0x10) {
72    bits += 4;
73    x >>= 4;
74  }
75  switch (x) {
76    default: UNREACHABLE();
77    case 8: bits++;  // Fall through.
78    case 4: bits++;  // Fall through.
79    case 2: bits++;  // Fall through.
80    case 1: break;
81  }
82  ASSERT_EQ(1 << bits, original_x);
83  return bits;
84  return 0;
85}
86
87
88// The C++ standard leaves the semantics of '>>' undefined for
89// negative signed operands. Most implementations do the right thing,
90// though.
91inline int ArithmeticShiftRight(int x, int s) {
92  return x >> s;
93}
94
95
96// Compute the 0-relative offset of some absolute value x of type T.
97// This allows conversion of Addresses and integral types into
98// 0-relative int offsets.
99template <typename T>
100inline intptr_t OffsetFrom(T x) {
101  return x - static_cast<T>(0);
102}
103
104
105// Compute the absolute value of type T for some 0-relative offset x.
106// This allows conversion of 0-relative int offsets into Addresses and
107// integral types.
108template <typename T>
109inline T AddressFrom(intptr_t x) {
110  return static_cast<T>(static_cast<T>(0) + x);
111}
112
113
114// Return the largest multiple of m which is <= x.
115template <typename T>
116inline T RoundDown(T x, intptr_t m) {
117  ASSERT(IsPowerOf2(m));
118  return AddressFrom<T>(OffsetFrom(x) & -m);
119}
120
121
122// Return the smallest multiple of m which is >= x.
123template <typename T>
124inline T RoundUp(T x, intptr_t m) {
125  return RoundDown<T>(static_cast<T>(x + m - 1), m);
126}
127
128
129template <typename T>
130int Compare(const T& a, const T& b) {
131  if (a == b)
132    return 0;
133  else if (a < b)
134    return -1;
135  else
136    return 1;
137}
138
139
140template <typename T>
141int PointerValueCompare(const T* a, const T* b) {
142  return Compare<T>(*a, *b);
143}
144
145
146// Compare function to compare the object pointer value of two
147// handlified objects. The handles are passed as pointers to the
148// handles.
149template<typename T> class Handle;  // Forward declaration.
150template <typename T>
151int HandleObjectPointerCompare(const Handle<T>* a, const Handle<T>* b) {
152  return Compare<T*>(*(*a), *(*b));
153}
154
155
156// Returns the smallest power of two which is >= x. If you pass in a
157// number that is already a power of two, it is returned as is.
158// Implementation is from "Hacker's Delight" by Henry S. Warren, Jr.,
159// figure 3-3, page 48, where the function is called clp2.
160inline uint32_t RoundUpToPowerOf2(uint32_t x) {
161  ASSERT(x <= 0x80000000u);
162  x = x - 1;
163  x = x | (x >> 1);
164  x = x | (x >> 2);
165  x = x | (x >> 4);
166  x = x | (x >> 8);
167  x = x | (x >> 16);
168  return x + 1;
169}
170
171
172inline uint32_t RoundDownToPowerOf2(uint32_t x) {
173  uint32_t rounded_up = RoundUpToPowerOf2(x);
174  if (rounded_up > x) return rounded_up >> 1;
175  return rounded_up;
176}
177
178
179template <typename T, typename U>
180inline bool IsAligned(T value, U alignment) {
181  return (value & (alignment - 1)) == 0;
182}
183
184
185// Returns true if (addr + offset) is aligned.
186inline bool IsAddressAligned(Address addr,
187                             intptr_t alignment,
188                             int offset = 0) {
189  intptr_t offs = OffsetFrom(addr + offset);
190  return IsAligned(offs, alignment);
191}
192
193
194// Returns the maximum of the two parameters.
195template <typename T>
196T Max(T a, T b) {
197  return a < b ? b : a;
198}
199
200
201// Returns the minimum of the two parameters.
202template <typename T>
203T Min(T a, T b) {
204  return a < b ? a : b;
205}
206
207
208inline int StrLength(const char* string) {
209  size_t length = strlen(string);
210  ASSERT(length == static_cast<size_t>(static_cast<int>(length)));
211  return static_cast<int>(length);
212}
213
214
215// ----------------------------------------------------------------------------
216// BitField is a help template for encoding and decode bitfield with
217// unsigned content.
