deflate.c revision 09eb358bbbb9aad3fe48dd3368c8a7a481cbda1c
1/* deflate.c -- compress data using the deflation algorithm
2 * Copyright (C) 1995-2012 Jean-loup Gailly and Mark Adler
3 * For conditions of distribution and use, see copyright notice in zlib.h
4 */
5
6/*
7 *  ALGORITHM
8 *
9 *      The "deflation" process depends on being able to identify portions
10 *      of the input text which are identical to earlier input (within a
11 *      sliding window trailing behind the input currently being processed).
12 *
13 *      The most straightforward technique turns out to be the fastest for
14 *      most input files: try all possible matches and select the longest.
15 *      The key feature of this algorithm is that insertions into the string
16 *      dictionary are very simple and thus fast, and deletions are avoided
17 *      completely. Insertions are performed at each input character, whereas
18 *      string matches are performed only when the previous match ends. So it
19 *      is preferable to spend more time in matches to allow very fast string
20 *      insertions and avoid deletions. The matching algorithm for small
21 *      strings is inspired from that of Rabin & Karp. A brute force approach
22 *      is used to find longer strings when a small match has been found.
23 *      A similar algorithm is used in comic (by Jan-Mark Wams) and freeze
24 *      (by Leonid Broukhis).
25 *         A previous version of this file used a more sophisticated algorithm
26 *      (by Fiala and Greene) which is guaranteed to run in linear amortized
27 *      time, but has a larger average cost, uses more memory and is patented.
28 *      However the F&G algorithm may be faster for some highly redundant
29 *      files if the parameter max_chain_length (described below) is too large.
30 *
31 *  ACKNOWLEDGEMENTS
32 *
33 *      The idea of lazy evaluation of matches is due to Jan-Mark Wams, and
34 *      I found it in 'freeze' written by Leonid Broukhis.
35 *      Thanks to many people for bug reports and testing.
36 *
37 *  REFERENCES
38 *
39 *      Deutsch, L.P.,"DEFLATE Compressed Data Format Specification".
40 *      Available in http://tools.ietf.org/html/rfc1951
41 *
42 *      A description of the Rabin and Karp algorithm is given in the book
43 *         "Algorithms" by R. Sedgewick, Addison-Wesley, p252.
44 *
45 *      Fiala,E.R., and Greene,D.H.
46 *         Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595
47 *
48 */
49
50/* @(#) $Id$ */
51
52#include "deflate.h"
53
54const char deflate_copyright[] =
55   " deflate 1.2.7 Copyright 1995-2012 Jean-loup Gailly and Mark Adler ";
56/*
57  If you use the zlib library in a product, an acknowledgment is welcome
58  in the documentation of your product. If for some reason you cannot
59  include such an acknowledgment, I would appreciate that you keep this
60  copyright string in the executable of your product.
61 */
62
63/* ===========================================================================
64 *  Function prototypes.
65 */
66typedef enum {
67    need_more,      /* block not completed, need more input or more output */
68    block_done,     /* block flush performed */
69    finish_started, /* finish started, need only more output at next deflate */
70    finish_done     /* finish done, accept no more input or output */
71} block_state;
72
73typedef block_state (*compress_func) OF((deflate_state *s, int flush));
74/* Compression function. Returns the block state after the call. */
75
76local void fill_window    OF((deflate_state *s));
77local block_state deflate_stored OF((deflate_state *s, int flush));
78local block_state deflate_fast   OF((deflate_state *s, int flush));
79#ifndef FASTEST
80local block_state deflate_slow   OF((deflate_state *s, int flush));
81#endif
82local block_state deflate_rle    OF((deflate_state *s, int flush));
83local block_state deflate_huff   OF((deflate_state *s, int flush));
84local void lm_init        OF((deflate_state *s));
85local void putShortMSB    OF((deflate_state *s, uInt b));
86local void flush_pending  OF((z_streamp strm));
87local int read_buf        OF((z_streamp strm, Bytef *buf, unsigned size));
88#ifdef ASMV
89      void match_init OF((void)); /* asm code initialization */
90      uInt longest_match  OF((deflate_state *s, IPos cur_match));
91#else
92local uInt longest_match  OF((deflate_state *s, IPos cur_match));
93#endif
94
95#ifdef DEBUG
96local  void check_match OF((deflate_state *s, IPos start, IPos match,
97                            int length));
98#endif
99
100/* ===========================================================================
101 * Local data
102 */
103
104#define NIL 0
105/* Tail of hash chains */
106
107#ifndef TOO_FAR
108#  define TOO_FAR 4096
109#endif
110/* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
111
112/* Values for max_lazy_match, good_match and max_chain_length, depending on
113 * the desired pack level (0..9). The values given below have been tuned to
114 * exclude worst case performance for pathological files. Better values may be
115 * found for specific files.
116 */
117typedef struct config_s {
118   ush good_length; /* reduce lazy search above this match length */
119   ush max_lazy;    /* do not perform lazy search above this match length */
120   ush nice_length; /* quit search above this match length */
121   ush max_chain;
122   compress_func func;
123} config;
124
125#ifdef FASTEST
126local const config configuration_table[2] = {
127/*      good lazy nice chain */
128/* 0 */ {0,    0,  0,    0, deflate_stored},  /* store only */
129/* 1 */ {4,    4,  8,    4, deflate_fast}}; /* max speed, no lazy matches */
130#else
131local const config configuration_table[10] = {
132/*      good lazy nice chain */
133/* 0 */ {0,    0,  0,    0, deflate_stored},  /* store only */
134/* 1 */ {4,    4,  8,    4, deflate_fast}, /* max speed, no lazy matches */
135/* 2 */ {4,    5, 16,    8, deflate_fast},
136/* 3 */ {4,    6, 32,   32, deflate_fast},
137
138/* 4 */ {4,    4, 16,   16, deflate_slow},  /* lazy matches */
139/* 5 */ {8,   16, 32,   32, deflate_slow},
140/* 6 */ {8,   16, 128, 128, deflate_slow},
141/* 7 */ {8,   32, 128, 256, deflate_slow},
142/* 8 */ {32, 128, 258, 1024, deflate_slow},
143/* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* max compression */
144#endif
145
146/* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
147 * For deflate_fast() (levels <= 3) good is ignored and lazy has a different
148 * meaning.
149 */
150
151#define EQUAL 0
152/* result of memcmp for equal strings */
153
154#ifndef NO_DUMMY_DECL
155struct static_tree_desc_s {int dummy;}; /* for buggy compilers */
156#endif
157
158/* rank Z_BLOCK between Z_NO_FLUSH and Z_PARTIAL_FLUSH */
159#define RANK(f) (((f) << 1) - ((f) > 4 ? 9 : 0))
160
161/* ===========================================================================
162 * Update a hash value with the given input byte
163 * IN  assertion: all calls to to UPDATE_HASH are made with consecutive
164 *    input characters, so that a running hash key can be computed from the
165 *    previous key instead of complete recalculation each time.
166 */
167#define UPDATE_HASH(s,h,c) (h = (((h)<<s->hash_shift) ^ (c)) & s->hash_mask)
168
169
170/* ===========================================================================
171 * Insert string str in the dictionary and set match_head to the previous head
172 * of the hash chain (the most recent string with same hash key). Return
173 * the previous length of the hash chain.
174 * If this file is compiled with -DFASTEST, the compression level is forced
175 * to 1, and no hash chains are maintained.
176 * IN  assertion: all calls to to INSERT_STRING are made with consecutive
177 *    input characters and the first MIN_MATCH bytes of str are valid
178 *    (except for the last MIN_MATCH-1 bytes of the input file).
179 */
180#ifdef FASTEST
181#define INSERT_STRING(s, str, match_head) \
182   (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
183    match_head = s->head[s->ins_h], \
184    s->head[s->ins_h] = (Pos)(str))
185#else
186#define INSERT_STRING(s, str, match_head) \
187   (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
188    match_head = s->prev[(str) & s->w_mask] = s->head[s->ins_h], \
189    s->head[s->ins_h] = (Pos)(str))
190#endif
191
192/* ===========================================================================
193 * Initialize the hash table (avoiding 64K overflow for 16 bit systems).
194 * prev[] will be initialized on the fly.
195 */
196#define CLEAR_HASH(s) \
197    s->head[s->hash_size-1] = NIL; \
198    zmemzero((Bytef *)s->head, (unsigned)(s->hash_size-1)*sizeof(*s->head));
199
200/* ========================================================================= */
201int ZEXPORT deflateInit_(strm, level, version, stream_size)
202    z_streamp strm;
203    int level;
204    const char *version;
205    int stream_size;
206{
207    return deflateInit2_(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL,
208                         Z_DEFAULT_STRATEGY, version, stream_size);
209    /* To do: ignore strm->next_in if we use it as window */
210}
211
212/* ========================================================================= */
213int ZEXPORT deflateInit2_(strm, level, method, windowBits, memLevel, strategy,
214                  version, stream_size)
215    z_streamp strm;
216    int  level;
217    int  method;
218    int  windowBits;
219    int  memLevel;
220    int  strategy;
221    const char *version;
222    int stream_size;
223{
224    deflate_state *s;
225    int wrap = 1;
226    static const char my_version[] = ZLIB_VERSION;
227
228    ushf *overlay;
229    /* We overlay pending_buf and d_buf+l_buf. This works since the average
230     * output size for (length,distance) codes is <= 24 bits.
