alarm.cc revision 1a7856018ab1608a3d681caab4eecd2185ff51f2
1/******************************************************************************
2 *
3 *  Copyright (C) 2014 Google, Inc.
4 *
5 *  Licensed under the Apache License, Version 2.0 (the "License");
6 *  you may not use this file except in compliance with the License.
7 *  You may obtain a copy of the License at:
8 *
9 *  http://www.apache.org/licenses/LICENSE-2.0
10 *
11 *  Unless required by applicable law or agreed to in writing, software
12 *  distributed under the License is distributed on an "AS IS" BASIS,
13 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 *  See the License for the specific language governing permissions and
15 *  limitations under the License.
16 *
17 ******************************************************************************/
18
19#include "include/bt_target.h"
20
21#define LOG_TAG "bt_osi_alarm"
22
23#include "osi/include/alarm.h"
24
25#include <base/cancelable_callback.h>
26#include <base/logging.h>
27#include <base/message_loop/message_loop.h>
28#include <errno.h>
29#include <fcntl.h>
30#include <inttypes.h>
31#include <malloc.h>
32#include <pthread.h>
33#include <signal.h>
34#include <string.h>
35#include <time.h>
36
37#include <hardware/bluetooth.h>
38
39#include <mutex>
40
41#include "osi/include/allocator.h"
42#include "osi/include/fixed_queue.h"
43#include "osi/include/list.h"
44#include "osi/include/log.h"
45#include "osi/include/osi.h"
46#include "osi/include/semaphore.h"
47#include "osi/include/thread.h"
48#include "osi/include/wakelock.h"
49
50using base::Bind;
51using base::CancelableClosure;
52using base::MessageLoop;
53
54extern base::MessageLoop* get_message_loop();
55
56// Callback and timer threads should run at RT priority in order to ensure they
57// meet audio deadlines.  Use this priority for all audio/timer related thread.
58static const int THREAD_RT_PRIORITY = 1;
59
60typedef struct {
61  size_t count;
62  period_ms_t total_ms;
63  period_ms_t max_ms;
64} stat_t;
65
66// Alarm-related information and statistics
67typedef struct {
68  const char* name;
69  size_t scheduled_count;
70  size_t canceled_count;
71  size_t rescheduled_count;
72  size_t total_updates;
73  period_ms_t last_update_ms;
74  stat_t overdue_scheduling;
75  stat_t premature_scheduling;
76} alarm_stats_t;
77
78/* Wrapper around CancellableClosure that let it be embedded in structs, without
79 * need to define copy operator. */
80struct CancelableClosureInStruct {
81  base::CancelableClosure i;
82
83  CancelableClosureInStruct& operator=(const CancelableClosureInStruct& in) {
84    if (!in.i.callback().is_null()) i.Reset(in.i.callback());
85    return *this;
86  }
87};
88
89struct alarm_t {
90  // The mutex is held while the callback for this alarm is being executed.
91  // It allows us to release the coarse-grained monitor lock while a
92  // potentially long-running callback is executing. |alarm_cancel| uses this
93  // mutex to provide a guarantee to its caller that the callback will not be
94  // in progress when it returns.
95  std::recursive_mutex* callback_mutex;
96  period_ms_t creation_time;
97  period_ms_t period;
98  period_ms_t deadline;
99  period_ms_t prev_deadline;  // Previous deadline - used for accounting of
100                              // periodic timers
101  bool is_periodic;
102  fixed_queue_t* queue;  // The processing queue to add this alarm to
103  alarm_callback_t callback;
104  void* data;
105  alarm_stats_t stats;
106
107  bool for_msg_loop;  // True, if the alarm should be processed on message loop
108  CancelableClosureInStruct closure;  // posted to message loop for processing
109};
110
111// If the next wakeup time is less than this threshold, we should acquire
112// a wakelock instead of setting a wake alarm so we're not bouncing in
113// and out of suspend frequently. This value is externally visible to allow
114// unit tests to run faster. It should not be modified by production code.
115int64_t TIMER_INTERVAL_FOR_WAKELOCK_IN_MS = 3000;
116static const clockid_t CLOCK_ID = CLOCK_BOOTTIME;
117
118#if (KERNEL_MISSING_CLOCK_BOOTTIME_ALARM == TRUE)
119static const clockid_t CLOCK_ID_ALARM = CLOCK_BOOTTIME;
120#else
121static const clockid_t CLOCK_ID_ALARM = CLOCK_BOOTTIME_ALARM;
122#endif
123
124// This mutex ensures that the |alarm_set|, |alarm_cancel|, and alarm callback
125// functions execute serially and not concurrently. As a result, this mutex
126// also protects the |alarms| list.
