// © 2016 and later: Unicode, Inc. and others. // License & terms of use: http://www.unicode.org/copyright.html#License /* ******************************************************************************* * Copyright (C) 2013-2015, International Business Machines * Corporation and others. All Rights Reserved. ******************************************************************************* * CollationFastLatin.java, ported from collationfastlatin.h/.cpp * * C++ version created on: 2013aug09 * created by: Markus W. Scherer */ package com.ibm.icu.impl.coll; import com.ibm.icu.lang.UScript; import com.ibm.icu.text.Collator; public final class CollationFastLatin /* all static */ { /** * Fast Latin format version (one byte 1..FF). * Must be incremented for any runtime-incompatible changes, * in particular, for changes to any of the following constants. * * When the major version number of the main data format changes, * we can reset this fast Latin version to 1. */ public static final int VERSION = 2; public static final int LATIN_MAX = 0x17f; public static final int LATIN_LIMIT = LATIN_MAX + 1; static final int LATIN_MAX_UTF8_LEAD = 0xc5; // UTF-8 lead byte of LATIN_MAX static final int PUNCT_START = 0x2000; static final int PUNCT_LIMIT = 0x2040; // excludes U+FFFE & U+FFFF static final int NUM_FAST_CHARS = LATIN_LIMIT + (PUNCT_LIMIT - PUNCT_START); // Note on the supported weight ranges: // Analysis of UCA 6.3 and CLDR 23 non-search tailorings shows that // the CEs for characters in the above ranges, excluding expansions with length >2, // excluding contractions of >2 characters, and other restrictions // (see the builder's getCEsFromCE32()), // use at most about 150 primary weights, // where about 94 primary weights are possibly-variable (space/punct/symbol/currency), // at most 4 secondary before-common weights, // at most 4 secondary after-common weights, // at most 16 secondary high weights (in secondary CEs), and // at most 4 tertiary after-common weights. // The following ranges are designed to support slightly more weights than that. // (en_US_POSIX is unusual: It creates about 64 variable + 116 Latin primaries.) // Digits may use long primaries (preserving more short ones) // or short primaries (faster) without changing this data structure. // (If we supported numeric collation, then digits would have to have long primaries // so that special handling does not affect the fast path.) static final int SHORT_PRIMARY_MASK = 0xfc00; // bits 15..10 static final int INDEX_MASK = 0x3ff; // bits 9..0 for expansions & contractions static final int SECONDARY_MASK = 0x3e0; // bits 9..5 static final int CASE_MASK = 0x18; // bits 4..3 static final int LONG_PRIMARY_MASK = 0xfff8; // bits 15..3 static final int TERTIARY_MASK = 7; // bits 2..0 static final int CASE_AND_TERTIARY_MASK = CASE_MASK | TERTIARY_MASK; static final int TWO_SHORT_PRIMARIES_MASK = (SHORT_PRIMARY_MASK << 16) | SHORT_PRIMARY_MASK; // 0xfc00fc00 static final int TWO_LONG_PRIMARIES_MASK = (LONG_PRIMARY_MASK << 16) | LONG_PRIMARY_MASK; // 0xfff8fff8 static final int TWO_SECONDARIES_MASK = (SECONDARY_MASK << 16) | SECONDARY_MASK; // 0x3e003e0 static final int TWO_CASES_MASK = (CASE_MASK << 16) | CASE_MASK; // 0x180018 static final int TWO_TERTIARIES_MASK = (TERTIARY_MASK << 16) | TERTIARY_MASK; // 0x70007 /** * Contraction with one fast