// © 2016 and later: Unicode, Inc. and others. // License & terms of use: http://www.unicode.org/copyright.html#License /* ******************************************************************************* * * Copyright (C) 1999-2015, International Business Machines * Corporation and others. All Rights Reserved. * ******************************************************************************* * CollationWeights.java, ported from collationweights.h/.cpp * * C++ version created on: 2001mar08 as ucol_wgt.h * created by: Markus W. Scherer */ package com.ibm.icu.impl.coll; import java.util.Arrays; /** * Allocates n collation element weights between two exclusive limits. * Used only internally by the collation tailoring builder. */ public final class CollationWeights { public CollationWeights() {} public void initForPrimary(boolean compressible) { middleLength=1; minBytes[1] = Collation.MERGE_SEPARATOR_BYTE + 1; maxBytes[1] = Collation.TRAIL_WEIGHT_BYTE; if(compressible) { minBytes[2] = Collation.PRIMARY_COMPRESSION_LOW_BYTE + 1; maxBytes[2] = Collation.PRIMARY_COMPRESSION_HIGH_BYTE - 1; } else { minBytes[2] = 2; maxBytes[2] = 0xff; } minBytes[3] = 2; maxBytes[3] = 0xff; minBytes[4] = 2; maxBytes[4] = 0xff; } public void initForSecondary() { // We use only the lower 16 bits for secondary weights. middleLength=3; minBytes[1] = 0; maxBytes[1] = 0; minBytes[2] = 0; maxBytes[2] = 0; minBytes[3] = Collation.LEVEL_SEPARATOR_BYTE + 1; maxBytes[3] = 0xff; minBytes[4] = 2; maxBytes[4] = 0xff; } public void initForTertiary() { // We use only the lower 16 bits for tertiary weights. middleLength=3; minBytes[1] = 0; maxBytes[1] = 0; minBytes[2] = 0; maxBytes[2] = 0; // We use only 6 bits per byte. // The other bits are used for case & quaternary weights. minBytes[3] = Collation.LEVEL_SEPARATOR_BYTE + 1; maxBytes[3] = 0x3f; minBytes[4] = 2; maxBytes[4] = 0x3f; } /** * Determine heuristically * what ranges to use for a given number of weights between (excluding) * two limits. * * @param lowerLimit A collation element weight; the ranges will be filled to cover * weights greater than this one. * @param upperLimit A collation element weight; the ranges will be filled to cover * weights less than this one. * @param n The number of collation element weights w necessary such that * lowerLimit= rangeCount) { return 0xffffffffL; } else { /* get the next weight */ WeightRange range = ranges[rangeIndex]; long weight = range.start; if(--range.count == 0) { /* this range is finished */ ++rangeIndex; } else { /* increment the weight for the next value */ range.start = incWeight(weight, range.length); assert(range.start <= range.end); } return weight; } } /** @internal */ private static final class WeightRange implements Comparable { long start, end; int length, count; @Override public int compareTo(WeightRange other) { long l=start; long r=other.start; if(lr) { return 1; } else { return 0; } } } /* helper functions for CE weights */ public static int lengthOfWeight(long weight) { if((weight&0xffffff)==0) { return 1; } else if((weight&0xffff)==0) { return 2; } else if((weight&0xff)==0) { return 3; } else { return 4; } } private static int getWeightTrail(long weight, int length) { return (int)(weight>>(8*(4-length)))&0xff; } private static long setWeightTrail(long weight, int length, int trail) { length=8*(4-length); return (weight&(0xffffff00L<>idx; } else { // Do not use int>>32 because on some platforms that does not shift at all // while we need it to become 0. // PowerPC: 0xffffffff>>32 = 0 (wanted) // x86: 0xffffffff>>32 = 0xffffffff (not wanted) // // ANSI C99 6.5.7 Bitwise shift operators: // "If the value of the right operand is negative // or is greater than or equal to the width of the promoted left operand, // the behavior is undefined." mask=0; } idx=32-idx; mask|=0xffffff00L< 0); } } } private long incWeightByOffset(long weight, int length, int offset) { for(;;) { offset += getWeightByte(weight, length); if(offset <= maxBytes[length]) { return