231     */
232
233    if (version == Z_NULL || version[0] != my_version[0] ||
234        stream_size != sizeof(z_stream)) {
235        return Z_VERSION_ERROR;
236    }
237    if (strm == Z_NULL) return Z_STREAM_ERROR;
238
239    strm->msg = Z_NULL;
240    if (strm->zalloc == (alloc_func)0) {
241#ifdef Z_SOLO
242        return Z_STREAM_ERROR;
243#else
244        strm->zalloc = zcalloc;
245        strm->opaque = (voidpf)0;
246#endif
247    }
248    if (strm->zfree == (free_func)0)
249#ifdef Z_SOLO
250        return Z_STREAM_ERROR;
251#else
252        strm->zfree = zcfree;
253#endif
254
255#ifdef FASTEST
256    if (level != 0) level = 1;
257#else
258    if (level == Z_DEFAULT_COMPRESSION) level = 6;
259#endif
260
261    if (windowBits < 0) { /* suppress zlib wrapper */
262        wrap = 0;
263        windowBits = -windowBits;
264    }
265#ifdef GZIP
266    else if (windowBits > 15) {
267        wrap = 2;       /* write gzip wrapper instead */
268        windowBits -= 16;
269    }
270#endif
271    if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED ||
272        windowBits < 8 || windowBits > 15 || level < 0 || level > 9 ||
273        strategy < 0 || strategy > Z_FIXED) {
274        return Z_STREAM_ERROR;
275    }
276    if (windowBits == 8) windowBits = 9;  /* until 256-byte window bug fixed */
277    s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state));
278    if (s == Z_NULL) return Z_MEM_ERROR;
279    strm->state = (struct internal_state FAR *)s;
280    s->strm = strm;
281
282    s->wrap = wrap;
283    s->gzhead = Z_NULL;
284    s->w_bits = windowBits;
285    s->w_size = 1 << s->w_bits;
286    s->w_mask = s->w_size - 1;
287
288    s->hash_bits = memLevel + 7;
289    s->hash_size = 1 << s->hash_bits;
290    s->hash_mask = s->hash_size - 1;
291    s->hash_shift =  ((s->hash_bits+MIN_MATCH-1)/MIN_MATCH);
292
293    s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof(Byte));
294    s->prev   = (Posf *)  ZALLOC(strm, s->w_size, sizeof(Pos));
295    s->head   = (Posf *)  ZALLOC(strm, s->hash_size, sizeof(Pos));
296
297    s->high_water = 0;      /* nothing written to s->window yet */
298
299    s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */
300
301    overlay = (ushf *) ZALLOC(strm, s->lit_bufsize, sizeof(ush)+2);
302    s->pending_buf = (uchf *) overlay;
303    s->pending_buf_size = (ulg)s->lit_bufsize * (sizeof(ush)+2L);
304
305    if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL ||
306        s->pending_buf == Z_NULL) {
307        s->status = FINISH_STATE;
308        strm->msg = (char*)ERR_MSG(Z_MEM_ERROR);
309        deflateEnd (strm);
310        return Z_MEM_ERROR;
311    }
312    s->d_buf = overlay + s->lit_bufsize/sizeof(ush);
313    s->l_buf = s->pending_buf + (1+sizeof(ush))*s->lit_bufsize;
314
315    s->level = level;
316    s->strategy = strategy;
317    s->method = (Byte)method;
318
319    return deflateReset(strm);
320}
321
322/* ========================================================================= */
323int ZEXPORT deflateSetDictionary (strm, dictionary, dictLength)
324    z_streamp strm;
325    const Bytef *dictionary;
326    uInt  dictLength;
327{
328    deflate_state *s;
329    uInt str, n;
330    int wrap;
331    unsigned avail;
332    unsigned char *next;
333
334    if (strm == Z_NULL || strm->state == Z_NULL || dictionary == Z_NULL)
335        return Z_STREAM_ERROR;
336    s = strm->state;
337    wrap = s->wrap;
338    if (wrap == 2 || (wrap == 1 && s->status != INIT_STATE) || s->lookahead)
339        return Z_STREAM_ERROR;
340
341    /* when using zlib wrappers, compute Adler-32 for provided dictionary */
342    if (wrap == 1)
343        strm->adler = adler32(strm->adler, dictionary, dictLength);
344    s->wrap = 0;                    /* avoid computing Adler-32 in read_buf */
345
346    /* if dictionary would fill window, just replace the history */
347    if (dictLength >= s->w_size) {
348        if (wrap == 0) {            /* already empty otherwise */
349            CLEAR_HASH(s);
350            s->strstart = 0;
351            s->block_start = 0L;
352            s->insert = 0;
353        }
354        dictionary += dictLength - s->w_size;  /* use the tail */
355        dictLength = s->w_size;
356    }
357
358    /* insert dictionary into window and hash */
359    avail = strm->avail_in;
360    next = strm->next_in;
361    strm->avail_in = dictLength;
362    strm->next_in = (Bytef *)dictionary;
363    fill_window(s);
364    while (s->lookahead >= MIN_MATCH) {
365        str = s->strstart;
366        n = s->lookahead - (MIN_MATCH-1);
367        do {
368            UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]);
369#ifndef FASTEST
370            s->prev[str & s->w_mask] = s->head[s->ins_h];
371#endif
372            s->head[s->ins_h] = (Pos)str;
373            str++;
374        } while (--n);
375        s->strstart = str;
376        s->lookahead = MIN_MATCH-1;
377        fill_window(s);
378    }
379    s->strstart += s->lookahead;
380    s->block_start = (long)s->strstart;
381    s->insert = s->lookahead;
382    s->lookahead = 0;
383    s->match_length = s->prev_length = MIN_MATCH-1;
384    s->match_available = 0;
385    strm->next_in = next;
386    strm->avail_in = avail;
387    s->wrap = wrap;
388    return Z_OK;
389}
390
391/* ========================================================================= */
392int ZEXPORT deflateResetKeep (strm)
393    z_streamp strm;
394{
395    deflate_state *s;
396
397    if (strm == Z_NULL || strm->state == Z_NULL ||
398        strm->zalloc == (alloc_func)0 || strm->zfree == (free_func)0) {
399        return Z_STREAM_ERROR;
400    }
401
402    strm->total_in = strm->total_out = 0;
403    strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */
404    strm->data_type = Z_UNKNOWN;
405
406    s = (deflate_state *)strm->state;
407    s->pending = 0;
408    s->pending_out = s->pending_buf;
409
410    if (s->wrap < 0) {
411        s->wrap = -s->wrap; /* was made negative by deflate(..., Z_FINISH); */
412    }
413    s->status = s->wrap ? INIT_STATE : BUSY_STATE;
414    strm->adler =
415#ifdef GZIP
416        s->wrap == 2 ? crc32(0L, Z_NULL, 0) :
417#endif
418        adler32(0L, Z_NULL, 0);
419    s->last_flush = Z_NO_FLUSH;
420
421    _tr_init(s);
422
423    return Z_OK;
424}
425
426/* ========================================================================= */
427int ZEXPORT deflateReset (strm)
428    z_streamp strm;
429{
430    int ret;
431
432    ret = deflateResetKeep(strm);
433    if (ret == Z_OK)
434        lm_init(strm->state);
435    return ret;
436}
437
438/* ========================================================================= */
439int ZEXPORT deflateSetHeader (strm, head)
440    z_streamp strm;
441    gz_headerp head;
442{
443    if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
444    if (strm->state->wrap != 2) return Z_STREAM_ERROR;
445    strm->state->gzhead = head;
446    return Z_OK;
447}
448
449/* ========================================================================= */
450int ZEXPORT deflatePending (strm, pending, bits)
451    unsigned *pending;
452    int *bits;
453    z_streamp strm;
454{
455    if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
456    if (pending != Z_NULL)
457        *pending = strm->state->pending;
458    if (bits != Z_NULL)
459        *bits = strm->state->bi_valid;
460    return Z_OK;
461}
462
463/* ========================================================================= */
464int ZEXPORT deflatePrime (strm, bits, value)
465    z_streamp strm;
466    int bits;
467    int value;
468{
469    deflate_state *s;
470    int put;
471
472    if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
473    s = strm->state;
474    if ((Bytef *)(s->d_buf) < s->pending_out + ((Buf_size + 7) >> 3))
475        return Z_BUF_ERROR;
476    do {
477        put = Buf_size - s->bi_valid;
478        if (put > bits)
479            put = bits;
480        s->bi_buf |= (ush)((value & ((1 << put) - 1)) << s->bi_valid);
481        s->bi_valid += put;
482        _tr_flush_bits(s);
483        value >>= put;
484        bits -= put;
485    } while (bits);
486    return Z_OK;
487}
488
489/* ========================================================================= */
490int ZEXPORT deflateParams(strm, level, strategy)
491    z_streamp strm;
492    int level;
493    int strategy;
494{
495    deflate_state *s;
496    compress_func func;
497    int err = Z_OK;
498
499    if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
500    s = strm->state;
501
502#ifdef FASTEST
503    if (level != 0) level = 1;
504#else
505    if (level == Z_DEFAULT_COMPRESSION) level = 6;
506#endif
507    if (level < 0 || level > 9 || strategy < 0 || strategy > Z_FIXED) {
508        return Z_STREAM_ERROR;
509    }
510    func = configuration_table[s->level].func;
511
512    if ((strategy != s->strategy || func != configuration_table[level].func) &&
513        strm->total_in != 0) {
514        /* Flush the last buffer: */
515        err = deflate(strm, Z_BLOCK);
516    }
517    if (s->level != level) {
518        s->level = level;
519        s->max_lazy_match   = configuration_table[level].max_lazy;
520        s->good_match       = configuration_table[level].good_length;
521        s->nice_match       = configuration_table[level].nice_length;
522        s->max_chain_length = configuration_table[level].max_chain;
523    }
524    s->strategy = strategy;
525    return err;
526}
527
528/* ========================================================================= */
529int ZEXPORT deflateTune(strm, good_length, max_lazy, nice_length, max_chain)
530    z_streamp strm;
531    int good_length;
532    int max_lazy;
533    int nice_length;
534    int max_chain;
535{
536    deflate_state *s;
537
538    if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
539    s = strm->state;
540    s->good_match = good_length;
541    s->max_lazy_match = max_lazy;
542    s->nice_match = nice_length;
543    s->max_chain_length = max_chain;
544    return Z_OK;
545}
546
547/* =========================================================================
548 * For the default windowBits of 15 and memLevel of 8, this function returns
549 * a close to exact, as well as small, upper bound on the compressed size.