Latin character. * Use INDEX_MASK to find the start of the contraction list after the fixed table. * The first entry contains the default mapping. * Otherwise use CONTR_CHAR_MASK for the contraction character index * (in ascending order). * Use CONTR_LENGTH_SHIFT for the length of the entry * (1=BAIL_OUT, 2=one CE, 3=two CEs). * * Also, U+0000 maps to a contraction entry, so that the fast path need not * check for NUL termination. * It usually maps to a contraction list with only the completely ignorable default value. */ static final int CONTRACTION = 0x400; /** * An expansion encodes two CEs. * Use INDEX_MASK to find the pair of CEs after the fixed table. * * The higher a mini CE value, the easier it is to process. * For expansions and higher, no context needs to be considered. */ static final int EXPANSION = 0x800; /** * Encodes one CE with a long/low mini primary (there are 128). * All potentially-variable primaries must be in this range, * to make the short-primary path as fast as possible. */ static final int MIN_LONG = 0xc00; static final int LONG_INC = 8; static final int MAX_LONG = 0xff8; /** * Encodes one CE with a short/high primary (there are 60), * plus a secondary CE if the secondary weight is high. * Fast handling: At least all letter primaries should be in this range. */ static final int MIN_SHORT = 0x1000; static final int SHORT_INC = 0x400; /** The highest primary weight is reserved for U+FFFF. */ static final int MAX_SHORT = SHORT_PRIMARY_MASK; static final int MIN_SEC_BEFORE = 0; // must add SEC_OFFSET static final int SEC_INC = 0x20; static final int MAX_SEC_BEFORE = MIN_SEC_BEFORE + 4 * SEC_INC; // 5 before common static final int COMMON_SEC = MAX_SEC_BEFORE + SEC_INC; static final int MIN_SEC_AFTER = COMMON_SEC + SEC_INC; static final int MAX_SEC_AFTER = MIN_SEC_AFTER + 5 * SEC_INC; // 6 after common static final int MIN_SEC_HIGH = MAX_SEC_AFTER + SEC_INC; // 20 high secondaries static final int MAX_SEC_HIGH = SECONDARY_MASK; /** * Lookup: Add this offset to secondary weights, except for completely ignorable CEs. * Must be greater than any special value, e.g., MERGE_WEIGHT. * The exact value is not relevant for the format version. */ static final int SEC_OFFSET = SEC_INC; static final int COMMON_SEC_PLUS_OFFSET = COMMON_SEC + SEC_OFFSET; static final int TWO_SEC_OFFSETS = (SEC_OFFSET << 16) | SEC_OFFSET; // 0x200020 static final int TWO_COMMON_SEC_PLUS_OFFSET = (COMMON_SEC_PLUS_OFFSET << 16) | COMMON_SEC_PLUS_OFFSET; static final int LOWER_CASE = 8; // case bits include this offset static final int TWO_LOWER_CASES = (LOWER_CASE << 16) | LOWER_CASE; // 0x80008 static final int COMMON_TER = 0; // must add TER_OFFSET static final int MAX_TER_AFTER = 7; // 7 after common /** * Lookup: Add this offset to tertiary weights, except for completely ignorable CEs. * Must be greater than any special value, e.g., MERGE_WEIGHT. * Must be greater than case bits as well, so that with combined case+tertiary weights * plus the offset the tertiary bits does not spill over into the case bits. * The exact value is not relevant for the format version. */ static final int TER_OFFSET = SEC_OFFSET; static final int COMMON_TER_PLUS_OFFSET = COMMON_TER + TER_OFFSET; static final int TWO_TER_OFFSETS = (TER_OFFSET << 16) | TER_OFFSET; static final int TWO_COMMON_TER_PLUS_OFFSET = (COMMON_TER_PLUS_OFFSET << 16) | COMMON_TER_PLUS_OFFSET; static final int MERGE_WEIGHT = 3; static final int EOS = 2; // end of string static final int BAIL_OUT = 1; /** * Contraction result first word bits 8..0 contain the * second contraction character, as a char index 0..NUM_FAST_CHARS-1. * Each contraction list is terminated with a word containing CONTR_CHAR_MASK. */ static final int CONTR_CHAR_MASK = 0x1ff; /** * Contraction result first word bits 10..9 contain the result length: * 1=bail out, 2=one mini CE, 3=two mini CEs */ static final int CONTR_LENGTH_SHIFT = 9; /** * Comparison return value when the regular comparison must be used. * The exact value is not relevant for the format version. */ public static final int BAIL_OUT_RESULT = -2; static int getCharIndex(char c) { if(c <= LATIN_MAX) { return c; } else if(PUNCT_START <= c && c < PUNCT_LIMIT) { return c - (PUNCT_START - LATIN_LIMIT); } else { // Not a fast Latin character. // Note: U+FFFE & U+FFFF are forbidden in tailorings // and thus do not occur in any contractions. return -1; } } /** * Computes the options value for the compare functions * and writes the precomputed primary weights. * Returns -1 if the Latin fastpath is not supported for the data and settings. * The capacity must be LATIN_LIMIT. */ public static int getOptions(CollationData data, CollationSettings settings, char[] primaries) { char[] header = data.fastLatinTableHeader; if(header == null) { return -1; } assert((header[0] >> 8) == VERSION); if(primaries.length != LATIN_LIMIT) { assert false; return -1; } int miniVarTop; if((settings.options & CollationSettings.ALTERNATE_MASK) == 0) { // No mini primaries are variable, set a variableTop just below the // lowest long mini primary. miniVarTop = MIN_LONG - 1; } else { int headerLength = header[0] & 0xff; int i = 1 + settings.getMaxVariable(); if(i >= headerLength) { return -1; // variableTop >= digits, should not occur } miniVarTop = header[i]; } boolean digitsAreReordered = false; if(settings.hasReordering()) { long prevStart = 0; long beforeDigitStart = 0; long digitStart = 0; long afterDigitStart = 0; for(int group = Collator.ReorderCodes.FIRST; group < Collator.ReorderCodes.FIRST + CollationData.MAX_NUM_SPECIAL_REORDER_CODES; ++group) { long start = data.getFirstPrimaryForGroup(group); start = settings.reorder(start); if(group == Collator.ReorderCodes.DIGIT) { beforeDigitStart = prevStart; digitStart = start; } else if(start != 0) { if(start < prevStart) { // The permutation affects the groups up to Latin. return -1; } // In the future, there might be a special group between digits & Latin. if(digitStart != 0 && afterDigitStart == 0 && prevStart == beforeDigitStart) { afterDigitStart = start; } prevStart = start; } } long latinStart = data.getFirstPrimaryForGroup(UScript.LATIN); latinStart = settings.reorder(latinStart); if(latinStart < prevStart) { return -1; } if(afterDigitStart == 0) { afterDigitStart = latinStart; } if(!