delta_performer.cc revision 6714084915ea7b66accf933344b0d4cd042dff3d
1//
2// Copyright (C) 2012 The Android Open Source Project
3//
4// Licensed under the Apache License, Version 2.0 (the "License");
5// you may not use this file except in compliance with the License.
6// You may obtain a copy of the License at
7//
8//      http://www.apache.org/licenses/LICENSE-2.0
9//
10// Unless required by applicable law or agreed to in writing, software
11// distributed under the License is distributed on an "AS IS" BASIS,
12// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13// See the License for the specific language governing permissions and
14// limitations under the License.
15//
16
17#include "update_engine/payload_consumer/delta_performer.h"
18
19#include <endian.h>
20#include <errno.h>
21#include <linux/fs.h>
22
23#include <algorithm>
24#include <cstring>
25#include <memory>
26#include <string>
27#include <vector>
28
29#include <applypatch/imgpatch.h>
30#include <base/files/file_util.h>
31#include <base/format_macros.h>
32#include <base/strings/string_number_conversions.h>
33#include <base/strings/string_util.h>
34#include <base/strings/stringprintf.h>
35#include <brillo/data_encoding.h>
36#include <brillo/make_unique_ptr.h>
37#include <google/protobuf/repeated_field.h>
38
39#include "update_engine/common/constants.h"
40#include "update_engine/common/hardware_interface.h"
41#include "update_engine/common/prefs_interface.h"
42#include "update_engine/common/subprocess.h"
43#include "update_engine/common/terminator.h"
44#include "update_engine/payload_consumer/bzip_extent_writer.h"
45#include "update_engine/payload_consumer/download_action.h"
46#include "update_engine/payload_consumer/extent_writer.h"
47#if USE_MTD
48#include "update_engine/payload_consumer/mtd_file_descriptor.h"
49#endif
50#include "update_engine/payload_consumer/payload_constants.h"
51#include "update_engine/payload_consumer/payload_verifier.h"
52#include "update_engine/payload_consumer/xz_extent_writer.h"
53
54using google::protobuf::RepeatedPtrField;
55using std::min;
56using std::string;
57using std::vector;
58
59namespace chromeos_update_engine {
60
61const uint64_t DeltaPerformer::kDeltaVersionOffset = sizeof(kDeltaMagic);
62const uint64_t DeltaPerformer::kDeltaVersionSize = 8;
63const uint64_t DeltaPerformer::kDeltaManifestSizeOffset =
64    kDeltaVersionOffset + kDeltaVersionSize;
65const uint64_t DeltaPerformer::kDeltaManifestSizeSize = 8;
66const uint64_t DeltaPerformer::kDeltaMetadataSignatureSizeSize = 4;
67const uint64_t DeltaPerformer::kMaxPayloadHeaderSize = 24;
68const uint64_t DeltaPerformer::kSupportedMajorPayloadVersion = 2;
69const uint32_t DeltaPerformer::kSupportedMinorPayloadVersion = 3;
70
71const unsigned DeltaPerformer::kProgressLogMaxChunks = 10;
72const unsigned DeltaPerformer::kProgressLogTimeoutSeconds = 30;
73const unsigned DeltaPerformer::kProgressDownloadWeight = 50;
74const unsigned DeltaPerformer::kProgressOperationsWeight = 50;
75
76namespace {
77const int kUpdateStateOperationInvalid = -1;
78const int kMaxResumedUpdateFailures = 10;
79#if USE_MTD
80const int kUbiVolumeAttachTimeout = 5 * 60;
81#endif
82
83FileDescriptorPtr CreateFileDescriptor(const char* path) {
84  FileDescriptorPtr ret;
85#if USE_MTD
86  if (strstr(path, "/dev/ubi") == path) {
87    if (!UbiFileDescriptor::IsUbi(path)) {
88      // The volume might not have been attached at boot time.
89      int volume_no;
90      if (utils::SplitPartitionName(path, nullptr, &volume_no)) {
91        utils::TryAttachingUbiVolume(volume_no, kUbiVolumeAttachTimeout);
92      }
93    }
94    if (UbiFileDescriptor::IsUbi(path)) {
95      LOG(INFO) << path << " is a UBI device.";
96      ret.reset(new UbiFileDescriptor);
97    }
98  } else if (MtdFileDescriptor::IsMtd(path)) {
99    LOG(INFO) << path << " is an MTD device.";
100    ret.reset(new MtdFileDescriptor);
101  } else {
102    LOG(INFO) << path << " is not an MTD nor a UBI device.";
103#endif
104    ret.reset(new EintrSafeFileDescriptor);
105#if USE_MTD
106  }
107#endif
108  return ret;
109}
110
111// Opens path for read/write. On success returns an open FileDescriptor
112// and sets *err to 0. On failure, sets *err to errno and returns nullptr.
113FileDescriptorPtr OpenFile(const char* path, int mode, int* err) {
114  // Try to mark the block device read-only based on the mode. Ignore any
115  // failure since this won't work when passing regular files.
116  utils::SetBlockDeviceReadOnly(path, (mode & O_ACCMODE) == O_RDONLY);
117
118  FileDescriptorPtr fd = CreateFileDescriptor(path);
119#if USE_MTD
120  // On NAND devices, we can either read, or write, but not both. So here we
121  // use O_WRONLY.
122  if (UbiFileDescriptor::IsUbi(path) || MtdFileDescriptor::IsMtd(path)) {
123    mode = O_WRONLY;
124  }
125#endif
126  if (!fd->Open(path, mode, 000)) {
127    *err = errno;
128    PLOG(ERROR) << "Unable to open file " << path;
129    return nullptr;
130  }
131  *err = 0;
132  return fd;
133}
134
135// Discard the tail of the block device referenced by |fd|, from the offset
136// |data_size| until the end of the block device. Returns whether the data was
137// discarded.
138bool DiscardPartitionTail(FileDescriptorPtr fd, uint64_t data_size) {
139  uint64_t part_size = fd->BlockDevSize();
140  if (!part_size || part_size <= data_size)
141    return false;
142
143  const vector<int> requests = {
144      BLKSECDISCARD,
145      BLKDISCARD,
146#ifdef BLKZEROOUT
147      BLKZEROOUT,
148#endif
149  };
150  for (int request : requests) {
151    int error = 0;
152    if (fd->BlkIoctl(request, data_size, part_size - data_size, &error) &&
153        error == 0) {
154      return true;
155    }
156    LOG(WARNING) << "Error discarding the last "
157                 << (part_size - data_size) / 1024 << " KiB using ioctl("
158                 << request << ")";
159  }
160  return false;
161}
162
163}  // namespace
164
165
166// Computes the ratio of |part| and |total|, scaled to |norm|, using integer
167// arithmetic.
168static uint64_t IntRatio(uint64_t part, uint64_t total, uint64_t norm) {
169  return part * norm / total;
170}
171
172void DeltaPerformer::LogProgress(const char* message_prefix) {
173  // Format operations total count and percentage.
174  string total_operations_str("?");
175  string completed_percentage_str("");
176  if (num_total_operations_) {
177    total_operations_str = std::to_string(num_total_operations_);
178    // Upcasting to 64-bit to avoid overflow, back to size_t for formatting.
179    completed_percentage_str =
180        base::StringPrintf(" (%" PRIu64 "%%)",
181                           IntRatio(next_operation_num_, num_total_operations_,
182                                    100));
183  }
184
185  // Format download total count and percentage.
186  size_t payload_size = install_plan_->payload_size;
187  string payload_size_str("?");
188  string downloaded_percentage_str("");
189  if (payload_size) {
190    payload_size_str = std::to_string(payload_size);
191    // Upcasting to 64-bit to avoid overflow, back to size_t for formatting.
192    downloaded_percentage_str =
193        base::StringPrintf(" (%" PRIu64 "%%)",
194                           IntRatio(total_bytes_received_, payload_size, 100));
195  }
196
197  LOG(INFO) << (message_prefix ? message_prefix : "") << next_operation_num_
198            << "/" << total_operations_str << " operations"
199            << completed_percentage_str << ", " << total_bytes_received_
200            << "/" << payload_size_str << " bytes downloaded"
201            << downloaded_percentage_str << ", overall progress "
202            << overall_progress_ << "%";
203}
204
205void DeltaPerformer::UpdateOverallProgress(bool force_log,
206                                           const char* message_prefix) {
207  // Compute our download and overall progress.
208  unsigned new_overall_progress = 0;
209  static_assert(kProgressDownloadWeight + kProgressOperationsWeight == 100,
210                "Progress weights don't add up");
211  // Only consider download progress if its total size is known; otherwise
212  // adjust the operations weight to compensate for the absence of download
213  // progress. Also, make sure to cap the download portion at
214  // kProgressDownloadWeight, in case we end up downloading more than we
215  // initially expected (this indicates a problem, but could generally happen).
216  // TODO(garnold) the correction of operations weight when we do not have the
217  // total payload size, as well as the conditional guard below, should both be
218  // eliminated once we ensure that the payload_size in the install plan is
219  // always given and is non-zero. This currently isn't the case during unit
220  // tests (see chromium-os:37969).
221  size_t payload_size = install_plan_->payload_size;
222  unsigned actual_operations_weight = kProgressOperationsWeight;
223  if (payload_size)
224    new_overall_progress += min(
225        static_cast<unsigned>(IntRatio(total_bytes_received_, payload_size,
226                                       kProgressDownloadWeight)),
227        kProgressDownloadWeight);
228  else
229    actual_operations_weight += kProgressDownloadWeight;
230
231  // Only add completed operations if their total number is known; we definitely
232  // expect an update to have at least one operation, so the expectation is that
233  // this will eventually reach |actual_operations_weight|.
234  if (num_total_operations_)
235    new_overall_progress += IntRatio(next_operation_num_, num_total_operations_,
236                                     actual_operations_weight);
237
238  // Progress ratio cannot recede, unless our assumptions about the total
239  // payload size, total number of operations, or the monotonicity of progress
240  // is breached.
241  if (new_overall_progress < overall_progress_) {
242    LOG(WARNING) << "progress counter receded from " << overall_progress_
243                 << "% down to " << new_overall_progress << "%; this is a bug";
244    force_log = true;
245  }
246  overall_progress_ = new_overall_progress;
247
248  // Update chunk index, log as needed: if forced by called, or we completed a
249  // progress chunk, or a timeout has expired.
