Searched defs:defining (Results 1 - 1 of 1) sorted by relevance

/external/python/cpython2/Lib/pydoc_data/
H A Dtopics.py7 'attribute-access': u'\nCustomizing attribute access\n****************************\n\nThe following methods can be defined to customize the meaning of\nattribute access (use of, assignment to, or deletion of "x.name") for\nclass instances.\n\nobject.__getattr__(self, name)\n\n Called when an attribute lookup has not found the attribute in the\n usual places (i.e. it is not an instance attribute nor is it found\n in the class tree for "self"). "name" is the attribute name. This\n method should return the (computed) attribute value or raise an\n "AttributeError" exception.\n\n Note that if the attribute is found through the normal mechanism,\n "__getattr__()" is not called. (This is an intentional asymmetry\n between "__getattr__()" and "__setattr__()".) This is done both for\n efficiency reasons and because otherwise "__getattr__()" would have\n no way to access other attributes of the instance. Note that at\n least for instance variables, you can fake total control by not\n inserting any values in the instance attribute dictionary (but\n instead inserting them in another object). See the\n "__getattribute__()" method below for a way to actually get total\n control in new-style classes.\n\nobject.__setattr__(self, name, value)\n\n Called when an attribute assignment is attempted. This is called\n instead of the normal mechanism (i.e. store the value in the\n instance dictionary). *name* is the attribute name, *value* is the\n value to be assigned to it.\n\n If "__setattr__()" wants to assign to an instance attribute, it\n should not simply execute "self.name = value" --- this would cause\n a recursive call to itself. Instead, it should insert the value in\n the dictionary of instance attributes, e.g., "self.__dict__[name] =\n value". For new-style classes, rather than accessing the instance\n dictionary, it should call the base class method with the same\n name, for example, "object.__setattr__(self, name, value)".\n\nobject.__delattr__(self, name)\n\n Like "__setattr__()" but for attribute deletion instead of\n assignment. This should only be implemented if "del obj.name" is\n meaningful for the object.\n\n\nMore attribute access for new-style classes\n===========================================\n\nThe following methods only apply to new-style classes.\n\nobject.__getattribute__(self, name)\n\n Called unconditionally to implement attribute accesses for\n instances of the class. If the class also defines "__getattr__()",\n the latter will not be called unless "__getattribute__()" either\n calls it explicitly or raises an "AttributeError". This method\n should return the (computed) attribute value or raise an\n "AttributeError" exception. In order to avoid infinite recursion in\n this method, its implementation should always call the base class\n method with the same name to access any attributes it needs, for\n example, "object.__getattribute__(self, name)".\n\n Note: This method may still be bypassed when looking up special\n methods as the result of implicit invocation via language syntax\n or built-in functions. See Special method lookup for new-style\n classes.\n\n\nImplementing Descriptors\n========================\n\nThe following methods only apply when an instance of the class\ncontaining the method (a so-called *descriptor* class) appears in an\n*owner* class (the descriptor must be in either the owner\'s class\ndictionary or in the class dictionary for one of its parents). In the\nexamples below, "the attribute" refers to the attribute whose name is\nthe key of the property in the owner class\' "__dict__".\n\nobject.__get__(self, instance, owner)\n\n Called to get the attribute of the owner class (class attribute\n access) or of an instance of that class (instance attribute\n access). *owner* is always the owner class, while *instance* is the\n instance that the attribute was accessed through, or "None" when\n the attribute is accessed through the *owner*. This method should\n return the (computed) attribute value or raise an "AttributeError"\n exception.\n\nobject.__set__(self, instance, value)\n\n Called to set the attribute on an instance *instance* of the owner\n class to a new value, *value*.\n\nobject.__delete__(self, instance)\n\n Called to delete the attribute on an instance *instance* of the\n owner class.\n\n\nInvoking Descriptors\n====================\n\nIn general, a descriptor is an object attribute with "binding\nbehavior", one whose attribute access has been overridden by methods\nin the descriptor protocol: "__get__()", "__set__()", and\n"__delete__()". If any of those methods are defined for an object, it\nis said to be a descriptor.\n\nThe default behavior for attribute access is to get, set, or delete\nthe attribute from an object\'s dictionary. For instance, "a.x" has a\nlookup chain starting with "a.__dict__[\'x\']", then\n"type(a).__dict__[\'x\']", and continuing through the base classes of\n"type(a)" excluding metaclasses.\n\nHowever, if the looked-up value is an object defining one of the\ndescriptor methods, then Python may override the default behavior and\ninvoke the descriptor method instead. Where this occurs in the\nprecedence chain depends on which descriptor methods were defined and\nhow they were called. Note that descriptors are only invoked for new\nstyle objects or classes (ones that subclass "object()" or "type()").\n\nThe starting point for descriptor invocation is a binding, "a.x". How\nthe arguments are assembled depends on "a":\n\nDirect Call\n The simplest and least common call is when user code directly\n invokes a descriptor method: "x.__get__(a)".\n\nInstance Binding\n If binding to a new-style object instance, "a.x" is transformed\n into the call: "type(a).__dict__[\'x\'].__get__(a, type(a))".\n\nClass Binding\n If binding to a new-style class, "A.x" is transformed into the\n call: "A.__dict__[\'x\'].__get__(None, A)".\n\nSuper Binding\n If "a" is an instance of "super", then the binding "super(B,\n obj).m()" searches "obj.__class__.__mro__" for the base class "A"\n immediately preceding "B" and then invokes the descriptor with the\n call: "A.__dict__[\'m\'].__get__(obj, obj.__class__)".\n\nFor instance bindings, the precedence of descriptor invocation depends\non the which descriptor methods are defined. A descriptor can define\nany combination of "__get__()", "__set__()" and "__delete__()". If it\ndoes not define "__get__()", then accessing the attribute will return\nthe descriptor object itself unless there is a value in the object\'s\ninstance dictionary. If the descriptor defines "__set__()" and/or\n"__delete__()", it is a data descriptor; if it defines neither, it is\na non-data descriptor. Normally, data descriptors define both\n"__get__()" and "__set__()", while non-data descriptors have just the\n"__get__()" method. Data descriptors with "__set__()" and "__get__()"\ndefined always override a redefinition in an instance dictionary. In\ncontrast, non-data descriptors can be overridden by instances.\n\nPython methods (including "staticmethod()" and "classmethod()") are\nimplemented as non-data descriptors. Accordingly, instances can\nredefine and override methods. This allows individual instances to\nacquire behaviors that differ from other instances of the same class.\n\nThe "property()" function is implemented as a data descriptor.\nAccordingly, instances cannot override the behavior of a property.\n\n\n__slots__\n=========\n\nBy default, instances of both old and new-style classes have a\ndictionary for attribute storage. This wastes space for objects\nhaving very few instance variables. The space consumption can become\nacute when creating large numbers of instances.\n\nThe default can be overridden by defining *__slots__* in a new-style\nclass definition. The *__slots__* declaration takes a sequence of\ninstance variables and reserves just enough space in each instance to\nhold a value for each variable. Space is saved because *__dict__* is\nnot created for each instance.