(beforeDigitStart < digitStart && digitStart < afterDigitStart)) { digitsAreReordered = true; } } char[] table = data.fastLatinTable; // skip the header for(int c = 0; c < LATIN_LIMIT; ++c) { int p = table[c]; if(p >= MIN_SHORT) { p &= SHORT_PRIMARY_MASK; } else if(p > miniVarTop) { p &= LONG_PRIMARY_MASK; } else { p = 0; } primaries[c] = (char)p; } if(digitsAreReordered || (settings.options & CollationSettings.NUMERIC) != 0) { // Bail out for digits. for(int c = 0x30; c <= 0x39; ++c) { primaries[c] = 0; } } // Shift the miniVarTop above other options. return (miniVarTop << 16) | settings.options; } public static int compareUTF16(char[] table, char[] primaries, int options, CharSequence left, CharSequence right, int startIndex) { // This is a modified copy of CollationCompare.compareUpToQuaternary(), // optimized for common Latin text. // Keep them in sync! int variableTop = options >> 16; // see getOptions() options &= 0xffff; // needed for CollationSettings.getStrength() to work // Check for supported characters, fetch mini CEs, and compare primaries. int leftIndex = startIndex, rightIndex = startIndex; /** * Single mini CE or a pair. * The current mini CE is in the lower 16 bits, the next one is in the upper 16 bits. * If there is only one, then it is in the lower bits, and the upper bits are 0. */ int leftPair = 0, rightPair = 0; for(;;) { // We fetch CEs until we get a non-ignorable primary or reach the end. while(leftPair == 0) { if(leftIndex == left.length()) { leftPair = EOS; break; } int c = left.charAt(leftIndex++); if(c <= LATIN_MAX) { leftPair = primaries[c]; if(leftPair != 0) { break; } if(c <= 0x39 && c >= 0x30 && (options & CollationSettings.NUMERIC) != 0) { return BAIL_OUT_RESULT; } leftPair = table[c]; } else if(PUNCT_START <= c && c < PUNCT_LIMIT) { leftPair = table[c - PUNCT_START + LATIN_LIMIT]; } else { leftPair = lookup(table, c); } if(leftPair >= MIN_SHORT) { leftPair &= SHORT_PRIMARY_MASK; break; } else if(leftPair > variableTop) { leftPair &= LONG_PRIMARY_MASK; break; } else { long pairAndInc = nextPair(table, c, leftPair, left, leftIndex); if(pairAndInc < 0) { ++leftIndex; pairAndInc = ~pairAndInc; } leftPair = (int)pairAndInc; if(leftPair == BAIL_OUT) { return BAIL_OUT_RESULT; } leftPair = getPrimaries(variableTop, leftPair); } } while(rightPair == 0) { if(rightIndex == right.length()) { rightPair = EOS; break; } int c = right.charAt(rightIndex++); if(c <= LATIN_MAX) { rightPair = primaries[c]; if(rightPair != 0) { break; } if(c <= 0x39 && c >= 0x30 && (options & CollationSettings.NUMERIC) != 0) { return BAIL_OUT_RESULT; } rightPair = table[c]; } else if(PUNCT_START <= c && c < PUNCT_LIMIT) { rightPair = table[c - PUNCT_START + LATIN_LIMIT]; } else { rightPair = lookup(table, c); } if(rightPair >= MIN_SHORT) { rightPair &= SHORT_PRIMARY_MASK; break; } else if(rightPair > variableTop) { rightPair &= LONG_PRIMARY_MASK; break; } else { long pairAndInc = nextPair(table, c, rightPair, right, rightIndex); if(pairAndInc < 0) { ++rightIndex; pairAndInc = ~pairAndInc; } rightPair = (int)pairAndInc; if(rightPair == BAIL_OUT) { return BAIL_OUT_RESULT; } rightPair = getPrimaries(variableTop, rightPair); } } if(leftPair == rightPair) { if(leftPair == EOS) { break; } leftPair = rightPair = 0; continue; } int leftPrimary = leftPair & 0xffff; int rightPrimary = rightPair & 0xffff; if(leftPrimary != rightPrimary) { // Return the primary difference. return (leftPrimary < rightPrimary) ? Collation.LESS : Collation.GREATER; } if(leftPair == EOS) { break; } leftPair >>>= 16; rightPair >>>= 16; } // In the following, we need to re-fetch each character because we did not buffer the CEs, // but we know that the string is well-formed and // only contains supported characters and mappings. // We