250  base::Time curr_time = base::Time::Now();
251  unsigned curr_progress_chunk =
252      overall_progress_ * kProgressLogMaxChunks / 100;
253  if (force_log || curr_progress_chunk > last_progress_chunk_ ||
254      curr_time > forced_progress_log_time_) {
255    forced_progress_log_time_ = curr_time + forced_progress_log_wait_;
256    LogProgress(message_prefix);
257  }
258  last_progress_chunk_ = curr_progress_chunk;
259}
260
261
262size_t DeltaPerformer::CopyDataToBuffer(const char** bytes_p, size_t* count_p,
263                                        size_t max) {
264  const size_t count = *count_p;
265  if (!count)
266    return 0;  // Special case shortcut.
267  size_t read_len = min(count, max - buffer_.size());
268  const char* bytes_start = *bytes_p;
269  const char* bytes_end = bytes_start + read_len;
270  buffer_.insert(buffer_.end(), bytes_start, bytes_end);
271  *bytes_p = bytes_end;
272  *count_p = count - read_len;
273  return read_len;
274}
275
276
277bool DeltaPerformer::HandleOpResult(bool op_result, const char* op_type_name,
278                                    ErrorCode* error) {
279  if (op_result)
280    return true;
281
282  size_t partition_first_op_num =
283      current_partition_ ? acc_num_operations_[current_partition_ - 1] : 0;
284  LOG(ERROR) << "Failed to perform " << op_type_name << " operation "
285             << next_operation_num_ << ", which is the operation "
286             << next_operation_num_ - partition_first_op_num
287             << " in partition \""
288             << partitions_[current_partition_].partition_name() << "\"";
289  *error = ErrorCode::kDownloadOperationExecutionError;
290  return false;
291}
292
293int DeltaPerformer::Close() {
294  int err = -CloseCurrentPartition();
295  LOG_IF(ERROR, !payload_hash_calculator_.Finalize() ||
296                !signed_hash_calculator_.Finalize())
297      << "Unable to finalize the hash.";
298  if (!buffer_.empty()) {
299    LOG(INFO) << "Discarding " << buffer_.size() << " unused downloaded bytes";
300    if (err >= 0)
301      err = 1;
302  }
303  return -err;
304}
305
306int DeltaPerformer::CloseCurrentPartition() {
307  int err = 0;
308  if (source_fd_ && !source_fd_->Close()) {
309    err = errno;
310    PLOG(ERROR) << "Error closing source partition";
311    if (!err)
312      err = 1;
313  }
314  source_fd_.reset();
315  source_path_.clear();
316
317  if (target_fd_ && !target_fd_->Close()) {
318    err = errno;
319    PLOG(ERROR) << "Error closing target partition";
320    if (!err)
321      err = 1;
322  }
323  target_fd_.reset();
324  target_path_.clear();
325  return -err;
326}
327
328bool DeltaPerformer::OpenCurrentPartition() {
329  if (current_partition_ >= partitions_.size())
330    return false;
331
332  const PartitionUpdate& partition = partitions_[current_partition_];
333  // Open source fds if we have a delta payload with minor version >= 2.
334  if (install_plan_->payload_type == InstallPayloadType::kDelta &&
335      GetMinorVersion() != kInPlaceMinorPayloadVersion) {
336    source_path_ = install_plan_->partitions[current_partition_].source_path;
337    int err;
338    source_fd_ = OpenFile(source_path_.c_str(), O_RDONLY, &err);
339    if (!source_fd_) {
340      LOG(ERROR) << "Unable to open source partition "
341                 << partition.partition_name() << " on slot "
342                 << BootControlInterface::SlotName(install_plan_->source_slot)
343                 << ", file " << source_path_;
344      return false;
345    }
346  }
347
348  target_path_ = install_plan_->partitions[current_partition_].target_path;
349  int err;
350  target_fd_ = OpenFile(target_path_.c_str(), O_RDWR, &err);
351  if (!target_fd_) {
352    LOG(ERROR) << "Unable to open target partition "
353               << partition.partition_name() << " on slot "
354               << BootControlInterface::SlotName(install_plan_->target_slot)
355               << ", file " << target_path_;
356    return false;
357  }
358
359  LOG(INFO) << "Applying " << partition.operations().size()
360            << " operations to partition \"" << partition.partition_name()
361            << "\"";
362
363  // Discard the end of the partition, but ignore failures.
364  DiscardPartitionTail(
365      target_fd_, install_plan_->partitions[current_partition_].target_size);
366
367  return true;
368}
369
370namespace {
371
372void LogPartitionInfoHash(const PartitionInfo& info, const string& tag) {
373  string sha256 = brillo::data_encoding::Base64Encode(info.hash());
374  LOG(INFO) << "PartitionInfo " << tag << " sha256: " << sha256
375            << " size: " << info.size();
376}
377
378void LogPartitionInfo(const vector<PartitionUpdate>& partitions) {
379  for (const PartitionUpdate& partition : partitions) {
380    LogPartitionInfoHash(partition.old_partition_info(),
381                         "old " + partition.partition_name());
382    LogPartitionInfoHash(partition.new_partition_info(),
383                         "new " + partition.partition_name());
384  }
385}
386
387}  // namespace
388
389bool DeltaPerformer::GetMetadataSignatureSizeOffset(
390    uint64_t* out_offset) const {
391  if (GetMajorVersion() == kBrilloMajorPayloadVersion) {
392    *out_offset = kDeltaManifestSizeOffset + kDeltaManifestSizeSize;
393    return true;
394  }
395  return false;
396}
397
398bool DeltaPerformer::GetManifestOffset(uint64_t* out_offset) const {
399  // Actual manifest begins right after the manifest size field or
400  // metadata signature size field if major version >= 2.
401  if (major_payload_version_ == kChromeOSMajorPayloadVersion) {
402    *out_offset = kDeltaManifestSizeOffset + kDeltaManifestSizeSize;
403    return true;
404  }
405  if (major_payload_version_ == kBrilloMajorPayloadVersion) {
406    *out_offset = kDeltaManifestSizeOffset + kDeltaManifestSizeSize +
407                  kDeltaMetadataSignatureSizeSize;
408    return true;
409  }
410  LOG(ERROR) << "Unknown major payload version: " << major_payload_version_;
411  return false;
412}
413
414uint64_t DeltaPerformer::GetMetadataSize() const {
415  return metadata_size_;
416}
417
418uint64_t DeltaPerformer::GetMajorVersion() const {
419  return major_payload_version_;
420}
421
422uint32_t DeltaPerformer::GetMinorVersion() const {
423  if (manifest_.has_minor_version()) {
424    return manifest_.minor_version();
425  } else {
426    return install_plan_->payload_type == InstallPayloadType::kDelta
427               ? kSupportedMinorPayloadVersion
428               : kFullPayloadMinorVersion;
429  }
430}
431
432bool DeltaPerformer::GetManifest(DeltaArchiveManifest* out_manifest_p) const {
433  if (!manifest_parsed_)
434    return false;
435  *out_manifest_p = manifest_;
436  return true;
437}
438
439bool DeltaPerformer::IsHeaderParsed() const {
440  return metadata_size_ != 0;
441}
442
443DeltaPerformer::MetadataParseResult DeltaPerformer::ParsePayloadMetadata(
444    const brillo::Blob& payload, ErrorCode* error) {
445  *error = ErrorCode::kSuccess;
446  uint64_t manifest_offset;
447
448  if (!IsHeaderParsed()) {
449    // Ensure we have data to cover the major payload version.
450    if (payload.size() < kDeltaManifestSizeOffset)
451      return kMetadataParseInsufficientData;
452
453    // Validate the magic string.
454    if (memcmp(payload.data(), kDeltaMagic, sizeof(kDeltaMagic)) != 0) {
455      LOG(ERROR) << "Bad payload format -- invalid delta magic.";
456      *error = ErrorCode::kDownloadInvalidMetadataMagicString;
457      return kMetadataParseError;
458    }
459
460    // Extract the payload version from the metadata.
461    static_assert(sizeof(major_payload_version_) == kDeltaVersionSize,
462                  "Major payload version size mismatch");
463    memcpy(&major_payload_version_,
464           &payload[kDeltaVersionOffset],
465           kDeltaVersionSize);
466    // switch big endian to host
467    major_payload_version_ = be64toh(major_payload_version_);
468
469    if (major_payload_version_ != supported_major_version_ &&
470        major_payload_version_ != kChromeOSMajorPayloadVersion) {
471      LOG(ERROR) << "Bad payload format -- unsupported payload version: "
472          << major_payload_version_;
473      *error = ErrorCode::kUnsupportedMajorPayloadVersion;
474      return kMetadataParseError;
475    }
476
477    // Get the manifest offset now that we have payload version.
478    if (!GetManifestOffset(&manifest_offset)) {
479      *error = ErrorCode::kUnsupportedMajorPayloadVersion;
480      return kMetadataParseError;
481    }
482    // Check again with the manifest offset.
483    if (payload.size() < manifest_offset)
484      return kMetadataParseInsufficientData;
485
486    // Next, parse the manifest size.
487    static_assert(sizeof(manifest_size_) == kDeltaManifestSizeSize,
488                  "manifest_size size mismatch");
489    memcpy(&manifest_size_,
490           &payload[kDeltaManifestSizeOffset],
491           kDeltaManifestSizeSize);
492    manifest_size_ = be64toh(manifest_size_);  // switch big endian to host
493
494    if (GetMajorVersion() == kBrilloMajorPayloadVersion) {
495      // Parse the metadata signature size.
496      static_assert(sizeof(metadata_signature_size_) ==
497                    kDeltaMetadataSignatureSizeSize,
498                    "metadata_signature_size size mismatch");
499      uint64_t metadata_signature_size_offset;
500      if (!GetMetadataSignatureSizeOffset(&metadata_signature_size_offset)) {
501        *error = ErrorCode::kError;
502        return kMetadataParseError;
503      }
504      memcpy(&metadata_signature_size_,
505             &payload[metadata_signature_size_offset],
506             kDeltaMetadataSignatureSizeSize);
507      metadata_signature_size_ = be32toh(metadata_signature_size_);
508    }
509
510    // If the metadata size is present in install plan, check for it immediately
511    // even before waiting for that many number of bytes to be downloaded in the
512    // payload. This will prevent any attack which relies on us downloading data
513    // beyond the expected metadata size.
