/prebuilts/tools/common/m2/repository/jaxen/jaxen/1.1.1/ |
H A D | jaxen-1.1.1.jar | META-INF/ META-INF/MANIFEST.MF org/ org/jaxen/ org/jaxen/dom/ org/jaxen/dom4j/ org/ ... |
/prebuilts/tools/common/m2/repository/jaxen/jaxen/1.1.6/ |
H A D | jaxen-1.1.6.jar | META-INF/MANIFEST.MF META-INF/ META-INF/LICENSE.txt META-INF/maven/ ... |
/prebuilts/gdb/darwin-x86/lib/python2.7/plat-mac/ |
H A D | gensuitemodule.py | 274 aete = simplify(aete) 283 def simplify(item): function 286 return map(simplify, item) 288 return simplify(item[1])
|
/prebuilts/python/darwin-x86/2.7.5/lib/python2.7/plat-mac/ |
H A D | gensuitemodule.py | 274 aete = simplify(aete) 283 def simplify(item): function 286 return map(simplify, item) 288 return simplify(item[1])
|
/prebuilts/tools/common/m2/repository/net/sourceforge/saxon/saxon/9.1.0.8/ |
H A D | saxon-9.1.0.8.jar | META-INF/ META-INF/MANIFEST.MF net/ net/sf/ net/sf/saxon/ net/sf/saxon/AugmentedSource ... |
/prebuilts/tools/common/m2/repository/org/eclipse/tycho/tycho-bundles-external/0.18.1/eclipse/plugins/ |
H A D | org.sat4j.core_2.3.5.v20130525.jar | META-INF/MANIFEST.MF META-INF/ECLIPSE_.SF META-INF/ECLIPSE_.RSA META ... |
H A D | org.sat4j.pb_2.3.5.v20130525.jar | META-INF/MANIFEST.MF META-INF/ECLIPSE_.SF META-INF/ECLIPSE_.RSA META ... |
/prebuilts/clang/host/darwin-x86/clang-4053586/prebuilt_include/llvm/include/llvm/ProfileData/Coverage/ |
H A D | CoverageMapping.h | 181 Counter simplify(Counter ExpressionTree);
|
/prebuilts/clang/host/darwin-x86/clang-4393122/include/llvm/ProfileData/Coverage/ |
H A D | CoverageMapping.h | 181 Counter simplify(Counter ExpressionTree);
|
/prebuilts/clang/host/darwin-x86/clang-4479392/include/llvm/ProfileData/Coverage/ |
H A D | CoverageMapping.h | 181 Counter simplify(Counter ExpressionTree);
|
/prebuilts/clang/host/linux-x86/clang-4053586/prebuilt_include/llvm/include/llvm/ProfileData/Coverage/ |
H A D | CoverageMapping.h | 181 Counter simplify(Counter ExpressionTree);
|
/prebuilts/clang/host/linux-x86/clang-4393122/include/llvm/ProfileData/Coverage/ |
H A D | CoverageMapping.h | 181 Counter simplify(Counter ExpressionTree);
|
/prebuilts/clang/host/linux-x86/clang-4479392/include/llvm/ProfileData/Coverage/ |
H A D | CoverageMapping.h | 181 Counter simplify(Counter ExpressionTree);
|
/prebuilts/tools/common/m2/repository/com/github/frankiesardo/auto-parcel-processor/0.3.1/ |
H A D | auto-parcel-processor-0.3.1.jar | META-INF/ META-INF/MANIFEST.MF auto/ auto/parcel/ auto/parcel/processor/ auto/parcel/processor/AbortProcessingException ... |
/prebuilts/clang/host/darwin-x86/clang-4579689/include/llvm/ProfileData/Coverage/ |
H A D | CoverageMapping.h | 188 Counter simplify(Counter ExpressionTree);
|
/prebuilts/clang/host/darwin-x86/clang-4630689/include/llvm/ProfileData/Coverage/ |
H A D | CoverageMapping.h | 188 Counter simplify(Counter ExpressionTree);
|
/prebuilts/clang/host/darwin-x86/clang-4639204/include/llvm/ProfileData/Coverage/ |
H A D | CoverageMapping.h | 188 Counter simplify(Counter ExpressionTree);
|
/prebuilts/clang/host/darwin-x86/clang-4691093/include/llvm/ProfileData/Coverage/ |
H A D | CoverageMapping.h | 188 Counter simplify(Counter ExpressionTree);
|
/prebuilts/clang/host/linux-x86/clang-4579689/include/llvm/ProfileData/Coverage/ |
H A D | CoverageMapping.h | 188 Counter simplify(Counter ExpressionTree);
|
/prebuilts/clang/host/linux-x86/clang-4630689/include/llvm/ProfileData/Coverage/ |
H A D | CoverageMapping.h | 188 Counter simplify(Counter ExpressionTree);
|
/prebuilts/clang/host/linux-x86/clang-4639204/include/llvm/ProfileData/Coverage/ |
H A D | CoverageMapping.h | 188 Counter simplify(Counter ExpressionTree);
|
/prebuilts/clang/host/linux-x86/clang-4691093/include/llvm/ProfileData/Coverage/ |
H A D | CoverageMapping.h | 188 Counter simplify(Counter ExpressionTree);
