alarm.cc revision 47616530ceea2ea6432ffb35cd8a3fc0a56365b5
1/******************************************************************************
2 *
3 *  Copyright (C) 2014 Google, Inc.
4 *
5 *  Licensed under the Apache License, Version 2.0 (the "License");
6 *  you may not use this file except in compliance with the License.
7 *  You may obtain a copy of the License at:
8 *
9 *  http://www.apache.org/licenses/LICENSE-2.0
10 *
11 *  Unless required by applicable law or agreed to in writing, software
12 *  distributed under the License is distributed on an "AS IS" BASIS,
13 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 *  See the License for the specific language governing permissions and
15 *  limitations under the License.
16 *
17 ******************************************************************************/
18
19#include "include/bt_target.h"
20
21#define LOG_TAG "bt_osi_alarm"
22
23#include "osi/include/alarm.h"
24
25#include <base/cancelable_callback.h>
26#include <base/logging.h>
27#include <base/message_loop/message_loop.h>
28#include <errno.h>
29#include <fcntl.h>
30#include <inttypes.h>
31#include <malloc.h>
32#include <pthread.h>
33#include <signal.h>
34#include <string.h>
35#include <time.h>
36
37#include <hardware/bluetooth.h>
38
39#include <mutex>
40
41#include "osi/include/allocator.h"
42#include "osi/include/fixed_queue.h"
43#include "osi/include/list.h"
44#include "osi/include/log.h"
45#include "osi/include/osi.h"
46#include "osi/include/semaphore.h"
47#include "osi/include/thread.h"
48#include "osi/include/wakelock.h"
49
50using base::Bind;
51using base::CancelableClosure;
52using base::MessageLoop;
53
54extern base::MessageLoop* get_message_loop();
55
56// Callback and timer threads should run at RT priority in order to ensure they
57// meet audio deadlines.  Use this priority for all audio/timer related thread.
58static const int THREAD_RT_PRIORITY = 1;
59
60typedef struct {
61  size_t count;
62  period_ms_t total_ms;
63  period_ms_t max_ms;
64} stat_t;
65
66// Alarm-related information and statistics
67typedef struct {
68  const char* name;
69  size_t scheduled_count;
70  size_t canceled_count;
71  size_t rescheduled_count;
72  size_t total_updates;
73  period_ms_t last_update_ms;
74  stat_t callback_execution;
75  stat_t overdue_scheduling;
76  stat_t premature_scheduling;
77} alarm_stats_t;
78
79/* Wrapper around CancellableClosure that let it be embedded in structs, without
80 * need to define copy operator. */
81struct CancelableClosureInStruct {
82  base::CancelableClosure i;
83
84  CancelableClosureInStruct& operator=(const CancelableClosureInStruct& in) {
85    if (!in.i.callback().is_null()) i.Reset(in.i.callback());
86    return *this;
87  }
88};
89
90struct alarm_t {
91  // The mutex is held while the callback for this alarm is being executed.
92  // It allows us to release the coarse-grained monitor lock while a
93  // potentially long-running callback is executing. |alarm_cancel| uses this
94  // mutex to provide a guarantee to its caller that the callback will not be
95  // in progress when it returns.
96  std::recursive_mutex* callback_mutex;
97  period_ms_t creation_time;
98  period_ms_t period;
99  period_ms_t deadline;
100  period_ms_t prev_deadline;  // Previous deadline - used for accounting of
101                              // periodic timers
102  bool is_periodic;
103  fixed_queue_t* queue;  // The processing queue to add this alarm to
104  alarm_callback_t callback;
105  void* data;
106  alarm_stats_t stats;
107
108  bool for_msg_loop;  // True, if the alarm should be processed on message loop
109  CancelableClosureInStruct closure;  // posted to message loop for processing
110};
111
112// If the next wakeup time is less than this threshold, we should acquire
113// a wakelock instead of setting a wake alarm so we're not bouncing in
114// and out of suspend frequently. This value is externally visible to allow
115// unit tests to run faster. It should not be modified by production code.
116int64_t TIMER_INTERVAL_FOR_WAKELOCK_IN_MS = 3000;
117static const clockid_t CLOCK_ID = CLOCK_BOOTTIME;
118
119#if (KERNEL_MISSING_CLOCK_BOOTTIME_ALARM == TRUE)
120static const clockid_t CLOCK_ID_ALARM = CLOCK_BOOTTIME;
121#else
122static const clockid_t CLOCK_ID_ALARM = CLOCK_BOOTTIME_ALARM;
123#endif
124
125// This mutex ensures that the |alarm_set|, |alarm_cancel|, and alarm callback
126// functions execute serially and not concurrently. As a result, this mutex
127// also protects the |alarms| list.
