nodes.h revision 0cf4493166ff28518c8eafa2d0463f6e817cce75
1/*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#ifndef ART_COMPILER_OPTIMIZING_NODES_H_
18#define ART_COMPILER_OPTIMIZING_NODES_H_
19
20#include <algorithm>
21#include <array>
22#include <type_traits>
23
24#include "base/arena_bit_vector.h"
25#include "base/arena_containers.h"
26#include "base/arena_object.h"
27#include "base/stl_util.h"
28#include "dex/compiler_enums.h"
29#include "entrypoints/quick/quick_entrypoints_enum.h"
30#include "handle.h"
31#include "handle_scope.h"
32#include "invoke_type.h"
33#include "locations.h"
34#include "method_reference.h"
35#include "mirror/class.h"
36#include "offsets.h"
37#include "primitive.h"
38#include "utils/array_ref.h"
39
40namespace art {
41
42class GraphChecker;
43class HBasicBlock;
44class HCurrentMethod;
45class HDoubleConstant;
46class HEnvironment;
47class HFakeString;
48class HFloatConstant;
49class HGraphBuilder;
50class HGraphVisitor;
51class HInstruction;
52class HIntConstant;
53class HInvoke;
54class HLongConstant;
55class HNullConstant;
56class HPhi;
57class HSuspendCheck;
58class HTryBoundary;
59class LiveInterval;
60class LocationSummary;
61class SlowPathCode;
62class SsaBuilder;
63
64namespace mirror {
65class DexCache;
66}  // namespace mirror
67
68static const int kDefaultNumberOfBlocks = 8;
69static const int kDefaultNumberOfSuccessors = 2;
70static const int kDefaultNumberOfPredecessors = 2;
71static const int kDefaultNumberOfExceptionalPredecessors = 0;
72static const int kDefaultNumberOfDominatedBlocks = 1;
73static const int kDefaultNumberOfBackEdges = 1;
74
75static constexpr uint32_t kMaxIntShiftValue = 0x1f;
76static constexpr uint64_t kMaxLongShiftValue = 0x3f;
77
78static constexpr uint32_t kUnknownFieldIndex = static_cast<uint32_t>(-1);
79static constexpr uint16_t kUnknownClassDefIndex = static_cast<uint16_t>(-1);
80
81static constexpr InvokeType kInvalidInvokeType = static_cast<InvokeType>(-1);
82
83static constexpr uint32_t kNoDexPc = -1;
84
85enum IfCondition {
86  // All types.
87  kCondEQ,  // ==
88  kCondNE,  // !=
89  // Signed integers and floating-point numbers.
90  kCondLT,  // <
91  kCondLE,  // <=
92  kCondGT,  // >
93  kCondGE,  // >=
94  // Unsigned integers.
95  kCondB,   // <
96  kCondBE,  // <=
97  kCondA,   // >
98  kCondAE,  // >=
99};
100
101class HInstructionList : public ValueObject {
102 public:
103  HInstructionList() : first_instruction_(nullptr), last_instruction_(nullptr) {}
104
105  void AddInstruction(HInstruction* instruction);
106  void RemoveInstruction(HInstruction* instruction);
107
108  // Insert `instruction` before/after an existing instruction `cursor`.
109  void InsertInstructionBefore(HInstruction* instruction, HInstruction* cursor);
110  void InsertInstructionAfter(HInstruction* instruction, HInstruction* cursor);
111
112  // Return true if this list contains `instruction`.
113  bool Contains(HInstruction* instruction) const;
114
115  // Return true if `instruction1` is found before `instruction2` in
116  // this instruction list and false otherwise.  Abort if none
117  // of these instructions is found.
118  bool FoundBefore(const HInstruction* instruction1,
119                   const HInstruction* instruction2) const;
120
121  bool IsEmpty() const { return first_instruction_ == nullptr; }
122  void Clear() { first_instruction_ = last_instruction_ = nullptr; }
123
124  // Update the block of all instructions to be `block`.
125  void SetBlockOfInstructions(HBasicBlock* block) const;
126
127  void AddAfter(HInstruction* cursor, const HInstructionList& instruction_list);
128  void Add(const HInstructionList& instruction_list);
129
130  // Return the number of instructions in the list. This is an expensive operation.
131  size_t CountSize() const;
132
133 private:
134  HInstruction* first_instruction_;
135  HInstruction* last_instruction_;
136
137  friend class HBasicBlock;
138  friend class HGraph;
139  friend class HInstruction;
140  friend class HInstructionIterator;
141  friend class HBackwardInstructionIterator;
142
143  DISALLOW_COPY_AND_ASSIGN(HInstructionList);
144};
145
146// Control-flow graph of a method. Contains a list of basic blocks.
147class HGraph : public ArenaObject<kArenaAllocGraph> {
148 public:
149  HGraph(ArenaAllocator* arena,
150         const DexFile& dex_file,
151         uint32_t method_idx,
152         bool should_generate_constructor_barrier,
153         InstructionSet instruction_set,
154         InvokeType invoke_type = kInvalidInvokeType,
155         bool debuggable = false,
156         int start_instruction_id = 0)
157      : arena_(arena),
158        blocks_(arena->Adapter(kArenaAllocBlockList)),
159        reverse_post_order_(arena->Adapter(kArenaAllocReversePostOrder)),
160        linear_order_(arena->Adapter(kArenaAllocLinearOrder)),
161        entry_block_(nullptr),
162        exit_block_(nullptr),
163        maximum_number_of_out_vregs_(0),
164        number_of_vregs_(0),
165        number_of_in_vregs_(0),
166        temporaries_vreg_slots_(0),
167        has_bounds_checks_(false),
168        has_try_catch_(false),
169        debuggable_(debuggable),
170        current_instruction_id_(start_instruction_id),
171        dex_file_(dex_file),
172        method_idx_(method_idx),
173        invoke_type_(invoke_type),
174        in_ssa_form_(false),
175        should_generate_constructor_barrier_(should_generate_constructor_barrier),
176        instruction_set_(instruction_set),
177        cached_null_constant_(nullptr),
178        cached_int_constants_(std::less<int32_t>(), arena->Adapter(kArenaAllocConstantsMap)),
179        cached_float_constants_(std::less<int32_t>(), arena->Adapter(kArenaAllocConstantsMap)),
180        cached_long_constants_(std::less<int64_t>(), arena->Adapter(kArenaAllocConstantsMap)),
181        cached_double_constants_(std::less<int64_t>(), arena->Adapter(kArenaAllocConstantsMap)),
182        cached_current_method_(nullptr) {
183    blocks_.reserve(kDefaultNumberOfBlocks);
184  }
185
186  ArenaAllocator* GetArena() const { return arena_; }
187  const ArenaVector<HBasicBlock*>& GetBlocks() const { return blocks_; }
188
189  bool IsInSsaForm() const { return in_ssa_form_; }
190
191  HBasicBlock* GetEntryBlock() const { return entry_block_; }
192  HBasicBlock* GetExitBlock() const { return exit_block_; }
193  bool HasExitBlock() const { return exit_block_ != nullptr; }
194
195  void SetEntryBlock(HBasicBlock* block) { entry_block_ = block; }
196  void SetExitBlock(HBasicBlock* block) { exit_block_ = block; }
197
198  void AddBlock(HBasicBlock* block);
199
200  // Try building the SSA form of this graph, with dominance computation and loop
201  // recognition. Returns whether it was successful in doing all these steps.
202  bool TryBuildingSsa() {
203    BuildDominatorTree();
204    // The SSA builder requires loops to all be natural. Specifically, the dead phi
205    // elimination phase checks the consistency of the graph when doing a post-order
206    // visit for eliminating dead phis: a dead phi can only have loop header phi
207    // users remaining when being visited.
208    if (!AnalyzeNaturalLoops()) return false;
209    // Precompute per-block try membership before entering the SSA builder,
210    // which needs the information to build catch block phis from values of
211    // locals at throwing instructions inside try blocks.
212    ComputeTryBlockInformation();
213    TransformToSsa();
214    in_ssa_form_ = true;
215    return true;
216  }
217
218  void ComputeDominanceInformation();
219  void ClearDominanceInformation();
220
221  void BuildDominatorTree();
222  void TransformToSsa();
223  void SimplifyCFG();
224  void SimplifyCatchBlocks();
225
226  // Analyze all natural loops in this graph. Returns false if one
227  // loop is not natural, that is the header does not dominate the
228  // back edge.
229  bool AnalyzeNaturalLoops() const;
230
231  // Iterate over blocks to compute try block membership. Needs reverse post
232  // order and loop information.
233  void ComputeTryBlockInformation();
234
235  // Inline this graph in `outer_graph`, replacing the given `invoke` instruction.
236  // Returns the instruction used to replace the invoke expression or null if the
237  // invoke is for a void method.
238  HInstruction* InlineInto(HGraph* outer_graph, HInvoke* invoke);
239
240  // Need to add a couple of blocks to test if the loop body is entered and
241  // put deoptimization instructions, etc.
242  void TransformLoopHeaderForBCE(HBasicBlock* header);
243
244  // Removes `block` from the graph. Assumes `block` has been disconnected from
245  // other blocks and has no instructions or phis.
246  void DeleteDeadEmptyBlock(HBasicBlock* block);
247
248  // Splits the edge between `block` and `successor` while preserving the
249  // indices in the predecessor/successor lists. If there are multiple edges
250  // between the blocks, the lowest indices are used.
251  // Returns the new block which is empty and has the same dex pc as `successor`.
252  HBasicBlock* SplitEdge(HBasicBlock* block, HBasicBlock* successor);
253
254  void SplitCriticalEdge(HBasicBlock* block, HBasicBlock* successor);
255  void SimplifyLoop(HBasicBlock* header);
256
257  int32_t GetNextInstructionId() {
258    DCHECK_NE(current_instruction_id_, INT32_MAX);
259    return current_instruction_id_++;
260  }
261
262  int32_t GetCurrentInstructionId() const {
263    return current_instruction_id_;
264  }
265
266  void SetCurrentInstructionId(int32_t id) {
267    current_instruction_id_ = id;
268  }
269
270  uint16_t GetMaximumNumberOfOutVRegs() const {
271    return maximum_number_of_out_vregs_;
272  }
273
274  void SetMaximumNumberOfOutVRegs(uint16_t new_value) {
275    maximum_number_of_out_vregs_ = new_value;
276  }
277
278  void UpdateMaximumNumberOfOutVRegs(uint16_t other_value) {
279    maximum_number_of_out_vregs_ = std::max(maximum_number_of_out_vregs_, other_value);
280  }
281
282  void UpdateTemporariesVRegSlots(size_t slots) {
283    temporaries_vreg_slots_ = std::max(slots, temporaries_vreg_slots_);
284  }
285
286  size_t GetTemporariesVRegSlots() const {
287    DCHECK(!in_ssa_form_);
288    return temporaries_vreg_slots_;
289  }
290
291  void SetNumberOfVRegs(uint16_t number_of_vregs) {
292    number_of_vregs_ = number_of_vregs;
293  }
294
295  uint16_t GetNumberOfVRegs() const {
296    return number_of_vregs_;
297  }
298
299  void SetNumberOfInVRegs(uint16_t value) {
300    number_of_in_vregs_ = value;
301  }
302
303  uint16_t GetNumberOfLocalVRegs() const {
304    DCHECK(!in_ssa_form_);
305    return number_of_vregs_ - number_of_in_vregs_;
306  }
307
308  const ArenaVector<HBasicBlock*>& GetReversePostOrder() const {
309    return reverse_post_order_;
310  }
311
312  const ArenaVector<HBasicBlock*>& GetLinearOrder() const {
313    return linear_order_;
314  }
315
316  bool HasBoundsChecks() const {
317    return has_bounds_checks_;
318  }
319
320  void SetHasBoundsChecks(bool value) {
321    has_bounds_checks_ = value;
322  }
323
324  bool ShouldGenerateConstructorBarrier() const {
325    return should_generate_constructor_barrier_;
326  }
327
328  bool IsDebuggable() const { return debuggable_; }
329
330  // Returns a constant of the given type and value. If it does not exist
331  // already, it is created and inserted into the graph. This method is only for
332  // integral types.
333  HConstant* GetConstant(Primitive::Type type, int64_t value, uint32_t dex_pc = kNoDexPc);
334
335  // TODO: This is problematic for the consistency of reference type propagation
336  // because it can be created anytime after the pass and thus it will be left
337  // with an invalid type.
338  HNullConstant* GetNullConstant(uint32_t dex_pc = kNoDexPc);
339
340  HIntConstant* GetIntConstant(int32_t value, uint32_t dex_pc = kNoDexPc) {
341    return CreateConstant(value, &cached_int_constants_, dex_pc);
342  }
343  HLongConstant* GetLongConstant(int64_t value, uint32_t dex_pc = kNoDexPc) {
344    return CreateConstant(value, &cached_long_constants_, dex_pc);
345  }
346  HFloatConstant* GetFloatConstant(float value, uint32_t dex_pc = kNoDexPc) {
347    return CreateConstant(bit_cast<int32_t, float>(value), &cached_float_constants_, dex_pc);
348  }
349  HDoubleConstant* GetDoubleConstant(double value, uint32_t dex_pc = kNoDexPc) {
350    return CreateConstant(bit_cast<int64_t, double>(value), &cached_double_constants_, dex_pc);
351  }
352
353  HCurrentMethod* GetCurrentMethod();
354
355  const DexFile& GetDexFile() const {
356    return dex_file_;
357  }
358
359  uint32_t GetMethodIdx() const {
360    return method_idx_;
361  }
362
363  InvokeType GetInvokeType() const {
364    return invoke_type_;
365  }
366
367  InstructionSet GetInstructionSet() const {
368    return instruction_set_;
369  }
370
371  bool HasTryCatch() const { return has_try_catch_; }
372  void SetHasTryCatch(bool value) { has_try_catch_ = value; }
373
374  ArtMethod* GetArtMethod() const { return art_method_; }
375  void SetArtMethod(ArtMethod* method) { art_method_ = method; }
376
377  // Returns an instruction with the opposite boolean value from 'cond'.
378  // The instruction has been inserted into the graph, either as a constant, or
379  // before cursor.
380  HInstruction* InsertOppositeCondition(HInstruction* cond, HInstruction* cursor);
381
382 private:
383  void FindBackEdges(ArenaBitVector* visited);
384  void RemoveInstructionsAsUsersFromDeadBlocks(const ArenaBitVector& visited) const;
385  void RemoveDeadBlocks(const ArenaBitVector& visited);
386
387  template <class InstructionType, typename ValueType>
388  InstructionType* CreateConstant(ValueType value,
389                                  ArenaSafeMap<ValueType, InstructionType*>* cache,
390                                  uint32_t dex_pc = kNoDexPc) {
391    // Try to find an existing constant of the given value.
392    InstructionType* constant = nullptr;
393    auto cached_constant = cache->find(value);
394    if (cached_constant != cache->end()) {
395      constant = cached_constant->second;
396    }
397
398    // If not found or previously deleted, create and cache a new instruction.
399    // Don't bother reviving a previously deleted instruction, for simplicity.
400    if (constant == nullptr || constant->GetBlock() == nullptr) {
401      constant = new (arena_) InstructionType(value, dex_pc);
402      cache->Overwrite(value, constant);
403      InsertConstant(constant);
404    }
405    return constant;
406  }
407
408  void InsertConstant(HConstant* instruction);
409
410  // Cache a float constant into the graph. This method should only be
411  // called by the SsaBuilder when creating "equivalent" instructions.
412  void CacheFloatConstant(HFloatConstant* constant);
413
414  // See CacheFloatConstant comment.
415  void CacheDoubleConstant(HDoubleConstant* constant);
416
417  ArenaAllocator* const arena_;
418
419  // List of blocks in insertion order.
420  ArenaVector<HBasicBlock*> blocks_;
421
422  // List of blocks to perform a reverse post order tree traversal.
423  ArenaVector<HBasicBlock*> reverse_post_order_;
424
425  // List of blocks to perform a linear order tree traversal.
426  ArenaVector<HBasicBlock*> linear_order_;
427
428  HBasicBlock* entry_block_;
429  HBasicBlock* exit_block_;
430
431  // The maximum number of virtual registers arguments passed to a HInvoke in this graph.
432  uint16_t maximum_number_of_out_vregs_;
433
434  // The number of virtual registers in this method. Contains the parameters.
435  uint16_t number_of_vregs_;
436
437  // The number of virtual registers used by parameters of this method.
438  uint16_t number_of_in_vregs_;
439
440  // Number of vreg size slots that the temporaries use (used in baseline compiler).
441  size_t temporaries_vreg_slots_;
442
443  // Has bounds checks. We can totally skip BCE if it's false.
444  bool has_bounds_checks_;
445
446  // Flag whether there are any try/catch blocks in the graph. We will skip
447  // try/catch-related passes if false.
448  bool has_try_catch_;
449
450  // Indicates whether the graph should be compiled in a way that
451  // ensures full debuggability. If false, we can apply more
452  // aggressive optimizations that may limit the level of debugging.
453  const bool debuggable_;
454
455  // The current id to assign to a newly added instruction. See HInstruction.id_.
456  int32_t current_instruction_id_;
457
458  // The dex file from which the method is from.
459  const DexFile& dex_file_;
460
461  // The method index in the dex file.
462  const uint32_t method_idx_;
463
464  // If inlined, this encodes how the callee is being invoked.
465  const InvokeType invoke_type_;
466
467  // Whether the graph has been transformed to SSA form. Only used
468  // in debug mode to ensure we are not using properties only valid
469  // for non-SSA form (like the number of temporaries).
470  bool in_ssa_form_;
471
472  const bool should_generate_constructor_barrier_;
473
474  const InstructionSet instruction_set_;
475
476  // Cached constants.
477  HNullConstant* cached_null_constant_;
478  ArenaSafeMap<int32_t, HIntConstant*> cached_int_constants_;
479  ArenaSafeMap<int32_t, HFloatConstant*> cached_float_constants_;
480  ArenaSafeMap<int64_t, HLongConstant*> cached_long_constants_;
481  ArenaSafeMap<int64_t, HDoubleConstant*> cached_double_constants_;
482
483  HCurrentMethod* cached_current_method_;
484
485  // The ArtMethod this graph is for. Note that for AOT, it may be null,
486  // for example for methods whose declaring class could not be resolved
487  // (such as when the superclass could not be found).
488  ArtMethod* art_method_;
489
490  friend class SsaBuilder;           // For caching constants.
491  friend class SsaLivenessAnalysis;  // For the linear order.
492  ART_FRIEND_TEST(GraphTest, IfSuccessorSimpleJoinBlock1);
493  DISALLOW_COPY_AND_ASSIGN(HGraph);
494};
495
496class HLoopInformation : public ArenaObject<kArenaAllocLoopInfo> {
497 public:
498  HLoopInformation(HBasicBlock* header, HGraph* graph)
499      : header_(header),
500        suspend_check_(nullptr),
501        back_edges_(graph->GetArena()->Adapter(kArenaAllocLoopInfoBackEdges)),
502        // Make bit vector growable, as the number of blocks may change.
503        blocks_(graph->GetArena(), graph->GetBlocks().size(), true) {
504    back_edges_.reserve(kDefaultNumberOfBackEdges);
505  }
506
507  HBasicBlock* GetHeader() const {
508    return header_;
509  }
510
511  void SetHeader(HBasicBlock* block) {
512    header_ = block;
513  }
514
515  HSuspendCheck* GetSuspendCheck() const { return suspend_check_; }
516  void SetSuspendCheck(HSuspendCheck* check) { suspend_check_ = check; }
517  bool HasSuspendCheck() const { return suspend_check_ != nullptr; }
518
519  void AddBackEdge(HBasicBlock* back_edge) {
520    back_edges_.push_back(back_edge);
521  }
522
523  void RemoveBackEdge(HBasicBlock* back_edge) {
524    RemoveElement(back_edges_, back_edge);
525  }
526
527  bool IsBackEdge(const HBasicBlock& block) const {
528    return ContainsElement(back_edges_, &block);
529  }
530
531  size_t NumberOfBackEdges() const {
532    return back_edges_.size();
533  }
534
535  HBasicBlock* GetPreHeader() const;
536
537  const ArenaVector<HBasicBlock*>& GetBackEdges() const {
538    return back_edges_;
539  }
540
541  // Returns the lifetime position of the back edge that has the
542  // greatest lifetime position.
543  size_t GetLifetimeEnd() const;
544
545  void ReplaceBackEdge(HBasicBlock* existing, HBasicBlock* new_back_edge) {
546    ReplaceElement(back_edges_, existing, new_back_edge);
547  }
548
549  // Finds blocks that are part of this loop. Returns whether the loop is a natural loop,
550  // that is the header dominates the back edge.
551  bool Populate();
552
553  // Reanalyzes the loop by removing loop info from its blocks and re-running
554  // Populate(). If there are no back edges left, the loop info is completely
555  // removed as well as its SuspendCheck instruction. It must be run on nested
556  // inner loops first.
557  void Update();
558
559  // Returns whether this loop information contains `block`.
560  // Note that this loop information *must* be populated before entering this function.
561  bool Contains(const HBasicBlock& block) const;
562
563  // Returns whether this loop information is an inner loop of `other`.
564  // Note that `other` *must* be populated before entering this function.
565  bool IsIn(const HLoopInformation& other) const;
566
567  // Returns true if instruction is not defined within this loop.
568  bool IsDefinedOutOfTheLoop(HInstruction* instruction) const;
569
570  const ArenaBitVector& GetBlocks() const { return blocks_; }
571
572  void Add(HBasicBlock* block);
573  void Remove(HBasicBlock* block);
574
575 private:
576  // Internal recursive implementation of `Populate`.
577  void PopulateRecursive(HBasicBlock* block);
578
579  HBasicBlock* header_;
580  HSuspendCheck* suspend_check_;
581  ArenaVector<HBasicBlock*> back_edges_;
582  ArenaBitVector blocks_;
583
584  DISALLOW_COPY_AND_ASSIGN(HLoopInformation);
585};
586
587// Stores try/catch information for basic blocks.
588// Note that HGraph is constructed so that catch blocks cannot simultaneously
589// be try blocks.
590class TryCatchInformation : public ArenaObject<kArenaAllocTryCatchInfo> {
591 public:
592  // Try block information constructor.
593  explicit TryCatchInformation(const HTryBoundary& try_entry)
594      : try_entry_(&try_entry),
595        catch_dex_file_(nullptr),
596        catch_type_index_(DexFile::kDexNoIndex16) {
597    DCHECK(try_entry_ != nullptr);
598  }
599
600  // Catch block information constructor.
601  TryCatchInformation(uint16_t catch_type_index, const DexFile& dex_file)
602      : try_entry_(nullptr),
603        catch_dex_file_(&dex_file),
604        catch_type_index_(catch_type_index) {}
605
606  bool IsTryBlock() const { return try_entry_ != nullptr; }
607
608  const HTryBoundary& GetTryEntry() const {
609    DCHECK(IsTryBlock());
610    return *try_entry_;
611  }
612
613  bool IsCatchBlock() const { return catch_dex_file_ != nullptr; }
614
615  bool IsCatchAllTypeIndex() const {
616    DCHECK(IsCatchBlock());
617    return catch_type_index_ == DexFile::kDexNoIndex16;
618  }
619
620  uint16_t GetCatchTypeIndex() const {
621    DCHECK(IsCatchBlock());
622    return catch_type_index_;
623  }
624
625  const DexFile& GetCatchDexFile() const {
626    DCHECK(IsCatchBlock());
627    return *catch_dex_file_;
628  }
629
630 private:
631  // One of possibly several TryBoundary instructions entering the block's try.
632  // Only set for try blocks.
633  const HTryBoundary* try_entry_;
634
635  // Exception type information. Only set for catch blocks.
636  const DexFile* catch_dex_file_;
637  const uint16_t catch_type_index_;
638};
639
640static constexpr size_t kNoLifetime = -1;
641static constexpr uint32_t kInvalidBlockId = static_cast<uint32_t>(-1);
642
643// A block in a method. Contains the list of instructions represented
644// as a double linked list. Each block knows its predecessors and
645// successors.
646
647class HBasicBlock : public ArenaObject<kArenaAllocBasicBlock> {
648 public:
649  HBasicBlock(HGraph* graph, uint32_t dex_pc = kNoDexPc)
650      : graph_(graph),
651        predecessors_(graph->GetArena()->Adapter(kArenaAllocPredecessors)),
652        successors_(graph->GetArena()->Adapter(kArenaAllocSuccessors)),
653        loop_information_(nullptr),
654        dominator_(nullptr),
655        dominated_blocks_(graph->GetArena()->Adapter(kArenaAllocDominated)),
656        block_id_(kInvalidBlockId),
657        dex_pc_(dex_pc),
658        lifetime_start_(kNoLifetime),
659        lifetime_end_(kNoLifetime),
660        try_catch_information_(nullptr) {
661    predecessors_.reserve(kDefaultNumberOfPredecessors);
662    successors_.reserve(kDefaultNumberOfSuccessors);
663    dominated_blocks_.reserve(kDefaultNumberOfDominatedBlocks);
664  }
665
666  const ArenaVector<HBasicBlock*>& GetPredecessors() const {
667    return predecessors_;
668  }
669
670  const ArenaVector<HBasicBlock*>& GetSuccessors() const {
671    return successors_;
672  }
673
674  ArrayRef<HBasicBlock* const> GetNormalSuccessors() const;
675  ArrayRef<HBasicBlock* const> GetExceptionalSuccessors() const;
676
677  bool HasSuccessor(const HBasicBlock* block, size_t start_from = 0u) {
678    return ContainsElement(successors_, block, start_from);
679  }
680
681  const ArenaVector<HBasicBlock*>& GetDominatedBlocks() const {
682    return dominated_blocks_;
683  }
684
685  bool IsEntryBlock() const {
686    return graph_->GetEntryBlock() == this;
687  }
688
689  bool IsExitBlock() const {
690    return graph_->GetExitBlock() == this;
691  }
692
693  bool IsSingleGoto() const;
694  bool IsSingleTryBoundary() const;
695
696  // Returns true if this block emits nothing but a jump.
697  bool IsSingleJump() const {
698    HLoopInformation* loop_info = GetLoopInformation();
699    return (IsSingleGoto() || IsSingleTryBoundary())
700           // Back edges generate a suspend check.
701           && (loop_info == nullptr || !loop_info->IsBackEdge(*this));
702  }
703
704  void AddBackEdge(HBasicBlock* back_edge) {
705    if (loop_information_ == nullptr) {
706      loop_information_ = new (graph_->GetArena()) HLoopInformation(this, graph_);
707    }
708    DCHECK_EQ(loop_information_->GetHeader(), this);
709    loop_information_->AddBackEdge(back_edge);
710  }
711
712  HGraph* GetGraph() const { return graph_; }
713  void SetGraph(HGraph* graph) { graph_ = graph; }
714
715  uint32_t GetBlockId() const { return block_id_; }
716  void SetBlockId(int id) { block_id_ = id; }
717  uint32_t GetDexPc() const { return dex_pc_; }
718
719  HBasicBlock* GetDominator() const { return dominator_; }
720  void SetDominator(HBasicBlock* dominator) { dominator_ = dominator; }
721  void AddDominatedBlock(HBasicBlock* block) { dominated_blocks_.push_back(block); }
722
723  void RemoveDominatedBlock(HBasicBlock* block) {
724    RemoveElement(dominated_blocks_, block);
725  }
726
727  void ReplaceDominatedBlock(HBasicBlock* existing, HBasicBlock* new_block) {
728    ReplaceElement(dominated_blocks_, existing, new_block);
729  }
730
731  void ClearDominanceInformation();
732
733  int NumberOfBackEdges() const {
734    return IsLoopHeader() ? loop_information_->NumberOfBackEdges() : 0;
735  }
736
737  HInstruction* GetFirstInstruction() const { return instructions_.first_instruction_; }
738  HInstruction* GetLastInstruction() const { return instructions_.last_instruction_; }
739  const HInstructionList& GetInstructions() const { return instructions_; }
740  HInstruction* GetFirstPhi() const { return phis_.first_instruction_; }
741  HInstruction* GetLastPhi() const { return phis_.last_instruction_; }
742  const HInstructionList& GetPhis() const { return phis_; }
743
744  void AddSuccessor(HBasicBlock* block) {
745    successors_.push_back(block);
746    block->predecessors_.push_back(this);
747  }
748
749  void ReplaceSuccessor(HBasicBlock* existing, HBasicBlock* new_block) {
750    size_t successor_index = GetSuccessorIndexOf(existing);
751    existing->RemovePredecessor(this);
752    new_block->predecessors_.push_back(this);
753    successors_[successor_index] = new_block;
754  }
755
756  void ReplacePredecessor(HBasicBlock* existing, HBasicBlock* new_block) {
757    size_t predecessor_index = GetPredecessorIndexOf(existing);
758    existing->RemoveSuccessor(this);
759    new_block->successors_.push_back(this);
760    predecessors_[predecessor_index] = new_block;
761  }
762
763  // Insert `this` between `predecessor` and `successor. This method
764  // preserves the indicies, and will update the first edge found between
765  // `predecessor` and `successor`.
