/** * @license * Copyright 2016 Google Inc. All rights reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package com.google.security.wycheproof; import com.google.security.wycheproof.WycheproofRunner.ProviderType; import com.google.security.wycheproof.WycheproofRunner.SlowTest; import java.math.BigInteger; import java.security.GeneralSecurityException; import java.security.KeyFactory; import java.security.KeyPair; import java.security.KeyPairGenerator; import java.security.PrivateKey; import java.security.PublicKey; import javax.crypto.KeyAgreement; import javax.crypto.interfaces.DHPrivateKey; import javax.crypto.spec.DHParameterSpec; import javax.crypto.spec.DHPublicKeySpec; import junit.framework.TestCase; /** * Testing Diffie-Hellman key agreement. * *

Subgroup confinment attacks: * The papers by van Oorshot and Wiener rsp. Lim and Lee show that Diffie-Hellman keys can * be found much faster if the short exponents are used and if the multiplicative group modulo p * contains small subgroups. In particular an attacker can try to send a public key that is an * element of a small subgroup. If the receiver does not check for such elements then may be * possible to find the private key modulo the order of the small subgroup. * Several countermeasures against such attacks have been proposed: For example IKE uses * fields of order p where p is a safe prime (i.e. q=(p-1)/2), hence the only elements of small * order are 1 and p-1. * NIST SP 800-56A rev. 2, Section 5.5.1.1 only requires that the size of the subgroup generated * by the generator g is big enough to prevent the baby-step giant-step algorithm. I.e. for 80-bit * security p must be at least 1024 bits long and the prime q must be at least 160 bits long. A 2048 * bit prime p and a 224 bit prime q are sufficient for 112 bit security. To avoid subgroup * confinment attacks NIST requires that public keys are validated, i.e. by checking that a public * key y satisfies the conditions 2 <= y <= p-2 and y^q mod p == 1 (Section 5.6.2.3.1). Further, * after generating the shared secret z = y_a ^ x_b mod p each party should check that z != 1. RFC * 2785 contains similar recommendations. * The public key validation described by NIST requires that the order q of the generator g * is known to the verifier. Unfortunately, the order q is missing in PKCS #3. PKCS #3 describes * the Diffie-Hellman parameters only by the values p, g and optionally the key size in bits. * *

The class DHParameterSpec that defines the Diffie-Hellman parameters in JCE contains the same * values as PKCS#3. In particular, it does not contain the order of the subgroup q. * Moreover, the SUN provider uses the minimal sizes specified by NIST for q. * Essentially the provider reuses the parameters for DSA. * *

Therefore, there is no guarantee that an implementation of Diffie-Hellman is secure against * subgroup confinement attacks. Without a key validation it is insecure to use the key-pair * generation from NIST SP 800-56A Section 5.6.1.1 (The key-pair generation there only requires that * static and ephemeral private keys are randomly chosen in the range 1..q-1). * *

To avoid big disasters the tests below require that key sizes are not minimal. I.e., currently * the tests require at least 512 bit keys for 1024 bit fields. We use this lower limit because that * is what the SUN provider is currently doing. TODO(bleichen): Find a reference supporting or * disproving that decision. * *

References: P. C. van Oorschot, M. J. Wiener, "On Diffie-Hellman key agreement with short * exponents", Eurocrypt 96, pp 332–343. * *

C.H. Lim and P.J. Lee, "A key recovery attack on discrete log-based schemes using a prime * order subgroup", CRYPTO' 98, pp 249–263. * *

NIST SP 800-56A, revision 2, May 2013 * http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar2.pdf * *

PKCS #3, Diffie–Hellman Key Agreement * http://uk.emc.com/emc-plus/rsa-labs/standards-initiatives/pkcs-3-diffie-hellman-key-agreement-standar.htm * *

RFC 2785, "Methods for Avoiding 'Small-Subgroup' Attacks on the Diffie-Hellman Key Agreement * Method for S/MIME", March 2000 * https://www.ietf.org/rfc/rfc2785.txt * *