128static std::mutex alarms_mutex;
129static list_t* alarms;
130static timer_t timer;
131static timer_t wakeup_timer;
132static bool timer_set;
133
134// All alarm callbacks are dispatched from |dispatcher_thread|
135static thread_t* dispatcher_thread;
136static bool dispatcher_thread_active;
137static semaphore_t* alarm_expired;
138
139// Default alarm callback thread and queue
140static thread_t* default_callback_thread;
141static fixed_queue_t* default_callback_queue;
142
143static alarm_t* alarm_new_internal(const char* name, bool is_periodic);
144static bool lazy_initialize(void);
145static period_ms_t now(void);
146static void alarm_set_internal(alarm_t* alarm, period_ms_t period,
147                               alarm_callback_t cb, void* data,
148                               fixed_queue_t* queue, bool for_msg_loop);
149static void alarm_cancel_internal(alarm_t* alarm);
150static void remove_pending_alarm(alarm_t* alarm);
151static void schedule_next_instance(alarm_t* alarm);
152static void reschedule_root_alarm(void);
153static void alarm_queue_ready(fixed_queue_t* queue, void* context);
154static void timer_callback(void* data);
155static void callback_dispatch(void* context);
156static bool timer_create_internal(const clockid_t clock_id, timer_t* timer);
157static void update_scheduling_stats(alarm_stats_t* stats, period_ms_t now_ms,
158                                    period_ms_t deadline_ms,
159                                    period_ms_t execution_delta_ms);
160// Registers |queue| for processing alarm callbacks on |thread|.
161// |queue| may not be NULL. |thread| may not be NULL.
162static void alarm_register_processing_queue(fixed_queue_t* queue,
163                                            thread_t* thread);
164
165static void update_stat(stat_t* stat, period_ms_t delta) {
166  if (stat->max_ms < delta) stat->max_ms = delta;
167  stat->total_ms += delta;
168  stat->count++;
169}
170
171alarm_t* alarm_new(const char* name) { return alarm_new_internal(name, false); }
172
173alarm_t* alarm_new_periodic(const char* name) {
174  return alarm_new_internal(name, true);
175}
176
177static alarm_t* alarm_new_internal(const char* name, bool is_periodic) {
178  // Make sure we have a list we can insert alarms into.
179  if (!alarms && !lazy_initialize()) {
180    CHECK(false);  // if initialization failed, we should not continue
181    return NULL;
182  }
183
184  alarm_t* ret = static_cast<alarm_t*>(osi_calloc(sizeof(alarm_t)));
185
186  ret->callback_mutex = new std::recursive_mutex;
187  ret->is_periodic = is_periodic;
188  ret->stats.name = osi_strdup(name);
189
190  ret->for_msg_loop = false;
191  // placement new
192  new (&ret->closure) CancelableClosureInStruct();
193
194  // NOTE: The stats were reset by osi_calloc() above
195
196  return ret;
197}
198
199void alarm_free(alarm_t* alarm) {
200  if (!alarm) return;
201
202  alarm_cancel(alarm);
203  delete alarm->callback_mutex;
204  osi_free((void*)alarm->stats.name);
205  alarm->closure.~CancelableClosureInStruct();
206  osi_free(alarm);
207}
208
209period_ms_t alarm_get_remaining_ms(const alarm_t* alarm) {
210  CHECK(alarm != NULL);
211  period_ms_t remaining_ms = 0;
212  period_ms_t just_now = now();
213
214  std::lock_guard<std::mutex> lock(alarms_mutex);
215  if (alarm->deadline > just_now) remaining_ms = alarm->deadline - just_now;
216
217  return remaining_ms;
218}
219
220void alarm_set(alarm_t* alarm, period_ms_t interval_ms, alarm_callback_t cb,
221               void* data) {
222  alarm_set_internal(alarm, interval_ms, cb, data, default_callback_queue,
223                     false);
224}
225
226void alarm_set_on_mloop(alarm_t* alarm, period_ms_t interval_ms,
227                        alarm_callback_t cb, void* data) {
228  alarm_set_internal(alarm, interval_ms, cb, data, NULL, true);
229}
230
231// Runs in exclusion with alarm_cancel and timer_callback.
