/frameworks/ml/nn/runtime/test/generated/models/ |
H A D | space_to_depth_quant8_2.model.cpp | 2 void CreateModel(Model *model) { argument 7 auto input = model->addOperand(&type0); 8 auto radius = model->addOperand(&type1); 9 auto output = model->addOperand(&type2); 12 model->setOperandValue(radius, radius_init, sizeof(int32_t) * 1); 13 model->addOperation(ANEURALNETWORKS_SPACE_TO_DEPTH, {input, radius}, {output}); 15 model->identifyInputsAndOutputs( 18 assert(model->isValid());
|
H A D | squeeze.model.cpp | 2 void CreateModel(Model *model) { argument 7 auto input = model->addOperand(&type0); 8 auto squeezeDims = model->addOperand(&type1); 9 auto output = model->addOperand(&type2); 12 model->setOperandValue(squeezeDims, squeezeDims_init, sizeof(int32_t) * 2); 13 model->addOperation(ANEURALNETWORKS_SQUEEZE, {input, squeezeDims}, {output}); 15 model->identifyInputsAndOutputs( 18 assert(model->isValid());
|
H A D | squeeze_float_1.model.cpp | 2 void CreateModel(Model *model) { argument 7 auto input = model->addOperand(&type0); 8 auto squeezeDims = model->addOperand(&type1); 9 auto output = model->addOperand(&type2); 12 model->setOperandValue(squeezeDims, squeezeDims_init, sizeof(int32_t) * 1); 13 model->addOperation(ANEURALNETWORKS_SQUEEZE, {input, squeezeDims}, {output}); 15 model->identifyInputsAndOutputs( 18 assert(model->isValid());
|
H A D | squeeze_float_1_relaxed.model.cpp | 2 void CreateModel(Model *model) { argument 7 auto input = model->addOperand(&type0); 8 auto squeezeDims = model->addOperand(&type1); 9 auto output = model->addOperand(&type2); 12 model->setOperandValue(squeezeDims, squeezeDims_init, sizeof(int32_t) * 1); 13 model->addOperation(ANEURALNETWORKS_SQUEEZE, {input, squeezeDims}, {output}); 15 model->identifyInputsAndOutputs( 19 model->relaxComputationFloat32toFloat16(true); 20 assert(model->isValid());
|
H A D | squeeze_quant8_1.model.cpp | 2 void CreateModel(Model *model) { argument 7 auto input = model->addOperand(&type0); 8 auto squeezeDims = model->addOperand(&type1); 9 auto output = model->addOperand(&type2); 12 model->setOperandValue(squeezeDims, squeezeDims_init, sizeof(int32_t) * 1); 13 model->addOperation(ANEURALNETWORKS_SQUEEZE, {input, squeezeDims}, {output}); 15 model->identifyInputsAndOutputs( 18 assert(model->isValid());
|
H A D | squeeze_relaxed.model.cpp | 2 void CreateModel(Model *model) { argument 7 auto input = model->addOperand(&type0); 8 auto squeezeDims = model->addOperand(&type1); 9 auto output = model->addOperand(&type2); 12 model->setOperandValue(squeezeDims, squeezeDims_init, sizeof(int32_t) * 2); 13 model->addOperation(ANEURALNETWORKS_SQUEEZE, {input, squeezeDims}, {output}); 15 model->identifyInputsAndOutputs( 19 model->relaxComputationFloat32toFloat16(true); 20 assert(model->isValid());
|
H A D | sub.model.cpp | 2 void CreateModel(Model *model) { argument 6 auto op1 = model->addOperand(&type0); 7 auto op2 = model->addOperand(&type0); 8 auto act = model->addOperand(&type1); 9 auto op3 = model->addOperand(&type0); 12 model->setOperandValue(act, act_init, sizeof(int32_t) * 1); 13 model->addOperation(ANEURALNETWORKS_SUB, {op1, op2, act}, {op3}); 15 model->identifyInputsAndOutputs( 18 assert(model->isValid());
|
H A D | sub_broadcast_float.model.cpp | 2 void CreateModel(Model *model) { argument 7 auto op1 = model->addOperand(&type0); 8 auto op2 = model->addOperand(&type1); 9 auto act = model->addOperand(&type2); 10 auto op3 = model->addOperand(&type1); 13 model->setOperandValue(act, act_init, sizeof(int32_t) * 1); 14 model->addOperation(ANEURALNETWORKS_SUB, {op1, op2, act}, {op3}); 16 model->identifyInputsAndOutputs( 19 assert(model->isValid());
|
H A D | sub_broadcast_float_relaxed.model.cpp | 2 void CreateModel(Model *model) { argument 7 auto op1 = model->addOperand(&type0); 8 auto op2 = model->addOperand(&type1); 9 auto act = model->addOperand(&type2); 10 auto op3 = model->addOperand(&type1); 13 model->setOperandValue(act, act_init, sizeof(int32_t) * 1); 14 model->addOperation(ANEURALNETWORKS_SUB, {op1, op2, act}, {op3}); 16 model->identifyInputsAndOutputs( 20 model->relaxComputationFloat32toFloat16(true); 21 assert(model [all...] |