514    metadata_size_ = manifest_offset + manifest_size_;
515    if (install_plan_->hash_checks_mandatory) {
516      if (install_plan_->metadata_size != metadata_size_) {
517        LOG(ERROR) << "Mandatory metadata size in Omaha response ("
518                   << install_plan_->metadata_size
519                   << ") is missing/incorrect, actual = " << metadata_size_;
520        *error = ErrorCode::kDownloadInvalidMetadataSize;
521        return kMetadataParseError;
522      }
523    }
524  }
525
526  // Now that we have validated the metadata size, we should wait for the full
527  // metadata and its signature (if exist) to be read in before we can parse it.
528  if (payload.size() < metadata_size_ + metadata_signature_size_)
529    return kMetadataParseInsufficientData;
530
531  // Log whether we validated the size or simply trusting what's in the payload
532  // here. This is logged here (after we received the full metadata data) so
533  // that we just log once (instead of logging n times) if it takes n
534  // DeltaPerformer::Write calls to download the full manifest.
535  if (install_plan_->metadata_size == metadata_size_) {
536    LOG(INFO) << "Manifest size in payload matches expected value from Omaha";
537  } else {
538    // For mandatory-cases, we'd have already returned a kMetadataParseError
539    // above. We'll be here only for non-mandatory cases. Just send a UMA stat.
540    LOG(WARNING) << "Ignoring missing/incorrect metadata size ("
541                 << install_plan_->metadata_size
542                 << ") in Omaha response as validation is not mandatory. "
543                 << "Trusting metadata size in payload = " << metadata_size_;
544  }
545
546  // We have the full metadata in |payload|. Verify its integrity
547  // and authenticity based on the information we have in Omaha response.
548  *error = ValidateMetadataSignature(payload);
549  if (*error != ErrorCode::kSuccess) {
550    if (install_plan_->hash_checks_mandatory) {
551      // The autoupdate_CatchBadSignatures test checks for this string
552      // in log-files. Keep in sync.
553      LOG(ERROR) << "Mandatory metadata signature validation failed";
554      return kMetadataParseError;
555    }
556
557    // For non-mandatory cases, just send a UMA stat.
558    LOG(WARNING) << "Ignoring metadata signature validation failures";
559    *error = ErrorCode::kSuccess;
560  }
561
562  if (!GetManifestOffset(&manifest_offset)) {
563    *error = ErrorCode::kUnsupportedMajorPayloadVersion;
564    return kMetadataParseError;
565  }
566  // The payload metadata is deemed valid, it's safe to parse the protobuf.
567  if (!manifest_.ParseFromArray(&payload[manifest_offset], manifest_size_)) {
568    LOG(ERROR) << "Unable to parse manifest in update file.";
569    *error = ErrorCode::kDownloadManifestParseError;
570    return kMetadataParseError;
571  }
572
573  manifest_parsed_ = true;
574  return kMetadataParseSuccess;
575}
576
577// Wrapper around write. Returns true if all requested bytes
578// were written, or false on any error, regardless of progress
579// and stores an action exit code in |error|.
580bool DeltaPerformer::Write(const void* bytes, size_t count, ErrorCode *error) {
581  *error = ErrorCode::kSuccess;
582
583  const char* c_bytes = reinterpret_cast<const char*>(bytes);
584
585  // Update the total byte downloaded count and the progress logs.
586  total_bytes_received_ += count;
587  UpdateOverallProgress(false, "Completed ");
588
589  while (!manifest_valid_) {
590    // Read data up to the needed limit; this is either maximium payload header
591    // size, or the full metadata size (once it becomes known).
592    const bool do_read_header = !IsHeaderParsed();
593    CopyDataToBuffer(&c_bytes, &count,
594                     (do_read_header ? kMaxPayloadHeaderSize :
595                      metadata_size_ + metadata_signature_size_));
596
597    MetadataParseResult result = ParsePayloadMetadata(buffer_, error);
598    if (result == kMetadataParseError)
599      return false;
600    if (result == kMetadataParseInsufficientData) {
601      // If we just processed the header, make an attempt on the manifest.
602      if (do_read_header && IsHeaderParsed())
603        continue;
604
605      return true;
606    }
607
608    // Checks the integrity of the payload manifest.
609    if ((*error = ValidateManifest()) != ErrorCode::kSuccess)
610      return false;
611    manifest_valid_ = true;
612
613    // Clear the download buffer.
614    DiscardBuffer(false, metadata_size_);
615
616    // This populates |partitions_| and the |install_plan.partitions| with the
617    // list of partitions from the manifest.
618    if (!ParseManifestPartitions(error))
619      return false;
620
621    num_total_operations_ = 0;
622    for (const auto& partition : partitions_) {
623      num_total_operations_ += partition.operations_size();
624      acc_num_operations_.push_back(num_total_operations_);
625    }
626
627    LOG_IF(WARNING, !prefs_->SetInt64(kPrefsManifestMetadataSize,
628                                      metadata_size_))
629        << "Unable to save the manifest metadata size.";
630    LOG_IF(WARNING, !prefs_->SetInt64(kPrefsManifestSignatureSize,
631                                      metadata_signature_size_))
632        << "Unable to save the manifest signature size.";
633
634    if (!PrimeUpdateState()) {
635      *error = ErrorCode::kDownloadStateInitializationError;
636      LOG(ERROR) << "Unable to prime the update state.";
637      return false;
638    }
639
640    if (!OpenCurrentPartition()) {
641      *error = ErrorCode::kInstallDeviceOpenError;
642      return false;
643    }
644
645    if (next_operation_num_ > 0)
646      UpdateOverallProgress(true, "Resuming after ");
647    LOG(INFO) << "Starting to apply update payload operations";
648  }
649
650  while (next_operation_num_ < num_total_operations_) {
651    // Check if we should cancel the current attempt for any reason.
652    // In this case, *error will have already been populated with the reason
653    // why we're canceling.
654    if (download_delegate_ && download_delegate_->ShouldCancel(error))
655      return false;
656
657    // We know there are more operations to perform because we didn't reach the
658    // |num_total_operations_| limit yet.
659    while (next_operation_num_ >= acc_num_operations_[current_partition_]) {
660      CloseCurrentPartition();
661      current_partition_++;
662      if (!OpenCurrentPartition()) {
663        *error = ErrorCode::kInstallDeviceOpenError;
664        return false;
665      }
666    }
667    const size_t partition_operation_num = next_operation_num_ - (
668        current_partition_ ? acc_num_operations_[current_partition_ - 1] : 0);
669
670    const InstallOperation& op =
671        partitions_[current_partition_].operations(partition_operation_num);
672
673    CopyDataToBuffer(&c_bytes, &count, op.data_length());
674
675    // Check whether we received all of the next operation's data payload.
676    if (!CanPerformInstallOperation(op))
677      return true;
678
679    // Validate the operation only if the metadata signature is present.
680    // Otherwise, keep the old behavior. This serves as a knob to disable
681    // the validation logic in case we find some regression after rollout.
682    // NOTE: If hash checks are mandatory and if metadata_signature is empty,
683    // we would have already failed in ParsePayloadMetadata method and thus not
684    // even be here. So no need to handle that case again here.
685    if (!install_plan_->metadata_signature.empty()) {
686      // Note: Validate must be called only if CanPerformInstallOperation is
687      // called. Otherwise, we might be failing operations before even if there
688      // isn't sufficient data to compute the proper hash.
689      *error = ValidateOperationHash(op);
690      if (*error != ErrorCode::kSuccess) {
691        if (install_plan_->hash_checks_mandatory) {
692          LOG(ERROR) << "Mandatory operation hash check failed";
693          return false;
694        }
695
696        // For non-mandatory cases, just send a UMA stat.
697        LOG(WARNING) << "Ignoring operation validation errors";
698        *error = ErrorCode::kSuccess;
699      }
700    }
701
702    // Makes sure we unblock exit when this operation completes.
703    ScopedTerminatorExitUnblocker exit_unblocker =
704        ScopedTerminatorExitUnblocker();  // Avoids a compiler unused var bug.
705
706    bool op_result;
707    switch (op.type()) {
708      case InstallOperation::REPLACE:
709      case InstallOperation::REPLACE_BZ:
710      case InstallOperation::REPLACE_XZ:
711        op_result = PerformReplaceOperation(op);
712        break;
713      case InstallOperation::ZERO:
714      case InstallOperation::DISCARD:
715        op_result = PerformZeroOrDiscardOperation(op);
716        break;
717      case InstallOperation::MOVE:
718        op_result = PerformMoveOperation(op);
719        break;
720      case InstallOperation::BSDIFF:
721        op_result = PerformBsdiffOperation(op);
722        break;
723      case InstallOperation::SOURCE_COPY:
724        op_result = PerformSourceCopyOperation(op);
725        break;
726      case InstallOperation::SOURCE_BSDIFF:
727        op_result = PerformSourceBsdiffOperation(op);
728        break;
729      case InstallOperation::IMGDIFF:
730        op_result = PerformImgdiffOperation(op);
731        break;
732      default:
733       op_result = false;
734    }
735    if (!HandleOpResult(op_result, InstallOperationTypeName(op.type()), error))
736      return false;
737
738    next_operation_num_++;
739    UpdateOverallProgress(false, "Completed ");
740    CheckpointUpdateProgress();
741  }
742
743  // In major version 2, we don't add dummy operation to the payload.
744  // If we already extracted the signature we should skip this step.
745  if (major_payload_version_ == kBrilloMajorPayloadVersion &&
746      manifest_.has_signatures_offset() && manifest_.has_signatures_size() &&
747      signatures_message_data_.empty()) {
748    if (manifest_.signatures_offset() != buffer_offset_) {
749      LOG(ERROR) << "Payload signatures offset points to blob offset "
750                 << manifest_.signatures_offset()
751                 << " but signatures are expected at offset "
752                 << buffer_offset_;
753      *error = ErrorCode::kDownloadPayloadVerificationError;
754      return false;
755    }
756    CopyDataToBuffer(&c_bytes, &count, manifest_.signatures_size());
757    // Needs more data to cover entire signature.