D. Adrian et al. "Imperfect Forward Secrecy: How Diffie-Hellman Fails in Practice" * https://weakdh.org/imperfect-forward-secrecy-ccs15.pdf * A good analysis of various DH implementations. * Some misconfigurations pointed out in the paper are: p is composite, p-1 contains no large * prime factor, q is used instead of the generator g. * *

Sources that might be used for additional tests: * * CVE-2015-3193: The Montgomery squaring implementation in crypto/bn/asm/x86_64-mont5.pl * in OpenSSL 1.0.2 before 1.0.2e on the x86_64 platform, as used by the BN_mod_exp function, * mishandles carry propagation * https://blog.fuzzing-project.org/31-Fuzzing-Math-miscalculations-in-OpenSSLs-BN_mod_exp-CVE-2015-3193.html * *

CVE-2016-0739: libssh before 0.7.3 improperly truncates ephemeral secrets generated for the * (1) diffie-hellman-group1 and (2) diffie-hellman-group14 key exchange methods to 128 bits ... * *

CVE-2015-1787 The ssl3_get_client_key_exchange function in s3_srvr.c in OpenSSL 1.0.2 before * 1.0.2a, when client authentication and an ephemeral Diffie-Hellman ciphersuite are enabled, * allows remote attackers to cause a denial of service (daemon crash) via a ClientKeyExchange * message with a length of zero. * *

CVE-2015-0205 The ssl3_get_cert_verify function in s3_srvr.c in OpenSSL 1.0.0 before 1.0.0p * and 1.0.1 before 1.0.1k accepts client authentication with a Diffie-Hellman (DH) certificate * without requiring a CertificateVerify message, which allows remote attackers to obtain access * without knowledge of a private key via crafted TLS Handshake Protocol traffic to a server that * recognizes a Certification Authority with DH support. * *

CVE-2016-0701 The DH_check_pub_key function in crypto/dh/dh_check.c in OpenSSL 1.0.2 before * 1.0.2f does not ensure that prime numbers are appropriate for Diffie-Hellman (DH) key exchange, * which makes it easier for remote attackers to discover a private DH exponent by making multiple * handshakes with a peer that chose an inappropriate number, as demonstrated by a number in an * X9.42 file. * *

CVE-2006-1115 nCipher HSM before 2.22.6, when generating a Diffie-Hellman public/private key * pair without any specified DiscreteLogGroup parameters, chooses random parameters that could * allow an attacker to crack the private key in significantly less time than a brute force attack. * *

CVE-2015-1716 Schannel in Microsoft Windows Server 2003 SP2, Windows Vista SP2, Windows Server * 2008 SP2 and R2 SP1, Windows 7 SP1, Windows 8, Windows 8.1, Windows Server 2012 Gold and R2, and * Windows RT Gold and 8.1 does not properly restrict Diffie-Hellman Ephemeral (DHE) key lengths, * which makes it easier for remote attackers to defeat cryptographic protection mechanisms via * unspecified vectors, aka "Schannel Information Disclosure Vulnerability. * *

CVE-2015-2419: Random generation of the prime p allows Pohlig-Hellman and probably other * stuff. * *

