Searched defs:not (Results 76 - 100 of 122) sorted by relevance

12345

/external/guice/extensions/persist/lib/
H A Deasymock.jar ... public static char not (char) char first public static double not (double) double first public static float not (float) float first ...
H A Dantlr-2.7.5h3.jarMETA-INF/ META-INF/MANIFEST.MF antlr/ antlr/ActionElement.class ActionElement.java package antlr ...
H A Ddb4o-6.4.14.8131-java5.jarMETA-INF/ META-INF/MANIFEST.MF com/ com/db4o/ com/db4o/activation/ com/db4o/cluster/ com/ ...
H A Djaxen-1.1-beta-7.jarMETA-INF/ META-INF/MANIFEST.MF org/ org/jaxen/ org/jaxen/dom/ org/jaxen/dom4j/ org/ ...
H A Dcglib-nodep-3.0.jarMETA-INF/MANIFEST.MF LICENSE NOTICE net/sf/cglib/beans/BeanCopier$BeanCopierKey.class BeanCopier. ...
/external/python/cpython2/Lib/lib-tk/
H A DTix.py38 import _tkinter # If this fails your Python may not be configured for Tk namespace
140 if dlgclass is not None:
198 been has imported and inited, it is not possible to reset the color
202 if newScmPrio is not None:
214 if tixlib is not None:
251 if (not xsize) and (not ysize):
261 if not option:
326 # use the children list because the public Tix names may not be the
348 if not
[all...]
H A DTkinter.py39 import _tkinter # If this fails your Python may not be configured for Tk namespace
55 # These are not always defined, e.g. not on Win32 with Tk 8.0 :-(
81 elif not isinstance(value, unicode):
83 if not value:
99 elif item is not None:
239 if not master:
248 if value is not None:
250 elif not self._tk.getboolean(self._tk.call("info", "exists", self._name)):
258 if self._tclCommands is not Non
[all...]
/external/python/cpython2/Lib/pydoc_data/
H A Dtopics.py3 topics = {'assert': u'\nThe "assert" statement\n**********************\n\nAssert statements are a convenient way to insert debugging assertions\ninto a program:\n\n assert_stmt ::= "assert" expression ["," expression]\n\nThe simple form, "assert expression", is equivalent to\n\n if __debug__:\n if not expression: raise AssertionError\n\nThe extended form, "assert expression1, expression2", is equivalent to\n\n if __debug__:\n if not expression1: raise AssertionError(expression2)\n\nThese equivalences assume that "__debug__" and "AssertionError" refer\nto the built-in variables with those names. In the current\nimplementation, the built-in variable "__debug__" is "True" under\nnormal circumstances, "False" when optimization is requested (command\nline option -O). The current code generator emits no code for an\nassert statement when optimization is requested at compile time. Note\nthat it is unnecessary to include the source code for the expression\nthat failed in the error message; it will be displayed as part of the\nstack trace.\n\nAssignments to "__debug__" are illegal. The value for the built-in\nvariable is determined when the interpreter starts.\n',
4 'assignment': u'\nAssignment statements\n*********************\n\nAssignment statements are used to (re)bind names to values and to\nmodify attributes or items of mutable objects:\n\n assignment_stmt ::= (target_list "=")+ (expression_list | yield_expression)\n target_list ::= target ("," target)* [","]\n target ::= identifier\n | "(" target_list ")"\n | "[" [target_list] "]"\n | attributeref\n | subscription\n | slicing\n\n(See section Primaries for the syntax definitions for the last three\nsymbols.)\n\nAn assignment statement evaluates the expression list (remember that\nthis can be a single expression or a comma-separated list, the latter\nyielding a tuple) and assigns the single resulting object to each of\nthe target lists, from left to right.\n\nAssignment is defined recursively depending on the form of the target\n(list). When a target is part of a mutable object (an attribute\nreference, subscription or slicing), the mutable object must\nultimately perform the assignment and decide about its validity, and\nmay raise an exception if the assignment is unacceptable. The rules\nobserved by various types and the exceptions raised are given with the\ndefinition of the object types (see section The standard type\nhierarchy).\n\nAssignment of an object to a target list is recursively defined as\nfollows.\n\n* If the target list is a single target: The object is assigned to\n that target.\n\n* If the target list is a comma-separated list of targets: The\n object must be an iterable with the same number of items as there\n are targets in the target list, and the items are assigned, from\n left to right, to the corresponding targets.\n\nAssignment of an object to a single target is recursively defined as\nfollows.