\n\n__slots__\n\n This class variable can be assigned a string, iterable, or sequence\n of strings with variable names used by instances. If defined in a\n new-style class, *__slots__* reserves space for the declared\n variables and prevents the automatic creation of *__dict__* and\n *__weakref__* for each instance.\n\n New in version 2.2.\n\nNotes on using *__slots__*\n\n* When inheriting from a class without *__slots__*, the *__dict__*\n attribute of that class will always be accessible, so a *__slots__*\n definition in the subclass is meaningless.\n\n* Without a *__dict__* variable, instances cannot be assigned new\n variables not listed in the *__slots__* definition. Attempts to\n assign to an unlisted variable name raises "AttributeError". If\n dynamic assignment of new variables is desired, then add\n "\'__dict__\'" to the sequence of strings in the *__slots__*\n declaration.\n\n Changed in version 2.3: Previously, adding "\'__dict__\'" to the\n *__slots__* declaration would not enable the assignment of new\n attributes not specifically listed in the sequence of instance\n variable names.\n\n* Without a *__weakref__* variable for each instance, classes\n defining *__slots__* do not support weak references to its\n instances. If weak reference support is needed, then add\n "\'__weakref__\'" to the sequence of strings in the *__slots__*\n declaration.\n\n Changed in version 2.3: Previously, adding "\'__weakref__\'" to the\n *__slots__* declaration would not enable support for weak\n references.\n\n* *__slots__* are implemented at the class level by creating\n descriptors (Implementing Descriptors) for each variable name. As a\n result, class attributes cannot be used to set default values for\n instance variables defined by *__slots__*; otherwise, the class\n attribute would overwrite the descriptor assignment.\n\n* The action of a *__slots__* declaration is limited to the class\n where it is defined. As a result, subclasses will have a *__dict__*\n unless they also define *__slots__* (which must only contain names\n of any *additional* slots).\n\n* If a class defines a slot also defined in a base class, the\n instance variable defined by the base class slot is inaccessible\n (except by retrieving its descriptor directly from the base class).\n This renders the meaning of the program undefined. In the future, a\n check may be added to prevent this.\n\n* Nonempty *__slots__* does not work for classes derived from\n "variable-length" built-in types such as "long", "str" and "tuple".\n\n* Any non-string iterable may be assigned to *__slots__*. Mappings\n may also be used; however, in the future, special meaning may be\n assigned to the values corresponding to each key.\n\n* *__class__* assignment works only if both classes have the same\n *__slots__*.\n\n Changed in version 2.6: Previously, *__class__* assignment raised an\n error if either new or old class had *__slots__*.\n',
22 'comparisons': u'\nComparisons\n***********\n\nUnlike C, all comparison operations in Python have the same priority,\nwhich is lower than that of any arithmetic, shifting or bitwise\noperation. Also unlike C, expressions like "a < b < c" have the\ninterpretation that is conventional in mathematics:\n\n comparison ::= or_expr ( comp_operator or_expr )*\n comp_operator ::= "<" | ">" | "==" | ">=" | "<=" | "<>" | "!="\n | "is" ["not"] | ["not"] "in"\n\nComparisons yield boolean values: "True" or "False".\n\nComparisons can be chained arbitrarily, e.g., "x < y <= z" is\nequivalent to "x < y and y <= z", except that "y" is evaluated only\nonce (but in both cases "z" is not evaluated at all when "x < y" is\nfound to be false).\n\nFormally, if *a*, *b*, *c*, ..., *y*, *z* are expressions and *op1*,\n*op2*, ..., *opN* are comparison operators, then "a op1 b op2 c ... y\nopN z" is equivalent to "a op1 b and b op2 c and ... y opN z", except\nthat each expression is evaluated at most once.\n\nNote that "a op1 b op2 c" doesn\'t imply any kind of comparison between\n*a* and *c*, so that, e.g., "x < y > z" is perfectly legal (though\nperhaps not pretty).\n\nThe forms "<>" and "!=" are equivalent; for consistency with C, "!="\nis preferred; where "!=" is mentioned below "<>" is also accepted.\nThe "<>" spelling is considered obsolescent.\n\nThe operators "<", ">", "==", ">=", "<=", and "!=" compare the values\nof two objects. The objects need not have the same type. If both are\nnumbers, they are converted to a common type. Otherwise, objects of\ndifferent types *always* compare unequal, and are ordered consistently\nbut arbitrarily. You can control comparison behavior of objects of\nnon-built-in types by defining a "__cmp__" method or rich comparison\nmethods like "__gt__", described in section Special method names.\n\n(This unusual definition of comparison was used to simplify the\ndefinition of operations like sorting and the "in" and "not in"\noperators. In the future, the comparison rules for objects of\ndifferent types are likely to change.)\n\nComparison of objects of the same type depends on the type:\n\n* Numbers are compared arithmetically.\n\n* Strings are compared lexicographically using the numeric\n equivalents (the result of the built-in function "ord()") of their\n characters. Unicode and 8-bit strings are fully interoperable in\n this behavior. [4]\n\n* Tuples and lists are compared lexicographically using comparison\n of corresponding elements. This means that to compare equal, each\n element must compare equal and the two sequences must be of the same\n type and have the same length.\n\n If not equal, the sequences are ordered the same as their first\n differing elements. For example, "cmp([1,2,x], [1,2,y])" returns\n the same as "cmp(x,y)". If the corresponding element does not\n exist, the shorter sequence is ordered first (for example, "[1,2] <\n [1,2,3]").\n\n* Mappings (dictionaries) compare equal if and only if their sorted\n (key, value) lists compare equal. [5] Outcomes other than equality\n are resolved consistently, but are not otherwise defined. [6]\n\n* Most other objects of built-in types compare unequal unless they\n are the same object; the choice whether one object is considered\n smaller or larger than another one is made arbitrarily but\n consistently within one execution of a program.\n\nThe operators "in" and "not in" test for collection membership. "x in\ns" evaluates to true if *x* is a member of the collection *s*, and\nfalse otherwise. "x not in s" returns the negation of "x in s". The\ncollection membership test has traditionally been bound to sequences;\nan object is a member of a collection if the collection is a sequence\nand contains an element equal to that object. However, it make sense\nfor many other object types to support membership tests without being\na sequence. In particular, dictionaries (for keys) and sets support\nmembership testing.\n\nFor the list and tuple types, "x in y" is true if and only if there\nexists an index *i* such that either "x is y[i]" or "x == y[i]" is\ntrue.\n\nFor the Unicode and string types, "x in y" is true if and only if *x*\nis a substring of *y*. An equivalent test is "y.find(x) != -1".\nNote, *x* and *y* need not be the same type; consequently, "u\'ab\' in\n\'abc\'" will return "True". Empty strings are always considered to be a\nsubstring of any other string, so """ in "abc"" will return "True".\n\nChanged in version 2.3: Previously, *x* was required to be a string of\nlength "1".\n\nFor user-defined classes which define the "__contains__()" method, "x\nin y" is true if and only if "y.__contains__(x)" is true.\n\nFor user-defined classes which do not define "__contains__()" but do\ndefine "__iter__()", "x in y" is true if some value "z" with "x == z"\nis produced while iterating over "y". If an exception is raised\nduring the iteration, it is as if "in" raised that exception.\n\nLastly, the old-style iteration protocol is tried: if a class defines\n"__getitem__()", "x in y" is true if and only if there is a non-\nnegative integer index *i* such that "x == y[i]", and all lower\ninteger indices do not raise "IndexError" exception. (If any other\nexception is raised, it is as if "in" raised that exception).\n\nThe operator "not in" is defined to have the inverse true value of\n"in".\n\nThe operators "is" and "is not" test for object identity: "x is y" is\ntrue if and only if *x* and *y* are the same object. "x is not y"\nyields the inverse truth value. [7]\n',