232static void alarm_set_internal(alarm_t* alarm, period_ms_t period,
233                               alarm_callback_t cb, void* data,
234                               fixed_queue_t* queue, bool for_msg_loop) {
235  CHECK(alarms != NULL);
236  CHECK(alarm != NULL);
237  CHECK(cb != NULL);
238
239  std::lock_guard<std::mutex> lock(alarms_mutex);
240
241  alarm->creation_time = now();
242  alarm->period = period;
243  alarm->queue = queue;
244  alarm->callback = cb;
245  alarm->data = data;
246  alarm->for_msg_loop = for_msg_loop;
247
248  schedule_next_instance(alarm);
249  alarm->stats.scheduled_count++;
250}
251
252void alarm_cancel(alarm_t* alarm) {
253  CHECK(alarms != NULL);
254  if (!alarm) return;
255
256  {
257    std::lock_guard<std::mutex> lock(alarms_mutex);
258    alarm_cancel_internal(alarm);
259  }
260
261  // If the callback for |alarm| is in progress, wait here until it completes.
262  std::lock_guard<std::recursive_mutex> lock(*alarm->callback_mutex);
263}
264
265// Internal implementation of canceling an alarm.
266// The caller must hold the |alarms_mutex|
267static void alarm_cancel_internal(alarm_t* alarm) {
268  bool needs_reschedule =
269      (!list_is_empty(alarms) && list_front(alarms) == alarm);
270
271  remove_pending_alarm(alarm);
272
273  alarm->deadline = 0;
274  alarm->prev_deadline = 0;
275  alarm->callback = NULL;
276  alarm->data = NULL;
277  alarm->stats.canceled_count++;
278  alarm->queue = NULL;
279
280  if (needs_reschedule) reschedule_root_alarm();
281}
282
283bool alarm_is_scheduled(const alarm_t* alarm) {
284  if ((alarms == NULL) || (alarm == NULL)) return false;
285  return (alarm->callback != NULL);
286}
287
288void alarm_cleanup(void) {
289  // If lazy_initialize never ran there is nothing else to do
290  if (!alarms) return;
291
292  dispatcher_thread_active = false;
293  semaphore_post(alarm_expired);
294  thread_free(dispatcher_thread);
295  dispatcher_thread = NULL;
296
297  std::lock_guard<std::mutex> lock(alarms_mutex);
298
299  fixed_queue_free(default_callback_queue, NULL);
300  default_callback_queue = NULL;
301  thread_free(default_callback_thread);
302  default_callback_thread = NULL;
303
304  timer_delete(wakeup_timer);
305  timer_delete(timer);
306  semaphore_free(alarm_expired);
307  alarm_expired = NULL;
308
309  list_free(alarms);
310  alarms = NULL;
311}
312
313static bool lazy_initialize(void) {
314  CHECK(alarms == NULL);
315
316  // timer_t doesn't have an invalid value so we must track whether
317  // the |timer| variable is valid ourselves.
318  bool timer_initialized = false;
319  bool wakeup_timer_initialized = false;
320
321  std::lock_guard<std::mutex> lock(alarms_mutex);
322
323  alarms = list_new(NULL);
324  if (!alarms) {
325    LOG_ERROR(LOG_TAG, "%s unable to allocate alarm list.", __func__);
326    goto error;
327  }
328
329  if (!timer_create_internal(CLOCK_ID, &timer)) goto error;
330  timer_initialized = true;
331
332  if (!timer_create_internal(CLOCK_ID_ALARM, &wakeup_timer)) goto error;
333  wakeup_timer_initialized = true;
334
335  alarm_expired = semaphore_new(0);
336  if (!alarm_expired) {
337    LOG_ERROR(LOG_TAG, "%s unable to create alarm expired semaphore", __func__);
338    goto error;
339  }
340
341  default_callback_thread =
342      thread_new_sized("alarm_default_callbacks", SIZE_MAX);
343  if (default_callback_thread == NULL) {
344    LOG_ERROR(LOG_TAG, "%s unable to create default alarm callbacks thread.",
345              __func__);
346    goto error;
347  }
348  thread_set_rt_priority(default_callback_thread, THREAD_RT_PRIORITY);
349  default_callback_queue = fixed_queue_new(SIZE_MAX);
350  if (default_callback_queue == NULL) {
351    LOG_ERROR(LOG_TAG, "%s unable to create default alarm callbacks queue.",
352              __func__);
353    goto error;
354  }