might skip the secondary level but continue with the case level // which is turned on separately. if(CollationSettings.getStrength(options) >= Collator.SECONDARY) { leftIndex = rightIndex = startIndex; leftPair = rightPair = 0; for(;;) { while(leftPair == 0) { if(leftIndex == left.length()) { leftPair = EOS; break; } int c = left.charAt(leftIndex++); if(c <= LATIN_MAX) { leftPair = table[c]; } else if(PUNCT_START <= c && c < PUNCT_LIMIT) { leftPair = table[c - PUNCT_START + LATIN_LIMIT]; } else { leftPair = lookup(table, c); } if(leftPair >= MIN_SHORT) { leftPair = getSecondariesFromOneShortCE(leftPair); break; } else if(leftPair > variableTop) { leftPair = COMMON_SEC_PLUS_OFFSET; break; } else { long pairAndInc = nextPair(table, c, leftPair, left, leftIndex); if(pairAndInc < 0) { ++leftIndex; pairAndInc = ~pairAndInc; } leftPair = getSecondaries(variableTop, (int)pairAndInc); } } while(rightPair == 0) { if(rightIndex == right.length()) { rightPair = EOS; break; } int c = right.charAt(rightIndex++); if(c <= LATIN_MAX) { rightPair = table[c]; } else if(PUNCT_START <= c && c < PUNCT_LIMIT) { rightPair = table[c - PUNCT_START + LATIN_LIMIT]; } else { rightPair = lookup(table, c); } if(rightPair >= MIN_SHORT) { rightPair = getSecondariesFromOneShortCE(rightPair); break; } else if(rightPair > variableTop) { rightPair = COMMON_SEC_PLUS_OFFSET; break; } else { long pairAndInc = nextPair(table, c, rightPair, right, rightIndex); if(pairAndInc < 0) { ++rightIndex; pairAndInc = ~pairAndInc; } rightPair = getSecondaries(variableTop, (int)pairAndInc); } } if(leftPair == rightPair) { if(leftPair == EOS) { break; } leftPair = rightPair = 0; continue; } int leftSecondary = leftPair & 0xffff; int rightSecondary = rightPair & 0xffff; if(leftSecondary != rightSecondary) { if((options & CollationSettings.BACKWARD_SECONDARY) != 0) { // Full support for backwards secondary requires backwards contraction matching // and moving backwards between merge separators. return BAIL_OUT_RESULT; } return (leftSecondary < rightSecondary) ? Collation.LESS : Collation.GREATER; } if(leftPair == EOS) { break; } leftPair >>>= 16; rightPair >>>= 16; } } if((options & CollationSettings.CASE_LEVEL) != 0) { boolean strengthIsPrimary = CollationSettings.getStrength(options) == Collator.PRIMARY; leftIndex = rightIndex = startIndex; leftPair = rightPair = 0; for(;;) { while(leftPair == 0) { if(leftIndex == left.length()) { leftPair = EOS; break; } int c = left.charAt(leftIndex++); leftPair = (c <= LATIN_MAX) ? table[c] : lookup(table, c); if(leftPair < MIN_LONG) { long pairAndInc = nextPair(table, c, leftPair, left, leftIndex); if(pairAndInc < 0) { ++leftIndex; pairAndInc = ~pairAndInc; } leftPair = (int)pairAndInc; } leftPair = getCases(variableTop, strengthIsPrimary, leftPair); } while(rightPair == 0) { if(rightIndex == right.length()) { rightPair = EOS; break; } int c = right.charAt(rightIndex++); rightPair = (c <= LATIN_MAX) ? table[c] : lookup(table, c); if(rightPair < MIN_LONG) { long pairAndInc = nextPair(table, c, rightPair, right, rightIndex); if(pairAndInc < 0) { ++rightIndex; pairAndInc = ~pairAndInc; } rightPair = (int)pairAndInc; } rightPair = getCases(variableTop, strengthIsPrimary, rightPair); } if(leftPair == rightPair) { if(leftPair == EOS) { break; } leftPair = rightPair = 0; continue; } int leftCase = leftPair & 0xffff; int rightCase = rightPair & 0xffff; if(leftCase != rightCase) { if((options & CollationSettings.UPPER_FIRST) == 0) { return (leftCase < rightCase) ? Collation.LESS : Collation.GREATER; } else { return (leftCase < rightCase) ? Collation.GREATER : Collation.LESS; } } if(leftPair == EOS) { break; } leftPair >>>= 16; rightPair >>>= 16; } } if(CollationSettings.getStrength(options) <= Collator.SECONDARY) { return Collation.EQUAL; } // Remove the case bits from the tertiary weight when caseLevel is on or caseFirst is off. boolean withCaseBits = CollationSettings.isTertiaryWithCaseBits(options); leftIndex = rightIndex = startIndex; leftPair = rightPair = 0; for(;;) { while(leftPair == 0) { if(leftIndex == left.length()) { leftPair = EOS; break; } int c = left.charAt(leftIndex++); leftPair = (c <= LATIN_MAX) ? table[c] : lookup(table, c); if(leftPair < MIN_LONG) { long pairAndInc = nextPair(table, c, leftPair, left, leftIndex); if(pairAndInc < 0) { ++leftIndex; pairAndInc = ~pairAndInc; } leftPair = (int)pairAndInc; } leftPair = getTertiaries(variableTop, withCaseBits, leftPair); } while(rightPair == 0) { if(rightIndex == right.length()) { rightPair = EOS; break; } int c = right.charAt(rightIndex++); rightPair = (c <= LATIN_MAX) ? table[c] : lookup(table, c); if(rightPair < MIN_LONG) { long pairAndInc = nextPair(table, c, rightPair, right, rightIndex); if(pairAndInc < 0) { ++rightIndex; pairAndInc = ~pairAndInc; } rightPair = (int)pairAndInc; } rightPair = getTertiaries(variableTop, withCaseBits, rightPair); } if(leftPair == rightPair) { if(leftPair == EOS) { break; } leftPair = rightPair = 0; continue; } int leftTertiary = leftPair & 0xffff; int rightTertiary = rightPair & 0xffff; if(leftTertiary != rightTertiary) { if(CollationSettings.sortsTertiaryUpperCaseFirst(options)) { // Pass through EOS and MERGE_WEIGHT // and keep real tertiary weights larger than the MERGE_WEIGHT. // Tertiary CEs (secondary ignorables) are not supported in fast Latin. if(leftTertiary > MERGE_WEIGHT) { leftTertiary ^= CASE_MASK; } if(rightTertiary > MERGE_WEIGHT) { rightTertiary ^= CASE_MASK; } } return (leftTertiary < rightTertiary) ? Collation.LESS : Collation.GREATER; } if(leftPair == EOS) { break; } leftPair >>>= 16; rightPair >>>= 16; } if(CollationSettings.getStrength(options) <= Collator.TERTIARY) { return Collation.EQUAL; } leftIndex = rightIndex = startIndex; leftPair = rightPair = 0; for(;;) { while(leftPair == 0) { if(leftIndex == left.length()) { leftPair = EOS; break; } int c = left.charAt(leftIndex++); leftPair = (c <= LATIN_MAX) ? table[c] : lookup(table, c); if(leftPair < MIN_LONG) { long pairAndInc = nextPair(table, c, leftPair, left, leftIndex); if(pairAndInc < 0) { ++leftIndex; pairAndInc = ~pairAndInc; } leftPair = (int)pairAndInc; } leftPair = getQuaternaries(variableTop, leftPair); } while(rightPair == 0) { if(rightIndex == right.length()) { rightPair = EOS; break; } int c = right.charAt(rightIndex++); rightPair = (c <= LATIN_MAX) ? table[c] : lookup(table, c); if(rightPair < MIN_LONG) { long pairAndInc = nextPair(table, c, rightPair, right, rightIndex); if(pairAndInc < 0) { ++rightIndex; pairAndInc = ~pairAndInc; } rightPair = (int)pairAndInc; } rightPair = getQuaternaries(variableTop, rightPair); } if(leftPair == rightPair) { if(leftPair == EOS) { break; } leftPair = rightPair = 