27 'customization': u'\nBasic customization\n*******************\n\nobject.__new__(cls[, ...])\n\n Called to create a new instance of class *cls*. "__new__()" is a\n static method (special-cased so you need not declare it as such)\n that takes the class of which an instance was requested as its\n first argument. The remaining arguments are those passed to the\n object constructor expression (the call to the class). The return\n value of "__new__()" should be the new object instance (usually an\n instance of *cls*).\n\n Typical implementations create a new instance of the class by\n invoking the superclass\'s "__new__()" method using\n "super(currentclass, cls).__new__(cls[, ...])" with appropriate\n arguments and then modifying the newly-created instance as\n necessary before returning it.\n\n If "__new__()" returns an instance of *cls*, then the new\n instance\'s "__init__()" method will be invoked like\n "__init__(self[, ...])", where *self* is the new instance and the\n remaining arguments are the same as were passed to "__new__()".\n\n If "__new__()" does not return an instance of *cls*, then the new\n instance\'s "__init__()" method will not be invoked.\n\n "__new__()" is intended mainly to allow subclasses of immutable\n types (like int, str, or tuple) to customize instance creation. It\n is also commonly overridden in custom metaclasses in order to\n customize class creation.\n\nobject.__init__(self[, ...])\n\n Called after the instance has been created (by "__new__()"), but\n before it is returned to the caller. The arguments are those\n passed to the class constructor expression. If a base class has an\n "__init__()" method, the derived class\'s "__init__()" method, if\n any, must explicitly call it to ensure proper initialization of the\n base class part of the instance; for example:\n "BaseClass.__init__(self, [args...])".\n\n Because "__new__()" and "__init__()" work together in constructing\n objects ("__new__()" to create it, and "__init__()" to customise\n it), no non-"None" value may be returned by "__init__()"; doing so\n will cause a "TypeError" to be raised at runtime.\n\nobject.__del__(self)\n\n Called when the instance is about to be destroyed. This is also\n called a destructor. If a base class has a "__del__()" method, the\n derived class\'s "__del__()" method, if any, must explicitly call it\n to ensure proper deletion of the base class part of the instance.\n Note that it is possible (though not recommended!) for the\n "__del__()" method to postpone destruction of the instance by\n creating a new reference to it. It may then be called at a later\n time when this new reference is deleted. It is not guaranteed that\n "__del__()" methods are called for objects that still exist when\n the interpreter exits.\n\n Note: "del x" doesn\'t directly call "x.__del__()" --- the former\n decrements the reference count for "x" by one, and the latter is\n only called when "x"\'s reference count reaches zero. Some common\n situations that may prevent the reference count of an object from\n going to zero include: circular references between objects (e.g.,\n a doubly-linked list or a tree data structure with parent and\n child pointers); a reference to the object on the stack frame of\n a function that caught an exception (the traceback stored in\n "sys.exc_traceback" keeps the stack frame alive); or a reference\n to the object on the stack frame that raised an unhandled\n exception in interactive mode (the traceback stored in\n "sys.last_traceback" keeps the stack frame alive). The first\n situation can only be remedied by explicitly breaking the cycles;\n the latter two situations can be resolved by storing "None" in\n "sys.exc_traceback" or "sys.last_traceback". Circular references\n which are garbage are detected when the option cycle detector is\n enabled (it\'s on by default), but can only be cleaned up if there\n are no Python-level "__del__()" methods involved. Refer to the\n documentation for the "gc" module for more information about how\n "__del__()" methods are handled by the cycle detector,\n particularly the description of the "garbage" value.\n\n Warning: Due to the precarious circumstances under which\n "__del__()" methods are invoked, exceptions that occur during\n their execution are ignored, and a warning is printed to\n "sys.stderr" instead. Also, when "__del__()" is invoked in\n response to a module being deleted (e.g., when execution of the\n program is done), other globals referenced by the "__del__()"\n method may already have been deleted or in the process of being\n torn down (e.g. the import machinery shutting down). For this\n reason, "__del__()" methods should do the absolute minimum needed\n to maintain external invariants. Starting with version 1.5,\n Python guarantees that globals whose name begins with a single\n underscore are deleted from their module before other globals are\n deleted; if no other references to such globals exist, this may\n help in assuring that imported modules are still available at the\n time when the "__del__()" method is called.\n\n See also the "-R" command-line option.\n\nobject.__repr__(self)\n\n Called by the "repr()" built-in function and by string conversions\n (reverse quotes) to compute the "official" string representation of\n an object. If at all possible, this should look like a valid\n Python expression that could be used to recreate an object with the\n same value (given an appropriate environment). If this is not\n possible, a string of the form "<...some useful description...>"\n should be returned. The return value must be a string object. If a\n class defines "__repr__()" but not "__str__()", then "__repr__()"\n is also used when an "informal" string representation of instances\n of that class is required.\n\n This is typically used for debugging, so it is important that the\n representation is information-rich and unambiguous.\n\nobject.__str__(self)\n\n Called by the "str()" built-in function and by the "print"\n statement to compute the "informal" string representation of an\n object. This differs from "__repr__()" in that it does not have to\n be a valid Python expression: a more convenient or concise\n representation may be used instead. The return value must be a\n string object.\n\nobject.__lt__(self, other)\nobject.__le__(self, other)\nobject.__eq__(self, other)\nobject.__ne__(self, other)\nobject.__gt__(self, other)\nobject.__ge__(self, other)\n\n New in version 2.1.\n\n These are the so-called "rich comparison" methods, and are called\n for comparison operators in preference to "__cmp__()" below. The\n correspondence between operator symbols and method names is as\n follows: "x<y" calls "x.__lt__(y)", "x<=y" calls "x.__le__(y)",\n "x==y" calls "x.__eq__(y)", "x!=y" and "x<>y" call "x.__ne__(y)",\n "x>y" calls "x.__gt__(y)", and "x>=y" calls "x.__ge__(y)".\n\n A rich comparison method may return the singleton "NotImplemented"\n if it does not implement the operation for a given pair of\n arguments. By convention, "False" and "True" are returned for a\n successful comparison. However, these methods can return any value,\n so if the comparison operator is used in a Boolean context (e.g.,\n in the condition of an "if" statement), Python will call "bool()"\n on the value to determine if the result is true or false.\n\n There are no implied relationships among the comparison operators.\n The truth of "x==y" does not imply that "x!=y" is false.\n Accordingly, when defining "__eq__()", one should also define\n "__ne__()" so that the operators will behave as expected. See the\n paragraph on "__hash__()" for some important notes on creating\n *hashable* objects which support custom comparison operations and\n are usable as dictionary keys.