218template<class T, int shift, int size>
219class BitField {
220 public:
221  // A uint32_t mask of bit field.  To use all bits of a uint32 in a
222  // bitfield without compiler warnings we have to compute 2^32 without
223  // using a shift count of 32.
224  static const uint32_t kMask = ((1U << shift) << size) - (1U << shift);
225
226  // Value for the field with all bits set.
227  static const T kMax = static_cast<T>((1U << size) - 1);
228
229  // Tells whether the provided value fits into the bit field.
230  static bool is_valid(T value) {
231    return (static_cast<uint32_t>(value) & ~static_cast<uint32_t>(kMax)) == 0;
232  }
233
234  // Returns a uint32_t with the bit field value encoded.
235  static uint32_t encode(T value) {
236    ASSERT(is_valid(value));
237    return static_cast<uint32_t>(value) << shift;
238  }
239
240  // Returns a uint32_t with the bit field value updated.
241  static uint32_t update(uint32_t previous, T value) {
242    return (previous & ~kMask) | encode(value);
243  }
244
245  // Extracts the bit field from the value.
246  static T decode(uint32_t value) {
247    return static_cast<T>((value & kMask) >> shift);
248  }
249};
250
251
252// ----------------------------------------------------------------------------
253// Hash function.
254
255// Thomas Wang, Integer Hash Functions.
256// http://www.concentric.net/~Ttwang/tech/inthash.htm
257inline uint32_t ComputeIntegerHash(uint32_t key) {
258  uint32_t hash = key;
259  hash = ~hash + (hash << 15);  // hash = (hash << 15) - hash - 1;
260  hash = hash ^ (hash >> 12);
261  hash = hash + (hash << 2);
262  hash = hash ^ (hash >> 4);
263  hash = hash * 2057;  // hash = (hash + (hash << 3)) + (hash << 11);
264  hash = hash ^ (hash >> 16);
265  return hash;
266}
267
268
269inline uint32_t ComputeLongHash(uint64_t key) {
270  uint64_t hash = key;
271  hash = ~hash + (hash << 18);  // hash = (hash << 18) - hash - 1;
272  hash = hash ^ (hash >> 31);
273  hash = hash * 21;  // hash = (hash + (hash << 2)) + (hash << 4);
274  hash = hash ^ (hash >> 11);
275  hash = hash + (hash << 6);
276  hash = hash ^ (hash >> 22);
277  return (uint32_t) hash;
278}
279
280
281inline uint32_t ComputePointerHash(void* ptr) {
282  return ComputeIntegerHash(
283      static_cast<uint32_t>(reinterpret_cast<intptr_t>(ptr)));
284}
285
286
287// ----------------------------------------------------------------------------
288// Miscellaneous
289
290// A static resource holds a static instance that can be reserved in
291// a local scope using an instance of Access.  Attempts to re-reserve
292// the instance will cause an error.
293template <typename T>
294class StaticResource {
295 public:
296  StaticResource() : is_reserved_(false)  {}
297
298 private:
299  template <typename S> friend class Access;
300  T instance_;
301  bool is_reserved_;
302};
303
304
305// Locally scoped access to a static resource.
306template <typename T>
307class Access {
308 public:
309  explicit Access(StaticResource<T>* resource)
310    : resource_(resource)
311    , instance_(&resource->instance_) {
312    ASSERT(!resource->is_reserved_);
313    resource->is_reserved_ = true;
314  }
315
316  ~Access() {
317    resource_->is_reserved_ = false;
318    resource_ = NULL;
319    instance_ = NULL;
320  }
321
322  T* value()  { return instance_; }
323  T* operator -> ()  { return instance_; }
324
325 private:
326  StaticResource<T>* resource_;
327  T* instance_;
328};
329
330
331template <typename T>
332class Vector {
333 public:
334  Vector() : start_(NULL), length_(0) {}
335  Vector(T* data, int length) : start_(data), length_(length) {
336    ASSERT(length == 0 || (length > 0 && data != NULL));
337  }
338
339  static Vector<T> New(int length) {
340    return Vector<T>(NewArray<T>(length), length);
341  }
342
343  // Returns a vector using the same backing storage as this one,
344  // spanning from and including 'from', to but not including 'to'.
