nodes.h revision 2d7352ba5311b8f57427b91b7a891e61497373c1
1/*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#ifndef ART_COMPILER_OPTIMIZING_NODES_H_
18#define ART_COMPILER_OPTIMIZING_NODES_H_
19
20#include "base/arena_containers.h"
21#include "base/arena_object.h"
22#include "dex/compiler_enums.h"
23#include "entrypoints/quick/quick_entrypoints_enum.h"
24#include "handle.h"
25#include "handle_scope.h"
26#include "invoke_type.h"
27#include "locations.h"
28#include "mirror/class.h"
29#include "offsets.h"
30#include "primitive.h"
31#include "utils/arena_bit_vector.h"
32#include "utils/growable_array.h"
33
34namespace art {
35
36class GraphChecker;
37class HBasicBlock;
38class HDoubleConstant;
39class HEnvironment;
40class HFloatConstant;
41class HGraphVisitor;
42class HInstruction;
43class HIntConstant;
44class HInvoke;
45class HLongConstant;
46class HNullConstant;
47class HPhi;
48class HSuspendCheck;
49class LiveInterval;
50class LocationSummary;
51class SsaBuilder;
52
53static const int kDefaultNumberOfBlocks = 8;
54static const int kDefaultNumberOfSuccessors = 2;
55static const int kDefaultNumberOfPredecessors = 2;
56static const int kDefaultNumberOfDominatedBlocks = 1;
57static const int kDefaultNumberOfBackEdges = 1;
58
59static constexpr uint32_t kMaxIntShiftValue = 0x1f;
60static constexpr uint64_t kMaxLongShiftValue = 0x3f;
61
62enum IfCondition {
63  kCondEQ,
64  kCondNE,
65  kCondLT,
66  kCondLE,
67  kCondGT,
68  kCondGE,
69};
70
71class HInstructionList {
72 public:
73  HInstructionList() : first_instruction_(nullptr), last_instruction_(nullptr) {}
74
75  void AddInstruction(HInstruction* instruction);
76  void RemoveInstruction(HInstruction* instruction);
77
78  // Insert `instruction` before/after an existing instruction `cursor`.
79  void InsertInstructionBefore(HInstruction* instruction, HInstruction* cursor);
80  void InsertInstructionAfter(HInstruction* instruction, HInstruction* cursor);
81
82  // Return true if this list contains `instruction`.
83  bool Contains(HInstruction* instruction) const;
84
85  // Return true if `instruction1` is found before `instruction2` in
86  // this instruction list and false otherwise.  Abort if none
87  // of these instructions is found.
88  bool FoundBefore(const HInstruction* instruction1,
89                   const HInstruction* instruction2) const;
90
91  bool IsEmpty() const { return first_instruction_ == nullptr; }
92  void Clear() { first_instruction_ = last_instruction_ = nullptr; }
93
94  // Update the block of all instructions to be `block`.
95  void SetBlockOfInstructions(HBasicBlock* block) const;
96
97  void AddAfter(HInstruction* cursor, const HInstructionList& instruction_list);
98  void Add(const HInstructionList& instruction_list);
99
100  // Return the number of instructions in the list. This is an expensive operation.
101  size_t CountSize() const;
102
103 private:
104  HInstruction* first_instruction_;
105  HInstruction* last_instruction_;
106
107  friend class HBasicBlock;
108  friend class HGraph;
109  friend class HInstruction;
110  friend class HInstructionIterator;
111  friend class HBackwardInstructionIterator;
112
113  DISALLOW_COPY_AND_ASSIGN(HInstructionList);
114};
115
116// Control-flow graph of a method. Contains a list of basic blocks.
117class HGraph : public ArenaObject<kArenaAllocMisc> {
118 public:
119  HGraph(ArenaAllocator* arena, bool debuggable = false, int start_instruction_id = 0)
120      : arena_(arena),
121        blocks_(arena, kDefaultNumberOfBlocks),
122        reverse_post_order_(arena, kDefaultNumberOfBlocks),
123        linear_order_(arena, kDefaultNumberOfBlocks),
124        entry_block_(nullptr),
125        exit_block_(nullptr),
126        maximum_number_of_out_vregs_(0),
127        number_of_vregs_(0),
128        number_of_in_vregs_(0),
129        temporaries_vreg_slots_(0),
130        has_array_accesses_(false),
131        debuggable_(debuggable),
132        current_instruction_id_(start_instruction_id),
133        cached_null_constant_(nullptr),
134        cached_int_constants_(std::less<int32_t>(), arena->Adapter()),
135        cached_long_constants_(std::less<int64_t>(), arena->Adapter()) {}
136
137  ArenaAllocator* GetArena() const { return arena_; }
138  const GrowableArray<HBasicBlock*>& GetBlocks() const { return blocks_; }
139  HBasicBlock* GetBlock(size_t id) const { return blocks_.Get(id); }
140
141  HBasicBlock* GetEntryBlock() const { return entry_block_; }
142  HBasicBlock* GetExitBlock() const { return exit_block_; }
143
144  void SetEntryBlock(HBasicBlock* block) { entry_block_ = block; }
145  void SetExitBlock(HBasicBlock* block) { exit_block_ = block; }
146
147  void AddBlock(HBasicBlock* block);
148
149  // Try building the SSA form of this graph, with dominance computation and loop
150  // recognition. Returns whether it was successful in doing all these steps.
151  bool TryBuildingSsa() {
152    BuildDominatorTree();
153    // The SSA builder requires loops to all be natural. Specifically, the dead phi
154    // elimination phase checks the consistency of the graph when doing a post-order
155    // visit for eliminating dead phis: a dead phi can only have loop header phi
156    // users remaining when being visited.
157    if (!AnalyzeNaturalLoops()) return false;
158    TransformToSsa();
159    return true;
160  }
161
162  void BuildDominatorTree();
163  void TransformToSsa();
164  void SimplifyCFG();
165
166  // Analyze all natural loops in this graph. Returns false if one
167  // loop is not natural, that is the header does not dominate the
168  // back edge.
169  bool AnalyzeNaturalLoops() const;
170
171  // Inline this graph in `outer_graph`, replacing the given `invoke` instruction.
172  void InlineInto(HGraph* outer_graph, HInvoke* invoke);
173
174  // Removes `block` from the graph.
175  void DeleteDeadBlock(HBasicBlock* block);
176
177  void SplitCriticalEdge(HBasicBlock* block, HBasicBlock* successor);
178  void SimplifyLoop(HBasicBlock* header);
179
180  int32_t GetNextInstructionId() {
181    DCHECK_NE(current_instruction_id_, INT32_MAX);
182    return current_instruction_id_++;
183  }
184
185  int32_t GetCurrentInstructionId() const {
186    return current_instruction_id_;
187  }
188
189  void SetCurrentInstructionId(int32_t id) {
190    current_instruction_id_ = id;
191  }
192
193  uint16_t GetMaximumNumberOfOutVRegs() const {
194    return maximum_number_of_out_vregs_;
195  }
196
197  void SetMaximumNumberOfOutVRegs(uint16_t new_value) {
198    maximum_number_of_out_vregs_ = new_value;
199  }
200
201  void UpdateTemporariesVRegSlots(size_t slots) {
202    temporaries_vreg_slots_ = std::max(slots, temporaries_vreg_slots_);
203  }
204
205  size_t GetTemporariesVRegSlots() const {
206    return temporaries_vreg_slots_;
207  }
208
209  void SetNumberOfVRegs(uint16_t number_of_vregs) {
210    number_of_vregs_ = number_of_vregs;
211  }
212
213  uint16_t GetNumberOfVRegs() const {
214    return number_of_vregs_;
215  }
216
217  void SetNumberOfInVRegs(uint16_t value) {
218    number_of_in_vregs_ = value;
219  }
220
221  uint16_t GetNumberOfLocalVRegs() const {
222    return number_of_vregs_ - number_of_in_vregs_;
223  }
224
225  const GrowableArray<HBasicBlock*>& GetReversePostOrder() const {
226    return reverse_post_order_;
227  }
228
229  const GrowableArray<HBasicBlock*>& GetLinearOrder() const {
230    return linear_order_;
231  }
232
233  bool HasArrayAccesses() const {
234    return has_array_accesses_;
235  }
236
237  void SetHasArrayAccesses(bool value) {
238    has_array_accesses_ = value;
239  }
240
241  bool IsDebuggable() const { return debuggable_; }
242
243  // Returns a constant of the given type and value. If it does not exist
244  // already, it is created and inserted into the graph. Only integral types
245  // are currently supported.
246  HConstant* GetConstant(Primitive::Type type, int64_t value);
247  HNullConstant* GetNullConstant();
248  HIntConstant* GetIntConstant(int32_t value) {
249    return CreateConstant(value, &cached_int_constants_);
250  }
251  HLongConstant* GetLongConstant(int64_t value) {
252    return CreateConstant(value, &cached_long_constants_);
253  }
254
255  HBasicBlock* FindCommonDominator(HBasicBlock* first, HBasicBlock* second) const;
256
257 private:
258  void VisitBlockForDominatorTree(HBasicBlock* block,
259                                  HBasicBlock* predecessor,
260                                  GrowableArray<size_t>* visits);
261  void FindBackEdges(ArenaBitVector* visited);
262  void VisitBlockForBackEdges(HBasicBlock* block,
263                              ArenaBitVector* visited,
264                              ArenaBitVector* visiting);
265  void RemoveInstructionsAsUsersFromDeadBlocks(const ArenaBitVector& visited) const;
266  void RemoveDeadBlocks(const ArenaBitVector& visited);
267
268  template <class InstType, typename ValueType>
269  InstType* CreateConstant(ValueType value, ArenaSafeMap<ValueType, InstType*>* cache);
270  void InsertConstant(HConstant* instruction);
271
272  ArenaAllocator* const arena_;
273
274  // List of blocks in insertion order.
275  GrowableArray<HBasicBlock*> blocks_;
276
277  // List of blocks to perform a reverse post order tree traversal.
278  GrowableArray<HBasicBlock*> reverse_post_order_;
279
280  // List of blocks to perform a linear order tree traversal.
281  GrowableArray<HBasicBlock*> linear_order_;
282
283  HBasicBlock* entry_block_;
284  HBasicBlock* exit_block_;
285
286  // The maximum number of virtual registers arguments passed to a HInvoke in this graph.
287  uint16_t maximum_number_of_out_vregs_;
288
289  // The number of virtual registers in this method. Contains the parameters.
290  uint16_t number_of_vregs_;
291
292  // The number of virtual registers used by parameters of this method.
293  uint16_t number_of_in_vregs_;
294
295  // Number of vreg size slots that the temporaries use (used in baseline compiler).
296  size_t temporaries_vreg_slots_;
297
298  // Has array accesses. We can totally skip BCE if it's false.
299  bool has_array_accesses_;
300
301  // Indicates whether the graph should be compiled in a way that
302  // ensures full debuggability. If false, we can apply more
303  // aggressive optimizations that may limit the level of debugging.
304  const bool debuggable_;
305
306  // The current id to assign to a newly added instruction. See HInstruction.id_.
307  int32_t current_instruction_id_;
308
309  // Cached common constants often needed by optimization passes.
310  HNullConstant* cached_null_constant_;
311  ArenaSafeMap<int32_t, HIntConstant*> cached_int_constants_;
312  ArenaSafeMap<int64_t, HLongConstant*> cached_long_constants_;
313
314  friend class SsaLivenessAnalysis;  // For the linear order.
315  ART_FRIEND_TEST(GraphTest, IfSuccessorSimpleJoinBlock1);
316  DISALLOW_COPY_AND_ASSIGN(HGraph);
317};
318
319class HLoopInformation : public ArenaObject<kArenaAllocMisc> {
320 public:
321  HLoopInformation(HBasicBlock* header, HGraph* graph)
322      : header_(header),
323        suspend_check_(nullptr),
324        back_edges_(graph->GetArena(), kDefaultNumberOfBackEdges),
325        // Make bit vector growable, as the number of blocks may change.
326        blocks_(graph->GetArena(), graph->GetBlocks().Size(), true) {}
327
328  HBasicBlock* GetHeader() const {
329    return header_;
330  }
331
332  void SetHeader(HBasicBlock* block) {
333    header_ = block;
334  }
335
336  HSuspendCheck* GetSuspendCheck() const { return suspend_check_; }
337  void SetSuspendCheck(HSuspendCheck* check) { suspend_check_ = check; }
338  bool HasSuspendCheck() const { return suspend_check_ != nullptr; }
339
340  void AddBackEdge(HBasicBlock* back_edge) {
341    back_edges_.Add(back_edge);
342  }
343
344  void RemoveBackEdge(HBasicBlock* back_edge) {
345    back_edges_.Delete(back_edge);
346  }
347
348  bool IsBackEdge(const HBasicBlock& block) const {
349    for (size_t i = 0, e = back_edges_.Size(); i < e; ++i) {
350      if (back_edges_.Get(i) == &block) return true;
351    }
352    return false;
353  }
354
355  size_t NumberOfBackEdges() const {
356    return back_edges_.Size();
357  }
358
359  HBasicBlock* GetPreHeader() const;
360
361  const GrowableArray<HBasicBlock*>& GetBackEdges() const {
362    return back_edges_;
363  }
364
365  void ClearBackEdges() {
366    back_edges_.Reset();
367  }
368
369  // Find blocks that are part of this loop. Returns whether the loop is a natural loop,
370  // that is the header dominates the back edge.
371  bool Populate();
372
373  // Returns whether this loop information contains `block`.
374  // Note that this loop information *must* be populated before entering this function.
375  bool Contains(const HBasicBlock& block) const;
376
377  // Returns whether this loop information is an inner loop of `other`.
378  // Note that `other` *must* be populated before entering this function.
379  bool IsIn(const HLoopInformation& other) const;
380
381  const ArenaBitVector& GetBlocks() const { return blocks_; }
382
383  void Add(HBasicBlock* block);
384  void Remove(HBasicBlock* block);
385
386 private:
387  // Internal recursive implementation of `Populate`.
388  void PopulateRecursive(HBasicBlock* block);
389
390  HBasicBlock* header_;
391  HSuspendCheck* suspend_check_;
392  GrowableArray<HBasicBlock*> back_edges_;
393  ArenaBitVector blocks_;
394
395  DISALLOW_COPY_AND_ASSIGN(HLoopInformation);
396};
397
398static constexpr size_t kNoLifetime = -1;
399static constexpr uint32_t kNoDexPc = -1;
400
401// A block in a method. Contains the list of instructions represented
402// as a double linked list. Each block knows its predecessors and
403// successors.