758    if (buffer_.size() < manifest_.signatures_size())
759      return true;
760    if (!ExtractSignatureMessage()) {
761      LOG(ERROR) << "Extract payload signature failed.";
762      *error = ErrorCode::kDownloadPayloadVerificationError;
763      return false;
764    }
765    DiscardBuffer(true, 0);
766    // Since we extracted the SignatureMessage we need to advance the
767    // checkpoint, otherwise we would reload the signature and try to extract
768    // it again.
769    CheckpointUpdateProgress();
770  }
771
772  return true;
773}
774
775bool DeltaPerformer::IsManifestValid() {
776  return manifest_valid_;
777}
778
779bool DeltaPerformer::ParseManifestPartitions(ErrorCode* error) {
780  if (major_payload_version_ == kBrilloMajorPayloadVersion) {
781    partitions_.clear();
782    for (const PartitionUpdate& partition : manifest_.partitions()) {
783      partitions_.push_back(partition);
784    }
785    manifest_.clear_partitions();
786  } else if (major_payload_version_ == kChromeOSMajorPayloadVersion) {
787    LOG(INFO) << "Converting update information from old format.";
788    PartitionUpdate root_part;
789    root_part.set_partition_name(kLegacyPartitionNameRoot);
790#ifdef __ANDROID__
791    LOG(WARNING) << "Legacy payload major version provided to an Android "
792                    "build. Assuming no post-install. Please use major version "
793                    "2 or newer.";
794    root_part.set_run_postinstall(false);
795#else
796    root_part.set_run_postinstall(true);
797#endif  // __ANDROID__
798    if (manifest_.has_old_rootfs_info()) {
799      *root_part.mutable_old_partition_info() = manifest_.old_rootfs_info();
800      manifest_.clear_old_rootfs_info();
801    }
802    if (manifest_.has_new_rootfs_info()) {
803      *root_part.mutable_new_partition_info() = manifest_.new_rootfs_info();
804      manifest_.clear_new_rootfs_info();
805    }
806    *root_part.mutable_operations() = manifest_.install_operations();
807    manifest_.clear_install_operations();
808    partitions_.push_back(std::move(root_part));
809
810    PartitionUpdate kern_part;
811    kern_part.set_partition_name(kLegacyPartitionNameKernel);
812    kern_part.set_run_postinstall(false);
813    if (manifest_.has_old_kernel_info()) {
814      *kern_part.mutable_old_partition_info() = manifest_.old_kernel_info();
815      manifest_.clear_old_kernel_info();
816    }
817    if (manifest_.has_new_kernel_info()) {
818      *kern_part.mutable_new_partition_info() = manifest_.new_kernel_info();
819      manifest_.clear_new_kernel_info();
820    }
821    *kern_part.mutable_operations() = manifest_.kernel_install_operations();
822    manifest_.clear_kernel_install_operations();
823    partitions_.push_back(std::move(kern_part));
824  }
825
826  // Fill in the InstallPlan::partitions based on the partitions from the
827  // payload.
828  install_plan_->partitions.clear();
829  for (const auto& partition : partitions_) {
830    InstallPlan::Partition install_part;
831    install_part.name = partition.partition_name();
832    install_part.run_postinstall =
833        partition.has_run_postinstall() && partition.run_postinstall();
834    if (install_part.run_postinstall) {
835      install_part.postinstall_path =
836          (partition.has_postinstall_path() ? partition.postinstall_path()
837                                            : kPostinstallDefaultScript);
838      install_part.filesystem_type = partition.filesystem_type();
839    }
840
841    if (partition.has_old_partition_info()) {
842      const PartitionInfo& info = partition.old_partition_info();
843      install_part.source_size = info.size();
844      install_part.source_hash.assign(info.hash().begin(), info.hash().end());
845    }
846
847    if (!partition.has_new_partition_info()) {
848      LOG(ERROR) << "Unable to get new partition hash info on partition "
849                 << install_part.name << ".";
850      *error = ErrorCode::kDownloadNewPartitionInfoError;
851      return false;
852    }
853    const PartitionInfo& info = partition.new_partition_info();
854    install_part.target_size = info.size();
855    install_part.target_hash.assign(info.hash().begin(), info.hash().end());
856
857    install_plan_->partitions.push_back(install_part);
858  }
859
860  if (!install_plan_->LoadPartitionsFromSlots(boot_control_)) {
861    LOG(ERROR) << "Unable to determine all the partition devices.";
862    *error = ErrorCode::kInstallDeviceOpenError;
863    return false;
864  }
865  LogPartitionInfo(partitions_);
866  return true;
867}
868
869bool DeltaPerformer::CanPerformInstallOperation(
870    const chromeos_update_engine::InstallOperation& operation) {
871  // If we don't have a data blob we can apply it right away.
872  if (!operation.has_data_offset() && !operation.has_data_length())
873    return true;
874
875  // See if we have the entire data blob in the buffer
876  if (operation.data_offset() < buffer_offset_) {
877    LOG(ERROR) << "we threw away data it seems?";
878    return false;
879  }
880
881  return (operation.data_offset() + operation.data_length() <=
882          buffer_offset_ + buffer_.size());
883}
884
885bool DeltaPerformer::PerformReplaceOperation(
886    const InstallOperation& operation) {
887  CHECK(operation.type() == InstallOperation::REPLACE ||
888        operation.type() == InstallOperation::REPLACE_BZ ||
889        operation.type() == InstallOperation::REPLACE_XZ);
890
891  // Since we delete data off the beginning of the buffer as we use it,
892  // the data we need should be exactly at the beginning of the buffer.
893  TEST_AND_RETURN_FALSE(buffer_offset_ == operation.data_offset());
894  TEST_AND_RETURN_FALSE(buffer_.size() >= operation.data_length());
895
896  // Extract the signature message if it's in this operation.
897  if (ExtractSignatureMessageFromOperation(operation)) {
898    // If this is dummy replace operation, we ignore it after extracting the
899    // signature.
900    DiscardBuffer(true, 0);
901    return true;
902  }
903
904  // Setup the ExtentWriter stack based on the operation type.
905  std::unique_ptr<ExtentWriter> writer =
906    brillo::make_unique_ptr(new ZeroPadExtentWriter(
907      brillo::make_unique_ptr(new DirectExtentWriter())));
908
909  if (operation.type() == InstallOperation::REPLACE_BZ) {
910    writer.reset(new BzipExtentWriter(std::move(writer)));
911  } else if (operation.type() == InstallOperation::REPLACE_XZ) {
912    writer.reset(new XzExtentWriter(std::move(writer)));
913  }
914
915  // Create a vector of extents to pass to the ExtentWriter.
916  vector<Extent> extents;
917  for (int i = 0; i < operation.dst_extents_size(); i++) {
918    extents.push_back(operation.dst_extents(i));
919  }
920
921  TEST_AND_RETURN_FALSE(writer->Init(target_fd_, extents, block_size_));
922  TEST_AND_RETURN_FALSE(writer->Write(buffer_.data(), operation.data_length()));
923  TEST_AND_RETURN_FALSE(writer->End());
924
925  // Update buffer
926  DiscardBuffer(true, buffer_.size());
927  return true;
928}
929
930bool DeltaPerformer::PerformZeroOrDiscardOperation(
931    const InstallOperation& operation) {
932  CHECK(operation.type() == InstallOperation::DISCARD ||
933        operation.type() == InstallOperation::ZERO);
934
935  // These operations have no blob.
936  TEST_AND_RETURN_FALSE(!operation.has_data_offset());
937  TEST_AND_RETURN_FALSE(!operation.has_data_length());
938
939#ifdef BLKZEROOUT
940  bool attempt_ioctl = true;
941  int request =
942      (operation.type() == InstallOperation::ZERO ? BLKZEROOUT : BLKDISCARD);
943#else  // !defined(BLKZEROOUT)
944  bool attempt_ioctl = false;
945  int request = 0;
946#endif  // !defined(BLKZEROOUT)
947
948  brillo::Blob zeros;
949  for (int i = 0; i < operation.dst_extents_size(); i++) {
950    Extent extent = operation.dst_extents(i);
951    const uint64_t start = extent.start_block() * block_size_;
952    const uint64_t length = extent.num_blocks() * block_size_;
953    if (attempt_ioctl) {
954      int result = 0;
955      if (target_fd_->BlkIoctl(request, start, length, &result) && result == 0)
956        continue;
957      attempt_ioctl = false;
958      zeros.resize(16 * block_size_);
959    }
960    // In case of failure, we fall back to writing 0 to the selected region.
961    for (uint64_t offset = 0; offset < length; offset += zeros.size()) {
962      uint64_t chunk_length = min(length - offset,
963                                  static_cast<uint64_t>(zeros.size()));
964      TEST_AND_RETURN_FALSE(
965          utils::PWriteAll(target_fd_, zeros.data(), chunk_length, start + offset));
966    }
967  }
968  return true;
969}
970
971bool DeltaPerformer::PerformMoveOperation(const InstallOperation& operation) {
972  // Calculate buffer size. Note, this function doesn't do a sliding
973  // window to copy in case the source and destination blocks overlap.
974  // If we wanted to do a sliding window, we could program the server
975  // to generate deltas that effectively did a sliding window.
976
977  uint64_t blocks_to_read = 0;
978  for (int i = 0; i < operation.src_extents_size(); i++)
979    blocks_to_read += operation.src_extents(i).num_blocks();
980
981  uint64_t blocks_to_write = 0;
982  for (int i = 0; i < operation.dst_extents_size(); i++)
983    blocks_to_write += operation.dst_extents(i).num_blocks();
984
985  DCHECK_EQ(blocks_to_write, blocks_to_read);
986  brillo::Blob buf(blocks_to_write * block_size_);
987
988  // Read in bytes.
989  ssize_t bytes_read = 0;
990  for (int i = 0; i < operation.src_extents_size(); i++) {
991    ssize_t bytes_read_this_iteration = 0;
992    const Extent& extent = operation.src_extents(i);
993    const size_t bytes = extent.num_blocks() * block_size_;
994    TEST_AND_RETURN_FALSE(extent.start_block() != kSparseHole);
995    TEST_AND_RETURN_FALSE(utils::PReadAll(target_fd_,
996                                          &buf[bytes_read],
997                                          bytes,
998                                          extent.start_block() * block_size_,
999                                          &bytes_read_this_iteration));
1000    TEST_AND_RETURN_FALSE(
1001        bytes_read_this_iteration == static_cast<ssize_t>(bytes));
1002    bytes_read += bytes_read_this_iteration;
1003  }
1004
1005  // Write bytes out.