345  Vector<T> SubVector(int from, int to) {
346    ASSERT(to <= length_);
347    ASSERT(from < to);
348    ASSERT(0 <= from);
349    return Vector<T>(start() + from, to - from);
350  }
351
352  // Returns the length of the vector.
353  int length() const { return length_; }
354
355  // Returns whether or not the vector is empty.
356  bool is_empty() const { return length_ == 0; }
357
358  // Returns the pointer to the start of the data in the vector.
359  T* start() const { return start_; }
360
361  // Access individual vector elements - checks bounds in debug mode.
362  T& operator[](int index) const {
363    ASSERT(0 <= index && index < length_);
364    return start_[index];
365  }
366
367  const T& at(int index) const { return operator[](index); }
368
369  T& first() { return start_[0]; }
370
371  T& last() { return start_[length_ - 1]; }
372
373  // Returns a clone of this vector with a new backing store.
374  Vector<T> Clone() const {
375    T* result = NewArray<T>(length_);
376    for (int i = 0; i < length_; i++) result[i] = start_[i];
377    return Vector<T>(result, length_);
378  }
379
380  void Sort(int (*cmp)(const T*, const T*)) {
381    typedef int (*RawComparer)(const void*, const void*);
382    qsort(start(),
383          length(),
384          sizeof(T),
385          reinterpret_cast<RawComparer>(cmp));
386  }
387
388  void Sort() {
389    Sort(PointerValueCompare<T>);
390  }
391
392  void Truncate(int length) {
393    ASSERT(length <= length_);
394    length_ = length;
395  }
396
397  // Releases the array underlying this vector. Once disposed the
398  // vector is empty.
399  void Dispose() {
400    DeleteArray(start_);
401    start_ = NULL;
402    length_ = 0;
403  }
404
405  inline Vector<T> operator+(int offset) {
406    ASSERT(offset < length_);
407    return Vector<T>(start_ + offset, length_ - offset);
408  }
409
410  // Factory method for creating empty vectors.
411  static Vector<T> empty() { return Vector<T>(NULL, 0); }
412
413  template<typename S>
414  static Vector<T> cast(Vector<S> input) {
415    return Vector<T>(reinterpret_cast<T*>(input.start()),
416                     input.length() * sizeof(S) / sizeof(T));
417  }
418
419 protected:
420  void set_start(T* start) { start_ = start; }
421
422 private:
423  T* start_;
424  int length_;
425};
426
427
428// A pointer that can only be set once and doesn't allow NULL values.
429template<typename T>
430class SetOncePointer {
431 public:
432  SetOncePointer() : pointer_(NULL) { }
433
434  bool is_set() const { return pointer_ != NULL; }
435
436  T* get() const {
437    ASSERT(pointer_ != NULL);
438    return pointer_;
439  }
440
441  void set(T* value) {
442    ASSERT(pointer_ == NULL && value != NULL);
443    pointer_ = value;
444  }
445
446 private:
447  T* pointer_;
448};
449
450
451template <typename T, int kSize>
452class EmbeddedVector : public Vector<T> {
453 public:
454  EmbeddedVector() : Vector<T>(buffer_, kSize) { }
455
456  explicit EmbeddedVector(T initial_value) : Vector<T>(buffer_, kSize) {
457    for (int i = 0; i < kSize; ++i) {
458      buffer_[i] = initial_value;
459    }
460  }
461
462  // When copying, make underlying Vector to reference our buffer.