\n\n There are no swapped-argument versions of these methods (to be used\n when the left argument does not support the operation but the right\n argument does); rather, "__lt__()" and "__gt__()" are each other\'s\n reflection, "__le__()" and "__ge__()" are each other\'s reflection,\n and "__eq__()" and "__ne__()" are their own reflection.\n\n Arguments to rich comparison methods are never coerced.\n\n To automatically generate ordering operations from a single root\n operation, see "functools.total_ordering()".\n\nobject.__cmp__(self, other)\n\n Called by comparison operations if rich comparison (see above) is\n not defined. Should return a negative integer if "self < other",\n zero if "self == other", a positive integer if "self > other". If\n no "__cmp__()", "__eq__()" or "__ne__()" operation is defined,\n class instances are compared by object identity ("address"). See\n also the description of "__hash__()" for some important notes on\n creating *hashable* objects which support custom comparison\n operations and are usable as dictionary keys. (Note: the\n restriction that exceptions are not propagated by "__cmp__()" has\n been removed since Python 1.5.)\n\nobject.__rcmp__(self, other)\n\n Changed in version 2.1: No longer supported.\n\nobject.__hash__(self)\n\n Called by built-in function "hash()" and for operations on members\n of hashed collections including "set", "frozenset", and "dict".\n "__hash__()" should return an integer. The only required property\n is that objects which compare equal have the same hash value; it is\n advised to somehow mix together (e.g. using exclusive or) the hash\n values for the components of the object that also play a part in\n comparison of objects.\n\n If a class does not define a "__cmp__()" or "__eq__()" method it\n should not define a "__hash__()" operation either; if it defines\n "__cmp__()" or "__eq__()" but not "__hash__()", its instances will\n not be usable in hashed collections. If a class defines mutable\n objects and implements a "__cmp__()" or "__eq__()" method, it\n should not implement "__hash__()", since hashable collection\n implementations require that an object\'s hash value is immutable\n (if the object\'s hash value changes, it will be in the wrong hash\n bucket).\n\n User-defined classes have "__cmp__()" and "__hash__()" methods by\n default; with them, all objects compare unequal (except with\n themselves) and "x.__hash__()" returns a result derived from\n "id(x)".\n\n Classes which inherit a "__hash__()" method from a parent class but\n change the meaning of "__cmp__()" or "__eq__()" such that the hash\n value returned is no longer appropriate (e.g. by switching to a\n value-based concept of equality instead of the default identity\n based equality) can explicitly flag themselves as being unhashable\n by setting "__hash__ = None" in the class definition. Doing so\n means that not only will instances of the class raise an\n appropriate "TypeError" when a program attempts to retrieve their\n hash value, but they will also be correctly identified as\n unhashable when checking "isinstance(obj, collections.Hashable)"\n (unlike classes which define their own "__hash__()" to explicitly\n raise "TypeError").\n\n Changed in version 2.5: "__hash__()" may now also return a long\n integer object; the 32-bit integer is then derived from the hash of\n that object.\n\n Changed in version 2.6: "__hash__" may now be set to "None" to\n explicitly flag instances of a class as unhashable.\n\nobject.__nonzero__(self)\n\n Called to implement truth value testing and the built-in operation\n "bool()"; should return "False" or "True", or their integer\n equivalents "0" or "1". When this method is not defined,\n "__len__()" is called, if it is defined, and the object is\n considered true if its result is nonzero. If a class defines\n neither "__len__()" nor "__nonzero__()", all its instances are\n considered true.\n\nobject.__unicode__(self)\n\n Called to implement "unicode()" built-in; should return a Unicode\n object. When this method is not defined, string conversion is\n attempted, and the result of string conversion is converted to\n Unicode using the system default encoding.\n', namespace
35 'execmodel': u'\nExecution model\n***************\n\n\nNaming and binding\n==================\n\n*Names* refer to objects. Names are introduced by name binding\noperations. Each occurrence of a name in the program text refers to\nthe *binding* of that name established in the innermost function block\ncontaining the use.\n\nA *block* is a piece of Python program text that is executed as a\nunit. The following are blocks: a module, a function body, and a class\ndefinition. Each command typed interactively is a block. A script\nfile (a file given as standard input to the interpreter or specified\non the interpreter command line the first argument) is a code block.\nA script command (a command specified on the interpreter command line\nwith the \'**-c**\' option) is a code block. The file read by the\nbuilt-in function "execfile()" is a code block. The string argument\npassed to the built-in function "eval()" and to the "exec" statement\nis a code block. The expression read and evaluated by the built-in\nfunction "input()" is a code block.\n\nA code block is executed in an *execution frame*. A frame contains\nsome administrative information (used for debugging) and determines\nwhere and how execution continues after the code block\'s execution has\ncompleted.\n\nA *scope* defines the visibility of a name within a block. If a local\nvariable is defined in a block, its scope includes that block. If the\ndefinition occurs in a function block, the scope extends to any blocks\ncontained within the defining one, unless a contained block introduces\na different binding for the name. The scope of names defined in a\nclass block is limited to the class block; it does not extend to the\ncode blocks of methods -- this includes generator expressions since\nthey are implemented using a function scope. This means that the\nfollowing will fail:\n\n class A:\n a = 42\n b = list(a + i for i in range(10))\n\nWhen a name is used in a code block, it is resolved using the nearest\nenclosing scope. The set of all such scopes visible to a code block\nis called the block\'s *environment*.\n\nIf a name is bound in a block, it is a local variable of that block.\nIf a name is bound at the module level, it is a global variable. (The\nvariables of the module code block are local and global.) If a\nvariable is used in a code block but not defined there, it is a *free\nvariable*.\n\nWhen a name is not found at all, a "NameError" exception is raised.\nIf the name refers to a local variable that has not been bound, a\n"UnboundLocalError" exception is raised. "UnboundLocalError" is a\nsubclass of "NameError".\n\nThe following constructs bind names: formal parameters to functions,\n"import" statements, class and function definitions (these bind the\nclass or function name in the defining block), and targets that are\nidentifiers if occurring in an assignment, "for" loop header, in the\nsecond position of an "except" clause header or after "as" in a "with"\nstatement. The "import" statement of the form "from ... import *"\nbinds all names defined in the imported module, except those beginning\nwith an underscore. This form may only be used at the module level.\n\nA target occurring in a "del" statement is also considered bound for\nthis purpose (though the actual semantics are to unbind the name). It\nis illegal to unbind a name that is referenced by an enclosing scope;\nthe compiler will report a "SyntaxError".\n\nEach assignment or import statement occurs within a block defined by a\nclass or function definition or at the module level (the top-level\ncode block).