/frameworks/ml/nn/runtime/test/generated/models/ |
H A D | floor.model.cpp | 2 void CreateModel(Model *model) { argument 5 auto op1 = model->addOperand(&type0); 6 auto op2 = model->addOperand(&type0); 8 model->addOperation(ANEURALNETWORKS_FLOOR, {op1}, {op2}); 10 model->identifyInputsAndOutputs( 13 assert(model->isValid());
|
H A D | floor_relaxed.model.cpp | 2 void CreateModel(Model *model) { argument 5 auto op1 = model->addOperand(&type0); 6 auto op2 = model->addOperand(&type0); 8 model->addOperation(ANEURALNETWORKS_FLOOR, {op1}, {op2}); 10 model->identifyInputsAndOutputs( 14 model->relaxComputationFloat32toFloat16(true); 15 assert(model->isValid());
|
H A D | l2_normalization.model.cpp | 2 void CreateModel(Model *model) { argument 5 auto op1 = model->addOperand(&type0); 6 auto op2 = model->addOperand(&type0); 8 model->addOperation(ANEURALNETWORKS_L2_NORMALIZATION, {op1}, {op2}); 10 model->identifyInputsAndOutputs( 13 assert(model->isValid());
|
H A D | l2_normalization_2.model.cpp | 2 void CreateModel(Model *model) { argument 5 auto op1 = model->addOperand(&type0); 6 auto op2 = model->addOperand(&type0); 8 model->addOperation(ANEURALNETWORKS_L2_NORMALIZATION, {op1}, {op2}); 10 model->identifyInputsAndOutputs( 13 assert(model->isValid());
|
H A D | l2_normalization_2_relaxed.model.cpp | 2 void CreateModel(Model *model) { argument 5 auto op1 = model->addOperand(&type0); 6 auto op2 = model->addOperand(&type0); 8 model->addOperation(ANEURALNETWORKS_L2_NORMALIZATION, {op1}, {op2}); 10 model->identifyInputsAndOutputs( 14 model->relaxComputationFloat32toFloat16(true); 15 assert(model->isValid());
|
H A D | l2_normalization_large.model.cpp | 2 void CreateModel(Model *model) { argument 5 auto op1 = model->addOperand(&type0); 6 auto op2 = model->addOperand(&type0); 8 model->addOperation(ANEURALNETWORKS_L2_NORMALIZATION, {op1}, {op2}); 10 model->identifyInputsAndOutputs( 13 assert(model->isValid());
|
H A D | l2_normalization_large_relaxed.model.cpp | 2 void CreateModel(Model *model) { argument 5 auto op1 = model->addOperand(&type0); 6 auto op2 = model->addOperand(&type0); 8 model->addOperation(ANEURALNETWORKS_L2_NORMALIZATION, {op1}, {op2}); 10 model->identifyInputsAndOutputs( 14 model->relaxComputationFloat32toFloat16(true); 15 assert(model->isValid());
|
H A D | l2_normalization_relaxed.model.cpp | 2 void CreateModel(Model *model) { argument 5 auto op1 = model->addOperand(&type0); 6 auto op2 = model->addOperand(&type0); 8 model->addOperation(ANEURALNETWORKS_L2_NORMALIZATION, {op1}, {op2}); 10 model->identifyInputsAndOutputs( 14 model->relaxComputationFloat32toFloat16(true); 15 assert(model->isValid());
|
H A D | logistic_float_1.model.cpp | 2 void CreateModel(Model *model) { argument 5 auto op1 = model->addOperand(&type0); 6 auto op3 = model->addOperand(&type0); 8 model->addOperation(ANEURALNETWORKS_LOGISTIC, {op1}, {op3}); 10 model->identifyInputsAndOutputs( 13 assert(model->isValid());
|
H A D | logistic_float_1_relaxed.model.cpp | 2 void CreateModel(Model *model) { argument 5 auto op1 = model->addOperand(&type0); 6 auto op3 = model->addOperand(&type0); 8 model->addOperation(ANEURALNETWORKS_LOGISTIC, {op1}, {op3}); 10 model->identifyInputsAndOutputs( 14 model->relaxComputationFloat32toFloat16(true); 15 assert(model->isValid());
|
H A D | logistic_float_2.model.cpp | 2 void CreateModel(Model *model) { argument 5 auto input = model->addOperand(&type0); 6 auto output = model->addOperand(&type0); 8 model->addOperation(ANEURALNETWORKS_LOGISTIC, {input}, {output}); 10 model->identifyInputsAndOutputs( 13 assert(model->isValid());
|
H A D | logistic_float_2_relaxed.model.cpp | 2 void CreateModel(Model *model) { argument 5 auto input = model->addOperand(&type0); 6 auto output = model->addOperand(&type0); 8 model->addOperation(ANEURALNETWORKS_LOGISTIC, {input}, {output}); 10 model->identifyInputsAndOutputs( 14 model->relaxComputationFloat32toFloat16(true); 15 assert(model->isValid());
|