766  void InsertBetween(HBasicBlock* predecessor, HBasicBlock* successor) {
767    size_t predecessor_index = successor->GetPredecessorIndexOf(predecessor);
768    size_t successor_index = predecessor->GetSuccessorIndexOf(successor);
769    successor->predecessors_[predecessor_index] = this;
770    predecessor->successors_[successor_index] = this;
771    successors_.push_back(successor);
772    predecessors_.push_back(predecessor);
773  }
774
775  void RemovePredecessor(HBasicBlock* block) {
776    predecessors_.erase(predecessors_.begin() + GetPredecessorIndexOf(block));
777  }
778
779  void RemoveSuccessor(HBasicBlock* block) {
780    successors_.erase(successors_.begin() + GetSuccessorIndexOf(block));
781  }
782
783  void ClearAllPredecessors() {
784    predecessors_.clear();
785  }
786
787  void AddPredecessor(HBasicBlock* block) {
788    predecessors_.push_back(block);
789    block->successors_.push_back(this);
790  }
791
792  void SwapPredecessors() {
793    DCHECK_EQ(predecessors_.size(), 2u);
794    std::swap(predecessors_[0], predecessors_[1]);
795  }
796
797  void SwapSuccessors() {
798    DCHECK_EQ(successors_.size(), 2u);
799    std::swap(successors_[0], successors_[1]);
800  }
801
802  size_t GetPredecessorIndexOf(HBasicBlock* predecessor) const {
803    return IndexOfElement(predecessors_, predecessor);
804  }
805
806  size_t GetSuccessorIndexOf(HBasicBlock* successor) const {
807    return IndexOfElement(successors_, successor);
808  }
809
810  HBasicBlock* GetSinglePredecessor() const {
811    DCHECK_EQ(GetPredecessors().size(), 1u);
812    return GetPredecessors()[0];
813  }
814
815  HBasicBlock* GetSingleSuccessor() const {
816    DCHECK_EQ(GetSuccessors().size(), 1u);
817    return GetSuccessors()[0];
818  }
819
820  // Returns whether the first occurrence of `predecessor` in the list of
821  // predecessors is at index `idx`.
822  bool IsFirstIndexOfPredecessor(HBasicBlock* predecessor, size_t idx) const {
823    DCHECK_EQ(GetPredecessors()[idx], predecessor);
824    return GetPredecessorIndexOf(predecessor) == idx;
825  }
826
827  // Create a new block between this block and its predecessors. The new block
828  // is added to the graph, all predecessor edges are relinked to it and an edge
829  // is created to `this`. Returns the new empty block. Reverse post order or
830  // loop and try/catch information are not updated.
831  HBasicBlock* CreateImmediateDominator();
832
833  // Split the block into two blocks just before `cursor`. Returns the newly
834  // created, latter block. Note that this method will add the block to the
835  // graph, create a Goto at the end of the former block and will create an edge
836  // between the blocks. It will not, however, update the reverse post order or
837  // loop and try/catch information.
838  HBasicBlock* SplitBefore(HInstruction* cursor);
839
840  // Split the block into two blocks just after `cursor`. Returns the newly
841  // created block. Note that this method just updates raw block information,
842  // like predecessors, successors, dominators, and instruction list. It does not
843  // update the graph, reverse post order, loop information, nor make sure the
844  // blocks are consistent (for example ending with a control flow instruction).
845  HBasicBlock* SplitAfter(HInstruction* cursor);
846
847  // Split catch block into two blocks after the original move-exception bytecode
848  // instruction, or at the beginning if not present. Returns the newly created,
849  // latter block, or nullptr if such block could not be created (must be dead
850  // in that case). Note that this method just updates raw block information,
851  // like predecessors, successors, dominators, and instruction list. It does not
852  // update the graph, reverse post order, loop information, nor make sure the
853  // blocks are consistent (for example ending with a control flow instruction).
854  HBasicBlock* SplitCatchBlockAfterMoveException();
855
856  // Merge `other` at the end of `this`. Successors and dominated blocks of
857  // `other` are changed to be successors and dominated blocks of `this`. Note
858  // that this method does not update the graph, reverse post order, loop
859  // information, nor make sure the blocks are consistent (for example ending
860  // with a control flow instruction).
861  void MergeWithInlined(HBasicBlock* other);
862
863  // Replace `this` with `other`. Predecessors, successors, and dominated blocks
864  // of `this` are moved to `other`.
865  // Note that this method does not update the graph, reverse post order, loop
866  // information, nor make sure the blocks are consistent (for example ending
867  // with a control flow instruction).
868  void ReplaceWith(HBasicBlock* other);
869
870  // Merge `other` at the end of `this`. This method updates loops, reverse post
871  // order, links to predecessors, successors, dominators and deletes the block
872  // from the graph. The two blocks must be successive, i.e. `this` the only
873  // predecessor of `other` and vice versa.
874  void MergeWith(HBasicBlock* other);
875
876  // Disconnects `this` from all its predecessors, successors and dominator,
877  // removes it from all loops it is included in and eventually from the graph.
878  // The block must not dominate any other block. Predecessors and successors
879  // are safely updated.
880  void DisconnectAndDelete();
881
882  void AddInstruction(HInstruction* instruction);
883  // Insert `instruction` before/after an existing instruction `cursor`.
884  void InsertInstructionBefore(HInstruction* instruction, HInstruction* cursor);
885  void InsertInstructionAfter(HInstruction* instruction, HInstruction* cursor);
886  // Replace instruction `initial` with `replacement` within this block.
887  void ReplaceAndRemoveInstructionWith(HInstruction* initial,
888                                       HInstruction* replacement);
889  void AddPhi(HPhi* phi);
890  void InsertPhiAfter(HPhi* instruction, HPhi* cursor);
891  // RemoveInstruction and RemovePhi delete a given instruction from the respective
892  // instruction list. With 'ensure_safety' set to true, it verifies that the
893  // instruction is not in use and removes it from the use lists of its inputs.
894  void RemoveInstruction(HInstruction* instruction, bool ensure_safety = true);
895  void RemovePhi(HPhi* phi, bool ensure_safety = true);
896  void RemoveInstructionOrPhi(HInstruction* instruction, bool ensure_safety = true);
897
898  bool IsLoopHeader() const {
899    return IsInLoop() && (loop_information_->GetHeader() == this);
900  }
901
902  bool IsLoopPreHeaderFirstPredecessor() const {
903    DCHECK(IsLoopHeader());
904    return GetPredecessors()[0] == GetLoopInformation()->GetPreHeader();
905  }
906
907  HLoopInformation* GetLoopInformation() const {
908    return loop_information_;
909  }
910
911  // Set the loop_information_ on this block. Overrides the current
912  // loop_information if it is an outer loop of the passed loop information.
913  // Note that this method is called while creating the loop information.
914  void SetInLoop(HLoopInformation* info) {
915    if (IsLoopHeader()) {
916      // Nothing to do. This just means `info` is an outer loop.
917    } else if (!IsInLoop()) {
918      loop_information_ = info;
919    } else if (loop_information_->Contains(*info->GetHeader())) {
920      // Block is currently part of an outer loop. Make it part of this inner loop.
921      // Note that a non loop header having a loop information means this loop information
922      // has already been populated
923      loop_information_ = info;
924    } else {
925      // Block is part of an inner loop. Do not update the loop information.
926      // Note that we cannot do the check `info->Contains(loop_information_)->GetHeader()`
927      // at this point, because this method is being called while populating `info`.
928    }
929  }
930
931  // Raw update of the loop information.
932  void SetLoopInformation(HLoopInformation* info) {
933    loop_information_ = info;
934  }
935
936  bool IsInLoop() const { return loop_information_ != nullptr; }
937
938  TryCatchInformation* GetTryCatchInformation() const { return try_catch_information_; }
939
940  void SetTryCatchInformation(TryCatchInformation* try_catch_information) {
941    try_catch_information_ = try_catch_information;
942  }
943
944  bool IsTryBlock() const {
945    return try_catch_information_ != nullptr && try_catch_information_->IsTryBlock();
946  }
947
948  bool IsCatchBlock() const {
949    return try_catch_information_ != nullptr && try_catch_information_->IsCatchBlock();
950  }
951
952  // Returns the try entry that this block's successors should have. They will
953  // be in the same try, unless the block ends in a try boundary. In that case,
954  // the appropriate try entry will be returned.
955  const HTryBoundary* ComputeTryEntryOfSuccessors() const;
956
957  bool HasThrowingInstructions() const;
958
959  // Returns whether this block dominates the blocked passed as parameter.
960  bool Dominates(HBasicBlock* block) const;
961
962  size_t GetLifetimeStart() const { return lifetime_start_; }
963  size_t GetLifetimeEnd() const { return lifetime_end_; }
964
965  void SetLifetimeStart(size_t start) { lifetime_start_ = start; }
966  void SetLifetimeEnd(size_t end) { lifetime_end_ = end; }
967
968  bool EndsWithControlFlowInstruction() const;
969  bool EndsWithIf() const;
970  bool EndsWithTryBoundary() const;
971  bool HasSinglePhi() const;
972
973 private:
974  HGraph* graph_;
975  ArenaVector<HBasicBlock*> predecessors_;
976  ArenaVector<HBasicBlock*> successors_;
977  HInstructionList instructions_;
978  HInstructionList phis_;
979  HLoopInformation* loop_information_;
980  HBasicBlock* dominator_;
981  ArenaVector<HBasicBlock*> dominated_blocks_;
982  uint32_t block_id_;
983  // The dex program counter of the first instruction of this block.
984  const uint32_t dex_pc_;
985  size_t lifetime_start_;
986  size_t lifetime_end_;
987  TryCatchInformation* try_catch_information_;
988
989  friend class HGraph;
990  friend class HInstruction;
991
992  DISALLOW_COPY_AND_ASSIGN(HBasicBlock);
993};
994
995// Iterates over the LoopInformation of all loops which contain 'block'
996// from the innermost to the outermost.
997class HLoopInformationOutwardIterator : public ValueObject {
998 public:
999  explicit HLoopInformationOutwardIterator(const HBasicBlock& block)
1000      : current_(block.GetLoopInformation()) {}
1001
1002  bool Done() const { return current_ == nullptr; }
1003
1004  void Advance() {
1005    DCHECK(!Done());
1006    current_ = current_->GetPreHeader()->GetLoopInformation();
1007  }
1008
1009  HLoopInformation* Current() const {
1010    DCHECK(!Done());
1011    return current_;
1012  }
1013
1014 private:
1015  HLoopInformation* current_;
1016
1017  DISALLOW_COPY_AND_ASSIGN(HLoopInformationOutwardIterator);
1018};
1019
1020#define FOR_EACH_CONCRETE_INSTRUCTION_COMMON(M)                         \
1021  M(Above, Condition)                                                   \
1022  M(AboveOrEqual, Condition)                                            \
1023  M(Add, BinaryOperation)                                               \
1024  M(And, BinaryOperation)                                               \
1025  M(ArrayGet, Instruction)                                              \
1026  M(ArrayLength, Instruction)                                           \
1027  M(ArraySet, Instruction)                                              \
1028  M(Below, Condition)                                                   \
1029  M(BelowOrEqual, Condition)                                            \
1030  M(BooleanNot, UnaryOperation)                                         \
1031  M(BoundsCheck, Instruction)                                           \
1032  M(BoundType, Instruction)                                             \
1033  M(CheckCast, Instruction)                                             \
1034  M(ClearException, Instruction)                                        \
1035  M(ClinitCheck, Instruction)                                           \
1036  M(Compare, BinaryOperation)                                           \
1037  M(CurrentMethod, Instruction)                                         \
1038  M(Deoptimize, Instruction)                                            \
1039  M(Div, BinaryOperation)                                               \
1040  M(DivZeroCheck, Instruction)                                          \
1041  M(DoubleConstant, Constant)                                           \
1042  M(Equal, Condition)                                                   \
1043  M(Exit, Instruction)                                                  \
1044  M(FakeString, Instruction)                                            \
1045  M(FloatConstant, Constant)                                            \
1046  M(Goto, Instruction)                                                  \
1047  M(GreaterThan, Condition)                                             \
1048  M(GreaterThanOrEqual, Condition)                                      \
1049  M(If, Instruction)                                                    \
1050  M(InstanceFieldGet, Instruction)                                      \
1051  M(InstanceFieldSet, Instruction)                                      \
1052  M(InstanceOf, Instruction)                                            \
1053  M(IntConstant, Constant)                                              \
1054  M(InvokeUnresolved, Invoke)                                           \
1055  M(InvokeInterface, Invoke)                                            \
1056  M(InvokeStaticOrDirect, Invoke)                                       \
1057  M(InvokeVirtual, Invoke)                                              \
1058  M(LessThan, Condition)                                                \
1059  M(LessThanOrEqual, Condition)                                         \
1060  M(LoadClass, Instruction)                                             \
1061  M(LoadException, Instruction)                                         \
1062  M(LoadLocal, Instruction)                                             \
1063  M(LoadString, Instruction)                                            \
1064  M(Local, Instruction)                                                 \
1065  M(LongConstant, Constant)                                             \
1066  M(MemoryBarrier, Instruction)                                         \
1067  M(MonitorOperation, Instruction)                                      \
1068  M(Mul, BinaryOperation)                                               \
1069  M(NativeDebugInfo, Instruction)                                       \
1070  M(Neg, UnaryOperation)                                                \
1071  M(NewArray, Instruction)                                              \
1072  M(NewInstance, Instruction)                                           \
1073  M(Not, UnaryOperation)                                                \
1074  M(NotEqual, Condition)                                                \
1075  M(NullConstant, Instruction)                                          \
1076  M(NullCheck, Instruction)                                             \
1077  M(Or, BinaryOperation)                                                \
1078  M(PackedSwitch, Instruction)                                          \
1079  M(ParallelMove, Instruction)                                          \
1080  M(ParameterValue, Instruction)                                        \
1081  M(Phi, Instruction)                                                   \
1082  M(Rem, BinaryOperation)                                               \
1083  M(Return, Instruction)                                                \
1084  M(ReturnVoid, Instruction)                                            \
1085  M(Ror, BinaryOperation)                                               \
1086  M(Shl, BinaryOperation)                                               \
1087  M(Shr, BinaryOperation)                                               \
1088  M(StaticFieldGet, Instruction)                                        \
1089  M(StaticFieldSet, Instruction)                                        \
1090  M(UnresolvedInstanceFieldGet, Instruction)                            \
1091  M(UnresolvedInstanceFieldSet, Instruction)                            \
1092  M(UnresolvedStaticFieldGet, Instruction)                              \
1093  M(UnresolvedStaticFieldSet, Instruction)                              \
1094  M(StoreLocal, Instruction)                                            \
1095  M(Sub, BinaryOperation)                                               \
1096  M(SuspendCheck, Instruction)                                          \
1097  M(Temporary, Instruction)                                             \
1098  M(Throw, Instruction)                                                 \
1099  M(TryBoundary, Instruction)                                           \
1100  M(TypeConversion, Instruction)                                        \
1101  M(UShr, BinaryOperation)                                              \
1102  M(Xor, BinaryOperation)                                               \
1103
1104#ifndef ART_ENABLE_CODEGEN_arm
1105#define FOR_EACH_CONCRETE_INSTRUCTION_ARM(M)
1106#else
1107#define FOR_EACH_CONCRETE_INSTRUCTION_ARM(M)                            \
1108  M(ArmDexCacheArraysBase, Instruction)
1109#endif
1110
1111#ifndef ART_ENABLE_CODEGEN_arm64
1112#define FOR_EACH_CONCRETE_INSTRUCTION_ARM64(M)
1113#else
1114#define FOR_EACH_CONCRETE_INSTRUCTION_ARM64(M)                          \
1115  M(Arm64DataProcWithShifterOp, Instruction)                            \
1116  M(Arm64IntermediateAddress, Instruction)                              \
1117  M(Arm64MultiplyAccumulate, Instruction)
1118#endif
1119
1120#define FOR_EACH_CONCRETE_INSTRUCTION_MIPS(M)
1121
1122#define FOR_EACH_CONCRETE_INSTRUCTION_MIPS64(M)
1123
1124#ifndef ART_ENABLE_CODEGEN_x86
1125#define FOR_EACH_CONCRETE_INSTRUCTION_X86(M)
1126#else
1127#define FOR_EACH_CONCRETE_INSTRUCTION_X86(M)                            \
1128  M(X86ComputeBaseMethodAddress, Instruction)                           \
1129  M(X86LoadFromConstantTable, Instruction)                              \
1130  M(X86PackedSwitch, Instruction)
1131#endif
1132
1133#define FOR_EACH_CONCRETE_INSTRUCTION_X86_64(M)
1134
1135#define FOR_EACH_CONCRETE_INSTRUCTION(M)                                \
1136  FOR_EACH_CONCRETE_INSTRUCTION_COMMON(M)                               \
1137  FOR_EACH_CONCRETE_INSTRUCTION_ARM(M)                                  \
1138  FOR_EACH_CONCRETE_INSTRUCTION_ARM64(M)                                \
1139  FOR_EACH_CONCRETE_INSTRUCTION_MIPS(M)                                 \
1140  FOR_EACH_CONCRETE_INSTRUCTION_MIPS64(M)                               \
1141  FOR_EACH_CONCRETE_INSTRUCTION_X86(M)                                  \
1142  FOR_EACH_CONCRETE_INSTRUCTION_X86_64(M)
1143
1144#define FOR_EACH_ABSTRACT_INSTRUCTION(M)                                \
1145  M(Condition, BinaryOperation)                                         \
1146  M(Constant, Instruction)                                              \
1147  M(UnaryOperation, Instruction)                                        \
1148  M(BinaryOperation, Instruction)                                       \
1149  M(Invoke, Instruction)
1150
1151#define FOR_EACH_INSTRUCTION(M)                                         \
1152  FOR_EACH_CONCRETE_INSTRUCTION(M)                                      \
1153  FOR_EACH_ABSTRACT_INSTRUCTION(M)
1154
1155#define FORWARD_DECLARATION(type, super) class H##type;
1156FOR_EACH_INSTRUCTION(FORWARD_DECLARATION)
1157#undef FORWARD_DECLARATION
1158
1159#define DECLARE_INSTRUCTION(type)                                       \
1160  InstructionKind GetKindInternal() const OVERRIDE { return k##type; }  \
1161  const char* DebugName() const OVERRIDE { return #type; }              \
1162  bool InstructionTypeEquals(HInstruction* other) const OVERRIDE {      \
1163    return other->Is##type();                                           \
1164  }                                                                     \
1165  void Accept(HGraphVisitor* visitor) OVERRIDE
1166
1167#define DECLARE_ABSTRACT_INSTRUCTION(type)                              \
1168  bool Is##type() const { return As##type() != nullptr; }               \
1169  const H##type* As##type() const { return this; }                      \
1170  H##type* As##type() { return this; }
1171
1172template <typename T> class HUseList;
1173
1174template <typename T>
1175class HUseListNode : public ArenaObject<kArenaAllocUseListNode> {
1176 public:
1177  HUseListNode* GetPrevious() const { return prev_; }
1178  HUseListNode* GetNext() const { return next_; }
1179  T GetUser() const { return user_; }
1180  size_t GetIndex() const { return index_; }
1181  void SetIndex(size_t index) { index_ = index; }
1182
1183 private:
1184  HUseListNode(T user, size_t index)
1185      : user_(user), index_(index), prev_(nullptr), next_(nullptr) {}
1186
1187  T const user_;
1188  size_t index_;
1189  HUseListNode<T>* prev_;
1190  HUseListNode<T>* next_;
1191
1192  friend class HUseList<T>;
1193
1194  DISALLOW_COPY_AND_ASSIGN(HUseListNode);
1195};
1196
1197template <typename T>
1198class HUseList : public ValueObject {
1199 public:
1200  HUseList() : first_(nullptr) {}
1201
1202  void Clear() {
1203    first_ = nullptr;
1204  }
1205
1206  // Adds a new entry at the beginning of the use list and returns
1207  // the newly created node.
1208  HUseListNode<T>* AddUse(T user, size_t index, ArenaAllocator* arena) {
1209    HUseListNode<T>* new_node = new (arena) HUseListNode<T>(user, index);
1210    if (IsEmpty()) {
1211      first_ = new_node;
1212    } else {
1213      first_->prev_ = new_node;
1214      new_node->next_ = first_;
1215      first_ = new_node;
1216    }
1217    return new_node;
1218  }
1219
1220  HUseListNode<T>* GetFirst() const {
1221    return first_;
1222  }
1223
1224  void Remove(HUseListNode<T>* node) {
1225    DCHECK(node != nullptr);
1226    DCHECK(Contains(node));
1227
1228    if (node->prev_ != nullptr) {
1229      node->prev_->next_ = node->next_;
1230    }
1231    if (node->next_ != nullptr) {
1232      node->next_->prev_ = node->prev_;
1233    }
1234    if (node == first_) {
1235      first_ = node->next_;
1236    }
1237  }
1238
1239  bool Contains(const HUseListNode<T>* node) const {
1240    if (node == nullptr) {
1241      return false;
1242    }
1243    for (HUseListNode<T>* current = first_; current != nullptr; current = current->GetNext()) {
1244      if (current == node) {
1245        return true;
1246      }
1247    }
1248    return false;
1249  }
1250
1251  bool IsEmpty() const {
1252    return first_ == nullptr;
1253  }
1254
1255  bool HasOnlyOneUse() const {
1256    return first_ != nullptr && first_->next_ == nullptr;
1257  }
1258
1259  size_t SizeSlow() const {
1260    size_t count = 0;
1261    for (HUseListNode<T>* current = first_; current != nullptr; current = current->GetNext()) {
1262      ++count;
1263    }
1264    return count;
1265  }
1266
1267 private:
1268  HUseListNode<T>* first_;
1269};
1270
1271template<typename T>
1272class HUseIterator : public ValueObject {
1273 public:
1274  explicit HUseIterator(const HUseList<T>& uses) : current_(uses.GetFirst()) {}
1275
1276  bool Done() const { return current_ == nullptr; }
1277
1278  void Advance() {
1279    DCHECK(!Done());
1280    current_ = current_->GetNext();
1281  }
1282
1283  HUseListNode<T>* Current() const {
1284    DCHECK(!Done());
1285    return current_;
1286  }
1287
1288 private:
1289  HUseListNode<T>* current_;
1290
1291  friend class HValue;
1292};
1293
1294// This class is used by HEnvironment and HInstruction classes to record the
1295// instructions they use and pointers to the corresponding HUseListNodes kept
1296// by the used instructions.
1297template <typename T>
1298class HUserRecord : public ValueObject {
1299 public:
1300  HUserRecord() : instruction_(nullptr), use_node_(nullptr) {}
1301  explicit HUserRecord(HInstruction* instruction) : instruction_(instruction), use_node_(nullptr) {}
1302
1303  HUserRecord(const HUserRecord<T>& old_record, HUseListNode<T>* use_node)
1304    : instruction_(old_record.instruction_), use_node_(use_node) {
1305    DCHECK(instruction_ != nullptr);
1306    DCHECK(use_node_ != nullptr);
1307    DCHECK(old_record.use_node_ == nullptr);
1308  }
1309
1310  HInstruction* GetInstruction() const { return instruction_; }
1311  HUseListNode<T>* GetUseNode() const { return use_node_; }
1312
1313 private:
1314  // Instruction used by the user.
1315  HInstruction* instruction_;
1316
1317  // Corresponding entry in the use list kept by 'instruction_'.
1318  HUseListNode<T>* use_node_;
1319};
1320
1321/**
1322 * Side-effects representation.
1323 *
1324 * For write/read dependences on fields/arrays, the dependence analysis uses
1325 * type disambiguation (e.g. a float field write cannot modify the value of an
1326 * integer field read) and the access type (e.g.  a reference array write cannot
1327 * modify the value of a reference field read [although it may modify the
1328 * reference fetch prior to reading the field, which is represented by its own
1329 * write/read dependence]). The analysis makes conservative points-to
1330 * assumptions on reference types (e.g. two same typed arrays are assumed to be
1331 * the same, and any reference read depends on any reference read without
1332 * further regard of its type).
1333 *
1334 * The internal representation uses 38-bit and is described in the table below.
1335 * The first line indicates the side effect, and for field/array accesses the
1336 * second line indicates the type of the access (in the order of the
1337 * Primitive::Type enum).
1338 * The two numbered lines below indicate the bit position in the bitfield (read
1339 * vertically).
1340 *
1341 *   |Depends on GC|ARRAY-R  |FIELD-R  |Can trigger GC|ARRAY-W  |FIELD-W  |
1342 *   +-------------+---------+---------+--------------+---------+---------+
1343 *   |             |DFJISCBZL|DFJISCBZL|              |DFJISCBZL|DFJISCBZL|
1344 *   |      3      |333333322|222222221|       1      |111111110|000000000|
1345 *   |      7      |654321098|765432109|       8      |765432109|876543210|
1346 *
1347 * Note that, to ease the implementation, 'changes' bits are least significant
1348 * bits, while 'dependency' bits are most significant bits.
1349 */
1350class SideEffects : public ValueObject {
1351 public:
1352  SideEffects() : flags_(0) {}
1353
1354  static SideEffects None() {
1355    return SideEffects(0);
1356  }
1357
1358  static SideEffects All() {
1359    return SideEffects(kAllChangeBits | kAllDependOnBits);
1360  }
1361
1362  static SideEffects AllChanges() {
1363    return SideEffects(kAllChangeBits);
1364  }
1365
1366  static SideEffects AllDependencies() {
1367    return SideEffects(kAllDependOnBits);
1368  }
1369
1370  static SideEffects AllExceptGCDependency() {
1371    return AllWritesAndReads().Union(SideEffects::CanTriggerGC());
1372  }
1373
1374  static SideEffects AllWritesAndReads() {
1375    return SideEffects(kAllWrites | kAllReads);
1376  }
1377
1378  static SideEffects AllWrites() {
1379    return SideEffects(kAllWrites);
1380  }
1381
1382  static SideEffects AllReads() {
1383    return SideEffects(kAllReads);
1384  }
1385
1386  static SideEffects FieldWriteOfType(Primitive::Type type, bool is_volatile) {
1387    return is_volatile
1388        ? AllWritesAndReads()
1389        : SideEffects(TypeFlagWithAlias(type, kFieldWriteOffset));
1390  }
1391
1392  static SideEffects ArrayWriteOfType(Primitive::Type type) {
1393    return SideEffects(TypeFlagWithAlias(type, kArrayWriteOffset));
1394  }
1395
1396  static SideEffects FieldReadOfType(Primitive::Type type, bool is_volatile) {
1397    return is_volatile
1398        ? AllWritesAndReads()
1399        : SideEffects(TypeFlagWithAlias(type, kFieldReadOffset));
1400  }
1401
1402  static SideEffects ArrayReadOfType(Primitive::Type type) {
1403    return SideEffects(TypeFlagWithAlias(type, kArrayReadOffset));
1404  }
1405
1406  static SideEffects CanTriggerGC() {
1407    return SideEffects(1ULL << kCanTriggerGCBit);
1408  }
1409
1410  static SideEffects DependsOnGC() {
1411    return SideEffects(1ULL << kDependsOnGCBit);
1412  }
1413
1414  // Combines the side-effects of this and the other.
1415  SideEffects Union(SideEffects other) const {
1416    return SideEffects(flags_ | other.flags_);
1417  }
1418
1419  SideEffects Exclusion(SideEffects other) const {
1420    return SideEffects(flags_ & ~other.flags_);
1421  }
1422
1423  void Add(SideEffects other) {
1424    flags_ |= other.flags_;
1425  }
1426
1427  bool Includes(SideEffects other) const {
1428    return (other.flags_ & flags_) == other.flags_;
1429  }
1430
1431  bool HasSideEffects() const {
1432    return (flags_ & kAllChangeBits);
1433  }
1434
1435  bool HasDependencies() const {
1436    return (flags_ & kAllDependOnBits);
1437  }
1438
1439  // Returns true if there are no side effects or dependencies.
1440  bool DoesNothing() const {
1441    return flags_ == 0;
1442  }
1443
1444  // Returns true if something is written.
1445  bool DoesAnyWrite() const {
1446    return (flags_ & kAllWrites);
1447  }
1448
1449  // Returns true if something is read.
1450  bool DoesAnyRead() const {
1451    return (flags_ & kAllReads);
1452  }
1453
1454  // Returns true if potentially everything is written and read
1455  // (every type and every kind of access).
1456  bool DoesAllReadWrite() const {
1457    return (flags_ & (kAllWrites | kAllReads)) == (kAllWrites | kAllReads);
1458  }
1459
1460  bool DoesAll() const {
1461    return flags_ == (kAllChangeBits | kAllDependOnBits);
1462  }
1463
1464  // Returns true if `this` may read something written by `other`.
1465  bool MayDependOn(SideEffects other) const {
1466    const uint64_t depends_on_flags = (flags_ & kAllDependOnBits) >> kChangeBits;
1467    return (other.flags_ & depends_on_flags);
1468  }
1469
1470  // Returns string representation of flags (for debugging only).
1471  // Format: |x|DFJISCBZL|DFJISCBZL|y|DFJISCBZL|DFJISCBZL|
1472  std::string ToString() const {
1473    std::string flags = "|";
1474    for (int s = kLastBit; s >= 0; s--) {
1475      bool current_bit_is_set = ((flags_ >> s) & 1) != 0;
1476      if ((s == kDependsOnGCBit) || (s == kCanTriggerGCBit)) {
1477        // This is a bit for the GC side effect.