\n\nIf a name binding operation occurs anywhere within a code block, all\nuses of the name within the block are treated as references to the\ncurrent block. This can lead to errors when a name is used within a\nblock before it is bound. This rule is subtle. Python lacks\ndeclarations and allows name binding operations to occur anywhere\nwithin a code block. The local variables of a code block can be\ndetermined by scanning the entire text of the block for name binding\noperations.\n\nIf the global statement occurs within a block, all uses of the name\nspecified in the statement refer to the binding of that name in the\ntop-level namespace. Names are resolved in the top-level namespace by\nsearching the global namespace, i.e. the namespace of the module\ncontaining the code block, and the builtins namespace, the namespace\nof the module "__builtin__". The global namespace is searched first.\nIf the name is not found there, the builtins namespace is searched.\nThe global statement must precede all uses of the name.\n\nThe builtins namespace associated with the execution of a code block\nis actually found by looking up the name "__builtins__" in its global\nnamespace; this should be a dictionary or a module (in the latter case\nthe module\'s dictionary is used). By default, when in the "__main__"\nmodule, "__builtins__" is the built-in module "__builtin__" (note: no\n\'s\'); when in any other module, "__builtins__" is an alias for the\ndictionary of the "__builtin__" module itself. "__builtins__" can be\nset to a user-created dictionary to create a weak form of restricted\nexecution.\n\n**CPython implementation detail:** Users should not touch\n"__builtins__"; it is strictly an implementation detail. Users\nwanting to override values in the builtins namespace should "import"\nthe "__builtin__" (no \'s\') module and modify its attributes\nappropriately.\n\nThe namespace for a module is automatically created the first time a\nmodule is imported. The main module for a script is always called\n"__main__".\n\nThe "global" statement has the same scope as a name binding operation\nin the same block. If the nearest enclosing scope for a free variable\ncontains a global statement, the free variable is treated as a global.\n\nA class definition is an executable statement that may use and define\nnames. These references follow the normal rules for name resolution.\nThe namespace of the class definition becomes the attribute dictionary\nof the class. Names defined at the class scope are not visible in\nmethods.\n\n\nInteraction with dynamic features\n---------------------------------\n\nThere are several cases where Python statements are illegal when used\nin conjunction with nested scopes that contain free variables.\n\nIf a variable is referenced in an enclosing scope, it is illegal to\ndelete the name. An error will be reported at compile time.\n\nIf the wild card form of import --- "import *" --- is used in a\nfunction and the function contains or is a nested block with free\nvariables, the compiler will raise a "SyntaxError".\n\nIf "exec" is used in a function and the function contains or is a\nnested block with free variables, the compiler will raise a\n"SyntaxError" unless the exec explicitly specifies the local namespace\nfor the "exec". (In other words, "exec obj" would be illegal, but\n"exec obj in ns" would be legal.)\n\nThe "eval()", "execfile()", and "input()" functions and the "exec"\nstatement do not have access to the full environment for resolving\nnames. Names may be resolved in the local and global namespaces of\nthe caller. Free variables are not resolved in the nearest enclosing\nnamespace, but in the global namespace. [1] The "exec" statement and\nthe "eval()" and "execfile()" functions have optional arguments to\noverride the global and local namespace. If only one namespace is\nspecified, it is used for both.\n\n\nExceptions\n==========\n\nExceptions are a means of breaking out of the normal flow of control\nof a code block in order to handle errors or other exceptional\nconditions. An exception is *raised* at the point where the error is\ndetected; it may be *handled* by the surrounding code block or by any\ncode block that directly or indirectly invoked the code block where\nthe error occurred.\n\nThe Python interpreter raises an exception when it detects a run-time\nerror (such as division by zero). A Python program can also\nexplicitly raise an exception with the "raise" statement. Exception\nhandlers are specified with the "try" ... "except" statement. The\n"finally" clause of such a statement can be used to specify cleanup\ncode which does not handle the exception, but is executed whether an\nexception occurred or not in the preceding code.\n\nPython uses the "termination" model of error handling: an exception\nhandler can find out what happened and continue execution at an outer\nlevel, but it cannot repair the cause of the error and retry the\nfailing operation (except by re-entering the offending piece of code\nfrom the top).\n\nWhen an exception is not handled at all, the interpreter terminates\nexecution of the program, or returns to its interactive main loop. In\neither case, it prints a stack backtrace, except when the exception is\n"SystemExit".\n\nExceptions are identified by class instances. The "except" clause is\nselected depending on the class of the instance: it must reference the\nclass of the instance or a base class thereof. The instance can be\nreceived by the handler and can carry additional information about the\nexceptional condition.\n\nExceptions can also be identified by strings, in which case the\n"except" clause is selected by object identity. An arbitrary value\ncan be raised along with the identifying string which can be passed to\nthe handler.\n\nNote: Messages to exceptions are not part of the Python API. Their\n contents may change from one version of Python to the next without\n warning and should not be relied on by code which will run under\n multiple versions of the interpreter.\n\nSee also the description of the "try" statement in section The try\nstatement and "raise" statement in section The raise statement.\n\n-[ Footnotes ]-\n\n[1] This limitation occurs because the code that is executed by\n these operations is not available at the time the module is\n compiled.\n',
39 'formatstrings': u'\nFormat String Syntax\n********************\n\nThe "str.format()" method and the "Formatter" class share the same\nsyntax for format strings (although in the case of "Formatter",\nsubclasses can define their own format string syntax).\n\nFormat strings contain "replacement fields" surrounded by curly braces\n"{}". Anything that is not contained in braces is considered literal\ntext, which is copied unchanged to the output. If you need to include\na brace character in the literal text, it can be escaped by doubling:\n"{{" and "}}".\n\nThe grammar for a replacement field is as follows:\n\n replacement_field ::= "{" [field_name] ["!" conversion] [":" format_spec] "}"\n field_name ::= arg_name ("." attribute_name | "[" element_index "]")*\n arg_name ::= [identifier | integer]\n attribute_name ::= identifier\n element_index ::= integer | index_string\n index_string ::= <any source character except "]"> +\n conversion ::= "r" | "s"\n format_spec ::= <described in the next section>\n\nIn less formal terms, the replacement field can start with a\n*field_name* that specifies the object whose value is to be formatted\nand inserted into the output instead of the replacement field. The\n*field_name* is optionally followed by a *conversion* field, which is\npreceded by an exclamation point "\'!\'", and a *format_spec*, which is\npreceded by a colon "\':\'". These specify a non-default format for the\nreplacement value.\n\nSee also the Format Specification Mini-Language section.\n\nThe *field_name* itself begins with an *arg_name* that is either a\nnumber or a keyword. If it\'s a number, it refers to a positional\nargument, and if it\'s a keyword, it refers to a named keyword\nargument. If the numerical arg_names in a format string are 0, 1, 2,\n... in sequence, they can all be omitted (not just some) and the\nnumbers 0, 1, 2, ... will be automatically inserted in that order.