550 * They are coded as constants here for a reason--if the #define's are
551 * changed, then this function needs to be changed as well.  The return
552 * value for 15 and 8 only works for those exact settings.
553 *
554 * For any setting other than those defaults for windowBits and memLevel,
555 * the value returned is a conservative worst case for the maximum expansion
556 * resulting from using fixed blocks instead of stored blocks, which deflate
557 * can emit on compressed data for some combinations of the parameters.
558 *
559 * This function could be more sophisticated to provide closer upper bounds for
560 * every combination of windowBits and memLevel.  But even the conservative
561 * upper bound of about 14% expansion does not seem onerous for output buffer
562 * allocation.
563 */
564uLong ZEXPORT deflateBound(strm, sourceLen)
565    z_streamp strm;
566    uLong sourceLen;
567{
568    deflate_state *s;
569    uLong complen, wraplen;
570    Bytef *str;
571
572    /* conservative upper bound for compressed data */
573    complen = sourceLen +
574              ((sourceLen + 7) >> 3) + ((sourceLen + 63) >> 6) + 5;
575
576    /* if can't get parameters, return conservative bound plus zlib wrapper */
577    if (strm == Z_NULL || strm->state == Z_NULL)
578        return complen + 6;
579
580    /* compute wrapper length */
581    s = strm->state;
582    switch (s->wrap) {
583    case 0:                                 /* raw deflate */
584        wraplen = 0;
585        break;
586    case 1:                                 /* zlib wrapper */
587        wraplen = 6 + (s->strstart ? 4 : 0);
588        break;
589    case 2:                                 /* gzip wrapper */
590        wraplen = 18;
591        if (s->gzhead != Z_NULL) {          /* user-supplied gzip header */
592            if (s->gzhead->extra != Z_NULL)
593                wraplen += 2 + s->gzhead->extra_len;
594            str = s->gzhead->name;
595            if (str != Z_NULL)
596                do {
597                    wraplen++;
598                } while (*str++);
599            str = s->gzhead->comment;
600            if (str != Z_NULL)
601                do {
602                    wraplen++;
603                } while (*str++);
604            if (s->gzhead->hcrc)
605                wraplen += 2;
606        }
607        break;
608    default:                                /* for compiler happiness */
609        wraplen = 6;
610    }
611
612    /* if not default parameters, return conservative bound */
613    if (s->w_bits != 15 || s->hash_bits != 8 + 7)
614        return complen + wraplen;
615
616    /* default settings: return tight bound for that case */
617    return sourceLen + (sourceLen >> 12) + (sourceLen >> 14) +
618           (sourceLen >> 25) + 13 - 6 + wraplen;
619}
620
621/* =========================================================================
622 * Put a short in the pending buffer. The 16-bit value is put in MSB order.
623 * IN assertion: the stream state is correct and there is enough room in
624 * pending_buf.
625 */
626local void putShortMSB (s, b)
627    deflate_state *s;
628    uInt b;
629{
630    put_byte(s, (Byte)(b >> 8));
631    put_byte(s, (Byte)(b & 0xff));
632}
633
634/* =========================================================================
635 * Flush as much pending output as possible. All deflate() output goes
636 * through this function so some applications may wish to modify it
637 * to avoid allocating a large strm->next_out buffer and copying into it.
638 * (See also read_buf()).
639 */
640local void flush_pending(strm)
641    z_streamp strm;
642{
643    unsigned len;
644    deflate_state *s = strm->state;
645
646    _tr_flush_bits(s);
647    len = s->pending;
648    if (len > strm->avail_out) len = strm->avail_out;
649    if (len == 0) return;
650
651    zmemcpy(strm->next_out, s->pending_out, len);
652    strm->next_out  += len;
653    s->pending_out  += len;
654    strm->total_out += len;
655    strm->avail_out  -= len;
656    s->pending -= len;
657    if (s->pending == 0) {
658        s->pending_out = s->pending_buf;
659    }
660}
661
662/* ========================================================================= */
663int ZEXPORT deflate (strm, flush)
664    z_streamp strm;
665    int flush;
666{
667    int old_flush; /* value of flush param for previous deflate call */
668    deflate_state *s;
669
670    if (strm == Z_NULL || strm->state == Z_NULL ||
671        flush > Z_BLOCK || flush < 0) {
672        return Z_STREAM_ERROR;
673    }
674    s = strm->state;
675
676    if (strm->next_out == Z_NULL ||
677        (strm->next_in == Z_NULL && strm->avail_in != 0) ||
678        (s->status == FINISH_STATE && flush != Z_FINISH)) {
679        ERR_RETURN(strm, Z_STREAM_ERROR);
680    }
681    if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR);
682
683    s->strm = strm; /* just in case */
684    old_flush = s->last_flush;
685    s->last_flush = flush;
686
687    /* Write the header */
688    if (s->status == INIT_STATE) {
689#ifdef GZIP
690        if (s->wrap == 2) {
691            strm->adler = crc32(0L, Z_NULL, 0);
692            put_byte(s, 31);
693            put_byte(s, 139);
694            put_byte(s, 8);
695            if (s->gzhead == Z_NULL) {
696                put_byte(s, 0);
697                put_byte(s, 0);
698                put_byte(s, 0);
699                put_byte(s, 0);
700                put_byte(s, 0);
701                put_byte(s, s->level == 9 ? 2 :
702                            (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
703                             4 : 0));
704                put_byte(s, OS_CODE);
705                s->status = BUSY_STATE;
706            }
707            else {
708                put_byte(s, (s->gzhead->text ? 1 : 0) +
709                            (s->gzhead->hcrc ? 2 : 0) +
710                            (s->gzhead->extra == Z_NULL ? 0 : 4) +
711                            (s->gzhead->name == Z_NULL ? 0 : 8) +
712                            (s->gzhead->comment == Z_NULL ? 0 : 16)
713                        );
714                put_byte(s, (Byte)(s->gzhead->time & 0xff));
715                put_byte(s, (Byte)((s->gzhead->time >> 8) & 0xff));
716                put_byte(s, (Byte)((s->gzhead->time >> 16) & 0xff));
717                put_byte(s, (Byte)((s->gzhead->time >> 24) & 0xff));
718                put_byte(s, s->level == 9 ? 2 :
719                            (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
720                             4 : 0));
721                put_byte(s, s->gzhead->os & 0xff);
722                if (s->gzhead->extra != Z_NULL) {
723                    put_byte(s, s->gzhead->extra_len & 0xff);
724                    put_byte(s, (s->gzhead->extra_len >> 8) & 0xff);
725                }
726                if (s->gzhead->hcrc)
727                    strm->adler = crc32(strm->adler, s->pending_buf,
728                                        s->pending);
729                s->gzindex = 0;
730                s->status = EXTRA_STATE;
731            }
732        }
733        else
734#endif
735        {
736            uInt header = (Z_DEFLATED + ((s->w_bits-8)<<4)) << 8;
737            uInt level_flags;
738
739            if (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2)
740                level_flags = 0;
741            else if (s->level < 6)
742                level_flags = 1;
743            else if (s->level == 6)
744                level_flags = 2;
745            else
746                level_flags = 3;
747            header |= (level_flags << 6);
748            if (s->strstart != 0) header |= PRESET_DICT;
749            header += 31 - (header % 31);
750
751            s->status = BUSY_STATE;
752            putShortMSB(s, header);
753
754            /* Save the adler32 of the preset dictionary: */
755            if (s->strstart != 0) {
756                putShortMSB(s, (uInt)(strm->adler >> 16));
757                putShortMSB(s, (uInt)(strm->adler & 0xffff));
758            }
759            strm->adler = adler32(0L, Z_NULL, 0);
760        }
761    }
762#ifdef GZIP
763    if (s->status == EXTRA_STATE) {
764        if (s->gzhead->extra != Z_NULL) {
765            uInt beg = s->pending;  /* start of bytes to update crc */
766
767            while (s->gzindex < (s->gzhead->extra_len & 0xffff)) {
768                if (s->pending == s->pending_buf_size) {
769                    if (s->gzhead->hcrc && s->pending > beg)
770                        strm->adler = crc32(strm->adler, s->pending_buf + beg,
771                                            s->pending - beg);
772                    flush_pending(strm);
773                    beg = s->pending;
774                    if (s->pending == s->pending_buf_size)
775                        break;
776                }
777                put_byte(s, s->gzhead->extra[s->gzindex]);
778                s->gzindex++;
779            }
780            if (s->gzhead->hcrc && s->pending > beg)
781                strm->adler = crc32(strm->adler, s->pending_buf + beg,
782                                    s->pending - beg);