J. Fried et al. "A kilobit hidden SNFS discrete logarithm computation". * http://eprint.iacr.org/2016/961.pdf * Some crypto libraries use fields that can be broken with the SNFS. * * @author bleichen@google.com (Daniel Bleichenbacher) */ public class DhTest extends TestCase { public DHParameterSpec ike1536() { final BigInteger p = new BigInteger( "ffffffffffffffffc90fdaa22168c234c4c6628b80dc1cd129024e088a67cc74" + "020bbea63b139b22514a08798e3404ddef9519b3cd3a431b302b0a6df25f1437" + "4fe1356d6d51c245e485b576625e7ec6f44c42e9a637ed6b0bff5cb6f406b7ed" + "ee386bfb5a899fa5ae9f24117c4b1fe649286651ece45b3dc2007cb8a163bf05" + "98da48361c55d39a69163fa8fd24cf5f83655d23dca3ad961c62f356208552bb" + "9ed529077096966d670c354e4abc9804f1746c08ca237327ffffffffffffffff", 16); final BigInteger g = new BigInteger("2"); return new DHParameterSpec(p, g); } public DHParameterSpec ike2048() { final BigInteger p = new BigInteger( "ffffffffffffffffc90fdaa22168c234c4c6628b80dc1cd129024e088a67cc74" + "020bbea63b139b22514a08798e3404ddef9519b3cd3a431b302b0a6df25f1437" + "4fe1356d6d51c245e485b576625e7ec6f44c42e9a637ed6b0bff5cb6f406b7ed" + "ee386bfb5a899fa5ae9f24117c4b1fe649286651ece45b3dc2007cb8a163bf05" + "98da48361c55d39a69163fa8fd24cf5f83655d23dca3ad961c62f356208552bb" + "9ed529077096966d670c354e4abc9804f1746c08ca18217c32905e462e36ce3b" + "e39e772c180e86039b2783a2ec07a28fb5c55df06f4c52c9de2bcbf695581718" + "3995497cea956ae515d2261898fa051015728e5a8aacaa68ffffffffffffffff", 16); final BigInteger g = new BigInteger("2"); return new DHParameterSpec(p, g); } // The default parameters returned for 1024 bit DH keys from OpenJdk as defined in // openjdk7/releases/v6/trunk/jdk/src/share/classes/sun/security/provider/ParameterCache.java // I.e., these are the same parameters as used for DSA. public DHParameterSpec openJdk1024() { final BigInteger p = new BigInteger( "fd7f53811d75122952df4a9c2eece4e7f611b7523cef4400c31e3f80b6512669" + "455d402251fb593d8d58fabfc5f5ba30f6cb9b556cd7813b801d346ff26660b7" + "6b9950a5a49f9fe8047b1022c24fbba9d7feb7c61bf83b57e7c6a8a6150f04fb" + "83f6d3c51ec3023554135a169132f675f3ae2b61d72aeff22203199dd14801c7", 16); final BigInteger unusedQ = new BigInteger("9760508f15230bccb292b982a2eb840bf0581cf5", 16); final BigInteger g = new BigInteger( "f7e1a085d69b3ddecbbcab5c36b857b97994afbbfa3aea82f9574c0b3d078267" + "5159578ebad4594fe67107108180b449167123e84c281613b7cf09328cc8a6e1" + "3c167a8b547c8d28e0a3ae1e2bb3a675916ea37f0bfa213562f1fb627a01243b" + "cca4f1bea8519089a883dfe15ae59f06928b665e807b552564014c3bfecf492a", 16); return new DHParameterSpec(p, g); } /** Check that key agreement using DH works. */ @SuppressWarnings("InsecureCryptoUsage") public void testDh() throws Exception { KeyPairGenerator keyGen = KeyPairGenerator.getInstance("DH"); DHParameterSpec dhparams = ike2048(); keyGen.initialize(dhparams); KeyPair keyPairA = keyGen.generateKeyPair(); KeyPair keyPairB = keyGen.generateKeyPair(); KeyAgreement kaA = KeyAgreement.getInstance("DH"); KeyAgreement kaB = KeyAgreement.getInstance("DH"); kaA.init(keyPairA.getPrivate()); kaB.init(keyPairB.getPrivate()); kaA.doPhase(keyPairB.getPublic(), true); kaB.doPhase(keyPairA.getPublic(), true); byte[] kAB = kaA.generateSecret(); byte[] kBA = kaB.generateSecret(); assertEquals(TestUtil.bytesToHex(kAB), TestUtil.bytesToHex(kBA)); } /** * Returns the product of primes that can be found by a simple variant of Pollard-rho. * The result should contain all prime factors of n smaller than 10^8. * This method is heuristic, since it could in principle find large prime factors too. * However, for a random 160-bit prime q the probability of this should be less than 2^{-100}. */ private BigInteger smoothDivisor(BigInteger n) { // By examination we verified that for every prime p < 10^8 // the iteration x_n = x_{n-1}^2 + 1 mod p enters a cycle of size < 50000 after at // most 50000 steps. int pollardRhoSteps = 50000; BigInteger u = new BigInteger("2"); for (int i = 0; i < pollardRhoSteps; i++) { u = u.multiply(u).add(BigInteger.ONE).mod(n); } BigInteger v = u; BigInteger prod = BigInteger.ONE; for (int i = 0; i < pollardRhoSteps; i++) { v = v.multiply(v).add(BigInteger.ONE).mod(n); // This implementation is only looking for the product of small primes. // Therefore, instead of continuously computing gcds of v-u and n, it is sufficient // and more efficient to compute the product of of v-u for all v and compute the gcd // at the end. prod = prod.multiply(v.subtract(u).abs()).mod(n); } BigInteger result = BigInteger.ONE; while (true) { BigInteger f = n.gcd(prod); if (f.equals(BigInteger.ONE)) { return result; } result = result.multiply(f); n = n.divide(f); } } @SlowTest(providers = {ProviderType.BOUNCY_CASTLE, ProviderType.SPONGY_CASTLE}) public void testKeyPair(KeyPair keyPair, int expectedKeySize) throws Exception { DHPrivateKey priv = (DHPrivateKey) keyPair.getPrivate(); BigInteger p = priv.getParams().getP(); BigInteger g = priv.getParams().getG(); int keySize = p.bitLength(); assertEquals("wrong key size", keySize, expectedKeySize); // Checks the key size of the private key. // NIST SP 800-56A requires that x is in the range (1, q-1). // Such a choice would require a full key validation. Since such a validation // requires the value q (which is not present in the DH parameters) larger keys // should be chosen to prevent attacks. int minPrivateKeyBits = keySize / 2; BigInteger x = priv.getX(); assertTrue(x.bitLength() >= minPrivateKeyBits - 32); // TODO(bleichen): add tests for weak random number generators. // Verify the DH parameters. System.out.println("p=" + p.toString(16)); System.out.println("g=" + g.toString(16)); System.out.println("testKeyPairGenerator L=" + priv.getParams().getL()); // Basic parameter checks assertTrue("Expecting g > 1", g.compareTo(BigInteger.ONE) > 0); assertTrue("Expecting g < p - 1", g.compareTo(p.subtract(BigInteger.ONE)) < 0); // Expecting p to be prime. // No high certainty is needed, since this is a unit test. assertTrue(p.isProbablePrime(4)); // The order of g should be a large prime divisor q of p-1. // (see e.g. NIST SP 800-56A, section 5.5.1.1.) // If the order of g is composite then the the Decision Diffie Hellman assumption is // not satisfied for the group generated by g. Moreover, attacks using Pohlig-Hellman // might be feasible. // A good way to achieve these requirements is to select a safe prime p (i.e. a prime // where q=(p-1)/2 is prime too. NIST SP 800-56A does not require (or even recommend) // safe primes and allows Diffie-Hellman parameters where q is significantly smaller. // Unfortunately, the key does not contain q and thus the conditions above cannot be // tested easily. // We perform a partial test that performs a partial factorization of p-1 and then // test whether one of the small factors found by the partial factorization divides // the order of g. boolean isSafePrime = p.shiftRight(1).isProbablePrime(4); System.out.println("p is a safe prime:" + isSafePrime); BigInteger r; // p-1 divided by small prime factors. if (isSafePrime) { r = p.shiftRight(1); } else { BigInteger p1 = p.subtract(BigInteger.ONE); r = p1.divide(smoothDivisor(p1)); } System.out.println("r=" + r.toString(16)); assertEquals("g likely does not generate a prime oder subgroup", BigInteger.ONE, g.modPow(r, p)); // Checks that there are not too many short prime factors. // I.e., subgroup confinment attacks can find at least keySize - r.bitLength() bits of the key. // At least 160 unknown bits should remain. // Only very weak parameters are detected here, since the factorization above only finds small // prime factors. assertTrue(minPrivateKeyBits - (keySize - r.bitLength()) > 160); // DH parameters are sometime misconfigures and g and q are swapped. // A large g that divides p-1 is suspicious. if (g.bitLength() >= 160) { assertTrue(p.mod(g).compareTo(BigInteger.ONE) > 0); } } /** * Tests Diffie-Hellman key pair generation. * *