\n\n* If the target is an identifier (name):\n\n * If the name does not occur in a "global" statement in the\n current code block: the name is bound to the object in the current\n local namespace.\n\n * Otherwise: the name is bound to the object in the current global\n namespace.\n\n The name is rebound if it was already bound. This may cause the\n reference count for the object previously bound to the name to reach\n zero, causing the object to be deallocated and its destructor (if it\n has one) to be called.\n\n* If the target is a target list enclosed in parentheses or in\n square brackets: The object must be an iterable with the same number\n of items as there are targets in the target list, and its items are\n assigned, from left to right, to the corresponding targets.\n\n* If the target is an attribute reference: The primary expression in\n the reference is evaluated. It should yield an object with\n assignable attributes; if this is not the case, "TypeError" is\n raised. That object is then asked to assign the assigned object to\n the given attribute; if it cannot perform the assignment, it raises\n an exception (usually but not necessarily "AttributeError").\n\n Note: If the object is a class instance and the attribute reference\n occurs on both sides of the assignment operator, the RHS expression,\n "a.x" can access either an instance attribute or (if no instance\n attribute exists) a class attribute. The LHS target "a.x" is always\n set as an instance attribute, creating it if necessary. Thus, the\n two occurrences of "a.x" do not necessarily refer to the same\n attribute: if the RHS expression refers to a class attribute, the\n LHS creates a new instance attribute as the target of the\n assignment:\n\n class Cls:\n x = 3 # class variable\n inst = Cls()\n inst.x = inst.x + 1 # writes inst.x as 4 leaving Cls.x as 3\n\n This description does not necessarily apply to descriptor\n attributes, such as properties created with "property()".\n\n* If the target is a subscription: The primary expression in the\n reference is evaluated. It should yield either a mutable sequence\n object (such as a list) or a mapping object (such as a dictionary).\n Next, the subscript expression is evaluated.\n\n If the primary is a mutable sequence object (such as a list), the\n subscript must yield a plain integer. If it is negative, the\n sequence\'s length is added to it. The resulting value must be a\n nonnegative integer less than the sequence\'s length, and the\n sequence is asked to assign the assigned object to its item with\n that index. If the index is out of range, "IndexError" is raised\n (assignment to a subscripted sequence cannot add new items to a\n list).\n\n If the primary is a mapping object (such as a dictionary), the\n subscript must have a type compatible with the mapping\'s key type,\n and the mapping is then asked to create a key/datum pair which maps\n the subscript to the assigned object. This can either replace an\n existing key/value pair with the same key value, or insert a new\n key/value pair (if no key with the same value existed).\n\n* If the target is a slicing: The primary expression in the\n reference is evaluated. It should yield a mutable sequence object\n (such as a list). The assigned object should be a sequence object\n of the same type. Next, the lower and upper bound expressions are\n evaluated, insofar they are present; defaults are zero and the\n sequence\'s length. The bounds should evaluate to (small) integers.\n If either bound is negative, the sequence\'s length is added to it.\n The resulting bounds are clipped to lie between zero and the\n sequence\'s length, inclusive. Finally, the sequence object is asked\n to replace the slice with the items of the assigned sequence. The\n length of the slice may be different from the length of the assigned\n sequence, thus changing the length of the target sequence, if the\n object allows it.\n\n**CPython implementation detail:** In the current implementation, the\nsyntax for targets is taken to be the same as for expressions, and\ninvalid syntax is rejected during the code generation phase, causing\nless detailed error messages.