783            if (s->gzindex == s->gzhead->extra_len) {
784                s->gzindex = 0;
785                s->status = NAME_STATE;
786            }
787        }
788        else
789            s->status = NAME_STATE;
790    }
791    if (s->status == NAME_STATE) {
792        if (s->gzhead->name != Z_NULL) {
793            uInt beg = s->pending;  /* start of bytes to update crc */
794            int val;
795
796            do {
797                if (s->pending == s->pending_buf_size) {
798                    if (s->gzhead->hcrc && s->pending > beg)
799                        strm->adler = crc32(strm->adler, s->pending_buf + beg,
800                                            s->pending - beg);
801                    flush_pending(strm);
802                    beg = s->pending;
803                    if (s->pending == s->pending_buf_size) {
804                        val = 1;
805                        break;
806                    }
807                }
808                val = s->gzhead->name[s->gzindex++];
809                put_byte(s, val);
810            } while (val != 0);
811            if (s->gzhead->hcrc && s->pending > beg)
812                strm->adler = crc32(strm->adler, s->pending_buf + beg,
813                                    s->pending - beg);
814            if (val == 0) {
815                s->gzindex = 0;
816                s->status = COMMENT_STATE;
817            }
818        }
819        else
820            s->status = COMMENT_STATE;
821    }
822    if (s->status == COMMENT_STATE) {
823        if (s->gzhead->comment != Z_NULL) {
824            uInt beg = s->pending;  /* start of bytes to update crc */
825            int val;
826
827            do {
828                if (s->pending == s->pending_buf_size) {
829                    if (s->gzhead->hcrc && s->pending > beg)
830                        strm->adler = crc32(strm->adler, s->pending_buf + beg,
831                                            s->pending - beg);
832                    flush_pending(strm);
833                    beg = s->pending;
834                    if (s->pending == s->pending_buf_size) {
835                        val = 1;
836                        break;
837                    }
838                }
839                val = s->gzhead->comment[s->gzindex++];
840                put_byte(s, val);
841            } while (val != 0);
842            if (s->gzhead->hcrc && s->pending > beg)
843                strm->adler = crc32(strm->adler, s->pending_buf + beg,
844                                    s->pending - beg);
845            if (val == 0)
846                s->status = HCRC_STATE;
847        }
848        else
849            s->status = HCRC_STATE;
850    }
851    if (s->status == HCRC_STATE) {
852        if (s->gzhead->hcrc) {
853            if (s->pending + 2 > s->pending_buf_size)
854                flush_pending(strm);
855            if (s->pending + 2 <= s->pending_buf_size) {
856                put_byte(s, (Byte)(strm->adler & 0xff));
857                put_byte(s, (Byte)((strm->adler >> 8) & 0xff));
858                strm->adler = crc32(0L, Z_NULL, 0);
859                s->status = BUSY_STATE;
860            }
861        }
862        else
863            s->status = BUSY_STATE;
864    }
865#endif
866
867    /* Flush as much pending output as possible */
868    if (s->pending != 0) {
869        flush_pending(strm);
870        if (strm->avail_out == 0) {
871            /* Since avail_out is 0, deflate will be called again with
872             * more output space, but possibly with both pending and
873             * avail_in equal to zero. There won't be anything to do,
874             * but this is not an error situation so make sure we
875             * return OK instead of BUF_ERROR at next call of deflate:
876             */
877            s->last_flush = -1;
878            return Z_OK;
879        }
880
881    /* Make sure there is something to do and avoid duplicate consecutive
882     * flushes. For repeated and useless calls with Z_FINISH, we keep
883     * returning Z_STREAM_END instead of Z_BUF_ERROR.
884     */
885    } else if (strm->avail_in == 0 && RANK(flush) <= RANK(old_flush) &&
886               flush != Z_FINISH) {
887        ERR_RETURN(strm, Z_BUF_ERROR);
888    }
889
890    /* User must not provide more input after the first FINISH: */
891    if (s->status == FINISH_STATE && strm->avail_in != 0) {
892        ERR_RETURN(strm, Z_BUF_ERROR);
893    }
894
895    /* Start a new block or continue the current one.
896     */
897    if (strm->avail_in != 0 || s->lookahead != 0 ||
898        (flush != Z_NO_FLUSH && s->status != FINISH_STATE)) {
899        block_state bstate;
900
901        bstate = s->strategy == Z_HUFFMAN_ONLY ? deflate_huff(s, flush) :
902                    (s->strategy == Z_RLE ? deflate_rle(s, flush) :
903                        (*(configuration_table[s->level].func))(s, flush));
904
905        if (bstate == finish_started || bstate == finish_done) {
906            s->status = FINISH_STATE;
907        }
908        if (bstate == need_more || bstate == finish_started) {
909            if (strm->avail_out == 0) {
910                s->last_flush = -1; /* avoid BUF_ERROR next call, see above */
911            }
912            return Z_OK;
913            /* If flush != Z_NO_FLUSH && avail_out == 0, the next call
914             * of deflate should use the same flush parameter to make sure
915             * that the flush is complete. So we don't have to output an
916             * empty block here, this will be done at next call. This also
917             * ensures that for a very small output buffer, we emit at most
918             * one empty block.
919             */
920        }
921        if (bstate == block_done) {
922            if (flush == Z_PARTIAL_FLUSH) {
923                _tr_align(s);
924            } else if (flush != Z_BLOCK) { /* FULL_FLUSH or SYNC_FLUSH */
925                _tr_stored_block(s, (char*)0, 0L, 0);
926                /* For a full flush, this empty block will be recognized
927                 * as a special marker by inflate_sync().
928                 */
929                if (flush == Z_FULL_FLUSH) {
930                    CLEAR_HASH(s);             /* forget history */
931                    if (s->lookahead == 0) {
932                        s->strstart = 0;
933                        s->block_start = 0L;
934                        s->insert = 0;
935                    }
936                }
937            }
938            flush_pending(strm);
939            if (strm->avail_out == 0) {
940              s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */
941              return Z_OK;
942            }
943        }
944    }
945    Assert(strm->avail_out > 0, "bug2");
946
947    if (flush != Z_FINISH) return Z_OK;
948    if (s->wrap <= 0) return Z_STREAM_END;
949
950    /* Write the trailer */
951#ifdef GZIP
952    if (s->wrap == 2) {
953        put_byte(s, (Byte)(strm->adler & 0xff));
954        put_byte(s, (Byte)((strm->adler >> 8) & 0xff));
955        put_byte(s, (Byte)((strm->adler >> 16) & 0xff));
956        put_byte(s, (Byte)((strm->adler >> 24) & 0xff));
957        put_byte(s, (Byte)(strm->total_in & 0xff));
958        put_byte(s, (Byte)((strm->total_in >> 8) & 0xff));
959        put_byte(s, (Byte)((strm->total_in >> 16) & 0xff));
960        put_byte(s, (Byte)((strm->total_in >> 24) & 0xff));
961    }
962    else
963#endif
964    {
965        putShortMSB(s, (uInt)(strm->adler >> 16));
966        putShortMSB(s, (uInt)(strm->adler & 0xffff));
967    }
968    flush_pending(strm);
969    /* If avail_out is zero, the application will call deflate again
970     * to flush the rest.
971     */
972    if (s->wrap > 0) s->wrap = -s->wrap; /* write the trailer only once! */
973    return s->pending != 0 ? Z_OK : Z_STREAM_END;
974}
975
976/* ========================================================================= */
977int ZEXPORT deflateEnd (strm)
978    z_streamp strm;
979{
980    int status;
981
982    if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
983
984    status = strm->state->status;
985    if (status != INIT_STATE &&
986        status != EXTRA_STATE &&
987        status != NAME_STATE &&
988        status != COMMENT_STATE &&
989        status != HCRC_STATE &&
990        status != BUSY_STATE &&
991        status != FINISH_STATE) {
992      return Z_STREAM_ERROR;
993    }
994
995    /* Deallocate in reverse order of allocations: */
996    TRY_FREE(strm, strm->state->pending_buf);
997    TRY_FREE(strm, strm->state->head);
998    TRY_FREE(strm, strm->state->prev);
999    TRY_FREE(strm, strm->state->window);
1000
1001    ZFREE(strm, strm->state);
1002    strm->state = Z_NULL;
1003
1004    return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK;
1005}
1006
1007/* =========================================================================
1008 * Copy the source state to the destination state.
1009 * To simplify the source, this is not supported for 16-bit MSDOS (which
1010 * doesn't have enough memory anyway to duplicate compression states).