H A D | logistic_quant8_1.model.cpp | 2 void CreateModel(Model *model) { argument 6 auto op1 = model->addOperand(&type0); 7 auto op3 = model->addOperand(&type1); 9 model->addOperation(ANEURALNETWORKS_LOGISTIC, {op1}, {op3}); 11 model->identifyInputsAndOutputs( 14 assert(model->isValid());
|
H A D | logistic_quant8_2.model.cpp | 2 void CreateModel(Model *model) { argument 6 auto input = model->addOperand(&type0); 7 auto output = model->addOperand(&type1); 9 model->addOperation(ANEURALNETWORKS_LOGISTIC, {input}, {output}); 11 model->identifyInputsAndOutputs( 14 assert(model->isValid());
|
H A D | relu1_float_1.model.cpp | 2 void CreateModel(Model *model) { argument 5 auto op1 = model->addOperand(&type0); 6 auto op2 = model->addOperand(&type0); 8 model->addOperation(ANEURALNETWORKS_RELU1, {op1}, {op2}); 10 model->identifyInputsAndOutputs( 13 assert(model->isValid());
|
H A D | relu1_float_1_relaxed.model.cpp | 2 void CreateModel(Model *model) { argument 5 auto op1 = model->addOperand(&type0); 6 auto op2 = model->addOperand(&type0); 8 model->addOperation(ANEURALNETWORKS_RELU1, {op1}, {op2}); 10 model->identifyInputsAndOutputs( 14 model->relaxComputationFloat32toFloat16(true); 15 assert(model->isValid());
|
H A D | relu1_float_2.model.cpp | 2 void CreateModel(Model *model) { argument 5 auto input = model->addOperand(&type0); 6 auto output = model->addOperand(&type0); 8 model->addOperation(ANEURALNETWORKS_RELU1, {input}, {output}); 10 model->identifyInputsAndOutputs( 13 assert(model->isValid());
|
H A D | relu1_float_2_relaxed.model.cpp | 2 void CreateModel(Model *model) { argument 5 auto input = model->addOperand(&type0); 6 auto output = model->addOperand(&type0); 8 model->addOperation(ANEURALNETWORKS_RELU1, {input}, {output}); 10 model->identifyInputsAndOutputs( 14 model->relaxComputationFloat32toFloat16(true); 15 assert(model->isValid());
|
H A D | relu1_quant8_1.model.cpp | 2 void CreateModel(Model *model) { argument 5 auto op1 = model->addOperand(&type0); 6 auto op2 = model->addOperand(&type0); 8 model->addOperation(ANEURALNETWORKS_RELU1, {op1}, {op2}); 10 model->identifyInputsAndOutputs( 13 assert(model->isValid());
|
H A D | relu1_quant8_2.model.cpp | 2 void CreateModel(Model *model) { argument 5 auto input = model->addOperand(&type0); 6 auto output = model->addOperand(&type0); 8 model->addOperation(ANEURALNETWORKS_RELU1, {input}, {output}); 10 model->identifyInputsAndOutputs( 13 assert(model->isValid());
|
H A D | relu6_float_1.model.cpp | 2 void CreateModel(Model *model) { argument 5 auto op1 = model->addOperand(&type0); 6 auto op2 = model->addOperand(&type0); 8 model->addOperation(ANEURALNETWORKS_RELU6, {op1}, {op2}); 10 model->identifyInputsAndOutputs( 13 assert(model->isValid());
|
H A D | relu6_float_1_relaxed.model.cpp | 2 void CreateModel(Model *model) { argument 5 auto op1 = model->addOperand(&type0); 6 auto op2 = model->addOperand(&type0); 8 model->addOperation(ANEURALNETWORKS_RELU6, {op1}, {op2}); 10 model->identifyInputsAndOutputs( 14 model->relaxComputationFloat32toFloat16(true); 15 assert(model->isValid());
|
H A D | relu6_float_2.model.cpp | 2 void CreateModel(Model *model) { argument 5 auto input = model->addOperand(&type0); 6 auto output = model->addOperand(&type0); 8 model->addOperation(ANEURALNETWORKS_RELU6, {input}, {output}); 10 model->identifyInputsAndOutputs( 13 assert(model->isValid());
|
H A D | relu6_float_2_relaxed.model.cpp | 2 void CreateModel(Model *model) { argument 5 auto input = model->addOperand(&type0); 6 auto output = model->addOperand(&type0); 8 model->addOperation(ANEURALNETWORKS_RELU6, {input}, {output}); 10 model->identifyInputsAndOutputs( 14 model->relaxComputationFloat32toFloat16(true); 15 assert(model->isValid());
|
H A D | relu6_quant8_1.model.cpp | 2 void CreateModel(Model *model) { argument 5 auto op1 = model->addOperand(&type0); 6 auto op2 = model->addOperand(&type0); 8 model->addOperation(ANEURALNETWORKS_RELU6, {op1}, {op2}); 10 model->identifyInputsAndOutputs( 13 assert(model->isValid());
|