\n\nWARNING: Although the definition of assignment implies that overlaps\nbetween the left-hand side and the right-hand side are \'safe\' (for\nexample "a, b = b, a" swaps two variables), overlaps *within* the\ncollection of assigned-to variables are not safe! For instance, the\nfollowing program prints "[0, 2]":\n\n x = [0, 1]\n i = 0\n i, x[i] = 1, 2\n print x\n\n\nAugmented assignment statements\n===============================\n\nAugmented assignment is the combination, in a single statement, of a\nbinary operation and an assignment statement:\n\n augmented_assignment_stmt ::= augtarget augop (expression_list | yield_expression)\n augtarget ::= identifier | attributeref | subscription | slicing\n augop ::= "+=" | "-=" | "*=" | "/=" | "//=" | "%=" | "**="\n | ">>=" | "<<=" | "&=" | "^=" | "|="\n\n(See section Primaries for the syntax definitions for the last three\nsymbols.)\n\nAn augmented assignment evaluates the target (which, unlike normal\nassignment statements, cannot be an unpacking) and the expression\nlist, performs the binary operation specific to the type of assignment\non the two operands, and assigns the result to the original target.\nThe target is only evaluated once.\n\nAn augmented assignment expression like "x += 1" can be rewritten as\n"x = x + 1" to achieve a similar, but not exactly equal effect. In the\naugmented version, "x" is only evaluated once. Also, when possible,\nthe actual operation is performed *in-place*, meaning that rather than\ncreating a new object and assigning that to the target, the old object\nis modified instead.\n\nWith the exception of assigning to tuples and multiple targets in a\nsingle statement, the assignment done by augmented assignment\nstatements is handled the same way as normal assignments. Similarly,\nwith the exception of the possible *in-place* behavior, the binary\noperation performed by augmented assignment is the same as the normal\nbinary operations.\n\nFor targets which are attribute references, the same caveat about\nclass and instance attributes applies as for regular assignments.\n',
5 'atom-identifiers': u'\nIdentifiers (Names)\n*******************\n\nAn identifier occurring as an atom is a name. See section Identifiers\nand keywords for lexical definition and section Naming and binding for\ndocumentation of naming and binding.\n\nWhen the name is bound to an object, evaluation of the atom yields\nthat object. When a name is not boun
27 'customization': u'\\nBasic customization\\n*******************\\n\\nobject.__new__(cls[, ...])\\n\\n Called to create a new instance of class *cls*. "__new__()" is a\\n static method (special-cased so you need not declare it as such)\\n that takes the class of which an instance was requested as its\\n first argument. The remaining arguments are those passed to the\\n object constructor expression (the call to the class). The return\\n value of "__new__()" should be the new object instance (usually an\\n instance of *cls*).\\n\\n Typical implementations create a new instance of the class by\\n invoking the superclass\\'s "__new__()" method using\\n "super(currentclass, cls).__new__(cls[, ...])" with appropriate\\n arguments and then modifying the newly-created instance as\\n necessary before returning it.\\n\\n If "__new__()" returns an instance of *cls*, then the new\\n instance\\'s "__init__()" method will be invoked like\\n "__init__(self[, ...])", where *self* is the new instance and the\\n remaining arguments are the same as were passed to "__new__()".\\n\\n If "__new__()" does not return an instance of *cls*, then the new\\n instance\\'s "__init__()" method will not be invoked.\\n\\n "__new__()" is intended mainly to allow subclasses of immutable\\n types (like int, str, or tuple) to customize instance creation. It\\n is also commonly overridden in custom metaclasses in order to\\n customize class creation.\\n\\nobject.__init__(self[, ...])\\n\\n Called after the instance has been created (by "__new__()"), but\\n before it is returned to the caller. The arguments are those\\n passed to the class constructor expression. If a base class has an\\n "__init__()" method, the derived class\\'s "__init__()" method, if\\n any, must explicitly call it to ensure proper initialization of the\\n base class part of the instance; for example:\\n "BaseClass.__init__(self, [args...])".\\n\\n Because "__new__()" and "__init__()" work together in constructing\\n objects ("__new__()" to create it, and "__init__()" to customise\\n it), no non-"None" value may be returned by "__init__()"; doing so\\n will cause a "TypeError" to be raised at runtime.\\n\\nobject.__del__(self)\\n\\n Called when the instance is about to be destroyed. This is also\\n called a destructor. If a base class has a "__del__()" method, the\\n derived class\\'s "__del__()" method, if any, must explicitly call it\\n to ensure proper deletion of the base class part of the instance.