1011 */
1012int ZEXPORT deflateCopy (dest, source)
1013    z_streamp dest;
1014    z_streamp source;
1015{
1016#ifdef MAXSEG_64K
1017    return Z_STREAM_ERROR;
1018#else
1019    deflate_state *ds;
1020    deflate_state *ss;
1021    ushf *overlay;
1022
1023
1024    if (source == Z_NULL || dest == Z_NULL || source->state == Z_NULL) {
1025        return Z_STREAM_ERROR;
1026    }
1027
1028    ss = source->state;
1029
1030    zmemcpy((voidpf)dest, (voidpf)source, sizeof(z_stream));
1031
1032    ds = (deflate_state *) ZALLOC(dest, 1, sizeof(deflate_state));
1033    if (ds == Z_NULL) return Z_MEM_ERROR;
1034    dest->state = (struct internal_state FAR *) ds;
1035    zmemcpy((voidpf)ds, (voidpf)ss, sizeof(deflate_state));
1036    ds->strm = dest;
1037
1038    ds->window = (Bytef *) ZALLOC(dest, ds->w_size, 2*sizeof(Byte));
1039    ds->prev   = (Posf *)  ZALLOC(dest, ds->w_size, sizeof(Pos));
1040    ds->head   = (Posf *)  ZALLOC(dest, ds->hash_size, sizeof(Pos));
1041    overlay = (ushf *) ZALLOC(dest, ds->lit_bufsize, sizeof(ush)+2);
1042    ds->pending_buf = (uchf *) overlay;
1043
1044    if (ds->window == Z_NULL || ds->prev == Z_NULL || ds->head == Z_NULL ||
1045        ds->pending_buf == Z_NULL) {
1046        deflateEnd (dest);
1047        return Z_MEM_ERROR;
1048    }
1049    /* following zmemcpy do not work for 16-bit MSDOS */
1050    zmemcpy(ds->window, ss->window, ds->w_size * 2 * sizeof(Byte));
1051    zmemcpy((voidpf)ds->prev, (voidpf)ss->prev, ds->w_size * sizeof(Pos));
1052    zmemcpy((voidpf)ds->head, (voidpf)ss->head, ds->hash_size * sizeof(Pos));
1053    zmemcpy(ds->pending_buf, ss->pending_buf, (uInt)ds->pending_buf_size);
1054
1055    ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf);
1056    ds->d_buf = overlay + ds->lit_bufsize/sizeof(ush);
1057    ds->l_buf = ds->pending_buf + (1+sizeof(ush))*ds->lit_bufsize;
1058
1059    ds->l_desc.dyn_tree = ds->dyn_ltree;
1060    ds->d_desc.dyn_tree = ds->dyn_dtree;
1061    ds->bl_desc.dyn_tree = ds->bl_tree;
1062
1063    return Z_OK;
1064#endif /* MAXSEG_64K */
1065}
1066
1067/* ===========================================================================
1068 * Read a new buffer from the current input stream, update the adler32
1069 * and total number of bytes read.  All deflate() input goes through
1070 * this function so some applications may wish to modify it to avoid
1071 * allocating a large strm->next_in buffer and copying from it.
1072 * (See also flush_pending()).
1073 */
1074local int read_buf(strm, buf, size)
1075    z_streamp strm;
1076    Bytef *buf;
1077    unsigned size;
1078{
1079    unsigned len = strm->avail_in;
1080
1081    if (len > size) len = size;
1082    if (len == 0) return 0;
1083
1084    strm->avail_in  -= len;
1085
1086    zmemcpy(buf, strm->next_in, len);
1087    if (strm->state->wrap == 1) {
1088        strm->adler = adler32(strm->adler, buf, len);
1089    }
1090#ifdef GZIP
1091    else if (strm->state->wrap == 2) {
1092        strm->adler = crc32(strm->adler, buf, len);
1093    }
1094#endif
1095    strm->next_in  += len;
1096    strm->total_in += len;
1097
1098    return (int)len;
1099}
1100
1101/* ===========================================================================
1102 * Initialize the "longest match" routines for a new zlib stream
1103 */
1104local void lm_init (s)
1105    deflate_state *s;
1106{
1107    s->window_size = (ulg)2L*s->w_size;
1108
1109    CLEAR_HASH(s);
1110
1111    /* Set the default configuration parameters:
1112     */
1113    s->max_lazy_match   = configuration_table[s->level].max_lazy;
1114    s->good_match       = configuration_table[s->level].good_length;
1115    s->nice_match       = configuration_table[s->level].nice_length;
1116    s->max_chain_length = configuration_table[s->level].max_chain;
1117
1118    s->strstart = 0;
1119    s->block_start = 0L;
1120    s->lookahead = 0;
1121    s->insert = 0;
1122    s->match_length = s->prev_length = MIN_MATCH-1;
1123    s->match_available = 0;
1124    s->ins_h = 0;
1125#ifndef FASTEST
1126#ifdef ASMV
1127    match_init(); /* initialize the asm code */
1128#endif
1129#endif
1130}
1131
1132#ifndef FASTEST
1133/* ===========================================================================
1134 * Set match_start to the longest match starting at the given string and
1135 * return its length. Matches shorter or equal to prev_length are discarded,
1136 * in which case the result is equal to prev_length and match_start is
1137 * garbage.
1138 * IN assertions: cur_match is the head of the hash chain for the current
1139 *   string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
1140 * OUT assertion: the match length is not greater than s->lookahead.
1141 */
1142#ifndef ASMV
1143/* For 80x86 and 680x0, an optimized version will be provided in match.asm or
1144 * match.S. The code will be functionally equivalent.
1145 */
1146local uInt longest_match(s, cur_match)
1147    deflate_state *s;
1148    IPos cur_match;                             /* current match */
1149{
1150    unsigned chain_length = s->max_chain_length;/* max hash chain length */
1151    register Bytef *scan = s->window + s->strstart; /* current string */
1152    register Bytef *match;                       /* matched string */
1153    register int len;                           /* length of current match */
1154    int best_len = s->prev_length;              /* best match length so far */
1155    int nice_match = s->nice_match;             /* stop if match long enough */
1156    IPos limit = s->strstart > (IPos)MAX_DIST(s) ?
1157        s->strstart - (IPos)MAX_DIST(s) : NIL;
1158    /* Stop when cur_match becomes <= limit. To simplify the code,
1159     * we prevent matches with the string of window index 0.
1160     */
1161    Posf *prev = s->prev;
1162    uInt wmask = s->w_mask;
1163
1164#ifdef UNALIGNED_OK
1165    /* Compare two bytes at a time. Note: this is not always beneficial.
1166     * Try with and without -DUNALIGNED_OK to check.
1167     */
1168    register Bytef *strend = s->window + s->strstart + MAX_MATCH - 1;
1169    register ush scan_start = *(ushf*)scan;
1170    register ush scan_end   = *(ushf*)(scan+best_len-1);
1171#else
1172    register Bytef *strend = s->window + s->strstart + MAX_MATCH;
1173    register Byte scan_end1  = scan[best_len-1];
1174    register Byte scan_end   = scan[best_len];
1175#endif
1176
1177    /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1178     * It is easy to get rid of this optimization if necessary.
1179     */
1180    Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1181
1182    /* Do not waste too much time if we already have a good match: */
1183    if (s->prev_length >= s->good_match) {
1184        chain_length >>= 2;
1185    }
1186    /* Do not look for matches beyond the end of the input. This is necessary
1187     * to make deflate deterministic.
1188     */
1189    if ((uInt)nice_match > s->lookahead) nice_match = s->lookahead;
1190
1191    Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
1192
1193    do {
1194        Assert(cur_match < s->strstart, "no future");
1195        match = s->window + cur_match;
1196
1197        /* Skip to next match if the match length cannot increase
1198         * or if the match length is less than 2.  Note that the checks below
1199         * for insufficient lookahead only occur occasionally for performance
1200         * reasons.  Therefore uninitialized memory will be accessed, and
1201         * conditional jumps will be made that depend on those values.
1202         * However the length of the match is limited to the lookahead, so
1203         * the output of deflate is not affected by the uninitialized values.
1204         */
1205#if (defined(UNALIGNED_OK) && MAX_MATCH == 258)
1206        /* This code assumes sizeof(unsigned short) == 2. Do not use
1207         * UNALIGNED_OK if your compiler uses a different size.
1208         */
1209        if (*(ushf*)(match+best_len-1) != scan_end ||
1210            *(ushf*)match != scan_start) continue;
1211
1212        /* It is not necessary to compare scan[2] and match[2] since they are
1213         * always equal when the other bytes match, given that the hash keys
1214         * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at
1215         * strstart+3, +5, ... up to strstart+257. We check for insufficient
1216         * lookahead only every 4th comparison; the 128th check will be made
1217         * at strstart+257. If MAX_MATCH-2 is not a multiple of 8, it is
1218         * necessary to put more guard bytes at the end of the window, or
1219         * to check more often for insufficient lookahead.