127static std::mutex alarms_mutex;
128static list_t* alarms;
129static timer_t timer;
130static timer_t wakeup_timer;
131static bool timer_set;
132
133// All alarm callbacks are dispatched from |dispatcher_thread|
134static thread_t* dispatcher_thread;
135static bool dispatcher_thread_active;
136static semaphore_t* alarm_expired;
137
138// Default alarm callback thread and queue
139static thread_t* default_callback_thread;
140static fixed_queue_t* default_callback_queue;
141
142static alarm_t* alarm_new_internal(const char* name, bool is_periodic);
143static bool lazy_initialize(void);
144static period_ms_t now(void);
145static void alarm_set_internal(alarm_t* alarm, period_ms_t period,
146                               alarm_callback_t cb, void* data,
147                               fixed_queue_t* queue, bool for_msg_loop);
148static void alarm_cancel_internal(alarm_t* alarm);
149static void remove_pending_alarm(alarm_t* alarm);
150static void schedule_next_instance(alarm_t* alarm);
151static void reschedule_root_alarm(void);
152static void alarm_queue_ready(fixed_queue_t* queue, void* context);
153static void timer_callback(void* data);
154static void callback_dispatch(void* context);
155static bool timer_create_internal(const clockid_t clock_id, timer_t* timer);
156static void update_scheduling_stats(alarm_stats_t* stats, period_ms_t now_ms,
157                                    period_ms_t deadline_ms);
158// Registers |queue| for processing alarm callbacks on |thread|.
159// |queue| may not be NULL. |thread| may not be NULL.
160static void alarm_register_processing_queue(fixed_queue_t* queue,
161                                            thread_t* thread);
162
163static void update_stat(stat_t* stat, period_ms_t delta) {
164  if (stat->max_ms < delta) stat->max_ms = delta;
165  stat->total_ms += delta;
166  stat->count++;
167}
168
169alarm_t* alarm_new(const char* name) { return alarm_new_internal(name, false); }
170
171alarm_t* alarm_new_periodic(const char* name) {
172  return alarm_new_internal(name, true);
173}
174
175static alarm_t* alarm_new_internal(const char* name, bool is_periodic) {
176  // Make sure we have a list we can insert alarms into.
177  if (!alarms && !lazy_initialize()) {
178    CHECK(false);  // if initialization failed, we should not continue
179    return NULL;
180  }
181
182  alarm_t* ret = static_cast<alarm_t*>(osi_calloc(sizeof(alarm_t)));
183
184  ret->callback_mutex = new std::recursive_mutex;
185  ret->is_periodic = is_periodic;
186  ret->stats.name = osi_strdup(name);
187
188  ret->for_msg_loop = false;
189  // placement new
190  new (&ret->closure) CancelableClosureInStruct();
191
192  // NOTE: The stats were reset by osi_calloc() above
193
194  return ret;
195}
196
197void alarm_free(alarm_t* alarm) {
198  if (!alarm) return;
199
200  alarm_cancel(alarm);
201  delete alarm->callback_mutex;
202  osi_free((void*)alarm->stats.name);
203  alarm->closure.~CancelableClosureInStruct();
204  osi_free(alarm);
205}
206
207period_ms_t alarm_get_remaining_ms(const alarm_t* alarm) {
208  CHECK(alarm != NULL);
209  period_ms_t remaining_ms = 0;
210  period_ms_t just_now = now();
211
212  std::lock_guard<std::mutex> lock(alarms_mutex);
213  if (alarm->deadline > just_now) remaining_ms = alarm->deadline - just_now;
214
215  return remaining_ms;
216}
217
218void alarm_set(alarm_t* alarm, period_ms_t interval_ms, alarm_callback_t cb,
219               void* data) {
220  alarm_set_internal(alarm, interval_ms, cb, data, default_callback_queue,
221                     false);
222}
223
224void alarm_set_on_mloop(alarm_t* alarm, period_ms_t interval_ms,
225                        alarm_callback_t cb, void* data) {
226  alarm_set_internal(alarm, interval_ms, cb, data, NULL, true);
227}
228
229// Runs in exclusion with alarm_cancel and timer_callback.