\\n Note that it is possible (though not recommended!) for the\\n "__del__()" method to postpone destruction of the instance by\\n creating a new reference to it. It may then be called at a later\\n time when this new reference is deleted. It is not guaranteed that\\n "__del__()" methods are called for objects that still exist when\\n the interpreter exits.\\n\\n Note: "del x" doesn\\'t directly call "x.__del__()" --- the former\\n decrements the reference count for "x" by one, and the latter is\\n only called when "x"\\'s reference count reaches zero. Some common\\n situations that may prevent the reference count of an object from\\n going to zero include: circular references between objects (e.g.,\\n a doubly-linked list or a tree data structure with parent and\\n child pointers); a reference to the object on the stack frame of\\n a function that caught an exception (the traceback stored in\\n "sys.exc_traceback" keeps the stack frame alive); or a reference\\n to the object on the stack frame that raised an unhandled\\n exception in interactive mode (the traceback stored in\\n "sys.last_traceback" keeps the stack frame alive). The first\\n situation can only be remedied by explicitly breaking the cycles;\\n the latter two situations can be resolved by storing "None" in\\n "sys.exc_traceback" or "sys.last_traceback". Circular references\\n which are garbage are detected when the option cycle detector is\\n enabled (it\\'s on by default), but can only be cleaned up if there\\n are no Python-level "__del__()" methods involved. Refer to the\\n documentation for the "gc" module for more information about how\\n "__del__()" methods are handled by the cycle detector,\\n particularly the description of the "garbage" value.\\n\\n Warning: Due to the precarious circumstances under which\\n "__del__()" methods are invoked, exceptions that occur during\\n their execution are ignored, and a warning is printed to\\n "sys.stderr" instead. Also, when "__del__()" is invoked in\\n response to a module being deleted (e.g., when execution of the\\n program is done), other globals referenced by the "__del__()"\\n method may already have been deleted or in the process of being\\n torn down (e.g. the import machinery shutting down). For this\\n reason, "__del__()" methods should do the absolute minimum needed\\n to maintain external invariants. Starting with version 1.5,\\n Python guarantees that globals whose name begins with a single\\n underscore are deleted from their module before other globals are\\n deleted; if no other references to such globals exist, this may\\n help in assuring that imported modules are still available at the\\n time when the "__del__()" method is called.\\n\\n See also the "-R" command-line option.\\n\\nobject.__repr__(self)\\n\\n Called by the "repr()" built-in function and by string conversions\\n (reverse quotes) to compute the "official" string representation of\\n an object. If at all possible, this should look like a valid\\n Python expression that could be used to recreate an object with the\\n same value (given an appropriate environment). If this is not\\n possible, a string of the form "<...some useful description...>"\\n should be returned. The return value must be a string object. If a\\n class defines "__repr__()" but not "__str__()", then "__repr__()"\\n is also used when an "informal" string representation of instances\\n of that class is required.\\n\\n This is typically used for debugging, so it is important that the\\n representation is information-rich and unambiguous.\\n\\nobject.__str__(self)\\n\\n Called by the "str()" built-in function and by the "print"\\n statement to compute the "informal" string representation of an\\n object. This differs from "__repr__()" in that it does not have to\\n be a valid Python expression: a more convenient or concise\\n representation may be used instead. The return value must be a\\n string object.\\n\\nobject.__lt__(self, other)\\nobject.__le__(self, other)\\nobject.__eq__(self, other)\\nobject.__ne__(self, other)\\nobject.__gt__(self, other)\\nobject.__ge__(self, other)\\n\\n New in version 2.1.\\n\\n These are the so-called "rich comparison" methods, and are called\\n for comparison operators in preference to "__cmp__()" below. The\\n correspondence between operator symbols and method names is as\\n follows: "x<y" calls "x.__lt__(y)", "x<=y" calls "x.__le__(y)",\\n "x==y" calls "x.__eq__(y)", "x!=y" and "x<>y" call "x.__ne__(y)",\\n "x>y" calls "x.__gt__(y)", and "x>=y" calls "x.__ge__(y)".