355  alarm_register_processing_queue(default_callback_queue,
356                                  default_callback_thread);
357
358  dispatcher_thread_active = true;
359  dispatcher_thread = thread_new("alarm_dispatcher");
360  if (!dispatcher_thread) {
361    LOG_ERROR(LOG_TAG, "%s unable to create alarm callback thread.", __func__);
362    goto error;
363  }
364  thread_set_rt_priority(dispatcher_thread, THREAD_RT_PRIORITY);
365  thread_post(dispatcher_thread, callback_dispatch, NULL);
366  return true;
367
368error:
369  fixed_queue_free(default_callback_queue, NULL);
370  default_callback_queue = NULL;
371  thread_free(default_callback_thread);
372  default_callback_thread = NULL;
373
374  thread_free(dispatcher_thread);
375  dispatcher_thread = NULL;
376
377  dispatcher_thread_active = false;
378
379  semaphore_free(alarm_expired);
380  alarm_expired = NULL;
381
382  if (wakeup_timer_initialized) timer_delete(wakeup_timer);
383
384  if (timer_initialized) timer_delete(timer);
385
386  list_free(alarms);
387  alarms = NULL;
388
389  return false;
390}
391
392static period_ms_t now(void) {
393  CHECK(alarms != NULL);
394
395  struct timespec ts;
396  if (clock_gettime(CLOCK_ID, &ts) == -1) {
397    LOG_ERROR(LOG_TAG, "%s unable to get current time: %s", __func__,
398              strerror(errno));
399    return 0;
400  }
401
402  return (ts.tv_sec * 1000LL) + (ts.tv_nsec / 1000000LL);
403}
404
405// Remove alarm from internal alarm list and the processing queue
406// The caller must hold the |alarms_mutex|
407static void remove_pending_alarm(alarm_t* alarm) {
408  list_remove(alarms, alarm);
409
410  if (alarm->for_msg_loop) {
411    alarm->closure.i.Cancel();
412  } else {
413    while (fixed_queue_try_remove_from_queue(alarm->queue, alarm) != NULL) {
414      // Remove all repeated alarm instances from the queue.
415      // NOTE: We are defensive here - we shouldn't have repeated alarm
416      // instances
417    }
418  }
419}
420
421// Must be called with |alarms_mutex| held
422static void schedule_next_instance(alarm_t* alarm) {
423  // If the alarm is currently set and it's at the start of the list,
424  // we'll need to re-schedule since we've adjusted the earliest deadline.
425  bool needs_reschedule =
426      (!list_is_empty(alarms) && list_front(alarms) == alarm);
427  if (alarm->callback) remove_pending_alarm(alarm);
428
429  // Calculate the next deadline for this alarm
430  period_ms_t just_now = now();
431  period_ms_t ms_into_period = 0;
432  if ((alarm->is_periodic) && (alarm->period != 0))
433    ms_into_period = ((just_now - alarm->creation_time) % alarm->period);
434  alarm->deadline = just_now + (alarm->period - ms_into_period);
435
436  // Add it into the timer list sorted by deadline (earliest deadline first).
437  if (list_is_empty(alarms) ||
438      ((alarm_t*)list_front(alarms))->deadline > alarm->deadline) {
439    list_prepend(alarms, alarm);
440  } else {
441    for (list_node_t* node = list_begin(alarms); node != list_end(alarms);
442         node = list_next(node)) {
443      list_node_t* next = list_next(node);
444      if (next == list_end(alarms) ||
445          ((alarm_t*)list_node(next))->deadline > alarm->deadline) {
446        list_insert_after(alarms, node, alarm);
447        break;
448      }
449    }
450  }
451
452  // If the new alarm has the earliest deadline, we need to re-evaluate our
453  // schedule.
454  if (needs_reschedule ||
455      (!list_is_empty(alarms) && list_front(alarms) == alarm)) {
456    reschedule_root_alarm();
457  }
458}
459
460// NOTE: must be called with |alarms_mutex| held
461static void reschedule_root_alarm(void) {
462  CHECK(alarms != NULL);
463
464  const bool timer_was_set = timer_set;
465  alarm_t* next;
466  int64_t next_expiration;
467
468  // If used in a zeroed state, disarms the timer.