|
/prebuilts/tools/common/m2/repository/net/sf/saxon/Saxon-HE/9.8.0-5/ |
H A D | Saxon-HE-9.8.0-5.jar | META-INF/MANIFEST.MF META-INF/SAXONICA.SF META-INF/SAXONICA.RSA META ... |
/prebuilts/gdb/darwin-x86/lib/python2.7/pydoc_data/ |
H A D | topics.py | 20 'comparisons': '\nComparisons\n***********\n\nUnlike C, all comparison operations in Python have the same priority,\nwhich is lower than that of any arithmetic, shifting or bitwise\noperation. Also unlike C, expressions like ``a < b < c`` have the\ninterpretation that is conventional in mathematics:\n\n comparison ::= or_expr ( comp_operator or_expr )*\n comp_operator ::= "<" | ">" | "==" | ">=" | "<=" | "<>" | "!="\n | "is" ["not"] | ["not"] "in"\n\nComparisons yield boolean values: ``True`` or ``False``.\n\nComparisons can be chained arbitrarily, e.g., ``x < y <= z`` is\nequivalent to ``x < y and y <= z``, except that ``y`` is evaluated\nonly once (but in both cases ``z`` is not evaluated at all when ``x <\ny`` is found to be false).\n\nFormally, if *a*, *b*, *c*, ..., *y*, *z* are expressions and *op1*,\n*op2*, ..., *opN* are comparison operators, then ``a op1 b op2 c ... y\nopN z`` is equivalent to ``a op1 b and b op2 c and ... y opN z``,\nexcept that each expression is evaluated at most once.\n\nNote that ``a op1 b op2 c`` doesn\'t imply any kind of comparison\nbetween *a* and *c*, so that, e.g., ``x < y > z`` is perfectly legal\n(though perhaps not pretty).\n\nThe forms ``<>`` and ``!=`` are equivalent; for consistency with C,\n``!=`` is preferred; where ``!=`` is mentioned below ``<>`` is also\naccepted. The ``<>`` spelling is considered obsolescent.\n\nThe operators ``<``, ``>``, ``==``, ``>=``, ``<=``, and ``!=`` compare\nthe values of two objects. The objects need not have the same type.\nIf both are numbers, they are converted to a common type. Otherwise,\nobjects of different types *always* compare unequal, and are ordered\nconsistently but arbitrarily. You can control comparison behavior of\nobjects of non-built-in types by defining a ``__cmp__`` method or rich\ncomparison methods like ``__gt__``, described in section *Special\nmethod names*.\n\n(This unusual definition of comparison was used to simplify the\ndefinition of operations like sorting and the ``in`` and ``not in``\noperators. In the future, the comparison rules for objects of\ndifferent types are likely to change.)\n\nComparison of objects of the same type depends on the type:\n\n* Numbers are compared arithmetically.\n\n* Strings are compared lexicographically using the numeric equivalents\n (the result of the built-in function ``ord()``) of their characters.\n Unicode and 8-bit strings are fully interoperable in this behavior.\n [4]\n\n* Tuples and lists are compared lexicographically using comparison of\n corresponding elements. This means that to compare equal, each\n element must compare equal and the two sequences must be of the same\n type and have the same length.\n\n If not equal, the sequences are ordered the same as their first\n differing elements. For example, ``cmp([1,2,x], [1,2,y])`` returns\n the same as ``cmp(x,y)``. If the corresponding element does not\n exist, the shorter sequence is ordered first (for example, ``[1,2] <\n [1,2,3]``).\n\n* Mappings (dictionaries) compare equal if and only if their sorted\n (key, value) lists compare equal. [5] Outcomes other than equality\n are resolved consistently, but are not otherwise defined. [6]\n\n* Most other objects of built-in types compare unequal unless they are\n the same object; the choice whether one object is considered smaller\n or larger than another one is made arbitrarily but consistently\n within one execution of a program.\n\nThe operators ``in`` and ``not in`` test for collection membership.