\\n\\n A rich comparison method may return the singleton "NotImplemented"\\n if it does not implement the operation for a given pair of\\n arguments. By convention, "False" and "True" are returned for a\\n successful comparison. However, these methods can return any value,\\n so if the comparison operator is used in a Boolean context (e.g.,\\n in the condition of an "if" statement), Python will call "bool()"\\n on the value to determine if the result is true or false.\\n\\n There are no implied relationships among the comparison operators.\\n The truth of "x==y" does not imply that "x!=y" is false.\\n Accordingly, when defining "__eq__()", one should also define\\n "__ne__()" so that the operators will behave as expected. See the\\n paragraph on "__hash__()" for some important notes on creating\\n *hashable* objects which support custom comparison operations and\\n are usable as dictionary keys.\\n\\n There are no swapped-argument versions of these methods (to be used\\n when the left argument does not support the operation but the right\\n argument does); rather, "__lt__()" and "__gt__()" are each other\\'s\\n reflection, "__le__()" and "__ge__()" are each other\\'s reflection,\\n and "__eq__()" and "__ne__()" are their own reflection.\\n\\n Arguments to rich comparison methods are never coerced.\\n\\n To automatically generate ordering operations from a single root\\n operation, see "functools.total_ordering()".\\n\\nobject.__cmp__(self, other)\\n\\n Called by comparison operations if rich comparison (see above) is\\n not defined. Should return a negative integer if "self < other",\\n zero if "self == other", a positive integer if "self > other". If\\n no "__cmp__()", "__eq__()" or "__ne__()" operation is defined,\\n class instances are compared by object identity ("address"). See\\n also the description of "__hash__()" for some important notes on\\n creating *hashable* objects which support custom comparison\\n operations and are usable as dictionary keys. (Note: the\\n restriction that exceptions are not propagated by "__cmp__()" has\\n been removed since Python 1.5.)\\n\\nobject.__rcmp__(self, other)\\n\\n Changed in version 2.1: No longer supported.\\n\\nobject.__hash__(self)\\n\\n Called by built-in function "hash()" and for operations on members\\n of hashed collections including "set", "frozenset", and "dict".\\n "__hash__()" should return an integer. The only required property\\n is that objects which compare equal have the same hash value; it is\\n advised to somehow mix together (e.g. using exclusive or) the hash\\n values for the components of the object that also play a part in\\n comparison of objects.\\n\\n If a class does not define a "__cmp__()" or "__eq__()" method it\\n should not define a "__hash__()" operation either; if it defines\\n "__cmp__()" or "__eq__()" but not "__hash__()", its instances will\\n not be usable in hashed collections. If a class defines mutable\\n objects and implements a "__cmp__()" or "__eq__()" method, it\\n should not implement "__hash__()", since hashable collection\\n implementations require that an object\\'s hash value is immutable\\n (if the object\\'s hash value changes, it will be in the wrong hash\\n bucket).\\n\\n User-defined classes have "__cmp__()" and "__hash__()" methods by\\n default; with them, all objects compare unequal (except with\\n themselves) and "x.__hash__()" returns a result derived from\\n "id(x)".\\n\\n Classes which inherit a "__hash__()" method from a parent class but\\n change the meaning of "__cmp__()" or "__eq__()" such that the hash\\n value returned is no longer appropriate (e.g. by switching to a\\n value-based concept of equality instead of the default identity\\n based equality) can explicitly flag themselves as being unhashable\\n by setting "__hash__ = None" in the class definition. Doing so\\n means that not only will instances of the class raise an\\n appropriate "TypeError" when a program attempts to retrieve their\\n hash value, but they will also be correctly identified as\\n unhashable when checking "isinstance(obj, collections.Hashable)"\\n (unlike classes which define their own "__hash__()" to explicitly\\n raise "TypeError").\\n\\n Changed in version 2.5: "__hash__()" may now also return a long\\n integer object; the 32-bit integer is then derived from the hash of\\n that object.\\n\\n Changed in version 2.6: "__hash__" may now be set to "None" to\\n explicitly flag instances of a class as unhashable.\\n\\nobject.__nonzero__(self)\\n\\n Called to implement truth value testing and the built-in operation\\n "bool()"; should return "False" or "True", or their integer\\n equivalents "0" or "1". When this method is not defined,\\n "__len__()" is called, if it is defined, and the object is\\n considered true if its result is nonzero. If a class defines\\n neither "__len__()" nor "__nonzero__()", all its instances are\\n considered true.\\n\\nobject.__unicode__(self)\\n\\n Called to implement "unicode()" built-in; should return a Unicode\\n object. When this method is not defined, string conversion is\\n attempted, and the result of string conversion is converted to\\n Unicode using the system default encoding.\\n', namespace