1006  ssize_t bytes_written = 0;
1007  for (int i = 0; i < operation.dst_extents_size(); i++) {
1008    const Extent& extent = operation.dst_extents(i);
1009    const size_t bytes = extent.num_blocks() * block_size_;
1010    TEST_AND_RETURN_FALSE(extent.start_block() != kSparseHole);
1011    TEST_AND_RETURN_FALSE(utils::PWriteAll(target_fd_,
1012                                           &buf[bytes_written],
1013                                           bytes,
1014                                           extent.start_block() * block_size_));
1015    bytes_written += bytes;
1016  }
1017  DCHECK_EQ(bytes_written, bytes_read);
1018  DCHECK_EQ(bytes_written, static_cast<ssize_t>(buf.size()));
1019  return true;
1020}
1021
1022namespace {
1023
1024// Takes |extents| and fills an empty vector |blocks| with a block index for
1025// each block in |extents|. For example, [(3, 2), (8, 1)] would give [3, 4, 8].
1026void ExtentsToBlocks(const RepeatedPtrField<Extent>& extents,
1027                     vector<uint64_t>* blocks) {
1028  for (Extent ext : extents) {
1029    for (uint64_t j = 0; j < ext.num_blocks(); j++)
1030      blocks->push_back(ext.start_block() + j);
1031  }
1032}
1033
1034// Takes |extents| and returns the number of blocks in those extents.
1035uint64_t GetBlockCount(const RepeatedPtrField<Extent>& extents) {
1036  uint64_t sum = 0;
1037  for (Extent ext : extents) {
1038    sum += ext.num_blocks();
1039  }
1040  return sum;
1041}
1042
1043// Compare |calculated_hash| with source hash in |operation|, return false and
1044// dump hash if don't match.
1045bool ValidateSourceHash(const brillo::Blob& calculated_hash,
1046                        const InstallOperation& operation) {
1047  brillo::Blob expected_source_hash(operation.src_sha256_hash().begin(),
1048                                    operation.src_sha256_hash().end());
1049  if (calculated_hash != expected_source_hash) {
1050    LOG(ERROR) << "The hash of the source data on disk for this operation "
1051               << "doesn't match the expected value. This could mean that the "
1052               << "delta update payload was targeted for another version, or "
1053               << "that the source partition was modified after it was "
1054               << "installed, for example, by mounting a filesystem.";
1055    LOG(ERROR) << "Expected:   sha256|hex = "
1056               << base::HexEncode(expected_source_hash.data(),
1057                                  expected_source_hash.size());
1058    LOG(ERROR) << "Calculated: sha256|hex = "
1059               << base::HexEncode(calculated_hash.data(),
1060                                  calculated_hash.size());
1061
1062    vector<string> source_extents;
1063    for (const Extent& ext : operation.src_extents()) {
1064      source_extents.push_back(base::StringPrintf(
1065          "%" PRIu64 ":%" PRIu64, ext.start_block(), ext.num_blocks()));
1066    }
1067    LOG(ERROR) << "Operation source (offset:size) in blocks: "
1068               << base::JoinString(source_extents, ",");
1069    return false;
1070  }
1071  return true;
1072}
1073
1074}  // namespace
1075
1076bool DeltaPerformer::PerformSourceCopyOperation(
1077    const InstallOperation& operation) {
1078  if (operation.has_src_length())
1079    TEST_AND_RETURN_FALSE(operation.src_length() % block_size_ == 0);
1080  if (operation.has_dst_length())
1081    TEST_AND_RETURN_FALSE(operation.dst_length() % block_size_ == 0);
1082
1083  uint64_t blocks_to_read = GetBlockCount(operation.src_extents());
1084  uint64_t blocks_to_write = GetBlockCount(operation.dst_extents());
1085  TEST_AND_RETURN_FALSE(blocks_to_write ==  blocks_to_read);
1086
1087  // Create vectors of all the individual src/dst blocks.
1088  vector<uint64_t> src_blocks;
1089  vector<uint64_t> dst_blocks;
1090  ExtentsToBlocks(operation.src_extents(), &src_blocks);
1091  ExtentsToBlocks(operation.dst_extents(), &dst_blocks);
1092  DCHECK_EQ(src_blocks.size(), blocks_to_read);
1093  DCHECK_EQ(src_blocks.size(), dst_blocks.size());
1094
1095  brillo::Blob buf(block_size_);
1096  ssize_t bytes_read = 0;
1097  HashCalculator source_hasher;
1098  // Read/write one block at a time.
1099  for (uint64_t i = 0; i < blocks_to_read; i++) {
1100    ssize_t bytes_read_this_iteration = 0;
1101    uint64_t src_block = src_blocks[i];
1102    uint64_t dst_block = dst_blocks[i];
1103
1104    // Read in bytes.
1105    TEST_AND_RETURN_FALSE(
1106        utils::PReadAll(source_fd_,
1107                        buf.data(),
1108                        block_size_,
1109                        src_block * block_size_,
1110                        &bytes_read_this_iteration));
1111
1112    // Write bytes out.
1113    TEST_AND_RETURN_FALSE(
1114        utils::PWriteAll(target_fd_,
1115                         buf.data(),
1116                         block_size_,
1117                         dst_block * block_size_));
1118
1119    bytes_read += bytes_read_this_iteration;
1120    TEST_AND_RETURN_FALSE(bytes_read_this_iteration ==
1121                          static_cast<ssize_t>(block_size_));
1122
1123    if (operation.has_src_sha256_hash())
1124      TEST_AND_RETURN_FALSE(source_hasher.Update(buf.data(), buf.size()));
1125  }
1126
1127  if (operation.has_src_sha256_hash()) {
1128    TEST_AND_RETURN_FALSE(source_hasher.Finalize());
1129    TEST_AND_RETURN_FALSE(
1130        ValidateSourceHash(source_hasher.raw_hash(), operation));
1131  }
1132
1133  DCHECK_EQ(bytes_read, static_cast<ssize_t>(blocks_to_read * block_size_));
1134  return true;
1135}
1136
1137bool DeltaPerformer::ExtentsToBsdiffPositionsString(
1138    const RepeatedPtrField<Extent>& extents,
1139    uint64_t block_size,
1140    uint64_t full_length,
1141    string* positions_string) {
1142  string ret;
1143  uint64_t length = 0;
1144  for (int i = 0; i < extents.size(); i++) {
1145    Extent extent = extents.Get(i);
1146    int64_t start = extent.start_block() * block_size;
1147    uint64_t this_length = min(full_length - length,
1148                               extent.num_blocks() * block_size);
1149    ret += base::StringPrintf("%" PRIi64 ":%" PRIu64 ",", start, this_length);
1150    length += this_length;
1151  }
1152  TEST_AND_RETURN_FALSE(length == full_length);
1153  if (!ret.empty())
1154    ret.resize(ret.size() - 1);  // Strip trailing comma off
1155  *positions_string = ret;
1156  return true;
1157}
1158
1159bool DeltaPerformer::PerformBsdiffOperation(const InstallOperation& operation) {
1160  // Since we delete data off the beginning of the buffer as we use it,
1161  // the data we need should be exactly at the beginning of the buffer.
1162  TEST_AND_RETURN_FALSE(buffer_offset_ == operation.data_offset());
1163  TEST_AND_RETURN_FALSE(buffer_.size() >= operation.data_length());
1164
1165  string input_positions;
1166  TEST_AND_RETURN_FALSE(ExtentsToBsdiffPositionsString(operation.src_extents(),
1167                                                       block_size_,
1168                                                       operation.src_length(),
1169                                                       &input_positions));
1170  string output_positions;
1171  TEST_AND_RETURN_FALSE(ExtentsToBsdiffPositionsString(operation.dst_extents(),
1172                                                       block_size_,
1173                                                       operation.dst_length(),
1174                                                       &output_positions));
1175
1176  string temp_filename;
1177  TEST_AND_RETURN_FALSE(utils::MakeTempFile("au_patch.XXXXXX",
1178                                            &temp_filename,
1179                                            nullptr));
1180  ScopedPathUnlinker path_unlinker(temp_filename);
1181  {
1182    int fd = open(temp_filename.c_str(), O_WRONLY | O_CREAT | O_TRUNC, 0644);
1183    ScopedFdCloser fd_closer(&fd);
1184    TEST_AND_RETURN_FALSE(
1185        utils::WriteAll(fd, buffer_.data(), operation.data_length()));
1186  }
1187
1188  // Update the buffer to release the patch data memory as soon as the patch
1189  // file is written out.
1190  DiscardBuffer(true, buffer_.size());
1191
1192  vector<string> cmd{kBspatchPath, target_path_, target_path_, temp_filename,
1193                     input_positions, output_positions};
1194
1195  int return_code = 0;
1196  TEST_AND_RETURN_FALSE(
1197      Subprocess::SynchronousExecFlags(cmd, Subprocess::kSearchPath,
1198                                       &return_code, nullptr));
1199  TEST_AND_RETURN_FALSE(return_code == 0);
1200
1201  if (operation.dst_length() % block_size_) {
1202    // Zero out rest of final block.
1203    // TODO(adlr): build this into bspatch; it's more efficient that way.
1204    const Extent& last_extent =
1205        operation.dst_extents(operation.dst_extents_size() - 1);
1206    const uint64_t end_byte =
1207        (last_extent.start_block() + last_extent.num_blocks()) * block_size_;
1208    const uint64_t begin_byte =
1209        end_byte - (block_size_ - operation.dst_length() % block_size_);
1210    brillo::Blob zeros(end_byte - begin_byte);
1211    TEST_AND_RETURN_FALSE(
1212        utils::PWriteAll(target_fd_, zeros.data(), end_byte - begin_byte, begin_byte));
1213  }
1214  return true;
1215}
1216
1217bool DeltaPerformer::PerformSourceBsdiffOperation(
1218    const InstallOperation& operation) {
1219  // Since we delete data off the beginning of the buffer as we use it,
1220  // the data we need should be exactly at the beginning of the buffer.