\n``x in s`` evaluates to true if *x* is a member of the collection *s*,\nand false otherwise. ``x not in s`` returns the negation of ``x in\ns``. The collection membership test has traditionally been bound to\nsequences; an object is a member of a collection if the collection is\na sequence and contains an element equal to that object. However, it\nmake sense for many other object types to support membership tests\nwithout being a sequence. In particular, dictionaries (for keys) and\nsets support membership testing.\n\nFor the list and tuple types, ``x in y`` is true if and only if there\nexists an index *i* such that ``x == y[i]`` is true.\n\nFor the Unicode and string types, ``x in y`` is true if and only if\n*x* is a substring of *y*. An equivalent test is ``y.find(x) != -1``.\nNote, *x* and *y* need not be the same type; consequently, ``u\'ab\' in\n\'abc\'`` will return ``True``. Empty strings are always considered to\nbe a substring of any other string, so ``"" in "abc"`` will return\n``True``.\n\nChanged in version 2.3: Previously, *x* was required to be a string of\nlength ``1``.\n\nFor user-defined classes which define the ``__contains__()`` method,\n``x in y`` is true if and only if ``y.__contains__(x)`` is true.\n\nFor user-defined classes which do not define ``__contains__()`` but do\ndefine ``__iter__()``, ``x in y`` is true if some value ``z`` with ``x\n== z`` is produced while iterating over ``y``. If an exception is\nraised during the iteration, it is as if ``in`` raised that exception.\n\nLastly, the old-style iteration protocol is tried: if a class defines\n``__getitem__()``, ``x in y`` is true if and only if there is a non-\nnegative integer index *i* such that ``x == y[i]``, and all lower\ninteger indices do not raise ``IndexError`` exception. (If any other\nexception is raised, it is as if ``in`` raised that exception).\n\nThe operator ``not in`` is defined to have the inverse true value of\n``in``.\n\nThe operators ``is`` and ``is not`` test for object identity: ``x is\ny`` is true if and only if *x* and *y* are the same object. ``x is\nnot y`` yields the inverse truth value. [7]\n', 44 'in': '\nComparisons\n***********\n\nUnlike C, all comparison operations in Python have the same priority,\nwhich is lower than that of any arithmetic, shifting or bitwise\noperation. Also unlike C, expressions like ``a < b < c`` have the\ninterpretation that is conventional in mathematics:\n\n comparison ::= or_expr ( comp_operator or_expr )*\n comp_operator ::= "<" | ">" | "==" | ">=" | "<=" | "<>" | "!="\n | "is" ["not"] | ["not"] "in"\n\nComparisons yield boolean values: ``True`` or ``False``.\n\nComparisons can be chained arbitrarily, e.g., ``x < y <= z`` is\nequivalent to ``x < y and y <= z``, except that ``y`` is evaluated\nonly once (but in both cases ``z`` is not evaluated at all when ``x <\ny`` is found to be false).\n\nFormally, if *a*, *b*, *c*, ..., *y*, *z* are expressions and *op1*,\n*op2*, ..., *opN* are comparison operators, then ``a op1 b op2 c ... y\nopN z`` is equivalent to ``a op1 b and b op2 c and ... y opN z``,\nexcept that each expression is evaluated at most once.\n\nNote that ``a op1 b op2 c`` doesn\'t imply any kind of comparison\nbetween *a* and *c*, so that, e.g., ``x < y > z`` is perfectly legal\n(though perhaps not pretty).\n\nThe forms ``<>`` and ``!=`` are equivalent; for consistency with C,\n``!=`` is preferred; where ``!=`` is mentioned below ``<>`` is also\naccepted. The ``<>`` spelling is considered obsolescent.\n\nThe operators ``<``, ``>``, ``==``, ``>=``, ``<=``, and ``!=`` compare\nthe values of two objects. The objects need not have the same type.\nIf both are numbers, they are converted to a common type. Otherwise,\nobjects of different types *always* compare unequal, and are ordered\nconsistently but arbitrarily. You can control comparison behavior of\nobjects of non-built-in types by defining a ``__cmp__`` method or rich\ncomparison methods like ``__gt__``, described in section *Special\nmethod names*.