\nBecause *arg_name* is not quote-delimited, it is not possible to\nspecify arbitrary dictionary keys (e.g., the strings "\'10\'" or\n"\':-]\'") within a format string. The *arg_name* can be followed by any\nnumber of index or attribute expressions. An expression of the form\n"\'.name\'" selects the named attribute using "getattr()", while an\nexpression of the form "\'[index]\'" does an index lookup using\n"__getitem__()".\n\nChanged in version 2.7: The positional argument specifiers can be\nomitted, so "\'{} {}\'" is equivalent to "\'{0} {1}\'".\n\nSome simple format string examples:\n\n "First, thou shalt count to {0}" # References first positional argument\n "Bring me a {}" # Implicitly references the first positional argument\n "From {} to {}" # Same as "From {0} to {1}"\n "My quest is {name}" # References keyword argument \'name\'\n "Weight in tons {0.weight}" # \'weight\' attribute of first positional arg\n "Units destroyed: {players[0]}" # First element of keyword argument \'players\'.\n\nThe *conversion* field causes a type coercion before formatting.\nNormally, the job of formatting a value is done by the "__format__()"\nmethod of the value itself. However, in some cases it is desirable to\nforce a type to be formatted as a string, overriding its own\ndefinition of formatting. By converting the value to a string before\ncalling "__format__()", the normal formatting logic is bypassed.\n\nTwo conversion flags are currently supported: "\'!s\'" which calls\n"str()" on the value, and "\'!r\'" which calls "repr()".\n\nSome examples:\n\n "Harold\'s a clever {0!s}" # Calls str() on the argument first\n "Bring out the holy {name!r}" # Calls repr() on the argument first\n\nThe *format_spec* field contains a specification of how the value\nshould be presented, including such details as field width, alignment,\npadding, decimal precision and so on. Each value type can define its\nown "formatting mini-language" or interpretation of the *format_spec*.\n\nMost built-in types support a common formatting mini-language, which\nis described in the next section.\n\nA *format_spec* field can also include nested replacement fields\nwithin it. These nested replacement fields may contain a field name,\nconversion flag and format specification, but deeper nesting is not\nallowed. The replacement fields within the format_spec are\nsubstituted before the *format_spec* string is interpreted. This\nallows the formatting of a value to be dynamically specified.\n\nSee the Format examples section for some examples.\n\n\nFormat Specification Mini-Language\n==================================\n\n"Format specifications" are used within replacement fields contained\nwithin a format string to define how individual values are presented\n(see Format String Syntax). They can also be passed directly to the\nbuilt-in "format()" function. Each formattable type may define how\nthe format specification is to be interpreted.\n\nMost built-in types implement the following options for format\nspecifications, although some of the formatting options are only\nsupported by the numeric types.\n\nA general convention is that an empty format string ("""") produces\nthe same result as if you had called "str()" on the value. A non-empty\nformat string typically modifies the result.\n\nThe general form of a *standard format specifier* is:\n\n format_spec ::= [[fill]align][sign][#][0][width][,][.precision][type]\n fill ::= <any character>\n align ::= "<" | ">" | "=" | "^"\n sign ::= "+" | "-" | " "\n width ::= integer\n precision ::= integer\n type ::= "b" | "c" | "d" | "e" | "E" | "f" | "F" | "g" | "G" | "n" | "o" | "s" | "x" | "X" | "%"\n\nIf a valid *align* value is specified, it can be preceded by a *fill*\ncharacter that can be any character and defaults to a space if\nomitted. It is not possible to use a literal curly brace (""{"" or\n""}"") as the *fill* character when using the "str.format()" method.\nHowever, it is possible to insert a curly brace with a nested\nreplacement field. This limitation doesn\'t affect the "format()"\nfunction.\n\nThe meaning of the various alignment options is as follows:\n\n +-----------+------------------------------------------------------------+\n | Option | Meaning |\n +===========+============================================================+\n | "\'<\'" | Forces the field to be left-aligned within the available |\n | | space (this is the default for most objects). |\n +-----------+------------------------------------------------------------+\n | "\'>\'" | Forces the field to be right-aligned within the available |\n | | space (this is the default for numbers). |\n +-----------+------------------------------------------------------------+\n | "\'=\'" | Forces the padding to be placed after the sign (if any) |\n | | but before the digits. This is used for printing fields |\n | | in the form \'+000000120\'. This alignment option is only |\n | | valid for numeric types. It becomes the default when \'0\' |\n | | immediately precedes the field width. |\n +-----------+------------------------------------------------------------+\n | "\'^\'" | Forces the field to be centered within the available |\n | | space. |\n +-----------+------------------------------------------------------------+\n\nNote that unless a minimum field width is defined, the field width\nwill always be the same size as the data to fill it, so that the\nalignment option has no meaning in this case.\n\nThe *sign* option is only valid for number types, and can be one of\nthe following:\n\n +-----------+------------------------------------------------------------+\n | Option | Meaning |\n +===========+============================================================+\n | "\'+\'" | indicates that a sign should be used for both positive as |\n | | well as negative numbers. |\n +-----------+------------------------------------------------------------+\n | "\'-\'" | indicates that a sign should be used only for negative |\n | | numbers (this is the default behavior). |\n +-----------+------------------------------------------------------------+\n | space | indicates that a leading space should be used on positive |\n | | numbers, and a minus sign on negative numbers. |\n +-----------+------------------------------------------------------------+\n\nThe "\'#\'" option is only valid for integers, and only for binary,\noctal, or hexadecimal output. If present, it specifies that the\noutput will be prefixed by "\'0b\'", "\'0o\'", or "\'0x\'", respectively.\n\nThe "\',\'" option signals the use of a comma for a thousands separator.\nFor a locale aware separator, use the "\'n\'" integer presentation type\ninstead.\n\nChanged in version 2.7: Added the "\',\'" option (see also **PEP 378**).\n\n*width* is a decimal integer defining the minimum field width. If not\nspecified, then the field width will be determined by the content.\n\nWhen no explicit alignment is given, preceding the *width* field by a\nzero ("\'0\'") character enables sign-aware zero-padding for numeric\ntypes. This is equivalent to a *fill* character of "\'0\'" with an\n*alignment* type of "\'=\'".\n\nThe *precision* is a decimal number indicating how many digits should\nbe displayed after the decimal point for a floating point value\nformatted with "\'f\'" and "\'F\'", or before and after the decimal point\nfor a floating point value formatted with "\'g\'" or "\'G\'". For non-\nnumber types the field indicates the maximum field size - in other\nwords, how many characters will be used from the field content. The\n*precision* is not allowed for integer values.\n\nFinally, the *type* determines how the data should be presented.