469  struct itimerspec timer_time;
470  memset(&timer_time, 0, sizeof(timer_time));
471
472  if (list_is_empty(alarms)) goto done;
473
474  next = static_cast<alarm_t*>(list_front(alarms));
475  next_expiration = next->deadline - now();
476  if (next_expiration < TIMER_INTERVAL_FOR_WAKELOCK_IN_MS) {
477    if (!timer_set) {
478      if (!wakelock_acquire()) {
479        LOG_ERROR(LOG_TAG, "%s unable to acquire wake lock", __func__);
480        goto done;
481      }
482    }
483
484    timer_time.it_value.tv_sec = (next->deadline / 1000);
485    timer_time.it_value.tv_nsec = (next->deadline % 1000) * 1000000LL;
486
487    // It is entirely unsafe to call timer_settime(2) with a zeroed timerspec
488    // for timers with *_ALARM clock IDs. Although the man page states that the
489    // timer would be canceled, the current behavior (as of Linux kernel 3.17)
490    // is that the callback is issued immediately. The only way to cancel an
491    // *_ALARM timer is to delete the timer. But unfortunately, deleting and
492    // re-creating a timer is rather expensive; every timer_create(2) spawns a
493    // new thread. So we simply set the timer to fire at the largest possible
494    // time.
495    //
496    // If we've reached this code path, we're going to grab a wake lock and
497    // wait for the next timer to fire. In that case, there's no reason to
498    // have a pending wakeup timer so we simply cancel it.
499    struct itimerspec end_of_time;
500    memset(&end_of_time, 0, sizeof(end_of_time));
501    end_of_time.it_value.tv_sec = (time_t)(1LL << (sizeof(time_t) * 8 - 2));
502    timer_settime(wakeup_timer, TIMER_ABSTIME, &end_of_time, NULL);
503  } else {
504    // WARNING: do not attempt to use relative timers with *_ALARM clock IDs
505    // in kernels before 3.17 unless you have the following patch:
506    // https://lkml.org/lkml/2014/7/7/576
507    struct itimerspec wakeup_time;
508    memset(&wakeup_time, 0, sizeof(wakeup_time));
509
510    wakeup_time.it_value.tv_sec = (next->deadline / 1000);
511    wakeup_time.it_value.tv_nsec = (next->deadline % 1000) * 1000000LL;
512    if (timer_settime(wakeup_timer, TIMER_ABSTIME, &wakeup_time, NULL) == -1)
513      LOG_ERROR(LOG_TAG, "%s unable to set wakeup timer: %s", __func__,
514                strerror(errno));
515  }
516
517done:
518  timer_set =
519      timer_time.it_value.tv_sec != 0 || timer_time.it_value.tv_nsec != 0;
520  if (timer_was_set && !timer_set) {
521    wakelock_release();
522  }
523
524  if (timer_settime(timer, TIMER_ABSTIME, &timer_time, NULL) == -1)
525    LOG_ERROR(LOG_TAG, "%s unable to set timer: %s", __func__, strerror(errno));
526
527  // If next expiration was in the past (e.g. short timer that got context
528  // switched) then the timer might have diarmed itself. Detect this case and
529  // work around it by manually signalling the |alarm_expired| semaphore.
530  //
531  // It is possible that the timer was actually super short (a few
532  // milliseconds) and the timer expired normally before we called
533  // |timer_gettime|. Worst case, |alarm_expired| is signaled twice for that
534  // alarm. Nothing bad should happen in that case though since the callback
535  // dispatch function checks to make sure the timer at the head of the list
536  // actually expired.
537  if (timer_set) {
538    struct itimerspec time_to_expire;
539    timer_gettime(timer, &time_to_expire);
540    if (time_to_expire.it_value.tv_sec == 0 &&
541        time_to_expire.it_value.tv_nsec == 0) {
542      LOG_DEBUG(
543          LOG_TAG,
544          "%s alarm expiration too close for posix timers, switching to guns",
545          __func__);
546      semaphore_post(alarm_expired);
547    }
548  }
549}
550
551static void alarm_register_processing_queue(fixed_queue_t* queue,
552                                            thread_t* thread) {
553  CHECK(queue != NULL);
554  CHECK(thread != NULL);
555
556  fixed_queue_register_dequeue(queue, thread_get_reactor(thread),
557                               alarm_queue_ready, NULL);
558}
559
560static void alarm_ready_generic(alarm_t* alarm,
561                                std::unique_lock<std::mutex>& lock) {
562  if (alarm == NULL) {
563    return;  // The alarm was probably canceled
564  }
565  //
566  // If the alarm is not periodic, we've fully serviced it now, and can reset
567  // some of its internal state. This is useful to distinguish between expired
568  // alarms and active ones.