1478        if (current_bit_is_set) {
1479          flags += "GC";
1480        }
1481        flags += "|";
1482      } else {
1483        // This is a bit for the array/field analysis.
1484        // The underscore character stands for the 'can trigger GC' bit.
1485        static const char *kDebug = "LZBCSIJFDLZBCSIJFD_LZBCSIJFDLZBCSIJFD";
1486        if (current_bit_is_set) {
1487          flags += kDebug[s];
1488        }
1489        if ((s == kFieldWriteOffset) || (s == kArrayWriteOffset) ||
1490            (s == kFieldReadOffset) || (s == kArrayReadOffset)) {
1491          flags += "|";
1492        }
1493      }
1494    }
1495    return flags;
1496  }
1497
1498  bool Equals(const SideEffects& other) const { return flags_ == other.flags_; }
1499
1500 private:
1501  static constexpr int kFieldArrayAnalysisBits = 9;
1502
1503  static constexpr int kFieldWriteOffset = 0;
1504  static constexpr int kArrayWriteOffset = kFieldWriteOffset + kFieldArrayAnalysisBits;
1505  static constexpr int kLastBitForWrites = kArrayWriteOffset + kFieldArrayAnalysisBits - 1;
1506  static constexpr int kCanTriggerGCBit = kLastBitForWrites + 1;
1507
1508  static constexpr int kChangeBits = kCanTriggerGCBit + 1;
1509
1510  static constexpr int kFieldReadOffset = kCanTriggerGCBit + 1;
1511  static constexpr int kArrayReadOffset = kFieldReadOffset + kFieldArrayAnalysisBits;
1512  static constexpr int kLastBitForReads = kArrayReadOffset + kFieldArrayAnalysisBits - 1;
1513  static constexpr int kDependsOnGCBit = kLastBitForReads + 1;
1514
1515  static constexpr int kLastBit = kDependsOnGCBit;
1516  static constexpr int kDependOnBits = kLastBit + 1 - kChangeBits;
1517
1518  // Aliases.
1519
1520  static_assert(kChangeBits == kDependOnBits,
1521                "the 'change' bits should match the 'depend on' bits.");
1522
1523  static constexpr uint64_t kAllChangeBits = ((1ULL << kChangeBits) - 1);
1524  static constexpr uint64_t kAllDependOnBits = ((1ULL << kDependOnBits) - 1) << kChangeBits;
1525  static constexpr uint64_t kAllWrites =
1526      ((1ULL << (kLastBitForWrites + 1 - kFieldWriteOffset)) - 1) << kFieldWriteOffset;
1527  static constexpr uint64_t kAllReads =
1528      ((1ULL << (kLastBitForReads + 1 - kFieldReadOffset)) - 1) << kFieldReadOffset;
1529
1530  // Work around the fact that HIR aliases I/F and J/D.
1531  // TODO: remove this interceptor once HIR types are clean
1532  static uint64_t TypeFlagWithAlias(Primitive::Type type, int offset) {
1533    switch (type) {
1534      case Primitive::kPrimInt:
1535      case Primitive::kPrimFloat:
1536        return TypeFlag(Primitive::kPrimInt, offset) |
1537               TypeFlag(Primitive::kPrimFloat, offset);
1538      case Primitive::kPrimLong:
1539      case Primitive::kPrimDouble:
1540        return TypeFlag(Primitive::kPrimLong, offset) |
1541               TypeFlag(Primitive::kPrimDouble, offset);
1542      default:
1543        return TypeFlag(type, offset);
1544    }
1545  }
1546
1547  // Translates type to bit flag.
1548  static uint64_t TypeFlag(Primitive::Type type, int offset) {
1549    CHECK_NE(type, Primitive::kPrimVoid);
1550    const uint64_t one = 1;
1551    const int shift = type;  // 0-based consecutive enum
1552    DCHECK_LE(kFieldWriteOffset, shift);
1553    DCHECK_LT(shift, kArrayWriteOffset);
1554    return one << (type + offset);
1555  }
1556
1557  // Private constructor on direct flags value.
1558  explicit SideEffects(uint64_t flags) : flags_(flags) {}
1559
1560  uint64_t flags_;
1561};
1562
1563// A HEnvironment object contains the values of virtual registers at a given location.
1564class HEnvironment : public ArenaObject<kArenaAllocEnvironment> {
1565 public:
1566  HEnvironment(ArenaAllocator* arena,
1567               size_t number_of_vregs,
1568               const DexFile& dex_file,
1569               uint32_t method_idx,
1570               uint32_t dex_pc,
1571               InvokeType invoke_type,
1572               HInstruction* holder)
1573     : vregs_(number_of_vregs, arena->Adapter(kArenaAllocEnvironmentVRegs)),
1574       locations_(number_of_vregs, arena->Adapter(kArenaAllocEnvironmentLocations)),
1575       parent_(nullptr),
1576       dex_file_(dex_file),
1577       method_idx_(method_idx),
1578       dex_pc_(dex_pc),
1579       invoke_type_(invoke_type),
1580       holder_(holder) {
1581  }
1582
1583  HEnvironment(ArenaAllocator* arena, const HEnvironment& to_copy, HInstruction* holder)
1584      : HEnvironment(arena,
1585                     to_copy.Size(),
1586                     to_copy.GetDexFile(),
1587                     to_copy.GetMethodIdx(),
1588                     to_copy.GetDexPc(),
1589                     to_copy.GetInvokeType(),
1590                     holder) {}
1591
1592  void SetAndCopyParentChain(ArenaAllocator* allocator, HEnvironment* parent) {
1593    if (parent_ != nullptr) {
1594      parent_->SetAndCopyParentChain(allocator, parent);
1595    } else {
1596      parent_ = new (allocator) HEnvironment(allocator, *parent, holder_);
1597      parent_->CopyFrom(parent);
1598      if (parent->GetParent() != nullptr) {
1599        parent_->SetAndCopyParentChain(allocator, parent->GetParent());
1600      }
1601    }
1602  }
1603
1604  void CopyFrom(const ArenaVector<HInstruction*>& locals);
1605  void CopyFrom(HEnvironment* environment);
1606
1607  // Copy from `env`. If it's a loop phi for `loop_header`, copy the first
1608  // input to the loop phi instead. This is for inserting instructions that
1609  // require an environment (like HDeoptimization) in the loop pre-header.
1610  void CopyFromWithLoopPhiAdjustment(HEnvironment* env, HBasicBlock* loop_header);
1611
1612  void SetRawEnvAt(size_t index, HInstruction* instruction) {
1613    vregs_[index] = HUserRecord<HEnvironment*>(instruction);
1614  }
1615
1616  HInstruction* GetInstructionAt(size_t index) const {
1617    return vregs_[index].GetInstruction();
1618  }
1619
1620  void RemoveAsUserOfInput(size_t index) const;
1621
1622  size_t Size() const { return vregs_.size(); }
1623
1624  HEnvironment* GetParent() const { return parent_; }
1625
1626  void SetLocationAt(size_t index, Location location) {
1627    locations_[index] = location;
1628  }
1629
1630  Location GetLocationAt(size_t index) const {
1631    return locations_[index];
1632  }
1633
1634  uint32_t GetDexPc() const {
1635    return dex_pc_;
1636  }
1637
1638  uint32_t GetMethodIdx() const {
1639    return method_idx_;
1640  }
1641
1642  InvokeType GetInvokeType() const {
1643    return invoke_type_;
1644  }
1645
1646  const DexFile& GetDexFile() const {
1647    return dex_file_;
1648  }
1649
1650  HInstruction* GetHolder() const {
1651    return holder_;
1652  }
1653
1654
1655  bool IsFromInlinedInvoke() const {
1656    return GetParent() != nullptr;
1657  }
1658
1659 private:
1660  // Record instructions' use entries of this environment for constant-time removal.
1661  // It should only be called by HInstruction when a new environment use is added.
1662  void RecordEnvUse(HUseListNode<HEnvironment*>* env_use) {
1663    DCHECK(env_use->GetUser() == this);
1664    size_t index = env_use->GetIndex();
1665    vregs_[index] = HUserRecord<HEnvironment*>(vregs_[index], env_use);
1666  }
1667
1668  ArenaVector<HUserRecord<HEnvironment*>> vregs_;
1669  ArenaVector<Location> locations_;
1670  HEnvironment* parent_;
1671  const DexFile& dex_file_;
1672  const uint32_t method_idx_;
1673  const uint32_t dex_pc_;
1674  const InvokeType invoke_type_;
1675
1676  // The instruction that holds this environment.
1677  HInstruction* const holder_;
1678
1679  friend class HInstruction;
1680
1681  DISALLOW_COPY_AND_ASSIGN(HEnvironment);
1682};
1683
1684class ReferenceTypeInfo : ValueObject {
1685 public:
1686  typedef Handle<mirror::Class> TypeHandle;
1687
1688  static ReferenceTypeInfo Create(TypeHandle type_handle, bool is_exact) {
1689    // The constructor will check that the type_handle is valid.
1690    return ReferenceTypeInfo(type_handle, is_exact);
1691  }
1692
1693  static ReferenceTypeInfo CreateInvalid() { return ReferenceTypeInfo(); }
1694
1695  static bool IsValidHandle(TypeHandle handle) SHARED_REQUIRES(Locks::mutator_lock_) {
1696    return handle.GetReference() != nullptr;
1697  }
1698
1699  bool IsValid() const SHARED_REQUIRES(Locks::mutator_lock_) {
1700    return IsValidHandle(type_handle_);
1701  }
1702
1703  bool IsExact() const { return is_exact_; }
1704
1705  bool IsObjectClass() const SHARED_REQUIRES(Locks::mutator_lock_) {
1706    DCHECK(IsValid());
1707    return GetTypeHandle()->IsObjectClass();
1708  }
1709
1710  bool IsStringClass() const SHARED_REQUIRES(Locks::mutator_lock_) {
1711    DCHECK(IsValid());
1712    return GetTypeHandle()->IsStringClass();
1713  }
1714
1715  bool IsObjectArray() const SHARED_REQUIRES(Locks::mutator_lock_) {
1716    DCHECK(IsValid());
1717    return IsArrayClass() && GetTypeHandle()->GetComponentType()->IsObjectClass();
1718  }
1719
1720  bool IsInterface() const SHARED_REQUIRES(Locks::mutator_lock_) {
1721    DCHECK(IsValid());
1722    return GetTypeHandle()->IsInterface();
1723  }
1724
1725  bool IsArrayClass() const SHARED_REQUIRES(Locks::mutator_lock_) {
1726    DCHECK(IsValid());
1727    return GetTypeHandle()->IsArrayClass();
1728  }
1729
1730  bool IsPrimitiveArrayClass() const SHARED_REQUIRES(Locks::mutator_lock_) {
1731    DCHECK(IsValid());
1732    return GetTypeHandle()->IsPrimitiveArray();
1733  }
1734
1735  bool IsNonPrimitiveArrayClass() const SHARED_REQUIRES(Locks::mutator_lock_) {
1736    DCHECK(IsValid());
1737    return GetTypeHandle()->IsArrayClass() && !GetTypeHandle()->IsPrimitiveArray();
1738  }
1739
1740  bool CanArrayHold(ReferenceTypeInfo rti)  const SHARED_REQUIRES(Locks::mutator_lock_) {
1741    DCHECK(IsValid());
1742    if (!IsExact()) return false;
1743    if (!IsArrayClass()) return false;
1744    return GetTypeHandle()->GetComponentType()->IsAssignableFrom(rti.GetTypeHandle().Get());
1745  }
1746
1747  bool CanArrayHoldValuesOf(ReferenceTypeInfo rti)  const SHARED_REQUIRES(Locks::mutator_lock_) {
1748    DCHECK(IsValid());
1749    if (!IsExact()) return false;
1750    if (!IsArrayClass()) return false;
1751    if (!rti.IsArrayClass()) return false;
1752    return GetTypeHandle()->GetComponentType()->IsAssignableFrom(
1753        rti.GetTypeHandle()->GetComponentType());
1754  }
1755
1756  Handle<mirror::Class> GetTypeHandle() const { return type_handle_; }
1757
1758  bool IsSupertypeOf(ReferenceTypeInfo rti) const SHARED_REQUIRES(Locks::mutator_lock_) {
1759    DCHECK(IsValid());
1760    DCHECK(rti.IsValid());
1761    return GetTypeHandle()->IsAssignableFrom(rti.GetTypeHandle().Get());
1762  }
1763
1764  bool IsStrictSupertypeOf(ReferenceTypeInfo rti) const SHARED_REQUIRES(Locks::mutator_lock_) {
1765    DCHECK(IsValid());
1766    DCHECK(rti.IsValid());
1767    return GetTypeHandle().Get() != rti.GetTypeHandle().Get() &&
1768        GetTypeHandle()->IsAssignableFrom(rti.GetTypeHandle().Get());
1769  }
1770
1771  // Returns true if the type information provide the same amount of details.
1772  // Note that it does not mean that the instructions have the same actual type
1773  // (because the type can be the result of a merge).
1774  bool IsEqual(ReferenceTypeInfo rti) SHARED_REQUIRES(Locks::mutator_lock_) {
1775    if (!IsValid() && !rti.IsValid()) {
1776      // Invalid types are equal.
1777      return true;
1778    }
1779    if (!IsValid() || !rti.IsValid()) {
1780      // One is valid, the other not.
1781      return false;
1782    }
1783    return IsExact() == rti.IsExact()
1784        && GetTypeHandle().Get() == rti.GetTypeHandle().Get();
1785  }
1786
1787 private:
1788  ReferenceTypeInfo();
1789  ReferenceTypeInfo(TypeHandle type_handle, bool is_exact);
1790
1791  // The class of the object.
1792  TypeHandle type_handle_;
1793  // Whether or not the type is exact or a superclass of the actual type.
1794  // Whether or not we have any information about this type.
1795  bool is_exact_;
1796};
1797
1798std::ostream& operator<<(std::ostream& os, const ReferenceTypeInfo& rhs);
1799
1800class HInstruction : public ArenaObject<kArenaAllocInstruction> {
1801 public:
1802  HInstruction(SideEffects side_effects, uint32_t dex_pc)
1803      : previous_(nullptr),
1804        next_(nullptr),
1805        block_(nullptr),
1806        dex_pc_(dex_pc),
1807        id_(-1),
1808        ssa_index_(-1),
1809        environment_(nullptr),
1810        locations_(nullptr),
1811        live_interval_(nullptr),
1812        lifetime_position_(kNoLifetime),
1813        side_effects_(side_effects),
1814        reference_type_info_(ReferenceTypeInfo::CreateInvalid()) {}
1815
1816  virtual ~HInstruction() {}
1817
1818#define DECLARE_KIND(type, super) k##type,
1819  enum InstructionKind {
1820    FOR_EACH_INSTRUCTION(DECLARE_KIND)
1821  };
1822#undef DECLARE_KIND
1823
1824  HInstruction* GetNext() const { return next_; }
1825  HInstruction* GetPrevious() const { return previous_; }
1826
1827  HInstruction* GetNextDisregardingMoves() const;
1828  HInstruction* GetPreviousDisregardingMoves() const;
1829
1830  HBasicBlock* GetBlock() const { return block_; }
1831  ArenaAllocator* GetArena() const { return block_->GetGraph()->GetArena(); }
1832  void SetBlock(HBasicBlock* block) { block_ = block; }
1833  bool IsInBlock() const { return block_ != nullptr; }
1834  bool IsInLoop() const { return block_->IsInLoop(); }
1835  bool IsLoopHeaderPhi() { return IsPhi() && block_->IsLoopHeader(); }
1836
1837  virtual size_t InputCount() const = 0;
1838  HInstruction* InputAt(size_t i) const { return InputRecordAt(i).GetInstruction(); }
1839
1840  virtual void Accept(HGraphVisitor* visitor) = 0;
1841  virtual const char* DebugName() const = 0;
1842
1843  virtual Primitive::Type GetType() const { return Primitive::kPrimVoid; }
1844  void SetRawInputAt(size_t index, HInstruction* input) {
1845    SetRawInputRecordAt(index, HUserRecord<HInstruction*>(input));
1846  }
1847
1848  virtual bool NeedsEnvironment() const { return false; }
1849
1850  uint32_t GetDexPc() const { return dex_pc_; }
1851
1852  virtual bool IsControlFlow() const { return false; }
1853
1854  virtual bool CanThrow() const { return false; }
1855  bool CanThrowIntoCatchBlock() const { return CanThrow() && block_->IsTryBlock(); }
1856
1857  bool HasSideEffects() const { return side_effects_.HasSideEffects(); }
1858  bool DoesAnyWrite() const { return side_effects_.DoesAnyWrite(); }
1859
1860  // Does not apply for all instructions, but having this at top level greatly
1861  // simplifies the null check elimination.
1862  // TODO: Consider merging can_be_null into ReferenceTypeInfo.
1863  virtual bool CanBeNull() const {
1864    DCHECK_EQ(GetType(), Primitive::kPrimNot) << "CanBeNull only applies to reference types";
1865    return true;
1866  }
1867
1868  virtual bool CanDoImplicitNullCheckOn(HInstruction* obj ATTRIBUTE_UNUSED) const {
1869    return false;
1870  }
1871
1872  void SetReferenceTypeInfo(ReferenceTypeInfo rti);
1873
1874  ReferenceTypeInfo GetReferenceTypeInfo() const {
1875    DCHECK_EQ(GetType(), Primitive::kPrimNot);
1876    return reference_type_info_;
1877  }
1878
1879  void AddUseAt(HInstruction* user, size_t index) {
1880    DCHECK(user != nullptr);
1881    HUseListNode<HInstruction*>* use =
1882        uses_.AddUse(user, index, GetBlock()->GetGraph()->GetArena());
1883    user->SetRawInputRecordAt(index, HUserRecord<HInstruction*>(user->InputRecordAt(index), use));
1884  }
1885
1886  void AddEnvUseAt(HEnvironment* user, size_t index) {
1887    DCHECK(user != nullptr);
1888    HUseListNode<HEnvironment*>* env_use =
1889        env_uses_.AddUse(user, index, GetBlock()->GetGraph()->GetArena());
1890    user->RecordEnvUse(env_use);
1891  }
1892
1893  void RemoveAsUserOfInput(size_t input) {
1894    HUserRecord<HInstruction*> input_use = InputRecordAt(input);
1895    input_use.GetInstruction()->uses_.Remove(input_use.GetUseNode());
1896  }
1897
1898  const HUseList<HInstruction*>& GetUses() const { return uses_; }
1899  const HUseList<HEnvironment*>& GetEnvUses() const { return env_uses_; }
1900
1901  bool HasUses() const { return !uses_.IsEmpty() || !env_uses_.IsEmpty(); }
1902  bool HasEnvironmentUses() const { return !env_uses_.IsEmpty(); }
1903  bool HasNonEnvironmentUses() const { return !uses_.IsEmpty(); }
1904  bool HasOnlyOneNonEnvironmentUse() const {
1905    return !HasEnvironmentUses() && GetUses().HasOnlyOneUse();
1906  }
1907
1908  // Does this instruction strictly dominate `other_instruction`?
1909  // Returns false if this instruction and `other_instruction` are the same.
1910  // Aborts if this instruction and `other_instruction` are both phis.
1911  bool StrictlyDominates(HInstruction* other_instruction) const;
1912
1913  int GetId() const { return id_; }
1914  void SetId(int id) { id_ = id; }
1915
1916  int GetSsaIndex() const { return ssa_index_; }
1917  void SetSsaIndex(int ssa_index) { ssa_index_ = ssa_index; }
1918  bool HasSsaIndex() const { return ssa_index_ != -1; }
1919
1920  bool HasEnvironment() const { return environment_ != nullptr; }
1921  HEnvironment* GetEnvironment() const { return environment_; }
1922  // Set the `environment_` field. Raw because this method does not
1923  // update the uses lists.
1924  void SetRawEnvironment(HEnvironment* environment) {
1925    DCHECK(environment_ == nullptr);
1926    DCHECK_EQ(environment->GetHolder(), this);
1927    environment_ = environment;
1928  }
1929
1930  // Set the environment of this instruction, copying it from `environment`. While
1931  // copying, the uses lists are being updated.
1932  void CopyEnvironmentFrom(HEnvironment* environment) {
1933    DCHECK(environment_ == nullptr);
1934    ArenaAllocator* allocator = GetBlock()->GetGraph()->GetArena();
1935    environment_ = new (allocator) HEnvironment(allocator, *environment, this);
1936    environment_->CopyFrom(environment);
1937    if (environment->GetParent() != nullptr) {
1938      environment_->SetAndCopyParentChain(allocator, environment->GetParent());
1939    }
1940  }
1941
1942  void CopyEnvironmentFromWithLoopPhiAdjustment(HEnvironment* environment,
1943                                                HBasicBlock* block) {
1944    DCHECK(environment_ == nullptr);
1945    ArenaAllocator* allocator = GetBlock()->GetGraph()->GetArena();
1946    environment_ = new (allocator) HEnvironment(allocator, *environment, this);
1947    environment_->CopyFromWithLoopPhiAdjustment(environment, block);
1948    if (environment->GetParent() != nullptr) {
1949      environment_->SetAndCopyParentChain(allocator, environment->GetParent());
1950    }
1951  }
1952
1953  // Returns the number of entries in the environment. Typically, that is the
1954  // number of dex registers in a method. It could be more in case of inlining.
1955  size_t EnvironmentSize() const;
1956
1957  LocationSummary* GetLocations() const { return locations_; }
1958  void SetLocations(LocationSummary* locations) { locations_ = locations; }
1959
1960  void ReplaceWith(HInstruction* instruction);
1961  void ReplaceInput(HInstruction* replacement, size_t index);
1962
1963  // This is almost the same as doing `ReplaceWith()`. But in this helper, the
1964  // uses of this instruction by `other` are *not* updated.
1965  void ReplaceWithExceptInReplacementAtIndex(HInstruction* other, size_t use_index) {
1966    ReplaceWith(other);
1967    other->ReplaceInput(this, use_index);
1968  }
1969
1970  // Move `this` instruction before `cursor`.
1971  void MoveBefore(HInstruction* cursor);
1972
1973  // Move `this` before its first user and out of any loops. If there is no
1974  // out-of-loop user that dominates all other users, move the instruction
1975  // to the end of the out-of-loop common dominator of the user's blocks.
1976  //
1977  // This can be used only on non-throwing instructions with no side effects that
1978  // have at least one use but no environment uses.
1979  void MoveBeforeFirstUserAndOutOfLoops();
1980
1981#define INSTRUCTION_TYPE_CHECK(type, super)                                    \
1982  bool Is##type() const;                                                       \
1983  const H##type* As##type() const;                                             \
1984  H##type* As##type();
1985
1986  FOR_EACH_CONCRETE_INSTRUCTION(INSTRUCTION_TYPE_CHECK)
1987#undef INSTRUCTION_TYPE_CHECK
1988
1989#define INSTRUCTION_TYPE_CHECK(type, super)                                    \
1990  bool Is##type() const { return (As##type() != nullptr); }                    \
1991  virtual const H##type* As##type() const { return nullptr; }                  \
1992  virtual H##type* As##type() { return nullptr; }
1993  FOR_EACH_ABSTRACT_INSTRUCTION(INSTRUCTION_TYPE_CHECK)
1994#undef INSTRUCTION_TYPE_CHECK
1995
1996  // Returns whether the instruction can be moved within the graph.
1997  virtual bool CanBeMoved() const { return false; }
1998
1999  // Returns whether the two instructions are of the same kind.
2000  virtual bool InstructionTypeEquals(HInstruction* other ATTRIBUTE_UNUSED) const {
2001    return false;
2002  }
2003
2004  // Returns whether any data encoded in the two instructions is equal.
2005  // This method does not look at the inputs. Both instructions must be
2006  // of the same type, otherwise the method has undefined behavior.
2007  virtual bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const {
2008    return false;
2009  }
2010
2011  // Returns whether two instructions are equal, that is:
2012  // 1) They have the same type and contain the same data (InstructionDataEquals).
2013  // 2) Their inputs are identical.
2014  bool Equals(HInstruction* other) const;
2015
2016  // TODO: Remove this indirection when the [[pure]] attribute proposal (n3744)
2017  // is adopted and implemented by our C++ compiler(s). Fow now, we need to hide
2018  // the virtual function because the __attribute__((__pure__)) doesn't really
2019  // apply the strong requirement for virtual functions, preventing optimizations.
2020  InstructionKind GetKind() const PURE;
2021  virtual InstructionKind GetKindInternal() const = 0;
2022
2023  virtual size_t ComputeHashCode() const {
2024    size_t result = GetKind();
2025    for (size_t i = 0, e = InputCount(); i < e; ++i) {
2026      result = (result * 31) + InputAt(i)->GetId();
2027    }
2028    return result;
2029  }
2030
2031  SideEffects GetSideEffects() const { return side_effects_; }
2032  void AddSideEffects(SideEffects other) { side_effects_.Add(other); }
2033
2034  size_t GetLifetimePosition() const { return lifetime_position_; }
2035  void SetLifetimePosition(size_t position) { lifetime_position_ = position; }
2036  LiveInterval* GetLiveInterval() const { return live_interval_; }
2037  void SetLiveInterval(LiveInterval* interval) { live_interval_ = interval; }
2038  bool HasLiveInterval() const { return live_interval_ != nullptr; }
2039
2040  bool IsSuspendCheckEntry() const { return IsSuspendCheck() && GetBlock()->IsEntryBlock(); }
2041
2042  // Returns whether the code generation of the instruction will require to have access
2043  // to the current method. Such instructions are:
2044  // (1): Instructions that require an environment, as calling the runtime requires
2045  //      to walk the stack and have the current method stored at a specific stack address.
2046  // (2): Object literals like classes and strings, that are loaded from the dex cache
2047  //      fields of the current method.
2048  bool NeedsCurrentMethod() const {
2049    return NeedsEnvironment() || IsLoadClass() || IsLoadString();
2050  }
2051
2052  // Returns whether the code generation of the instruction will require to have access
2053  // to the dex cache of the current method's declaring class via the current method.
2054  virtual bool NeedsDexCacheOfDeclaringClass() const { return false; }
2055
2056  // Does this instruction have any use in an environment before
2057  // control flow hits 'other'?
2058  bool HasAnyEnvironmentUseBefore(HInstruction* other);
2059
2060  // Remove all references to environment uses of this instruction.
2061  // The caller must ensure that this is safe to do.
2062  void RemoveEnvironmentUsers();
2063
2064 protected:
2065  virtual const HUserRecord<HInstruction*> InputRecordAt(size_t i) const = 0;
2066  virtual void SetRawInputRecordAt(size_t index, const HUserRecord<HInstruction*>& input) = 0;
2067
2068 private:
2069  void RemoveEnvironmentUser(HUseListNode<HEnvironment*>* use_node) { env_uses_.Remove(use_node); }
2070
2071  HInstruction* previous_;
2072  HInstruction* next_;
2073  HBasicBlock* block_;
2074  const uint32_t dex_pc_;
2075
2076  // An instruction gets an id when it is added to the graph.
2077  // It reflects creation order. A negative id means the instruction
2078  // has not been added to the graph.
2079  int id_;
2080
2081  // When doing liveness analysis, instructions that have uses get an SSA index.
2082  int ssa_index_;
2083
2084  // List of instructions that have this instruction as input.
2085  HUseList<HInstruction*> uses_;
2086
2087  // List of environments that contain this instruction.
2088  HUseList<HEnvironment*> env_uses_;
2089
2090  // The environment associated with this instruction. Not null if the instruction
2091  // might jump out of the method.
2092  HEnvironment* environment_;
2093
2094  // Set by the code generator.
2095  LocationSummary* locations_;
2096
2097  // Set by the liveness analysis.
2098  LiveInterval* live_interval_;
2099
2100  // Set by the liveness analysis, this is the position in a linear
2101  // order of blocks where this instruction's live interval start.
2102  size_t lifetime_position_;
2103
2104  SideEffects side_effects_;
2105
2106  // TODO: for primitive types this should be marked as invalid.
