/* * Copyright (C) 2015 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License */ package com.android.incallui.answer.impl.classifier; import android.util.ArrayMap; import android.view.MotionEvent; import java.util.ArrayList; import java.util.List; import java.util.Map; /** * A classifier which for each point from a stroke, it creates a point on plane with coordinates * (timeOffsetNano, distanceCoveredUpToThisPoint) (scaled by DURATION_SCALE and LENGTH_SCALE) and * then it calculates the angle variance of these points like the class {@link AnglesClassifier} * (without splitting it into two parts). The classifier ignores the last point of a stroke because * the UP event comes in with some delay and this ruins the smoothness of this curve. Additionally, * the classifier classifies calculates the percentage of angles which value is in [PI - * ANGLE_DEVIATION, 2* PI) interval. The reason why the classifier does that is because the speed of * a good stroke is most often increases, so most of these angels should be in this interval. */ class SpeedAnglesClassifier extends StrokeClassifier { private Map strokeMap = new ArrayMap<>(); public SpeedAnglesClassifier(ClassifierData classifierData) { this.classifierData = classifierData; } @Override public String getTag() { return "SPD_ANG"; } @Override public void onTouchEvent(MotionEvent event) { int action = event.getActionMasked(); if (action == MotionEvent.ACTION_DOWN) { strokeMap.clear(); } for (int i = 0; i < event.getPointerCount(); i++) { Stroke stroke = classifierData.getStroke(event.getPointerId(i)); if (strokeMap.get(stroke) == null) { strokeMap.put(stroke, new Data()); } if (action != MotionEvent.ACTION_UP && action != MotionEvent.ACTION_CANCEL && !(action == MotionEvent.ACTION_POINTER_UP && i == event.getActionIndex())) { strokeMap.get(stroke).addPoint(stroke.getPoints().get(stroke.getPoints().size() - 1)); } } } @Override public float getFalseTouchEvaluation(Stroke stroke) { Data data = strokeMap.get(stroke); return SpeedVarianceEvaluator.evaluate(data.getAnglesVariance()) + SpeedAnglesPercentageEvaluator.evaluate(data.getAnglesPercentage()); } private static class Data { private static final float DURATION_SCALE = 1e8f; private static final float LENGTH_SCALE = 1.0f; private static final float ANGLE_DEVIATION = (float) Math.PI / 10.0f; private List lastThreePoints = new ArrayList<>(); private Point previousPoint; private float previousAngle; private float sumSquares; private float sum; private float count; private float dist; private float anglesCount; private float acceleratingAngles; public Data() { previousPoint = null; previousAngle = (float) Math.PI; sumSquares = 0.0f; sum = 0.0f; count = 1.0f; dist = 0.0f; anglesCount = acceleratingAngles = 0.0f; } public void addPoint(Point point) { if (previousPoint != null) { dist += previousPoint.dist(point); } previousPoint = point; Point speedPoint = new Point((float) point.timeOffsetNano / DURATION_SCALE, dist / LENGTH_SCALE); // Checking if the added point is different than the previously added point // Repetitions are being ignored so that proper angles are calculated. if (lastThreePoints.isEmpty() || !lastThreePoints.get(lastThreePoints.size() - 1).equals(speedPoint)) { lastThreePoints.add(speedPoint); if (lastThreePoints.size() == 4) { lastThreePoints.remove(0); float angle = lastThreePoints.get(1).getAngle(lastThreePoints.get(0), lastThreePoints.get(2)); anglesCount++; if (angle >= (float) Math.PI - ANGLE_DEVIATION) { acceleratingAngles++; } float difference = angle - previousAngle; sum += difference; sumSquares += difference * difference; count += 1.0f; previousAngle = angle; } } } public float getAnglesVariance() { return sumSquares / count - (sum / count) * (sum / count); } public float getAnglesPercentage() { if (anglesCount == 0.0f) { return 1.0f; } return (acceleratingAngles) / anglesCount; } } }