569  //
570  alarm_callback_t callback = alarm->callback;
571  void* data = alarm->data;
572  period_ms_t deadline = alarm->deadline;
573  if (alarm->is_periodic) {
574    // The periodic alarm has been rescheduled and alarm->deadline has been
575    // updated, hence we need to use the previous deadline.
576    deadline = alarm->prev_deadline;
577  } else {
578    alarm->deadline = 0;
579    alarm->callback = NULL;
580    alarm->data = NULL;
581    alarm->queue = NULL;
582  }
583
584  std::lock_guard<std::recursive_mutex> cb_lock(*alarm->callback_mutex);
585  lock.unlock();
586
587  period_ms_t t0 = now();
588  callback(data);
589  period_ms_t t1 = now();
590
591  // Update the statistics
592  CHECK(t1 >= t0);
593  period_ms_t delta = t1 - t0;
594  update_scheduling_stats(&alarm->stats, t0, deadline, delta);
595}
596
597static void alarm_ready_mloop(alarm_t* alarm) {
598  std::unique_lock<std::mutex> lock(alarms_mutex);
599  alarm_ready_generic(alarm, lock);
600}
601
602static void alarm_queue_ready(fixed_queue_t* queue, UNUSED_ATTR void* context) {
603  CHECK(queue != NULL);
604
605  std::unique_lock<std::mutex> lock(alarms_mutex);
606  alarm_t* alarm = (alarm_t*)fixed_queue_try_dequeue(queue);
607  alarm_ready_generic(alarm, lock);
608}
609
610// Callback function for wake alarms and our posix timer
611static void timer_callback(UNUSED_ATTR void* ptr) {
612  semaphore_post(alarm_expired);
613}
614
615// Function running on |dispatcher_thread| that performs the following:
616//   (1) Receives a signal using |alarm_exired| that the alarm has expired
617//   (2) Dispatches the alarm callback for processing by the corresponding
618// thread for that alarm.
619static void callback_dispatch(UNUSED_ATTR void* context) {
620  while (true) {
621    semaphore_wait(alarm_expired);
622    if (!dispatcher_thread_active) break;
623
624    std::lock_guard<std::mutex> lock(alarms_mutex);
625    alarm_t* alarm;
626
627    // Take into account that the alarm may get cancelled before we get to it.
628    // We're done here if there are no alarms or the alarm at the front is in
629    // the future. Exit right away since there's nothing left to do.
630    if (list_is_empty(alarms) ||
631        (alarm = static_cast<alarm_t*>(list_front(alarms)))->deadline > now()) {
632      reschedule_root_alarm();
633      continue;
634    }
635
636    list_remove(alarms, alarm);
637
638    if (alarm->is_periodic) {
639      alarm->prev_deadline = alarm->deadline;
640      schedule_next_instance(alarm);
641      alarm->stats.rescheduled_count++;
642    }
643    reschedule_root_alarm();
644
645    // Enqueue the alarm for processing
646    if (alarm->for_msg_loop) {
647      if (!get_message_loop()) {
648        LOG_ERROR(LOG_TAG, "%s: message loop already NULL. Alarm: %s", __func__,
649                  alarm->stats.name);
650        continue;
651      }
652
653      alarm->closure.i.Reset(Bind(alarm_ready_mloop, alarm));
654      get_message_loop()->PostTask(FROM_HERE, alarm->closure.i.callback());
655    } else {
656      fixed_queue_enqueue(alarm->queue, alarm);
657    }
658  }
659
660  LOG_DEBUG(LOG_TAG, "%s Callback thread exited", __func__);
661}
662
663static bool timer_create_internal(const clockid_t clock_id, timer_t* timer) {
664  CHECK(timer != NULL);
665
666  struct sigevent sigevent;
667  // create timer with RT priority thread
668  pthread_attr_t thread_attr;
669  pthread_attr_init(&thread_attr);
670  pthread_attr_setschedpolicy(&thread_attr, SCHED_FIFO);
671  struct sched_param param;
672  param.sched_priority = THREAD_RT_PRIORITY;
673  pthread_attr_setschedparam(&thread_attr, &param);
674
675  memset(&sigevent, 0, sizeof(sigevent));
676  sigevent.sigev_notify = SIGEV_THREAD;
677  sigevent.sigev_notify_function = (void (*)(union sigval))timer_callback;