1220         */
1221        Assert(scan[2] == match[2], "scan[2]?");
1222        scan++, match++;
1223        do {
1224        } while (*(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1225                 *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1226                 *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1227                 *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1228                 scan < strend);
1229        /* The funny "do {}" generates better code on most compilers */
1230
1231        /* Here, scan <= window+strstart+257 */
1232        Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1233        if (*scan == *match) scan++;
1234
1235        len = (MAX_MATCH - 1) - (int)(strend-scan);
1236        scan = strend - (MAX_MATCH-1);
1237
1238#else /* UNALIGNED_OK */
1239
1240        if (match[best_len]   != scan_end  ||
1241            match[best_len-1] != scan_end1 ||
1242            *match            != *scan     ||
1243            *++match          != scan[1])      continue;
1244
1245        /* The check at best_len-1 can be removed because it will be made
1246         * again later. (This heuristic is not always a win.)
1247         * It is not necessary to compare scan[2] and match[2] since they
1248         * are always equal when the other bytes match, given that
1249         * the hash keys are equal and that HASH_BITS >= 8.
1250         */
1251        scan += 2, match++;
1252        Assert(*scan == *match, "match[2]?");
1253
1254        /* We check for insufficient lookahead only every 8th comparison;
1255         * the 256th check will be made at strstart+258.
1256         */
1257        do {
1258        } while (*++scan == *++match && *++scan == *++match &&
1259                 *++scan == *++match && *++scan == *++match &&
1260                 *++scan == *++match && *++scan == *++match &&
1261                 *++scan == *++match && *++scan == *++match &&
1262                 scan < strend);
1263
1264        Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1265
1266        len = MAX_MATCH - (int)(strend - scan);
1267        scan = strend - MAX_MATCH;
1268
1269#endif /* UNALIGNED_OK */
1270
1271        if (len > best_len) {
1272            s->match_start = cur_match;
1273            best_len = len;
1274            if (len >= nice_match) break;
1275#ifdef UNALIGNED_OK
1276            scan_end = *(ushf*)(scan+best_len-1);
1277#else
1278            scan_end1  = scan[best_len-1];
1279            scan_end   = scan[best_len];
1280#endif
1281        }
1282    } while ((cur_match = prev[cur_match & wmask]) > limit
1283             && --chain_length != 0);
1284
1285    if ((uInt)best_len <= s->lookahead) return (uInt)best_len;
1286    return s->lookahead;
1287}
1288#endif /* ASMV */
1289
1290#else /* FASTEST */
1291
1292/* ---------------------------------------------------------------------------
1293 * Optimized version for FASTEST only
1294 */
1295local uInt longest_match(s, cur_match)
1296    deflate_state *s;
1297    IPos cur_match;                             /* current match */
1298{
1299    register Bytef *scan = s->window + s->strstart; /* current string */
1300    register Bytef *match;                       /* matched string */
1301    register int len;                           /* length of current match */
1302    register Bytef *strend = s->window + s->strstart + MAX_MATCH;
1303
1304    /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1305     * It is easy to get rid of this optimization if necessary.
1306     */
1307    Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1308
1309    Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
1310
1311    Assert(cur_match < s->strstart, "no future");
1312
1313    match = s->window + cur_match;
1314
1315    /* Return failure if the match length is less than 2:
1316     */
1317    if (match[0] != scan[0] || match[1] != scan[1]) return MIN_MATCH-1;
1318
1319    /* The check at best_len-1 can be removed because it will be made
1320     * again later. (This heuristic is not always a win.)
1321     * It is not necessary to compare scan[2] and match[2] since they
1322     * are always equal when the other bytes match, given that
1323     * the hash keys are equal and that HASH_BITS >= 8.
1324     */
1325    scan += 2, match += 2;
1326    Assert(*scan == *match, "match[2]?");
1327
1328    /* We check for insufficient lookahead only every 8th comparison;
1329     * the 256th check will be made at strstart+258.
1330     */
1331    do {
1332    } while (*++scan == *++match && *++scan == *++match &&
1333             *++scan == *++match && *++scan == *++match &&
1334             *++scan == *++match && *++scan == *++match &&
1335             *++scan == *++match && *++scan == *++match &&
1336             scan < strend);
1337
1338    Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1339
1340    len = MAX_MATCH - (int)(strend - scan);
1341
1342    if (len < MIN_MATCH) return MIN_MATCH - 1;
1343
1344    s->match_start = cur_match;
1345    return (uInt)len <= s->lookahead ? (uInt)len : s->lookahead;
1346}
1347
1348#endif /* FASTEST */
1349
1350#ifdef DEBUG
1351/* ===========================================================================
1352 * Check that the match at match_start is indeed a match.
1353 */
1354local void check_match(s, start, match, length)
1355    deflate_state *s;
1356    IPos start, match;
1357    int length;
1358{
1359    /* check that the match is indeed a match */
1360    if (zmemcmp(s->window + match,
1361                s->window + start, length) != EQUAL) {
1362        fprintf(stderr, " start %u, match %u, length %d\n",
1363                start, match, length);
1364        do {
1365            fprintf(stderr, "%c%c", s->window[match++], s->window[start++]);
1366        } while (--length != 0);
1367        z_error("invalid match");
1368    }
1369    if (z_verbose > 1) {
1370        fprintf(stderr,"\\[%d,%d]", start-match, length);
1371        do { putc(s->window[start++], stderr); } while (--length != 0);
1372    }
1373}
1374#else
1375#  define check_match(s, start, match, length)
1376#endif /* DEBUG */
1377
1378/* ===========================================================================
1379 * Fill the window when the lookahead becomes insufficient.
1380 * Updates strstart and lookahead.
1381 *
1382 * IN assertion: lookahead < MIN_LOOKAHEAD
1383 * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
1384 *    At least one byte has been read, or avail_in == 0; reads are
1385 *    performed for at least two bytes (required for the zip translate_eol
1386 *    option -- not supported here).
1387 */
1388local void fill_window(s)
1389    deflate_state *s;
1390{
1391    register unsigned n, m;
1392    register Posf *p;
1393    unsigned more;    /* Amount of free space at the end of the window. */
1394    uInt wsize = s->w_size;
1395
1396    Assert(s->lookahead < MIN_LOOKAHEAD, "already enough lookahead");
1397
1398    do {
1399        more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart);
1400
1401        /* Deal with !@#$% 64K limit: */
1402        if (sizeof(int) <= 2) {
1403            if (more == 0 && s->strstart == 0 && s->lookahead == 0) {
1404                more = wsize;
1405
1406            } else if (more == (unsigned)(-1)) {
1407                /* Very unlikely, but possible on 16 bit machine if
1408                 * strstart == 0 && lookahead == 1 (input done a byte at time)
1409                 */
1410                more--;
1411            }
1412        }
1413
1414        /* If the window is almost full and there is insufficient lookahead,
1415         * move the upper half to the lower one to make room in the upper half.
1416         */
1417        if (s->strstart >= wsize+MAX_DIST(s)) {
1418
1419            zmemcpy(s->window, s->window+wsize, (unsigned)wsize);
1420            s->match_start -= wsize;
1421            s->strstart    -= wsize; /* we now have strstart >= MAX_DIST */
1422            s->block_start -= (long) wsize;
1423
1424            /* Slide the hash table (could be avoided with 32 bit values
1425               at the expense of memory usage). We slide even when level == 0
1426               to keep the hash table consistent if we switch back to level > 0
1427               later. (Using level 0 permanently is not an optimal usage of
1428               zlib, so we don't care about this pathological case.)
1429             */
1430            n = s->hash_size;
1431            p = &s->head[n];
1432            do {
1433                m = *--p;
1434                *p = (Pos)(m >= wsize ? m-wsize : NIL);
1435            } while (--n);
1436
1437            n = wsize;
1438#ifndef FASTEST
1439            p = &s->prev[n];
1440            do {
1441                m = *--p;
1442                *p = (Pos)(m >= wsize ? m-wsize : NIL);
1443                /* If n is not on any hash chain, prev[n] is garbage but
1444                 * its value will never be used.
1445                 */
1446            } while (--n);
1447#endif
1448            more += wsize;
1449        }
1450        if (s->strm->avail_in == 0) break;
1451
1452        /* If there was no sliding:
1453         *    strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
1454         *    more == window_size - lookahead - strstart
1455         * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
1456         * => more >= window_size - 2*WSIZE + 2
1457         * In the BIG_MEM or MMAP case (not yet supported),
1458         *   window_size == input_size + MIN_LOOKAHEAD  &&
1459         *   strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
1460         * Otherwise, window_size == 2*WSIZE so more >= 2.
1461         * If there was sliding, more >= WSIZE. So in all cases, more >= 2.
1462         */
1463        Assert(more >= 2, "more < 2");
1464
1465        n = read_buf(s->strm, s->window + s->strstart + s->lookahead, more);
1466        s->lookahead += n;
1467
1468        /* Initialize the hash value now that we have some input: */
1469        if (s->lookahead + s->insert >= MIN_MATCH) {
1470            uInt str = s->strstart - s->insert;
1471            s->ins_h = s->window[str];
1472            UPDATE_HASH(s, s->ins_h, s->window[str + 1]);
1473#if MIN_MATCH != 3
1474            Call UPDATE_HASH() MIN_MATCH-3 more times
1475#endif
1476            while (s->insert) {
1477                UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]);
1478#ifndef FASTEST
1479                s->prev[str & s->w_mask] = s->head[s->ins_h];
1480#endif
1481                s->head[s->ins_h] = (Pos)str;
1482                str++;
1483                s->insert--;
1484                if (s->lookahead + s->insert < MIN_MATCH)
1485                    break;
1486            }
1487        }
1488        /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
1489         * but this is not important since only literal bytes will be emitted.