1221  TEST_AND_RETURN_FALSE(buffer_offset_ == operation.data_offset());
1222  TEST_AND_RETURN_FALSE(buffer_.size() >= operation.data_length());
1223  if (operation.has_src_length())
1224    TEST_AND_RETURN_FALSE(operation.src_length() % block_size_ == 0);
1225  if (operation.has_dst_length())
1226    TEST_AND_RETURN_FALSE(operation.dst_length() % block_size_ == 0);
1227
1228  if (operation.has_src_sha256_hash()) {
1229    HashCalculator source_hasher;
1230    const uint64_t kMaxBlocksToRead = 512;  // 2MB if block size is 4KB
1231    brillo::Blob buf(kMaxBlocksToRead * block_size_);
1232    for (const Extent& extent : operation.src_extents()) {
1233      for (uint64_t i = 0; i < extent.num_blocks(); i += kMaxBlocksToRead) {
1234        uint64_t blocks_to_read =
1235            min(kMaxBlocksToRead, extent.num_blocks() - i);
1236        ssize_t bytes_to_read = blocks_to_read * block_size_;
1237        ssize_t bytes_read_this_iteration = 0;
1238        TEST_AND_RETURN_FALSE(
1239            utils::PReadAll(source_fd_, buf.data(), bytes_to_read,
1240                            (extent.start_block() + i) * block_size_,
1241                            &bytes_read_this_iteration));
1242        TEST_AND_RETURN_FALSE(bytes_read_this_iteration == bytes_to_read);
1243        TEST_AND_RETURN_FALSE(source_hasher.Update(buf.data(), bytes_to_read));
1244      }
1245    }
1246    TEST_AND_RETURN_FALSE(source_hasher.Finalize());
1247    TEST_AND_RETURN_FALSE(
1248        ValidateSourceHash(source_hasher.raw_hash(), operation));
1249  }
1250
1251  string input_positions;
1252  TEST_AND_RETURN_FALSE(ExtentsToBsdiffPositionsString(operation.src_extents(),
1253                                                       block_size_,
1254                                                       operation.src_length(),
1255                                                       &input_positions));
1256  string output_positions;
1257  TEST_AND_RETURN_FALSE(ExtentsToBsdiffPositionsString(operation.dst_extents(),
1258                                                       block_size_,
1259                                                       operation.dst_length(),
1260                                                       &output_positions));
1261
1262  string temp_filename;
1263  TEST_AND_RETURN_FALSE(utils::MakeTempFile("au_patch.XXXXXX",
1264                                            &temp_filename,
1265                                            nullptr));
1266  ScopedPathUnlinker path_unlinker(temp_filename);
1267  {
1268    int fd = open(temp_filename.c_str(), O_WRONLY | O_CREAT | O_TRUNC, 0644);
1269    ScopedFdCloser fd_closer(&fd);
1270    TEST_AND_RETURN_FALSE(
1271        utils::WriteAll(fd, buffer_.data(), operation.data_length()));
1272  }
1273
1274  // Update the buffer to release the patch data memory as soon as the patch
1275  // file is written out.
1276  DiscardBuffer(true, buffer_.size());
1277
1278  vector<string> cmd{kBspatchPath, source_path_, target_path_, temp_filename,
1279                     input_positions, output_positions};
1280
1281  int return_code = 0;
1282  TEST_AND_RETURN_FALSE(
1283      Subprocess::SynchronousExecFlags(cmd, Subprocess::kSearchPath,
1284                                       &return_code, nullptr));
1285  TEST_AND_RETURN_FALSE(return_code == 0);
1286  return true;
1287}
1288
1289bool DeltaPerformer::PerformImgdiffOperation(
1290    const InstallOperation& operation) {
1291  // Since we delete data off the beginning of the buffer as we use it,
1292  // the data we need should be exactly at the beginning of the buffer.
1293  TEST_AND_RETURN_FALSE(buffer_offset_ == operation.data_offset());
1294  TEST_AND_RETURN_FALSE(buffer_.size() >= operation.data_length());
1295
1296  uint64_t src_blocks = GetBlockCount(operation.src_extents());
1297  brillo::Blob src_data(src_blocks * block_size_);
1298
1299  ssize_t bytes_read = 0;
1300  for (const Extent& extent : operation.src_extents()) {
1301    ssize_t bytes_read_this_iteration = 0;
1302    ssize_t bytes_to_read = extent.num_blocks() * block_size_;
1303    TEST_AND_RETURN_FALSE(utils::PReadAll(source_fd_,
1304                                          &src_data[bytes_read],
1305                                          bytes_to_read,
1306                                          extent.start_block() * block_size_,
1307                                          &bytes_read_this_iteration));
1308    TEST_AND_RETURN_FALSE(bytes_read_this_iteration == bytes_to_read);
1309    bytes_read += bytes_read_this_iteration;
1310  }
1311
1312  if (operation.has_src_sha256_hash()) {
1313    brillo::Blob src_hash;
1314    TEST_AND_RETURN_FALSE(HashCalculator::RawHashOfData(src_data, &src_hash));
1315    TEST_AND_RETURN_FALSE(ValidateSourceHash(src_hash, operation));
1316  }
1317
1318  vector<Extent> target_extents(operation.dst_extents().begin(),
1319                                operation.dst_extents().end());
1320  DirectExtentWriter writer;
1321  TEST_AND_RETURN_FALSE(writer.Init(target_fd_, target_extents, block_size_));
1322  TEST_AND_RETURN_FALSE(
1323      ApplyImagePatch(src_data.data(),
1324                      src_data.size(),
1325                      buffer_.data(),
1326                      operation.data_length(),
1327                      [](const unsigned char* data, ssize_t len, void* token) {
1328                        return reinterpret_cast<ExtentWriter*>(token)
1329                                       ->Write(data, len)
1330                                   ? len
1331                                   : 0;
1332                      },
1333                      &writer) == 0);
1334  TEST_AND_RETURN_FALSE(writer.End());
1335
1336  DiscardBuffer(true, buffer_.size());
1337  return true;
1338}
1339
1340bool DeltaPerformer::ExtractSignatureMessageFromOperation(
1341    const InstallOperation& operation) {
1342  if (operation.type() != InstallOperation::REPLACE ||
1343      !manifest_.has_signatures_offset() ||
1344      manifest_.signatures_offset() != operation.data_offset()) {
1345    return false;
1346  }
1347  TEST_AND_RETURN_FALSE(manifest_.has_signatures_size() &&
1348                        manifest_.signatures_size() == operation.data_length());
1349  TEST_AND_RETURN_FALSE(ExtractSignatureMessage());
1350  return true;
1351}
1352
1353bool DeltaPerformer::ExtractSignatureMessage() {
1354  TEST_AND_RETURN_FALSE(signatures_message_data_.empty());
1355  TEST_AND_RETURN_FALSE(buffer_offset_ == manifest_.signatures_offset());
1356  TEST_AND_RETURN_FALSE(buffer_.size() >= manifest_.signatures_size());
1357  signatures_message_data_.assign(
1358      buffer_.begin(),
1359      buffer_.begin() + manifest_.signatures_size());
1360
1361  // Save the signature blob because if the update is interrupted after the
1362  // download phase we don't go through this path anymore. Some alternatives to
1363  // consider:
1364  //
1365  // 1. On resume, re-download the signature blob from the server and re-verify
1366  // it.
1367  //
1368  // 2. Verify the signature as soon as it's received and don't checkpoint the
1369  // blob and the signed sha-256 context.
1370  LOG_IF(WARNING, !prefs_->SetString(kPrefsUpdateStateSignatureBlob,
1371                                     string(signatures_message_data_.begin(),
1372                                            signatures_message_data_.end())))
1373      << "Unable to store the signature blob.";
1374
1375  LOG(INFO) << "Extracted signature data of size "
1376            << manifest_.signatures_size() << " at "
1377            << manifest_.signatures_offset();
1378  return true;
1379}
1380
1381bool DeltaPerformer::GetPublicKeyFromResponse(base::FilePath *out_tmp_key) {
1382  if (hardware_->IsOfficialBuild() ||
1383      utils::FileExists(public_key_path_.c_str()) ||
1384      install_plan_->public_key_rsa.empty())
1385    return false;
1386
1387  if (!utils::DecodeAndStoreBase64String(install_plan_->public_key_rsa,
1388                                         out_tmp_key))
1389    return false;
1390
1391  return true;
1392}
1393
1394ErrorCode DeltaPerformer::ValidateMetadataSignature(
1395    const brillo::Blob& payload) {
1396  if (payload.size() < metadata_size_ + metadata_signature_size_)
1397    return ErrorCode::kDownloadMetadataSignatureError;
1398
1399  brillo::Blob metadata_signature_blob, metadata_signature_protobuf_blob;
1400  if (!install_plan_->metadata_signature.empty()) {
1401    // Convert base64-encoded signature to raw bytes.
1402    if (!brillo::data_encoding::Base64Decode(
1403        install_plan_->metadata_signature, &metadata_signature_blob)) {
1404      LOG(ERROR) << "Unable to decode base64 metadata signature: "
1405                 << install_plan_->metadata_signature;
1406      return ErrorCode::kDownloadMetadataSignatureError;
1407    }
1408  } else if (major_payload_version_ == kBrilloMajorPayloadVersion) {
1409    metadata_signature_protobuf_blob.assign(payload.begin() + metadata_size_,
1410                                            payload.begin() + metadata_size_ +
1411                                            metadata_signature_size_);
1412  }
1413
1414  if (metadata_signature_blob.empty() &&
1415      metadata_signature_protobuf_blob.empty()) {
1416    if (install_plan_->hash_checks_mandatory) {
1417      LOG(ERROR) << "Missing mandatory metadata signature in both Omaha "
1418                 << "response and payload.";
1419      return ErrorCode::kDownloadMetadataSignatureMissingError;
1420    }
1421
1422    LOG(WARNING) << "Cannot validate metadata as the signature is empty";
1423    return ErrorCode::kSuccess;
1424  }
1425
1426  // See if we should use the public RSA key in the Omaha response.
