/* * Copyright (C) 2011 The Guava Authors * * Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except * in compliance with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software distributed under the License * is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express * or implied. See the License for the specific language governing permissions and limitations under * the License. */ package com.google.common.collect; import com.google.common.annotations.Beta; import com.google.common.base.Preconditions; import java.util.ArrayDeque; import java.util.Collection; import java.util.Deque; import java.util.PriorityQueue; import java.util.Queue; import java.util.concurrent.ArrayBlockingQueue; import java.util.concurrent.BlockingQueue; import java.util.concurrent.ConcurrentLinkedQueue; import java.util.concurrent.LinkedBlockingDeque; import java.util.concurrent.LinkedBlockingQueue; import java.util.concurrent.PriorityBlockingQueue; import java.util.concurrent.SynchronousQueue; import java.util.concurrent.TimeUnit; /** * Static utility methods pertaining to {@link Queue} and {@link Deque} instances. * Also see this class's counterparts {@link Lists}, {@link Sets}, and {@link Maps}. * * @author Kurt Alfred Kluever * @since 11.0 */ public final class Queues { private Queues() {} // ArrayBlockingQueue /** * Creates an empty {@code ArrayBlockingQueue} with the given (fixed) capacity * and nonfair access policy. */ public static ArrayBlockingQueue newArrayBlockingQueue(int capacity) { return new ArrayBlockingQueue(capacity); } // ArrayDeque /** * Creates an empty {@code ArrayDeque}. * * @since 12.0 */ public static ArrayDeque newArrayDeque() { return new ArrayDeque(); } /** * Creates an {@code ArrayDeque} containing the elements of the specified iterable, * in the order they are returned by the iterable's iterator. * * @since 12.0 */ public static ArrayDeque newArrayDeque(Iterable elements) { if (elements instanceof Collection) { return new ArrayDeque(Collections2.cast(elements)); } ArrayDeque deque = new ArrayDeque(); Iterables.addAll(deque, elements); return deque; } // ConcurrentLinkedQueue /** * Creates an empty {@code ConcurrentLinkedQueue}. */ public static ConcurrentLinkedQueue newConcurrentLinkedQueue() { return new ConcurrentLinkedQueue(); } /** * Creates a {@code ConcurrentLinkedQueue} containing the elements of the specified iterable, * in the order they are returned by the iterable's iterator. */ public static ConcurrentLinkedQueue newConcurrentLinkedQueue( Iterable elements) { if (elements instanceof Collection) { return new ConcurrentLinkedQueue(Collections2.cast(elements)); } ConcurrentLinkedQueue queue = new ConcurrentLinkedQueue(); Iterables.addAll(queue, elements); return queue; } // LinkedBlockingDeque /** * Creates an empty {@code LinkedBlockingDeque} with a capacity of {@link Integer#MAX_VALUE}. * * @since 12.0 */ public static LinkedBlockingDeque newLinkedBlockingDeque() { return new LinkedBlockingDeque(); } /** * Creates an empty {@code LinkedBlockingDeque} with the given (fixed) capacity. * * @throws IllegalArgumentException if {@code capacity} is less than 1 * @since 12.0 */ public static LinkedBlockingDeque newLinkedBlockingDeque(int capacity) { return new LinkedBlockingDeque(capacity); } /** * Creates a {@code LinkedBlockingDeque} with a capacity of {@link Integer#MAX_VALUE}, * containing the elements of the specified iterable, * in the order they are returned by the iterable's iterator. * * @since 12.0 */ public static LinkedBlockingDeque newLinkedBlockingDeque(Iterable elements) { if (elements instanceof Collection) { return new LinkedBlockingDeque(Collections2.cast(elements)); } LinkedBlockingDeque deque = new LinkedBlockingDeque(); Iterables.addAll(deque, elements); return deque; } // LinkedBlockingQueue /** * Creates an empty {@code LinkedBlockingQueue} with a capacity of {@link Integer#MAX_VALUE}. */ public static LinkedBlockingQueue newLinkedBlockingQueue() { return new LinkedBlockingQueue(); } /** * Creates an empty {@code LinkedBlockingQueue} with the given (fixed) capacity. * * @throws IllegalArgumentException if {@code capacity} is less than 1 */ public static LinkedBlockingQueue newLinkedBlockingQueue(int capacity) { return new LinkedBlockingQueue(capacity); } /** * Creates a {@code LinkedBlockingQueue} with a capacity of {@link Integer#MAX_VALUE}, * containing the elements of the specified iterable, * in the order they are returned by the iterable's iterator. * * @param elements the elements that the queue should contain, in order * @return a new {@code LinkedBlockingQueue} containing those elements */ public static LinkedBlockingQueue newLinkedBlockingQueue(Iterable elements) { if (elements instanceof Collection) { return new LinkedBlockingQueue(Collections2.cast(elements)); } LinkedBlockingQueue queue = new LinkedBlockingQueue(); Iterables.addAll(queue, elements); return queue; } // LinkedList: see {@link com.google.common.collect.Lists} // PriorityBlockingQueue /** * Creates an empty {@code PriorityBlockingQueue} with the ordering given by its * elements' natural ordering. * * @since 11.0 (requires that {@code E} be {@code Comparable} since 15.0). */ public static PriorityBlockingQueue newPriorityBlockingQueue() { return new PriorityBlockingQueue(); } /** * Creates a {@code