H A D | sub_relaxed.model.cpp | 2 void CreateModel(Model *model) { argument 6 auto op1 = model->addOperand(&type0); 7 auto op2 = model->addOperand(&type0); 8 auto act = model->addOperand(&type1); 9 auto op3 = model->addOperand(&type0); 12 model->setOperandValue(act, act_init, sizeof(int32_t) * 1); 13 model->addOperation(ANEURALNETWORKS_SUB, {op1, op2, act}, {op3}); 15 model->identifyInputsAndOutputs( 19 model->relaxComputationFloat32toFloat16(true); 20 assert(model [all...] |
H A D | transpose.model.cpp | 2 void CreateModel(Model *model) { argument 6 auto input = model->addOperand(&type0); 7 auto perms = model->addOperand(&type1); 8 auto output = model->addOperand(&type0); 11 model->setOperandValue(perms, perms_init, sizeof(int32_t) * 4); 12 model->addOperation(ANEURALNETWORKS_TRANSPOSE, {input, perms}, {output}); 14 model->identifyInputsAndOutputs( 17 assert(model->isValid());
|
H A D | transpose_float_1.model.cpp | 2 void CreateModel(Model *model) { argument 7 auto input = model->addOperand(&type0); 8 auto perms = model->addOperand(&type1); 9 auto output = model->addOperand(&type2); 12 model->setOperandValue(perms, perms_init, sizeof(int32_t) * 4); 13 model->addOperation(ANEURALNETWORKS_TRANSPOSE, {input, perms}, {output}); 15 model->identifyInputsAndOutputs( 18 assert(model->isValid());
|
H A D | transpose_float_1_relaxed.model.cpp | 2 void CreateModel(Model *model) { argument 7 auto input = model->addOperand(&type0); 8 auto perms = model->addOperand(&type1); 9 auto output = model->addOperand(&type2); 12 model->setOperandValue(perms, perms_init, sizeof(int32_t) * 4); 13 model->addOperation(ANEURALNETWORKS_TRANSPOSE, {input, perms}, {output}); 15 model->identifyInputsAndOutputs( 19 model->relaxComputationFloat32toFloat16(true); 20 assert(model->isValid());
|
H A D | transpose_quant8_1.model.cpp | 2 void CreateModel(Model *model) { argument 7 auto input = model->addOperand(&type0); 8 auto perms = model->addOperand(&type1); 9 auto output = model->addOperand(&type2); 12 model->setOperandValue(perms, perms_init, sizeof(int32_t) * 4); 13 model->addOperation(ANEURALNETWORKS_TRANSPOSE, {input, perms}, {output}); 15 model->identifyInputsAndOutputs( 18 assert(model->isValid());
|
H A D | transpose_relaxed.model.cpp | 2 void CreateModel(Model *model) { argument 6 auto input = model->addOperand(&type0); 7 auto perms = model->addOperand(&type1); 8 auto output = model->addOperand(&type0); 11 model->setOperandValue(perms, perms_init, sizeof(int32_t) * 4); 12 model->addOperation(ANEURALNETWORKS_TRANSPOSE, {input, perms}, {output}); 14 model->identifyInputsAndOutputs( 18 model->relaxComputationFloat32toFloat16(true); 19 assert(model->isValid());
|
/frameworks/ml/nn/runtime/test/specs/V1_0/ |
H A D | avg_pool_float_1.mod.py | 17 # model 18 model = Model() variable 24 model = model.Operation("AVERAGE_POOL_2D", i1, pad0, pad0, pad0, pad0, cons1, cons1, cons1, cons1, act).To(i3) variable
|
H A D | avg_pool_float_5.mod.py | 17 # model 18 model = Model() variable 24 model = model.Operation("AVERAGE_POOL_2D", i1, pad_same, cons2, cons2, cons2, cons2, act_none).To(i3) variable
|
H A D | avg_pool_quant8_1.mod.py | 17 # model 18 model = Model() variable 24 model = model.Operation("AVERAGE_POOL_2D", i1, pad0, pad0, pad0, pad0, cons1, cons1, cons1, cons1, act).To(o) variable
|
H A D | avg_pool_quant8_4.mod.py | 17 # model 18 model = Model() variable 24 model = model.Operation("AVERAGE_POOL_2D", i1, pad0, pad0, pad0, pad0, cons1, cons1, cons1, cons1, act2).To(o) variable
|
H A D | avg_pool_quant8_5.mod.py | 17 # model 18 model = Model() variable 24 model = model.Operation("AVERAGE_POOL_2D", i1, pad_same, cons2, cons2, cons2, cons2, act_none).To(i3) variable
|
H A D | conv_float.mod.py | 17 model = Model() variable 28 model = model.Operation("CONV_2D", i1, f1, b1, pad0, pad0, pad0, pad0, stride, stride, act).To(output) variable
|
H A D | conv_float_2.mod.py | 17 model = Model() variable 26 model = model.Operation("CONV_2D", i1, f1, b1, pad_same, stride, stride, act_relu).To(output) variable
|
H A D | conv_float_channels.mod.py | 17 model = Model() variable 28 model = model.Operation("CONV_2D", i1, f1, b1, pad0, pad0, pad0, pad0, stride, stride, act).To(output) variable
|
H A D | conv_float_channels_weights_as_inputs.mod.py | 17 model = Model() variable 28 model = model.Operation("CONV_2D", i1, f1, b1, pad0, pad0, pad0, pad0, stride, stride, act).To(output) variable
|
H A D | conv_float_large.mod.py | 17 model = Model() variable 28 model = model.Operation("CONV_2D", i1, f1, b1, pad0, pad0, pad0, pad0, stride, stride, act).To(output) variable
|