1427  base::FilePath path_to_public_key(public_key_path_);
1428  base::FilePath tmp_key;
1429  if (GetPublicKeyFromResponse(&tmp_key))
1430    path_to_public_key = tmp_key;
1431  ScopedPathUnlinker tmp_key_remover(tmp_key.value());
1432  if (tmp_key.empty())
1433    tmp_key_remover.set_should_remove(false);
1434
1435  LOG(INFO) << "Verifying metadata hash signature using public key: "
1436            << path_to_public_key.value();
1437
1438  HashCalculator metadata_hasher;
1439  metadata_hasher.Update(payload.data(), metadata_size_);
1440  if (!metadata_hasher.Finalize()) {
1441    LOG(ERROR) << "Unable to compute actual hash of manifest";
1442    return ErrorCode::kDownloadMetadataSignatureVerificationError;
1443  }
1444
1445  brillo::Blob calculated_metadata_hash = metadata_hasher.raw_hash();
1446  PayloadVerifier::PadRSA2048SHA256Hash(&calculated_metadata_hash);
1447  if (calculated_metadata_hash.empty()) {
1448    LOG(ERROR) << "Computed actual hash of metadata is empty.";
1449    return ErrorCode::kDownloadMetadataSignatureVerificationError;
1450  }
1451
1452  if (!metadata_signature_blob.empty()) {
1453    brillo::Blob expected_metadata_hash;
1454    if (!PayloadVerifier::GetRawHashFromSignature(metadata_signature_blob,
1455                                                  path_to_public_key.value(),
1456                                                  &expected_metadata_hash)) {
1457      LOG(ERROR) << "Unable to compute expected hash from metadata signature";
1458      return ErrorCode::kDownloadMetadataSignatureError;
1459    }
1460    if (calculated_metadata_hash != expected_metadata_hash) {
1461      LOG(ERROR) << "Manifest hash verification failed. Expected hash = ";
1462      utils::HexDumpVector(expected_metadata_hash);
1463      LOG(ERROR) << "Calculated hash = ";
1464      utils::HexDumpVector(calculated_metadata_hash);
1465      return ErrorCode::kDownloadMetadataSignatureMismatch;
1466    }
1467  } else {
1468    if (!PayloadVerifier::VerifySignature(metadata_signature_protobuf_blob,
1469                                          path_to_public_key.value(),
1470                                          calculated_metadata_hash)) {
1471      LOG(ERROR) << "Manifest hash verification failed.";
1472      return ErrorCode::kDownloadMetadataSignatureMismatch;
1473    }
1474  }
1475
1476  // The autoupdate_CatchBadSignatures test checks for this string in
1477  // log-files. Keep in sync.
1478  LOG(INFO) << "Metadata hash signature matches value in Omaha response.";
1479  return ErrorCode::kSuccess;
1480}
1481
1482ErrorCode DeltaPerformer::ValidateManifest() {
1483  // Perform assorted checks to sanity check the manifest, make sure it
1484  // matches data from other sources, and that it is a supported version.
1485
1486  bool has_old_fields =
1487      (manifest_.has_old_kernel_info() || manifest_.has_old_rootfs_info());
1488  for (const PartitionUpdate& partition : manifest_.partitions()) {
1489    has_old_fields = has_old_fields || partition.has_old_partition_info();
1490  }
1491
1492  // The presence of an old partition hash is the sole indicator for a delta
1493  // update.
1494  InstallPayloadType actual_payload_type =
1495      has_old_fields ? InstallPayloadType::kDelta : InstallPayloadType::kFull;
1496
1497  if (install_plan_->payload_type == InstallPayloadType::kUnknown) {
1498    LOG(INFO) << "Detected a '"
1499              << InstallPayloadTypeToString(actual_payload_type)
1500              << "' payload.";
1501    install_plan_->payload_type = actual_payload_type;
1502  } else if (install_plan_->payload_type != actual_payload_type) {
1503    LOG(ERROR) << "InstallPlan expected a '"
1504               << InstallPayloadTypeToString(install_plan_->payload_type)
1505               << "' payload but the downloaded manifest contains a '"
1506               << InstallPayloadTypeToString(actual_payload_type)
1507               << "' payload.";
1508    return ErrorCode::kPayloadMismatchedType;
1509  }
1510
1511  // Check that the minor version is compatible.
1512  if (actual_payload_type == InstallPayloadType::kFull) {
1513    if (manifest_.minor_version() != kFullPayloadMinorVersion) {
1514      LOG(ERROR) << "Manifest contains minor version "
1515                 << manifest_.minor_version()
1516                 << ", but all full payloads should have version "
1517                 << kFullPayloadMinorVersion << ".";
1518      return ErrorCode::kUnsupportedMinorPayloadVersion;
1519    }
1520  } else {
1521    if (manifest_.minor_version() != supported_minor_version_) {
1522      LOG(ERROR) << "Manifest contains minor version "
1523                 << manifest_.minor_version()
1524                 << " not the supported "
1525                 << supported_minor_version_;
1526      return ErrorCode::kUnsupportedMinorPayloadVersion;
1527    }
1528  }
1529
1530  if (major_payload_version_ != kChromeOSMajorPayloadVersion) {
1531    if (manifest_.has_old_rootfs_info() ||
1532        manifest_.has_new_rootfs_info() ||
1533        manifest_.has_old_kernel_info() ||
1534        manifest_.has_new_kernel_info() ||
1535        manifest_.install_operations_size() != 0 ||
1536        manifest_.kernel_install_operations_size() != 0) {
1537      LOG(ERROR) << "Manifest contains deprecated field only supported in "
1538                 << "major payload version 1, but the payload major version is "
1539                 << major_payload_version_;
1540      return ErrorCode::kPayloadMismatchedType;
1541    }
1542  }
1543
1544  // TODO(garnold) we should be adding more and more manifest checks, such as
1545  // partition boundaries etc (see chromium-os:37661).
1546
1547  return ErrorCode::kSuccess;
1548}
1549
1550ErrorCode DeltaPerformer::ValidateOperationHash(
1551    const InstallOperation& operation) {
1552  if (!operation.data_sha256_hash().size()) {
1553    if (!operation.data_length()) {
1554      // Operations that do not have any data blob won't have any operation hash
1555      // either. So, these operations are always considered validated since the
1556      // metadata that contains all the non-data-blob portions of the operation
1557      // has already been validated. This is true for both HTTP and HTTPS cases.
1558      return ErrorCode::kSuccess;
1559    }
1560
1561    // No hash is present for an operation that has data blobs. This shouldn't
1562    // happen normally for any client that has this code, because the
1563    // corresponding update should have been produced with the operation
1564    // hashes. So if it happens it means either we've turned operation hash
1565    // generation off in DeltaDiffGenerator or it's a regression of some sort.
1566    // One caveat though: The last operation is a dummy signature operation
1567    // that doesn't have a hash at the time the manifest is created. So we
1568    // should not complaint about that operation. This operation can be
1569    // recognized by the fact that it's offset is mentioned in the manifest.
1570    if (manifest_.signatures_offset() &&
1571        manifest_.signatures_offset() == operation.data_offset()) {
1572      LOG(INFO) << "Skipping hash verification for signature operation "
1573                << next_operation_num_ + 1;
1574    } else {
1575      if (install_plan_->hash_checks_mandatory) {
1576        LOG(ERROR) << "Missing mandatory operation hash for operation "
1577                   << next_operation_num_ + 1;
1578        return ErrorCode::kDownloadOperationHashMissingError;
1579      }
1580
1581      LOG(WARNING) << "Cannot validate operation " << next_operation_num_ + 1
1582                   << " as there's no operation hash in manifest";
1583    }
1584    return ErrorCode::kSuccess;
1585  }
1586
1587  brillo::Blob expected_op_hash;
1588  expected_op_hash.assign(operation.data_sha256_hash().data(),
1589                          (operation.data_sha256_hash().data() +
1590                           operation.data_sha256_hash().size()));
1591
1592  HashCalculator operation_hasher;
1593  operation_hasher.Update(buffer_.data(), operation.data_length());
1594  if (!operation_hasher.Finalize()) {
1595    LOG(ERROR) << "Unable to compute actual hash of operation "
1596               << next_operation_num_;
1597    return ErrorCode::kDownloadOperationHashVerificationError;
1598  }
1599
1600  brillo::Blob calculated_op_hash = operation_hasher.raw_hash();
1601  if (calculated_op_hash != expected_op_hash) {
1602    LOG(ERROR) << "Hash verification failed for operation "
1603               << next_operation_num_ << ". Expected hash = ";
1604    utils::HexDumpVector(expected_op_hash);
1605    LOG(ERROR) << "Calculated hash over " << operation.data_length()
1606               << " bytes at offset: " << operation.data_offset() << " = ";
1607    utils::HexDumpVector(calculated_op_hash);
1608    return ErrorCode::kDownloadOperationHashMismatch;
1609  }
1610
1611  return ErrorCode::kSuccess;
1612}
1613
1614#define TEST_AND_RETURN_VAL(_retval, _condition)                \
1615  do {                                                          \
1616    if (!(_condition)) {                                        \
1617      LOG(ERROR) << "VerifyPayload failure: " << #_condition;   \
1618      return _retval;                                           \
1619    }                                                           \
1620  } while (0);
1621
1622ErrorCode DeltaPerformer::VerifyPayload(
1623    const string& update_check_response_hash,
1624    const uint64_t update_check_response_size) {
1625
1626  // See if we should use the public RSA key in the Omaha response.
1627  base::FilePath path_to_public_key(public_key_path_);
1628  base::FilePath tmp_key;
1629  if (GetPublicKeyFromResponse(&tmp_key))
1630    path_to_public_key = tmp_key;
1631  ScopedPathUnlinker tmp_key_remover(tmp_key.value());
1632  if (tmp_key.empty())
1633    tmp_key_remover.set_should_remove(false);
1634
1635  LOG(INFO) << "Verifying payload using public key: "
1636            << path_to_public_key.value();
1637
1638  // Verifies the download size.
1639  TEST_AND_RETURN_VAL(ErrorCode::kPayloadSizeMismatchError,
1640                      update_check_response_size ==
1641                      metadata_size_ + metadata_signature_size_ +
1642                      buffer_offset_);
1643
1644  // Verifies the payload hash.
1645  const string& payload_hash_data = payload_hash_calculator_.hash();
1646  TEST_AND_RETURN_VAL(ErrorCode::kDownloadPayloadVerificationError,
1647                      !payload_hash_data.empty());
1648  TEST_AND_RETURN_VAL(ErrorCode::kPayloadHashMismatchError,
1649                      payload_hash_data == update_check_response_hash);
1650
1651  // Verifies the signed payload hash.