2107  ReferenceTypeInfo reference_type_info_;
2108
2109  friend class GraphChecker;
2110  friend class HBasicBlock;
2111  friend class HEnvironment;
2112  friend class HGraph;
2113  friend class HInstructionList;
2114
2115  DISALLOW_COPY_AND_ASSIGN(HInstruction);
2116};
2117std::ostream& operator<<(std::ostream& os, const HInstruction::InstructionKind& rhs);
2118
2119class HInputIterator : public ValueObject {
2120 public:
2121  explicit HInputIterator(HInstruction* instruction) : instruction_(instruction), index_(0) {}
2122
2123  bool Done() const { return index_ == instruction_->InputCount(); }
2124  HInstruction* Current() const { return instruction_->InputAt(index_); }
2125  void Advance() { index_++; }
2126
2127 private:
2128  HInstruction* instruction_;
2129  size_t index_;
2130
2131  DISALLOW_COPY_AND_ASSIGN(HInputIterator);
2132};
2133
2134class HInstructionIterator : public ValueObject {
2135 public:
2136  explicit HInstructionIterator(const HInstructionList& instructions)
2137      : instruction_(instructions.first_instruction_) {
2138    next_ = Done() ? nullptr : instruction_->GetNext();
2139  }
2140
2141  bool Done() const { return instruction_ == nullptr; }
2142  HInstruction* Current() const { return instruction_; }
2143  void Advance() {
2144    instruction_ = next_;
2145    next_ = Done() ? nullptr : instruction_->GetNext();
2146  }
2147
2148 private:
2149  HInstruction* instruction_;
2150  HInstruction* next_;
2151
2152  DISALLOW_COPY_AND_ASSIGN(HInstructionIterator);
2153};
2154
2155class HBackwardInstructionIterator : public ValueObject {
2156 public:
2157  explicit HBackwardInstructionIterator(const HInstructionList& instructions)
2158      : instruction_(instructions.last_instruction_) {
2159    next_ = Done() ? nullptr : instruction_->GetPrevious();
2160  }
2161
2162  bool Done() const { return instruction_ == nullptr; }
2163  HInstruction* Current() const { return instruction_; }
2164  void Advance() {
2165    instruction_ = next_;
2166    next_ = Done() ? nullptr : instruction_->GetPrevious();
2167  }
2168
2169 private:
2170  HInstruction* instruction_;
2171  HInstruction* next_;
2172
2173  DISALLOW_COPY_AND_ASSIGN(HBackwardInstructionIterator);
2174};
2175
2176template<size_t N>
2177class HTemplateInstruction: public HInstruction {
2178 public:
2179  HTemplateInstruction<N>(SideEffects side_effects, uint32_t dex_pc)
2180      : HInstruction(side_effects, dex_pc), inputs_() {}
2181  virtual ~HTemplateInstruction() {}
2182
2183  size_t InputCount() const OVERRIDE { return N; }
2184
2185 protected:
2186  const HUserRecord<HInstruction*> InputRecordAt(size_t i) const OVERRIDE {
2187    DCHECK_LT(i, N);
2188    return inputs_[i];
2189  }
2190
2191  void SetRawInputRecordAt(size_t i, const HUserRecord<HInstruction*>& input) OVERRIDE {
2192    DCHECK_LT(i, N);
2193    inputs_[i] = input;
2194  }
2195
2196 private:
2197  std::array<HUserRecord<HInstruction*>, N> inputs_;
2198
2199  friend class SsaBuilder;
2200};
2201
2202// HTemplateInstruction specialization for N=0.
2203template<>
2204class HTemplateInstruction<0>: public HInstruction {
2205 public:
2206  explicit HTemplateInstruction<0>(SideEffects side_effects, uint32_t dex_pc)
2207      : HInstruction(side_effects, dex_pc) {}
2208
2209  virtual ~HTemplateInstruction() {}
2210
2211  size_t InputCount() const OVERRIDE { return 0; }
2212
2213 protected:
2214  const HUserRecord<HInstruction*> InputRecordAt(size_t i ATTRIBUTE_UNUSED) const OVERRIDE {
2215    LOG(FATAL) << "Unreachable";
2216    UNREACHABLE();
2217  }
2218
2219  void SetRawInputRecordAt(size_t i ATTRIBUTE_UNUSED,
2220                           const HUserRecord<HInstruction*>& input ATTRIBUTE_UNUSED) OVERRIDE {
2221    LOG(FATAL) << "Unreachable";
2222    UNREACHABLE();
2223  }
2224
2225 private:
2226  friend class SsaBuilder;
2227};
2228
2229template<intptr_t N>
2230class HExpression : public HTemplateInstruction<N> {
2231 public:
2232  HExpression<N>(Primitive::Type type, SideEffects side_effects, uint32_t dex_pc)
2233      : HTemplateInstruction<N>(side_effects, dex_pc), type_(type) {}
2234  virtual ~HExpression() {}
2235
2236  Primitive::Type GetType() const OVERRIDE { return type_; }
2237
2238 protected:
2239  Primitive::Type type_;
2240};
2241
2242// Represents dex's RETURN_VOID opcode. A HReturnVoid is a control flow
2243// instruction that branches to the exit block.
2244class HReturnVoid : public HTemplateInstruction<0> {
2245 public:
2246  explicit HReturnVoid(uint32_t dex_pc = kNoDexPc)
2247      : HTemplateInstruction(SideEffects::None(), dex_pc) {}
2248
2249  bool IsControlFlow() const OVERRIDE { return true; }
2250
2251  DECLARE_INSTRUCTION(ReturnVoid);
2252
2253 private:
2254  DISALLOW_COPY_AND_ASSIGN(HReturnVoid);
2255};
2256
2257// Represents dex's RETURN opcodes. A HReturn is a control flow
2258// instruction that branches to the exit block.
2259class HReturn : public HTemplateInstruction<1> {
2260 public:
2261  explicit HReturn(HInstruction* value, uint32_t dex_pc = kNoDexPc)
2262      : HTemplateInstruction(SideEffects::None(), dex_pc) {
2263    SetRawInputAt(0, value);
2264  }
2265
2266  bool IsControlFlow() const OVERRIDE { return true; }
2267
2268  DECLARE_INSTRUCTION(Return);
2269
2270 private:
2271  DISALLOW_COPY_AND_ASSIGN(HReturn);
2272};
2273
2274// The exit instruction is the only instruction of the exit block.
2275// Instructions aborting the method (HThrow and HReturn) must branch to the
2276// exit block.
2277class HExit : public HTemplateInstruction<0> {
2278 public:
2279  explicit HExit(uint32_t dex_pc = kNoDexPc) : HTemplateInstruction(SideEffects::None(), dex_pc) {}
2280
2281  bool IsControlFlow() const OVERRIDE { return true; }
2282
2283  DECLARE_INSTRUCTION(Exit);
2284
2285 private:
2286  DISALLOW_COPY_AND_ASSIGN(HExit);
2287};
2288
2289// Jumps from one block to another.
2290class HGoto : public HTemplateInstruction<0> {
2291 public:
2292  explicit HGoto(uint32_t dex_pc = kNoDexPc) : HTemplateInstruction(SideEffects::None(), dex_pc) {}
2293
2294  bool IsControlFlow() const OVERRIDE { return true; }
2295
2296  HBasicBlock* GetSuccessor() const {
2297    return GetBlock()->GetSingleSuccessor();
2298  }
2299
2300  DECLARE_INSTRUCTION(Goto);
2301
2302 private:
2303  DISALLOW_COPY_AND_ASSIGN(HGoto);
2304};
2305
2306class HConstant : public HExpression<0> {
2307 public:
2308  explicit HConstant(Primitive::Type type, uint32_t dex_pc = kNoDexPc)
2309      : HExpression(type, SideEffects::None(), dex_pc) {}
2310
2311  bool CanBeMoved() const OVERRIDE { return true; }
2312
2313  virtual bool IsMinusOne() const { return false; }
2314  virtual bool IsZero() const { return false; }
2315  virtual bool IsOne() const { return false; }
2316
2317  virtual uint64_t GetValueAsUint64() const = 0;
2318
2319  DECLARE_ABSTRACT_INSTRUCTION(Constant);
2320
2321 private:
2322  DISALLOW_COPY_AND_ASSIGN(HConstant);
2323};
2324
2325class HNullConstant : public HConstant {
2326 public:
2327  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
2328    return true;
2329  }
2330
2331  uint64_t GetValueAsUint64() const OVERRIDE { return 0; }
2332
2333  size_t ComputeHashCode() const OVERRIDE { return 0; }
2334
2335  DECLARE_INSTRUCTION(NullConstant);
2336
2337 private:
2338  explicit HNullConstant(uint32_t dex_pc = kNoDexPc) : HConstant(Primitive::kPrimNot, dex_pc) {}
2339
2340  friend class HGraph;
2341  DISALLOW_COPY_AND_ASSIGN(HNullConstant);
2342};
2343
2344// Constants of the type int. Those can be from Dex instructions, or
2345// synthesized (for example with the if-eqz instruction).
2346class HIntConstant : public HConstant {
2347 public:
2348  int32_t GetValue() const { return value_; }
2349
2350  uint64_t GetValueAsUint64() const OVERRIDE {
2351    return static_cast<uint64_t>(static_cast<uint32_t>(value_));
2352  }
2353
2354  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2355    DCHECK(other->IsIntConstant());
2356    return other->AsIntConstant()->value_ == value_;
2357  }
2358
2359  size_t ComputeHashCode() const OVERRIDE { return GetValue(); }
2360
2361  bool IsMinusOne() const OVERRIDE { return GetValue() == -1; }
2362  bool IsZero() const OVERRIDE { return GetValue() == 0; }
2363  bool IsOne() const OVERRIDE { return GetValue() == 1; }
2364
2365  DECLARE_INSTRUCTION(IntConstant);
2366
2367 private:
2368  explicit HIntConstant(int32_t value, uint32_t dex_pc = kNoDexPc)
2369      : HConstant(Primitive::kPrimInt, dex_pc), value_(value) {}
2370  explicit HIntConstant(bool value, uint32_t dex_pc = kNoDexPc)
2371      : HConstant(Primitive::kPrimInt, dex_pc), value_(value ? 1 : 0) {}
2372
2373  const int32_t value_;
2374
2375  friend class HGraph;
2376  ART_FRIEND_TEST(GraphTest, InsertInstructionBefore);
2377  ART_FRIEND_TYPED_TEST(ParallelMoveTest, ConstantLast);
2378  DISALLOW_COPY_AND_ASSIGN(HIntConstant);
2379};
2380
2381class HLongConstant : public HConstant {
2382 public:
2383  int64_t GetValue() const { return value_; }
2384
2385  uint64_t GetValueAsUint64() const OVERRIDE { return value_; }
2386
2387  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2388    DCHECK(other->IsLongConstant());
2389    return other->AsLongConstant()->value_ == value_;
2390  }
2391
2392  size_t ComputeHashCode() const OVERRIDE { return static_cast<size_t>(GetValue()); }
2393
2394  bool IsMinusOne() const OVERRIDE { return GetValue() == -1; }
2395  bool IsZero() const OVERRIDE { return GetValue() == 0; }
2396  bool IsOne() const OVERRIDE { return GetValue() == 1; }
2397
2398  DECLARE_INSTRUCTION(LongConstant);
2399
2400 private:
2401  explicit HLongConstant(int64_t value, uint32_t dex_pc = kNoDexPc)
2402      : HConstant(Primitive::kPrimLong, dex_pc), value_(value) {}
2403
2404  const int64_t value_;
2405
2406  friend class HGraph;
2407  DISALLOW_COPY_AND_ASSIGN(HLongConstant);
2408};
2409
2410// Conditional branch. A block ending with an HIf instruction must have
2411// two successors.
2412class HIf : public HTemplateInstruction<1> {
2413 public:
2414  explicit HIf(HInstruction* input, uint32_t dex_pc = kNoDexPc)
2415      : HTemplateInstruction(SideEffects::None(), dex_pc) {
2416    SetRawInputAt(0, input);
2417  }
2418
2419  bool IsControlFlow() const OVERRIDE { return true; }
2420
2421  HBasicBlock* IfTrueSuccessor() const {
2422    return GetBlock()->GetSuccessors()[0];
2423  }
2424
2425  HBasicBlock* IfFalseSuccessor() const {
2426    return GetBlock()->GetSuccessors()[1];
2427  }
2428
2429  DECLARE_INSTRUCTION(If);
2430
2431 private:
2432  DISALLOW_COPY_AND_ASSIGN(HIf);
2433};
2434
2435
2436// Abstract instruction which marks the beginning and/or end of a try block and
2437// links it to the respective exception handlers. Behaves the same as a Goto in
2438// non-exceptional control flow.
2439// Normal-flow successor is stored at index zero, exception handlers under
2440// higher indices in no particular order.
2441class HTryBoundary : public HTemplateInstruction<0> {
2442 public:
2443  enum BoundaryKind {
2444    kEntry,
2445    kExit,
2446  };
2447
2448  explicit HTryBoundary(BoundaryKind kind, uint32_t dex_pc = kNoDexPc)
2449      : HTemplateInstruction(SideEffects::None(), dex_pc), kind_(kind) {}
2450
2451  bool IsControlFlow() const OVERRIDE { return true; }
2452
2453  // Returns the block's non-exceptional successor (index zero).
2454  HBasicBlock* GetNormalFlowSuccessor() const { return GetBlock()->GetSuccessors()[0]; }
2455
2456  ArrayRef<HBasicBlock* const> GetExceptionHandlers() const {
2457    return ArrayRef<HBasicBlock* const>(GetBlock()->GetSuccessors()).SubArray(1u);
2458  }
2459
2460  // Returns whether `handler` is among its exception handlers (non-zero index
2461  // successors).
2462  bool HasExceptionHandler(const HBasicBlock& handler) const {
2463    DCHECK(handler.IsCatchBlock());
2464    return GetBlock()->HasSuccessor(&handler, 1u /* Skip first successor. */);
2465  }
2466
2467  // If not present already, adds `handler` to its block's list of exception
2468  // handlers.
2469  void AddExceptionHandler(HBasicBlock* handler) {
2470    if (!HasExceptionHandler(*handler)) {
2471      GetBlock()->AddSuccessor(handler);
2472    }
2473  }
2474
2475  bool IsEntry() const { return kind_ == BoundaryKind::kEntry; }
2476
2477  bool HasSameExceptionHandlersAs(const HTryBoundary& other) const;
2478
2479  DECLARE_INSTRUCTION(TryBoundary);
2480
2481 private:
2482  const BoundaryKind kind_;
2483
2484  DISALLOW_COPY_AND_ASSIGN(HTryBoundary);
2485};
2486
2487// Deoptimize to interpreter, upon checking a condition.
2488class HDeoptimize : public HTemplateInstruction<1> {
2489 public:
2490  HDeoptimize(HInstruction* cond, uint32_t dex_pc)
2491      : HTemplateInstruction(SideEffects::None(), dex_pc) {
2492    SetRawInputAt(0, cond);
2493  }
2494
2495  bool CanBeMoved() const OVERRIDE { return true; }
2496  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
2497    return true;
2498  }
2499  bool NeedsEnvironment() const OVERRIDE { return true; }
2500  bool CanThrow() const OVERRIDE { return true; }
2501
2502  DECLARE_INSTRUCTION(Deoptimize);
2503
2504 private:
2505  DISALLOW_COPY_AND_ASSIGN(HDeoptimize);
2506};
2507
2508// Represents the ArtMethod that was passed as a first argument to
2509// the method. It is used by instructions that depend on it, like
2510// instructions that work with the dex cache.
2511class HCurrentMethod : public HExpression<0> {
2512 public:
2513  explicit HCurrentMethod(Primitive::Type type, uint32_t dex_pc = kNoDexPc)
2514      : HExpression(type, SideEffects::None(), dex_pc) {}
2515
2516  DECLARE_INSTRUCTION(CurrentMethod);
2517
2518 private:
2519  DISALLOW_COPY_AND_ASSIGN(HCurrentMethod);
2520};
2521
2522// PackedSwitch (jump table). A block ending with a PackedSwitch instruction will
2523// have one successor for each entry in the switch table, and the final successor
2524// will be the block containing the next Dex opcode.
2525class HPackedSwitch : public HTemplateInstruction<1> {
2526 public:
2527  HPackedSwitch(int32_t start_value,
2528                uint32_t num_entries,
2529                HInstruction* input,
2530                uint32_t dex_pc = kNoDexPc)
2531    : HTemplateInstruction(SideEffects::None(), dex_pc),
2532      start_value_(start_value),
2533      num_entries_(num_entries) {
2534    SetRawInputAt(0, input);
2535  }
2536
2537  bool IsControlFlow() const OVERRIDE { return true; }
2538
2539  int32_t GetStartValue() const { return start_value_; }
2540
2541  uint32_t GetNumEntries() const { return num_entries_; }
2542
2543  HBasicBlock* GetDefaultBlock() const {
2544    // Last entry is the default block.
2545    return GetBlock()->GetSuccessors()[num_entries_];
2546  }
2547  DECLARE_INSTRUCTION(PackedSwitch);
2548
2549 private:
2550  const int32_t start_value_;
2551  const uint32_t num_entries_;
2552
2553  DISALLOW_COPY_AND_ASSIGN(HPackedSwitch);
2554};
2555
2556class HUnaryOperation : public HExpression<1> {
2557 public:
2558  HUnaryOperation(Primitive::Type result_type, HInstruction* input, uint32_t dex_pc = kNoDexPc)
2559      : HExpression(result_type, SideEffects::None(), dex_pc) {
2560    SetRawInputAt(0, input);
2561  }
2562
2563  HInstruction* GetInput() const { return InputAt(0); }
2564  Primitive::Type GetResultType() const { return GetType(); }
2565
2566  bool CanBeMoved() const OVERRIDE { return true; }
2567  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
2568    return true;
2569  }
2570
2571  // Try to statically evaluate `operation` and return a HConstant
2572  // containing the result of this evaluation.  If `operation` cannot
2573  // be evaluated as a constant, return null.
2574  HConstant* TryStaticEvaluation() const;
2575
2576  // Apply this operation to `x`.
2577  virtual HConstant* Evaluate(HIntConstant* x) const = 0;
2578  virtual HConstant* Evaluate(HLongConstant* x) const = 0;
2579
2580  DECLARE_ABSTRACT_INSTRUCTION(UnaryOperation);
2581
2582 private:
2583  DISALLOW_COPY_AND_ASSIGN(HUnaryOperation);
2584};
2585
2586class HBinaryOperation : public HExpression<2> {
2587 public:
2588  HBinaryOperation(Primitive::Type result_type,
2589                   HInstruction* left,
2590                   HInstruction* right,
2591                   SideEffects side_effects = SideEffects::None(),
2592                   uint32_t dex_pc = kNoDexPc)
2593      : HExpression(result_type, side_effects, dex_pc) {
2594    SetRawInputAt(0, left);
2595    SetRawInputAt(1, right);
2596  }
2597
2598  HInstruction* GetLeft() const { return InputAt(0); }
2599  HInstruction* GetRight() const { return InputAt(1); }
2600  Primitive::Type GetResultType() const { return GetType(); }
2601
2602  virtual bool IsCommutative() const { return false; }
2603
2604  // Put constant on the right.
2605  // Returns whether order is changed.
2606  bool OrderInputsWithConstantOnTheRight() {
2607    HInstruction* left = InputAt(0);
2608    HInstruction* right = InputAt(1);
2609    if (left->IsConstant() && !right->IsConstant()) {
2610      ReplaceInput(right, 0);
2611      ReplaceInput(left, 1);
2612      return true;
2613    }
2614    return false;
2615  }
2616
2617  // Order inputs by instruction id, but favor constant on the right side.
2618  // This helps GVN for commutative ops.
2619  void OrderInputs() {
2620    DCHECK(IsCommutative());
2621    HInstruction* left = InputAt(0);
2622    HInstruction* right = InputAt(1);
2623    if (left == right || (!left->IsConstant() && right->IsConstant())) {
2624      return;
2625    }
2626    if (OrderInputsWithConstantOnTheRight()) {
2627      return;
2628    }
2629    // Order according to instruction id.
2630    if (left->GetId() > right->GetId()) {
2631      ReplaceInput(right, 0);
2632      ReplaceInput(left, 1);
2633    }
2634  }
2635
2636  bool CanBeMoved() const OVERRIDE { return true; }
2637  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
2638    return true;
2639  }
2640
2641  // Try to statically evaluate `operation` and return a HConstant
2642  // containing the result of this evaluation.  If `operation` cannot
2643  // be evaluated as a constant, return null.
2644  HConstant* TryStaticEvaluation() const;
2645
2646  // Apply this operation to `x` and `y`.
2647  virtual HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const = 0;
2648  virtual HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const = 0;
2649  virtual HConstant* Evaluate(HIntConstant* x ATTRIBUTE_UNUSED,
2650                              HLongConstant* y ATTRIBUTE_UNUSED) const {
2651    VLOG(compiler) << DebugName() << " is not defined for the (int, long) case.";
2652    return nullptr;
2653  }
2654  virtual HConstant* Evaluate(HLongConstant* x ATTRIBUTE_UNUSED,
2655                              HIntConstant* y ATTRIBUTE_UNUSED) const {
2656    VLOG(compiler) << DebugName() << " is not defined for the (long, int) case.";
2657    return nullptr;
2658  }
2659  virtual HConstant* Evaluate(HNullConstant* x ATTRIBUTE_UNUSED,
2660                              HNullConstant* y ATTRIBUTE_UNUSED) const {
2661    VLOG(compiler) << DebugName() << " is not defined for the (null, null) case.";
2662    return nullptr;
2663  }
2664
2665  // Returns an input that can legally be used as the right input and is
2666  // constant, or null.
2667  HConstant* GetConstantRight() const;
2668
2669  // If `GetConstantRight()` returns one of the input, this returns the other
2670  // one. Otherwise it returns null.
2671  HInstruction* GetLeastConstantLeft() const;
2672
2673  DECLARE_ABSTRACT_INSTRUCTION(BinaryOperation);
2674
2675 private:
2676  DISALLOW_COPY_AND_ASSIGN(HBinaryOperation);
2677};
2678
2679// The comparison bias applies for floating point operations and indicates how NaN
2680// comparisons are treated:
2681enum class ComparisonBias {
2682  kNoBias,  // bias is not applicable (i.e. for long operation)
2683  kGtBias,  // return 1 for NaN comparisons
2684  kLtBias,  // return -1 for NaN comparisons
2685};
2686
2687class HCondition : public HBinaryOperation {
2688 public:
2689  HCondition(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2690      : HBinaryOperation(Primitive::kPrimBoolean, first, second, SideEffects::None(), dex_pc),
2691        needs_materialization_(true),
2692        bias_(ComparisonBias::kNoBias) {}
2693
2694  bool NeedsMaterialization() const { return needs_materialization_; }
2695  void ClearNeedsMaterialization() { needs_materialization_ = false; }
2696
2697  // For code generation purposes, returns whether this instruction is just before
2698  // `instruction`, and disregard moves in between.
2699  bool IsBeforeWhenDisregardMoves(HInstruction* instruction) const;
2700
2701  DECLARE_ABSTRACT_INSTRUCTION(Condition);
2702
2703  virtual IfCondition GetCondition() const = 0;
2704
2705  virtual IfCondition GetOppositeCondition() const = 0;
2706
2707  bool IsGtBias() const { return bias_ == ComparisonBias::kGtBias; }
2708
2709  void SetBias(ComparisonBias bias) { bias_ = bias; }
2710
2711  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2712    return bias_ == other->AsCondition()->bias_;
2713  }
2714
2715  bool IsFPConditionTrueIfNaN() const {
2716    DCHECK(Primitive::IsFloatingPointType(InputAt(0)->GetType()));
2717    IfCondition if_cond = GetCondition();
2718    return IsGtBias() ? ((if_cond == kCondGT) || (if_cond == kCondGE)) : (if_cond == kCondNE);
2719  }
2720
2721  bool IsFPConditionFalseIfNaN() const {
2722    DCHECK(Primitive::IsFloatingPointType(InputAt(0)->GetType()));
2723    IfCondition if_cond = GetCondition();
2724    return IsGtBias() ? ((if_cond == kCondLT) || (if_cond == kCondLE)) : (if_cond == kCondEQ);
2725  }
2726
2727 private:
2728  // For register allocation purposes, returns whether this instruction needs to be
2729  // materialized (that is, not just be in the processor flags).
2730  bool needs_materialization_;
2731
2732  // Needed if we merge a HCompare into a HCondition.
2733  ComparisonBias bias_;
2734
2735  DISALLOW_COPY_AND_ASSIGN(HCondition);
2736};
2737
2738// Instruction to check if two inputs are equal to each other.
2739class HEqual : public HCondition {
2740 public:
2741  HEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2742      : HCondition(first, second, dex_pc) {}
2743
2744  bool IsCommutative() const OVERRIDE { return true; }
2745
2746  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2747    return GetBlock()->GetGraph()->GetIntConstant(
2748        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2749  }
2750  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2751    return GetBlock()->GetGraph()->GetIntConstant(
2752        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2753  }
2754  HConstant* Evaluate(HNullConstant* x ATTRIBUTE_UNUSED,
2755                      HNullConstant* y ATTRIBUTE_UNUSED) const OVERRIDE {
2756    return GetBlock()->GetGraph()->GetIntConstant(1);
2757  }
2758
2759  DECLARE_INSTRUCTION(Equal);
2760
2761  IfCondition GetCondition() const OVERRIDE {
2762    return kCondEQ;
2763  }
2764
2765  IfCondition GetOppositeCondition() const OVERRIDE {
2766    return kCondNE;
2767  }
2768
2769 private:
2770  template <typename T> bool Compute(T x, T y) const { return x == y; }
2771
2772  DISALLOW_COPY_AND_ASSIGN(HEqual);
2773};
2774
2775class HNotEqual : public HCondition {
2776 public:
2777  HNotEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2778      : HCondition(first, second, dex_pc) {}
2779
2780  bool IsCommutative() const OVERRIDE { return true; }
2781
2782  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2783    return GetBlock()->GetGraph()->GetIntConstant(
2784        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2785  }
2786  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2787    return GetBlock()->GetGraph()->GetIntConstant(
2788        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2789  }
2790  HConstant* Evaluate(HNullConstant* x ATTRIBUTE_UNUSED,
2791                      HNullConstant* y ATTRIBUTE_UNUSED) const OVERRIDE {
2792    return GetBlock()->GetGraph()->GetIntConstant(0);
2793  }
2794
2795  DECLARE_INSTRUCTION(NotEqual);
2796
2797  IfCondition GetCondition() const OVERRIDE {
2798    return kCondNE;
2799  }
2800
2801  IfCondition GetOppositeCondition() const OVERRIDE {
2802    return kCondEQ;
2803  }
2804
2805 private:
2806  template <typename T> bool Compute(T x, T y) const { return x != y; }
2807
2808  DISALLOW_COPY_AND_ASSIGN(HNotEqual);
2809};
2810
2811class HLessThan : public HCondition {
2812 public:
2813  HLessThan(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2814      : HCondition(first, second, dex_pc) {}
2815
2816  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2817    return GetBlock()->GetGraph()->GetIntConstant(
2818        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2819  }
2820  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2821    return GetBlock()->GetGraph()->GetIntConstant(
2822        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2823  }
2824
2825  DECLARE_INSTRUCTION(LessThan);
2826
2827  IfCondition GetCondition() const OVERRIDE {
2828    return kCondLT;
2829  }
2830
2831  IfCondition GetOppositeCondition() const OVERRIDE {
2832    return kCondGE;
2833  }
2834
2835 private:
2836  template <typename T> bool Compute(T x, T y) const { return x < y; }
2837
2838  DISALLOW_COPY_AND_ASSIGN(HLessThan);
2839};
2840
2841class HLessThanOrEqual : public HCondition {
2842 public:
2843  HLessThanOrEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2844      : HCondition(first, second, dex_pc) {}
2845
2846  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2847    return GetBlock()->GetGraph()->GetIntConstant(
2848        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2849  }
2850  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2851    return GetBlock()->GetGraph()->GetIntConstant(
2852        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2853  }
2854
2855  DECLARE_INSTRUCTION(LessThanOrEqual);
2856
2857  IfCondition GetCondition() const OVERRIDE {
2858    return kCondLE;
2859  }
2860
2861  IfCondition GetOppositeCondition() const OVERRIDE {
2862    return kCondGT;
2863  }
2864
2865 private:
2866  template <typename T> bool Compute(T x, T y) const { return x <= y; }
2867
2868  DISALLOW_COPY_AND_ASSIGN(HLessThanOrEqual);
2869};
2870
2871class HGreaterThan : public HCondition {
2872 public:
2873  HGreaterThan(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2874      : HCondition(first, second, dex_pc) {}
2875
2876  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2877    return GetBlock()->GetGraph()->GetIntConstant(
2878        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2879  }
2880  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2881    return GetBlock()->GetGraph()->GetIntConstant(
2882        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2883  }
2884
2885  DECLARE_INSTRUCTION(GreaterThan);
2886
2887  IfCondition GetCondition() const OVERRIDE {
2888    return kCondGT;
2889  }
2890
2891  IfCondition GetOppositeCondition() const OVERRIDE {
2892    return kCondLE;
2893  }
2894
2895 private:
2896  template <typename T> bool Compute(T x, T y) const { return x > y; }
2897
2898  DISALLOW_COPY_AND_ASSIGN(HGreaterThan);
2899};
2900
2901class HGreaterThanOrEqual : public HCondition {
2902 public:
2903  HGreaterThanOrEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2904      : HCondition(first, second, dex_pc) {}
2905
2906  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2907    return GetBlock()->GetGraph()->GetIntConstant(
2908        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2909  }
2910  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2911    return GetBlock()->GetGraph()->GetIntConstant(
2912        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2913  }
2914
2915  DECLARE_INSTRUCTION(GreaterThanOrEqual);
2916
2917  IfCondition GetCondition() const OVERRIDE {
2918    return kCondGE;
2919  }
2920
2921  IfCondition GetOppositeCondition() const OVERRIDE {
2922    return kCondLT;
2923  }
2924
2925 private:
2926  template <typename T> bool Compute(T x, T y) const { return x >= y; }
2927
2928  DISALLOW_COPY_AND_ASSIGN(HGreaterThanOrEqual);
2929};
2930
2931class HBelow : public HCondition {
2932 public:
2933  HBelow(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2934      : HCondition(first, second, dex_pc) {}
2935
2936  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2937    return GetBlock()->GetGraph()->GetIntConstant(
2938        Compute(static_cast<uint32_t>(x->GetValue()),
2939                static_cast<uint32_t>(y->GetValue())), GetDexPc());
2940  }
2941  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2942    return GetBlock()->GetGraph()->GetIntConstant(
2943        Compute(static_cast<uint64_t>(x->GetValue()),
2944                static_cast<uint64_t>(y->GetValue())), GetDexPc());
2945  }
2946
2947  DECLARE_INSTRUCTION(Below);
2948
2949  IfCondition GetCondition() const OVERRIDE {
2950    return kCondB;
2951  }
2952
2953  IfCondition GetOppositeCondition() const OVERRIDE {
2954    return kCondAE;
2955  }
2956
2957 private:
2958  template <typename T> bool Compute(T x, T y) const { return x < y; }
2959
2960  DISALLOW_COPY_AND_ASSIGN(HBelow);
2961};
2962
2963class HBelowOrEqual : public HCondition {
2964 public:
2965  HBelowOrEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2966      : HCondition(first, second, dex_pc) {}
2967
2968  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2969    return GetBlock()->GetGraph()->GetIntConstant(
2970        Compute(static_cast<uint32_t>(x->GetValue()),
2971                static_cast<uint32_t>(y->GetValue())), GetDexPc());
2972  }
2973  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2974    return GetBlock()->GetGraph()->GetIntConstant(
2975        Compute(static_cast<uint64_t>(x->GetValue()),
2976                static_cast<uint64_t>(y->GetValue())), GetDexPc());
2977  }
2978
2979  DECLARE_INSTRUCTION(BelowOrEqual);
2980
2981  IfCondition GetCondition() const OVERRIDE {
2982    return kCondBE;
2983  }
2984
2985  IfCondition GetOppositeCondition() const OVERRIDE {
2986    return kCondA;
2987  }
2988
2989 private:
2990  template <typename T> bool Compute(T x, T y) const { return x <= y; }
2991
2992  DISALLOW_COPY_AND_ASSIGN(HBelowOrEqual);
2993};
2994
2995class HAbove : public HCondition {
2996 public:
2997  HAbove(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2998      : HCondition(first, second, dex_pc) {}
2999
3000  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3001    return GetBlock()->GetGraph()->GetIntConstant(
3002        Compute(static_cast<uint32_t>(x->GetValue()),
3003                static_cast<uint32_t>(y->GetValue())), GetDexPc());
3004  }
3005  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3006    return GetBlock()->GetGraph()->GetIntConstant(
3007        Compute(static_cast<uint64_t>(x->GetValue()),
3008                static_cast<uint64_t>(y->GetValue())), GetDexPc());
3009  }
3010
3011  DECLARE_INSTRUCTION(Above);
3012
3013  IfCondition GetCondition() const OVERRIDE {
3014    return kCondA;
3015  }
3016
3017  IfCondition GetOppositeCondition() const OVERRIDE {
3018    return kCondBE;
3019  }
3020
3021 private:
3022  template <typename T> bool Compute(T x, T y) const { return x > y; }
3023
3024  DISALLOW_COPY_AND_ASSIGN(HAbove);
3025};
3026
3027class HAboveOrEqual : public HCondition {
3028 public:
3029  HAboveOrEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
3030      : HCondition(first, second, dex_pc) {}
3031
3032  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3033    return GetBlock()->GetGraph()->GetIntConstant(
3034        Compute(static_cast<uint32_t>(x->GetValue()),
3035                static_cast<uint32_t>(y->GetValue())), GetDexPc());
3036  }
3037  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3038    return GetBlock()->GetGraph()->GetIntConstant(
3039        Compute(static_cast<uint64_t>(x->GetValue()),
3040                static_cast<uint64_t>(y->GetValue())), GetDexPc());
3041  }
3042
3043  DECLARE_INSTRUCTION(AboveOrEqual);
3044
3045  IfCondition GetCondition() const OVERRIDE {
3046    return kCondAE;
3047  }
3048
3049  IfCondition GetOppositeCondition() const OVERRIDE {
3050    return kCondB;
3051  }
3052
3053 private:
3054  template <typename T> bool Compute(T x, T y) const { return x >= y; }
3055
3056  DISALLOW_COPY_AND_ASSIGN(HAboveOrEqual);
3057};
3058
3059// Instruction to check how two inputs compare to each other.