230static void alarm_set_internal(alarm_t* alarm, period_ms_t period,
231                               alarm_callback_t cb, void* data,
232                               fixed_queue_t* queue, bool for_msg_loop) {
233  CHECK(alarms != NULL);
234  CHECK(alarm != NULL);
235  CHECK(cb != NULL);
236
237  std::lock_guard<std::mutex> lock(alarms_mutex);
238
239  alarm->creation_time = now();
240  alarm->period = period;
241  alarm->queue = queue;
242  alarm->callback = cb;
243  alarm->data = data;
244  alarm->for_msg_loop = for_msg_loop;
245
246  schedule_next_instance(alarm);
247  alarm->stats.scheduled_count++;
248}
249
250void alarm_cancel(alarm_t* alarm) {
251  CHECK(alarms != NULL);
252  if (!alarm) return;
253
254  {
255    std::lock_guard<std::mutex> lock(alarms_mutex);
256    alarm_cancel_internal(alarm);
257  }
258
259  // If the callback for |alarm| is in progress, wait here until it completes.
260  std::lock_guard<std::recursive_mutex> lock(*alarm->callback_mutex);
261}
262
263// Internal implementation of canceling an alarm.
264// The caller must hold the |alarms_mutex|
265static void alarm_cancel_internal(alarm_t* alarm) {
266  bool needs_reschedule =
267      (!list_is_empty(alarms) && list_front(alarms) == alarm);
268
269  remove_pending_alarm(alarm);
270
271  alarm->deadline = 0;
272  alarm->prev_deadline = 0;
273  alarm->callback = NULL;
274  alarm->data = NULL;
275  alarm->stats.canceled_count++;
276  alarm->queue = NULL;
277
278  if (needs_reschedule) reschedule_root_alarm();
279}
280
281bool alarm_is_scheduled(const alarm_t* alarm) {
282  if ((alarms == NULL) || (alarm == NULL)) return false;
283  return (alarm->callback != NULL);
284}
285
286void alarm_cleanup(void) {
287  // If lazy_initialize never ran there is nothing else to do
288  if (!alarms) return;
289
290  dispatcher_thread_active = false;
291  semaphore_post(alarm_expired);
292  thread_free(dispatcher_thread);
293  dispatcher_thread = NULL;
294
295  std::lock_guard<std::mutex> lock(alarms_mutex);
296
297  fixed_queue_free(default_callback_queue, NULL);
298  default_callback_queue = NULL;
299  thread_free(default_callback_thread);
300  default_callback_thread = NULL;
301
302  timer_delete(wakeup_timer);
303  timer_delete(timer);
304  semaphore_free(alarm_expired);
305  alarm_expired = NULL;
306
307  list_free(alarms);
308  alarms = NULL;
309}
310
311static bool lazy_initialize(void) {
312  CHECK(alarms == NULL);
313
314  // timer_t doesn't have an invalid value so we must track whether
315  // the |timer| variable is valid ourselves.