PriorityBlockingQueue} containing the given elements. * * Note: If the specified iterable is a {@code SortedSet} or a {@code PriorityQueue}, * this priority queue will be ordered according to the same ordering. * * @since 11.0 (requires that {@code E} be {@code Comparable} since 15.0). */ public static PriorityBlockingQueue newPriorityBlockingQueue( Iterable elements) { if (elements instanceof Collection) { return new PriorityBlockingQueue(Collections2.cast(elements)); } PriorityBlockingQueue queue = new PriorityBlockingQueue(); Iterables.addAll(queue, elements); return queue; } // PriorityQueue /** * Creates an empty {@code PriorityQueue} with the ordering given by its * elements' natural ordering. * * @since 11.0 (requires that {@code E} be {@code Comparable} since 15.0). */ public static PriorityQueue newPriorityQueue() { return new PriorityQueue(); } /** * Creates a {@code PriorityQueue} containing the given elements. * * Note: If the specified iterable is a {@code SortedSet} or a {@code PriorityQueue}, * this priority queue will be ordered according to the same ordering. * * @since 11.0 (requires that {@code E} be {@code Comparable} since 15.0). */ public static PriorityQueue newPriorityQueue( Iterable elements) { if (elements instanceof Collection) { return new PriorityQueue(Collections2.cast(elements)); } PriorityQueue queue = new PriorityQueue(); Iterables.addAll(queue, elements); return queue; } // SynchronousQueue /** * Creates an empty {@code SynchronousQueue} with nonfair access policy. */ public static SynchronousQueue newSynchronousQueue() { return new SynchronousQueue(); } /** * Drains the queue as {@link BlockingQueue#drainTo(Collection, int)}, but if the requested * {@code numElements} elements are not available, it will wait for them up to the specified * timeout. * * @param q the blocking queue to be drained * @param buffer where to add the transferred elements * @param numElements the number of elements to be waited for * @param timeout how long to wait before giving up, in units of {@code unit} * @param unit a {@code TimeUnit} determining how to interpret the timeout parameter * @return the number of elements transferred * @throws InterruptedException if interrupted while waiting */ @Beta public static int drain(BlockingQueue q, Collection buffer, int numElements, long timeout, TimeUnit unit) throws InterruptedException { Preconditions.checkNotNull(buffer); /* * This code performs one System.nanoTime() more than necessary, and in return, the time to * execute Queue#drainTo is not added *on top* of waiting for the timeout (which could make * the timeout arbitrarily inaccurate, given a queue that is slow to drain). */ long deadline = System.nanoTime() + unit.toNanos(timeout); int added = 0; while (added < numElements) { // we could rely solely on #poll, but #drainTo might be more efficient when there are multiple // elements already available (e.g. LinkedBlockingQueue#drainTo locks only once) added += q.drainTo(buffer, numElements - added); if (added < numElements) { // not enough elements immediately available; will have to poll E e = q.poll(deadline - System.nanoTime(), TimeUnit.NANOSECONDS); if (e == null) { break; // we already waited enough, and there are no more elements in sight } buffer.add(e); added++; } } return added; } /** * Drains the queue as {@linkplain #drain(BlockingQueue, Collection, int, long, TimeUnit)}, * but with a different behavior in case it is interrupted while waiting. In that case, the * operation will continue as usual, and in the end the thread's interruption status will be set * (no {@code InterruptedException} is thrown). * * @param q the blocking queue to be drained * @param buffer where to add the transferred elements * @param numElements the number of elements to be waited for * @param timeout how long to wait before giving up, in units of {@code unit} * @param unit a {@code TimeUnit} determining how to interpret the timeout parameter * @return the number of elements transferred */ @Beta public static int drainUninterruptibly(BlockingQueue q, Collection buffer, int numElements, long timeout, TimeUnit unit) { Preconditions.checkNotNull(buffer); long deadline = System.nanoTime() + unit.toNanos(timeout); int added = 0; boolean interrupted = false; try { while (added < numElements) { // we could rely solely on #poll, but #drainTo might be more efficient when there are // multiple elements already available (e.g. LinkedBlockingQueue#drainTo locks only once) added += q.drainTo(buffer, numElements - added); if (added < numElements) { // not enough elements immediately available; will have to poll E e; // written exactly once, by a successful (uninterrupted) invocation of #poll while (true) { try { e = q.poll(deadline - System.nanoTime(), TimeUnit.NANOSECONDS); break; } catch (InterruptedException ex) { interrupted = true; // note interruption and retry } } if (e == null) { break; // we already waited enough, and there are no more elements in sight } buffer.add(e); added++; } } } finally { if (interrupted) { Thread.currentThread().interrupt(); } } return added; } /** * Returns a synchronized (thread-safe) queue backed by the specified queue. In order to * guarantee serial access, it is critical that all access to the backing queue is * accomplished through the returned queue. * *