3060// Result is 0 if input0 == input1, 1 if input0 > input1, or -1 if input0 < input1.
3061class HCompare : public HBinaryOperation {
3062 public:
3063  HCompare(Primitive::Type type,
3064           HInstruction* first,
3065           HInstruction* second,
3066           ComparisonBias bias,
3067           uint32_t dex_pc)
3068      : HBinaryOperation(Primitive::kPrimInt,
3069                         first,
3070                         second,
3071                         SideEffectsForArchRuntimeCalls(type),
3072                         dex_pc),
3073        bias_(bias) {
3074    DCHECK_EQ(type, first->GetType());
3075    DCHECK_EQ(type, second->GetType());
3076  }
3077
3078  template <typename T>
3079  int32_t Compute(T x, T y) const { return x == y ? 0 : x > y ? 1 : -1; }
3080
3081  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3082    return GetBlock()->GetGraph()->GetIntConstant(
3083        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3084  }
3085  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3086    return GetBlock()->GetGraph()->GetIntConstant(
3087        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3088  }
3089
3090  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
3091    return bias_ == other->AsCompare()->bias_;
3092  }
3093
3094  ComparisonBias GetBias() const { return bias_; }
3095
3096  bool IsGtBias() { return bias_ == ComparisonBias::kGtBias; }
3097
3098
3099  static SideEffects SideEffectsForArchRuntimeCalls(Primitive::Type type) {
3100    // MIPS64 uses a runtime call for FP comparisons.
3101    return Primitive::IsFloatingPointType(type) ? SideEffects::CanTriggerGC() : SideEffects::None();
3102  }
3103
3104  DECLARE_INSTRUCTION(Compare);
3105
3106 private:
3107  const ComparisonBias bias_;
3108
3109  DISALLOW_COPY_AND_ASSIGN(HCompare);
3110};
3111
3112// A local in the graph. Corresponds to a Dex register.
3113class HLocal : public HTemplateInstruction<0> {
3114 public:
3115  explicit HLocal(uint16_t reg_number)
3116      : HTemplateInstruction(SideEffects::None(), kNoDexPc), reg_number_(reg_number) {}
3117
3118  DECLARE_INSTRUCTION(Local);
3119
3120  uint16_t GetRegNumber() const { return reg_number_; }
3121
3122 private:
3123  // The Dex register number.
3124  const uint16_t reg_number_;
3125
3126  DISALLOW_COPY_AND_ASSIGN(HLocal);
3127};
3128
3129// Load a given local. The local is an input of this instruction.
3130class HLoadLocal : public HExpression<1> {
3131 public:
3132  HLoadLocal(HLocal* local, Primitive::Type type, uint32_t dex_pc = kNoDexPc)
3133      : HExpression(type, SideEffects::None(), dex_pc) {
3134    SetRawInputAt(0, local);
3135  }
3136
3137  HLocal* GetLocal() const { return reinterpret_cast<HLocal*>(InputAt(0)); }
3138
3139  DECLARE_INSTRUCTION(LoadLocal);
3140
3141 private:
3142  DISALLOW_COPY_AND_ASSIGN(HLoadLocal);
3143};
3144
3145// Store a value in a given local. This instruction has two inputs: the value
3146// and the local.
3147class HStoreLocal : public HTemplateInstruction<2> {
3148 public:
3149  HStoreLocal(HLocal* local, HInstruction* value, uint32_t dex_pc = kNoDexPc)
3150      : HTemplateInstruction(SideEffects::None(), dex_pc) {
3151    SetRawInputAt(0, local);
3152    SetRawInputAt(1, value);
3153  }
3154
3155  HLocal* GetLocal() const { return reinterpret_cast<HLocal*>(InputAt(0)); }
3156
3157  DECLARE_INSTRUCTION(StoreLocal);
3158
3159 private:
3160  DISALLOW_COPY_AND_ASSIGN(HStoreLocal);
3161};
3162
3163class HFloatConstant : public HConstant {
3164 public:
3165  float GetValue() const { return value_; }
3166
3167  uint64_t GetValueAsUint64() const OVERRIDE {
3168    return static_cast<uint64_t>(bit_cast<uint32_t, float>(value_));
3169  }
3170
3171  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
3172    DCHECK(other->IsFloatConstant());
3173    return other->AsFloatConstant()->GetValueAsUint64() == GetValueAsUint64();
3174  }
3175
3176  size_t ComputeHashCode() const OVERRIDE { return static_cast<size_t>(GetValue()); }
3177
3178  bool IsMinusOne() const OVERRIDE {
3179    return bit_cast<uint32_t, float>(value_) == bit_cast<uint32_t, float>((-1.0f));
3180  }
3181  bool IsZero() const OVERRIDE {
3182    return value_ == 0.0f;
3183  }
3184  bool IsOne() const OVERRIDE {
3185    return bit_cast<uint32_t, float>(value_) == bit_cast<uint32_t, float>(1.0f);
3186  }
3187  bool IsNaN() const {
3188    return std::isnan(value_);
3189  }
3190
3191  DECLARE_INSTRUCTION(FloatConstant);
3192
3193 private:
3194  explicit HFloatConstant(float value, uint32_t dex_pc = kNoDexPc)
3195      : HConstant(Primitive::kPrimFloat, dex_pc), value_(value) {}
3196  explicit HFloatConstant(int32_t value, uint32_t dex_pc = kNoDexPc)
3197      : HConstant(Primitive::kPrimFloat, dex_pc), value_(bit_cast<float, int32_t>(value)) {}
3198
3199  const float value_;
3200
3201  // Only the SsaBuilder and HGraph can create floating-point constants.
3202  friend class SsaBuilder;
3203  friend class HGraph;
3204  DISALLOW_COPY_AND_ASSIGN(HFloatConstant);
3205};
3206
3207class HDoubleConstant : public HConstant {
3208 public:
3209  double GetValue() const { return value_; }
3210
3211  uint64_t GetValueAsUint64() const OVERRIDE { return bit_cast<uint64_t, double>(value_); }
3212
3213  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
3214    DCHECK(other->IsDoubleConstant());
3215    return other->AsDoubleConstant()->GetValueAsUint64() == GetValueAsUint64();
3216  }
3217
3218  size_t ComputeHashCode() const OVERRIDE { return static_cast<size_t>(GetValue()); }
3219
3220  bool IsMinusOne() const OVERRIDE {
3221    return bit_cast<uint64_t, double>(value_) == bit_cast<uint64_t, double>((-1.0));
3222  }
3223  bool IsZero() const OVERRIDE {
3224    return value_ == 0.0;
3225  }
3226  bool IsOne() const OVERRIDE {
3227    return bit_cast<uint64_t, double>(value_) == bit_cast<uint64_t, double>(1.0);
3228  }
3229  bool IsNaN() const {
3230    return std::isnan(value_);
3231  }
3232
3233  DECLARE_INSTRUCTION(DoubleConstant);
3234
3235 private:
3236  explicit HDoubleConstant(double value, uint32_t dex_pc = kNoDexPc)
3237      : HConstant(Primitive::kPrimDouble, dex_pc), value_(value) {}
3238  explicit HDoubleConstant(int64_t value, uint32_t dex_pc = kNoDexPc)
3239      : HConstant(Primitive::kPrimDouble, dex_pc), value_(bit_cast<double, int64_t>(value)) {}
3240
3241  const double value_;
3242
3243  // Only the SsaBuilder and HGraph can create floating-point constants.
3244  friend class SsaBuilder;
3245  friend class HGraph;
3246  DISALLOW_COPY_AND_ASSIGN(HDoubleConstant);
3247};
3248
3249enum class Intrinsics {
3250#define OPTIMIZING_INTRINSICS(Name, IsStatic, NeedsEnvironmentOrCache) k ## Name,
3251#include "intrinsics_list.h"
3252  kNone,
3253  INTRINSICS_LIST(OPTIMIZING_INTRINSICS)
3254#undef INTRINSICS_LIST
3255#undef OPTIMIZING_INTRINSICS
3256};
3257std::ostream& operator<<(std::ostream& os, const Intrinsics& intrinsic);
3258
3259enum IntrinsicNeedsEnvironmentOrCache {
3260  kNoEnvironmentOrCache,        // Intrinsic does not require an environment or dex cache.
3261  kNeedsEnvironmentOrCache      // Intrinsic requires an environment or requires a dex cache.
3262};
3263
3264class HInvoke : public HInstruction {
3265 public:
3266  size_t InputCount() const OVERRIDE { return inputs_.size(); }
3267
3268  bool NeedsEnvironment() const OVERRIDE;
3269
3270  void SetArgumentAt(size_t index, HInstruction* argument) {
3271    SetRawInputAt(index, argument);
3272  }
3273
3274  // Return the number of arguments.  This number can be lower than
3275  // the number of inputs returned by InputCount(), as some invoke
3276  // instructions (e.g. HInvokeStaticOrDirect) can have non-argument
3277  // inputs at the end of their list of inputs.
3278  uint32_t GetNumberOfArguments() const { return number_of_arguments_; }
3279
3280  Primitive::Type GetType() const OVERRIDE { return return_type_; }
3281
3282
3283  uint32_t GetDexMethodIndex() const { return dex_method_index_; }
3284  const DexFile& GetDexFile() const { return GetEnvironment()->GetDexFile(); }
3285
3286  InvokeType GetOriginalInvokeType() const { return original_invoke_type_; }
3287
3288  Intrinsics GetIntrinsic() const {
3289    return intrinsic_;
3290  }
3291
3292  void SetIntrinsic(Intrinsics intrinsic, IntrinsicNeedsEnvironmentOrCache needs_env_or_cache);
3293
3294  bool IsFromInlinedInvoke() const {
3295    return GetEnvironment()->IsFromInlinedInvoke();
3296  }
3297
3298  bool CanThrow() const OVERRIDE { return true; }
3299
3300  uint32_t* GetIntrinsicOptimizations() {
3301    return &intrinsic_optimizations_;
3302  }
3303
3304  const uint32_t* GetIntrinsicOptimizations() const {
3305    return &intrinsic_optimizations_;
3306  }
3307
3308  bool IsIntrinsic() const { return intrinsic_ != Intrinsics::kNone; }
3309
3310  DECLARE_ABSTRACT_INSTRUCTION(Invoke);
3311
3312 protected:
3313  HInvoke(ArenaAllocator* arena,
3314          uint32_t number_of_arguments,
3315          uint32_t number_of_other_inputs,
3316          Primitive::Type return_type,
3317          uint32_t dex_pc,
3318          uint32_t dex_method_index,
3319          InvokeType original_invoke_type)
3320    : HInstruction(
3321          SideEffects::AllExceptGCDependency(), dex_pc),  // Assume write/read on all fields/arrays.
3322      number_of_arguments_(number_of_arguments),
3323      inputs_(number_of_arguments + number_of_other_inputs,
3324              arena->Adapter(kArenaAllocInvokeInputs)),
3325      return_type_(return_type),
3326      dex_method_index_(dex_method_index),
3327      original_invoke_type_(original_invoke_type),
3328      intrinsic_(Intrinsics::kNone),
3329      intrinsic_optimizations_(0) {
3330  }
3331
3332  const HUserRecord<HInstruction*> InputRecordAt(size_t index) const OVERRIDE {
3333    return inputs_[index];
3334  }
3335
3336  void SetRawInputRecordAt(size_t index, const HUserRecord<HInstruction*>& input) OVERRIDE {
3337    inputs_[index] = input;
3338  }
3339
3340  uint32_t number_of_arguments_;
3341  ArenaVector<HUserRecord<HInstruction*>> inputs_;
3342  const Primitive::Type return_type_;
3343  const uint32_t dex_method_index_;
3344  const InvokeType original_invoke_type_;
3345  Intrinsics intrinsic_;
3346
3347  // A magic word holding optimizations for intrinsics. See intrinsics.h.
3348  uint32_t intrinsic_optimizations_;
3349
3350 private:
3351  DISALLOW_COPY_AND_ASSIGN(HInvoke);
3352};
3353
3354class HInvokeUnresolved : public HInvoke {
3355 public:
3356  HInvokeUnresolved(ArenaAllocator* arena,
3357                    uint32_t number_of_arguments,
3358                    Primitive::Type return_type,
3359                    uint32_t dex_pc,
3360                    uint32_t dex_method_index,
3361                    InvokeType invoke_type)
3362      : HInvoke(arena,
3363                number_of_arguments,
3364                0u /* number_of_other_inputs */,
3365                return_type,
3366                dex_pc,
3367                dex_method_index,
3368                invoke_type) {
3369  }
3370
3371  DECLARE_INSTRUCTION(InvokeUnresolved);
3372
3373 private:
3374  DISALLOW_COPY_AND_ASSIGN(HInvokeUnresolved);
3375};
3376
3377class HInvokeStaticOrDirect : public HInvoke {
3378 public:
3379  // Requirements of this method call regarding the class
3380  // initialization (clinit) check of its declaring class.
3381  enum class ClinitCheckRequirement {
3382    kNone,      // Class already initialized.
3383    kExplicit,  // Static call having explicit clinit check as last input.
3384    kImplicit,  // Static call implicitly requiring a clinit check.
3385  };
3386
3387  // Determines how to load the target ArtMethod*.
3388  enum class MethodLoadKind {
3389    // Use a String init ArtMethod* loaded from Thread entrypoints.
3390    kStringInit,
3391
3392    // Use the method's own ArtMethod* loaded by the register allocator.
3393    kRecursive,
3394
3395    // Use ArtMethod* at a known address, embed the direct address in the code.
3396    // Used for app->boot calls with non-relocatable image and for JIT-compiled calls.
3397    kDirectAddress,
3398
3399    // Use ArtMethod* at an address that will be known at link time, embed the direct
3400    // address in the code. If the image is relocatable, emit .patch_oat entry.
3401    // Used for app->boot calls with relocatable image and boot->boot calls, whether
3402    // the image relocatable or not.
3403    kDirectAddressWithFixup,
3404
3405    // Load from resoved methods array in the dex cache using a PC-relative load.
3406    // Used when we need to use the dex cache, for example for invoke-static that
3407    // may cause class initialization (the entry may point to a resolution method),
3408    // and we know that we can access the dex cache arrays using a PC-relative load.
3409    kDexCachePcRelative,
3410
3411    // Use ArtMethod* from the resolved methods of the compiled method's own ArtMethod*.
3412    // Used for JIT when we need to use the dex cache. This is also the last-resort-kind
3413    // used when other kinds are unavailable (say, dex cache arrays are not PC-relative)
3414    // or unimplemented or impractical (i.e. slow) on a particular architecture.
3415    kDexCacheViaMethod,
3416  };
3417
3418  // Determines the location of the code pointer.
3419  enum class CodePtrLocation {
3420    // Recursive call, use local PC-relative call instruction.
3421    kCallSelf,
3422
3423    // Use PC-relative call instruction patched at link time.
3424    // Used for calls within an oat file, boot->boot or app->app.
3425    kCallPCRelative,
3426
3427    // Call to a known target address, embed the direct address in code.
3428    // Used for app->boot call with non-relocatable image and for JIT-compiled calls.
3429    kCallDirect,
3430
3431    // Call to a target address that will be known at link time, embed the direct
3432    // address in code. If the image is relocatable, emit .patch_oat entry.
3433    // Used for app->boot calls with relocatable image and boot->boot calls, whether
3434    // the image relocatable or not.
3435    kCallDirectWithFixup,
3436
3437    // Use code pointer from the ArtMethod*.
3438    // Used when we don't know the target code. This is also the last-resort-kind used when
3439    // other kinds are unimplemented or impractical (i.e. slow) on a particular architecture.
3440    kCallArtMethod,
3441  };
3442
3443  struct DispatchInfo {
3444    MethodLoadKind method_load_kind;
3445    CodePtrLocation code_ptr_location;
3446    // The method load data holds
3447    //   - thread entrypoint offset for kStringInit method if this is a string init invoke.
3448    //     Note that there are multiple string init methods, each having its own offset.
3449    //   - the method address for kDirectAddress
3450    //   - the dex cache arrays offset for kDexCachePcRel.
3451    uint64_t method_load_data;
3452    uint64_t direct_code_ptr;
3453  };
3454
3455  HInvokeStaticOrDirect(ArenaAllocator* arena,
3456                        uint32_t number_of_arguments,
3457                        Primitive::Type return_type,
3458                        uint32_t dex_pc,
3459                        uint32_t method_index,
3460                        MethodReference target_method,
3461                        DispatchInfo dispatch_info,
3462                        InvokeType original_invoke_type,
3463                        InvokeType optimized_invoke_type,
3464                        ClinitCheckRequirement clinit_check_requirement)
3465      : HInvoke(arena,
3466                number_of_arguments,
3467                // There is potentially one extra argument for the HCurrentMethod node, and
3468                // potentially one other if the clinit check is explicit, and potentially
3469                // one other if the method is a string factory.
3470                (NeedsCurrentMethodInput(dispatch_info.method_load_kind) ? 1u : 0u) +
3471                    (clinit_check_requirement == ClinitCheckRequirement::kExplicit ? 1u : 0u) +
3472                    (dispatch_info.method_load_kind == MethodLoadKind::kStringInit ? 1u : 0u),
3473                return_type,
3474                dex_pc,
3475                method_index,
3476                original_invoke_type),
3477        optimized_invoke_type_(optimized_invoke_type),
3478        clinit_check_requirement_(clinit_check_requirement),
3479        target_method_(target_method),
3480        dispatch_info_(dispatch_info) { }
3481
3482  void SetDispatchInfo(const DispatchInfo& dispatch_info) {
3483    bool had_current_method_input = HasCurrentMethodInput();
3484    bool needs_current_method_input = NeedsCurrentMethodInput(dispatch_info.method_load_kind);
3485
3486    // Using the current method is the default and once we find a better
3487    // method load kind, we should not go back to using the current method.
3488    DCHECK(had_current_method_input || !needs_current_method_input);
3489
3490    if (had_current_method_input && !needs_current_method_input) {
3491      DCHECK_EQ(InputAt(GetSpecialInputIndex()), GetBlock()->GetGraph()->GetCurrentMethod());
3492      RemoveInputAt(GetSpecialInputIndex());
3493    }
3494    dispatch_info_ = dispatch_info;
3495  }
3496
3497  void AddSpecialInput(HInstruction* input) {
3498    // We allow only one special input.
3499    DCHECK(!IsStringInit() && !HasCurrentMethodInput());
3500    DCHECK(InputCount() == GetSpecialInputIndex() ||
3501           (InputCount() == GetSpecialInputIndex() + 1 && IsStaticWithExplicitClinitCheck()));
3502    InsertInputAt(GetSpecialInputIndex(), input);
3503  }
3504
3505  bool CanDoImplicitNullCheckOn(HInstruction* obj ATTRIBUTE_UNUSED) const OVERRIDE {
3506    // We access the method via the dex cache so we can't do an implicit null check.
3507    // TODO: for intrinsics we can generate implicit null checks.
3508    return false;
3509  }
3510
3511  bool CanBeNull() const OVERRIDE {
3512    return return_type_ == Primitive::kPrimNot && !IsStringInit();
3513  }
3514
3515  // Get the index of the special input, if any.
3516  //
3517  // If the invoke IsStringInit(), it initially has a HFakeString special argument
3518  // which is removed by the instruction simplifier; if the invoke HasCurrentMethodInput(),
3519  // the "special input" is the current method pointer; otherwise there may be one
3520  // platform-specific special input, such as PC-relative addressing base.
3521  uint32_t GetSpecialInputIndex() const { return GetNumberOfArguments(); }
3522
3523  InvokeType GetOptimizedInvokeType() const { return optimized_invoke_type_; }
3524  void SetOptimizedInvokeType(InvokeType invoke_type) {
3525    optimized_invoke_type_ = invoke_type;
3526  }
3527
3528  MethodLoadKind GetMethodLoadKind() const { return dispatch_info_.method_load_kind; }
3529  CodePtrLocation GetCodePtrLocation() const { return dispatch_info_.code_ptr_location; }
3530  bool IsRecursive() const { return GetMethodLoadKind() == MethodLoadKind::kRecursive; }
3531  bool NeedsDexCacheOfDeclaringClass() const OVERRIDE;
3532  bool IsStringInit() const { return GetMethodLoadKind() == MethodLoadKind::kStringInit; }
3533  bool HasMethodAddress() const { return GetMethodLoadKind() == MethodLoadKind::kDirectAddress; }
3534  bool HasPcRelativeDexCache() const {
3535    return GetMethodLoadKind() == MethodLoadKind::kDexCachePcRelative;
3536  }
3537  bool HasCurrentMethodInput() const {
3538    // This function can be called only after the invoke has been fully initialized by the builder.
3539    if (NeedsCurrentMethodInput(GetMethodLoadKind())) {
3540      DCHECK(InputAt(GetSpecialInputIndex())->IsCurrentMethod());
3541      return true;
3542    } else {
3543      DCHECK(InputCount() == GetSpecialInputIndex() ||
3544             !InputAt(GetSpecialInputIndex())->IsCurrentMethod());
3545      return false;
3546    }
3547  }
3548  bool HasDirectCodePtr() const { return GetCodePtrLocation() == CodePtrLocation::kCallDirect; }
3549  MethodReference GetTargetMethod() const { return target_method_; }
3550  void SetTargetMethod(MethodReference method) { target_method_ = method; }
3551
3552  int32_t GetStringInitOffset() const {
3553    DCHECK(IsStringInit());
3554    return dispatch_info_.method_load_data;
3555  }
3556
3557  uint64_t GetMethodAddress() const {
3558    DCHECK(HasMethodAddress());
3559    return dispatch_info_.method_load_data;
3560  }
3561
3562  uint32_t GetDexCacheArrayOffset() const {
3563    DCHECK(HasPcRelativeDexCache());
3564    return dispatch_info_.method_load_data;
3565  }
3566
3567  uint64_t GetDirectCodePtr() const {
3568    DCHECK(HasDirectCodePtr());
3569    return dispatch_info_.direct_code_ptr;
3570  }
3571
3572  ClinitCheckRequirement GetClinitCheckRequirement() const { return clinit_check_requirement_; }
3573
3574  // Is this instruction a call to a static method?
3575  bool IsStatic() const {
3576    return GetOriginalInvokeType() == kStatic;
3577  }
3578
3579  // Remove the HClinitCheck or the replacement HLoadClass (set as last input by
3580  // PrepareForRegisterAllocation::VisitClinitCheck() in lieu of the initial HClinitCheck)
3581  // instruction; only relevant for static calls with explicit clinit check.
3582  void RemoveExplicitClinitCheck(ClinitCheckRequirement new_requirement) {
3583    DCHECK(IsStaticWithExplicitClinitCheck());
3584    size_t last_input_index = InputCount() - 1;
3585    HInstruction* last_input = InputAt(last_input_index);
3586    DCHECK(last_input != nullptr);
3587    DCHECK(last_input->IsLoadClass() || last_input->IsClinitCheck()) << last_input->DebugName();
3588    RemoveAsUserOfInput(last_input_index);
3589    inputs_.pop_back();
3590    clinit_check_requirement_ = new_requirement;
3591    DCHECK(!IsStaticWithExplicitClinitCheck());
3592  }
3593
3594  bool IsStringFactoryFor(HFakeString* str) const {
3595    if (!IsStringInit()) return false;
3596    DCHECK(!HasCurrentMethodInput());
3597    if (InputCount() == (number_of_arguments_)) return false;
3598    return InputAt(InputCount() - 1)->AsFakeString() == str;
3599  }
3600
3601  void RemoveFakeStringArgumentAsLastInput() {
3602    DCHECK(IsStringInit());
3603    size_t last_input_index = InputCount() - 1;
3604    HInstruction* last_input = InputAt(last_input_index);
3605    DCHECK(last_input != nullptr);
3606    DCHECK(last_input->IsFakeString()) << last_input->DebugName();
3607    RemoveAsUserOfInput(last_input_index);
3608    inputs_.pop_back();
3609  }
3610
3611  // Is this a call to a static method whose declaring class has an
3612  // explicit initialization check in the graph?
3613  bool IsStaticWithExplicitClinitCheck() const {
3614    return IsStatic() && (clinit_check_requirement_ == ClinitCheckRequirement::kExplicit);
3615  }
3616
3617  // Is this a call to a static method whose declaring class has an
3618  // implicit intialization check requirement?
3619  bool IsStaticWithImplicitClinitCheck() const {
3620    return IsStatic() && (clinit_check_requirement_ == ClinitCheckRequirement::kImplicit);
3621  }
3622
3623  // Does this method load kind need the current method as an input?