1490         */
1491
1492    } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0);
1493
1494    /* If the WIN_INIT bytes after the end of the current data have never been
1495     * written, then zero those bytes in order to avoid memory check reports of
1496     * the use of uninitialized (or uninitialised as Julian writes) bytes by
1497     * the longest match routines.  Update the high water mark for the next
1498     * time through here.  WIN_INIT is set to MAX_MATCH since the longest match
1499     * routines allow scanning to strstart + MAX_MATCH, ignoring lookahead.
1500     */
1501    if (s->high_water < s->window_size) {
1502        ulg curr = s->strstart + (ulg)(s->lookahead);
1503        ulg init;
1504
1505        if (s->high_water < curr) {
1506            /* Previous high water mark below current data -- zero WIN_INIT
1507             * bytes or up to end of window, whichever is less.
1508             */
1509            init = s->window_size - curr;
1510            if (init > WIN_INIT)
1511                init = WIN_INIT;
1512            zmemzero(s->window + curr, (unsigned)init);
1513            s->high_water = curr + init;
1514        }
1515        else if (s->high_water < (ulg)curr + WIN_INIT) {
1516            /* High water mark at or above current data, but below current data
1517             * plus WIN_INIT -- zero out to current data plus WIN_INIT, or up
1518             * to end of window, whichever is less.
1519             */
1520            init = (ulg)curr + WIN_INIT - s->high_water;
1521            if (init > s->window_size - s->high_water)
1522                init = s->window_size - s->high_water;
1523            zmemzero(s->window + s->high_water, (unsigned)init);
1524            s->high_water += init;
1525        }
1526    }
1527
1528    Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD,
1529           "not enough room for search");
1530}
1531
1532/* ===========================================================================
1533 * Flush the current block, with given end-of-file flag.
1534 * IN assertion: strstart is set to the end of the current match.
1535 */
1536#define FLUSH_BLOCK_ONLY(s, last) { \
1537   _tr_flush_block(s, (s->block_start >= 0L ? \
1538                   (charf *)&s->window[(unsigned)s->block_start] : \
1539                   (charf *)Z_NULL), \
1540                (ulg)((long)s->strstart - s->block_start), \
1541                (last)); \
1542   s->block_start = s->strstart; \
1543   flush_pending(s->strm); \
1544   Tracev((stderr,"[FLUSH]")); \
1545}
1546
1547/* Same but force premature exit if necessary. */
1548#define FLUSH_BLOCK(s, last) { \
1549   FLUSH_BLOCK_ONLY(s, last); \
1550   if (s->strm->avail_out == 0) return (last) ? finish_started : need_more; \
1551}
1552
1553/* ===========================================================================
1554 * Copy without compression as much as possible from the input stream, return
1555 * the current block state.
1556 * This function does not insert new strings in the dictionary since
1557 * uncompressible data is probably not useful. This function is used
1558 * only for the level=0 compression option.
1559 * NOTE: this function should be optimized to avoid extra copying from
1560 * window to pending_buf.
1561 */
1562local block_state deflate_stored(s, flush)
1563    deflate_state *s;
1564    int flush;
1565{
1566    /* Stored blocks are limited to 0xffff bytes, pending_buf is limited
1567     * to pending_buf_size, and each stored block has a 5 byte header:
1568     */
1569    ulg max_block_size = 0xffff;
1570    ulg max_start;
1571
1572    if (max_block_size > s->pending_buf_size - 5) {
1573        max_block_size = s->pending_buf_size - 5;
1574    }
1575
1576    /* Copy as much as possible from input to output: */
1577    for (;;) {
1578        /* Fill the window as much as possible: */
1579        if (s->lookahead <= 1) {
1580
1581            Assert(s->strstart < s->w_size+MAX_DIST(s) ||
1582                   s->block_start >= (long)s->w_size, "slide too late");
1583
1584            fill_window(s);
1585            if (s->lookahead == 0 && flush == Z_NO_FLUSH) return need_more;
1586
1587            if (s->lookahead == 0) break; /* flush the current block */
1588        }
1589        Assert(s->block_start >= 0L, "block gone");
1590
1591        s->strstart += s->lookahead;
1592        s->lookahead = 0;
1593
1594        /* Emit a stored block if pending_buf will be full: */
1595        max_start = s->block_start + max_block_size;
1596        if (s->strstart == 0 || (ulg)s->strstart >= max_start) {
1597            /* strstart == 0 is possible when wraparound on 16-bit machine */
1598            s->lookahead = (uInt)(s->strstart - max_start);
1599            s->strstart = (uInt)max_start;
1600            FLUSH_BLOCK(s, 0);
1601        }
1602        /* Flush if we may have to slide, otherwise block_start may become
1603         * negative and the data will be gone:
1604         */
1605        if (s->strstart - (uInt)s->block_start >= MAX_DIST(s)) {
1606            FLUSH_BLOCK(s, 0);
1607        }
1608    }
1609    s->insert = 0;
1610    if (flush == Z_FINISH) {
1611        FLUSH_BLOCK(s, 1);
1612        return finish_done;
1613    }
1614    if ((long)s->strstart > s->block_start)
1615        FLUSH_BLOCK(s, 0);
1616    return block_done;
1617}
1618
1619/* ===========================================================================
1620 * Compress as much as possible from the input stream, return the current
1621 * block state.
1622 * This function does not perform lazy evaluation of matches and inserts
1623 * new strings in the dictionary only for unmatched strings or for short
1624 * matches. It is used only for the fast compression options.
1625 */
1626local block_state deflate_fast(s, flush)
1627    deflate_state *s;
1628    int flush;
1629{
1630    IPos hash_head;       /* head of the hash chain */
1631    int bflush;           /* set if current block must be flushed */
1632
1633    for (;;) {
1634        /* Make sure that we always have enough lookahead, except
1635         * at the end of the input file. We need MAX_MATCH bytes
1636         * for the next match, plus MIN_MATCH bytes to insert the
1637         * string following the next match.
1638         */
1639        if (s->lookahead < MIN_LOOKAHEAD) {
1640            fill_window(s);
1641            if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1642                return need_more;
1643            }
1644            if (s->lookahead == 0) break; /* flush the current block */
1645        }
1646
1647        /* Insert the string window[strstart .. strstart+2] in the
1648         * dictionary, and set hash_head to the head of the hash chain:
1649         */
1650        hash_head = NIL;
1651        if (s->lookahead >= MIN_MATCH) {
1652            INSERT_STRING(s, s->strstart, hash_head);
1653        }
1654
1655        /* Find the longest match, discarding those <= prev_length.
1656         * At this point we have always match_length < MIN_MATCH
1657         */
1658        if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) {
1659            /* To simplify the code, we prevent matches with the string
1660             * of window index 0 (in particular we have to avoid a match
1661             * of the string with itself at the start of the input file).
1662             */
1663            s->match_length = longest_match (s, hash_head);
1664            /* longest_match() sets match_start */
1665        }
1666        if (s->match_length >= MIN_MATCH) {
1667            check_match(s, s->strstart, s->match_start, s->match_length);
1668
1669            _tr_tally_dist(s, s->strstart - s->match_start,
1670                           s->match_length - MIN_MATCH, bflush);
1671
1672            s->lookahead -= s->match_length;
1673
1674            /* Insert new strings in the hash table only if the match length
1675             * is not too large. This saves time but degrades compression.
1676             */
1677#ifndef FASTEST
1678            if (s->match_length <= s->max_insert_length &&
1679                s->lookahead >= MIN_MATCH) {
1680                s->match_length--; /* string at strstart already in table */
1681                do {
1682                    s->strstart++;
1683                    INSERT_STRING(s, s->strstart, hash_head);
1684                    /* strstart never exceeds WSIZE-MAX_MATCH, so there are
1685                     * always MIN_MATCH bytes ahead.
1686                     */
1687                } while (--s->match_length != 0);
1688                s->strstart++;
1689            } else
1690#endif
1691            {
1692                s->strstart += s->match_length;
1693                s->match_length = 0;
1694                s->ins_h = s->window[s->strstart];
1695                UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
1696#if MIN_MATCH != 3
1697                Call UPDATE_HASH() MIN_MATCH-3 more times
1698#endif
1699                /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not
1700                 * matter since it will be recomputed at next deflate call.
1701                 */
1702            }
1703        } else {
1704            /* No match, output a literal byte */
1705            Tracevv((stderr,"%c", s->window[s->strstart]));
1706            _tr_tally_lit (s, s->window[s->strstart], bflush);
1707            s->lookahead--;
1708            s->strstart++;
1709        }
1710        if (bflush) FLUSH_BLOCK(s, 0);
1711    }
1712    s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1;
1713    if (flush == Z_FINISH) {
1714        FLUSH_BLOCK(s, 1);
1715        return finish_done;
1716    }
1717    if (s->last_lit)
1718        FLUSH_BLOCK(s, 0);
1719    return block_done;
1720}
1721
1722#ifndef FASTEST
1723/* ===========================================================================
1724 * Same as above, but achieves better compression. We use a lazy
1725 * evaluation for matches: a match is finally adopted only if there is
1726 * no better match at the next window position.