0; continue; } int leftQuaternary = leftPair & 0xffff; int rightQuaternary = rightPair & 0xffff; if(leftQuaternary != rightQuaternary) { return (leftQuaternary < rightQuaternary) ? Collation.LESS : Collation.GREATER; } if(leftPair == EOS) { break; } leftPair >>>= 16; rightPair >>>= 16; } return Collation.EQUAL; } private static int lookup(char[] table, int c) { assert(c > LATIN_MAX); if(PUNCT_START <= c && c < PUNCT_LIMIT) { return table[c - PUNCT_START + LATIN_LIMIT]; } else if(c == 0xfffe) { return MERGE_WEIGHT; } else if(c == 0xffff) { return MAX_SHORT | COMMON_SEC | LOWER_CASE | COMMON_TER; } else { return BAIL_OUT; } } /** * Java returns a negative result (use the '~' operator) if sIndex is to be incremented. * C++ modifies sIndex. */ private static long nextPair(char[] table, int c, int ce, CharSequence s16, int sIndex) { if(ce >= MIN_LONG || ce < CONTRACTION) { return ce; // simple or special mini CE } else if(ce >= EXPANSION) { int index = NUM_FAST_CHARS + (ce & INDEX_MASK); return ((long)table[index + 1] << 16) | table[index]; } else /* ce >= CONTRACTION */ { // Contraction list: Default mapping followed by // 0 or more single-character contraction suffix mappings. int index = NUM_FAST_CHARS + (ce & INDEX_MASK); boolean inc = false; // true if the next char is consumed. if(sIndex != s16.length()) { // Read the next character. int c2; int nextIndex = sIndex; c2 = s16.charAt(nextIndex++); if(c2 > LATIN_MAX) { if(PUNCT_START <= c2 && c2 < PUNCT_LIMIT) { c2 = c2 - PUNCT_START + LATIN_LIMIT; // 2000..203F -> 0180..01BF } else if(c2 == 0xfffe || c2 == 0xffff) { c2 = -1; // U+FFFE & U+FFFF cannot occur in contractions. } else { return BAIL_OUT; } } // Look for the next character in the contraction suffix list, // which is in ascending order of single suffix characters. int i = index; int head = table[i]; // first skip the default mapping int x; do { i += head >> CONTR_LENGTH_SHIFT; head = table[i]; x = head & CONTR_CHAR_MASK; } while(x < c2); if(x == c2) { index = i; inc = true; } } // Return the CE or CEs for the default or contraction mapping. int length = table[index] >> CONTR_LENGTH_SHIFT; if(length == 1) { return BAIL_OUT; } ce = table[index + 1]; long result; if(length == 2) { result = ce; } else { result = ((long)table[index + 2] << 16) | ce; } return inc ? ~result : result; } } private static int getPrimaries(int variableTop, int pair) { int ce = pair & 0xffff; if(ce >= MIN_SHORT) { return pair & TWO_SHORT_PRIMARIES_MASK; } if(ce > variableTop) { return pair & TWO_LONG_PRIMARIES_MASK; } if(ce >= MIN_LONG) { return 0; } // variable return pair; // special mini CE } private static int getSecondariesFromOneShortCE(int ce) { ce &= SECONDARY_MASK; if(ce < MIN_SEC_HIGH) { return ce + SEC_OFFSET; } else { return ((ce + SEC_OFFSET) << 16) | COMMON_SEC_PLUS_OFFSET; } } private static int getSecondaries(int variableTop, int pair) { if(pair <= 0xffff) { // one mini CE if(pair >= MIN_SHORT) { pair = getSecondariesFromOneShortCE(pair); } else if(pair > variableTop) { pair = COMMON_SEC_PLUS_OFFSET; } else if(pair >= MIN_LONG) { pair = 0; // variable } // else special mini CE } else { int ce = pair & 0xffff; if(ce >= MIN_SHORT) { pair = (pair & TWO_SECONDARIES_MASK) + TWO_SEC_OFFSETS; } else if(ce > variableTop) { pair = TWO_COMMON_SEC_PLUS_OFFSET; } else { assert(ce >= MIN_LONG); pair = 0; // variable } } return pair; } private static int getCases(int variableTop, boolean strengthIsPrimary, int pair) { // Primary+caseLevel: Ignore case level weights of primary ignorables. // Otherwise: Ignore case level weights of secondary ignorables. // For details see the comments in the CollationCompare class. // Tertiary CEs (secondary ignorables) are not supported in fast Latin. if(pair <= 0xffff) { // one mini CE if(pair >= MIN_SHORT) { // A high secondary weight means we really have two CEs, // a primary CE and a secondary CE. int ce = pair; pair &= CASE_MASK; // explicit weight of primary CE if(!strengthIsPrimary && (ce & SECONDARY_MASK) >= MIN_SEC_HIGH) { pair |= LOWER_CASE << 16; // implied weight of secondary CE } } else if(pair > variableTop) { pair = LOWER_CASE; } else if(pair >= MIN_LONG) { pair = 0; // variable } // else special mini CE } else { // two mini CEs, same primary groups, neither expands like above int ce = pair & 0xffff; if(ce >= MIN_SHORT) { if(strengthIsPrimary && (pair & (SHORT_PRIMARY_MASK << 16)) == 0) { pair &= CASE_MASK; } else { pair &= TWO_CASES_MASK; } } else if(ce > variableTop) { pair = TWO_LOWER_CASES; } else { assert(ce >= MIN_LONG); pair = 0; // variable } } return pair; } private static int getTertiaries(int variableTop, boolean withCaseBits, int pair) { if(pair <= 0xffff) { // one mini CE if(pair >= MIN_SHORT) { // A high secondary weight means we really have two CEs, // a primary CE and a secondary CE. int ce = pair; if(withCaseBits) { pair = (pair & CASE_AND_TERTIARY_MASK) + TER_OFFSET; if((ce & SECONDARY_MASK) >= MIN_SEC_HIGH) { pair |= (LOWER_CASE | COMMON_TER_PLUS_OFFSET) << 16; } } else { pair = (pair & TERTIARY_MASK) + TER_OFFSET; if((ce & SECONDARY_MASK) >= MIN_SEC_HIGH) { pair |= COMMON_TER_PLUS_OFFSET << 16; } } } else if(pair > variableTop) { pair = (pair & TERTIARY_MASK) + TER_OFFSET; if(withCaseBits) { pair |= LOWER_CASE; } } else if(pair >= MIN_LONG) { pair = 0; // variable } // else special mini CE } else { // two mini CEs, same primary groups, neither expands like above int ce = pair & 0xffff; if(ce >= MIN_SHORT) { if(withCaseBits) { pair &= TWO_CASES_MASK | TWO_TERTIARIES_MASK; } else { pair &= TWO_TERTIARIES_MASK; } pair += TWO_TER_OFFSETS; } else if(ce > variableTop) { pair = (pair & TWO_TERTIARIES_MASK) + TWO_TER_OFFSETS; if(withCaseBits) { pair |= TWO_LOWER_CASES; } } else { assert(ce >= MIN_LONG); pair = 0; // variable } } return pair; } private static int getQuaternaries(int variableTop, int pair) { // Return the primary weight of a variable CE, // or the maximum primary weight for a non-variable, not-completely-ignorable CE. if(pair <= 0xffff) { // one mini CE if(pair >= MIN_SHORT) { // A high secondary weight means we really have two CEs, // a primary CE and a secondary CE. if((pair & SECONDARY_MASK) >= MIN_SEC_HIGH) { pair = TWO_SHORT_PRIMARIES_MASK; } else { pair = SHORT_PRIMARY_MASK; } } else if(pair > variableTop) { pair = SHORT_PRIMARY_MASK; } else if(pair >= MIN_LONG) { pair &= LONG_PRIMARY_MASK; // variable } // else special mini CE } else { // two mini CEs, same primary groups, neither expands like above int ce = pair & 0xffff; if(ce > variableTop) { pair = TWO_SHORT_PRIMARIES_MASK; } else { assert(ce >= MIN_LONG); pair &= TWO_LONG_PRIMARIES_MASK; // variable } } return pair; } private CollationFastLatin() {} // no constructor }