463  EmbeddedVector(const EmbeddedVector& rhs)
464      : Vector<T>(rhs) {
465    memcpy(buffer_, rhs.buffer_, sizeof(T) * kSize);
466    set_start(buffer_);
467  }
468
469  EmbeddedVector& operator=(const EmbeddedVector& rhs) {
470    if (this == &rhs) return *this;
471    Vector<T>::operator=(rhs);
472    memcpy(buffer_, rhs.buffer_, sizeof(T) * kSize);
473    this->set_start(buffer_);
474    return *this;
475  }
476
477 private:
478  T buffer_[kSize];
479};
480
481
482template <typename T>
483class ScopedVector : public Vector<T> {
484 public:
485  explicit ScopedVector(int length) : Vector<T>(NewArray<T>(length), length) { }
486  ~ScopedVector() {
487    DeleteArray(this->start());
488  }
489
490 private:
491  DISALLOW_IMPLICIT_CONSTRUCTORS(ScopedVector);
492};
493
494
495inline Vector<const char> CStrVector(const char* data) {
496  return Vector<const char>(data, StrLength(data));
497}
498
499inline Vector<char> MutableCStrVector(char* data) {
500  return Vector<char>(data, StrLength(data));
501}
502
503inline Vector<char> MutableCStrVector(char* data, int max) {
504  int length = StrLength(data);
505  return Vector<char>(data, (length < max) ? length : max);
506}
507
508
509/*
510 * A class that collects values into a backing store.
511 * Specialized versions of the class can allow access to the backing store
512 * in different ways.
513 * There is no guarantee that the backing store is contiguous (and, as a
514 * consequence, no guarantees that consecutively added elements are adjacent
515 * in memory). The collector may move elements unless it has guaranteed not
516 * to.
517 */
518template <typename T, int growth_factor = 2, int max_growth = 1 * MB>
519class Collector {
520 public:
521  explicit Collector(int initial_capacity = kMinCapacity)
522      : index_(0), size_(0) {
523    current_chunk_ = Vector<T>::New(initial_capacity);
524  }
525
526  virtual ~Collector() {
527    // Free backing store (in reverse allocation order).
528    current_chunk_.Dispose();
529    for (int i = chunks_.length() - 1; i >= 0; i--) {
530      chunks_.at(i).Dispose();
531    }
532  }
533
534  // Add a single element.
535  inline void Add(T value) {
536    if (index_ >= current_chunk_.length()) {
537      Grow(1);
538    }
539    current_chunk_[index_] = value;
540    index_++;
541    size_++;
542  }
543
544  // Add a block of contiguous elements and return a Vector backed by the
545  // memory area.
546  // A basic Collector will keep this vector valid as long as the Collector
547  // is alive.
548  inline Vector<T> AddBlock(int size, T initial_value) {
549    ASSERT(size > 0);
550    if (size > current_chunk_.length() - index_) {
551      Grow(size);
552    }
553    T* position = current_chunk_.start() + index_;
554    index_ += size;
555    size_ += size;
556    for (int i = 0; i < size; i++) {
557      position[i] = initial_value;
558    }
559    return Vector<T>(position, size);
560  }
561
562
563  // Add a contiguous block of elements and return a vector backed
564  // by the added block.
565  // A basic Collector will keep this vector valid as long as the Collector
566  // is alive.
567  inline Vector<T> AddBlock(Vector<const T> source) {
568    if (source.length() > current_chunk_.length() - index_) {
569      Grow(source.length());
570    }
571    T* position = current_chunk_.start() + index_;
572    index_ += source.length();
573    size_ += source.length();
574    for (int i = 0; i < source.length(); i++) {
575      position[i] = source[i];
576    }
577    return Vector<T>(position, source.length());
578  }
579
580
581  // Write the contents of the collector into the provided vector.
582  void WriteTo(Vector<T> destination) {
583    ASSERT(size_ <= destination.length());
584    int position = 0;
585    for (int i = 0; i < chunks_.length(); i++) {
586      Vector<T> chunk = chunks_.at(i);
587      for (int j = 0; j < chunk.length(); j++) {
588        destination[position] = chunk[j];
589        position++;
590      }
591    }
592    for (int i = 0; i < index_; i++) {
593      destination[position] = current_chunk_[i];
594      position++;
595    }
596  }
597
598  // Allocate a single contiguous vector, copy all the collected
599  // elements to the vector, and return it.
600  // The caller is responsible for freeing the memory of the returned
601  // vector (e.g., using Vector::Dispose).