404
405class HBasicBlock : public ArenaObject<kArenaAllocMisc> {
406 public:
407  explicit HBasicBlock(HGraph* graph, uint32_t dex_pc = kNoDexPc)
408      : graph_(graph),
409        predecessors_(graph->GetArena(), kDefaultNumberOfPredecessors),
410        successors_(graph->GetArena(), kDefaultNumberOfSuccessors),
411        loop_information_(nullptr),
412        dominator_(nullptr),
413        dominated_blocks_(graph->GetArena(), kDefaultNumberOfDominatedBlocks),
414        block_id_(-1),
415        dex_pc_(dex_pc),
416        lifetime_start_(kNoLifetime),
417        lifetime_end_(kNoLifetime),
418        is_catch_block_(false) {}
419
420  const GrowableArray<HBasicBlock*>& GetPredecessors() const {
421    return predecessors_;
422  }
423
424  const GrowableArray<HBasicBlock*>& GetSuccessors() const {
425    return successors_;
426  }
427
428  const GrowableArray<HBasicBlock*>& GetDominatedBlocks() const {
429    return dominated_blocks_;
430  }
431
432  bool IsEntryBlock() const {
433    return graph_->GetEntryBlock() == this;
434  }
435
436  bool IsExitBlock() const {
437    return graph_->GetExitBlock() == this;
438  }
439
440  bool IsSingleGoto() const;
441
442  void AddBackEdge(HBasicBlock* back_edge) {
443    if (loop_information_ == nullptr) {
444      loop_information_ = new (graph_->GetArena()) HLoopInformation(this, graph_);
445    }
446    DCHECK_EQ(loop_information_->GetHeader(), this);
447    loop_information_->AddBackEdge(back_edge);
448  }
449
450  HGraph* GetGraph() const { return graph_; }
451  void SetGraph(HGraph* graph) { graph_ = graph; }
452
453  int GetBlockId() const { return block_id_; }
454  void SetBlockId(int id) { block_id_ = id; }
455
456  HBasicBlock* GetDominator() const { return dominator_; }
457  void SetDominator(HBasicBlock* dominator) { dominator_ = dominator; }
458  void AddDominatedBlock(HBasicBlock* block) { dominated_blocks_.Add(block); }
459  void RemoveDominatedBlock(HBasicBlock* block) { dominated_blocks_.Delete(block); }
460  void ReplaceDominatedBlock(HBasicBlock* existing, HBasicBlock* new_block) {
461    for (size_t i = 0, e = dominated_blocks_.Size(); i < e; ++i) {
462      if (dominated_blocks_.Get(i) == existing) {
463        dominated_blocks_.Put(i, new_block);
464        return;
465      }
466    }
467    LOG(FATAL) << "Unreachable";
468    UNREACHABLE();
469  }
470
471  int NumberOfBackEdges() const {
472    return loop_information_ == nullptr
473        ? 0
474        : loop_information_->NumberOfBackEdges();
475  }
476
477  HInstruction* GetFirstInstruction() const { return instructions_.first_instruction_; }
478  HInstruction* GetLastInstruction() const { return instructions_.last_instruction_; }
479  const HInstructionList& GetInstructions() const { return instructions_; }
480  HInstruction* GetFirstPhi() const { return phis_.first_instruction_; }
481  HInstruction* GetLastPhi() const { return phis_.last_instruction_; }
482  const HInstructionList& GetPhis() const { return phis_; }
483
484  void AddSuccessor(HBasicBlock* block) {
485    successors_.Add(block);
486    block->predecessors_.Add(this);
487  }
488
489  void ReplaceSuccessor(HBasicBlock* existing, HBasicBlock* new_block) {
490    size_t successor_index = GetSuccessorIndexOf(existing);
491    DCHECK_NE(successor_index, static_cast<size_t>(-1));
492    existing->RemovePredecessor(this);
493    new_block->predecessors_.Add(this);
494    successors_.Put(successor_index, new_block);
495  }
496
497  void ReplacePredecessor(HBasicBlock* existing, HBasicBlock* new_block) {
498    size_t predecessor_index = GetPredecessorIndexOf(existing);
499    DCHECK_NE(predecessor_index, static_cast<size_t>(-1));
500    existing->RemoveSuccessor(this);
501    new_block->successors_.Add(this);
502    predecessors_.Put(predecessor_index, new_block);
503  }
504
505  void RemovePredecessor(HBasicBlock* block) {
506    predecessors_.Delete(block);
507  }
508
509  void RemoveSuccessor(HBasicBlock* block) {
510    successors_.Delete(block);
511  }
512
513  void ClearAllPredecessors() {
514    predecessors_.Reset();
515  }
516
517  void AddPredecessor(HBasicBlock* block) {
518    predecessors_.Add(block);
519    block->successors_.Add(this);
520  }
521
522  void SwapPredecessors() {
523    DCHECK_EQ(predecessors_.Size(), 2u);
524    HBasicBlock* temp = predecessors_.Get(0);
525    predecessors_.Put(0, predecessors_.Get(1));
526    predecessors_.Put(1, temp);
527  }
528
529  size_t GetPredecessorIndexOf(HBasicBlock* predecessor) {
530    for (size_t i = 0, e = predecessors_.Size(); i < e; ++i) {
531      if (predecessors_.Get(i) == predecessor) {
532        return i;
533      }
534    }
535    return -1;
536  }
537
538  size_t GetSuccessorIndexOf(HBasicBlock* successor) {
539    for (size_t i = 0, e = successors_.Size(); i < e; ++i) {
540      if (successors_.Get(i) == successor) {
541        return i;
542      }
543    }
544    return -1;
545  }
546
547  // Split the block into two blocks just after `cursor`. Returns the newly
548  // created block. Note that this method just updates raw block information,
549  // like predecessors, successors, dominators, and instruction list. It does not
550  // update the graph, reverse post order, loop information, nor make sure the
551  // blocks are consistent (for example ending with a control flow instruction).
552  HBasicBlock* SplitAfter(HInstruction* cursor);
553
554  // Merge `other` at the end of `this`. Successors and dominated blocks of
555  // `other` are changed to be successors and dominated blocks of `this`. Note
556  // that this method does not update the graph, reverse post order, loop
557  // information, nor make sure the blocks are consistent (for example ending
558  // with a control flow instruction).
559  void MergeWithInlined(HBasicBlock* other);
560
561  // Replace `this` with `other`. Predecessors, successors, and dominated blocks
562  // of `this` are moved to `other`.
563  // Note that this method does not update the graph, reverse post order, loop
564  // information, nor make sure the blocks are consistent (for example ending
565  // with a control flow instruction).
566  void ReplaceWith(HBasicBlock* other);
567
568  // Merge `other` at the end of `this`. This method updates loops, reverse post
569  // order, links to predecessors, successors, dominators and deletes the block
570  // from the graph. The two blocks must be successive, i.e. `this` the only
571  // predecessor of `other` and vice versa.
572  void MergeWith(HBasicBlock* other);
573
574  // Disconnects `this` from all its predecessors, successors and dominator,
575  // removes it from all loops it is included in and eventually from the graph.
576  // The block must not dominate any other block. Predecessors and successors
577  // are safely updated.
578  void DisconnectAndDelete();
579
580  void AddInstruction(HInstruction* instruction);
581  void InsertInstructionBefore(HInstruction* instruction, HInstruction* cursor);
582  // Replace instruction `initial` with `replacement` within this block.
583  void ReplaceAndRemoveInstructionWith(HInstruction* initial,
584                                       HInstruction* replacement);
585  void AddPhi(HPhi* phi);
586  void InsertPhiAfter(HPhi* instruction, HPhi* cursor);
587  // RemoveInstruction and RemovePhi delete a given instruction from the respective
588  // instruction list. With 'ensure_safety' set to true, it verifies that the
589  // instruction is not in use and removes it from the use lists of its inputs.
590  void RemoveInstruction(HInstruction* instruction, bool ensure_safety = true);
591  void RemovePhi(HPhi* phi, bool ensure_safety = true);
592
593  bool IsLoopHeader() const {
594    return (loop_information_ != nullptr) && (loop_information_->GetHeader() == this);
595  }
596
597  bool IsLoopPreHeaderFirstPredecessor() const {
598    DCHECK(IsLoopHeader());
599    DCHECK(!GetPredecessors().IsEmpty());
600    return GetPredecessors().Get(0) == GetLoopInformation()->GetPreHeader();
601  }
602
603  HLoopInformation* GetLoopInformation() const {
604    return loop_information_;
605  }
606
607  // Set the loop_information_ on this block. Overrides the current
608  // loop_information if it is an outer loop of the passed loop information.
609  // Note that this method is called while creating the loop information.
610  void SetInLoop(HLoopInformation* info) {
611    if (IsLoopHeader()) {
612      // Nothing to do. This just means `info` is an outer loop.
613    } else if (loop_information_ == nullptr) {
614      loop_information_ = info;
615    } else if (loop_information_->Contains(*info->GetHeader())) {
616      // Block is currently part of an outer loop. Make it part of this inner loop.
617      // Note that a non loop header having a loop information means this loop information
618      // has already been populated
619      loop_information_ = info;
620    } else {
621      // Block is part of an inner loop. Do not update the loop information.
622      // Note that we cannot do the check `info->Contains(loop_information_)->GetHeader()`
623      // at this point, because this method is being called while populating `info`.
624    }
625  }
626
627  // Raw update of the loop information.
628  void SetLoopInformation(HLoopInformation* info) {
629    loop_information_ = info;
630  }
631
632  bool IsInLoop() const { return loop_information_ != nullptr; }
633
634  // Returns wheter this block dominates the blocked passed as parameter.
635  bool Dominates(HBasicBlock* block) const;
636
637  size_t GetLifetimeStart() const { return lifetime_start_; }
638  size_t GetLifetimeEnd() const { return lifetime_end_; }
639
640  void SetLifetimeStart(size_t start) { lifetime_start_ = start; }
641  void SetLifetimeEnd(size_t end) { lifetime_end_ = end; }
642
643  uint32_t GetDexPc() const { return dex_pc_; }
644
645  bool IsCatchBlock() const { return is_catch_block_; }
646  void SetIsCatchBlock() { is_catch_block_ = true; }
647
648  bool EndsWithControlFlowInstruction() const;
649  bool EndsWithIf() const;
650  bool HasSinglePhi() const;
651
652 private:
653  HGraph* graph_;
654  GrowableArray<HBasicBlock*> predecessors_;
655  GrowableArray<HBasicBlock*> successors_;
656  HInstructionList instructions_;
657  HInstructionList phis_;
658  HLoopInformation* loop_information_;
659  HBasicBlock* dominator_;
660  GrowableArray<HBasicBlock*> dominated_blocks_;
661  int block_id_;
662  // The dex program counter of the first instruction of this block.
663  const uint32_t dex_pc_;
664  size_t lifetime_start_;
665  size_t lifetime_end_;
666  bool is_catch_block_;
667
668  friend class HGraph;
669  friend class HInstruction;
670
671  DISALLOW_COPY_AND_ASSIGN(HBasicBlock);
672};
673
674// Iterates over the LoopInformation of all loops which contain 'block'
675// from the innermost to the outermost.
676class HLoopInformationOutwardIterator : public ValueObject {
677 public:
678  explicit HLoopInformationOutwardIterator(const HBasicBlock& block)
679      : current_(block.GetLoopInformation()) {}
680
681  bool Done() const { return current_ == nullptr; }
682
683  void Advance() {
684    DCHECK(!Done());
685    current_ = current_->GetHeader()->GetDominator()->GetLoopInformation();
686  }
687
688  HLoopInformation* Current() const {
689    DCHECK(!Done());
690    return current_;
691  }
692
693 private:
694  HLoopInformation* current_;
695
696  DISALLOW_COPY_AND_ASSIGN(HLoopInformationOutwardIterator);
697};
698
699#define FOR_EACH_CONCRETE_INSTRUCTION(M)                                \
700  M(Add, BinaryOperation)                                               \
701  M(And, BinaryOperation)                                               \
702  M(ArrayGet, Instruction)                                              \
703  M(ArrayLength, Instruction)                                           \
704  M(ArraySet, Instruction)                                              \
705  M(BooleanNot, UnaryOperation)                                         \
706  M(BoundsCheck, Instruction)                                           \
707  M(BoundType, Instruction)                                             \
708  M(CheckCast, Instruction)                                             \
709  M(ClinitCheck, Instruction)                                           \
710  M(Compare, BinaryOperation)                                           \
711  M(Condition, BinaryOperation)                                         \
712  M(Deoptimize, Instruction)                                            \
713  M(Div, BinaryOperation)                                               \
714  M(DivZeroCheck, Instruction)                                          \
715  M(DoubleConstant, Constant)                                           \
716  M(Equal, Condition)                                                   \
717  M(Exit, Instruction)                                                  \
718  M(FloatConstant, Constant)                                            \
719  M(Goto, Instruction)                                                  \
720  M(GreaterThan, Condition)                                             \
721  M(GreaterThanOrEqual, Condition)                                      \
722  M(If, Instruction)                                                    \
723  M(InstanceFieldGet, Instruction)                                      \
724  M(InstanceFieldSet, Instruction)                                      \
725  M(InstanceOf, Instruction)                                            \
726  M(IntConstant, Constant)                                              \
727  M(InvokeInterface, Invoke)                                            \
728  M(InvokeStaticOrDirect, Invoke)                                       \
729  M(InvokeVirtual, Invoke)                                              \
730  M(LessThan, Condition)                                                \
731  M(LessThanOrEqual, Condition)                                         \
732  M(LoadClass, Instruction)                                             \
733  M(LoadException, Instruction)                                         \
734  M(LoadLocal, Instruction)                                             \
735  M(LoadString, Instruction)                                            \
736  M(Local, Instruction)                                                 \
737  M(LongConstant, Constant)                                             \
738  M(MemoryBarrier, Instruction)                                         \
739  M(MonitorOperation, Instruction)                                      \
740  M(Mul, BinaryOperation)                                               \
741  M(Neg, UnaryOperation)                                                \
742  M(NewArray, Instruction)                                              \
743  M(NewInstance, Instruction)                                           \
744  M(Not, UnaryOperation)                                                \
745  M(NotEqual, Condition)                                                \
746  M(NullConstant, Instruction)                                          \
747  M(NullCheck, Instruction)                                             \
748  M(Or, BinaryOperation)                                                \
749  M(ParallelMove, Instruction)                                          \
750  M(ParameterValue, Instruction)                                        \
751  M(Phi, Instruction)                                                   \
752  M(Rem, BinaryOperation)                                               \
753  M(Return, Instruction)                                                \
754  M(ReturnVoid, Instruction)                                            \
755  M(Shl, BinaryOperation)                                               \
756  M(Shr, BinaryOperation)                                               \
757  M(StaticFieldGet, Instruction)                                        \
758  M(StaticFieldSet, Instruction)                                        \
759  M(StoreLocal, Instruction)                                            \
760  M(Sub, BinaryOperation)                                               \
761  M(SuspendCheck, Instruction)                                          \
762  M(Temporary, Instruction)                                             \
763  M(Throw, Instruction)                                                 \
764  M(TypeConversion, Instruction)                                        \
765  M(UShr, BinaryOperation)                                              \
766  M(Xor, BinaryOperation)                                               \
767
768#define FOR_EACH_INSTRUCTION(M)                                         \
769  FOR_EACH_CONCRETE_INSTRUCTION(M)                                      \
770  M(Constant, Instruction)                                              \
771  M(UnaryOperation, Instruction)                                        \
772  M(BinaryOperation, Instruction)                                       \
773  M(Invoke, Instruction)
774
775#define FORWARD_DECLARATION(type, super) class H##type;
776FOR_EACH_INSTRUCTION(FORWARD_DECLARATION)
777#undef FORWARD_DECLARATION
778
779#define DECLARE_INSTRUCTION(type)                                       \
780  InstructionKind GetKind() const OVERRIDE { return k##type; }          \
781  const char* DebugName() const OVERRIDE { return #type; }              \
782  const H##type* As##type() const OVERRIDE { return this; }             \
783  H##type* As##type() OVERRIDE { return this; }                         \
784  bool InstructionTypeEquals(HInstruction* other) const OVERRIDE {      \
785    return other->Is##type();                                           \
786  }                                                                     \
787  void Accept(HGraphVisitor* visitor) OVERRIDE
788
789template <typename T> class HUseList;
790
791template <typename T>
792class HUseListNode : public ArenaObject<kArenaAllocMisc> {
793 public:
794  HUseListNode* GetPrevious() const { return prev_; }
795  HUseListNode* GetNext() const { return next_; }
796  T GetUser() const { return user_; }
797  size_t GetIndex() const { return index_; }
798
799 private:
800  HUseListNode(T user, size_t index)
801      : user_(user), index_(index), prev_(nullptr), next_(nullptr) {}
802
803  T const user_;
804  const size_t index_;
805  HUseListNode<T>* prev_;
806  HUseListNode<T>* next_;
807
808  friend class HUseList<T>;
809
810  DISALLOW_COPY_AND_ASSIGN(HUseListNode);
811};
812
813template <typename T>
814class HUseList : public ValueObject {
815 public:
816  HUseList() : first_(nullptr) {}
817
818  void Clear() {
819    first_ = nullptr;
820  }
821
822  // Adds a new entry at the beginning of the use list and returns
823  // the newly created node.
824  HUseListNode<T>* AddUse(T user, size_t index, ArenaAllocator* arena) {
825    HUseListNode<T>* new_node = new (arena) HUseListNode<T>(user, index);
826    if (IsEmpty()) {
827      first_ = new_node;
828    } else {
829      first_->prev_ = new_node;
830      new_node->next_ = first_;
831      first_ = new_node;
832    }
833    return new_node;
834  }
835
836  HUseListNode<T>* GetFirst() const {
837    return first_;
838  }
839
840  void Remove(HUseListNode<T>* node) {
841    DCHECK(node != nullptr);
842    DCHECK(Contains(node));
843
844    if (node->prev_ != nullptr) {
845      node->prev_->next_ = node->next_;
846    }
847    if (node->next_ != nullptr) {
848      node->next_->prev_ = node->prev_;
849    }
850    if (node == first_) {
851      first_ = node->next_;
852    }
853  }
854
855  bool Contains(const HUseListNode<T>* node) const {
856    if (node == nullptr) {
857      return false;
858    }
859    for (HUseListNode<T>* current = first_; current != nullptr; current = current->GetNext()) {
860      if (current == node) {
861        return true;
862      }
863    }
864    return false;
865  }
866
867  bool IsEmpty() const {
868    return first_ == nullptr;
869  }
870
871  bool HasOnlyOneUse() const {
872    return first_ != nullptr && first_->next_ == nullptr;
873  }
874
875 private:
876  HUseListNode<T>* first_;
877};
878
879template<typename T>
880class HUseIterator : public ValueObject {
881 public:
882  explicit HUseIterator(const HUseList<T>& uses) : current_(uses.GetFirst()) {}
883
884  bool Done() const { return current_ == nullptr; }
885
886  void Advance() {
887    DCHECK(!Done());
888    current_ = current_->GetNext();
889  }
890
891  HUseListNode<T>* Current() const {
892    DCHECK(!Done());
893    return current_;
894  }
895
896 private:
897  HUseListNode<T>* current_;
898
899  friend class HValue;
900};
901
902// This class is used by HEnvironment and HInstruction classes to record the
903// instructions they use and pointers to the corresponding HUseListNodes kept
904// by the used instructions.