3624  static bool NeedsCurrentMethodInput(MethodLoadKind kind) {
3625    return kind == MethodLoadKind::kRecursive || kind == MethodLoadKind::kDexCacheViaMethod;
3626  }
3627
3628  DECLARE_INSTRUCTION(InvokeStaticOrDirect);
3629
3630 protected:
3631  const HUserRecord<HInstruction*> InputRecordAt(size_t i) const OVERRIDE {
3632    const HUserRecord<HInstruction*> input_record = HInvoke::InputRecordAt(i);
3633    if (kIsDebugBuild && IsStaticWithExplicitClinitCheck() && (i == InputCount() - 1)) {
3634      HInstruction* input = input_record.GetInstruction();
3635      // `input` is the last input of a static invoke marked as having
3636      // an explicit clinit check. It must either be:
3637      // - an art::HClinitCheck instruction, set by art::HGraphBuilder; or
3638      // - an art::HLoadClass instruction, set by art::PrepareForRegisterAllocation.
3639      DCHECK(input != nullptr);
3640      DCHECK(input->IsClinitCheck() || input->IsLoadClass()) << input->DebugName();
3641    }
3642    return input_record;
3643  }
3644
3645  void InsertInputAt(size_t index, HInstruction* input);
3646  void RemoveInputAt(size_t index);
3647
3648 private:
3649  InvokeType optimized_invoke_type_;
3650  ClinitCheckRequirement clinit_check_requirement_;
3651  // The target method may refer to different dex file or method index than the original
3652  // invoke. This happens for sharpened calls and for calls where a method was redeclared
3653  // in derived class to increase visibility.
3654  MethodReference target_method_;
3655  DispatchInfo dispatch_info_;
3656
3657  DISALLOW_COPY_AND_ASSIGN(HInvokeStaticOrDirect);
3658};
3659std::ostream& operator<<(std::ostream& os, HInvokeStaticOrDirect::MethodLoadKind rhs);
3660std::ostream& operator<<(std::ostream& os, HInvokeStaticOrDirect::ClinitCheckRequirement rhs);
3661
3662class HInvokeVirtual : public HInvoke {
3663 public:
3664  HInvokeVirtual(ArenaAllocator* arena,
3665                 uint32_t number_of_arguments,
3666                 Primitive::Type return_type,
3667                 uint32_t dex_pc,
3668                 uint32_t dex_method_index,
3669                 uint32_t vtable_index)
3670      : HInvoke(arena, number_of_arguments, 0u, return_type, dex_pc, dex_method_index, kVirtual),
3671        vtable_index_(vtable_index) {}
3672
3673  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
3674    // TODO: Add implicit null checks in intrinsics.
3675    return (obj == InputAt(0)) && !GetLocations()->Intrinsified();
3676  }
3677
3678  uint32_t GetVTableIndex() const { return vtable_index_; }
3679
3680  DECLARE_INSTRUCTION(InvokeVirtual);
3681
3682 private:
3683  const uint32_t vtable_index_;
3684
3685  DISALLOW_COPY_AND_ASSIGN(HInvokeVirtual);
3686};
3687
3688class HInvokeInterface : public HInvoke {
3689 public:
3690  HInvokeInterface(ArenaAllocator* arena,
3691                   uint32_t number_of_arguments,
3692                   Primitive::Type return_type,
3693                   uint32_t dex_pc,
3694                   uint32_t dex_method_index,
3695                   uint32_t imt_index)
3696      : HInvoke(arena, number_of_arguments, 0u, return_type, dex_pc, dex_method_index, kInterface),
3697        imt_index_(imt_index) {}
3698
3699  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
3700    // TODO: Add implicit null checks in intrinsics.
3701    return (obj == InputAt(0)) && !GetLocations()->Intrinsified();
3702  }
3703
3704  uint32_t GetImtIndex() const { return imt_index_; }
3705  uint32_t GetDexMethodIndex() const { return dex_method_index_; }
3706
3707  DECLARE_INSTRUCTION(InvokeInterface);
3708
3709 private:
3710  const uint32_t imt_index_;
3711
3712  DISALLOW_COPY_AND_ASSIGN(HInvokeInterface);
3713};
3714
3715class HNewInstance : public HExpression<2> {
3716 public:
3717  HNewInstance(HInstruction* cls,
3718               HCurrentMethod* current_method,
3719               uint32_t dex_pc,
3720               uint16_t type_index,
3721               const DexFile& dex_file,
3722               bool can_throw,
3723               bool finalizable,
3724               QuickEntrypointEnum entrypoint)
3725      : HExpression(Primitive::kPrimNot, SideEffects::CanTriggerGC(), dex_pc),
3726        type_index_(type_index),
3727        dex_file_(dex_file),
3728        can_throw_(can_throw),
3729        finalizable_(finalizable),
3730        entrypoint_(entrypoint) {
3731    SetRawInputAt(0, cls);
3732    SetRawInputAt(1, current_method);
3733  }
3734
3735  uint16_t GetTypeIndex() const { return type_index_; }
3736  const DexFile& GetDexFile() const { return dex_file_; }
3737
3738  // Calls runtime so needs an environment.
3739  bool NeedsEnvironment() const OVERRIDE { return true; }
3740
3741  // It may throw when called on type that's not instantiable/accessible.
3742  // It can throw OOME.
3743  // TODO: distinguish between the two cases so we can for example allow allocation elimination.
3744  bool CanThrow() const OVERRIDE { return can_throw_ || true; }
3745
3746  bool IsFinalizable() const { return finalizable_; }
3747
3748  bool CanBeNull() const OVERRIDE { return false; }
3749
3750  QuickEntrypointEnum GetEntrypoint() const { return entrypoint_; }
3751
3752  void SetEntrypoint(QuickEntrypointEnum entrypoint) {
3753    entrypoint_ = entrypoint;
3754  }
3755
3756  DECLARE_INSTRUCTION(NewInstance);
3757
3758 private:
3759  const uint16_t type_index_;
3760  const DexFile& dex_file_;
3761  const bool can_throw_;
3762  const bool finalizable_;
3763  QuickEntrypointEnum entrypoint_;
3764
3765  DISALLOW_COPY_AND_ASSIGN(HNewInstance);
3766};
3767
3768class HNeg : public HUnaryOperation {
3769 public:
3770  HNeg(Primitive::Type result_type, HInstruction* input, uint32_t dex_pc = kNoDexPc)
3771      : HUnaryOperation(result_type, input, dex_pc) {}
3772
3773  template <typename T> T Compute(T x) const { return -x; }
3774
3775  HConstant* Evaluate(HIntConstant* x) const OVERRIDE {
3776    return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue()), GetDexPc());
3777  }
3778  HConstant* Evaluate(HLongConstant* x) const OVERRIDE {
3779    return GetBlock()->GetGraph()->GetLongConstant(Compute(x->GetValue()), GetDexPc());
3780  }
3781
3782  DECLARE_INSTRUCTION(Neg);
3783
3784 private:
3785  DISALLOW_COPY_AND_ASSIGN(HNeg);
3786};
3787
3788class HNewArray : public HExpression<2> {
3789 public:
3790  HNewArray(HInstruction* length,
3791            HCurrentMethod* current_method,
3792            uint32_t dex_pc,
3793            uint16_t type_index,
3794            const DexFile& dex_file,
3795            QuickEntrypointEnum entrypoint)
3796      : HExpression(Primitive::kPrimNot, SideEffects::CanTriggerGC(), dex_pc),
3797        type_index_(type_index),
3798        dex_file_(dex_file),
3799        entrypoint_(entrypoint) {
3800    SetRawInputAt(0, length);
3801    SetRawInputAt(1, current_method);
3802  }
3803
3804  uint16_t GetTypeIndex() const { return type_index_; }
3805  const DexFile& GetDexFile() const { return dex_file_; }
3806
3807  // Calls runtime so needs an environment.
3808  bool NeedsEnvironment() const OVERRIDE { return true; }
3809
3810  // May throw NegativeArraySizeException, OutOfMemoryError, etc.
3811  bool CanThrow() const OVERRIDE { return true; }
3812
3813  bool CanBeNull() const OVERRIDE { return false; }
3814
3815  QuickEntrypointEnum GetEntrypoint() const { return entrypoint_; }
3816
3817  DECLARE_INSTRUCTION(NewArray);
3818
3819 private:
3820  const uint16_t type_index_;
3821  const DexFile& dex_file_;
3822  const QuickEntrypointEnum entrypoint_;
3823
3824  DISALLOW_COPY_AND_ASSIGN(HNewArray);
3825};
3826
3827class HAdd : public HBinaryOperation {
3828 public:
3829  HAdd(Primitive::Type result_type,
3830       HInstruction* left,
3831       HInstruction* right,
3832       uint32_t dex_pc = kNoDexPc)
3833      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
3834
3835  bool IsCommutative() const OVERRIDE { return true; }
3836
3837  template <typename T> T Compute(T x, T y) const { return x + y; }
3838
3839  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3840    return GetBlock()->GetGraph()->GetIntConstant(
3841        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3842  }
3843  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3844    return GetBlock()->GetGraph()->GetLongConstant(
3845        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3846  }
3847
3848  DECLARE_INSTRUCTION(Add);
3849
3850 private:
3851  DISALLOW_COPY_AND_ASSIGN(HAdd);
3852};
3853
3854class HSub : public HBinaryOperation {
3855 public:
3856  HSub(Primitive::Type result_type,
3857       HInstruction* left,
3858       HInstruction* right,
3859       uint32_t dex_pc = kNoDexPc)
3860      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
3861
3862  template <typename T> T Compute(T x, T y) const { return x - y; }
3863
3864  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3865    return GetBlock()->GetGraph()->GetIntConstant(
3866        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3867  }
3868  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3869    return GetBlock()->GetGraph()->GetLongConstant(
3870        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3871  }
3872
3873  DECLARE_INSTRUCTION(Sub);
3874
3875 private:
3876  DISALLOW_COPY_AND_ASSIGN(HSub);
3877};
3878
3879class HMul : public HBinaryOperation {
3880 public:
3881  HMul(Primitive::Type result_type,
3882       HInstruction* left,
3883       HInstruction* right,
3884       uint32_t dex_pc = kNoDexPc)
3885      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
3886
3887  bool IsCommutative() const OVERRIDE { return true; }
3888
3889  template <typename T> T Compute(T x, T y) const { return x * y; }
3890
3891  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3892    return GetBlock()->GetGraph()->GetIntConstant(
3893        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3894  }
3895  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3896    return GetBlock()->GetGraph()->GetLongConstant(
3897        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3898  }
3899
3900  DECLARE_INSTRUCTION(Mul);
3901
3902 private:
3903  DISALLOW_COPY_AND_ASSIGN(HMul);
3904};
3905
3906class HDiv : public HBinaryOperation {
3907 public:
3908  HDiv(Primitive::Type result_type,
3909       HInstruction* left,
3910       HInstruction* right,
3911       uint32_t dex_pc)
3912      : HBinaryOperation(result_type, left, right, SideEffectsForArchRuntimeCalls(), dex_pc) {}
3913
3914  template <typename T>
3915  T Compute(T x, T y) const {
3916    // Our graph structure ensures we never have 0 for `y` during
3917    // constant folding.
3918    DCHECK_NE(y, 0);
3919    // Special case -1 to avoid getting a SIGFPE on x86(_64).
3920    return (y == -1) ? -x : x / y;
3921  }
3922
3923  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3924    return GetBlock()->GetGraph()->GetIntConstant(
3925        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3926  }
3927  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3928    return GetBlock()->GetGraph()->GetLongConstant(
3929        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3930  }
3931
3932  static SideEffects SideEffectsForArchRuntimeCalls() {
3933    // The generated code can use a runtime call.
3934    return SideEffects::CanTriggerGC();
3935  }
3936
3937  DECLARE_INSTRUCTION(Div);
3938
3939 private:
3940  DISALLOW_COPY_AND_ASSIGN(HDiv);
3941};
3942
3943class HRem : public HBinaryOperation {
3944 public:
3945  HRem(Primitive::Type result_type,
3946       HInstruction* left,
3947       HInstruction* right,
3948       uint32_t dex_pc)
3949      : HBinaryOperation(result_type, left, right, SideEffectsForArchRuntimeCalls(), dex_pc) {}
3950
3951  template <typename T>
3952  T Compute(T x, T y) const {
3953    // Our graph structure ensures we never have 0 for `y` during
3954    // constant folding.
3955    DCHECK_NE(y, 0);
3956    // Special case -1 to avoid getting a SIGFPE on x86(_64).
3957    return (y == -1) ? 0 : x % y;
3958  }
3959
3960  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3961    return GetBlock()->GetGraph()->GetIntConstant(
3962        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3963  }
3964  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3965    return GetBlock()->GetGraph()->GetLongConstant(
3966        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3967  }
3968
3969
3970  static SideEffects SideEffectsForArchRuntimeCalls() {
3971    return SideEffects::CanTriggerGC();
3972  }
3973
3974  DECLARE_INSTRUCTION(Rem);
3975
3976 private:
3977  DISALLOW_COPY_AND_ASSIGN(HRem);
3978};
3979
3980class HDivZeroCheck : public HExpression<1> {
3981 public:
3982  HDivZeroCheck(HInstruction* value, uint32_t dex_pc)
3983      : HExpression(value->GetType(), SideEffects::None(), dex_pc) {
3984    SetRawInputAt(0, value);
3985  }
3986
3987  Primitive::Type GetType() const OVERRIDE { return InputAt(0)->GetType(); }
3988
3989  bool CanBeMoved() const OVERRIDE { return true; }
3990
3991  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
3992    return true;
3993  }
3994
3995  bool NeedsEnvironment() const OVERRIDE { return true; }
3996  bool CanThrow() const OVERRIDE { return true; }
3997
3998  DECLARE_INSTRUCTION(DivZeroCheck);
3999
4000 private:
4001  DISALLOW_COPY_AND_ASSIGN(HDivZeroCheck);
4002};
4003
4004class HShl : public HBinaryOperation {
4005 public:
4006  HShl(Primitive::Type result_type,
4007       HInstruction* left,
4008       HInstruction* right,
4009       uint32_t dex_pc = kNoDexPc)
4010      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
4011
4012  template <typename T, typename U, typename V>
4013  T Compute(T x, U y, V max_shift_value) const {
4014    static_assert(std::is_same<V, typename std::make_unsigned<T>::type>::value,
4015                  "V is not the unsigned integer type corresponding to T");
4016    return x << (y & max_shift_value);
4017  }
4018
4019  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
4020    return GetBlock()->GetGraph()->GetIntConstant(
4021        Compute(x->GetValue(), y->GetValue(), kMaxIntShiftValue), GetDexPc());
4022  }
4023  // There is no `Evaluate(HIntConstant* x, HLongConstant* y)`, as this
4024  // case is handled as `x << static_cast<int>(y)`.
4025  HConstant* Evaluate(HLongConstant* x, HIntConstant* y) const OVERRIDE {
4026    return GetBlock()->GetGraph()->GetLongConstant(
4027        Compute(x->GetValue(), y->GetValue(), kMaxLongShiftValue), GetDexPc());
4028  }
4029  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
4030    return GetBlock()->GetGraph()->GetLongConstant(
4031        Compute(x->GetValue(), y->GetValue(), kMaxLongShiftValue), GetDexPc());
4032  }
4033
4034  DECLARE_INSTRUCTION(Shl);
4035
4036 private:
4037  DISALLOW_COPY_AND_ASSIGN(HShl);
4038};
4039
4040class HShr : public HBinaryOperation {
4041 public:
4042  HShr(Primitive::Type result_type,
4043       HInstruction* left,
4044       HInstruction* right,
4045       uint32_t dex_pc = kNoDexPc)
4046      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
4047
4048  template <typename T, typename U, typename V>
4049  T Compute(T x, U y, V max_shift_value) const {
4050    static_assert(std::is_same<V, typename std::make_unsigned<T>::type>::value,
4051                  "V is not the unsigned integer type corresponding to T");
4052    return x >> (y & max_shift_value);
4053  }
4054
4055  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
4056    return GetBlock()->GetGraph()->GetIntConstant(
4057        Compute(x->GetValue(), y->GetValue(), kMaxIntShiftValue), GetDexPc());
4058  }
4059  // There is no `Evaluate(HIntConstant* x, HLongConstant* y)`, as this
4060  // case is handled as `x >> static_cast<int>(y)`.
4061  HConstant* Evaluate(HLongConstant* x, HIntConstant* y) const OVERRIDE {
4062    return GetBlock()->GetGraph()->GetLongConstant(
4063        Compute(x->GetValue(), y->GetValue(), kMaxLongShiftValue), GetDexPc());
4064  }
4065  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
4066    return GetBlock()->GetGraph()->GetLongConstant(
4067        Compute(x->GetValue(), y->GetValue(), kMaxLongShiftValue), GetDexPc());
4068  }
4069
4070  DECLARE_INSTRUCTION(Shr);
4071
4072 private:
4073  DISALLOW_COPY_AND_ASSIGN(HShr);
4074};
4075
4076class HUShr : public HBinaryOperation {
4077 public:
4078  HUShr(Primitive::Type result_type,
4079        HInstruction* left,
4080        HInstruction* right,
4081        uint32_t dex_pc = kNoDexPc)
4082      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
4083
4084  template <typename T, typename U, typename V>
4085  T Compute(T x, U y, V max_shift_value) const {
4086    static_assert(std::is_same<V, typename std::make_unsigned<T>::type>::value,
4087                  "V is not the unsigned integer type corresponding to T");
4088    V ux = static_cast<V>(x);
4089    return static_cast<T>(ux >> (y & max_shift_value));
4090  }
4091
4092  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
4093    return GetBlock()->GetGraph()->GetIntConstant(
4094        Compute(x->GetValue(), y->GetValue(), kMaxIntShiftValue), GetDexPc());
4095  }
4096  // There is no `Evaluate(HIntConstant* x, HLongConstant* y)`, as this
4097  // case is handled as `x >>> static_cast<int>(y)`.
4098  HConstant* Evaluate(HLongConstant* x, HIntConstant* y) const OVERRIDE {
4099    return GetBlock()->GetGraph()->GetLongConstant(
4100        Compute(x->GetValue(), y->GetValue(), kMaxLongShiftValue), GetDexPc());
4101  }
4102  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
4103    return GetBlock()->GetGraph()->GetLongConstant(
4104        Compute(x->GetValue(), y->GetValue(), kMaxLongShiftValue), GetDexPc());
4105  }
4106
4107  DECLARE_INSTRUCTION(UShr);
4108
4109 private:
4110  DISALLOW_COPY_AND_ASSIGN(HUShr);
4111};
4112
4113class HAnd : public HBinaryOperation {
4114 public:
4115  HAnd(Primitive::Type result_type,
4116       HInstruction* left,
4117       HInstruction* right,
4118       uint32_t dex_pc = kNoDexPc)
4119      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
4120
4121  bool IsCommutative() const OVERRIDE { return true; }
4122
4123  template <typename T, typename U>
4124  auto Compute(T x, U y) const -> decltype(x & y) { return x & y; }
4125
4126  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
4127    return GetBlock()->GetGraph()->GetIntConstant(
4128        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4129  }
4130  HConstant* Evaluate(HIntConstant* x, HLongConstant* y) const OVERRIDE {
4131    return GetBlock()->GetGraph()->GetLongConstant(
4132        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4133  }
4134  HConstant* Evaluate(HLongConstant* x, HIntConstant* y) const OVERRIDE {
4135    return GetBlock()->GetGraph()->GetLongConstant(
4136        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4137  }
4138  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
4139    return GetBlock()->GetGraph()->GetLongConstant(
4140        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4141  }
4142
4143  DECLARE_INSTRUCTION(And);
4144
4145 private:
4146  DISALLOW_COPY_AND_ASSIGN(HAnd);
4147};
4148
4149class HOr : public HBinaryOperation {
4150 public:
4151  HOr(Primitive::Type result_type,
4152      HInstruction* left,
4153      HInstruction* right,
4154      uint32_t dex_pc = kNoDexPc)
4155      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
4156
4157  bool IsCommutative() const OVERRIDE { return true; }
4158
4159  template <typename T, typename U>
4160  auto Compute(T x, U y) const -> decltype(x | y) { return x | y; }
4161
4162  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
4163    return GetBlock()->GetGraph()->GetIntConstant(
4164        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4165  }
4166  HConstant* Evaluate(HIntConstant* x, HLongConstant* y) const OVERRIDE {
4167    return GetBlock()->GetGraph()->GetLongConstant(
4168        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4169  }
4170  HConstant* Evaluate(HLongConstant* x, HIntConstant* y) const OVERRIDE {
4171    return GetBlock()->GetGraph()->GetLongConstant(
4172        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4173  }
4174  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
4175    return GetBlock()->GetGraph()->GetLongConstant(
4176        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4177  }
4178
4179  DECLARE_INSTRUCTION(Or);
4180
4181 private:
4182  DISALLOW_COPY_AND_ASSIGN(HOr);
4183};
4184
4185class HXor : public HBinaryOperation {
4186 public:
4187  HXor(Primitive::Type result_type,
4188       HInstruction* left,
4189       HInstruction* right,
4190       uint32_t dex_pc = kNoDexPc)
4191      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
4192
4193  bool IsCommutative() const OVERRIDE { return true; }
4194
4195  template <typename T, typename U>
4196  auto Compute(T x, U y) const -> decltype(x ^ y) { return x ^ y; }
4197
4198  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
4199    return GetBlock()->GetGraph()->GetIntConstant(
4200        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4201  }
4202  HConstant* Evaluate(HIntConstant* x, HLongConstant* y) const OVERRIDE {
4203    return GetBlock()->GetGraph()->GetLongConstant(
4204        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4205  }
4206  HConstant* Evaluate(HLongConstant* x, HIntConstant* y) const OVERRIDE {
4207    return GetBlock()->GetGraph()->GetLongConstant(
4208        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4209  }
4210  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
4211    return GetBlock()->GetGraph()->GetLongConstant(
4212        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4213  }
4214
4215  DECLARE_INSTRUCTION(Xor);
4216
4217 private:
4218  DISALLOW_COPY_AND_ASSIGN(HXor);
4219};
4220
4221class HRor : public HBinaryOperation {
4222 public:
4223  HRor(Primitive::Type result_type, HInstruction* value, HInstruction* distance)
4224    : HBinaryOperation(result_type, value, distance) {}
4225
4226  template <typename T, typename U, typename V>
4227  T Compute(T x, U y, V max_shift_value) const {
4228    static_assert(std::is_same<V, typename std::make_unsigned<T>::type>::value,
4229                  "V is not the unsigned integer type corresponding to T");
4230    V ux = static_cast<V>(x);
4231    if ((y & max_shift_value) == 0) {
4232      return static_cast<T>(ux);
4233    } else {
4234      const V reg_bits = sizeof(T) * 8;
4235      return static_cast<T>(ux >> (y & max_shift_value)) |
4236                           (x << (reg_bits - (y & max_shift_value)));
4237    }
4238  }
4239
4240  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
4241    return GetBlock()->GetGraph()->GetIntConstant(
4242        Compute(x->GetValue(), y->GetValue(), kMaxIntShiftValue), GetDexPc());
4243  }
4244  HConstant* Evaluate(HLongConstant* x, HIntConstant* y) const OVERRIDE {
4245    return GetBlock()->GetGraph()->GetLongConstant(
4246        Compute(x->GetValue(), y->GetValue(), kMaxLongShiftValue), GetDexPc());
4247  }
4248  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
4249    return GetBlock()->GetGraph()->GetLongConstant(
4250        Compute(x->GetValue(), y->GetValue(), kMaxLongShiftValue), GetDexPc());
4251  }
4252
4253  DECLARE_INSTRUCTION(Ror);
4254
4255 private:
4256  DISALLOW_COPY_AND_ASSIGN(HRor);
4257};
4258
4259// The value of a parameter in this method. Its location depends on
4260// the calling convention.
4261class HParameterValue : public HExpression<0> {
4262 public:
4263  HParameterValue(const DexFile& dex_file,
4264                  uint16_t type_index,
4265                  uint8_t index,
4266                  Primitive::Type parameter_type,
4267                  bool is_this = false)
4268      : HExpression(parameter_type, SideEffects::None(), kNoDexPc),
4269        dex_file_(dex_file),
4270        type_index_(type_index),
4271        index_(index),
4272        is_this_(is_this),
4273        can_be_null_(!is_this) {}
4274
4275  const DexFile& GetDexFile() const { return dex_file_; }
4276  uint16_t GetTypeIndex() const { return type_index_; }
4277  uint8_t GetIndex() const { return index_; }
4278  bool IsThis() const { return is_this_; }
4279
4280  bool CanBeNull() const OVERRIDE { return can_be_null_; }
4281  void SetCanBeNull(bool can_be_null) { can_be_null_ = can_be_null; }
4282
4283  DECLARE_INSTRUCTION(ParameterValue);
4284
4285 private:
4286  const DexFile& dex_file_;
4287  const uint16_t type_index_;
4288  // The index of this parameter in the parameters list. Must be less
4289  // than HGraph::number_of_in_vregs_.
4290  const uint8_t index_;
4291
4292  // Whether or not the parameter value corresponds to 'this' argument.
4293  const bool is_this_;
4294
4295  bool can_be_null_;
4296
4297  DISALLOW_COPY_AND_ASSIGN(HParameterValue);
4298};
4299
4300class HNot : public HUnaryOperation {
4301 public:
4302  HNot(Primitive::Type result_type, HInstruction* input, uint32_t dex_pc = kNoDexPc)
4303      : HUnaryOperation(result_type, input, dex_pc) {}
4304
4305  bool CanBeMoved() const OVERRIDE { return true; }
4306  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
4307    return true;
4308  }
4309
4310  template <typename T> T Compute(T x) const { return ~x; }
4311
4312  HConstant* Evaluate(HIntConstant* x) const OVERRIDE {
4313    return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue()), GetDexPc());
4314  }
4315  HConstant* Evaluate(HLongConstant* x) const OVERRIDE {
4316    return GetBlock()->GetGraph()->GetLongConstant(Compute(x->GetValue()), GetDexPc());
4317  }
4318
4319  DECLARE_INSTRUCTION(Not);
4320
4321 private:
4322  DISALLOW_COPY_AND_ASSIGN(HNot);
4323};
4324
4325class HBooleanNot : public HUnaryOperation {
4326 public:
4327  explicit HBooleanNot(HInstruction* input, uint32_t dex_pc = kNoDexPc)
4328      : HUnaryOperation(Primitive::Type::kPrimBoolean, input, dex_pc) {}
4329
4330  bool CanBeMoved() const OVERRIDE { return true; }
4331  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
4332    return true;
4333  }
4334
4335  template <typename T> bool Compute(T x) const {
4336    DCHECK(IsUint<1>(x));
4337    return !x;
4338  }
4339
4340  HConstant* Evaluate(HIntConstant* x) const OVERRIDE {
4341    return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue()), GetDexPc());
4342  }
4343  HConstant* Evaluate(HLongConstant* x ATTRIBUTE_UNUSED) const OVERRIDE {
4344    LOG(FATAL) << DebugName() << " is not defined for long values";
4345    UNREACHABLE();
4346  }
4347
4348  DECLARE_INSTRUCTION(BooleanNot);
4349
4350 private:
4351  DISALLOW_COPY_AND_ASSIGN(HBooleanNot);
4352};
4353
4354class HTypeConversion : public HExpression<1> {
4355 public:
4356  // Instantiate a type conversion of `input` to `result_type`.
4357  HTypeConversion(Primitive::Type result_type, HInstruction* input, uint32_t dex_pc)
4358      : HExpression(result_type,
4359                    SideEffectsForArchRuntimeCalls(input->GetType(), result_type),
4360                    dex_pc) {
4361    SetRawInputAt(0, input);
4362    DCHECK_NE(input->GetType(), result_type);
4363  }
4364
4365  HInstruction* GetInput() const { return InputAt(0); }
4366  Primitive::Type GetInputType() const { return GetInput()->GetType(); }
4367  Primitive::Type GetResultType() const { return GetType(); }
4368
4369  // Required by the x86, ARM, MIPS and MIPS64 code generators when producing calls
4370  // to the runtime.
4371
4372  bool CanBeMoved() const OVERRIDE { return true; }
4373  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE { return true; }
4374
4375  // Try to statically evaluate the conversion and return a HConstant
4376  // containing the result.  If the input cannot be converted, return nullptr.
4377  HConstant* TryStaticEvaluation() const;
4378
4379  static SideEffects SideEffectsForArchRuntimeCalls(Primitive::Type input_type,
4380                                                    Primitive::Type result_type) {
4381    // Some architectures may not require the 'GC' side effects, but at this point
4382    // in the compilation process we do not know what architecture we will
4383    // generate code for, so we must be conservative.
4384    if ((Primitive::IsFloatingPointType(input_type) && Primitive::IsIntegralType(result_type))
4385        || (input_type == Primitive::kPrimLong && Primitive::IsFloatingPointType(result_type))) {
4386      return SideEffects::CanTriggerGC();
4387    }
4388    return SideEffects::None();
4389  }
4390
4391  DECLARE_INSTRUCTION(TypeConversion);
4392
4393 private:
4394  DISALLOW_COPY_AND_ASSIGN(HTypeConversion);
4395};
4396
4397static constexpr uint32_t kNoRegNumber = -1;
4398
4399class HPhi : public HInstruction {
4400 public:
4401  HPhi(ArenaAllocator* arena,
4402       uint32_t reg_number,
4403       size_t number_of_inputs,
4404       Primitive::Type type,
4405       uint32_t dex_pc = kNoDexPc)
4406      : HInstruction(SideEffects::None(), dex_pc),
4407        inputs_(number_of_inputs, arena->Adapter(kArenaAllocPhiInputs)),
4408        reg_number_(reg_number),
4409        type_(ToPhiType(type)),
4410        // Phis are constructed live and marked dead if conflicting or unused.