31 'dynamic-features': u'\\nInteraction with dynamic features\\n*********************************\\n\\nThere are several cases where Python statements are illegal when used\\nin conjunction with nested scopes that contain free variables.\\n\\nIf a variable is referenced in an enclosing scope, it is illegal to\\ndelete the name. An error will be reported at compile time.\\n\\nIf the wild card form of import --- "import *" --- is used in a\\nfunction and the function contains or is a nested block with free\\nvariables, the compiler will raise a "SyntaxError".\\n\\nIf "exec" is used in a function and the function contains or is a\\nnested block with free variables, the compiler will raise a\\n"SyntaxError" unless the exec explicitly specifies the local namespace\\nfor the "exec". (In other words, "exec obj" would be illegal, but\\n"exec obj in ns" would be legal.)\\n\\nThe "eval()", "execfile()", and "input()" functions and the "exec"\\nstatement do not have access to the full environment for resolving\\nnames. Names may be resolved in the local and global namespaces of\\nthe caller. Free variables are not resolved in the nearest enclosing\\nnamespace, but in the global namespace. [1] The "exec" statement and\\nthe "eval()" and "execfile()" functions have optional arguments to\\noverride the global and local namespace. If only one namespace is\\nspecified, it is used for both.\\n', namespace
43 'identifiers': u'\\nIdentifiers and keywords\\n************************\\n\\nIdentifiers (also referred to as *names*) are described by the\\nfollowing lexical definitions:\\n\\n identifier ::= (letter|"_") (letter | digit | "_")*\\n letter ::= lowercase | uppercase\\n lowercase ::= "a"..."z"\\n uppercase ::= "A"..."Z"\\n digit ::= "0"..."9"\\n\\nIdentifiers are unlimited in length. Case is significant.\\n\\n\\nKeywords\\n========\\n\\nThe following identifiers are used as reserved words, or *keywords* of\\nthe language, and cannot be used as ordinary identifiers. They must\\nbe spelled exactly as written here:\\n\\n and del from not while\\n as elif global or with\\n assert else if pass yield\\n break except import print\\n class exec in raise\\n continue finally is return\\n def for lambda try\\n\\nChanged in version 2.4: "None" became a constant and is now recognized\\nby the compiler as a name for the built-in object "None". Although it\\nis not a keyword, you cannot assign a different object to it.\\n\\nChanged in version 2.5: Using "as" and "with" as identifiers triggers\\na warning. To use them as keywords, enable the "with_statement"\\nfuture feature .\\n\\nChanged in version 2.6: "as" and "with" are full keywords.\\n\\n\\nReserved classes of identifiers\\n===============================\\n\\nCertain classes of identifiers (besides keywords) have special\\nmeanings. These classes are identified by the patterns of leading and\\ntrailing underscore characters:\\n\\n"_*"\\n Not imported by "from module import *". The special identifier "_"\\n is used in the interactive interpreter to store the result of the\\n last evaluation; it is stored in the "__builtin__" module. When\\n not in interactive mode, "_" has no special meaning and is not\\n defined. See section The import statement.\\n\\n Note: The name "_" is often used in conjunction with\\n internationalization; refer to the documentation for the\\n "gettext" module for more information on this convention.\\n\\n"__*__"\\n System-defined names. These names are defined by the interpreter\\n and its implementation (including the standard library). Current\\n system names are discussed in the Special method names section and\\n elsewhere. More will likely be defined in future versions of\\n Python. *Any* use of "__*__" names, in any context, that does not\\n follow explicitly documented use, is subject to breakage without\\n warning.\\n\\n"__*"\\n Class-private names. Names in this category, when used within the\\n context of a class definition, are re-written to use a mangled form\\n to help avoid name clashes between "private" attributes of base and\\n derived classes. See section Identifiers (Names).\\n', namespace
[all...]