905template <typename T>
906class HUserRecord : public ValueObject {
907 public:
908  HUserRecord() : instruction_(nullptr), use_node_(nullptr) {}
909  explicit HUserRecord(HInstruction* instruction) : instruction_(instruction), use_node_(nullptr) {}
910
911  HUserRecord(const HUserRecord<T>& old_record, HUseListNode<T>* use_node)
912    : instruction_(old_record.instruction_), use_node_(use_node) {
913    DCHECK(instruction_ != nullptr);
914    DCHECK(use_node_ != nullptr);
915    DCHECK(old_record.use_node_ == nullptr);
916  }
917
918  HInstruction* GetInstruction() const { return instruction_; }
919  HUseListNode<T>* GetUseNode() const { return use_node_; }
920
921 private:
922  // Instruction used by the user.
923  HInstruction* instruction_;
924
925  // Corresponding entry in the use list kept by 'instruction_'.
926  HUseListNode<T>* use_node_;
927};
928
929// TODO: Add better documentation to this class and maybe refactor with more suggestive names.
930// - Has(All)SideEffects suggests that all the side effects are present but only ChangesSomething
931//   flag is consider.
932// - DependsOn suggests that there is a real dependency between side effects but it only
933//   checks DependendsOnSomething flag.
934//
935// Represents the side effects an instruction may have.
936class SideEffects : public ValueObject {
937 public:
938  SideEffects() : flags_(0) {}
939
940  static SideEffects None() {
941    return SideEffects(0);
942  }
943
944  static SideEffects All() {
945    return SideEffects(ChangesSomething().flags_ | DependsOnSomething().flags_);
946  }
947
948  static SideEffects ChangesSomething() {
949    return SideEffects((1 << kFlagChangesCount) - 1);
950  }
951
952  static SideEffects DependsOnSomething() {
953    int count = kFlagDependsOnCount - kFlagChangesCount;
954    return SideEffects(((1 << count) - 1) << kFlagChangesCount);
955  }
956
957  SideEffects Union(SideEffects other) const {
958    return SideEffects(flags_ | other.flags_);
959  }
960
961  bool HasSideEffects() const {
962    size_t all_bits_set = (1 << kFlagChangesCount) - 1;
963    return (flags_ & all_bits_set) != 0;
964  }
965
966  bool HasAllSideEffects() const {
967    size_t all_bits_set = (1 << kFlagChangesCount) - 1;
968    return all_bits_set == (flags_ & all_bits_set);
969  }
970
971  bool DependsOn(SideEffects other) const {
972    size_t depends_flags = other.ComputeDependsFlags();
973    return (flags_ & depends_flags) != 0;
974  }
975
976  bool HasDependencies() const {
977    int count = kFlagDependsOnCount - kFlagChangesCount;
978    size_t all_bits_set = (1 << count) - 1;
979    return ((flags_ >> kFlagChangesCount) & all_bits_set) != 0;
980  }
981
982 private:
983  static constexpr int kFlagChangesSomething = 0;
984  static constexpr int kFlagChangesCount = kFlagChangesSomething + 1;
985
986  static constexpr int kFlagDependsOnSomething = kFlagChangesCount;
987  static constexpr int kFlagDependsOnCount = kFlagDependsOnSomething + 1;
988
989  explicit SideEffects(size_t flags) : flags_(flags) {}
990
991  size_t ComputeDependsFlags() const {
992    return flags_ << kFlagChangesCount;
993  }
994
995  size_t flags_;
996};
997
998// A HEnvironment object contains the values of virtual registers at a given location.
999class HEnvironment : public ArenaObject<kArenaAllocMisc> {
1000 public:
1001  HEnvironment(ArenaAllocator* arena, size_t number_of_vregs)
1002     : vregs_(arena, number_of_vregs) {
1003    vregs_.SetSize(number_of_vregs);
1004    for (size_t i = 0; i < number_of_vregs; i++) {
1005      vregs_.Put(i, HUserRecord<HEnvironment*>());
1006    }
1007  }
1008
1009  void CopyFrom(HEnvironment* env);
1010
1011  void SetRawEnvAt(size_t index, HInstruction* instruction) {
1012    vregs_.Put(index, HUserRecord<HEnvironment*>(instruction));
1013  }
1014
1015  HInstruction* GetInstructionAt(size_t index) const {
1016    return vregs_.Get(index).GetInstruction();
1017  }
1018
1019  void RemoveAsUserOfInput(size_t index) const;
1020
1021  size_t Size() const { return vregs_.Size(); }
1022
1023 private:
1024  // Record instructions' use entries of this environment for constant-time removal.
1025  // It should only be called by HInstruction when a new environment use is added.
1026  void RecordEnvUse(HUseListNode<HEnvironment*>* env_use) {
1027    DCHECK(env_use->GetUser() == this);
1028    size_t index = env_use->GetIndex();
1029    vregs_.Put(index, HUserRecord<HEnvironment*>(vregs_.Get(index), env_use));
1030  }
1031
1032  GrowableArray<HUserRecord<HEnvironment*> > vregs_;
1033
1034  friend HInstruction;
1035
1036  DISALLOW_COPY_AND_ASSIGN(HEnvironment);
1037};
1038
1039class ReferenceTypeInfo : ValueObject {
1040 public:
1041  typedef Handle<mirror::Class> TypeHandle;
1042
1043  static ReferenceTypeInfo Create(TypeHandle type_handle, bool is_exact)
1044      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1045    if (type_handle->IsObjectClass()) {
1046      // Override the type handle to be consistent with the case when we get to
1047      // Top but don't have the Object class available. It avoids having to guess
1048      // what value the type_handle has when it's Top.
1049      return ReferenceTypeInfo(TypeHandle(), is_exact, true);
1050    } else {
1051      return ReferenceTypeInfo(type_handle, is_exact, false);
1052    }
1053  }
1054
1055  static ReferenceTypeInfo CreateTop(bool is_exact) {
1056    return ReferenceTypeInfo(TypeHandle(), is_exact, true);
1057  }
1058
1059  bool IsExact() const { return is_exact_; }
1060  bool IsTop() const { return is_top_; }
1061
1062  Handle<mirror::Class> GetTypeHandle() const { return type_handle_; }
1063
1064  bool IsSupertypeOf(ReferenceTypeInfo rti) const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1065    if (IsTop()) {
1066      // Top (equivalent for java.lang.Object) is supertype of anything.
1067      return true;
1068    }
1069    if (rti.IsTop()) {
1070      // If we get here `this` is not Top() so it can't be a supertype.
1071      return false;
1072    }
1073    return GetTypeHandle()->IsAssignableFrom(rti.GetTypeHandle().Get());
1074  }
1075
1076  // Returns true if the type information provide the same amount of details.
1077  // Note that it does not mean that the instructions have the same actual type
1078  // (e.g. tops are equal but they can be the result of a merge).
1079  bool IsEqual(ReferenceTypeInfo rti) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1080    if (IsExact() != rti.IsExact()) {
1081      return false;
1082    }
1083    if (IsTop() && rti.IsTop()) {
1084      // `Top` means java.lang.Object, so the types are equivalent.
1085      return true;
1086    }
1087    if (IsTop() || rti.IsTop()) {
1088      // If only one is top or object than they are not equivalent.
1089      // NB: We need this extra check because the type_handle of `Top` is invalid
1090      // and we cannot inspect its reference.
1091      return false;
1092    }
1093
1094    // Finally check the types.
1095    return GetTypeHandle().Get() == rti.GetTypeHandle().Get();
1096  }
1097
1098 private:
1099  ReferenceTypeInfo() : ReferenceTypeInfo(TypeHandle(), false, true) {}
1100  ReferenceTypeInfo(TypeHandle type_handle, bool is_exact, bool is_top)
1101      : type_handle_(type_handle), is_exact_(is_exact), is_top_(is_top) {}
1102
1103  // The class of the object.
1104  TypeHandle type_handle_;
1105  // Whether or not the type is exact or a superclass of the actual type.
1106  // Whether or not we have any information about this type.
1107  bool is_exact_;
1108  // A true value here means that the object type should be java.lang.Object.
1109  // We don't have access to the corresponding mirror object every time so this
1110  // flag acts as a substitute. When true, the TypeHandle refers to a null
1111  // pointer and should not be used.
1112  bool is_top_;
1113};
1114
1115std::ostream& operator<<(std::ostream& os, const ReferenceTypeInfo& rhs);
1116
1117class HInstruction : public ArenaObject<kArenaAllocMisc> {
1118 public:
1119  explicit HInstruction(SideEffects side_effects)
1120      : previous_(nullptr),
1121        next_(nullptr),
1122        block_(nullptr),
1123        id_(-1),
1124        ssa_index_(-1),
1125        environment_(nullptr),
1126        locations_(nullptr),
1127        live_interval_(nullptr),
1128        lifetime_position_(kNoLifetime),
1129        side_effects_(side_effects),
1130        reference_type_info_(ReferenceTypeInfo::CreateTop(/* is_exact */ false)) {}
1131
1132  virtual ~HInstruction() {}
1133
1134#define DECLARE_KIND(type, super) k##type,
1135  enum InstructionKind {
1136    FOR_EACH_INSTRUCTION(DECLARE_KIND)
1137  };
1138#undef DECLARE_KIND
1139
1140  HInstruction* GetNext() const { return next_; }
1141  HInstruction* GetPrevious() const { return previous_; }
1142
1143  HInstruction* GetNextDisregardingMoves() const;
1144  HInstruction* GetPreviousDisregardingMoves() const;
1145
1146  HBasicBlock* GetBlock() const { return block_; }
1147  void SetBlock(HBasicBlock* block) { block_ = block; }
1148  bool IsInBlock() const { return block_ != nullptr; }
1149  bool IsInLoop() const { return block_->IsInLoop(); }
1150  bool IsLoopHeaderPhi() { return IsPhi() && block_->IsLoopHeader(); }
1151
1152  virtual size_t InputCount() const = 0;
1153  HInstruction* InputAt(size_t i) const { return InputRecordAt(i).GetInstruction(); }
1154
1155  virtual void Accept(HGraphVisitor* visitor) = 0;
1156  virtual const char* DebugName() const = 0;
1157
1158  virtual Primitive::Type GetType() const { return Primitive::kPrimVoid; }
1159  void SetRawInputAt(size_t index, HInstruction* input) {
1160    SetRawInputRecordAt(index, HUserRecord<HInstruction*>(input));
1161  }
1162
1163  virtual bool NeedsEnvironment() const { return false; }
1164  virtual bool IsControlFlow() const { return false; }
1165  virtual bool CanThrow() const { return false; }
1166  bool HasSideEffects() const { return side_effects_.HasSideEffects(); }
1167
1168  // Does not apply for all instructions, but having this at top level greatly
1169  // simplifies the null check elimination.
1170  virtual bool CanBeNull() const {
1171    DCHECK_EQ(GetType(), Primitive::kPrimNot) << "CanBeNull only applies to reference types";
1172    return true;
1173  }
1174
1175  virtual bool CanDoImplicitNullCheckOn(HInstruction* obj) const {
1176    UNUSED(obj);
1177    return false;
1178  }
1179
1180  void SetReferenceTypeInfo(ReferenceTypeInfo reference_type_info) {
1181    DCHECK_EQ(GetType(), Primitive::kPrimNot);
1182    reference_type_info_ = reference_type_info;
1183  }
1184
1185  ReferenceTypeInfo GetReferenceTypeInfo() const {
1186    DCHECK_EQ(GetType(), Primitive::kPrimNot);
1187    return reference_type_info_;
1188  }
1189
1190  void AddUseAt(HInstruction* user, size_t index) {
1191    DCHECK(user != nullptr);
1192    HUseListNode<HInstruction*>* use =
1193        uses_.AddUse(user, index, GetBlock()->GetGraph()->GetArena());
1194    user->SetRawInputRecordAt(index, HUserRecord<HInstruction*>(user->InputRecordAt(index), use));
1195  }
1196
1197  void AddEnvUseAt(HEnvironment* user, size_t index) {
1198    DCHECK(user != nullptr);
1199    HUseListNode<HEnvironment*>* env_use =
1200        env_uses_.AddUse(user, index, GetBlock()->GetGraph()->GetArena());
1201    user->RecordEnvUse(env_use);
1202  }
1203
1204  void RemoveAsUserOfInput(size_t input) {
1205    HUserRecord<HInstruction*> input_use = InputRecordAt(input);
1206    input_use.GetInstruction()->uses_.Remove(input_use.GetUseNode());
1207  }
1208
1209  const HUseList<HInstruction*>& GetUses() const { return uses_; }
1210  const HUseList<HEnvironment*>& GetEnvUses() const { return env_uses_; }
1211
1212  bool HasUses() const { return !uses_.IsEmpty() || !env_uses_.IsEmpty(); }
1213  bool HasEnvironmentUses() const { return !env_uses_.IsEmpty(); }
1214  bool HasNonEnvironmentUses() const { return !uses_.IsEmpty(); }
1215  bool HasOnlyOneNonEnvironmentUse() const {
1216    return !HasEnvironmentUses() && GetUses().HasOnlyOneUse();
1217  }
1218
1219  // Does this instruction strictly dominate `other_instruction`?
1220  // Returns false if this instruction and `other_instruction` are the same.
1221  // Aborts if this instruction and `other_instruction` are both phis.
1222  bool StrictlyDominates(HInstruction* other_instruction) const;
1223
1224  int GetId() const { return id_; }
1225  void SetId(int id) { id_ = id; }
1226
1227  int GetSsaIndex() const { return ssa_index_; }
1228  void SetSsaIndex(int ssa_index) { ssa_index_ = ssa_index; }
1229  bool HasSsaIndex() const { return ssa_index_ != -1; }
1230
1231  bool HasEnvironment() const { return environment_ != nullptr; }
1232  HEnvironment* GetEnvironment() const { return environment_; }
1233  // Set the `environment_` field. Raw because this method does not
1234  // update the uses lists.
1235  void SetRawEnvironment(HEnvironment* environment) { environment_ = environment; }
1236
1237  // Set the environment of this instruction, copying it from `environment`. While
1238  // copying, the uses lists are being updated.
1239  void CopyEnvironmentFrom(HEnvironment* environment) {
1240    ArenaAllocator* allocator = GetBlock()->GetGraph()->GetArena();
1241    environment_ = new (allocator) HEnvironment(allocator, environment->Size());
1242    environment_->CopyFrom(environment);
1243  }
1244
1245  // Returns the number of entries in the environment. Typically, that is the
1246  // number of dex registers in a method. It could be more in case of inlining.
1247  size_t EnvironmentSize() const;
1248
1249  LocationSummary* GetLocations() const { return locations_; }
1250  void SetLocations(LocationSummary* locations) { locations_ = locations; }
1251
1252  void ReplaceWith(HInstruction* instruction);
1253  void ReplaceInput(HInstruction* replacement, size_t index);
1254
1255  // This is almost the same as doing `ReplaceWith()`. But in this helper, the
1256  // uses of this instruction by `other` are *not* updated.
1257  void ReplaceWithExceptInReplacementAtIndex(HInstruction* other, size_t use_index) {
1258    ReplaceWith(other);
1259    other->ReplaceInput(this, use_index);
1260  }
1261
1262  // Move `this` instruction before `cursor`.
1263  void MoveBefore(HInstruction* cursor);
1264
1265#define INSTRUCTION_TYPE_CHECK(type, super)                                    \
1266  bool Is##type() const { return (As##type() != nullptr); }                    \
1267  virtual const H##type* As##type() const { return nullptr; }                  \
1268  virtual H##type* As##type() { return nullptr; }
1269
1270  FOR_EACH_INSTRUCTION(INSTRUCTION_TYPE_CHECK)
1271#undef INSTRUCTION_TYPE_CHECK
1272
1273  // Returns whether the instruction can be moved within the graph.
1274  virtual bool CanBeMoved() const { return false; }
1275
1276  // Returns whether the two instructions are of the same kind.
1277  virtual bool InstructionTypeEquals(HInstruction* other) const {
1278    UNUSED(other);
1279    return false;
1280  }
1281
1282  // Returns whether any data encoded in the two instructions is equal.
1283  // This method does not look at the inputs. Both instructions must be
1284  // of the same type, otherwise the method has undefined behavior.
1285  virtual bool InstructionDataEquals(HInstruction* other) const {
1286    UNUSED(other);
1287    return false;
1288  }
1289
1290  // Returns whether two instructions are equal, that is:
1291  // 1) They have the same type and contain the same data (InstructionDataEquals).
1292  // 2) Their inputs are identical.
1293  bool Equals(HInstruction* other) const;
1294
1295  virtual InstructionKind GetKind() const = 0;
1296
1297  virtual size_t ComputeHashCode() const {
1298    size_t result = GetKind();
1299    for (size_t i = 0, e = InputCount(); i < e; ++i) {
1300      result = (result * 31) + InputAt(i)->GetId();
1301    }
1302    return result;
1303  }
1304
1305  SideEffects GetSideEffects() const { return side_effects_; }
1306
1307  size_t GetLifetimePosition() const { return lifetime_position_; }
1308  void SetLifetimePosition(size_t position) { lifetime_position_ = position; }
1309  LiveInterval* GetLiveInterval() const { return live_interval_; }
1310  void SetLiveInterval(LiveInterval* interval) { live_interval_ = interval; }
1311  bool HasLiveInterval() const { return live_interval_ != nullptr; }
1312
1313  bool IsSuspendCheckEntry() const { return IsSuspendCheck() && GetBlock()->IsEntryBlock(); }
1314
1315  // Returns whether the code generation of the instruction will require to have access
1316  // to the current method. Such instructions are:
1317  // (1): Instructions that require an environment, as calling the runtime requires
1318  //      to walk the stack and have the current method stored at a specific stack address.