1652  if (!utils::FileExists(path_to_public_key.value().c_str())) {
1653    LOG(WARNING) << "Not verifying signed delta payload -- missing public key.";
1654    return ErrorCode::kSuccess;
1655  }
1656  TEST_AND_RETURN_VAL(ErrorCode::kSignedDeltaPayloadExpectedError,
1657                      !signatures_message_data_.empty());
1658  brillo::Blob hash_data = signed_hash_calculator_.raw_hash();
1659  TEST_AND_RETURN_VAL(ErrorCode::kDownloadPayloadPubKeyVerificationError,
1660                      PayloadVerifier::PadRSA2048SHA256Hash(&hash_data));
1661  TEST_AND_RETURN_VAL(ErrorCode::kDownloadPayloadPubKeyVerificationError,
1662                      !hash_data.empty());
1663
1664  if (!PayloadVerifier::VerifySignature(
1665      signatures_message_data_, path_to_public_key.value(), hash_data)) {
1666    // The autoupdate_CatchBadSignatures test checks for this string
1667    // in log-files. Keep in sync.
1668    LOG(ERROR) << "Public key verification failed, thus update failed.";
1669    return ErrorCode::kDownloadPayloadPubKeyVerificationError;
1670  }
1671
1672  LOG(INFO) << "Payload hash matches value in payload.";
1673
1674  // At this point, we are guaranteed to have downloaded a full payload, i.e
1675  // the one whose size matches the size mentioned in Omaha response. If any
1676  // errors happen after this, it's likely a problem with the payload itself or
1677  // the state of the system and not a problem with the URL or network.  So,
1678  // indicate that to the download delegate so that AU can backoff
1679  // appropriately.
1680  if (download_delegate_)
1681    download_delegate_->DownloadComplete();
1682
1683  return ErrorCode::kSuccess;
1684}
1685
1686void DeltaPerformer::DiscardBuffer(bool do_advance_offset,
1687                                   size_t signed_hash_buffer_size) {
1688  // Update the buffer offset.
1689  if (do_advance_offset)
1690    buffer_offset_ += buffer_.size();
1691
1692  // Hash the content.
1693  payload_hash_calculator_.Update(buffer_.data(), buffer_.size());
1694  signed_hash_calculator_.Update(buffer_.data(), signed_hash_buffer_size);
1695
1696  // Swap content with an empty vector to ensure that all memory is released.
1697  brillo::Blob().swap(buffer_);
1698}
1699
1700bool DeltaPerformer::CanResumeUpdate(PrefsInterface* prefs,
1701                                     string update_check_response_hash) {
1702  int64_t next_operation = kUpdateStateOperationInvalid;
1703  if (!(prefs->GetInt64(kPrefsUpdateStateNextOperation, &next_operation) &&
1704        next_operation != kUpdateStateOperationInvalid &&
1705        next_operation > 0))
1706    return false;
1707
1708  string interrupted_hash;
1709  if (!(prefs->GetString(kPrefsUpdateCheckResponseHash, &interrupted_hash) &&
1710        !interrupted_hash.empty() &&
1711        interrupted_hash == update_check_response_hash))
1712    return false;
1713
1714  int64_t resumed_update_failures;
1715  // Note that storing this value is optional, but if it is there it should not
1716  // be more than the limit.
1717  if (prefs->GetInt64(kPrefsResumedUpdateFailures, &resumed_update_failures) &&
1718      resumed_update_failures > kMaxResumedUpdateFailures)
1719    return false;
1720
1721  // Sanity check the rest.
1722  int64_t next_data_offset = -1;
1723  if (!(prefs->GetInt64(kPrefsUpdateStateNextDataOffset, &next_data_offset) &&
1724        next_data_offset >= 0))
1725    return false;
1726
1727  string sha256_context;
1728  if (!(prefs->GetString(kPrefsUpdateStateSHA256Context, &sha256_context) &&
1729        !sha256_context.empty()))
1730    return false;
1731
1732  int64_t manifest_metadata_size = 0;
1733  if (!(prefs->GetInt64(kPrefsManifestMetadataSize, &manifest_metadata_size) &&
1734        manifest_metadata_size > 0))
1735    return false;
1736
1737  int64_t manifest_signature_size = 0;
1738  if (!(prefs->GetInt64(kPrefsManifestSignatureSize,
1739                        &manifest_signature_size) &&
1740        manifest_signature_size >= 0))
1741    return false;
1742
1743  return true;
1744}
1745
1746bool DeltaPerformer::ResetUpdateProgress(PrefsInterface* prefs, bool quick) {
1747  TEST_AND_RETURN_FALSE(prefs->SetInt64(kPrefsUpdateStateNextOperation,
1748                                        kUpdateStateOperationInvalid));
1749  if (!quick) {
1750    prefs->SetString(kPrefsUpdateCheckResponseHash, "");
1751    prefs->SetInt64(kPrefsUpdateStateNextDataOffset, -1);
1752    prefs->SetInt64(kPrefsUpdateStateNextDataLength, 0);
1753    prefs->SetString(kPrefsUpdateStateSHA256Context, "");
1754    prefs->SetString(kPrefsUpdateStateSignedSHA256Context, "");
1755    prefs->SetString(kPrefsUpdateStateSignatureBlob, "");
1756    prefs->SetInt64(kPrefsManifestMetadataSize, -1);
1757    prefs->SetInt64(kPrefsManifestSignatureSize, -1);
1758    prefs->SetInt64(kPrefsResumedUpdateFailures, 0);
1759  }
1760  return true;
1761}
1762
1763bool DeltaPerformer::CheckpointUpdateProgress() {
1764  Terminator::set_exit_blocked(true);
1765  if (last_updated_buffer_offset_ != buffer_offset_) {
1766    // Resets the progress in case we die in the middle of the state update.
1767    ResetUpdateProgress(prefs_, true);
1768    TEST_AND_RETURN_FALSE(
1769        prefs_->SetString(kPrefsUpdateStateSHA256Context,
1770                          payload_hash_calculator_.GetContext()));
1771    TEST_AND_RETURN_FALSE(
1772        prefs_->SetString(kPrefsUpdateStateSignedSHA256Context,
1773                          signed_hash_calculator_.GetContext()));
1774    TEST_AND_RETURN_FALSE(prefs_->SetInt64(kPrefsUpdateStateNextDataOffset,
1775                                           buffer_offset_));
1776    last_updated_buffer_offset_ = buffer_offset_;
1777
1778    if (next_operation_num_ < num_total_operations_) {
1779      size_t partition_index = current_partition_;
1780      while (next_operation_num_ >= acc_num_operations_[partition_index])
1781        partition_index++;
1782      const size_t partition_operation_num = next_operation_num_ - (
1783          partition_index ? acc_num_operations_[partition_index - 1] : 0);
1784      const InstallOperation& op =
1785          partitions_[partition_index].operations(partition_operation_num);
1786      TEST_AND_RETURN_FALSE(prefs_->SetInt64(kPrefsUpdateStateNextDataLength,
1787                                             op.data_length()));
1788    } else {
1789      TEST_AND_RETURN_FALSE(prefs_->SetInt64(kPrefsUpdateStateNextDataLength,
1790                                             0));
1791    }
1792  }
1793  TEST_AND_RETURN_FALSE(prefs_->SetInt64(kPrefsUpdateStateNextOperation,
1794                                         next_operation_num_));
1795  return true;
1796}
1797
1798bool DeltaPerformer::PrimeUpdateState() {
1799  CHECK(manifest_valid_);
1800  block_size_ = manifest_.block_size();
1801
1802  int64_t next_operation = kUpdateStateOperationInvalid;
1803  if (!prefs_->GetInt64(kPrefsUpdateStateNextOperation, &next_operation) ||
1804      next_operation == kUpdateStateOperationInvalid ||
1805      next_operation <= 0) {
1806    // Initiating a new update, no more state needs to be initialized.
1807    return true;
1808  }
1809  next_operation_num_ = next_operation;
1810
1811  // Resuming an update -- load the rest of the update state.
1812  int64_t next_data_offset = -1;
1813  TEST_AND_RETURN_FALSE(prefs_->GetInt64(kPrefsUpdateStateNextDataOffset,
1814                                         &next_data_offset) &&
1815                        next_data_offset >= 0);
1816  buffer_offset_ = next_data_offset;
1817
1818  // The signed hash context and the signature blob may be empty if the
1819  // interrupted update didn't reach the signature.
1820  string signed_hash_context;
1821  if (prefs_->GetString(kPrefsUpdateStateSignedSHA256Context,
1822                        &signed_hash_context)) {
1823    TEST_AND_RETURN_FALSE(
1824        signed_hash_calculator_.SetContext(signed_hash_context));
1825  }
1826
1827  string signature_blob;
1828  if (prefs_->GetString(kPrefsUpdateStateSignatureBlob, &signature_blob)) {
1829    signatures_message_data_.assign(signature_blob.begin(),
1830                                    signature_blob.end());
1831  }
1832
1833  string hash_context;
1834  TEST_AND_RETURN_FALSE(prefs_->GetString(kPrefsUpdateStateSHA256Context,
1835                                          &hash_context) &&
1836                        payload_hash_calculator_.SetContext(hash_context));
1837
1838  int64_t manifest_metadata_size = 0;
1839  TEST_AND_RETURN_FALSE(prefs_->GetInt64(kPrefsManifestMetadataSize,
1840                                         &manifest_metadata_size) &&
1841                        manifest_metadata_size > 0);
1842  metadata_size_ = manifest_metadata_size;
1843
1844  int64_t manifest_signature_size = 0;
1845  TEST_AND_RETURN_FALSE(
1846      prefs_->GetInt64(kPrefsManifestSignatureSize, &manifest_signature_size) &&
1847      manifest_signature_size >= 0);
1848  metadata_signature_size_ = manifest_signature_size;
1849
1850  // Advance the download progress to reflect what doesn't need to be
1851  // re-downloaded.
1852  total_bytes_received_ += buffer_offset_;
1853
1854  // Speculatively count the resume as a failure.
1855  int64_t resumed_update_failures;
1856  if (prefs_->GetInt64(kPrefsResumedUpdateFailures, &resumed_update_failures)) {
1857    resumed_update_failures++;
1858  } else {
1859    resumed_update_failures = 1;
1860  }
1861  prefs_->SetInt64(kPrefsResumedUpdateFailures, resumed_update_failures);
1862  return true;
1863}
1864
1865}  // namespace chromeos_update_engine
1866