setWeightByte(weight, length, offset); } else { // Split the offset between this byte and the previous one. offset -= minBytes[length]; weight = setWeightByte(weight, length, minBytes[length] + offset % countBytes(length)); offset /= countBytes(length); --length; assert(length > 0); } } } private void lengthenRange(WeightRange range) { int length=range.length+1; range.start=setWeightTrail(range.start, length, minBytes[length]); range.end=setWeightTrail(range.end, length, maxBytes[length]); range.count*=countBytes(length); range.length=length; } /** * Takes two CE weights and calculates the * possible ranges of weights between the two limits, excluding them. * For weights with up to 4 bytes there are up to 2*4-1=7 ranges. */ private boolean getWeightRanges(long lowerLimit, long upperLimit) { assert(lowerLimit != 0); assert(upperLimit != 0); /* get the lengths of the limits */ int lowerLength=lengthOfWeight(lowerLimit); int upperLength=lengthOfWeight(upperLimit); // printf("length of lower limit 0x%08lx is %ld\n", lowerLimit, lowerLength); // printf("length of upper limit 0x%08lx is %ld\n", upperLimit, upperLength); assert(lowerLength>=middleLength); // Permit upperLength=upperLimit) { // printf("error: no space between lower & upper limits\n"); return false; } /* check that neither is a prefix of the other */ if(lowerLength=upperLimit has caught it */ WeightRange[] lower = new WeightRange[5]; /* [0] and [1] are not used - this simplifies indexing */ WeightRange middle = new WeightRange(); WeightRange[] upper = new WeightRange[5]; /* * With the limit lengths of 1..4, there are up to 7 ranges for allocation: * range minimum length * lower[4] 4 * lower[3] 3 * lower[2] 2 * middle 1 * upper[2] 2 * upper[3] 3 * upper[4] 4 * * We are now going to calculate up to 7 ranges. * Some of them will typically overlap, so we will then have to merge and eliminate ranges. */ long weight=lowerLimit; for(int length=lowerLength; length>middleLength; --length) { int trail=getWeightTrail(weight, length); if(trailmiddleLength; --length) { int trail=getWeightTrail(weight, length); if(trail>minBytes[length]) { upper[length] = new WeightRange(); upper[length].start=setWeightTrail(weight, length, minBytes[length]); upper[length].end=decWeightTrail(weight, length); upper[length].length=length; upper[length].count=trail-minBytes[length]; } weight=truncateWeight(weight, length-1); } middle.end=decWeightTrail(weight, middleLength); /* set the middle range */ middle.length=middleLength; if(middle.end>=middle.start) { middle.count=(int)((middle.end-middle.start)>>(8*(4-middleLength)))+1; } else { /* no middle range, eliminate overlaps */ for(int length=4; length>middleLength; --length) { if(lower[length] != null && upper[length] != null && lower[length].count>0 && upper[length].count>0) { // Note: The lowerEnd and upperStart weights are versions of // lowerLimit and upperLimit (which are lowerLimitupperStart) { // These two lower and upper ranges collide. // Since lowerLimitupperStart is only possible // if the leading bytes are equal // and lastByte(lowerEnd)>lastByte(upperStart). assert(truncateWeight(lowerEnd, length-1)== truncateWeight(upperStart, length-1)); // Intersect these two ranges. lower[length].end=upper[length].end; lower[length].count= getWeightTrail(lower[length].end, length)- getWeightTrail(lower[length].start, length)+1; // count might be <=0 in which case there is no room, // and the range-collecting code below will ignore this range. merged=true; } else if(lowerEnd==upperStart) { // Not possible, unless minByte==maxByte which is not allowed. assert(minBytes[length]countBytes merged=true; } } if(merged) { // Remove all shorter ranges. // There was no room available for them between the ranges we just merged. upper[length].count=0; while(--length>middleLength) { lower[length]=upper[length]=null; } break; } } } } /* print ranges for(int length=4; length>=2; --length) { if(lower[length].count>0) { printf("lower[%ld] .start=0x%08lx .end=0x%08lx .count=%ld\n", length, lower[length].start, lower[length].end, lower[length].count); } } if(middle.count>0) { printf("middle .start=0x%08lx .end=0x%08lx .count=%ld\n", middle.start, middle.end, middle.count); } for(int length=2; length<=4; ++length) { if(upper[length].count>0) { printf("upper[%ld] .start=0x%08lx .end=0x%08lx .count=%ld\n", length, upper[length].start, upper[length].end, upper[length].count); } } */ /* copy the ranges, shortest first, into the result array */ rangeCount=0; if(middle.count>0) { ranges[0] = middle; rangeCount=1; } for(int length=middleLength+1; length<=4; ++length) { /* copy upper first so that later the middle range is more likely the first one to use */ if(upper[length] != null && upper[length].count>0) { ranges[rangeCount++]=upper[length]; } if(lower[length] != null && lower[length].count>0) { ranges[rangeCount++]=lower[length]; } } return rangeCount>0; } private boolean allocWeightsInShortRanges(int n, int minLength) { // See if the first few minLength and minLength+1 ranges have enough weights. for(int i = 0; i < rangeCount && ranges[i].length <= (minLength + 1); ++i) { if(n <= ranges[i].count) { // Use the first few minLength and minLength+1 ranges. if(ranges[i].length > minLength) { // Reduce the number of weights from the last minLength+1 range // which might sort before some minLength ranges, // so that we use all weights in the minLength ranges. ranges[i].count = n; } rangeCount = i + 1; // printf("take first %ld ranges\n", rangeCount); if(rangeCount>1) { /* sort the ranges by weight values */ Arrays.sort(ranges, 0, rangeCount); } return true; } n -= ranges[i].count; // still >0 } return false; } private boolean allocWeightsInMinLengthRanges(int n, int minLength) { // See if the minLength ranges have enough weights // when we split one and lengthen the following ones. int count = 0; int minLengthRangeCount; for(minLengthRangeCount = 0; minLengthRangeCount < rangeCount && ranges[minLengthRangeCount].length == minLength; ++minLengthRangeCount) { count += ranges[minLengthRangeCount].count; } int nextCountBytes = countBytes(minLength + 1); if(n > count * nextCountBytes) { return false; } // Use the minLength ranges. Merge them, and then split again as necessary. long start = ranges[0].start; long end = ranges[0].end; for(int i = 1; i < minLengthRangeCount; ++i) { if(ranges[i].start < start) { start = ranges[i].start; } if(ranges[i].end > end) { end = ranges[i].end; } } // Calculate how to split the range between minLength (count1) and minLength+1 (count2). // Goal: // count1 + count2 * nextCountBytes = n // count1 + count2 = count // These turn into // (count - count2) + count2 * nextCountBytes = n // and then into the following count1 & count2 computations. int count2 = (n - count) / (nextCountBytes - 1); // number of weights to be lengthened int count1 = count - count2; // number of minLength weights if(count2 == 0 || (count1 + count2 * nextCountBytes) < n) { // round up ++count2; --count1; assert((count1 + count2 * nextCountBytes) >= n); } ranges[0].start = start; if(count1 == 0) { // Make one long range. ranges[0].end = end; ranges[0].count = count; lengthenRange(ranges[0]); rangeCount = 1; } else { // Split the range, lengthen the second part. // printf("split the range number %ld (out of %ld minLength ranges) by %ld:%ld\n", // splitRange, rangeCount, count1, count2); // Next start = start + count1. First end = 1 before that. ranges[0].end = incWeightByOffset(start, minLength, count1 - 1); ranges[0].count = count1; if(ranges[1] == null) { ranges[1] = new WeightRange(); } ranges[1].start = incWeight(ranges[0].end, minLength); ranges[1].end = end; ranges[1].length = minLength; // +1 when lengthened ranges[1].count = count2; // *countBytes when lengthened lengthenRange(ranges[1]); rangeCount = 2; } return true; } private int middleLength; private int[] minBytes = new int[5]; // for byte 1, 2, 3, 4 private int[] maxBytes = new int[5]; private WeightRange[] ranges = new WeightRange[7]; private int rangeIndex; private int rangeCount; }