602  Vector<T> ToVector() {
603    Vector<T> new_store = Vector<T>::New(size_);
604    WriteTo(new_store);
605    return new_store;
606  }
607
608  // Resets the collector to be empty.
609  virtual void Reset();
610
611  // Total number of elements added to collector so far.
612  inline int size() { return size_; }
613
614 protected:
615  static const int kMinCapacity = 16;
616  List<Vector<T> > chunks_;
617  Vector<T> current_chunk_;  // Block of memory currently being written into.
618  int index_;  // Current index in current chunk.
619  int size_;  // Total number of elements in collector.
620
621  // Creates a new current chunk, and stores the old chunk in the chunks_ list.
622  void Grow(int min_capacity) {
623    ASSERT(growth_factor > 1);
624    int new_capacity;
625    int current_length = current_chunk_.length();
626    if (current_length < kMinCapacity) {
627      // The collector started out as empty.
628      new_capacity = min_capacity * growth_factor;
629      if (new_capacity < kMinCapacity) new_capacity = kMinCapacity;
630    } else {
631      int growth = current_length * (growth_factor - 1);
632      if (growth > max_growth) {
633        growth = max_growth;
634      }
635      new_capacity = current_length + growth;
636      if (new_capacity < min_capacity) {
637        new_capacity = min_capacity + growth;
638      }
639    }
640    NewChunk(new_capacity);
641    ASSERT(index_ + min_capacity <= current_chunk_.length());
642  }
643
644  // Before replacing the current chunk, give a subclass the option to move
645  // some of the current data into the new chunk. The function may update
646  // the current index_ value to represent data no longer in the current chunk.
647  // Returns the initial index of the new chunk (after copied data).
648  virtual void NewChunk(int new_capacity)  {
649    Vector<T> new_chunk = Vector<T>::New(new_capacity);
650    if (index_ > 0) {
651      chunks_.Add(current_chunk_.SubVector(0, index_));
652    } else {
653      current_chunk_.Dispose();
654    }
655    current_chunk_ = new_chunk;
656    index_ = 0;
657  }
658};
659
660
661/*
662 * A collector that allows sequences of values to be guaranteed to
663 * stay consecutive.
664 * If the backing store grows while a sequence is active, the current
665 * sequence might be moved, but after the sequence is ended, it will
666 * not move again.
667 * NOTICE: Blocks allocated using Collector::AddBlock(int) can move
668 * as well, if inside an active sequence where another element is added.
669 */
670template <typename T, int growth_factor = 2, int max_growth = 1 * MB>
671class SequenceCollector : public Collector<T, growth_factor, max_growth> {
672 public:
673  explicit SequenceCollector(int initial_capacity)
674      : Collector<T, growth_factor, max_growth>(initial_capacity),
675        sequence_start_(kNoSequence) { }
676
677  virtual ~SequenceCollector() {}
678
679  void StartSequence() {
680    ASSERT(sequence_start_ == kNoSequence);
681    sequence_start_ = this->index_;
682  }
683
684  Vector<T> EndSequence() {
685    ASSERT(sequence_start_ != kNoSequence);
686    int sequence_start = sequence_start_;
687    sequence_start_ = kNoSequence;
688    if (sequence_start == this->index_) return Vector<T>();
689    return this->current_chunk_.SubVector(sequence_start, this->index_);
690  }
691
692  // Drops the currently added sequence, and all collected elements in it.
693  void DropSequence() {
694    ASSERT(sequence_start_ != kNoSequence);
695    int sequence_length = this->index_ - sequence_start_;
696    this->index_ = sequence_start_;
697    this->size_ -= sequence_length;
698    sequence_start_ = kNoSequence;
699  }
700
701  virtual void Reset() {
702    sequence_start_ = kNoSequence;
703    this->Collector<T, growth_factor, max_growth>::Reset();
704  }
705
706 private:
707  static const int kNoSequence = -1;
708  int sequence_start_;
709
710  // Move the currently active sequence to the new chunk.
711  virtual void NewChunk(int new_capacity) {
712    if (sequence_start_ == kNoSequence) {
713      // Fall back on default behavior if no sequence has been started.