\n\n(This unusual definition of comparison was used to simplify the\ndefinition of operations like sorting and the ``in`` and ``not in``\noperators. In the future, the comparison rules for objects of\ndifferent types are likely to change.)\n\nComparison of objects of the same type depends on the type:\n\n* Numbers are compared arithmetically.\n\n* Strings are compared lexicographically using the numeric equivalents\n (the result of the built-in function ``ord()``) of their characters.\n Unicode and 8-bit strings are fully interoperable in this behavior.\n [4]\n\n* Tuples and lists are compared lexicographically using comparison of\n corresponding elements. This means that to compare equal, each\n element must compare equal and the two sequences must be of the same\n type and have the same length.\n\n If not equal, the sequences are ordered the same as their first\n differing elements. For example, ``cmp([1,2,x], [1,2,y])`` returns\n the same as ``cmp(x,y)``. If the corresponding element does not\n exist, the shorter sequence is ordered first (for example, ``[1,2] <\n [1,2,3]``).\n\n* Mappings (dictionaries) compare equal if and only if their sorted\n (key, value) lists compare equal. [5] Outcomes other than equality\n are resolved consistently, but are not otherwise defined. [6]\n\n* Most other objects of built-in types compare unequal unless they are\n the same object; the choice whether one object is considered smaller\n or larger than another one is made arbitrarily but consistently\n within one execution of a program.\n\nThe operators ``in`` and ``not in`` test for collection membership.\n``x in s`` evaluates to true if *x* is a member of the collection *s*,\nand false otherwise. ``x not in s`` returns the negation of ``x in\ns``. The collection membership test has traditionally been bound to\nsequences; an object is a member of a collection if the collection is\na sequence and contains an element equal to that object. However, it\nmake sense for many other object types to support membership tests\nwithout being a sequence. In particular, dictionaries (for keys) and\nsets support membership testing.\n\nFor the list and tuple types, ``x in y`` is true if and only if there\nexists an index *i* such that ``x == y[i]`` is true.\n\nFor the Unicode and string types, ``x in y`` is true if and only if\n*x* is a substring of *y*. An equivalent test is ``y.find(x) != -1``.\nNote, *x* and *y* need not be the same type; consequently, ``u\'ab\' in\n\'abc\'`` will return ``True``. Empty strings are always considered to\nbe a substring of any other string, so ``"" in "abc"`` will return\n``True``.\n\nChanged in version 2.3: Previously, *x* was required to be a string of\nlength ``1``.\n\nFor user-defined classes which define the ``__contains__()`` method,\n``x in y`` is true if and only if ``y.__contains__(x)`` is true.\n\nFor user-defined classes which do not define ``__contains__()`` but do\ndefine ``__iter__()``, ``x in y`` is true if some value ``z`` with ``x\n== z`` is produced while iterating over ``y``. If an exception is\nraised during the iteration, it is as if ``in`` raised that exception.\n\nLastly, the old-style iteration protocol is tried: if a class defines\n``__getitem__()``, ``x in y`` is true if and only if there is a non-\nnegative integer index *i* such that ``x == y[i]``, and all lower\ninteger indices do not raise ``IndexError`` exception. (If any other\nexception is raised, it is as if ``in`` raised that exception).\n\nThe operator ``not in`` is defined to have the inverse true value of\n``in``.\n\nThe operators ``is`` and ``is not`` test for object identity: ``x is\ny`` is true if and only if *x* and *y* are the same object. ``x is\nnot y`` yields the inverse truth value. [7]\n',