1727 */
1728local block_state deflate_slow(s, flush)
1729    deflate_state *s;
1730    int flush;
1731{
1732    IPos hash_head;          /* head of hash chain */
1733    int bflush;              /* set if current block must be flushed */
1734
1735    /* Process the input block. */
1736    for (;;) {
1737        /* Make sure that we always have enough lookahead, except
1738         * at the end of the input file. We need MAX_MATCH bytes
1739         * for the next match, plus MIN_MATCH bytes to insert the
1740         * string following the next match.
1741         */
1742        if (s->lookahead < MIN_LOOKAHEAD) {
1743            fill_window(s);
1744            if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1745                return need_more;
1746            }
1747            if (s->lookahead == 0) break; /* flush the current block */
1748        }
1749
1750        /* Insert the string window[strstart .. strstart+2] in the
1751         * dictionary, and set hash_head to the head of the hash chain:
1752         */
1753        hash_head = NIL;
1754        if (s->lookahead >= MIN_MATCH) {
1755            INSERT_STRING(s, s->strstart, hash_head);
1756        }
1757
1758        /* Find the longest match, discarding those <= prev_length.
1759         */
1760        s->prev_length = s->match_length, s->prev_match = s->match_start;
1761        s->match_length = MIN_MATCH-1;
1762
1763        if (hash_head != NIL && s->prev_length < s->max_lazy_match &&
1764            s->strstart - hash_head <= MAX_DIST(s)) {
1765            /* To simplify the code, we prevent matches with the string
1766             * of window index 0 (in particular we have to avoid a match
1767             * of the string with itself at the start of the input file).
1768             */
1769            s->match_length = longest_match (s, hash_head);
1770            /* longest_match() sets match_start */
1771
1772            if (s->match_length <= 5 && (s->strategy == Z_FILTERED
1773#if TOO_FAR <= 32767
1774                || (s->match_length == MIN_MATCH &&
1775                    s->strstart - s->match_start > TOO_FAR)
1776#endif
1777                )) {
1778
1779                /* If prev_match is also MIN_MATCH, match_start is garbage
1780                 * but we will ignore the current match anyway.
1781                 */
1782                s->match_length = MIN_MATCH-1;
1783            }
1784        }
1785        /* If there was a match at the previous step and the current
1786         * match is not better, output the previous match:
1787         */
1788        if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) {
1789            uInt max_insert = s->strstart + s->lookahead - MIN_MATCH;
1790            /* Do not insert strings in hash table beyond this. */
1791
1792            check_match(s, s->strstart-1, s->prev_match, s->prev_length);
1793
1794            _tr_tally_dist(s, s->strstart -1 - s->prev_match,
1795                           s->prev_length - MIN_MATCH, bflush);
1796
1797            /* Insert in hash table all strings up to the end of the match.
1798             * strstart-1 and strstart are already inserted. If there is not
1799             * enough lookahead, the last two strings are not inserted in
1800             * the hash table.
1801             */
1802            s->lookahead -= s->prev_length-1;
1803            s->prev_length -= 2;
1804            do {
1805                if (++s->strstart <= max_insert) {
1806                    INSERT_STRING(s, s->strstart, hash_head);
1807                }
1808            } while (--s->prev_length != 0);
1809            s->match_available = 0;
1810            s->match_length = MIN_MATCH-1;
1811            s->strstart++;
1812
1813            if (bflush) FLUSH_BLOCK(s, 0);
1814
1815        } else if (s->match_available) {
1816            /* If there was no match at the previous position, output a
1817             * single literal. If there was a match but the current match
1818             * is longer, truncate the previous match to a single literal.
1819             */
1820            Tracevv((stderr,"%c", s->window[s->strstart-1]));
1821            _tr_tally_lit(s, s->window[s->strstart-1], bflush);
1822            if (bflush) {
1823                FLUSH_BLOCK_ONLY(s, 0);
1824            }
1825            s->strstart++;
1826            s->lookahead--;
1827            if (s->strm->avail_out == 0) return need_more;
1828        } else {
1829            /* There is no previous match to compare with, wait for
1830             * the next step to decide.
1831             */
1832            s->match_available = 1;
1833            s->strstart++;
1834            s->lookahead--;
1835        }
1836    }
1837    Assert (flush != Z_NO_FLUSH, "no flush?");
1838    if (s->match_available) {
1839        Tracevv((stderr,"%c", s->window[s->strstart-1]));
1840        _tr_tally_lit(s, s->window[s->strstart-1], bflush);
1841        s->match_available = 0;
1842    }
1843    s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1;
1844    if (flush == Z_FINISH) {
1845        FLUSH_BLOCK(s, 1);
1846        return finish_done;
1847    }
1848    if (s->last_lit)
1849        FLUSH_BLOCK(s, 0);
1850    return block_done;
1851}
1852#endif /* FASTEST */
1853
1854/* ===========================================================================
1855 * For Z_RLE, simply look for runs of bytes, generate matches only of distance
1856 * one.  Do not maintain a hash table.  (It will be regenerated if this run of
1857 * deflate switches away from Z_RLE.)
1858 */
1859local block_state deflate_rle(s, flush)
1860    deflate_state *s;
1861    int flush;
1862{
1863    int bflush;             /* set if current block must be flushed */
1864    uInt prev;              /* byte at distance one to match */
1865    Bytef *scan, *strend;   /* scan goes up to strend for length of run */
1866
1867    for (;;) {
1868        /* Make sure that we always have enough lookahead, except
1869         * at the end of the input file. We need MAX_MATCH bytes
1870         * for the longest run, plus one for the unrolled loop.
1871         */
1872        if (s->lookahead <= MAX_MATCH) {
1873            fill_window(s);
1874            if (s->lookahead <= MAX_MATCH && flush == Z_NO_FLUSH) {
1875                return need_more;
1876            }
1877            if (s->lookahead == 0) break; /* flush the current block */
1878        }
1879
1880        /* See how many times the previous byte repeats */
1881        s->match_length = 0;
1882        if (s->lookahead >= MIN_MATCH && s->strstart > 0) {
1883            scan = s->window + s->strstart - 1;
1884            prev = *scan;
1885            if (prev == *++scan && prev == *++scan && prev == *++scan) {
1886                strend = s->window + s->strstart + MAX_MATCH;
1887                do {
1888                } while (prev == *++scan && prev == *++scan &&
1889                         prev == *++scan && prev == *++scan &&
1890                         prev == *++scan && prev == *++scan &&
1891                         prev == *++scan && prev == *++scan &&
1892                         scan < strend);
1893                s->match_length = MAX_MATCH - (int)(strend - scan);
1894                if (s->match_length > s->lookahead)
1895                    s->match_length = s->lookahead;
1896            }
1897            Assert(scan <= s->window+(uInt)(s->window_size-1), "wild scan");
1898        }
1899
1900        /* Emit match if have run of MIN_MATCH or longer, else emit literal */
1901        if (s->match_length >= MIN_MATCH) {
1902            check_match(s, s->strstart, s->strstart - 1, s->match_length);
1903
1904            _tr_tally_dist(s, 1, s->match_length - MIN_MATCH, bflush);
1905
1906            s->lookahead -= s->match_length;
1907            s->strstart += s->match_length;
1908            s->match_length = 0;
1909        } else {
1910            /* No match, output a literal byte */
1911            Tracevv((stderr,"%c", s->window[s->strstart]));
1912            _tr_tally_lit (s, s->window[s->strstart], bflush);
1913            s->lookahead--;
1914            s->strstart++;
1915        }
1916        if (bflush) FLUSH_BLOCK(s, 0);
1917    }
1918    s->insert = 0;
1919    if (flush == Z_FINISH) {
1920        FLUSH_BLOCK(s, 1);
1921        return finish_done;
1922    }
1923    if (s->last_lit)
1924        FLUSH_BLOCK(s, 0);
1925    return block_done;
1926}
1927
1928/* ===========================================================================
1929 * For Z_HUFFMAN_ONLY, do not look for matches.  Do not maintain a hash table.
1930 * (It will be regenerated if this run of deflate switches away from Huffman.)
1931 */
1932local block_state deflate_huff(s, flush)
1933    deflate_state *s;
1934    int flush;
1935{
1936    int bflush;             /* set if current block must be flushed */
1937
1938    for (;;) {
1939        /* Make sure that we have a literal to write. */
1940        if (s->lookahead == 0) {
1941            fill_window(s);
1942            if (s->lookahead == 0) {
1943                if (flush == Z_NO_FLUSH)
1944                    return need_more;
1945                break;      /* flush the current block */
1946            }
1947        }
1948
1949        /* Output a literal byte */
1950        s->match_length = 0;
1951        Tracevv((stderr,"%c", s->window[s->strstart]));
1952        _tr_tally_lit (s, s->window[s->strstart], bflush);
1953        s->lookahead--;
1954        s->strstart++;
1955        if (bflush) FLUSH_BLOCK(s, 0);
1956    }
1957    s->insert = 0;
1958    if (flush == Z_FINISH) {
1959        FLUSH_BLOCK(s, 1);
1960        return finish_done;
1961    }
1962    if (s->last_lit)
1963        FLUSH_BLOCK(s, 0);
1964    return block_done;
1965}
1966