316  bool timer_initialized = false;
317  bool wakeup_timer_initialized = false;
318
319  std::lock_guard<std::mutex> lock(alarms_mutex);
320
321  alarms = list_new(NULL);
322  if (!alarms) {
323    LOG_ERROR(LOG_TAG, "%s unable to allocate alarm list.", __func__);
324    goto error;
325  }
326
327  if (!timer_create_internal(CLOCK_ID, &timer)) goto error;
328  timer_initialized = true;
329
330  if (!timer_create_internal(CLOCK_ID_ALARM, &wakeup_timer)) goto error;
331  wakeup_timer_initialized = true;
332
333  alarm_expired = semaphore_new(0);
334  if (!alarm_expired) {
335    LOG_ERROR(LOG_TAG, "%s unable to create alarm expired semaphore", __func__);
336    goto error;
337  }
338
339  default_callback_thread =
340      thread_new_sized("alarm_default_callbacks", SIZE_MAX);
341  if (default_callback_thread == NULL) {
342    LOG_ERROR(LOG_TAG, "%s unable to create default alarm callbacks thread.",
343              __func__);
344    goto error;
345  }
346  thread_set_rt_priority(default_callback_thread, THREAD_RT_PRIORITY);
347  default_callback_queue = fixed_queue_new(SIZE_MAX);
348  if (default_callback_queue == NULL) {
349    LOG_ERROR(LOG_TAG, "%s unable to create default alarm callbacks queue.",
350              __func__);
351    goto error;
352  }
353  alarm_register_processing_queue(default_callback_queue,
354                                  default_callback_thread);
355
356  dispatcher_thread_active = true;
357  dispatcher_thread = thread_new("alarm_dispatcher");
358  if (!dispatcher_thread) {
359    LOG_ERROR(LOG_TAG, "%s unable to create alarm callback thread.", __func__);
360    goto error;
361  }
362  thread_set_rt_priority(dispatcher_thread, THREAD_RT_PRIORITY);
363  thread_post(dispatcher_thread, callback_dispatch, NULL);
364  return true;
365
366error:
367  fixed_queue_free(default_callback_queue, NULL);
368  default_callback_queue = NULL;
369  thread_free(default_callback_thread);
370  default_callback_thread = NULL;
371
372  thread_free(dispatcher_thread);
373  dispatcher_thread = NULL;
374
375  dispatcher_thread_active = false;
376
377  semaphore_free(alarm_expired);
378  alarm_expired = NULL;
379
380  if (wakeup_timer_initialized) timer_delete(wakeup_timer);
381
382  if (timer_initialized) timer_delete(timer);
383
384  list_free(alarms);
385  alarms = NULL;
386
387  return false;
388}
389
390static period_ms_t now(void) {
391  CHECK(alarms != NULL);
392
393  struct timespec ts;
394  if (clock_gettime(CLOCK_ID, &ts) == -1) {
395    LOG_ERROR(LOG_TAG, "%s unable to get current time: %s", __func__,
396              strerror(errno));
397    return 0;
398  }
399
400  return (ts.tv_sec * 1000LL) + (ts.tv_nsec / 1000000LL);
401}
402
403// Remove alarm from internal alarm list and the processing queue
404// The caller must hold the |alarms_mutex|
405static void remove_pending_alarm(alarm_t* alarm) {
406  list_remove(alarms, alarm);
407
408  if (alarm->for_msg_loop) {
409    alarm->closure.i.Cancel();
410  } else {
411    while (fixed_queue_try_remove_from_queue(alarm->queue, alarm) != NULL) {
412      // Remove all repeated alarm instances from the queue.
413      // NOTE: We are defensive here - we shouldn't have repeated alarm
414      // instances
415    }
416  }
417}
418
419// Must be called with |alarms_mutex| held
420static void schedule_next_instance(alarm_t* alarm) {
421  // If the alarm is currently set and it's at the start of the list,
422  // we'll need to re-schedule since we've adjusted the earliest deadline.
423  bool needs_reschedule =
424      (!list_is_empty(alarms) && list_front(alarms) == alarm);
425  if (alarm->callback) remove_pending_alarm(alarm);
426
427  // Calculate the next deadline for this alarm
428  period_ms_t just_now = now();
429  period_ms_t ms_into_period = 0;
430  if ((alarm->is_periodic) && (alarm->period != 0))
431    ms_into_period = ((just_now - alarm->creation_time) % alarm->period);
432  alarm->deadline = just_now + (alarm->period - ms_into_period);
433
434  // Add it into the timer list sorted by deadline (earliest deadline first).
435  if (list_is_empty(alarms) ||
436      ((alarm_t*)list_front(alarms))->deadline > alarm->deadline) {
437    list_prepend(alarms, alarm);
438  } else {
439    for (list_node_t* node = list_begin(alarms); node != list_end(alarms);
440         node = list_next(node)) {
441      list_node_t* next = list_next(node);
442      if (next == list_end(alarms) ||
443          ((alarm_t*)list_node(next))->deadline > alarm->deadline) {
444        list_insert_after(alarms, node, alarm);
445        break;
446      }
447    }
448  }
449
450  // If the new alarm has the earliest deadline, we need to re-evaluate our
451  // schedule.
452  if (needs_reschedule ||
453      (!list_is_empty(alarms) && list_front(alarms) == alarm)) {
454    reschedule_root_alarm();
455  }
456}
457
458// NOTE: must be called with |alarms_mutex| held
459static void reschedule_root_alarm(void) {
460  CHECK(alarms != NULL);
461
462  const bool timer_was_set = timer_set;
463  alarm_t* next;
464  int64_t next_expiration;
465
466  // If used in a zeroed state, disarms the timer.