/external/v8/benchmarks/
H A Dcrypto.js1314 BigInteger.prototype.not = bnNot;
1335 // BigInteger interfaces not implemented in jsbn:
/external/python/cpython3/Lib/tkinter/
H A D__init__.py36 import _tkinter # If this fails your Python may not be configured for Tk namespace
70 if not value:
86 elif item is not None:
224 if not self.char:
228 if not getattr(self, 'send_event', True):
242 if state or not s:
248 # serial and time are not very interesting
309 if name is not None and not isinstance(name, str):
312 if not maste
[all...]
/external/jarjar/lib/
H A Dasm-commons-4.0.jarMETA-INF/MANIFEST.MF org/objectweb/asm/commons/AdviceAdapter.class " package org.objectweb.asm ...
/external/owasp/sanitizer/tools/findbugs/lib/
H A Dasm-commons-3.3.jarMETA-INF/MANIFEST.MF org/objectweb/asm/commons/AdviceAdapter.class " package org.objectweb.asm ...
H A Dfindbugs-ant.jar ... File outputFile private String applySuppression private String notAProblem private String not private String withSource private String exclude private String include private ...
/external/annotation-tools/scene-lib/
H A Djunit.jarMETA-INF/ META-INF/MANIFEST.MF junit/ junit/extensions/ junit/framework/ junit/runner/ junit/textui/ org/ ...
/external/javaparser/javaparser-symbol-solver-testing/src/test/resources/
H A Djunit-4.8.1.jarMETA-INF/ META-INF/MANIFEST.MF junit/ junit/extensions/ junit/framework/ junit/runner/ junit/textui/ org/ ...
H A Djavaparser-core-2.1.0.jarMETA-INF/ META-INF/MANIFEST.MF com/ com/github/ com/github/javaparser/ com/github/javaparser/ast/ ...
/external/libphonenumber/lib/
H A Djunit-4.8.1.jarMETA-INF/ META-INF/MANIFEST.MF junit/ junit/extensions/ junit/framework/ junit/runner/ junit/textui/ org/ ...
/external/owasp/sanitizer/lib/junit/
H A Djunit.jarMETA-INF/ META-INF/MANIFEST.MF junit/ junit/extensions/ junit/framework/ junit/runner/ junit/textui/ org/ ...
/external/valgrind/VEX/priv/
H A Dguest_amd64_toIR.c24 along with this program; if not, write to the Free Software
54 * some of the FCOM cases could do with testing -- not convinced
57 * FSAVE does not re-initialise the FPU; it should do
59 * FINIT not only initialises the FPU environment, it also zeroes
67 This module uses global variables and so is not MT-safe (if that
132 jump. It's not such a big deal with casLE since the side exit is
154 dis_Grp3 (not, neg)
190 /* Pointer to the guest code area (points to start of BB, not to the
507 bits, which is not a complete register number. You should avoid
592 if this is called with size==8. Should not happe
9222 Bool not = False; local
[all...]
/external/robolectric/v1/lib/test/
H A Dmockito-core-1.8.5.jar ... public static int not (int) int first public static long not (long) long first public static float not (float) float first ...
/external/junit-params/lib/
H A Dassertj-core-1.7.1.jarMETA-INF/MANIFEST.MF META-INF/maven/ META-INF/maven/org.assertj/ META- ...
/external/guice/lib/build/
H A Dcglib-3.1.jarMETA-INF/ META-INF/MANIFEST.MF net/ net/sf/ net/sf/cglib/ net/sf/cglib/beans/ ...
/external/testng/lib-supplied/
H A Dguice-2.0.jarMETA-INF/ META-INF/MANIFEST.MF LICENSE NOTICE org/ org/testng/ org/testng/guice/ org/testng/ ...
/external/antlr/antlr-3.4/lib/
H A Dantlr-3.4-complete.jarMETA-INF/ META-INF/MANIFEST.MF org/ org/antlr/ org/antlr/analysis/ org/antlr/codegen/ org/ ...
/external/antlr/antlr-3.4/runtime/ActionScript/project/lib/
H A DFlexAntTasks.jarMETA-INF/ META-INF/MANIFEST.MF com/ com/adobe/ com/adobe/ac/ com/adobe/ac/ant/ ...

Completed in 8340 milliseconds

12345