1319  // (2): Object literals like classes and strings, that are loaded from the dex cache
1320  //      fields of the current method.
1321  bool NeedsCurrentMethod() const {
1322    return NeedsEnvironment() || IsLoadClass() || IsLoadString();
1323  }
1324
1325  virtual bool NeedsDexCache() const { return false; }
1326
1327 protected:
1328  virtual const HUserRecord<HInstruction*> InputRecordAt(size_t i) const = 0;
1329  virtual void SetRawInputRecordAt(size_t index, const HUserRecord<HInstruction*>& input) = 0;
1330
1331 private:
1332  void RemoveEnvironmentUser(HUseListNode<HEnvironment*>* use_node) { env_uses_.Remove(use_node); }
1333
1334  HInstruction* previous_;
1335  HInstruction* next_;
1336  HBasicBlock* block_;
1337
1338  // An instruction gets an id when it is added to the graph.
1339  // It reflects creation order. A negative id means the instruction
1340  // has not been added to the graph.
1341  int id_;
1342
1343  // When doing liveness analysis, instructions that have uses get an SSA index.
1344  int ssa_index_;
1345
1346  // List of instructions that have this instruction as input.
1347  HUseList<HInstruction*> uses_;
1348
1349  // List of environments that contain this instruction.
1350  HUseList<HEnvironment*> env_uses_;
1351
1352  // The environment associated with this instruction. Not null if the instruction
1353  // might jump out of the method.
1354  HEnvironment* environment_;
1355
1356  // Set by the code generator.
1357  LocationSummary* locations_;
1358
1359  // Set by the liveness analysis.
1360  LiveInterval* live_interval_;
1361
1362  // Set by the liveness analysis, this is the position in a linear
1363  // order of blocks where this instruction's live interval start.
1364  size_t lifetime_position_;
1365
1366  const SideEffects side_effects_;
1367
1368  // TODO: for primitive types this should be marked as invalid.
1369  ReferenceTypeInfo reference_type_info_;
1370
1371  friend class GraphChecker;
1372  friend class HBasicBlock;
1373  friend class HEnvironment;
1374  friend class HGraph;
1375  friend class HInstructionList;
1376
1377  DISALLOW_COPY_AND_ASSIGN(HInstruction);
1378};
1379std::ostream& operator<<(std::ostream& os, const HInstruction::InstructionKind& rhs);
1380
1381class HInputIterator : public ValueObject {
1382 public:
1383  explicit HInputIterator(HInstruction* instruction) : instruction_(instruction), index_(0) {}
1384
1385  bool Done() const { return index_ == instruction_->InputCount(); }
1386  HInstruction* Current() const { return instruction_->InputAt(index_); }
1387  void Advance() { index_++; }
1388
1389 private:
1390  HInstruction* instruction_;
1391  size_t index_;
1392
1393  DISALLOW_COPY_AND_ASSIGN(HInputIterator);
1394};
1395
1396class HInstructionIterator : public ValueObject {
1397 public:
1398  explicit HInstructionIterator(const HInstructionList& instructions)
1399      : instruction_(instructions.first_instruction_) {
1400    next_ = Done() ? nullptr : instruction_->GetNext();
1401  }
1402
1403  bool Done() const { return instruction_ == nullptr; }
1404  HInstruction* Current() const { return instruction_; }
1405  void Advance() {
1406    instruction_ = next_;
1407    next_ = Done() ? nullptr : instruction_->GetNext();
1408  }
1409
1410 private:
1411  HInstruction* instruction_;
1412  HInstruction* next_;
1413
1414  DISALLOW_COPY_AND_ASSIGN(HInstructionIterator);
1415};
1416
1417class HBackwardInstructionIterator : public ValueObject {
1418 public:
1419  explicit HBackwardInstructionIterator(const HInstructionList& instructions)
1420      : instruction_(instructions.last_instruction_) {
1421    next_ = Done() ? nullptr : instruction_->GetPrevious();
1422  }
1423
1424  bool Done() const { return instruction_ == nullptr; }
1425  HInstruction* Current() const { return instruction_; }
1426  void Advance() {
1427    instruction_ = next_;
1428    next_ = Done() ? nullptr : instruction_->GetPrevious();
1429  }
1430
1431 private:
1432  HInstruction* instruction_;
1433  HInstruction* next_;
1434
1435  DISALLOW_COPY_AND_ASSIGN(HBackwardInstructionIterator);
1436};
1437
1438// An embedded container with N elements of type T.  Used (with partial
1439// specialization for N=0) because embedded arrays cannot have size 0.
1440template<typename T, intptr_t N>
1441class EmbeddedArray {
1442 public:
1443  EmbeddedArray() : elements_() {}
1444
1445  intptr_t GetLength() const { return N; }
1446
1447  const T& operator[](intptr_t i) const {
1448    DCHECK_LT(i, GetLength());
1449    return elements_[i];
1450  }
1451
1452  T& operator[](intptr_t i) {
1453    DCHECK_LT(i, GetLength());
1454    return elements_[i];
1455  }
1456
1457  const T& At(intptr_t i) const {
1458    return (*this)[i];
1459  }
1460
1461  void SetAt(intptr_t i, const T& val) {
1462    (*this)[i] = val;
1463  }
1464
1465 private:
1466  T elements_[N];
1467};
1468
1469template<typename T>
1470class EmbeddedArray<T, 0> {
1471 public:
1472  intptr_t length() const { return 0; }
1473  const T& operator[](intptr_t i) const {
1474    UNUSED(i);
1475    LOG(FATAL) << "Unreachable";
1476    UNREACHABLE();
1477  }
1478  T& operator[](intptr_t i) {
1479    UNUSED(i);
1480    LOG(FATAL) << "Unreachable";
1481    UNREACHABLE();
1482  }
1483};
1484
1485template<intptr_t N>
1486class HTemplateInstruction: public HInstruction {
1487 public:
1488  HTemplateInstruction<N>(SideEffects side_effects)
1489      : HInstruction(side_effects), inputs_() {}
1490  virtual ~HTemplateInstruction() {}
1491
1492  size_t InputCount() const OVERRIDE { return N; }
1493
1494 protected:
1495  const HUserRecord<HInstruction*> InputRecordAt(size_t i) const OVERRIDE { return inputs_[i]; }
1496
1497  void SetRawInputRecordAt(size_t i, const HUserRecord<HInstruction*>& input) OVERRIDE {
1498    inputs_[i] = input;
1499  }
1500
1501 private:
1502  EmbeddedArray<HUserRecord<HInstruction*>, N> inputs_;
1503
1504  friend class SsaBuilder;
1505};
1506
1507template<intptr_t N>
1508class HExpression : public HTemplateInstruction<N> {
1509 public:
1510  HExpression<N>(Primitive::Type type, SideEffects side_effects)
1511      : HTemplateInstruction<N>(side_effects), type_(type) {}
1512  virtual ~HExpression() {}
1513
1514  Primitive::Type GetType() const OVERRIDE { return type_; }
1515
1516 protected:
1517  Primitive::Type type_;
1518};
1519
1520// Represents dex's RETURN_VOID opcode. A HReturnVoid is a control flow
1521// instruction that branches to the exit block.
1522class HReturnVoid : public HTemplateInstruction<0> {
1523 public:
1524  HReturnVoid() : HTemplateInstruction(SideEffects::None()) {}
1525
1526  bool IsControlFlow() const OVERRIDE { return true; }
1527
1528  DECLARE_INSTRUCTION(ReturnVoid);
1529
1530 private:
1531  DISALLOW_COPY_AND_ASSIGN(HReturnVoid);
1532};
1533
1534// Represents dex's RETURN opcodes. A HReturn is a control flow
1535// instruction that branches to the exit block.
1536class HReturn : public HTemplateInstruction<1> {
1537 public:
1538  explicit HReturn(HInstruction* value) : HTemplateInstruction(SideEffects::None()) {
1539    SetRawInputAt(0, value);
1540  }
1541
1542  bool IsControlFlow() const OVERRIDE { return true; }
1543
1544  DECLARE_INSTRUCTION(Return);
1545
1546 private:
1547  DISALLOW_COPY_AND_ASSIGN(HReturn);
1548};
1549
1550// The exit instruction is the only instruction of the exit block.
1551// Instructions aborting the method (HThrow and HReturn) must branch to the
1552// exit block.
1553class HExit : public HTemplateInstruction<0> {
1554 public:
1555  HExit() : HTemplateInstruction(SideEffects::None()) {}
1556
1557  bool IsControlFlow() const OVERRIDE { return true; }
1558
1559  DECLARE_INSTRUCTION(Exit);
1560
1561 private:
1562  DISALLOW_COPY_AND_ASSIGN(HExit);
1563};
1564
1565// Jumps from one block to another.
1566class HGoto : public HTemplateInstruction<0> {
1567 public:
1568  HGoto() : HTemplateInstruction(SideEffects::None()) {}
1569
1570  bool IsControlFlow() const OVERRIDE { return true; }
1571
1572  HBasicBlock* GetSuccessor() const {
1573    return GetBlock()->GetSuccessors().Get(0);
1574  }
1575
1576  DECLARE_INSTRUCTION(Goto);
1577
1578 private:
1579  DISALLOW_COPY_AND_ASSIGN(HGoto);
1580};
1581
1582
1583// Conditional branch. A block ending with an HIf instruction must have
1584// two successors.
1585class HIf : public HTemplateInstruction<1> {
1586 public:
1587  explicit HIf(HInstruction* input) : HTemplateInstruction(SideEffects::None()) {
1588    SetRawInputAt(0, input);
1589  }
1590
1591  bool IsControlFlow() const OVERRIDE { return true; }
1592
1593  HBasicBlock* IfTrueSuccessor() const {
1594    return GetBlock()->GetSuccessors().Get(0);
1595  }
1596
1597  HBasicBlock* IfFalseSuccessor() const {
1598    return GetBlock()->GetSuccessors().Get(1);
1599  }
1600
1601  DECLARE_INSTRUCTION(If);
1602
1603 private:
1604  DISALLOW_COPY_AND_ASSIGN(HIf);
1605};
1606
1607// Deoptimize to interpreter, upon checking a condition.
1608class HDeoptimize : public HTemplateInstruction<1> {
1609 public:
1610  HDeoptimize(HInstruction* cond, uint32_t dex_pc)
1611      : HTemplateInstruction(SideEffects::None()),
1612        dex_pc_(dex_pc) {
1613    SetRawInputAt(0, cond);
1614  }
1615
1616  bool NeedsEnvironment() const OVERRIDE { return true; }
1617  bool CanThrow() const OVERRIDE { return true; }
1618  uint32_t GetDexPc() const { return dex_pc_; }
1619
1620  DECLARE_INSTRUCTION(Deoptimize);
1621
1622 private:
1623  uint32_t dex_pc_;
1624
1625  DISALLOW_COPY_AND_ASSIGN(HDeoptimize);
1626};
1627
1628class HUnaryOperation : public HExpression<1> {
1629 public:
1630  HUnaryOperation(Primitive::Type result_type, HInstruction* input)
1631      : HExpression(result_type, SideEffects::None()) {
1632    SetRawInputAt(0, input);
1633  }
1634
1635  HInstruction* GetInput() const { return InputAt(0); }
1636  Primitive::Type GetResultType() const { return GetType(); }
1637
1638  bool CanBeMoved() const OVERRIDE { return true; }
1639  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
1640    UNUSED(other);
1641    return true;
1642  }
1643
1644  // Try to statically evaluate `operation` and return a HConstant
1645  // containing the result of this evaluation.  If `operation` cannot
1646  // be evaluated as a constant, return null.
1647  HConstant* TryStaticEvaluation() const;
1648
1649  // Apply this operation to `x`.
1650  virtual int32_t Evaluate(int32_t x) const = 0;
1651  virtual int64_t Evaluate(int64_t x) const = 0;
1652
1653  DECLARE_INSTRUCTION(UnaryOperation);
1654
1655 private:
1656  DISALLOW_COPY_AND_ASSIGN(HUnaryOperation);
1657};
1658
1659class HBinaryOperation : public HExpression<2> {
1660 public:
1661  HBinaryOperation(Primitive::Type result_type,
1662                   HInstruction* left,
1663                   HInstruction* right) : HExpression(result_type, SideEffects::None()) {
1664    SetRawInputAt(0, left);
1665    SetRawInputAt(1, right);
1666  }
1667
1668  HInstruction* GetLeft() const { return InputAt(0); }
1669  HInstruction* GetRight() const { return InputAt(1); }
1670  Primitive::Type GetResultType() const { return GetType(); }
1671
1672  virtual bool IsCommutative() const { return false; }
1673
1674  // Put constant on the right.
1675  // Returns whether order is changed.
1676  bool OrderInputsWithConstantOnTheRight() {
1677    HInstruction* left = InputAt(0);
1678    HInstruction* right = InputAt(1);
1679    if (left->IsConstant() && !right->IsConstant()) {
1680      ReplaceInput(right, 0);
1681      ReplaceInput(left, 1);
1682      return true;
1683    }
1684    return false;
1685  }
1686
1687  // Order inputs by instruction id, but favor constant on the right side.
1688  // This helps GVN for commutative ops.
1689  void OrderInputs() {
1690    DCHECK(IsCommutative());
1691    HInstruction* left = InputAt(0);
1692    HInstruction* right = InputAt(1);
1693    if (left == right || (!left->IsConstant() && right->IsConstant())) {
1694      return;
1695    }
1696    if (OrderInputsWithConstantOnTheRight()) {
1697      return;
1698    }
1699    // Order according to instruction id.
1700    if (left->GetId() > right->GetId()) {
1701      ReplaceInput(right, 0);
1702      ReplaceInput(left, 1);
1703    }
1704  }
1705
1706  bool CanBeMoved() const OVERRIDE { return true; }
1707  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
1708    UNUSED(other);
1709    return true;
1710  }
1711
1712  // Try to statically evaluate `operation` and return a HConstant
1713  // containing the result of this evaluation.  If `operation` cannot
1714  // be evaluated as a constant, return null.
1715  HConstant* TryStaticEvaluation() const;
1716
1717  // Apply this operation to `x` and `y`.
1718  virtual int32_t Evaluate(int32_t x, int32_t y) const = 0;
1719  virtual int64_t Evaluate(int64_t x, int64_t y) const = 0;
1720
1721  // Returns an input that can legally be used as the right input and is
1722  // constant, or null.
1723  HConstant* GetConstantRight() const;
1724
1725  // If `GetConstantRight()` returns one of the input, this returns the other
1726  // one. Otherwise it returns null.
1727  HInstruction* GetLeastConstantLeft() const;
1728
1729  DECLARE_INSTRUCTION(BinaryOperation);
1730
1731 private:
1732  DISALLOW_COPY_AND_ASSIGN(HBinaryOperation);
1733};
1734
1735class HCondition : public HBinaryOperation {
1736 public:
1737  HCondition(HInstruction* first, HInstruction* second)
1738      : HBinaryOperation(Primitive::kPrimBoolean, first, second),
1739        needs_materialization_(true) {}
1740
1741  bool NeedsMaterialization() const { return needs_materialization_; }
1742  void ClearNeedsMaterialization() { needs_materialization_ = false; }
1743
1744  // For code generation purposes, returns whether this instruction is just before
1745  // `instruction`, and disregard moves in between.
1746  bool IsBeforeWhenDisregardMoves(HInstruction* instruction) const;
1747
1748  DECLARE_INSTRUCTION(Condition);
1749
1750  virtual IfCondition GetCondition() const = 0;
1751
1752 private:
1753  // For register allocation purposes, returns whether this instruction needs to be
1754  // materialized (that is, not just be in the processor flags).
1755  bool needs_materialization_;
1756
1757  DISALLOW_COPY_AND_ASSIGN(HCondition);
1758};
1759
1760// Instruction to check if two inputs are equal to each other.