467  struct itimerspec timer_time;
468  memset(&timer_time, 0, sizeof(timer_time));
469
470  if (list_is_empty(alarms)) goto done;
471
472  next = static_cast<alarm_t*>(list_front(alarms));
473  next_expiration = next->deadline - now();
474  if (next_expiration < TIMER_INTERVAL_FOR_WAKELOCK_IN_MS) {
475    if (!timer_set) {
476      if (!wakelock_acquire()) {
477        LOG_ERROR(LOG_TAG, "%s unable to acquire wake lock", __func__);
478        goto done;
479      }
480    }
481
482    timer_time.it_value.tv_sec = (next->deadline / 1000);
483    timer_time.it_value.tv_nsec = (next->deadline % 1000) * 1000000LL;
484
485    // It is entirely unsafe to call timer_settime(2) with a zeroed timerspec
486    // for timers with *_ALARM clock IDs. Although the man page states that the
487    // timer would be canceled, the current behavior (as of Linux kernel 3.17)
488    // is that the callback is issued immediately. The only way to cancel an
489    // *_ALARM timer is to delete the timer. But unfortunately, deleting and
490    // re-creating a timer is rather expensive; every timer_create(2) spawns a
491    // new thread. So we simply set the timer to fire at the largest possible
492    // time.
493    //
494    // If we've reached this code path, we're going to grab a wake lock and
495    // wait for the next timer to fire. In that case, there's no reason to
496    // have a pending wakeup timer so we simply cancel it.
497    struct itimerspec end_of_time;
498    memset(&end_of_time, 0, sizeof(end_of_time));
499    end_of_time.it_value.tv_sec = (time_t)(1LL << (sizeof(time_t) * 8 - 2));
500    timer_settime(wakeup_timer, TIMER_ABSTIME, &end_of_time, NULL);
501  } else {
502    // WARNING: do not attempt to use relative timers with *_ALARM clock IDs
503    // in kernels before 3.17 unless you have the following patch:
504    // https://lkml.org/lkml/2014/7/7/576
505    struct itimerspec wakeup_time;
506    memset(&wakeup_time, 0, sizeof(wakeup_time));
507
508    wakeup_time.it_value.tv_sec = (next->deadline / 1000);
509    wakeup_time.it_value.tv_nsec = (next->deadline % 1000) * 1000000LL;
510    if (timer_settime(wakeup_timer, TIMER_ABSTIME, &wakeup_time, NULL) == -1)
511      LOG_ERROR(LOG_TAG, "%s unable to set wakeup timer: %s", __func__,
512                strerror(errno));
513  }
514
515done:
516  timer_set =
517      timer_time.it_value.tv_sec != 0 || timer_time.it_value.tv_nsec != 0;
518  if (timer_was_set && !timer_set) {
519    wakelock_release();
520  }
521
522  if (timer_settime(timer, TIMER_ABSTIME, &timer_time, NULL) == -1)
523    LOG_ERROR(LOG_TAG, "%s unable to set timer: %s", __func__, strerror(errno));
524
525  // If next expiration was in the past (e.g. short timer that got context
526  // switched) then the timer might have diarmed itself. Detect this case and
527  // work around it by manually signalling the |alarm_expired| semaphore.
528  //
529  // It is possible that the timer was actually super short (a few
530  // milliseconds) and the timer expired normally before we called
531  // |timer_gettime|. Worst case, |alarm_expired| is signaled twice for that
532  // alarm. Nothing bad should happen in that case though since the callback
533  // dispatch function checks to make sure the timer at the head of the list
534  // actually expired.
535  if (timer_set) {
536    struct itimerspec time_to_expire;
537    timer_gettime(timer, &time_to_expire);
538    if (time_to_expire.it_value.tv_sec == 0 &&
539        time_to_expire.it_value.tv_nsec == 0) {
540      LOG_DEBUG(
541          LOG_TAG,
542          "%s alarm expiration too close for posix timers, switching to guns",
543          __func__);
544      semaphore_post(alarm_expired);
545    }
546  }
547}
548
549static void alarm_register_processing_queue(fixed_queue_t* queue,
550                                            thread_t* thread) {
551  CHECK(queue != NULL);
552  CHECK(thread != NULL);
553
554  fixed_queue_register_dequeue(queue, thread_get_reactor(thread),
555                               alarm_queue_ready, NULL);
556}
557
558static void alarm_ready_generic(alarm_t* alarm,
559                                std::unique_lock<std::mutex>& lock) {
560  if (alarm == NULL) {
561    return;  // The alarm was probably canceled
562  }
563  //
564  // If the alarm is not periodic, we've fully serviced it now, and can reset
565  // some of its internal state. This is useful to distinguish between expired
566  // alarms and active ones.