714      this->Collector<T, growth_factor, max_growth>::NewChunk(new_capacity);
715      return;
716    }
717    int sequence_length = this->index_ - sequence_start_;
718    Vector<T> new_chunk = Vector<T>::New(sequence_length + new_capacity);
719    ASSERT(sequence_length < new_chunk.length());
720    for (int i = 0; i < sequence_length; i++) {
721      new_chunk[i] = this->current_chunk_[sequence_start_ + i];
722    }
723    if (sequence_start_ > 0) {
724      this->chunks_.Add(this->current_chunk_.SubVector(0, sequence_start_));
725    } else {
726      this->current_chunk_.Dispose();
727    }
728    this->current_chunk_ = new_chunk;
729    this->index_ = sequence_length;
730    sequence_start_ = 0;
731  }
732};
733
734
735// Compare ASCII/16bit chars to ASCII/16bit chars.
736template <typename lchar, typename rchar>
737inline int CompareChars(const lchar* lhs, const rchar* rhs, int chars) {
738  const lchar* limit = lhs + chars;
739#ifdef V8_HOST_CAN_READ_UNALIGNED
740  if (sizeof(*lhs) == sizeof(*rhs)) {
741    // Number of characters in a uintptr_t.
742    static const int kStepSize = sizeof(uintptr_t) / sizeof(*lhs);  // NOLINT
743    while (lhs <= limit - kStepSize) {
744      if (*reinterpret_cast<const uintptr_t*>(lhs) !=
745          *reinterpret_cast<const uintptr_t*>(rhs)) {
746        break;
747      }
748      lhs += kStepSize;
749      rhs += kStepSize;
750    }
751  }
752#endif
753  while (lhs < limit) {
754    int r = static_cast<int>(*lhs) - static_cast<int>(*rhs);
755    if (r != 0) return r;
756    ++lhs;
757    ++rhs;
758  }
759  return 0;
760}
761
762
763// Calculate 10^exponent.
764inline int TenToThe(int exponent) {
765  ASSERT(exponent <= 9);
766  ASSERT(exponent >= 1);
767  int answer = 10;
768  for (int i = 1; i < exponent; i++) answer *= 10;
769  return answer;
770}
771
772
773// The type-based aliasing rule allows the compiler to assume that pointers of
774// different types (for some definition of different) never alias each other.
775// Thus the following code does not work:
776//
777// float f = foo();
778// int fbits = *(int*)(&f);
779//
780// The compiler 'knows' that the int pointer can't refer to f since the types
781// don't match, so the compiler may cache f in a register, leaving random data
782// in fbits.  Using C++ style casts makes no difference, however a pointer to
783// char data is assumed to alias any other pointer.  This is the 'memcpy
784// exception'.
785//
786// Bit_cast uses the memcpy exception to move the bits from a variable of one
787// type of a variable of another type.  Of course the end result is likely to
788// be implementation dependent.  Most compilers (gcc-4.2 and MSVC 2005)
789// will completely optimize BitCast away.
790//
791// There is an additional use for BitCast.
792// Recent gccs will warn when they see casts that may result in breakage due to
793// the type-based aliasing rule.  If you have checked that there is no breakage
794// you can use BitCast to cast one pointer type to another.  This confuses gcc
795// enough that it can no longer see that you have cast one pointer type to
796// another thus avoiding the warning.
797
798// We need different implementations of BitCast for pointer and non-pointer
799// values. We use partial specialization of auxiliary struct to work around
800// issues with template functions overloading.