1761class HEqual : public HCondition {
1762 public:
1763  HEqual(HInstruction* first, HInstruction* second)
1764      : HCondition(first, second) {}
1765
1766  bool IsCommutative() const OVERRIDE { return true; }
1767
1768  int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE {
1769    return x == y ? 1 : 0;
1770  }
1771  int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE {
1772    return x == y ? 1 : 0;
1773  }
1774
1775  DECLARE_INSTRUCTION(Equal);
1776
1777  IfCondition GetCondition() const OVERRIDE {
1778    return kCondEQ;
1779  }
1780
1781 private:
1782  DISALLOW_COPY_AND_ASSIGN(HEqual);
1783};
1784
1785class HNotEqual : public HCondition {
1786 public:
1787  HNotEqual(HInstruction* first, HInstruction* second)
1788      : HCondition(first, second) {}
1789
1790  bool IsCommutative() const OVERRIDE { return true; }
1791
1792  int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE {
1793    return x != y ? 1 : 0;
1794  }
1795  int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE {
1796    return x != y ? 1 : 0;
1797  }
1798
1799  DECLARE_INSTRUCTION(NotEqual);
1800
1801  IfCondition GetCondition() const OVERRIDE {
1802    return kCondNE;
1803  }
1804
1805 private:
1806  DISALLOW_COPY_AND_ASSIGN(HNotEqual);
1807};
1808
1809class HLessThan : public HCondition {
1810 public:
1811  HLessThan(HInstruction* first, HInstruction* second)
1812      : HCondition(first, second) {}
1813
1814  int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE {
1815    return x < y ? 1 : 0;
1816  }
1817  int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE {
1818    return x < y ? 1 : 0;
1819  }
1820
1821  DECLARE_INSTRUCTION(LessThan);
1822
1823  IfCondition GetCondition() const OVERRIDE {
1824    return kCondLT;
1825  }
1826
1827 private:
1828  DISALLOW_COPY_AND_ASSIGN(HLessThan);
1829};
1830
1831class HLessThanOrEqual : public HCondition {
1832 public:
1833  HLessThanOrEqual(HInstruction* first, HInstruction* second)
1834      : HCondition(first, second) {}
1835
1836  int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE {
1837    return x <= y ? 1 : 0;
1838  }
1839  int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE {
1840    return x <= y ? 1 : 0;
1841  }
1842
1843  DECLARE_INSTRUCTION(LessThanOrEqual);
1844
1845  IfCondition GetCondition() const OVERRIDE {
1846    return kCondLE;
1847  }
1848
1849 private:
1850  DISALLOW_COPY_AND_ASSIGN(HLessThanOrEqual);
1851};
1852
1853class HGreaterThan : public HCondition {
1854 public:
1855  HGreaterThan(HInstruction* first, HInstruction* second)
1856      : HCondition(first, second) {}
1857
1858  int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE {
1859    return x > y ? 1 : 0;
1860  }
1861  int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE {
1862    return x > y ? 1 : 0;
1863  }
1864
1865  DECLARE_INSTRUCTION(GreaterThan);
1866
1867  IfCondition GetCondition() const OVERRIDE {
1868    return kCondGT;
1869  }
1870
1871 private:
1872  DISALLOW_COPY_AND_ASSIGN(HGreaterThan);
1873};
1874
1875class HGreaterThanOrEqual : public HCondition {
1876 public:
1877  HGreaterThanOrEqual(HInstruction* first, HInstruction* second)
1878      : HCondition(first, second) {}
1879
1880  int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE {
1881    return x >= y ? 1 : 0;
1882  }
1883  int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE {
1884    return x >= y ? 1 : 0;
1885  }
1886
1887  DECLARE_INSTRUCTION(GreaterThanOrEqual);
1888
1889  IfCondition GetCondition() const OVERRIDE {
1890    return kCondGE;
1891  }
1892
1893 private:
1894  DISALLOW_COPY_AND_ASSIGN(HGreaterThanOrEqual);
1895};
1896
1897
1898// Instruction to check how two inputs compare to each other.
1899// Result is 0 if input0 == input1, 1 if input0 > input1, or -1 if input0 < input1.
1900class HCompare : public HBinaryOperation {
1901 public:
1902  // The bias applies for floating point operations and indicates how NaN
1903  // comparisons are treated:
1904  enum Bias {
1905    kNoBias,  // bias is not applicable (i.e. for long operation)
1906    kGtBias,  // return 1 for NaN comparisons
1907    kLtBias,  // return -1 for NaN comparisons
1908  };
1909
1910  HCompare(Primitive::Type type, HInstruction* first, HInstruction* second, Bias bias)
1911      : HBinaryOperation(Primitive::kPrimInt, first, second), bias_(bias) {
1912    DCHECK_EQ(type, first->GetType());
1913    DCHECK_EQ(type, second->GetType());
1914  }
1915
1916  int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE {
1917    return
1918      x == y ? 0 :
1919      x > y ? 1 :
1920      -1;
1921  }
1922
1923  int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE {
1924    return
1925      x == y ? 0 :
1926      x > y ? 1 :
1927      -1;
1928  }
1929
1930  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
1931    return bias_ == other->AsCompare()->bias_;
1932  }
1933
1934  bool IsGtBias() { return bias_ == kGtBias; }
1935
1936  DECLARE_INSTRUCTION(Compare);
1937
1938 private:
1939  const Bias bias_;
1940
1941  DISALLOW_COPY_AND_ASSIGN(HCompare);
1942};
1943
1944// A local in the graph. Corresponds to a Dex register.
1945class HLocal : public HTemplateInstruction<0> {
1946 public:
1947  explicit HLocal(uint16_t reg_number)
1948      : HTemplateInstruction(SideEffects::None()), reg_number_(reg_number) {}
1949
1950  DECLARE_INSTRUCTION(Local);
1951
1952  uint16_t GetRegNumber() const { return reg_number_; }
1953
1954 private:
1955  // The Dex register number.
1956  const uint16_t reg_number_;
1957
1958  DISALLOW_COPY_AND_ASSIGN(HLocal);
1959};
1960
1961// Load a given local. The local is an input of this instruction.
1962class HLoadLocal : public HExpression<1> {
1963 public:
1964  HLoadLocal(HLocal* local, Primitive::Type type)
1965      : HExpression(type, SideEffects::None()) {
1966    SetRawInputAt(0, local);
1967  }
1968
1969  HLocal* GetLocal() const { return reinterpret_cast<HLocal*>(InputAt(0)); }
1970
1971  DECLARE_INSTRUCTION(LoadLocal);
1972
1973 private:
1974  DISALLOW_COPY_AND_ASSIGN(HLoadLocal);
1975};
1976
1977// Store a value in a given local. This instruction has two inputs: the value
1978// and the local.
1979class HStoreLocal : public HTemplateInstruction<2> {
1980 public:
1981  HStoreLocal(HLocal* local, HInstruction* value) : HTemplateInstruction(SideEffects::None()) {
1982    SetRawInputAt(0, local);
1983    SetRawInputAt(1, value);
1984  }
1985
1986  HLocal* GetLocal() const { return reinterpret_cast<HLocal*>(InputAt(0)); }
1987
1988  DECLARE_INSTRUCTION(StoreLocal);
1989
1990 private:
1991  DISALLOW_COPY_AND_ASSIGN(HStoreLocal);
1992};
1993
1994class HConstant : public HExpression<0> {
1995 public:
1996  explicit HConstant(Primitive::Type type) : HExpression(type, SideEffects::None()) {}
1997
1998  bool CanBeMoved() const OVERRIDE { return true; }
1999
2000  virtual bool IsMinusOne() const { return false; }
2001  virtual bool IsZero() const { return false; }
2002  virtual bool IsOne() const { return false; }
2003
2004  DECLARE_INSTRUCTION(Constant);
2005
2006 private:
2007  DISALLOW_COPY_AND_ASSIGN(HConstant);
2008};
2009
2010class HFloatConstant : public HConstant {
2011 public:
2012  float GetValue() const { return value_; }
2013
2014  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2015    return bit_cast<uint32_t, float>(other->AsFloatConstant()->value_) ==
2016        bit_cast<uint32_t, float>(value_);
2017  }
2018
2019  size_t ComputeHashCode() const OVERRIDE { return static_cast<size_t>(GetValue()); }
2020
2021  bool IsMinusOne() const OVERRIDE {
2022    return bit_cast<uint32_t, float>(AsFloatConstant()->GetValue()) ==
2023        bit_cast<uint32_t, float>((-1.0f));
2024  }
2025  bool IsZero() const OVERRIDE {
2026    return AsFloatConstant()->GetValue() == 0.0f;
2027  }
2028  bool IsOne() const OVERRIDE {
2029    return bit_cast<uint32_t, float>(AsFloatConstant()->GetValue()) ==
2030        bit_cast<uint32_t, float>(1.0f);
2031  }
2032
2033  DECLARE_INSTRUCTION(FloatConstant);
2034
2035 private:
2036  explicit HFloatConstant(float value) : HConstant(Primitive::kPrimFloat), value_(value) {}
2037
2038  const float value_;
2039
2040  // Only the SsaBuilder can currently create floating-point constants. If we
2041  // ever need to create them later in the pipeline, we will have to handle them
2042  // the same way as integral constants.
2043  friend class SsaBuilder;
2044  DISALLOW_COPY_AND_ASSIGN(HFloatConstant);
2045};
2046
2047class HDoubleConstant : public HConstant {
2048 public:
2049  double GetValue() const { return value_; }
2050
2051  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2052    return bit_cast<uint64_t, double>(other->AsDoubleConstant()->value_) ==
2053        bit_cast<uint64_t, double>(value_);
2054  }
2055
2056  size_t ComputeHashCode() const OVERRIDE { return static_cast<size_t>(GetValue()); }
2057
2058  bool IsMinusOne() const OVERRIDE {
2059    return bit_cast<uint64_t, double>(AsDoubleConstant()->GetValue()) ==
2060        bit_cast<uint64_t, double>((-1.0));
2061  }
2062  bool IsZero() const OVERRIDE {
2063    return AsDoubleConstant()->GetValue() == 0.0;
2064  }
2065  bool IsOne() const OVERRIDE {
2066    return bit_cast<uint64_t, double>(AsDoubleConstant()->GetValue()) ==
2067        bit_cast<uint64_t, double>(1.0);
2068  }
2069
2070  DECLARE_INSTRUCTION(DoubleConstant);
2071
2072 private:
2073  explicit HDoubleConstant(double value) : HConstant(Primitive::kPrimDouble), value_(value) {}
2074
2075  const double value_;
2076
2077  // Only the SsaBuilder can currently create floating-point constants. If we
2078  // ever need to create them later in the pipeline, we will have to handle them
2079  // the same way as integral constants.
2080  friend class SsaBuilder;
2081  DISALLOW_COPY_AND_ASSIGN(HDoubleConstant);
2082};
2083
2084class HNullConstant : public HConstant {
2085 public:
2086  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
2087    return true;
2088  }
2089
2090  size_t ComputeHashCode() const OVERRIDE { return 0; }
2091
2092  DECLARE_INSTRUCTION(NullConstant);
2093
2094 private:
2095  HNullConstant() : HConstant(Primitive::kPrimNot) {}
2096
2097  friend class HGraph;
2098  DISALLOW_COPY_AND_ASSIGN(HNullConstant);
2099};
2100
2101// Constants of the type int. Those can be from Dex instructions, or
2102// synthesized (for example with the if-eqz instruction).
2103class HIntConstant : public HConstant {
2104 public:
2105  int32_t GetValue() const { return value_; }
2106
2107  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2108    return other->AsIntConstant()->value_ == value_;
2109  }
2110
2111  size_t ComputeHashCode() const OVERRIDE { return GetValue(); }
2112
2113  bool IsMinusOne() const OVERRIDE { return GetValue() == -1; }
2114  bool IsZero() const OVERRIDE { return GetValue() == 0; }
2115  bool IsOne() const OVERRIDE { return GetValue() == 1; }
2116
2117  DECLARE_INSTRUCTION(IntConstant);
2118
2119 private:
2120  explicit HIntConstant(int32_t value) : HConstant(Primitive::kPrimInt), value_(value) {}
2121
2122  const int32_t value_;
2123
2124  friend class HGraph;
2125  ART_FRIEND_TEST(GraphTest, InsertInstructionBefore);
2126  ART_FRIEND_TYPED_TEST(ParallelMoveTest, ConstantLast);
2127  DISALLOW_COPY_AND_ASSIGN(HIntConstant);
2128};
2129
2130class HLongConstant : public HConstant {
2131 public:
2132  int64_t GetValue() const { return value_; }
2133
2134  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2135    return other->AsLongConstant()->value_ == value_;
2136  }
2137
2138  size_t ComputeHashCode() const OVERRIDE { return static_cast<size_t>(GetValue()); }
2139
2140  bool IsMinusOne() const OVERRIDE { return GetValue() == -1; }
2141  bool IsZero() const OVERRIDE { return GetValue() == 0; }
2142  bool IsOne() const OVERRIDE { return GetValue() == 1; }
2143
2144  DECLARE_INSTRUCTION(LongConstant);
2145
2146 private:
2147  explicit HLongConstant(int64_t value) : HConstant(Primitive::kPrimLong), value_(value) {}
2148
2149  const int64_t value_;
2150
2151  friend class HGraph;
2152  DISALLOW_COPY_AND_ASSIGN(HLongConstant);
2153};
2154
2155enum class Intrinsics {
2156#define OPTIMIZING_INTRINSICS(Name, IsStatic) k ## Name,
2157#include "intrinsics_list.h"
2158  kNone,
2159  INTRINSICS_LIST(OPTIMIZING_INTRINSICS)
2160#undef INTRINSICS_LIST
2161#undef OPTIMIZING_INTRINSICS
2162};
2163std::ostream& operator<<(std::ostream& os, const Intrinsics& intrinsic);
2164
2165class HInvoke : public HInstruction {
2166 public:
2167  size_t InputCount() const OVERRIDE { return inputs_.Size(); }
2168
2169  // Runtime needs to walk the stack, so Dex -> Dex calls need to
2170  // know their environment.
2171  bool NeedsEnvironment() const OVERRIDE { return true; }
2172
2173  void SetArgumentAt(size_t index, HInstruction* argument) {
2174    SetRawInputAt(index, argument);
2175  }
2176
2177  Primitive::Type GetType() const OVERRIDE { return return_type_; }
2178
2179  uint32_t GetDexPc() const { return dex_pc_; }
2180
2181  uint32_t GetDexMethodIndex() const { return dex_method_index_; }
2182
2183  Intrinsics GetIntrinsic() const {
2184    return intrinsic_;
2185  }
2186
2187  void SetIntrinsic(Intrinsics intrinsic) {
2188    intrinsic_ = intrinsic;
2189  }
2190
2191  DECLARE_INSTRUCTION(Invoke);
2192
2193 protected:
2194  HInvoke(ArenaAllocator* arena,
2195          uint32_t number_of_arguments,
2196          Primitive::Type return_type,
2197          uint32_t dex_pc,
2198          uint32_t dex_method_index)
2199    : HInstruction(SideEffects::All()),
2200      inputs_(arena, number_of_arguments),
2201      return_type_(return_type),
2202      dex_pc_(dex_pc),
2203      dex_method_index_(dex_method_index),
2204      intrinsic_(Intrinsics::kNone) {
2205    inputs_.SetSize(number_of_arguments);
2206  }
2207
2208  const HUserRecord<HInstruction*> InputRecordAt(size_t i) const OVERRIDE { return inputs_.Get(i); }
2209  void SetRawInputRecordAt(size_t index, const HUserRecord<HInstruction*>& input) OVERRIDE {
2210    inputs_.Put(index, input);
2211  }
2212
2213  GrowableArray<HUserRecord<HInstruction*> > inputs_;
2214  const Primitive::Type return_type_;
2215  const uint32_t dex_pc_;
2216  const uint32_t dex_method_index_;
2217  Intrinsics intrinsic_;
2218
2219 private:
2220  DISALLOW_COPY_AND_ASSIGN(HInvoke);
2221};
2222
2223class HInvokeStaticOrDirect : public HInvoke {
2224 public:
2225  HInvokeStaticOrDirect(ArenaAllocator* arena,
2226                        uint32_t number_of_arguments,
2227                        Primitive::Type return_type,
2228                        uint32_t dex_pc,
2229                        uint32_t dex_method_index,
2230                        bool is_recursive,
2231                        InvokeType original_invoke_type,
2232                        InvokeType invoke_type)
2233      : HInvoke(arena, number_of_arguments, return_type, dex_pc, dex_method_index),
2234        original_invoke_type_(original_invoke_type),
2235        invoke_type_(invoke_type),
2236        is_recursive_(is_recursive) {}
2237
2238  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
2239    UNUSED(obj);
2240    // We access the method via the dex cache so we can't do an implicit null check.
2241    // TODO: for intrinsics we can generate implicit null checks.
2242    return false;
2243  }
2244
2245  InvokeType GetOriginalInvokeType() const { return original_invoke_type_; }
2246  InvokeType GetInvokeType() const { return invoke_type_; }
2247  bool IsRecursive() const { return is_recursive_; }
2248  bool NeedsDexCache() const OVERRIDE { return !IsRecursive(); }
2249
2250  DECLARE_INSTRUCTION(InvokeStaticOrDirect);
2251
2252 private:
2253  const InvokeType original_invoke_type_;
2254  const InvokeType invoke_type_;
2255  const bool is_recursive_;
2256
2257  DISALLOW_COPY_AND_ASSIGN(HInvokeStaticOrDirect);
2258};
2259
2260class HInvokeVirtual : public HInvoke {
2261 public:
2262  HInvokeVirtual(ArenaAllocator* arena,
2263                 uint32_t number_of_arguments,
2264                 Primitive::Type return_type,
2265                 uint32_t dex_pc,
2266                 uint32_t dex_method_index,
2267                 uint32_t vtable_index)
2268      : HInvoke(arena, number_of_arguments, return_type, dex_pc, dex_method_index),
2269        vtable_index_(vtable_index) {}
2270
2271  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
2272    // TODO: Add implicit null checks in intrinsics.