567  //
568  alarm_callback_t callback = alarm->callback;
569  void* data = alarm->data;
570  period_ms_t deadline = alarm->deadline;
571  if (alarm->is_periodic) {
572    // The periodic alarm has been rescheduled and alarm->deadline has been
573    // updated, hence we need to use the previous deadline.
574    deadline = alarm->prev_deadline;
575  } else {
576    alarm->deadline = 0;
577    alarm->callback = NULL;
578    alarm->data = NULL;
579    alarm->queue = NULL;
580  }
581
582  std::lock_guard<std::recursive_mutex> cb_lock(*alarm->callback_mutex);
583  lock.unlock();
584
585  // Update the statistics
586  update_scheduling_stats(&alarm->stats, now(), deadline);
587
588  // NOTE: Do NOT access "alarm" after the callback, as a safety precaution
589  // in case the callback itself deleted the alarm.
590  callback(data);
591}
592
593static void alarm_ready_mloop(alarm_t* alarm) {
594  std::unique_lock<std::mutex> lock(alarms_mutex);
595  alarm_ready_generic(alarm, lock);
596}
597
598static void alarm_queue_ready(fixed_queue_t* queue, UNUSED_ATTR void* context) {
599  CHECK(queue != NULL);
600
601  std::unique_lock<std::mutex> lock(alarms_mutex);
602  alarm_t* alarm = (alarm_t*)fixed_queue_try_dequeue(queue);
603  alarm_ready_generic(alarm, lock);
604}
605
606// Callback function for wake alarms and our posix timer
607static void timer_callback(UNUSED_ATTR void* ptr) {
608  semaphore_post(alarm_expired);
609}
610
611// Function running on |dispatcher_thread| that performs the following:
612//   (1) Receives a signal using |alarm_exired| that the alarm has expired
613//   (2) Dispatches the alarm callback for processing by the corresponding
614// thread for that alarm.
615static void callback_dispatch(UNUSED_ATTR void* context) {
616  while (true) {
617    semaphore_wait(alarm_expired);
618    if (!dispatcher_thread_active) break;
619
620    std::lock_guard<std::mutex> lock(alarms_mutex);
621    alarm_t* alarm;
622
623    // Take into account that the alarm may get cancelled before we get to it.
624    // We're done here if there are no alarms or the alarm at the front is in
625    // the future. Exit right away since there's nothing left to do.
626    if (list_is_empty(alarms) ||
627        (alarm = static_cast<alarm_t*>(list_front(alarms)))->deadline > now()) {
628      reschedule_root_alarm();
629      continue;
630    }
631
632    list_remove(alarms, alarm);
633
634    if (alarm->is_periodic) {
635      alarm->prev_deadline = alarm->deadline;
636      schedule_next_instance(alarm);
637      alarm->stats.rescheduled_count++;
638    }
639    reschedule_root_alarm();
640
641    // Enqueue the alarm for processing
642    if (alarm->for_msg_loop) {
643      if (!get_message_loop()) {
644        LOG_ERROR(LOG_TAG, "%s: message loop already NULL. Alarm: %s", __func__,
645                  alarm->stats.name);
646        continue;
647      }
648
649      alarm->closure.i.Reset(Bind(alarm_ready_mloop, alarm));
650      get_message_loop()->PostTask(FROM_HERE, alarm->closure.i.callback());
651    } else {
652      fixed_queue_enqueue(alarm->queue, alarm);
653    }
654  }
655
656  LOG_DEBUG(LOG_TAG, "%s Callback thread exited", __func__);
657}
658
659static bool timer_create_internal(const clockid_t clock_id, timer_t* timer) {
660  CHECK(timer != NULL);
661
662  struct sigevent sigevent;
663  // create timer with RT priority thread
664  pthread_attr_t thread_attr;
665  pthread_attr_init(&thread_attr);
666  pthread_attr_setschedpolicy(&thread_attr, SCHED_FIFO);
667  struct sched_param param;
668  param.sched_priority = THREAD_RT_PRIORITY;
669  pthread_attr_setschedparam(&thread_attr, &param);
670