4411        // Individual steps of SsaBuilder should assume that if a phi has been
4412        // marked dead, it can be ignored and will be removed by SsaPhiElimination.
4413        is_live_(true),
4414        can_be_null_(true) {
4415    DCHECK_NE(type_, Primitive::kPrimVoid);
4416  }
4417
4418  // Returns a type equivalent to the given `type`, but that a `HPhi` can hold.
4419  static Primitive::Type ToPhiType(Primitive::Type type) {
4420    switch (type) {
4421      case Primitive::kPrimBoolean:
4422      case Primitive::kPrimByte:
4423      case Primitive::kPrimShort:
4424      case Primitive::kPrimChar:
4425        return Primitive::kPrimInt;
4426      default:
4427        return type;
4428    }
4429  }
4430
4431  bool IsCatchPhi() const { return GetBlock()->IsCatchBlock(); }
4432
4433  size_t InputCount() const OVERRIDE { return inputs_.size(); }
4434
4435  void AddInput(HInstruction* input);
4436  void RemoveInputAt(size_t index);
4437
4438  Primitive::Type GetType() const OVERRIDE { return type_; }
4439  void SetType(Primitive::Type type) { type_ = type; }
4440
4441  bool CanBeNull() const OVERRIDE { return can_be_null_; }
4442  void SetCanBeNull(bool can_be_null) { can_be_null_ = can_be_null; }
4443
4444  uint32_t GetRegNumber() const { return reg_number_; }
4445
4446  void SetDead() { is_live_ = false; }
4447  void SetLive() { is_live_ = true; }
4448  bool IsDead() const { return !is_live_; }
4449  bool IsLive() const { return is_live_; }
4450
4451  bool IsVRegEquivalentOf(HInstruction* other) const {
4452    return other != nullptr
4453        && other->IsPhi()
4454        && other->AsPhi()->GetBlock() == GetBlock()
4455        && other->AsPhi()->GetRegNumber() == GetRegNumber();
4456  }
4457
4458  // Returns the next equivalent phi (starting from the current one) or null if there is none.
4459  // An equivalent phi is a phi having the same dex register and type.
4460  // It assumes that phis with the same dex register are adjacent.
4461  HPhi* GetNextEquivalentPhiWithSameType() {
4462    HInstruction* next = GetNext();
4463    while (next != nullptr && next->AsPhi()->GetRegNumber() == reg_number_) {
4464      if (next->GetType() == GetType()) {
4465        return next->AsPhi();
4466      }
4467      next = next->GetNext();
4468    }
4469    return nullptr;
4470  }
4471
4472  DECLARE_INSTRUCTION(Phi);
4473
4474 protected:
4475  const HUserRecord<HInstruction*> InputRecordAt(size_t index) const OVERRIDE {
4476    return inputs_[index];
4477  }
4478
4479  void SetRawInputRecordAt(size_t index, const HUserRecord<HInstruction*>& input) OVERRIDE {
4480    inputs_[index] = input;
4481  }
4482
4483 private:
4484  ArenaVector<HUserRecord<HInstruction*> > inputs_;
4485  const uint32_t reg_number_;
4486  Primitive::Type type_;
4487  bool is_live_;
4488  bool can_be_null_;
4489
4490  DISALLOW_COPY_AND_ASSIGN(HPhi);
4491};
4492
4493class HNullCheck : public HExpression<1> {
4494 public:
4495  HNullCheck(HInstruction* value, uint32_t dex_pc)
4496      : HExpression(value->GetType(), SideEffects::None(), dex_pc) {
4497    SetRawInputAt(0, value);
4498  }
4499
4500  bool CanBeMoved() const OVERRIDE { return true; }
4501  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
4502    return true;
4503  }
4504
4505  bool NeedsEnvironment() const OVERRIDE { return true; }
4506
4507  bool CanThrow() const OVERRIDE { return true; }
4508
4509  bool CanBeNull() const OVERRIDE { return false; }
4510
4511
4512  DECLARE_INSTRUCTION(NullCheck);
4513
4514 private:
4515  DISALLOW_COPY_AND_ASSIGN(HNullCheck);
4516};
4517
4518class FieldInfo : public ValueObject {
4519 public:
4520  FieldInfo(MemberOffset field_offset,
4521            Primitive::Type field_type,
4522            bool is_volatile,
4523            uint32_t index,
4524            uint16_t declaring_class_def_index,
4525            const DexFile& dex_file,
4526            Handle<mirror::DexCache> dex_cache)
4527      : field_offset_(field_offset),
4528        field_type_(field_type),
4529        is_volatile_(is_volatile),
4530        index_(index),
4531        declaring_class_def_index_(declaring_class_def_index),
4532        dex_file_(dex_file),
4533        dex_cache_(dex_cache) {}
4534
4535  MemberOffset GetFieldOffset() const { return field_offset_; }
4536  Primitive::Type GetFieldType() const { return field_type_; }
4537  uint32_t GetFieldIndex() const { return index_; }
4538  uint16_t GetDeclaringClassDefIndex() const { return declaring_class_def_index_;}
4539  const DexFile& GetDexFile() const { return dex_file_; }
4540  bool IsVolatile() const { return is_volatile_; }
4541  Handle<mirror::DexCache> GetDexCache() const { return dex_cache_; }
4542
4543 private:
4544  const MemberOffset field_offset_;
4545  const Primitive::Type field_type_;
4546  const bool is_volatile_;
4547  const uint32_t index_;
4548  const uint16_t declaring_class_def_index_;
4549  const DexFile& dex_file_;
4550  const Handle<mirror::DexCache> dex_cache_;
4551};
4552
4553class HInstanceFieldGet : public HExpression<1> {
4554 public:
4555  HInstanceFieldGet(HInstruction* value,
4556                    Primitive::Type field_type,
4557                    MemberOffset field_offset,
4558                    bool is_volatile,
4559                    uint32_t field_idx,
4560                    uint16_t declaring_class_def_index,
4561                    const DexFile& dex_file,
4562                    Handle<mirror::DexCache> dex_cache,
4563                    uint32_t dex_pc)
4564      : HExpression(field_type,
4565                    SideEffects::FieldReadOfType(field_type, is_volatile),
4566                    dex_pc),
4567        field_info_(field_offset,
4568                    field_type,
4569                    is_volatile,
4570                    field_idx,
4571                    declaring_class_def_index,
4572                    dex_file,
4573                    dex_cache) {
4574    SetRawInputAt(0, value);
4575  }
4576
4577  bool CanBeMoved() const OVERRIDE { return !IsVolatile(); }
4578
4579  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
4580    HInstanceFieldGet* other_get = other->AsInstanceFieldGet();
4581    return GetFieldOffset().SizeValue() == other_get->GetFieldOffset().SizeValue();
4582  }
4583
4584  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
4585    return (obj == InputAt(0)) && GetFieldOffset().Uint32Value() < kPageSize;
4586  }
4587
4588  size_t ComputeHashCode() const OVERRIDE {
4589    return (HInstruction::ComputeHashCode() << 7) | GetFieldOffset().SizeValue();
4590  }
4591
4592  const FieldInfo& GetFieldInfo() const { return field_info_; }
4593  MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
4594  Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); }
4595  bool IsVolatile() const { return field_info_.IsVolatile(); }
4596
4597  DECLARE_INSTRUCTION(InstanceFieldGet);
4598
4599 private:
4600  const FieldInfo field_info_;
4601
4602  DISALLOW_COPY_AND_ASSIGN(HInstanceFieldGet);
4603};
4604
4605class HInstanceFieldSet : public HTemplateInstruction<2> {
4606 public:
4607  HInstanceFieldSet(HInstruction* object,
4608                    HInstruction* value,
4609                    Primitive::Type field_type,
4610                    MemberOffset field_offset,
4611                    bool is_volatile,
4612                    uint32_t field_idx,
4613                    uint16_t declaring_class_def_index,
4614                    const DexFile& dex_file,
4615                    Handle<mirror::DexCache> dex_cache,
4616                    uint32_t dex_pc)
4617      : HTemplateInstruction(SideEffects::FieldWriteOfType(field_type, is_volatile),
4618                             dex_pc),
4619        field_info_(field_offset,
4620                    field_type,
4621                    is_volatile,
4622                    field_idx,
4623                    declaring_class_def_index,
4624                    dex_file,
4625                    dex_cache),
4626        value_can_be_null_(true) {
4627    SetRawInputAt(0, object);
4628    SetRawInputAt(1, value);
4629  }
4630
4631  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
4632    return (obj == InputAt(0)) && GetFieldOffset().Uint32Value() < kPageSize;
4633  }
4634
4635  const FieldInfo& GetFieldInfo() const { return field_info_; }
4636  MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
4637  Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); }
4638  bool IsVolatile() const { return field_info_.IsVolatile(); }
4639  HInstruction* GetValue() const { return InputAt(1); }
4640  bool GetValueCanBeNull() const { return value_can_be_null_; }
4641  void ClearValueCanBeNull() { value_can_be_null_ = false; }
4642
4643  DECLARE_INSTRUCTION(InstanceFieldSet);
4644
4645 private:
4646  const FieldInfo field_info_;
4647  bool value_can_be_null_;
4648
4649  DISALLOW_COPY_AND_ASSIGN(HInstanceFieldSet);
4650};
4651
4652class HArrayGet : public HExpression<2> {
4653 public:
4654  HArrayGet(HInstruction* array,
4655            HInstruction* index,
4656            Primitive::Type type,
4657            uint32_t dex_pc,
4658            SideEffects additional_side_effects = SideEffects::None())
4659      : HExpression(type,
4660                    SideEffects::ArrayReadOfType(type).Union(additional_side_effects),
4661                    dex_pc) {
4662    SetRawInputAt(0, array);
4663    SetRawInputAt(1, index);
4664  }
4665
4666  bool CanBeMoved() const OVERRIDE { return true; }
4667  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
4668    return true;
4669  }
4670  bool CanDoImplicitNullCheckOn(HInstruction* obj ATTRIBUTE_UNUSED) const OVERRIDE {
4671    // TODO: We can be smarter here.
4672    // Currently, the array access is always preceded by an ArrayLength or a NullCheck
4673    // which generates the implicit null check. There are cases when these can be removed
4674    // to produce better code. If we ever add optimizations to do so we should allow an
4675    // implicit check here (as long as the address falls in the first page).
4676    return false;
4677  }
4678
4679  void SetType(Primitive::Type type) { type_ = type; }
4680
4681  HInstruction* GetArray() const { return InputAt(0); }
4682  HInstruction* GetIndex() const { return InputAt(1); }
4683
4684  DECLARE_INSTRUCTION(ArrayGet);
4685
4686 private:
4687  DISALLOW_COPY_AND_ASSIGN(HArrayGet);
4688};
4689
4690class HArraySet : public HTemplateInstruction<3> {
4691 public:
4692  HArraySet(HInstruction* array,
4693            HInstruction* index,
4694            HInstruction* value,
4695            Primitive::Type expected_component_type,
4696            uint32_t dex_pc,
4697            SideEffects additional_side_effects = SideEffects::None())
4698      : HTemplateInstruction(
4699            SideEffects::ArrayWriteOfType(expected_component_type).Union(
4700                SideEffectsForArchRuntimeCalls(value->GetType())).Union(
4701                    additional_side_effects),
4702            dex_pc),
4703        expected_component_type_(expected_component_type),
4704        needs_type_check_(value->GetType() == Primitive::kPrimNot),
4705        value_can_be_null_(true),
4706        static_type_of_array_is_object_array_(false) {
4707    SetRawInputAt(0, array);
4708    SetRawInputAt(1, index);
4709    SetRawInputAt(2, value);
4710  }
4711
4712  bool NeedsEnvironment() const OVERRIDE {
4713    // We currently always call a runtime method to catch array store
4714    // exceptions.
4715    return needs_type_check_;
4716  }
4717
4718  // Can throw ArrayStoreException.
4719  bool CanThrow() const OVERRIDE { return needs_type_check_; }
4720
4721  bool CanDoImplicitNullCheckOn(HInstruction* obj ATTRIBUTE_UNUSED) const OVERRIDE {
4722    // TODO: Same as for ArrayGet.
4723    return false;
4724  }
4725
4726  void ClearNeedsTypeCheck() {
4727    needs_type_check_ = false;
4728  }
4729
4730  void ClearValueCanBeNull() {
4731    value_can_be_null_ = false;
4732  }
4733
4734  void SetStaticTypeOfArrayIsObjectArray() {
4735    static_type_of_array_is_object_array_ = true;
4736  }
4737
4738  bool GetValueCanBeNull() const { return value_can_be_null_; }
4739  bool NeedsTypeCheck() const { return needs_type_check_; }
4740  bool StaticTypeOfArrayIsObjectArray() const { return static_type_of_array_is_object_array_; }
4741
4742  HInstruction* GetArray() const { return InputAt(0); }
4743  HInstruction* GetIndex() const { return InputAt(1); }
4744  HInstruction* GetValue() const { return InputAt(2); }
4745
4746  Primitive::Type GetComponentType() const {
4747    // The Dex format does not type floating point index operations. Since the
4748    // `expected_component_type_` is set during building and can therefore not
4749    // be correct, we also check what is the value type. If it is a floating
4750    // point type, we must use that type.
4751    Primitive::Type value_type = GetValue()->GetType();
4752    return ((value_type == Primitive::kPrimFloat) || (value_type == Primitive::kPrimDouble))
4753        ? value_type
4754        : expected_component_type_;
4755  }
4756
4757  Primitive::Type GetRawExpectedComponentType() const {
4758    return expected_component_type_;
4759  }
4760
4761  static SideEffects SideEffectsForArchRuntimeCalls(Primitive::Type value_type) {
4762    return (value_type == Primitive::kPrimNot) ? SideEffects::CanTriggerGC() : SideEffects::None();
4763  }
4764
4765  DECLARE_INSTRUCTION(ArraySet);
4766
4767 private:
4768  const Primitive::Type expected_component_type_;
4769  bool needs_type_check_;
4770  bool value_can_be_null_;
4771  // Cached information for the reference_type_info_ so that codegen
4772  // does not need to inspect the static type.
4773  bool static_type_of_array_is_object_array_;
4774
4775  DISALLOW_COPY_AND_ASSIGN(HArraySet);
4776};
4777
4778class HArrayLength : public HExpression<1> {
4779 public:
4780  HArrayLength(HInstruction* array, uint32_t dex_pc)
4781      : HExpression(Primitive::kPrimInt, SideEffects::None(), dex_pc) {
4782    // Note that arrays do not change length, so the instruction does not
4783    // depend on any write.
4784    SetRawInputAt(0, array);
4785  }
4786
4787  bool CanBeMoved() const OVERRIDE { return true; }
4788  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
4789    return true;
4790  }
4791  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
4792    return obj == InputAt(0);
4793  }
4794
4795  DECLARE_INSTRUCTION(ArrayLength);
4796
4797 private:
4798  DISALLOW_COPY_AND_ASSIGN(HArrayLength);
4799};
4800
4801class HBoundsCheck : public HExpression<2> {
4802 public:
4803  HBoundsCheck(HInstruction* index, HInstruction* length, uint32_t dex_pc)
4804      : HExpression(index->GetType(), SideEffects::None(), dex_pc) {
4805    DCHECK(index->GetType() == Primitive::kPrimInt);
4806    SetRawInputAt(0, index);
4807    SetRawInputAt(1, length);
4808  }
4809
4810  bool CanBeMoved() const OVERRIDE { return true; }
4811  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
4812    return true;
4813  }
4814
4815  bool NeedsEnvironment() const OVERRIDE { return true; }
4816
4817  bool CanThrow() const OVERRIDE { return true; }
4818
4819  HInstruction* GetIndex() const { return InputAt(0); }
4820
4821  DECLARE_INSTRUCTION(BoundsCheck);
4822
4823 private:
4824  DISALLOW_COPY_AND_ASSIGN(HBoundsCheck);
4825};
4826
4827/**
4828 * Some DEX instructions are folded into multiple HInstructions that need
4829 * to stay live until the last HInstruction. This class
4830 * is used as a marker for the baseline compiler to ensure its preceding
4831 * HInstruction stays live. `index` represents the stack location index of the
4832 * instruction (the actual offset is computed as index * vreg_size).
4833 */
4834class HTemporary : public HTemplateInstruction<0> {
4835 public:
4836  explicit HTemporary(size_t index, uint32_t dex_pc = kNoDexPc)
4837      : HTemplateInstruction(SideEffects::None(), dex_pc), index_(index) {}
4838
4839  size_t GetIndex() const { return index_; }
4840
4841  Primitive::Type GetType() const OVERRIDE {
4842    // The previous instruction is the one that will be stored in the temporary location.
4843    DCHECK(GetPrevious() != nullptr);
4844    return GetPrevious()->GetType();
4845  }
4846
4847  DECLARE_INSTRUCTION(Temporary);
4848
4849 private:
4850  const size_t index_;
4851  DISALLOW_COPY_AND_ASSIGN(HTemporary);
4852};
4853
4854class HSuspendCheck : public HTemplateInstruction<0> {
4855 public:
4856  explicit HSuspendCheck(uint32_t dex_pc)
4857      : HTemplateInstruction(SideEffects::CanTriggerGC(), dex_pc), slow_path_(nullptr) {}
4858
4859  bool NeedsEnvironment() const OVERRIDE {
4860    return true;
4861  }
4862
4863  void SetSlowPath(SlowPathCode* slow_path) { slow_path_ = slow_path; }
4864  SlowPathCode* GetSlowPath() const { return slow_path_; }
4865
4866  DECLARE_INSTRUCTION(SuspendCheck);
4867
4868 private:
4869  // Only used for code generation, in order to share the same slow path between back edges
4870  // of a same loop.
4871  SlowPathCode* slow_path_;
4872
4873  DISALLOW_COPY_AND_ASSIGN(HSuspendCheck);
4874};
4875
4876// Pseudo-instruction which provides the native debugger with mapping information.
4877// It ensures that we can generate line number and local variables at this point.
4878class HNativeDebugInfo : public HTemplateInstruction<0> {
4879 public:
4880  explicit HNativeDebugInfo(uint32_t dex_pc)
4881      : HTemplateInstruction<0>(SideEffects::None(), dex_pc) {}
4882
4883  bool NeedsEnvironment() const OVERRIDE {
4884    return true;
4885  }
4886
4887  DECLARE_INSTRUCTION(NativeDebugInfo);
4888
4889 private:
4890  DISALLOW_COPY_AND_ASSIGN(HNativeDebugInfo);
4891};
4892
4893/**
4894 * Instruction to load a Class object.
4895 */
4896class HLoadClass : public HExpression<1> {
4897 public:
4898  HLoadClass(HCurrentMethod* current_method,
4899             uint16_t type_index,
4900             const DexFile& dex_file,
4901             bool is_referrers_class,
4902             uint32_t dex_pc,
4903             bool needs_access_check,
4904             bool is_in_dex_cache)
4905      : HExpression(Primitive::kPrimNot, SideEffectsForArchRuntimeCalls(), dex_pc),
4906        type_index_(type_index),
4907        dex_file_(dex_file),
4908        is_referrers_class_(is_referrers_class),
4909        generate_clinit_check_(false),
4910        needs_access_check_(needs_access_check),
4911        is_in_dex_cache_(is_in_dex_cache),
4912        loaded_class_rti_(ReferenceTypeInfo::CreateInvalid()) {
4913    // Referrers class should not need access check. We never inline unverified
4914    // methods so we can't possibly end up in this situation.
4915    DCHECK(!is_referrers_class_ || !needs_access_check_);
4916    SetRawInputAt(0, current_method);
4917  }
4918
4919  bool CanBeMoved() const OVERRIDE { return true; }
4920
4921  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
4922    // Note that we don't need to test for generate_clinit_check_.
4923    // Whether or not we need to generate the clinit check is processed in
4924    // prepare_for_register_allocator based on existing HInvokes and HClinitChecks.
4925    return other->AsLoadClass()->type_index_ == type_index_ &&
4926        other->AsLoadClass()->needs_access_check_ == needs_access_check_;
4927  }
4928
4929  size_t ComputeHashCode() const OVERRIDE { return type_index_; }
4930
4931  uint16_t GetTypeIndex() const { return type_index_; }
4932  bool IsReferrersClass() const { return is_referrers_class_; }
4933  bool CanBeNull() const OVERRIDE { return false; }
4934
4935  bool NeedsEnvironment() const OVERRIDE {
4936    return CanCallRuntime();
4937  }
4938
4939  bool MustGenerateClinitCheck() const {
4940    return generate_clinit_check_;
4941  }
4942
4943  void SetMustGenerateClinitCheck(bool generate_clinit_check) {
4944    // The entrypoint the code generator is going to call does not do
4945    // clinit of the class.
4946    DCHECK(!NeedsAccessCheck());
4947    generate_clinit_check_ = generate_clinit_check;
4948  }
4949
4950  bool CanCallRuntime() const {
4951    return MustGenerateClinitCheck() ||
4952           (!is_referrers_class_ && !is_in_dex_cache_) ||
4953           needs_access_check_;
4954  }
4955
4956  bool NeedsAccessCheck() const {
4957    return needs_access_check_;
4958  }
4959
4960  bool CanThrow() const OVERRIDE {
4961    return CanCallRuntime();
4962  }
4963
4964  ReferenceTypeInfo GetLoadedClassRTI() {
4965    return loaded_class_rti_;
4966  }
4967
4968  void SetLoadedClassRTI(ReferenceTypeInfo rti) {
4969    // Make sure we only set exact types (the loaded class should never be merged).
4970    DCHECK(rti.IsExact());
4971    loaded_class_rti_ = rti;
4972  }
4973
4974  const DexFile& GetDexFile() { return dex_file_; }
4975
4976  bool NeedsDexCacheOfDeclaringClass() const OVERRIDE { return !is_referrers_class_; }
4977
4978  static SideEffects SideEffectsForArchRuntimeCalls() {
4979    return SideEffects::CanTriggerGC();
4980  }
4981
4982  bool IsInDexCache() const { return is_in_dex_cache_; }
4983
4984  DECLARE_INSTRUCTION(LoadClass);
4985
4986 private:
4987  const uint16_t type_index_;
4988  const DexFile& dex_file_;
4989  const bool is_referrers_class_;
4990  // Whether this instruction must generate the initialization check.
4991  // Used for code generation.
4992  bool generate_clinit_check_;
4993  const bool needs_access_check_;
4994  const bool is_in_dex_cache_;
4995
4996  ReferenceTypeInfo loaded_class_rti_;
4997
4998  DISALLOW_COPY_AND_ASSIGN(HLoadClass);
4999};
5000
5001class HLoadString : public HExpression<1> {
5002 public:
5003  HLoadString(HCurrentMethod* current_method,
5004              uint32_t string_index,
5005              uint32_t dex_pc,
5006              bool is_in_dex_cache)
5007      : HExpression(Primitive::kPrimNot, SideEffectsForArchRuntimeCalls(), dex_pc),
5008        string_index_(string_index),
5009        is_in_dex_cache_(is_in_dex_cache) {
5010    SetRawInputAt(0, current_method);
5011  }
5012
5013  bool CanBeMoved() const OVERRIDE { return true; }
5014
5015  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
5016    return other->AsLoadString()->string_index_ == string_index_;
5017  }
5018
5019  size_t ComputeHashCode() const OVERRIDE { return string_index_; }
5020
5021  uint32_t GetStringIndex() const { return string_index_; }
5022
5023  // TODO: Can we deopt or debug when we resolve a string?
5024  bool NeedsEnvironment() const OVERRIDE { return false; }
5025  bool NeedsDexCacheOfDeclaringClass() const OVERRIDE { return true; }
5026  bool CanBeNull() const OVERRIDE { return false; }
5027  bool IsInDexCache() const { return is_in_dex_cache_; }
5028
5029  static SideEffects SideEffectsForArchRuntimeCalls() {
5030    return SideEffects::CanTriggerGC();
5031  }
5032
5033  DECLARE_INSTRUCTION(LoadString);
5034
5035 private:
5036  const uint32_t string_index_;
5037  const bool is_in_dex_cache_;
5038
5039  DISALLOW_COPY_AND_ASSIGN(HLoadString);
5040};
5041
5042/**
5043 * Performs an initialization check on its Class object input.
5044 */
5045class HClinitCheck : public HExpression<1> {
5046 public:
5047  HClinitCheck(HLoadClass* constant, uint32_t dex_pc)
5048      : HExpression(
5049            Primitive::kPrimNot,
5050            SideEffects::AllChanges(),  // Assume write/read on all fields/arrays.
5051            dex_pc) {
5052    SetRawInputAt(0, constant);
5053  }
5054
5055  bool CanBeMoved() const OVERRIDE { return true; }
5056  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
5057    return true;
5058  }
5059
5060  bool NeedsEnvironment() const OVERRIDE {
5061    // May call runtime to initialize the class.