2273    return (obj == InputAt(0)) && !GetLocations()->Intrinsified();
2274  }
2275
2276  uint32_t GetVTableIndex() const { return vtable_index_; }
2277
2278  DECLARE_INSTRUCTION(InvokeVirtual);
2279
2280 private:
2281  const uint32_t vtable_index_;
2282
2283  DISALLOW_COPY_AND_ASSIGN(HInvokeVirtual);
2284};
2285
2286class HInvokeInterface : public HInvoke {
2287 public:
2288  HInvokeInterface(ArenaAllocator* arena,
2289                   uint32_t number_of_arguments,
2290                   Primitive::Type return_type,
2291                   uint32_t dex_pc,
2292                   uint32_t dex_method_index,
2293                   uint32_t imt_index)
2294      : HInvoke(arena, number_of_arguments, return_type, dex_pc, dex_method_index),
2295        imt_index_(imt_index) {}
2296
2297  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
2298    // TODO: Add implicit null checks in intrinsics.
2299    return (obj == InputAt(0)) && !GetLocations()->Intrinsified();
2300  }
2301
2302  uint32_t GetImtIndex() const { return imt_index_; }
2303  uint32_t GetDexMethodIndex() const { return dex_method_index_; }
2304
2305  DECLARE_INSTRUCTION(InvokeInterface);
2306
2307 private:
2308  const uint32_t imt_index_;
2309
2310  DISALLOW_COPY_AND_ASSIGN(HInvokeInterface);
2311};
2312
2313class HNewInstance : public HExpression<0> {
2314 public:
2315  HNewInstance(uint32_t dex_pc, uint16_t type_index, QuickEntrypointEnum entrypoint)
2316      : HExpression(Primitive::kPrimNot, SideEffects::None()),
2317        dex_pc_(dex_pc),
2318        type_index_(type_index),
2319        entrypoint_(entrypoint) {}
2320
2321  uint32_t GetDexPc() const { return dex_pc_; }
2322  uint16_t GetTypeIndex() const { return type_index_; }
2323
2324  // Calls runtime so needs an environment.
2325  bool NeedsEnvironment() const OVERRIDE { return true; }
2326  // It may throw when called on:
2327  //   - interfaces
2328  //   - abstract/innaccessible/unknown classes
2329  // TODO: optimize when possible.
2330  bool CanThrow() const OVERRIDE { return true; }
2331
2332  bool CanBeNull() const OVERRIDE { return false; }
2333
2334  QuickEntrypointEnum GetEntrypoint() const { return entrypoint_; }
2335
2336  DECLARE_INSTRUCTION(NewInstance);
2337
2338 private:
2339  const uint32_t dex_pc_;
2340  const uint16_t type_index_;
2341  const QuickEntrypointEnum entrypoint_;
2342
2343  DISALLOW_COPY_AND_ASSIGN(HNewInstance);
2344};
2345
2346class HNeg : public HUnaryOperation {
2347 public:
2348  explicit HNeg(Primitive::Type result_type, HInstruction* input)
2349      : HUnaryOperation(result_type, input) {}
2350
2351  int32_t Evaluate(int32_t x) const OVERRIDE { return -x; }
2352  int64_t Evaluate(int64_t x) const OVERRIDE { return -x; }
2353
2354  DECLARE_INSTRUCTION(Neg);
2355
2356 private:
2357  DISALLOW_COPY_AND_ASSIGN(HNeg);
2358};
2359
2360class HNewArray : public HExpression<1> {
2361 public:
2362  HNewArray(HInstruction* length,
2363            uint32_t dex_pc,
2364            uint16_t type_index,
2365            QuickEntrypointEnum entrypoint)
2366      : HExpression(Primitive::kPrimNot, SideEffects::None()),
2367        dex_pc_(dex_pc),
2368        type_index_(type_index),
2369        entrypoint_(entrypoint) {
2370    SetRawInputAt(0, length);
2371  }
2372
2373  uint32_t GetDexPc() const { return dex_pc_; }
2374  uint16_t GetTypeIndex() const { return type_index_; }
2375
2376  // Calls runtime so needs an environment.
2377  bool NeedsEnvironment() const OVERRIDE { return true; }
2378
2379  // May throw NegativeArraySizeException, OutOfMemoryError, etc.
2380  bool CanThrow() const OVERRIDE { return true; }
2381
2382  bool CanBeNull() const OVERRIDE { return false; }
2383
2384  QuickEntrypointEnum GetEntrypoint() const { return entrypoint_; }
2385
2386  DECLARE_INSTRUCTION(NewArray);
2387
2388 private:
2389  const uint32_t dex_pc_;
2390  const uint16_t type_index_;
2391  const QuickEntrypointEnum entrypoint_;
2392
2393  DISALLOW_COPY_AND_ASSIGN(HNewArray);
2394};
2395
2396class HAdd : public HBinaryOperation {
2397 public:
2398  HAdd(Primitive::Type result_type, HInstruction* left, HInstruction* right)
2399      : HBinaryOperation(result_type, left, right) {}
2400
2401  bool IsCommutative() const OVERRIDE { return true; }
2402
2403  int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE {
2404    return x + y;
2405  }
2406  int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE {
2407    return x + y;
2408  }
2409
2410  DECLARE_INSTRUCTION(Add);
2411
2412 private:
2413  DISALLOW_COPY_AND_ASSIGN(HAdd);
2414};
2415
2416class HSub : public HBinaryOperation {
2417 public:
2418  HSub(Primitive::Type result_type, HInstruction* left, HInstruction* right)
2419      : HBinaryOperation(result_type, left, right) {}
2420
2421  int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE {
2422    return x - y;
2423  }
2424  int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE {
2425    return x - y;
2426  }
2427
2428  DECLARE_INSTRUCTION(Sub);
2429
2430 private:
2431  DISALLOW_COPY_AND_ASSIGN(HSub);
2432};
2433
2434class HMul : public HBinaryOperation {
2435 public:
2436  HMul(Primitive::Type result_type, HInstruction* left, HInstruction* right)
2437      : HBinaryOperation(result_type, left, right) {}
2438
2439  bool IsCommutative() const OVERRIDE { return true; }
2440
2441  int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE { return x * y; }
2442  int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE { return x * y; }
2443
2444  DECLARE_INSTRUCTION(Mul);
2445
2446 private:
2447  DISALLOW_COPY_AND_ASSIGN(HMul);
2448};
2449
2450class HDiv : public HBinaryOperation {
2451 public:
2452  HDiv(Primitive::Type result_type, HInstruction* left, HInstruction* right, uint32_t dex_pc)
2453      : HBinaryOperation(result_type, left, right), dex_pc_(dex_pc) {}
2454
2455  int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE {
2456    // Our graph structure ensures we never have 0 for `y` during constant folding.
2457    DCHECK_NE(y, 0);
2458    // Special case -1 to avoid getting a SIGFPE on x86(_64).
2459    return (y == -1) ? -x : x / y;
2460  }
2461
2462  int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE {
2463    DCHECK_NE(y, 0);
2464    // Special case -1 to avoid getting a SIGFPE on x86(_64).
2465    return (y == -1) ? -x : x / y;
2466  }
2467
2468  uint32_t GetDexPc() const { return dex_pc_; }
2469
2470  DECLARE_INSTRUCTION(Div);
2471
2472 private:
2473  const uint32_t dex_pc_;
2474
2475  DISALLOW_COPY_AND_ASSIGN(HDiv);
2476};
2477
2478class HRem : public HBinaryOperation {
2479 public:
2480  HRem(Primitive::Type result_type, HInstruction* left, HInstruction* right, uint32_t dex_pc)
2481      : HBinaryOperation(result_type, left, right), dex_pc_(dex_pc) {}
2482
2483  int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE {
2484    DCHECK_NE(y, 0);
2485    // Special case -1 to avoid getting a SIGFPE on x86(_64).
2486    return (y == -1) ? 0 : x % y;
2487  }
2488
2489  int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE {
2490    DCHECK_NE(y, 0);
2491    // Special case -1 to avoid getting a SIGFPE on x86(_64).
2492    return (y == -1) ? 0 : x % y;
2493  }
2494
2495  uint32_t GetDexPc() const { return dex_pc_; }
2496
2497  DECLARE_INSTRUCTION(Rem);
2498
2499 private:
2500  const uint32_t dex_pc_;
2501
2502  DISALLOW_COPY_AND_ASSIGN(HRem);
2503};
2504
2505class HDivZeroCheck : public HExpression<1> {
2506 public:
2507  HDivZeroCheck(HInstruction* value, uint32_t dex_pc)
2508      : HExpression(value->GetType(), SideEffects::None()), dex_pc_(dex_pc) {
2509    SetRawInputAt(0, value);
2510  }
2511
2512  bool CanBeMoved() const OVERRIDE { return true; }
2513
2514  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2515    UNUSED(other);
2516    return true;
2517  }
2518
2519  bool NeedsEnvironment() const OVERRIDE { return true; }
2520  bool CanThrow() const OVERRIDE { return true; }
2521
2522  uint32_t GetDexPc() const { return dex_pc_; }
2523
2524  DECLARE_INSTRUCTION(DivZeroCheck);
2525
2526 private:
2527  const uint32_t dex_pc_;
2528
2529  DISALLOW_COPY_AND_ASSIGN(HDivZeroCheck);
2530};
2531
2532class HShl : public HBinaryOperation {
2533 public:
2534  HShl(Primitive::Type result_type, HInstruction* left, HInstruction* right)
2535      : HBinaryOperation(result_type, left, right) {}
2536
2537  int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE { return x << (y & kMaxIntShiftValue); }
2538  int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE { return x << (y & kMaxLongShiftValue); }
2539
2540  DECLARE_INSTRUCTION(Shl);
2541
2542 private:
2543  DISALLOW_COPY_AND_ASSIGN(HShl);
2544};
2545
2546class HShr : public HBinaryOperation {
2547 public:
2548  HShr(Primitive::Type result_type, HInstruction* left, HInstruction* right)
2549      : HBinaryOperation(result_type, left, right) {}
2550
2551  int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE { return x >> (y & kMaxIntShiftValue); }
2552  int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE { return x >> (y & kMaxLongShiftValue); }
2553
2554  DECLARE_INSTRUCTION(Shr);
2555
2556 private:
2557  DISALLOW_COPY_AND_ASSIGN(HShr);
2558};
2559
2560class HUShr : public HBinaryOperation {
2561 public:
2562  HUShr(Primitive::Type result_type, HInstruction* left, HInstruction* right)
2563      : HBinaryOperation(result_type, left, right) {}
2564
2565  int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE {
2566    uint32_t ux = static_cast<uint32_t>(x);
2567    uint32_t uy = static_cast<uint32_t>(y) & kMaxIntShiftValue;
2568    return static_cast<int32_t>(ux >> uy);
2569  }
2570
2571  int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE {
2572    uint64_t ux = static_cast<uint64_t>(x);
2573    uint64_t uy = static_cast<uint64_t>(y) & kMaxLongShiftValue;
2574    return static_cast<int64_t>(ux >> uy);
2575  }
2576
2577  DECLARE_INSTRUCTION(UShr);
2578
2579 private:
2580  DISALLOW_COPY_AND_ASSIGN(HUShr);
2581};
2582
2583class HAnd : public HBinaryOperation {
2584 public:
2585  HAnd(Primitive::Type result_type, HInstruction* left, HInstruction* right)
2586      : HBinaryOperation(result_type, left, right) {}
2587
2588  bool IsCommutative() const OVERRIDE { return true; }
2589
2590  int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE { return x & y; }
2591  int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE { return x & y; }
2592
2593  DECLARE_INSTRUCTION(And);
2594
2595 private:
2596  DISALLOW_COPY_AND_ASSIGN(HAnd);
2597};
2598
2599class HOr : public HBinaryOperation {
2600 public:
2601  HOr(Primitive::Type result_type, HInstruction* left, HInstruction* right)
2602      : HBinaryOperation(result_type, left, right) {}
2603
2604  bool IsCommutative() const OVERRIDE { return true; }
2605
2606  int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE { return x | y; }
2607  int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE { return x | y; }
2608
2609  DECLARE_INSTRUCTION(Or);
2610
2611 private:
2612  DISALLOW_COPY_AND_ASSIGN(HOr);
2613};
2614
2615class HXor : public HBinaryOperation {
2616 public:
2617  HXor(Primitive::Type result_type, HInstruction* left, HInstruction* right)
2618      : HBinaryOperation(result_type, left, right) {}
2619
2620  bool IsCommutative() const OVERRIDE { return true; }
2621
2622  int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE { return x ^ y; }
2623  int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE { return x ^ y; }
2624
2625  DECLARE_INSTRUCTION(Xor);
2626
2627 private:
2628  DISALLOW_COPY_AND_ASSIGN(HXor);
2629};
2630
2631// The value of a parameter in this method. Its location depends on
2632// the calling convention.
2633class HParameterValue : public HExpression<0> {
2634 public:
2635  HParameterValue(uint8_t index, Primitive::Type parameter_type, bool is_this = false)
2636      : HExpression(parameter_type, SideEffects::None()), index_(index), is_this_(is_this) {}
2637
2638  uint8_t GetIndex() const { return index_; }
2639
2640  bool CanBeNull() const OVERRIDE { return !is_this_; }
2641
2642  DECLARE_INSTRUCTION(ParameterValue);
2643
2644 private:
2645  // The index of this parameter in the parameters list. Must be less
2646  // than HGraph::number_of_in_vregs_.
2647  const uint8_t index_;
2648
2649  // Whether or not the parameter value corresponds to 'this' argument.
2650  const bool is_this_;
2651
2652  DISALLOW_COPY_AND_ASSIGN(HParameterValue);
2653};
2654
2655class HNot : public HUnaryOperation {
2656 public:
2657  explicit HNot(Primitive::Type result_type, HInstruction* input)
2658      : HUnaryOperation(result_type, input) {}
2659
2660  bool CanBeMoved() const OVERRIDE { return true; }
2661  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2662    UNUSED(other);
2663    return true;
2664  }
2665
2666  int32_t Evaluate(int32_t x) const OVERRIDE { return ~x; }
2667  int64_t Evaluate(int64_t x) const OVERRIDE { return ~x; }
2668
2669  DECLARE_INSTRUCTION(Not);
2670
2671 private:
2672  DISALLOW_COPY_AND_ASSIGN(HNot);
2673};
2674
2675class HBooleanNot : public HUnaryOperation {
2676 public:
2677  explicit HBooleanNot(HInstruction* input)
2678      : HUnaryOperation(Primitive::Type::kPrimBoolean, input) {}
2679
2680  bool CanBeMoved() const OVERRIDE { return true; }
2681  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2682    UNUSED(other);
2683    return true;
2684  }
2685
2686  int32_t Evaluate(int32_t x) const OVERRIDE {
2687    DCHECK(IsUint<1>(x));
2688    return !x;
2689  }
2690
2691  int64_t Evaluate(int64_t x ATTRIBUTE_UNUSED) const OVERRIDE {
2692    LOG(FATAL) << DebugName() << " cannot be used with 64-bit values";
2693    UNREACHABLE();
2694  }
2695
2696  DECLARE_INSTRUCTION(BooleanNot);
2697
2698 private:
2699  DISALLOW_COPY_AND_ASSIGN(HBooleanNot);
2700};
2701
2702class HTypeConversion : public HExpression<1> {
2703 public:
2704  // Instantiate a type conversion of `input` to `result_type`.
2705  HTypeConversion(Primitive::Type result_type, HInstruction* input, uint32_t dex_pc)
2706      : HExpression(result_type, SideEffects::None()), dex_pc_(dex_pc) {
2707    SetRawInputAt(0, input);
2708    DCHECK_NE(input->GetType(), result_type);
2709  }
2710
2711  HInstruction* GetInput() const { return InputAt(0); }
2712  Primitive::Type GetInputType() const { return GetInput()->GetType(); }
2713  Primitive::Type GetResultType() const { return GetType(); }
2714
2715  // Required by the x86 and ARM code generators when producing calls
2716  // to the runtime.
2717  uint32_t GetDexPc() const { return dex_pc_; }
2718
2719  bool CanBeMoved() const OVERRIDE { return true; }
2720  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE { return true; }
2721
2722  DECLARE_INSTRUCTION(TypeConversion);
2723
2724 private:
2725  const uint32_t dex_pc_;
2726
2727  DISALLOW_COPY_AND_ASSIGN(HTypeConversion);
2728};
2729
2730static constexpr uint32_t kNoRegNumber = -1;
2731
2732class HPhi : public HInstruction {
2733 public:
2734  HPhi(ArenaAllocator* arena, uint32_t reg_number, size_t number_of_inputs, Primitive::Type type)
2735      : HInstruction(SideEffects::None()),
2736        inputs_(arena, number_of_inputs),
2737        reg_number_(reg_number),
2738        type_(type),
2739        is_live_(false),
2740        can_be_null_(true) {
2741    inputs_.SetSize(number_of_inputs);
2742  }
2743
2744  // Returns a type equivalent to the given `type`, but that a `HPhi` can hold.