801template <class Dest, class Source>
802struct BitCastHelper {
803  STATIC_ASSERT(sizeof(Dest) == sizeof(Source));
804
805  INLINE(static Dest cast(const Source& source)) {
806    Dest dest;
807    memcpy(&dest, &source, sizeof(dest));
808    return dest;
809  }
810};
811
812template <class Dest, class Source>
813struct BitCastHelper<Dest, Source*> {
814  INLINE(static Dest cast(Source* source)) {
815    return BitCastHelper<Dest, uintptr_t>::
816        cast(reinterpret_cast<uintptr_t>(source));
817  }
818};
819
820template <class Dest, class Source>
821INLINE(Dest BitCast(const Source& source));
822
823template <class Dest, class Source>
824inline Dest BitCast(const Source& source) {
825  return BitCastHelper<Dest, Source>::cast(source);
826}
827
828
829template<typename ElementType, int NumElements>
830class EmbeddedContainer {
831 public:
832  EmbeddedContainer() : elems_() { }
833
834  int length() { return NumElements; }
835  ElementType& operator[](int i) {
836    ASSERT(i < length());
837    return elems_[i];
838  }
839
840 private:
841  ElementType elems_[NumElements];
842};
843
844
845template<typename ElementType>
846class EmbeddedContainer<ElementType, 0> {
847 public:
848  int length() { return 0; }
849  ElementType& operator[](int i) {
850    UNREACHABLE();
851    static ElementType t = 0;
852    return t;
853  }
854};
855
856
857// Helper class for building result strings in a character buffer. The
858// purpose of the class is to use safe operations that checks the
859// buffer bounds on all operations in debug mode.
860// This simple base class does not allow formatted output.
861class SimpleStringBuilder {
862 public:
863  // Create a string builder with a buffer of the given size. The
864  // buffer is allocated through NewArray<char> and must be
865  // deallocated by the caller of Finalize().
866  explicit SimpleStringBuilder(int size);
867
868  SimpleStringBuilder(char* buffer, int size)
869      : buffer_(buffer, size), position_(0) { }
870
871  ~SimpleStringBuilder() { if (!is_finalized()) Finalize(); }
872
873  int size() const { return buffer_.length(); }
874
875  // Get the current position in the builder.
876  int position() const {
877    ASSERT(!is_finalized());
878    return position_;
879  }
880
881  // Reset the position.
882  void Reset() { position_ = 0; }
883
884  // Add a single character to the builder. It is not allowed to add
885  // 0-characters; use the Finalize() method to terminate the string
886  // instead.
887  void AddCharacter(char c) {
888    ASSERT(c != '\0');
889    ASSERT(!is_finalized() && position_ < buffer_.length());
890    buffer_[position_++] = c;
891  }
892
893  // Add an entire string to the builder. Uses strlen() internally to
894  // compute the length of the input string.
895  void AddString(const char* s);
896
897  // Add the first 'n' characters of the given string 's' to the
898  // builder. The input string must have enough characters.
899  void AddSubstring(const char* s, int n);
900
901  // Add character padding to the builder. If count is non-positive,
902  // nothing is added to the builder.
903  void AddPadding(char c, int count);
904
905  // Add the decimal representation of the value.
906  void AddDecimalInteger(int value);
907
908  // Finalize the string by 0-terminating it and returning the buffer.
909  char* Finalize();
910
911 protected:
912  Vector<char> buffer_;
913  int position_;
914
915  bool is_finalized() const { return position_ < 0; }
916
917 private:
918  DISALLOW_IMPLICIT_CONSTRUCTORS(SimpleStringBuilder);
919};
920
921
922// A poor man's version of STL's bitset: A bit set of enums E (without explicit
923// values), fitting into an integral type T.
924template <class E, class T = int>
925class EnumSet {
926 public:
927  explicit EnumSet(T bits = 0) : bits_(bits) {}
928  bool IsEmpty() const { return bits_ == 0; }
929  bool Contains(E element) const { return (bits_ & Mask(element)) != 0; }
930  void Add(E element) { bits_ |= Mask(element); }
931  void Remove(E element) { bits_ &= ~Mask(element); }
932  T ToIntegral() const { return bits_; }
933
934 private:
935  T Mask(E element) const {
936    // The strange typing in ASSERT is necessary to avoid stupid warnings, see:
937    // http://gcc.gnu.org/bugzilla/show_bug.cgi?id=43680
938    ASSERT(element < static_cast<int>(sizeof(T) * CHAR_BIT));
939    return 1 << element;
940  }
941
942  T bits_;
943};
944
945} }  // namespace v8::internal
946
947#endif  // V8_UTILS_H_
948