671  memset(&sigevent, 0, sizeof(sigevent));
672  sigevent.sigev_notify = SIGEV_THREAD;
673  sigevent.sigev_notify_function = (void (*)(union sigval))timer_callback;
674  sigevent.sigev_notify_attributes = &thread_attr;
675  if (timer_create(clock_id, &sigevent, timer) == -1) {
676    LOG_ERROR(LOG_TAG, "%s unable to create timer with clock %d: %s", __func__,
677              clock_id, strerror(errno));
678    if (clock_id == CLOCK_BOOTTIME_ALARM) {
679      LOG_ERROR(LOG_TAG,
680                "The kernel might not have support for "
681                "timer_create(CLOCK_BOOTTIME_ALARM): "
682                "https://lwn.net/Articles/429925/");
683      LOG_ERROR(LOG_TAG,
684                "See following patches: "
685                "https://git.kernel.org/cgit/linux/kernel/git/torvalds/"
686                "linux.git/log/?qt=grep&q=CLOCK_BOOTTIME_ALARM");
687    }
688    return false;
689  }
690
691  return true;
692}
693
694static void update_scheduling_stats(alarm_stats_t* stats, period_ms_t now_ms,
695                                    period_ms_t deadline_ms) {
696  stats->total_updates++;
697  stats->last_update_ms = now_ms;
698
699  if (deadline_ms < now_ms) {
700    // Overdue scheduling
701    period_ms_t delta_ms = now_ms - deadline_ms;
702    update_stat(&stats->overdue_scheduling, delta_ms);
703  } else if (deadline_ms > now_ms) {
704    // Premature scheduling
705    period_ms_t delta_ms = deadline_ms - now_ms;
706    update_stat(&stats->premature_scheduling, delta_ms);
707  }
708}
709
710static void dump_stat(int fd, stat_t* stat, const char* description) {
711  period_ms_t average_time_ms = 0;
712  if (stat->count != 0) average_time_ms = stat->total_ms / stat->count;
713
714  dprintf(fd, "%-51s: %llu / %llu / %llu\n", description,
715          (unsigned long long)stat->total_ms, (unsigned long long)stat->max_ms,
716          (unsigned long long)average_time_ms);
717}
718
719void alarm_debug_dump(int fd) {
720  dprintf(fd, "\nBluetooth Alarms Statistics:\n");
721
722  std::lock_guard<std::mutex> lock(alarms_mutex);
723
724  if (alarms == NULL) {
725    dprintf(fd, "  None\n");
726    return;
727  }
728
729  period_ms_t just_now = now();
730
731  dprintf(fd, "  Total Alarms: %zu\n\n", list_length(alarms));
732
733  // Dump info for each alarm
734  for (list_node_t* node = list_begin(alarms); node != list_end(alarms);
735       node = list_next(node)) {
736    alarm_t* alarm = (alarm_t*)list_node(node);
737    alarm_stats_t* stats = &alarm->stats;
738
739    dprintf(fd, "  Alarm : %s (%s)\n", stats->name,
740            (alarm->is_periodic) ? "PERIODIC" : "SINGLE");
741
742    dprintf(fd, "%-51s: %zu / %zu / %zu / %zu\n",
743            "    Action counts (sched/resched/exec/cancel)",
744            stats->scheduled_count, stats->rescheduled_count,
745            stats->total_updates, stats->canceled_count);
746
747    dprintf(fd, "%-51s: %zu / %zu\n",
748            "    Deviation counts (overdue/premature)",
749            stats->overdue_scheduling.count, stats->premature_scheduling.count);
750
751    dprintf(fd, "%-51s: %llu / %llu / %lld\n",
752            "    Time in ms (since creation/interval/remaining)",
753            (unsigned long long)(just_now - alarm->creation_time),
754            (unsigned long long)alarm->period,
755            (long long)(alarm->deadline - just_now));
756
757    dump_stat(fd, &stats->overdue_scheduling,
758              "    Overdue scheduling time in ms (total/max/avg)");
759
760    dump_stat(fd, &stats->premature_scheduling,
761              "    Premature scheduling time in ms (total/max/avg)");
762
763    dprintf(fd, "\n");
764  }
765}
766