\n\nThe available string presentation types are:\n\n +-----------+------------------------------------------------------------+\n | Type | Meaning |\n +===========+============================================================+\n | "\'s\'" | String format. This is the default type for strings and |\n | | may be omitted. |\n +-----------+------------------------------------------------------------+\n | None | The same as "\'s\'". |\n +-----------+------------------------------------------------------------+\n\nThe available integer presentation types are:\n\n +-----------+------------------------------------------------------------+\n | Type | Meaning |\n +===========+============================================================+\n | "\'b\'" | Binary format. Outputs the number in base 2. |\n +-----------+------------------------------------------------------------+\n | "\'c\'" | Character. Converts the integer to the corresponding |\n | | unicode character before printing. |\n +-----------+------------------------------------------------------------+\n | "\'d\'" | Decimal Integer. Outputs the number in base 10. |\n +-----------+------------------------------------------------------------+\n | "\'o\'" | Octal format. Outputs the number in base 8. |\n +-----------+------------------------------------------------------------+\n | "\'x\'" | Hex format. Outputs the number in base 16, using lower- |\n | | case letters for the digits above 9. |\n +-----------+------------------------------------------------------------+\n | "\'X\'" | Hex format. Outputs the number in base 16, using upper- |\n | | case letters for the digits above 9. |\n +-----------+------------------------------------------------------------+\n | "\'n\'" | Number. This is the same as "\'d\'", except that it uses the |\n | | current locale setting to insert the appropriate number |\n | | separator characters. |\n +-----------+------------------------------------------------------------+\n | None | The same as "\'d\'". |\n +-----------+------------------------------------------------------------+\n\nIn addition to the above presentation types, integers can be formatted\nwith the floating point presentation types listed below (except "\'n\'"\nand "None"). When doing so, "float()" is used to convert the integer\nto a floating point number before formatting.\n\nThe available presentation types for floating point and decimal values\nare:\n\n +-----------+------------------------------------------------------------+\n | Type | Meaning |\n +===========+============================================================+\n | "\'e\'" | Exponent notation. Prints the number in scientific |\n | | notation using the letter \'e\' to indicate the exponent. |\n | | The default precision is "6". |\n +-----------+------------------------------------------------------------+\n | "\'E\'" | Exponent notation. Same as "\'e\'" except it uses an upper |\n | | case \'E\' as the separator character. |\n +-----------+------------------------------------------------------------+\n | "\'f\'" | Fixed point. Displays the number as a fixed-point number. |\n | | The default precision is "6". |\n +-----------+------------------------------------------------------------+\n | "\'F\'" | Fixed point. Same as "\'f\'". |\n +-----------+------------------------------------------------------------+\n | "\'g\'" | General format. For a given precision "p >= 1", this |\n | | rounds the number to "p" significant digits and then |\n | | formats the result in either fixed-point format or in |\n | | scientific notation, depending on its magnitude. The |\n | | precise rules are as follows: suppose that the result |\n | | formatted with presentation type "\'e\'" and precision "p-1" |\n | | would have exponent "exp". Then if "-4 <= exp < p", the |\n | | number is formatted with presentation type "\'f\'" and |\n | | precision "p-1-exp". Otherwise, the number is formatted |\n | | with presentation type "\'e\'" and precision "p-1". In both |\n | | cases insignificant trailing zeros are removed from the |\n | | significand, and the decimal point is also removed if |\n | | there are no remaining digits following it. Positive and |\n | | negative infinity, positive and negative zero, and nans, |\n | | are formatted as "inf", "-inf", "0", "-0" and "nan" |\n | | respectively, regardless of the precision. A precision of |\n | | "0" is treated as equivalent to a precision of "1". The |\n | | default precision is "6". |\n +-----------+------------------------------------------------------------+\n | "\'G\'" | General format. Same as "\'g\'" except switches to "\'E\'" if |\n | | the number gets too large. The representations of infinity |\n | | and NaN are uppercased, too. |\n +-----------+------------------------------------------------------------+\n | "\'n\'" | Number. This is the same as "\'g\'", except that it uses the |\n | | current locale setting to insert the appropriate number |\n | | separator characters. |\n +-----------+------------------------------------------------------------+\n | "\'%\'" | Percentage. Multiplies the number by 100 and displays in |\n | | fixed ("\'f\'") format, followed by a percent sign. |\n +-----------+------------------------------------------------------------+\n | None | The same as "\'g\'". |\n +-----------+------------------------------------------------------------+\n\n\nFormat examples\n===============\n\nThis section contains examples of the "str.format()" syntax and\ncomparison with the old "%"-formatting.\n\nIn most of the cases the syntax is similar to the old "%"-formatting,\nwith the addition of the "{}" and with ":" used instead of "%". For\nexample, "\'%03.2f\'" can be translated to "\'{:03.2f}\'".\n\nThe new format syntax also supports new and different options, shown\nin the follow examples.\n\nAccessing arguments by position:\n\n >>> \'{0}, {1}, {2}\'.format(\'a\', \'b\', \'c\')\n \'a, b, c\'\n >>> \'{}, {}, {}\'.format(\'a\', \'b\', \'c\') # 2.7+ only\n \'a, b, c\'\n >>> \'{2}, {1}, {0}\'.format(\'a\', \'b\', \'c\')\n \'c, b, a\'\n >>> \'{2}, {1}, {0}\'.format(*\'abc\') # unpacking argument sequence\n \'c, b, a\'\n >>> \'{0}{1}{0}\'.format(\'abra\', \'cad\') # arguments\' indices can be repeated\n \'abracadabra\'\n\nAccessing arguments by name:\n\n >>> \'Coordinates: {latitude}, {longitude}\'.format(latitude=\'37.24N\', longitude=\'-115.81W\')\n \'Coordinates: 37.24N, -115.81W\'\n >>> coord = {\'latitude\': \'37.24N\', \'longitude\': \'-115.81W\'}\n >>> \'Coordinates: {latitude}, {longitude}\'.format(**coord)\n \'Coordinates: 37.24N, -115.81W\'\n\nAccessing arguments\' attributes:\n\n >>> c = 3-5j\n >>> (\'The complex number {0} is formed from the real part {0.real} \'\n ... \'and the imaginary part {0.imag}.\').format(c)\n \'The complex number (3-5j) is formed from the real part 3.0 and the imaginary part -5.0.\'\n >>> class Point(object):\n ... def __init__(self, x, y):\n ... self.x, self.y = x, y\n ... def __str__(self):\n ... return \'Point({self.x}, {self.y})\'.format(self=self)\n ...\n >>> str(Point(4, 2))\n \'Point(4, 2)\'\n\nAccessing arguments\' items:\n\n >>> coord = (3, 5)\n >>> \'X: {0[0]}; Y: {0[1]}\'.format(coord)\n \'X: 3; Y: 5\'\n\nReplacing "%s" and "%r":\n\n >>> "repr() shows quotes: {!r}; str() doesn\'t: {!s}".format(\'test1\', \'test2\')\n "repr() shows quotes: \'test1\'; str() doesn\'t: test2"\n\nAligning the text and specifying a width:\n\n >>> \'{:<30}\'.format(\'left aligned\')\n \'left aligned \'\n >>> \'{:>30}\'.format(\'right aligned\')\n \' right aligned\'\n >>> \'{:^30}\'.format(\'centered\')\n \' centered \'\n >>> \'{:*^30}\'.format(\'centered\') # use \'*\' as a fill char\n \'***********centered***********\'\n\nReplacing "%+f", "%-f", and "% f" and specifying a sign:\n\n >>> \'{:+f}; {:+f}\'.format(3.14, -3.14) # show it always\n \'+3.140000; -3.140000\'\n >>> \'{: f}; {: f}\'.format(3.14, -3.14) # show a space for positive numbers\n \' 3.140000; -3.140000\'\n >>> \'{:-f}; {:-f}\'.format(3.14, -3.14) # show only the minus -- same as \'{:f}; {:f}\'\n \'3.140000; -3.140000\'\n\nReplacing "%x" and "%o" and converting the value to different bases:\n\n >>> # format also supports binary numbers\n >>> "int: {0:d}; hex: {0:x}; oct: {0:o}; bin: {0:b}".format(42)\n \'int: 42; hex: 2a; oct: 52; bin: 101010\'\n >>> # with 0x, 0o, or 0b as prefix:\n >>> "int: {0:d}; hex: {0:#x}; oct: {0:#o}; bin: {0:#b}".format(42)\n \'int: 42; hex: 0x2a; oct: 0o52; bin: 0b101010\'\n\nUsing the comma as a thousands separator:\n\n >>> \'{:,}\'.format(1234567890)\n \'1,234,567,890\'\n\nExpressing a percentage:\n\n >>> points = 19.5\n >>> total = 22\n >>> \'Correct answers: {:.2%}\'.format(points/total)\n \'Correct answers: 88.64%\'\n\nUsing type-specific formatting:\n\n >>> import datetime\n >>> d = datetime.datetime(2010, 7, 4, 12, 15, 58)\n >>> \'{:%Y-%m-%d %H:%M:%S}\'.format(d)\n \'2010-07-04 12:15:58\'\n\nNesting arguments and more complex examples:\n\n >>> for align, text in zip(\'<^>\', [\'left\', \'center\', \'right\']):\n ... \'{0:{fill}{align}16}\'.format(text, fill=align, align=align)\n ...\n \'left<<<<<<<<<<<<\'\n \'^^^^^center^^^^^\'\n \'>>>>>>>>>>>right\'\n >>>\n >>> octets = [192, 168, 0, 1]\n >>> \'{:02X}{:02X}{:02X}{:02X}\'.format(*octets)\n \'C0A80001\'\n >>> int(_, 16)\n 3232235521\n >>>\n >>> width = 5\n >>> for num in range(5,12):\n ... for base in \'dXob\':\n ... print \'{0:{width}{base}}\'.format(num, base=base, width=width),\n ... print\n ...\n 5 5 5 101\n 6 6 6 110\n 7 7 7 111\n 8 8 10 1000\n 9 9 11 1001\n 10 A 12 1010\n 11 B 13 1011\n',