5062    return true;
5063  }
5064
5065  bool CanThrow() const OVERRIDE { return true; }
5066
5067  HLoadClass* GetLoadClass() const { return InputAt(0)->AsLoadClass(); }
5068
5069  DECLARE_INSTRUCTION(ClinitCheck);
5070
5071 private:
5072  DISALLOW_COPY_AND_ASSIGN(HClinitCheck);
5073};
5074
5075class HStaticFieldGet : public HExpression<1> {
5076 public:
5077  HStaticFieldGet(HInstruction* cls,
5078                  Primitive::Type field_type,
5079                  MemberOffset field_offset,
5080                  bool is_volatile,
5081                  uint32_t field_idx,
5082                  uint16_t declaring_class_def_index,
5083                  const DexFile& dex_file,
5084                  Handle<mirror::DexCache> dex_cache,
5085                  uint32_t dex_pc)
5086      : HExpression(field_type,
5087                    SideEffects::FieldReadOfType(field_type, is_volatile),
5088                    dex_pc),
5089        field_info_(field_offset,
5090                    field_type,
5091                    is_volatile,
5092                    field_idx,
5093                    declaring_class_def_index,
5094                    dex_file,
5095                    dex_cache) {
5096    SetRawInputAt(0, cls);
5097  }
5098
5099
5100  bool CanBeMoved() const OVERRIDE { return !IsVolatile(); }
5101
5102  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
5103    HStaticFieldGet* other_get = other->AsStaticFieldGet();
5104    return GetFieldOffset().SizeValue() == other_get->GetFieldOffset().SizeValue();
5105  }
5106
5107  size_t ComputeHashCode() const OVERRIDE {
5108    return (HInstruction::ComputeHashCode() << 7) | GetFieldOffset().SizeValue();
5109  }
5110
5111  const FieldInfo& GetFieldInfo() const { return field_info_; }
5112  MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
5113  Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); }
5114  bool IsVolatile() const { return field_info_.IsVolatile(); }
5115
5116  DECLARE_INSTRUCTION(StaticFieldGet);
5117
5118 private:
5119  const FieldInfo field_info_;
5120
5121  DISALLOW_COPY_AND_ASSIGN(HStaticFieldGet);
5122};
5123
5124class HStaticFieldSet : public HTemplateInstruction<2> {
5125 public:
5126  HStaticFieldSet(HInstruction* cls,
5127                  HInstruction* value,
5128                  Primitive::Type field_type,
5129                  MemberOffset field_offset,
5130                  bool is_volatile,
5131                  uint32_t field_idx,
5132                  uint16_t declaring_class_def_index,
5133                  const DexFile& dex_file,
5134                  Handle<mirror::DexCache> dex_cache,
5135                  uint32_t dex_pc)
5136      : HTemplateInstruction(SideEffects::FieldWriteOfType(field_type, is_volatile),
5137                             dex_pc),
5138        field_info_(field_offset,
5139                    field_type,
5140                    is_volatile,
5141                    field_idx,
5142                    declaring_class_def_index,
5143                    dex_file,
5144                    dex_cache),
5145        value_can_be_null_(true) {
5146    SetRawInputAt(0, cls);
5147    SetRawInputAt(1, value);
5148  }
5149
5150  const FieldInfo& GetFieldInfo() const { return field_info_; }
5151  MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
5152  Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); }
5153  bool IsVolatile() const { return field_info_.IsVolatile(); }
5154
5155  HInstruction* GetValue() const { return InputAt(1); }
5156  bool GetValueCanBeNull() const { return value_can_be_null_; }
5157  void ClearValueCanBeNull() { value_can_be_null_ = false; }
5158
5159  DECLARE_INSTRUCTION(StaticFieldSet);
5160
5161 private:
5162  const FieldInfo field_info_;
5163  bool value_can_be_null_;
5164
5165  DISALLOW_COPY_AND_ASSIGN(HStaticFieldSet);
5166};
5167
5168class HUnresolvedInstanceFieldGet : public HExpression<1> {
5169 public:
5170  HUnresolvedInstanceFieldGet(HInstruction* obj,
5171                              Primitive::Type field_type,
5172                              uint32_t field_index,
5173                              uint32_t dex_pc)
5174      : HExpression(field_type, SideEffects::AllExceptGCDependency(), dex_pc),
5175        field_index_(field_index) {
5176    SetRawInputAt(0, obj);
5177  }
5178
5179  bool NeedsEnvironment() const OVERRIDE { return true; }
5180  bool CanThrow() const OVERRIDE { return true; }
5181
5182  Primitive::Type GetFieldType() const { return GetType(); }
5183  uint32_t GetFieldIndex() const { return field_index_; }
5184
5185  DECLARE_INSTRUCTION(UnresolvedInstanceFieldGet);
5186
5187 private:
5188  const uint32_t field_index_;
5189
5190  DISALLOW_COPY_AND_ASSIGN(HUnresolvedInstanceFieldGet);
5191};
5192
5193class HUnresolvedInstanceFieldSet : public HTemplateInstruction<2> {
5194 public:
5195  HUnresolvedInstanceFieldSet(HInstruction* obj,
5196                              HInstruction* value,
5197                              Primitive::Type field_type,
5198                              uint32_t field_index,
5199                              uint32_t dex_pc)
5200      : HTemplateInstruction(SideEffects::AllExceptGCDependency(), dex_pc),
5201        field_type_(field_type),
5202        field_index_(field_index) {
5203    DCHECK_EQ(field_type, value->GetType());
5204    SetRawInputAt(0, obj);
5205    SetRawInputAt(1, value);
5206  }
5207
5208  bool NeedsEnvironment() const OVERRIDE { return true; }
5209  bool CanThrow() const OVERRIDE { return true; }
5210
5211  Primitive::Type GetFieldType() const { return field_type_; }
5212  uint32_t GetFieldIndex() const { return field_index_; }
5213
5214  DECLARE_INSTRUCTION(UnresolvedInstanceFieldSet);
5215
5216 private:
5217  const Primitive::Type field_type_;
5218  const uint32_t field_index_;
5219
5220  DISALLOW_COPY_AND_ASSIGN(HUnresolvedInstanceFieldSet);
5221};
5222
5223class HUnresolvedStaticFieldGet : public HExpression<0> {
5224 public:
5225  HUnresolvedStaticFieldGet(Primitive::Type field_type,
5226                            uint32_t field_index,
5227                            uint32_t dex_pc)
5228      : HExpression(field_type, SideEffects::AllExceptGCDependency(), dex_pc),
5229        field_index_(field_index) {
5230  }
5231
5232  bool NeedsEnvironment() const OVERRIDE { return true; }
5233  bool CanThrow() const OVERRIDE { return true; }
5234
5235  Primitive::Type GetFieldType() const { return GetType(); }
5236  uint32_t GetFieldIndex() const { return field_index_; }
5237
5238  DECLARE_INSTRUCTION(UnresolvedStaticFieldGet);
5239
5240 private:
5241  const uint32_t field_index_;
5242
5243  DISALLOW_COPY_AND_ASSIGN(HUnresolvedStaticFieldGet);
5244};
5245
5246class HUnresolvedStaticFieldSet : public HTemplateInstruction<1> {
5247 public:
5248  HUnresolvedStaticFieldSet(HInstruction* value,
5249                            Primitive::Type field_type,
5250                            uint32_t field_index,
5251                            uint32_t dex_pc)
5252      : HTemplateInstruction(SideEffects::AllExceptGCDependency(), dex_pc),
5253        field_type_(field_type),
5254        field_index_(field_index) {
5255    DCHECK_EQ(field_type, value->GetType());
5256    SetRawInputAt(0, value);
5257  }
5258
5259  bool NeedsEnvironment() const OVERRIDE { return true; }
5260  bool CanThrow() const OVERRIDE { return true; }
5261
5262  Primitive::Type GetFieldType() const { return field_type_; }
5263  uint32_t GetFieldIndex() const { return field_index_; }
5264
5265  DECLARE_INSTRUCTION(UnresolvedStaticFieldSet);
5266
5267 private:
5268  const Primitive::Type field_type_;
5269  const uint32_t field_index_;
5270
5271  DISALLOW_COPY_AND_ASSIGN(HUnresolvedStaticFieldSet);
5272};
5273
5274// Implement the move-exception DEX instruction.
5275class HLoadException : public HExpression<0> {
5276 public:
5277  explicit HLoadException(uint32_t dex_pc = kNoDexPc)
5278      : HExpression(Primitive::kPrimNot, SideEffects::None(), dex_pc) {}
5279
5280  bool CanBeNull() const OVERRIDE { return false; }
5281
5282  DECLARE_INSTRUCTION(LoadException);
5283
5284 private:
5285  DISALLOW_COPY_AND_ASSIGN(HLoadException);
5286};
5287
5288// Implicit part of move-exception which clears thread-local exception storage.
5289// Must not be removed because the runtime expects the TLS to get cleared.
5290class HClearException : public HTemplateInstruction<0> {
5291 public:
5292  explicit HClearException(uint32_t dex_pc = kNoDexPc)
5293      : HTemplateInstruction(SideEffects::AllWrites(), dex_pc) {}
5294
5295  DECLARE_INSTRUCTION(ClearException);
5296
5297 private:
5298  DISALLOW_COPY_AND_ASSIGN(HClearException);
5299};
5300
5301class HThrow : public HTemplateInstruction<1> {
5302 public:
5303  HThrow(HInstruction* exception, uint32_t dex_pc)
5304      : HTemplateInstruction(SideEffects::CanTriggerGC(), dex_pc) {
5305    SetRawInputAt(0, exception);
5306  }
5307
5308  bool IsControlFlow() const OVERRIDE { return true; }
5309
5310  bool NeedsEnvironment() const OVERRIDE { return true; }
5311
5312  bool CanThrow() const OVERRIDE { return true; }
5313
5314
5315  DECLARE_INSTRUCTION(Throw);
5316
5317 private:
5318  DISALLOW_COPY_AND_ASSIGN(HThrow);
5319};
5320
5321/**
5322 * Implementation strategies for the code generator of a HInstanceOf
5323 * or `HCheckCast`.
5324 */
5325enum class TypeCheckKind {
5326  kUnresolvedCheck,       // Check against an unresolved type.
5327  kExactCheck,            // Can do a single class compare.
5328  kClassHierarchyCheck,   // Can just walk the super class chain.
5329  kAbstractClassCheck,    // Can just walk the super class chain, starting one up.
5330  kInterfaceCheck,        // No optimization yet when checking against an interface.
5331  kArrayObjectCheck,      // Can just check if the array is not primitive.
5332  kArrayCheck             // No optimization yet when checking against a generic array.
5333};
5334
5335class HInstanceOf : public HExpression<2> {
5336 public:
5337  HInstanceOf(HInstruction* object,
5338              HLoadClass* constant,
5339              TypeCheckKind check_kind,
5340              uint32_t dex_pc)
5341      : HExpression(Primitive::kPrimBoolean,
5342                    SideEffectsForArchRuntimeCalls(check_kind),
5343                    dex_pc),
5344        check_kind_(check_kind),
5345        must_do_null_check_(true) {
5346    SetRawInputAt(0, object);
5347    SetRawInputAt(1, constant);
5348  }
5349
5350  bool CanBeMoved() const OVERRIDE { return true; }
5351
5352  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
5353    return true;
5354  }
5355
5356  bool NeedsEnvironment() const OVERRIDE {
5357    return false;
5358  }
5359
5360  bool IsExactCheck() const { return check_kind_ == TypeCheckKind::kExactCheck; }
5361
5362  TypeCheckKind GetTypeCheckKind() const { return check_kind_; }
5363
5364  // Used only in code generation.
5365  bool MustDoNullCheck() const { return must_do_null_check_; }
5366  void ClearMustDoNullCheck() { must_do_null_check_ = false; }
5367
5368  static SideEffects SideEffectsForArchRuntimeCalls(TypeCheckKind check_kind) {
5369    return (check_kind == TypeCheckKind::kExactCheck)
5370        ? SideEffects::None()
5371        // Mips currently does runtime calls for any other checks.
5372        : SideEffects::CanTriggerGC();
5373  }
5374
5375  DECLARE_INSTRUCTION(InstanceOf);
5376
5377 private:
5378  const TypeCheckKind check_kind_;
5379  bool must_do_null_check_;
5380
5381  DISALLOW_COPY_AND_ASSIGN(HInstanceOf);
5382};
5383
5384class HBoundType : public HExpression<1> {
5385 public:
5386  // Constructs an HBoundType with the given upper_bound.
5387  // Ensures that the upper_bound is valid.
5388  HBoundType(HInstruction* input,
5389             ReferenceTypeInfo upper_bound,
5390             bool upper_can_be_null,
5391             uint32_t dex_pc = kNoDexPc)
5392      : HExpression(Primitive::kPrimNot, SideEffects::None(), dex_pc),
5393        upper_bound_(upper_bound),
5394        upper_can_be_null_(upper_can_be_null),
5395        can_be_null_(upper_can_be_null) {
5396    DCHECK_EQ(input->GetType(), Primitive::kPrimNot);
5397    SetRawInputAt(0, input);
5398    SetReferenceTypeInfo(upper_bound_);
5399  }
5400
5401  // GetUpper* should only be used in reference type propagation.
5402  const ReferenceTypeInfo& GetUpperBound() const { return upper_bound_; }
5403  bool GetUpperCanBeNull() const { return upper_can_be_null_; }
5404
5405  void SetCanBeNull(bool can_be_null) {
5406    DCHECK(upper_can_be_null_ || !can_be_null);
5407    can_be_null_ = can_be_null;
5408  }
5409
5410  bool CanBeNull() const OVERRIDE { return can_be_null_; }
5411
5412  DECLARE_INSTRUCTION(BoundType);
5413
5414 private:
5415  // Encodes the most upper class that this instruction can have. In other words
5416  // it is always the case that GetUpperBound().IsSupertypeOf(GetReferenceType()).
5417  // It is used to bound the type in cases like:
5418  //   if (x instanceof ClassX) {
5419  //     // uper_bound_ will be ClassX
5420  //   }
5421  const ReferenceTypeInfo upper_bound_;
5422  // Represents the top constraint that can_be_null_ cannot exceed (i.e. if this
5423  // is false then can_be_null_ cannot be true).
5424  const bool upper_can_be_null_;
5425  bool can_be_null_;
5426
5427  DISALLOW_COPY_AND_ASSIGN(HBoundType);
5428};
5429
5430class HCheckCast : public HTemplateInstruction<2> {
5431 public:
5432  HCheckCast(HInstruction* object,
5433             HLoadClass* constant,
5434             TypeCheckKind check_kind,
5435             uint32_t dex_pc)
5436      : HTemplateInstruction(SideEffects::CanTriggerGC(), dex_pc),
5437        check_kind_(check_kind),
5438        must_do_null_check_(true) {
5439    SetRawInputAt(0, object);
5440    SetRawInputAt(1, constant);
5441  }
5442
5443  bool CanBeMoved() const OVERRIDE { return true; }
5444
5445  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
5446    return true;
5447  }
5448
5449  bool NeedsEnvironment() const OVERRIDE {
5450    // Instruction may throw a CheckCastError.
5451    return true;
5452  }
5453
5454  bool CanThrow() const OVERRIDE { return true; }
5455
5456  bool MustDoNullCheck() const { return must_do_null_check_; }
5457  void ClearMustDoNullCheck() { must_do_null_check_ = false; }
5458  TypeCheckKind GetTypeCheckKind() const { return check_kind_; }
5459
5460  bool IsExactCheck() const { return check_kind_ == TypeCheckKind::kExactCheck; }
5461
5462  DECLARE_INSTRUCTION(CheckCast);
5463
5464 private:
5465  const TypeCheckKind check_kind_;
5466  bool must_do_null_check_;
5467
5468  DISALLOW_COPY_AND_ASSIGN(HCheckCast);
5469};
5470
5471class HMemoryBarrier : public HTemplateInstruction<0> {
5472 public:
5473  explicit HMemoryBarrier(MemBarrierKind barrier_kind, uint32_t dex_pc = kNoDexPc)
5474      : HTemplateInstruction(
5475            SideEffects::AllWritesAndReads(), dex_pc),  // Assume write/read on all fields/arrays.
5476        barrier_kind_(barrier_kind) {}
5477
5478  MemBarrierKind GetBarrierKind() { return barrier_kind_; }
5479
5480  DECLARE_INSTRUCTION(MemoryBarrier);
5481
5482 private:
5483  const MemBarrierKind barrier_kind_;
5484
5485  DISALLOW_COPY_AND_ASSIGN(HMemoryBarrier);
5486};
5487
5488class HMonitorOperation : public HTemplateInstruction<1> {
5489 public:
5490  enum OperationKind {
5491    kEnter,
5492    kExit,
5493  };
5494
5495  HMonitorOperation(HInstruction* object, OperationKind kind, uint32_t dex_pc)
5496    : HTemplateInstruction(
5497          SideEffects::AllExceptGCDependency(), dex_pc),  // Assume write/read on all fields/arrays.
5498      kind_(kind) {
5499    SetRawInputAt(0, object);
5500  }
5501
5502  // Instruction may throw a Java exception, so we need an environment.
5503  bool NeedsEnvironment() const OVERRIDE { return CanThrow(); }
5504
5505  bool CanThrow() const OVERRIDE {
5506    // Verifier guarantees that monitor-exit cannot throw.
5507    // This is important because it allows the HGraphBuilder to remove
5508    // a dead throw-catch loop generated for `synchronized` blocks/methods.
5509    return IsEnter();
5510  }
5511
5512
5513  bool IsEnter() const { return kind_ == kEnter; }
5514
5515  DECLARE_INSTRUCTION(MonitorOperation);
5516
5517 private:
5518  const OperationKind kind_;
5519
5520 private:
5521  DISALLOW_COPY_AND_ASSIGN(HMonitorOperation);
5522};
5523
5524/**
5525 * A HInstruction used as a marker for the replacement of new + <init>
5526 * of a String to a call to a StringFactory. Only baseline will see
5527 * the node at code generation, where it will be be treated as null.
5528 * When compiling non-baseline, `HFakeString` instructions are being removed
5529 * in the instruction simplifier.
5530 */
5531class HFakeString : public HTemplateInstruction<0> {
5532 public:
5533  explicit HFakeString(uint32_t dex_pc = kNoDexPc)
5534      : HTemplateInstruction(SideEffects::None(), dex_pc) {}
5535
5536  Primitive::Type GetType() const OVERRIDE { return Primitive::kPrimNot; }
5537
5538  DECLARE_INSTRUCTION(FakeString);
5539
5540 private:
5541  DISALLOW_COPY_AND_ASSIGN(HFakeString);
5542};
5543
5544class MoveOperands : public ArenaObject<kArenaAllocMoveOperands> {
5545 public:
5546  MoveOperands(Location source,
5547               Location destination,
5548               Primitive::Type type,
5549               HInstruction* instruction)
5550      : source_(source), destination_(destination), type_(type), instruction_(instruction) {}
5551
5552  Location GetSource() const { return source_; }
5553  Location GetDestination() const { return destination_; }
5554
5555  void SetSource(Location value) { source_ = value; }
5556  void SetDestination(Location value) { destination_ = value; }
5557
5558  // The parallel move resolver marks moves as "in-progress" by clearing the
5559  // destination (but not the source).
5560  Location MarkPending() {
5561    DCHECK(!IsPending());
5562    Location dest = destination_;
5563    destination_ = Location::NoLocation();
5564    return dest;
5565  }
5566
5567  void ClearPending(Location dest) {
5568    DCHECK(IsPending());
5569    destination_ = dest;
5570  }
5571
5572  bool IsPending() const {
5573    DCHECK(!source_.IsInvalid() || destination_.IsInvalid());
5574    return destination_.IsInvalid() && !source_.IsInvalid();
5575  }
5576
5577  // True if this blocks a move from the given location.
5578  bool Blocks(Location loc) const {
5579    return !IsEliminated() && source_.OverlapsWith(loc);
5580  }
5581
5582  // A move is redundant if it's been eliminated, if its source and
5583  // destination are the same, or if its destination is unneeded.
5584  bool IsRedundant() const {
5585    return IsEliminated() || destination_.IsInvalid() || source_.Equals(destination_);
5586  }
5587
5588  // We clear both operands to indicate move that's been eliminated.
5589  void Eliminate() {
5590    source_ = destination_ = Location::NoLocation();
5591  }
5592
5593  bool IsEliminated() const {
5594    DCHECK(!source_.IsInvalid() || destination_.IsInvalid());
5595    return source_.IsInvalid();
5596  }
5597
5598  Primitive::Type GetType() const { return type_; }
5599
5600  bool Is64BitMove() const {
5601    return Primitive::Is64BitType(type_);
5602  }
5603
5604  HInstruction* GetInstruction() const { return instruction_; }
5605
5606 private:
5607  Location source_;
5608  Location destination_;
5609  // The type this move is for.
5610  Primitive::Type type_;
5611  // The instruction this move is assocatied with. Null when this move is
5612  // for moving an input in the expected locations of user (including a phi user).
5613  // This is only used in debug mode, to ensure we do not connect interval siblings
5614  // in the same parallel move.
5615  HInstruction* instruction_;
5616};
5617
5618static constexpr size_t kDefaultNumberOfMoves = 4;
5619
5620class HParallelMove : public HTemplateInstruction<0> {
5621 public:
5622  explicit HParallelMove(ArenaAllocator* arena, uint32_t dex_pc = kNoDexPc)
5623      : HTemplateInstruction(SideEffects::None(), dex_pc),
5624        moves_(arena->Adapter(kArenaAllocMoveOperands)) {
5625    moves_.reserve(kDefaultNumberOfMoves);
5626  }
5627
5628  void AddMove(Location source,
5629               Location destination,
5630               Primitive::Type type,
5631               HInstruction* instruction) {
5632    DCHECK(source.IsValid());
5633    DCHECK(destination.IsValid());
5634    if (kIsDebugBuild) {
5635      if (instruction != nullptr) {
5636        for (const MoveOperands& move : moves_) {
5637          if (move.GetInstruction() == instruction) {
5638            // Special case the situation where the move is for the spill slot
5639            // of the instruction.
5640            if ((GetPrevious() == instruction)
5641                || ((GetPrevious() == nullptr)
5642                    && instruction->IsPhi()
5643                    && instruction->GetBlock() == GetBlock())) {
5644              DCHECK_NE(destination.GetKind(), move.GetDestination().GetKind())
5645                  << "Doing parallel moves for the same instruction.";
5646            } else {
5647              DCHECK(false) << "Doing parallel moves for the same instruction.";
5648            }
5649          }
5650        }
5651      }
5652      for (const MoveOperands& move : moves_) {
5653        DCHECK(!destination.OverlapsWith(move.GetDestination()))
5654            << "Overlapped destination for two moves in a parallel move: "
5655            << move.GetSource() << " ==> " << move.GetDestination() << " and "
5656            << source << " ==> " << destination;
5657      }
5658    }
5659    moves_.emplace_back(source, destination, type, instruction);
5660  }
5661
5662  MoveOperands* MoveOperandsAt(size_t index) {
5663    return &moves_[index];
5664  }
5665
5666  size_t NumMoves() const { return moves_.size(); }
5667
5668  DECLARE_INSTRUCTION(ParallelMove);
5669
5670 private:
5671  ArenaVector<MoveOperands> moves_;
5672
5673  DISALLOW_COPY_AND_ASSIGN(HParallelMove);
5674};
5675
5676}  // namespace art
5677
5678#ifdef ART_ENABLE_CODEGEN_arm
5679#include "nodes_arm.h"
5680#endif
5681#ifdef ART_ENABLE_CODEGEN_arm64
5682#include "nodes_arm64.h"
5683#endif
5684#ifdef ART_ENABLE_CODEGEN_x86
5685#include "nodes_x86.h"
5686#endif
5687
5688namespace art {
5689
5690class HGraphVisitor : public ValueObject {
5691 public:
5692  explicit HGraphVisitor(HGraph* graph) : graph_(graph) {}
5693  virtual ~HGraphVisitor() {}
5694
5695  virtual void VisitInstruction(HInstruction* instruction ATTRIBUTE_UNUSED) {}
5696  virtual void VisitBasicBlock(HBasicBlock* block);
5697
5698  // Visit the graph following basic block insertion order.
5699  void VisitInsertionOrder();
5700
5701  // Visit the graph following dominator tree reverse post-order.
5702  void VisitReversePostOrder();
5703
5704  HGraph* GetGraph() const { return graph_; }
5705
5706  // Visit functions for instruction classes.
5707#define DECLARE_VISIT_INSTRUCTION(name, super)                                        \
5708  virtual void Visit##name(H##name* instr) { VisitInstruction(instr); }
5709
5710  FOR_EACH_INSTRUCTION(DECLARE_VISIT_INSTRUCTION)
5711
5712#undef DECLARE_VISIT_INSTRUCTION
5713
5714 private:
5715  HGraph* const graph_;
5716
5717  DISALLOW_COPY_AND_ASSIGN(HGraphVisitor);
5718};
5719
5720class HGraphDelegateVisitor : public HGraphVisitor {
5721 public:
5722  explicit HGraphDelegateVisitor(HGraph* graph) : HGraphVisitor(graph) {}
5723  virtual ~HGraphDelegateVisitor() {}
5724
5725  // Visit functions that delegate to to super class.
5726#define DECLARE_VISIT_INSTRUCTION(name, super)                                        \
5727  void Visit##name(H##name* instr) OVERRIDE { Visit##super(instr); }
5728
5729  FOR_EACH_INSTRUCTION(DECLARE_VISIT_INSTRUCTION)
5730
5731#undef DECLARE_VISIT_INSTRUCTION
5732
5733 private:
5734  DISALLOW_COPY_AND_ASSIGN(HGraphDelegateVisitor);
5735};
5736
5737class HInsertionOrderIterator : public ValueObject {
5738 public:
5739  explicit HInsertionOrderIterator(const HGraph& graph) : graph_(graph), index_(0) {}
5740
5741  bool Done() const { return index_ == graph_.GetBlocks().size(); }
5742  HBasicBlock* Current() const { return graph_.GetBlocks()[index_]; }
5743  void Advance() { ++index_; }
5744
5745 private:
5746  const HGraph& graph_;
5747  size_t index_;
5748
5749  DISALLOW_COPY_AND_ASSIGN(HInsertionOrderIterator);
5750};
5751
5752class HReversePostOrderIterator : public ValueObject {
5753 public:
5754  explicit HReversePostOrderIterator(const HGraph& graph) : graph_(graph), index_(0) {
5755    // Check that reverse post order of the graph has been built.
5756    DCHECK(!graph.GetReversePostOrder().empty());
5757  }
5758
5759  bool Done() const { return index_ == graph_.GetReversePostOrder().size(); }
5760  HBasicBlock* Current() const { return graph_.GetReversePostOrder()[index_]; }
5761  void Advance() { ++index_; }
5762
5763 private:
5764  const HGraph& graph_;
5765  size_t index_;
5766
5767  DISALLOW_COPY_AND_ASSIGN(HReversePostOrderIterator);
5768};
5769
5770class HPostOrderIterator : public ValueObject {
5771 public:
5772  explicit HPostOrderIterator(const HGraph& graph)
5773      : graph_(graph), index_(graph_.GetReversePostOrder().size()) {
5774    // Check that reverse post order of the graph has been built.
5775    DCHECK(!graph.GetReversePostOrder().empty());
5776  }
5777
5778  bool Done() const { return index_ == 0; }
5779  HBasicBlock* Current() const { return graph_.GetReversePostOrder()[index_ - 1u]; }
5780  void Advance() { --index_; }
5781
5782 private:
5783  const HGraph& graph_;
5784  size_t index_;
5785
5786  DISALLOW_COPY_AND_ASSIGN(HPostOrderIterator);
5787};
5788
5789class HLinearPostOrderIterator : public ValueObject {
5790 public:
5791  explicit HLinearPostOrderIterator(const HGraph& graph)
5792      : order_(graph.GetLinearOrder()), index_(graph.GetLinearOrder().size()) {}
5793
5794  bool Done() const { return index_ == 0; }
5795
5796  HBasicBlock* Current() const { return order_[index_ - 1u]; }
5797
5798  void Advance() {
5799    --index_;
5800    DCHECK_GE(index_, 0U);
5801  }
5802
5803 private:
5804  const ArenaVector<HBasicBlock*>& order_;
5805  size_t index_;
5806
5807  DISALLOW_COPY_AND_ASSIGN(HLinearPostOrderIterator);
5808};
5809
5810class HLinearOrderIterator : public ValueObject {
5811 public:
5812  explicit HLinearOrderIterator(const HGraph& graph)
5813      : order_(graph.GetLinearOrder()), index_(0) {}
5814
5815  bool Done() const { return index_ == order_.size(); }
5816  HBasicBlock* Current() const { return order_[index_]; }
5817  void Advance() { ++index_; }
5818
5819 private:
5820  const ArenaVector<HBasicBlock*>& order_;
5821  size_t index_;
5822
5823  DISALLOW_COPY_AND_ASSIGN(HLinearOrderIterator);
5824};
5825
5826// Iterator over the blocks that art part of the loop. Includes blocks part
5827// of an inner loop. The order in which the blocks are iterated is on their
5828// block id.
5829class HBlocksInLoopIterator : public ValueObject {
5830 public:
5831  explicit HBlocksInLoopIterator(const HLoopInformation& info)
5832      : blocks_in_loop_(info.GetBlocks()),
5833        blocks_(info.GetHeader()->GetGraph()->GetBlocks()),
5834        index_(0) {
5835    if (!blocks_in_loop_.IsBitSet(index_)) {
5836      Advance();
5837    }
5838  }
5839
5840  bool Done() const { return index_ == blocks_.size(); }
5841  HBasicBlock* Current() const { return blocks_[index_]; }
5842  void Advance() {
5843    ++index_;
5844    for (size_t e = blocks_.size(); index_ < e; ++index_) {
5845      if (blocks_in_loop_.IsBitSet(index_)) {
5846        break;
5847      }
5848    }
5849  }
5850
5851 private:
5852  const BitVector& blocks_in_loop_;
5853  const ArenaVector<HBasicBlock*>& blocks_;
5854  size_t index_;
5855
5856  DISALLOW_COPY_AND_ASSIGN(HBlocksInLoopIterator);
5857};
5858
5859// Iterator over the blocks that art part of the loop. Includes blocks part
5860// of an inner loop. The order in which the blocks are iterated is reverse
5861// post order.
5862class HBlocksInLoopReversePostOrderIterator : public ValueObject {
5863 public:
5864  explicit HBlocksInLoopReversePostOrderIterator(const HLoopInformation& info)
5865      : blocks_in_loop_(info.GetBlocks()),
5866        blocks_(info.GetHeader()->GetGraph()->GetReversePostOrder()),
5867        index_(0) {
5868    if (!blocks_in_loop_.IsBitSet(blocks_[index_]->GetBlockId())) {
5869      Advance();
5870    }
5871  }
5872
5873  bool Done() const { return index_ == blocks_.size(); }
5874  HBasicBlock* Current() const { return blocks_[index_]; }
5875  void Advance() {
5876    ++index_;
5877    for (size_t e = blocks_.size(); index_ < e; ++index_) {
5878      if (blocks_in_loop_.IsBitSet(blocks_[index_]->GetBlockId())) {
5879        break;
5880      }
5881    }
5882  }
5883
5884 private:
5885  const BitVector& blocks_in_loop_;
5886  const ArenaVector<HBasicBlock*>& blocks_;
5887  size_t index_;
5888
5889  DISALLOW_COPY_AND_ASSIGN(HBlocksInLoopReversePostOrderIterator);
5890};
5891
5892inline int64_t Int64FromConstant(HConstant* constant) {
5893  DCHECK(constant->IsIntConstant() || constant->IsLongConstant());
5894  return constant->IsIntConstant() ? constant->AsIntConstant()->GetValue()
5895                                   : constant->AsLongConstant()->GetValue();
5896}
5897
5898inline bool IsSameDexFile(const DexFile& lhs, const DexFile& rhs) {
5899  // For the purposes of the compiler, the dex files must actually be the same object
5900  // if we want to safely treat them as the same. This is especially important for JIT
5901  // as custom class loaders can open the same underlying file (or memory) multiple
5902  // times and provide different class resolution but no two class loaders should ever
5903  // use the same DexFile object - doing so is an unsupported hack that can lead to
5904  // all sorts of weird failures.
5905  return &lhs == &rhs;
5906}
5907
5908#define INSTRUCTION_TYPE_CHECK(type, super)                                    \
5909  inline bool HInstruction::Is##type() const { return GetKind() == k##type; }  \
5910  inline const H##type* HInstruction::As##type() const {                       \
5911    return Is##type() ? down_cast<const H##type*>(this) : nullptr;             \
5912  }                                                                            \
5913  inline H##type* HInstruction::As##type() {                                   \
5914    return Is##type() ? static_cast<H##type*>(this) : nullptr;                 \
5915  }
5916
5917  FOR_EACH_CONCRETE_INSTRUCTION(INSTRUCTION_TYPE_CHECK)
5918#undef INSTRUCTION_TYPE_CHECK
5919
5920}  // namespace art
5921
5922#endif  // ART_COMPILER_OPTIMIZING_NODES_H_
5923