2745  static Primitive::Type ToPhiType(Primitive::Type type) {
2746    switch (type) {
2747      case Primitive::kPrimBoolean:
2748      case Primitive::kPrimByte:
2749      case Primitive::kPrimShort:
2750      case Primitive::kPrimChar:
2751        return Primitive::kPrimInt;
2752      default:
2753        return type;
2754    }
2755  }
2756
2757  size_t InputCount() const OVERRIDE { return inputs_.Size(); }
2758
2759  void AddInput(HInstruction* input);
2760  void RemoveInputAt(size_t index);
2761
2762  Primitive::Type GetType() const OVERRIDE { return type_; }
2763  void SetType(Primitive::Type type) { type_ = type; }
2764
2765  bool CanBeNull() const OVERRIDE { return can_be_null_; }
2766  void SetCanBeNull(bool can_be_null) { can_be_null_ = can_be_null; }
2767
2768  uint32_t GetRegNumber() const { return reg_number_; }
2769
2770  void SetDead() { is_live_ = false; }
2771  void SetLive() { is_live_ = true; }
2772  bool IsDead() const { return !is_live_; }
2773  bool IsLive() const { return is_live_; }
2774
2775  // Returns the next equivalent phi (starting from the current one) or null if there is none.
2776  // An equivalent phi is a phi having the same dex register and type.
2777  // It assumes that phis with the same dex register are adjacent.
2778  HPhi* GetNextEquivalentPhiWithSameType() {
2779    HInstruction* next = GetNext();
2780    while (next != nullptr && next->AsPhi()->GetRegNumber() == reg_number_) {
2781      if (next->GetType() == GetType()) {
2782        return next->AsPhi();
2783      }
2784      next = next->GetNext();
2785    }
2786    return nullptr;
2787  }
2788
2789  DECLARE_INSTRUCTION(Phi);
2790
2791 protected:
2792  const HUserRecord<HInstruction*> InputRecordAt(size_t i) const OVERRIDE { return inputs_.Get(i); }
2793
2794  void SetRawInputRecordAt(size_t index, const HUserRecord<HInstruction*>& input) OVERRIDE {
2795    inputs_.Put(index, input);
2796  }
2797
2798 private:
2799  GrowableArray<HUserRecord<HInstruction*> > inputs_;
2800  const uint32_t reg_number_;
2801  Primitive::Type type_;
2802  bool is_live_;
2803  bool can_be_null_;
2804
2805  DISALLOW_COPY_AND_ASSIGN(HPhi);
2806};
2807
2808class HNullCheck : public HExpression<1> {
2809 public:
2810  HNullCheck(HInstruction* value, uint32_t dex_pc)
2811      : HExpression(value->GetType(), SideEffects::None()), dex_pc_(dex_pc) {
2812    SetRawInputAt(0, value);
2813  }
2814
2815  bool CanBeMoved() const OVERRIDE { return true; }
2816  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2817    UNUSED(other);
2818    return true;
2819  }
2820
2821  bool NeedsEnvironment() const OVERRIDE { return true; }
2822
2823  bool CanThrow() const OVERRIDE { return true; }
2824
2825  bool CanBeNull() const OVERRIDE { return false; }
2826
2827  uint32_t GetDexPc() const { return dex_pc_; }
2828
2829  DECLARE_INSTRUCTION(NullCheck);
2830
2831 private:
2832  const uint32_t dex_pc_;
2833
2834  DISALLOW_COPY_AND_ASSIGN(HNullCheck);
2835};
2836
2837class FieldInfo : public ValueObject {
2838 public:
2839  FieldInfo(MemberOffset field_offset, Primitive::Type field_type, bool is_volatile)
2840      : field_offset_(field_offset), field_type_(field_type), is_volatile_(is_volatile) {}
2841
2842  MemberOffset GetFieldOffset() const { return field_offset_; }
2843  Primitive::Type GetFieldType() const { return field_type_; }
2844  bool IsVolatile() const { return is_volatile_; }
2845
2846 private:
2847  const MemberOffset field_offset_;
2848  const Primitive::Type field_type_;
2849  const bool is_volatile_;
2850};
2851
2852class HInstanceFieldGet : public HExpression<1> {
2853 public:
2854  HInstanceFieldGet(HInstruction* value,
2855                    Primitive::Type field_type,
2856                    MemberOffset field_offset,
2857                    bool is_volatile)
2858      : HExpression(field_type, SideEffects::DependsOnSomething()),
2859        field_info_(field_offset, field_type, is_volatile) {
2860    SetRawInputAt(0, value);
2861  }
2862
2863  bool CanBeMoved() const OVERRIDE { return !IsVolatile(); }
2864
2865  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2866    HInstanceFieldGet* other_get = other->AsInstanceFieldGet();
2867    return GetFieldOffset().SizeValue() == other_get->GetFieldOffset().SizeValue();
2868  }
2869
2870  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
2871    return (obj == InputAt(0)) && GetFieldOffset().Uint32Value() < kPageSize;
2872  }
2873
2874  size_t ComputeHashCode() const OVERRIDE {
2875    return (HInstruction::ComputeHashCode() << 7) | GetFieldOffset().SizeValue();
2876  }
2877
2878  const FieldInfo& GetFieldInfo() const { return field_info_; }
2879  MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
2880  Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); }
2881  bool IsVolatile() const { return field_info_.IsVolatile(); }
2882
2883  DECLARE_INSTRUCTION(InstanceFieldGet);
2884
2885 private:
2886  const FieldInfo field_info_;
2887
2888  DISALLOW_COPY_AND_ASSIGN(HInstanceFieldGet);
2889};
2890
2891class HInstanceFieldSet : public HTemplateInstruction<2> {
2892 public:
2893  HInstanceFieldSet(HInstruction* object,
2894                    HInstruction* value,
2895                    Primitive::Type field_type,
2896                    MemberOffset field_offset,
2897                    bool is_volatile)
2898      : HTemplateInstruction(SideEffects::ChangesSomething()),
2899        field_info_(field_offset, field_type, is_volatile) {
2900    SetRawInputAt(0, object);
2901    SetRawInputAt(1, value);
2902  }
2903
2904  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
2905    return (obj == InputAt(0)) && GetFieldOffset().Uint32Value() < kPageSize;
2906  }
2907
2908  const FieldInfo& GetFieldInfo() const { return field_info_; }
2909  MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
2910  Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); }
2911  bool IsVolatile() const { return field_info_.IsVolatile(); }
2912  HInstruction* GetValue() const { return InputAt(1); }
2913
2914  DECLARE_INSTRUCTION(InstanceFieldSet);
2915
2916 private:
2917  const FieldInfo field_info_;
2918
2919  DISALLOW_COPY_AND_ASSIGN(HInstanceFieldSet);
2920};
2921
2922class HArrayGet : public HExpression<2> {
2923 public:
2924  HArrayGet(HInstruction* array, HInstruction* index, Primitive::Type type)
2925      : HExpression(type, SideEffects::DependsOnSomething()) {
2926    SetRawInputAt(0, array);
2927    SetRawInputAt(1, index);
2928  }
2929
2930  bool CanBeMoved() const OVERRIDE { return true; }
2931  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2932    UNUSED(other);
2933    return true;
2934  }
2935  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
2936    UNUSED(obj);
2937    // TODO: We can be smarter here.
2938    // Currently, the array access is always preceded by an ArrayLength or a NullCheck
2939    // which generates the implicit null check. There are cases when these can be removed
2940    // to produce better code. If we ever add optimizations to do so we should allow an
2941    // implicit check here (as long as the address falls in the first page).
2942    return false;
2943  }
2944
2945  void SetType(Primitive::Type type) { type_ = type; }
2946
2947  HInstruction* GetArray() const { return InputAt(0); }
2948  HInstruction* GetIndex() const { return InputAt(1); }
2949
2950  DECLARE_INSTRUCTION(ArrayGet);
2951
2952 private:
2953  DISALLOW_COPY_AND_ASSIGN(HArrayGet);
2954};
2955
2956class HArraySet : public HTemplateInstruction<3> {
2957 public:
2958  HArraySet(HInstruction* array,
2959            HInstruction* index,
2960            HInstruction* value,
2961            Primitive::Type expected_component_type,
2962            uint32_t dex_pc)
2963      : HTemplateInstruction(SideEffects::ChangesSomething()),
2964        dex_pc_(dex_pc),
2965        expected_component_type_(expected_component_type),
2966        needs_type_check_(value->GetType() == Primitive::kPrimNot) {
2967    SetRawInputAt(0, array);
2968    SetRawInputAt(1, index);
2969    SetRawInputAt(2, value);
2970  }
2971
2972  bool NeedsEnvironment() const OVERRIDE {
2973    // We currently always call a runtime method to catch array store
2974    // exceptions.
2975    return needs_type_check_;
2976  }
2977
2978  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
2979    UNUSED(obj);
2980    // TODO: Same as for ArrayGet.
2981    return false;
2982  }
2983
2984  void ClearNeedsTypeCheck() {
2985    needs_type_check_ = false;
2986  }
2987
2988  bool NeedsTypeCheck() const { return needs_type_check_; }
2989
2990  uint32_t GetDexPc() const { return dex_pc_; }
2991
2992  HInstruction* GetArray() const { return InputAt(0); }
2993  HInstruction* GetIndex() const { return InputAt(1); }
2994  HInstruction* GetValue() const { return InputAt(2); }
2995
2996  Primitive::Type GetComponentType() const {
2997    // The Dex format does not type floating point index operations. Since the
2998    // `expected_component_type_` is set during building and can therefore not
2999    // be correct, we also check what is the value type. If it is a floating
3000    // point type, we must use that type.
3001    Primitive::Type value_type = GetValue()->GetType();
3002    return ((value_type == Primitive::kPrimFloat) || (value_type == Primitive::kPrimDouble))
3003        ? value_type
3004        : expected_component_type_;
3005  }
3006
3007  DECLARE_INSTRUCTION(ArraySet);
3008
3009 private:
3010  const uint32_t dex_pc_;
3011  const Primitive::Type expected_component_type_;
3012  bool needs_type_check_;
3013
3014  DISALLOW_COPY_AND_ASSIGN(HArraySet);
3015};
3016
3017class HArrayLength : public HExpression<1> {
3018 public:
3019  explicit HArrayLength(HInstruction* array)
3020      : HExpression(Primitive::kPrimInt, SideEffects::None()) {
3021    // Note that arrays do not change length, so the instruction does not
3022    // depend on any write.
3023    SetRawInputAt(0, array);
3024  }
3025
3026  bool CanBeMoved() const OVERRIDE { return true; }
3027  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
3028    UNUSED(other);
3029    return true;
3030  }
3031  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
3032    return obj == InputAt(0);
3033  }
3034
3035  DECLARE_INSTRUCTION(ArrayLength);
3036
3037 private:
3038  DISALLOW_COPY_AND_ASSIGN(HArrayLength);
3039};
3040
3041class HBoundsCheck : public HExpression<2> {
3042 public:
3043  HBoundsCheck(HInstruction* index, HInstruction* length, uint32_t dex_pc)
3044      : HExpression(index->GetType(), SideEffects::None()), dex_pc_(dex_pc) {
3045    DCHECK(index->GetType() == Primitive::kPrimInt);
3046    SetRawInputAt(0, index);
3047    SetRawInputAt(1, length);
3048  }
3049
3050  bool CanBeMoved() const OVERRIDE { return true; }
3051  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
3052    UNUSED(other);
3053    return true;
3054  }
3055
3056  bool NeedsEnvironment() const OVERRIDE { return true; }
3057
3058  bool CanThrow() const OVERRIDE { return true; }
3059
3060  uint32_t GetDexPc() const { return dex_pc_; }
3061
3062  DECLARE_INSTRUCTION(BoundsCheck);
3063
3064 private:
3065  const uint32_t dex_pc_;
3066
3067  DISALLOW_COPY_AND_ASSIGN(HBoundsCheck);
3068};
3069
3070/**
3071 * Some DEX instructions are folded into multiple HInstructions that need
3072 * to stay live until the last HInstruction. This class
3073 * is used as a marker for the baseline compiler to ensure its preceding
3074 * HInstruction stays live. `index` represents the stack location index of the
3075 * instruction (the actual offset is computed as index * vreg_size).
3076 */
3077class HTemporary : public HTemplateInstruction<0> {
3078 public:
3079  explicit HTemporary(size_t index) : HTemplateInstruction(SideEffects::None()), index_(index) {}
3080
3081  size_t GetIndex() const { return index_; }
3082
3083  Primitive::Type GetType() const OVERRIDE {
3084    // The previous instruction is the one that will be stored in the temporary location.
3085    DCHECK(GetPrevious() != nullptr);
3086    return GetPrevious()->GetType();
3087  }
3088
3089  DECLARE_INSTRUCTION(Temporary);
3090
3091 private:
3092  const size_t index_;
3093
3094  DISALLOW_COPY_AND_ASSIGN(HTemporary);
3095};
3096
3097class HSuspendCheck : public HTemplateInstruction<0> {
3098 public:
3099  explicit HSuspendCheck(uint32_t dex_pc)
3100      : HTemplateInstruction(SideEffects::None()), dex_pc_(dex_pc) {}
3101
3102  bool NeedsEnvironment() const OVERRIDE {
3103    return true;
3104  }
3105
3106  uint32_t GetDexPc() const { return dex_pc_; }
3107
3108  DECLARE_INSTRUCTION(SuspendCheck);
3109
3110 private:
3111  const uint32_t dex_pc_;
3112
3113  DISALLOW_COPY_AND_ASSIGN(HSuspendCheck);
3114};
3115
3116/**
3117 * Instruction to load a Class object.
3118 */
3119class HLoadClass : public HExpression<0> {
3120 public:
3121  HLoadClass(uint16_t type_index,
3122             bool is_referrers_class,
3123             uint32_t dex_pc)
3124      : HExpression(Primitive::kPrimNot, SideEffects::None()),
3125        type_index_(type_index),
3126        is_referrers_class_(is_referrers_class),
3127        dex_pc_(dex_pc),
3128        generate_clinit_check_(false),
3129        loaded_class_rti_(ReferenceTypeInfo::CreateTop(/* is_exact */ false)) {}
3130
3131  bool CanBeMoved() const OVERRIDE { return true; }
3132
3133  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
3134    return other->AsLoadClass()->type_index_ == type_index_;
3135  }
3136
3137  size_t ComputeHashCode() const OVERRIDE { return type_index_; }
3138
3139  uint32_t GetDexPc() const { return dex_pc_; }
3140  uint16_t GetTypeIndex() const { return type_index_; }
3141  bool IsReferrersClass() const { return is_referrers_class_; }
3142
3143  bool NeedsEnvironment() const OVERRIDE {
3144    // Will call runtime and load the class if the class is not loaded yet.
3145    // TODO: finer grain decision.
3146    return !is_referrers_class_;
3147  }
3148
3149  bool MustGenerateClinitCheck() const {
3150    return generate_clinit_check_;
3151  }
3152
3153  void SetMustGenerateClinitCheck() {
3154    generate_clinit_check_ = true;
3155  }
3156
3157  bool CanCallRuntime() const {
3158    return MustGenerateClinitCheck() || !is_referrers_class_;
3159  }
3160
3161  bool CanThrow() const OVERRIDE {
3162    // May call runtime and and therefore can throw.
3163    // TODO: finer grain decision.
3164    return !is_referrers_class_;
3165  }
3166
3167  ReferenceTypeInfo GetLoadedClassRTI() {
3168    return loaded_class_rti_;
3169  }
3170
3171  void SetLoadedClassRTI(ReferenceTypeInfo rti) {
3172    // Make sure we only set exact types (the loaded class should never be merged).
3173    DCHECK(rti.IsExact());
3174    loaded_class_rti_ = rti;
3175  }
3176
3177  bool IsResolved() {
3178    return loaded_class_rti_.IsExact();
3179  }
3180
3181  bool NeedsDexCache() const OVERRIDE { return !is_referrers_class_; }
3182
3183  DECLARE_INSTRUCTION(LoadClass);
3184
3185 private:
3186  const uint16_t type_index_;
3187  const bool is_referrers_class_;
3188  const uint32_t dex_pc_;
3189  // Whether this instruction must generate the initialization check.
3190  // Used for code generation.
3191  bool generate_clinit_check_;
3192
3193  ReferenceTypeInfo loaded_class_rti_;
3194
3195  DISALLOW_COPY_AND_ASSIGN(HLoadClass);
3196};
3197
3198class HLoadString : public HExpression<0> {
3199 public:
3200  HLoadString(uint32_t string_index, uint32_t dex_pc)
3201      : HExpression(Primitive::kPrimNot, SideEffects::None()),
3202        string_index_(string_index),
3203        dex_pc_(dex_pc) {}
3204
3205  bool CanBeMoved() const OVERRIDE { return true; }
3206
3207  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
3208    return other->AsLoadString()->string_index_ == string_index_;
3209  }
3210
3211  size_t ComputeHashCode() const OVERRIDE { return string_index_; }
3212
3213  uint32_t GetDexPc() const { return dex_pc_; }
3214  uint32_t GetStringIndex() const { return string_index_; }
3215
3216  // TODO: Can we deopt or debug when we resolve a string?