It is imperative that the user manually synchronize on the returned queue when accessing * the queue's iterator:

   {@code
   *
   *   Queue queue = Queues.synchronizedQueue(MinMaxPriorityQueue.create());
   *   ...
   *   queue.add(element);  // Needn't be in synchronized block
   *   ...
   *   synchronized (queue) {  // Must synchronize on queue!
   *     Iterator i = queue.iterator(); // Must be in synchronized block
   *     while (i.hasNext()) {
   *       foo(i.next());
   *     }
   *   }}
* *

Failure to follow this advice may result in non-deterministic behavior. * *

The returned queue will be serializable if the specified queue is serializable. * * @param queue the queue to be wrapped in a synchronized view * @return a synchronized view of the specified queue * @since 14.0 */ public static Queue synchronizedQueue(Queue queue) { return Synchronized.queue(queue, null); } /** * Returns a synchronized (thread-safe) deque backed by the specified deque. In order to * guarantee serial access, it is critical that all access to the backing deque is * accomplished through the returned deque. * *

It is imperative that the user manually synchronize on the returned deque when accessing * any of the deque's iterators:

   {@code
   *
   *   Deque deque = Queues.synchronizedDeque(Queues.newArrayDeque());
   *   ...
   *   deque.add(element);  // Needn't be in synchronized block
   *   ...
   *   synchronized (deque) {  // Must synchronize on deque!
   *     Iterator i = deque.iterator(); // Must be in synchronized block
   *     while (i.hasNext()) {
   *       foo(i.next());
   *     }
   *   }}
* *

Failure to follow this advice may result in non-deterministic behavior. * *

The returned deque will be serializable if the specified deque is serializable. * * @param deque the deque to be wrapped in a synchronized view * @return a synchronized view of the specified deque * @since 15.0 */ public static Deque synchronizedDeque(Deque deque) { return Synchronized.deque(deque, null); } }