|
/prebuilts/gdb/linux-x86/lib/python2.7/pydoc_data/ |
H A D | topics.py | 20 'comparisons': '\nComparisons\n***********\n\nUnlike C, all comparison operations in Python have the same priority,\nwhich is lower than that of any arithmetic, shifting or bitwise\noperation. Also unlike C, expressions like ``a < b < c`` have the\ninterpretation that is conventional in mathematics:\n\n comparison ::= or_expr ( comp_operator or_expr )*\n comp_operator ::= "<" | ">" | "==" | ">=" | "<=" | "<>" | "!="\n | "is" ["not"] | ["not"] "in"\n\nComparisons yield boolean values: ``True`` or ``False``.\n\nComparisons can be chained arbitrarily, e.g., ``x < y <= z`` is\nequivalent to ``x < y and y <= z``, except that ``y`` is evaluated\nonly once (but in both cases ``z`` is not evaluated at all when ``x <\ny`` is found to be false).\n\nFormally, if *a*, *b*, *c*, ..., *y*, *z* are expressions and *op1*,\n*op2*, ..., *opN* are comparison operators, then ``a op1 b op2 c ... y\nopN z`` is equivalent to ``a op1 b and b op2 c and ... y opN z``,\nexcept that each expression is evaluated at most once.\n\nNote that ``a op1 b op2 c`` doesn\'t imply any kind of comparison\nbetween *a* and *c*, so that, e.g., ``x < y > z`` is perfectly legal\n(though perhaps not pretty).\n\nThe forms ``<>`` and ``!=`` are equivalent; for consistency with C,\n``!=`` is preferred; where ``!=`` is mentioned below ``<>`` is also\naccepted. The ``<>`` spelling is considered obsolescent.\n\nThe operators ``<``, ``>``, ``==``, ``>=``, ``<=``, and ``!=`` compare\nthe values of two objects. The objects need not have the same type.\nIf both are numbers, they are converted to a common type. Otherwise,\nobjects of different types *always* compare unequal, and are ordered\nconsistently but arbitrarily. You can control comparison behavior of\nobjects of non-built-in types by defining a ``__cmp__`` method or rich\ncomparison methods like ``__gt__``, described in section *Special\nmethod names*.\n\n(This unusual definition of comparison was used to simplify the\ndefinition of operations like sorting and the ``in`` and ``not in``\noperators. In the future, the comparison rules for objects of\ndifferent types are likely to change.)\n\nComparison of objects of the same type depends on the type:\n\n* Numbers are compared arithmetically.\n\n* Strings are compared lexicographically using the numeric equivalents\n (the result of the built-in function ``ord()``) of their characters.\n Unicode and 8-bit strings are fully interoperable in this behavior.\n [4]\n\n* Tuples and lists are compared lexicographically using comparison of\n corresponding elements. This means that to compare equal, each\n element must compare equal and the two sequences must be of the same\n type and have the same length.\n\n If not equal, the sequences are ordered the same as their first\n differing elements. For example, ``cmp([1,2,x], [1,2,y])`` returns\n the same as ``cmp(x,y)``. If the corresponding element does not\n exist, the shorter sequence is ordered first (for example, ``[1,2] <\n [1,2,3]``).\n\n* Mappings (dictionaries) compare equal if and only if their sorted\n (key, value) lists compare equal. [5] Outcomes other than equality\n are resolved consistently, but are not otherwise defined. [6]\n\n* Most other objects of built-in types compare unequal unless they are\n the same object; the choice whether one object is considered smaller\n or larger than another one is made arbitrarily but consistently\n within one execution of a program.\n\nThe operators ``in`` and ``not in`` test for collection membership.