This is a slow test since some providers (e.g. BouncyCastle) generate new safe primes * for each new key. */ @SuppressWarnings("InsecureCryptoUsage") public void testKeyPairGenerator() throws Exception { int keySize = 1024; KeyPairGenerator keyGen = KeyPairGenerator.getInstance("DH"); keyGen.initialize(keySize); KeyPair keyPair = keyGen.generateKeyPair(); testKeyPair(keyPair, keySize); } /** This test tries a key agreement with keys using distinct parameters. */ @SuppressWarnings("InsecureCryptoUsage") public void testDHDistinctParameters() throws Exception { KeyPairGenerator keyGen = KeyPairGenerator.getInstance("DH"); keyGen.initialize(ike1536()); KeyPair keyPairA = keyGen.generateKeyPair(); keyGen.initialize(ike2048()); KeyPair keyPairB = keyGen.generateKeyPair(); KeyAgreement kaA = KeyAgreement.getInstance("DH"); kaA.init(keyPairA.getPrivate()); try { kaA.doPhase(keyPairB.getPublic(), true); byte[] kAB = kaA.generateSecret(); fail("Generated secrets with mixed keys " + TestUtil.bytesToHex(kAB) + ", "); } catch (java.security.GeneralSecurityException ex) { // This is expected. } } /** * Tests whether a provider accepts invalid public keys that result in predictable shared secrets. * This test is based on RFC 2785, Section 4 and NIST SP 800-56A, If an attacker can modify both * public keys in an ephemeral-ephemeral key agreement scheme then it may be possible to coerce * both parties into computing the same predictable shared key. * *