678  sigevent.sigev_notify_attributes = &thread_attr;
679  if (timer_create(clock_id, &sigevent, timer) == -1) {
680    LOG_ERROR(LOG_TAG, "%s unable to create timer with clock %d: %s", __func__,
681              clock_id, strerror(errno));
682    if (clock_id == CLOCK_BOOTTIME_ALARM) {
683      LOG_ERROR(LOG_TAG,
684                "The kernel might not have support for "
685                "timer_create(CLOCK_BOOTTIME_ALARM): "
686                "https://lwn.net/Articles/429925/");
687      LOG_ERROR(LOG_TAG,
688                "See following patches: "
689                "https://git.kernel.org/cgit/linux/kernel/git/torvalds/"
690                "linux.git/log/?qt=grep&q=CLOCK_BOOTTIME_ALARM");
691    }
692    return false;
693  }
694
695  return true;
696}
697
698static void update_scheduling_stats(alarm_stats_t* stats, period_ms_t now_ms,
699                                    period_ms_t deadline_ms,
700                                    period_ms_t execution_delta_ms) {
701  stats->total_updates++;
702  stats->last_update_ms = now_ms;
703
704  update_stat(&stats->callback_execution, execution_delta_ms);
705
706  if (deadline_ms < now_ms) {
707    // Overdue scheduling
708    period_ms_t delta_ms = now_ms - deadline_ms;
709    update_stat(&stats->overdue_scheduling, delta_ms);
710  } else if (deadline_ms > now_ms) {
711    // Premature scheduling
712    period_ms_t delta_ms = deadline_ms - now_ms;
713    update_stat(&stats->premature_scheduling, delta_ms);
714  }
715}
716
717static void dump_stat(int fd, stat_t* stat, const char* description) {
718  period_ms_t average_time_ms = 0;
719  if (stat->count != 0) average_time_ms = stat->total_ms / stat->count;
720
721  dprintf(fd, "%-51s: %llu / %llu / %llu\n", description,
722          (unsigned long long)stat->total_ms, (unsigned long long)stat->max_ms,
723          (unsigned long long)average_time_ms);
724}
725
726void alarm_debug_dump(int fd) {
727  dprintf(fd, "\nBluetooth Alarms Statistics:\n");
728
729  std::lock_guard<std::mutex> lock(alarms_mutex);
730
731  if (alarms == NULL) {
732    dprintf(fd, "  None\n");
733    return;
734  }
735
736  period_ms_t just_now = now();
737
738  dprintf(fd, "  Total Alarms: %zu\n\n", list_length(alarms));
739
740  // Dump info for each alarm
741  for (list_node_t* node = list_begin(alarms); node != list_end(alarms);
742       node = list_next(node)) {
743    alarm_t* alarm = (alarm_t*)list_node(node);
744    alarm_stats_t* stats = &alarm->stats;
745
746    dprintf(fd, "  Alarm : %s (%s)\n", stats->name,
747            (alarm->is_periodic) ? "PERIODIC" : "SINGLE");
748
749    dprintf(fd, "%-51s: %zu / %zu / %zu / %zu\n",
750            "    Action counts (sched/resched/exec/cancel)",
751            stats->scheduled_count, stats->rescheduled_count,
752            stats->callback_execution.count, stats->canceled_count);
753
754    dprintf(fd, "%-51s: %zu / %zu\n",
755            "    Deviation counts (overdue/premature)",
756            stats->overdue_scheduling.count, stats->premature_scheduling.count);
757
758    dprintf(fd, "%-51s: %llu / %llu / %lld\n",
759            "    Time in ms (since creation/interval/remaining)",
760            (unsigned long long)(just_now - alarm->creation_time),
761            (unsigned long long)alarm->period,
762            (long long)(alarm->deadline - just_now));
763
764    dump_stat(fd, &stats->callback_execution,
765              "    Callback execution time in ms (total/max/avg)");
766
767    dump_stat(fd, &stats->overdue_scheduling,
768              "    Overdue scheduling time in ms (total/max/avg)");
769
770    dump_stat(fd, &stats->premature_scheduling,
771              "    Premature scheduling time in ms (total/max/avg)");
772
773    dprintf(fd, "\n");
774  }
775}
776