\n``x in s`` evaluates to true if *x* is a member of the collection *s*,\nand false otherwise. ``x not in s`` returns the negation of ``x in\ns``. The collection membership test has traditionally been bound to\nsequences; an object is a member of a collection if the collection is\na sequence and contains an element equal to that object. However, it\nmake sense for many other object types to support membership tests\nwithout being a sequence. In particular, dictionaries (for keys) and\nsets support membership testing.\n\nFor the list and tuple types, ``x in y`` is true if and only if there\nexists an index *i* such that ``x == y[i]`` is true.\n\nFor the Unicode and string types, ``x in y`` is true if and only if\n*x* is a substring of *y*. An equivalent test is ``y.find(x) != -1``.\nNote, *x* and *y* need not be the same type; consequently, ``u\'ab\' in\n\'abc\'`` will return ``True``. Empty strings are always considered to\nbe a substring of any other string, so ``"" in "abc"`` will return\n``True``.\n\nChanged in version 2.3: Previously, *x* was required to be a string of\nlength ``1``.\n\nFor user-defined classes which define the ``__contains__()`` method,\n``x in y`` is true if and only if ``y.__contains__(x)`` is true.\n\nFor user-defined classes which do not define ``__contains__()`` but do\ndefine ``__iter__()``, ``x in y`` is true if some value ``z`` with ``x\n== z`` is produced while iterating over ``y``. If an exception is\nraised during the iteration, it is as if ``in`` raised that exception.\n\nLastly, the old-style iteration protocol is tried: if a class defines\n``__getitem__()``, ``x in y`` is true if and only if there is a non-\nnegative integer index *i* such that ``x == y[i]``, and all lower\ninteger indices do not raise ``IndexError`` exception. (If any other\nexception is raised, it is as if ``in`` raised that exception).\n\nThe operator ``not in`` is defined to have the inverse true value of\n``in``.\n\nThe operators ``is`` and ``is not`` test for object identity: ``x is\ny`` is true if and only if *x* and *y* are the same object. ``x is\nnot y`` yields the inverse truth value. [7]\n', 44 'in': '\nComparisons\n***********\n\nUnlike C, all comparison operations in Python have the same priority,\nwhich is lower than that of any arithmetic, shifting or bitwise\noperation. Also unlike C, expressions like ``a < b < c`` have the\ninterpretation that is conventional in mathematics:\n\n comparison ::= or_expr ( comp_operator or_expr )*\n comp_operator ::= "<" | ">" | "==" | ">=" | "<=" | "<>" | "!="\n | "is" ["not"] | ["not"] "in"\n\nComparisons yield boolean values: ``True`` or ``False``.\n\nComparisons can be chained arbitrarily, e.g., ``x < y <= z`` is\nequivalent to ``x < y and y <= z``, except that ``y`` is evaluated\nonly once (but in both cases ``z`` is not evaluated at all when ``x <\ny`` is found to be false).\n\nFormally, if *a*, *b*, *c*, ..., *y*, *z* are expressions and *op1*,\n*op2*, ..., *opN* are comparison operators, then ``a op1 b op2 c ... y\nopN z`` is equivalent to ``a op1 b and b op2 c and ... y opN z``,\nexcept that each expression is evaluated at most once.\n\nNote that ``a op1 b op2 c`` doesn\'t imply any kind of comparison\nbetween *a* and *c*, so that, e.g., ``x < y > z`` is perfectly legal\n(though perhaps not pretty).\n\nThe forms ``<>`` and ``!=`` are equivalent; for consistency with C,\n``!=`` is preferred; where ``!=`` is mentioned below ``<>`` is also\naccepted. The ``<>`` spelling is considered obsolescent.\n\nThe operators ``<``, ``>``, ``==``, ``>=``, ``<=``, and ``!=`` compare\nthe values of two objects. The objects need not have the same type.\nIf both are numbers, they are converted to a common type. Otherwise,\nobjects of different types *always* compare unequal, and are ordered\nconsistently but arbitrarily. You can control comparison behavior of\nobjects of non-built-in types by defining a ``__cmp__`` method or rich\ncomparison methods like ``__gt__``, described in section *Special\nmethod names*.