Note: the test is quite whimsical. If the prime p is not a safe prime then the provider * itself cannot prevent all small-subgroup attacks because of the missing parameter q in the * Diffie-Hellman parameters. Implementations must add additional countermeasures such as the ones * proposed in RFC 2785. * *

CVE-2016-1000346: BouncyCastle before v.1.56 did not validate the other parties public key. */ @SuppressWarnings("InsecureCryptoUsage") public void testSubgroupConfinement() throws Exception { KeyPairGenerator keyGen = KeyPairGenerator.getInstance("DH"); DHParameterSpec params = ike2048(); BigInteger p = params.getP(); BigInteger g = params.getG(); keyGen.initialize(params); PrivateKey priv = keyGen.generateKeyPair().getPrivate(); KeyAgreement ka = KeyAgreement.getInstance("DH"); BigInteger[] weakPublicKeys = { BigInteger.ZERO, BigInteger.ONE, p.subtract(BigInteger.ONE), p, p.add(BigInteger.ONE), BigInteger.ONE.negate() }; for (BigInteger weakKey : weakPublicKeys) { ka.init(priv); try { KeyFactory kf = KeyFactory.getInstance("DH"); DHPublicKeySpec weakSpec = new DHPublicKeySpec(weakKey, p, g); PublicKey pub = kf.generatePublic(weakSpec); ka.doPhase(pub, true); byte[] kAB = ka.generateSecret(); fail( "Generated secrets with weak public key:" + weakKey.toString() + " secret:" + TestUtil.bytesToHex(kAB)); } catch (GeneralSecurityException ex) { // this is expected } } } }