47 'in': u'\nComparisons\n***********\n\nUnlike C, all comparison operations in Python have the same priority,\nwhich is lower than that of any arithmetic, shifting or bitwise\noperation. Also unlike C, expressions like "a < b < c" have the\ninterpretation that is conventional in mathematics:\n\n comparison ::= or_expr ( comp_operator or_expr )*\n comp_operator ::= "<" | ">" | "==" | ">=" | "<=" | "<>" | "!="\n | "is" ["not"] | ["not"] "in"\n\nComparisons yield boolean values: "True" or "False".\n\nComparisons can be chained arbitrarily, e.g., "x < y <= z" is\nequivalent to "x < y and y <= z", except that "y" is evaluated only\nonce (but in both cases "z" is not evaluated at all when "x < y" is\nfound to be false).\n\nFormally, if *a*, *b*, *c*, ..., *y*, *z* are expressions and *op1*,\n*op2*, ..., *opN* are comparison operators, then "a op1 b op2 c ... y\nopN z" is equivalent to "a op1 b and b op2 c and ... y opN z", except\nthat each expression is evaluated at most once.\n\nNote that "a op1 b op2 c" doesn\'t imply any kind of comparison between\n*a* and *c*, so that, e.g., "x < y > z" is perfectly legal (though\nperhaps not pretty).\n\nThe forms "<>" and "!=" are equivalent; for consistency with C, "!="\nis preferred; where "!=" is mentioned below "<>" is also accepted.\nThe "<>" spelling is considered obsolescent.\n\nThe operators "<", ">", "==", ">=", "<=", and "!=" compare the values\nof two objects. The objects need not have the same type. If both are\nnumbers, they are converted to a common type. Otherwise, objects of\ndifferent types *always* compare unequal, and are ordered consistently\nbut arbitrarily. You can control comparison behavior of objects of\nnon-built-in types by defining a "__cmp__" method or rich comparison\nmethods like "__gt__", described in section Special method names.\n\n(This unusual definition of comparison was used to simplify the\ndefinition of operations like sorting and the "in" and "not in"\noperators. In the future, the comparison rules for objects of\ndifferent types are likely to change.)\n\nComparison of objects of the same type depends on the type:\n\n* Numbers are compared arithmetically.\n\n* Strings are compared lexicographically using the numeric\n equivalents (the result of the built-in function "ord()") of their\n characters. Unicode and 8-bit strings are fully interoperable in\n this behavior. [4]\n\n* Tuples and lists are compared lexicographically using comparison\n of corresponding elements. This means that to compare equal, each\n element must compare equal and the two sequences must be of the same\n type and have the same length.\n\n If not equal, the sequences are ordered the same as their first\n differing elements. For example, "cmp([1,2,x], [1,2,y])" returns\n the same as "cmp(x,y)". If the corresponding element does not\n exist, the shorter sequence is ordered first (for example, "[1,2] <\n [1,2,3]").\n\n* Mappings (dictionaries) compare equal if and only if their sorted\n (key, value) lists compare equal. [5] Outcomes other than equality\n are resolved consistently, but are not otherwise defined. [6]\n\n* Most other objects of built-in types compare unequal unless they\n are the same object; the choice whether one object is considered\n smaller or larger than another one is made arbitrarily but\n consistently within one execution of a program.\n\nThe operators "in" and "not in" test for collection membership. "x in\ns" evaluates to true if *x* is a member of the collection *s*, and\nfalse otherwise. "x not in s" returns the negation of "x in s". The\ncollection membership test has traditionally been bound to sequences;\nan object is a member of a collection if the collection is a sequence\nand contains an element equal to that object. However, it make sense\nfor many other object types to support membership tests without being\na sequence. In particular, dictionaries (for keys) and sets support\nmembership testing.\n\nFor the list and tuple types, "x in y" is true if and only if there\nexists an index *i* such that either "x is y[i]" or "x == y[i]" is\ntrue.\n\nFor the Unicode and string types, "x in y" is true if and only if *x*\nis a substring of *y*. An equivalent test is "y.find(x) != -1".\nNote, *x* and *y* need not be the same type; consequently, "u\'ab\' in\n\'abc\'" will return "True". Empty strings are always considered to be a\nsubstring of any other string, so """ in "abc"" will return "True".\n\nChanged in version 2.3: Previously, *x* was required to be a string of\nlength "1".\n\nFor user-defined classes which define the "__contains__()" method, "x\nin y" is true if and only if "y.__contains__(x)" is true.\n\nFor user-defined classes which do not define "__contains__()" but do\ndefine "__iter__()", "x in y" is true if some value "z" with "x == z"\nis produced while iterating over "y". If an exception is raised\nduring the iteration, it is as if "in" raised that exception.\n\nLastly, the old-style iteration protocol is tried: if a class defines\n"__getitem__()", "x in y" is true if and only if there is a non-\nnegative integer index *i* such that "x == y[i]", and all lower\ninteger indices do not raise "IndexError" exception. (If any other\nexception is raised, it is as if "in" raised that exception).\n\nThe operator "not in" is defined to have the inverse true value of\n"in".\n\nThe operators "is" and "is not" test for object identity: "x is y" is\ntrue if and only if *x* and *y* are the same object. "x is not y"\nyields the inverse truth value. [7]\n',
51 'naming': u'\nNaming and binding\n******************\n\n*Names* refer to objects. Names are introduced by name binding\noperations. Each occurrence of a name in the program text refers to\nthe *binding* of that name established in the innermost function block\ncontaining the use.\n\nA *block* is a piece of Python program text that is executed as a\nunit. The following are blocks: a module, a function body, and a class\ndefinition. Each command typed interactively is a block. A script\nfile (a file given as standard input to the interpreter or specified\non the interpreter command line the first argument) is a code block.\nA script command (a command specified on the interpreter command line\nwith the \'**-c**\' option) is a code block. The file read by the\nbuilt-in function "execfile()" is a code block. The string argument\npassed to the built-in function "eval()" and to the "exec" statement\nis a code block. The expression read and evaluated by the built-in\nfunction "input()" is a code block.\n\nA code block is executed in an *execution frame*. A frame contains\nsome administrative information (used for debugging) and determines\nwhere and how execution continues after the code block\'s execution has\ncompleted.\n\nA *scope* defines the visibility of a name within a block. If a local\nvariable is defined in a block, its scope includes that block. If the\ndefinition occurs in a function block, the scope extends to any blocks\ncontained within the defining on
[all...]

Completed in 203 milliseconds