\n\n(This unusual definition of comparison was used to simplify the\ndefinition of operations like sorting and the ``in`` and ``not in``\noperators. In the future, the comparison rules for objects of\ndifferent types are likely to change.)\n\nComparison of objects of the same type depends on the type:\n\n* Numbers are compared arithmetically.\n\n* Strings are compared lexicographically using the numeric equivalents\n (the result of the built-in function ``ord()``) of their characters.\n Unicode and 8-bit strings are fully interoperable in this behavior.\n [4]\n\n* Tuples and lists are compared lexicographically using comparison of\n corresponding elements. This means that to compare equal, each\n element must compare equal and the two sequences must be of the same\n type and have the same length.\n\n If not equal, the sequences are ordered the same as their first\n differing elements. For example, ``cmp([1,2,x], [1,2,y])`` returns\n the same as ``cmp(x,y)``. If the corresponding element does not\n exist, the shorter sequence is ordered first (for example, ``[1,2] <\n [1,2,3]``).\n\n* Mappings (dictionaries) compare equal if and only if their sorted\n (key, value) lists compare equal. [5] Outcomes other than equality\n are resolved consistently, but are not otherwise defined. [6]\n\n* Most other objects of built-in types compare unequal unless they are\n the same object; the choice whether one object is considered smaller\n or larger than another one is made arbitrarily but consistently\n within one execution of a program.\n\nThe operators ``in`` and ``not in`` test for collection membership.\n``x in s`` evaluates to true if *x* is a member of the collection *s*,\nand false otherwise. ``x not in s`` returns the negation of ``x in\ns``. The collection membership test has traditionally been bound to\nsequences; an object is a member of a collection if the collection is\na sequence and contains an element equal to that object. However, it\nmake sense for many other object types to support membership tests\nwithout being a sequence. In particular, dictionaries (for keys) and\nsets support membership testing.\n\nFor the list and tuple types, ``x in y`` is true if and only if there\nexists an index *i* such that ``x == y[i]`` is true.\n\nFor the Unicode and string types, ``x in y`` is true if and only if\n*x* is a substring of *y*. An equivalent test is ``y.find(x) != -1``.\nNote, *x* and *y* need not be the same type; consequently, ``u\'ab\' in\n\'abc\'`` will return ``True``. Empty strings are always considered to\nbe a substring of any other string, so ``"" in "abc"`` will return\n``True``.\n\nChanged in version 2.3: Previously, *x* was required to be a string of\nlength ``1``.\n\nFor user-defined classes which define the ``__contains__()`` method,\n``x in y`` is true if and only if ``y.__contains__(x)`` is true.\n\nFor user-defined classes which do not define ``__contains__()`` but do\ndefine ``__iter__()``, ``x in y`` is true if some value ``z`` with ``x\n== z`` is produced while iterating over ``y``. If an exception is\nraised during the iteration, it is as if ``in`` raised that exception.\n\nLastly, the old-style iteration protocol is tried: if a class defines\n``__getitem__()``, ``x in y`` is true if and only if there is a non-\nnegative integer index *i* such that ``x == y[i]``, and all lower\ninteger indices do not raise ``IndexError`` exception. (If any other\nexception is raised, it is as if ``in`` raised that exception).\n\nThe operator ``not in`` is defined to have the inverse true value of\n``in``.\n\nThe operators ``is`` and ``is not`` test for object identity: ``x is\ny`` is true if and only if *x* and *y* are the same object. ``x is\nnot y`` yields the inverse truth value. [7]\n',
|