3217  bool NeedsEnvironment() const OVERRIDE { return false; }
3218  bool NeedsDexCache() const OVERRIDE { return true; }
3219
3220  DECLARE_INSTRUCTION(LoadString);
3221
3222 private:
3223  const uint32_t string_index_;
3224  const uint32_t dex_pc_;
3225
3226  DISALLOW_COPY_AND_ASSIGN(HLoadString);
3227};
3228
3229// TODO: Pass this check to HInvokeStaticOrDirect nodes.
3230/**
3231 * Performs an initialization check on its Class object input.
3232 */
3233class HClinitCheck : public HExpression<1> {
3234 public:
3235  explicit HClinitCheck(HLoadClass* constant, uint32_t dex_pc)
3236      : HExpression(Primitive::kPrimNot, SideEffects::ChangesSomething()),
3237        dex_pc_(dex_pc) {
3238    SetRawInputAt(0, constant);
3239  }
3240
3241  bool CanBeMoved() const OVERRIDE { return true; }
3242  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
3243    UNUSED(other);
3244    return true;
3245  }
3246
3247  bool NeedsEnvironment() const OVERRIDE {
3248    // May call runtime to initialize the class.
3249    return true;
3250  }
3251
3252  uint32_t GetDexPc() const { return dex_pc_; }
3253
3254  HLoadClass* GetLoadClass() const { return InputAt(0)->AsLoadClass(); }
3255
3256  DECLARE_INSTRUCTION(ClinitCheck);
3257
3258 private:
3259  const uint32_t dex_pc_;
3260
3261  DISALLOW_COPY_AND_ASSIGN(HClinitCheck);
3262};
3263
3264class HStaticFieldGet : public HExpression<1> {
3265 public:
3266  HStaticFieldGet(HInstruction* cls,
3267                  Primitive::Type field_type,
3268                  MemberOffset field_offset,
3269                  bool is_volatile)
3270      : HExpression(field_type, SideEffects::DependsOnSomething()),
3271        field_info_(field_offset, field_type, is_volatile) {
3272    SetRawInputAt(0, cls);
3273  }
3274
3275
3276  bool CanBeMoved() const OVERRIDE { return !IsVolatile(); }
3277
3278  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
3279    HStaticFieldGet* other_get = other->AsStaticFieldGet();
3280    return GetFieldOffset().SizeValue() == other_get->GetFieldOffset().SizeValue();
3281  }
3282
3283  size_t ComputeHashCode() const OVERRIDE {
3284    return (HInstruction::ComputeHashCode() << 7) | GetFieldOffset().SizeValue();
3285  }
3286
3287  const FieldInfo& GetFieldInfo() const { return field_info_; }
3288  MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
3289  Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); }
3290  bool IsVolatile() const { return field_info_.IsVolatile(); }
3291
3292  DECLARE_INSTRUCTION(StaticFieldGet);
3293
3294 private:
3295  const FieldInfo field_info_;
3296
3297  DISALLOW_COPY_AND_ASSIGN(HStaticFieldGet);
3298};
3299
3300class HStaticFieldSet : public HTemplateInstruction<2> {
3301 public:
3302  HStaticFieldSet(HInstruction* cls,
3303                  HInstruction* value,
3304                  Primitive::Type field_type,
3305                  MemberOffset field_offset,
3306                  bool is_volatile)
3307      : HTemplateInstruction(SideEffects::ChangesSomething()),
3308        field_info_(field_offset, field_type, is_volatile) {
3309    SetRawInputAt(0, cls);
3310    SetRawInputAt(1, value);
3311  }
3312
3313  const FieldInfo& GetFieldInfo() const { return field_info_; }
3314  MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
3315  Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); }
3316  bool IsVolatile() const { return field_info_.IsVolatile(); }
3317
3318  HInstruction* GetValue() const { return InputAt(1); }
3319
3320  DECLARE_INSTRUCTION(StaticFieldSet);
3321
3322 private:
3323  const FieldInfo field_info_;
3324
3325  DISALLOW_COPY_AND_ASSIGN(HStaticFieldSet);
3326};
3327
3328// Implement the move-exception DEX instruction.
3329class HLoadException : public HExpression<0> {
3330 public:
3331  HLoadException() : HExpression(Primitive::kPrimNot, SideEffects::None()) {}
3332
3333  DECLARE_INSTRUCTION(LoadException);
3334
3335 private:
3336  DISALLOW_COPY_AND_ASSIGN(HLoadException);
3337};
3338
3339class HThrow : public HTemplateInstruction<1> {
3340 public:
3341  HThrow(HInstruction* exception, uint32_t dex_pc)
3342      : HTemplateInstruction(SideEffects::None()), dex_pc_(dex_pc) {
3343    SetRawInputAt(0, exception);
3344  }
3345
3346  bool IsControlFlow() const OVERRIDE { return true; }
3347
3348  bool NeedsEnvironment() const OVERRIDE { return true; }
3349
3350  bool CanThrow() const OVERRIDE { return true; }
3351
3352  uint32_t GetDexPc() const { return dex_pc_; }
3353
3354  DECLARE_INSTRUCTION(Throw);
3355
3356 private:
3357  const uint32_t dex_pc_;
3358
3359  DISALLOW_COPY_AND_ASSIGN(HThrow);
3360};
3361
3362class HInstanceOf : public HExpression<2> {
3363 public:
3364  HInstanceOf(HInstruction* object,
3365              HLoadClass* constant,
3366              bool class_is_final,
3367              uint32_t dex_pc)
3368      : HExpression(Primitive::kPrimBoolean, SideEffects::None()),
3369        class_is_final_(class_is_final),
3370        must_do_null_check_(true),
3371        dex_pc_(dex_pc) {
3372    SetRawInputAt(0, object);
3373    SetRawInputAt(1, constant);
3374  }
3375
3376  bool CanBeMoved() const OVERRIDE { return true; }
3377
3378  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
3379    return true;
3380  }
3381
3382  bool NeedsEnvironment() const OVERRIDE {
3383    return false;
3384  }
3385
3386  uint32_t GetDexPc() const { return dex_pc_; }
3387
3388  bool IsClassFinal() const { return class_is_final_; }
3389
3390  // Used only in code generation.
3391  bool MustDoNullCheck() const { return must_do_null_check_; }
3392  void ClearMustDoNullCheck() { must_do_null_check_ = false; }
3393
3394  DECLARE_INSTRUCTION(InstanceOf);
3395
3396 private:
3397  const bool class_is_final_;
3398  bool must_do_null_check_;
3399  const uint32_t dex_pc_;
3400
3401  DISALLOW_COPY_AND_ASSIGN(HInstanceOf);
3402};
3403
3404class HBoundType : public HExpression<1> {
3405 public:
3406  HBoundType(HInstruction* input, ReferenceTypeInfo bound_type)
3407      : HExpression(Primitive::kPrimNot, SideEffects::None()),
3408        bound_type_(bound_type) {
3409    DCHECK_EQ(input->GetType(), Primitive::kPrimNot);
3410    SetRawInputAt(0, input);
3411  }
3412
3413  const ReferenceTypeInfo& GetBoundType() const { return bound_type_; }
3414
3415  bool CanBeNull() const OVERRIDE {
3416    // `null instanceof ClassX` always return false so we can't be null.
3417    return false;
3418  }
3419
3420  DECLARE_INSTRUCTION(BoundType);
3421
3422 private:
3423  // Encodes the most upper class that this instruction can have. In other words
3424  // it is always the case that GetBoundType().IsSupertypeOf(GetReferenceType()).
3425  // It is used to bound the type in cases like `if (x instanceof ClassX) {}`
3426  const ReferenceTypeInfo bound_type_;
3427
3428  DISALLOW_COPY_AND_ASSIGN(HBoundType);
3429};
3430
3431class HCheckCast : public HTemplateInstruction<2> {
3432 public:
3433  HCheckCast(HInstruction* object,
3434             HLoadClass* constant,
3435             bool class_is_final,
3436             uint32_t dex_pc)
3437      : HTemplateInstruction(SideEffects::None()),
3438        class_is_final_(class_is_final),
3439        must_do_null_check_(true),
3440        dex_pc_(dex_pc) {
3441    SetRawInputAt(0, object);
3442    SetRawInputAt(1, constant);
3443  }
3444
3445  bool CanBeMoved() const OVERRIDE { return true; }
3446
3447  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
3448    return true;
3449  }
3450
3451  bool NeedsEnvironment() const OVERRIDE {
3452    // Instruction may throw a CheckCastError.
3453    return true;
3454  }
3455
3456  bool CanThrow() const OVERRIDE { return true; }
3457
3458  bool MustDoNullCheck() const { return must_do_null_check_; }
3459  void ClearMustDoNullCheck() { must_do_null_check_ = false; }
3460
3461  uint32_t GetDexPc() const { return dex_pc_; }
3462
3463  bool IsClassFinal() const { return class_is_final_; }
3464
3465  DECLARE_INSTRUCTION(CheckCast);
3466
3467 private:
3468  const bool class_is_final_;
3469  bool must_do_null_check_;
3470  const uint32_t dex_pc_;
3471
3472  DISALLOW_COPY_AND_ASSIGN(HCheckCast);
3473};
3474
3475class HMemoryBarrier : public HTemplateInstruction<0> {
3476 public:
3477  explicit HMemoryBarrier(MemBarrierKind barrier_kind)
3478      : HTemplateInstruction(SideEffects::None()),
3479        barrier_kind_(barrier_kind) {}
3480
3481  MemBarrierKind GetBarrierKind() { return barrier_kind_; }
3482
3483  DECLARE_INSTRUCTION(MemoryBarrier);
3484
3485 private:
3486  const MemBarrierKind barrier_kind_;
3487
3488  DISALLOW_COPY_AND_ASSIGN(HMemoryBarrier);
3489};
3490
3491class HMonitorOperation : public HTemplateInstruction<1> {
3492 public:
3493  enum OperationKind {
3494    kEnter,
3495    kExit,
3496  };
3497
3498  HMonitorOperation(HInstruction* object, OperationKind kind, uint32_t dex_pc)
3499    : HTemplateInstruction(SideEffects::None()), kind_(kind), dex_pc_(dex_pc) {
3500    SetRawInputAt(0, object);
3501  }
3502
3503  // Instruction may throw a Java exception, so we need an environment.
3504  bool NeedsEnvironment() const OVERRIDE { return true; }
3505  bool CanThrow() const OVERRIDE { return true; }
3506
3507  uint32_t GetDexPc() const { return dex_pc_; }
3508
3509  bool IsEnter() const { return kind_ == kEnter; }
3510
3511  DECLARE_INSTRUCTION(MonitorOperation);
3512
3513 private:
3514  const OperationKind kind_;
3515  const uint32_t dex_pc_;
3516
3517 private:
3518  DISALLOW_COPY_AND_ASSIGN(HMonitorOperation);
3519};
3520
3521class MoveOperands : public ArenaObject<kArenaAllocMisc> {
3522 public:
3523  MoveOperands(Location source,
3524               Location destination,
3525               Primitive::Type type,
3526               HInstruction* instruction)
3527      : source_(source), destination_(destination), type_(type), instruction_(instruction) {}
3528
3529  Location GetSource() const { return source_; }
3530  Location GetDestination() const { return destination_; }
3531
3532  void SetSource(Location value) { source_ = value; }
3533  void SetDestination(Location value) { destination_ = value; }
3534
3535  // The parallel move resolver marks moves as "in-progress" by clearing the
3536  // destination (but not the source).
3537  Location MarkPending() {
3538    DCHECK(!IsPending());
3539    Location dest = destination_;
3540    destination_ = Location::NoLocation();
3541    return dest;
3542  }
3543
3544  void ClearPending(Location dest) {
3545    DCHECK(IsPending());
3546    destination_ = dest;
3547  }
3548
3549  bool IsPending() const {
3550    DCHECK(!source_.IsInvalid() || destination_.IsInvalid());
3551    return destination_.IsInvalid() && !source_.IsInvalid();
3552  }
3553
3554  // True if this blocks a move from the given location.
3555  bool Blocks(Location loc) const {
3556    return !IsEliminated() && source_.OverlapsWith(loc);
3557  }
3558
3559  // A move is redundant if it's been eliminated, if its source and
3560  // destination are the same, or if its destination is unneeded.
3561  bool IsRedundant() const {
3562    return IsEliminated() || destination_.IsInvalid() || source_.Equals(destination_);
3563  }
3564
3565  // We clear both operands to indicate move that's been eliminated.
3566  void Eliminate() {
3567    source_ = destination_ = Location::NoLocation();
3568  }
3569
3570  bool IsEliminated() const {
3571    DCHECK(!source_.IsInvalid() || destination_.IsInvalid());
3572    return source_.IsInvalid();
3573  }
3574
3575  bool Is64BitMove() const {
3576    return Primitive::Is64BitType(type_);
3577  }
3578
3579  HInstruction* GetInstruction() const { return instruction_; }
3580
3581 private:
3582  Location source_;
3583  Location destination_;
3584  // The type this move is for.
3585  Primitive::Type type_;
3586  // The instruction this move is assocatied with. Null when this move is
3587  // for moving an input in the expected locations of user (including a phi user).
3588  // This is only used in debug mode, to ensure we do not connect interval siblings
3589  // in the same parallel move.
3590  HInstruction* instruction_;
3591};
3592
3593static constexpr size_t kDefaultNumberOfMoves = 4;
3594
3595class HParallelMove : public HTemplateInstruction<0> {
3596 public:
3597  explicit HParallelMove(ArenaAllocator* arena)
3598      : HTemplateInstruction(SideEffects::None()), moves_(arena, kDefaultNumberOfMoves) {}
3599
3600  void AddMove(Location source,
3601               Location destination,
3602               Primitive::Type type,
3603               HInstruction* instruction) {
3604    DCHECK(source.IsValid());
3605    DCHECK(destination.IsValid());
3606    if (kIsDebugBuild) {
3607      if (instruction != nullptr) {
3608        for (size_t i = 0, e = moves_.Size(); i < e; ++i) {
3609          if (moves_.Get(i).GetInstruction() == instruction) {
3610            // Special case the situation where the move is for the spill slot
3611            // of the instruction.
3612            if ((GetPrevious() == instruction)
3613                || ((GetPrevious() == nullptr)
3614                    && instruction->IsPhi()
3615                    && instruction->GetBlock() == GetBlock())) {
3616              DCHECK_NE(destination.GetKind(), moves_.Get(i).GetDestination().GetKind())
3617                  << "Doing parallel moves for the same instruction.";
3618            } else {
3619              DCHECK(false) << "Doing parallel moves for the same instruction.";
3620            }
3621          }
3622        }
3623      }
3624      for (size_t i = 0, e = moves_.Size(); i < e; ++i) {
3625        DCHECK(!destination.OverlapsWith(moves_.Get(i).GetDestination()))
3626            << "Overlapped destination for two moves in a parallel move.";
3627      }
3628    }
3629    moves_.Add(MoveOperands(source, destination, type, instruction));
3630  }
3631
3632  MoveOperands* MoveOperandsAt(size_t index) const {
3633    return moves_.GetRawStorage() + index;
3634  }
3635
3636  size_t NumMoves() const { return moves_.Size(); }
3637
3638  DECLARE_INSTRUCTION(ParallelMove);
3639
3640 private:
3641  GrowableArray<MoveOperands> moves_;
3642
3643  DISALLOW_COPY_AND_ASSIGN(HParallelMove);
3644};
3645
3646class HGraphVisitor : public ValueObject {
3647 public:
3648  explicit HGraphVisitor(HGraph* graph) : graph_(graph) {}
3649  virtual ~HGraphVisitor() {}
3650
3651  virtual void VisitInstruction(HInstruction* instruction) { UNUSED(instruction); }
3652  virtual void VisitBasicBlock(HBasicBlock* block);
3653
3654  // Visit the graph following basic block insertion order.
3655  void VisitInsertionOrder();
3656
3657  // Visit the graph following dominator tree reverse post-order.
3658  void VisitReversePostOrder();
3659
3660  HGraph* GetGraph() const { return graph_; }
3661
3662  // Visit functions for instruction classes.
3663#define DECLARE_VISIT_INSTRUCTION(name, super)                                        \
3664  virtual void Visit##name(H##name* instr) { VisitInstruction(instr); }
3665
3666  FOR_EACH_INSTRUCTION(DECLARE_VISIT_INSTRUCTION)
3667
3668#undef DECLARE_VISIT_INSTRUCTION
3669
3670 private:
3671  HGraph* const graph_;
3672
3673  DISALLOW_COPY_AND_ASSIGN(HGraphVisitor);
3674};
3675
3676class HGraphDelegateVisitor : public HGraphVisitor {
3677 public:
3678  explicit HGraphDelegateVisitor(HGraph* graph) : HGraphVisitor(graph) {}
3679  virtual ~HGraphDelegateVisitor() {}
3680
3681  // Visit functions that delegate to to super class.
3682#define DECLARE_VISIT_INSTRUCTION(name, super)                                        \
3683  void Visit##name(H##name* instr) OVERRIDE { Visit##super(instr); }
3684
3685  FOR_EACH_INSTRUCTION(DECLARE_VISIT_INSTRUCTION)
3686
3687#undef DECLARE_VISIT_INSTRUCTION
3688
3689 private:
3690  DISALLOW_COPY_AND_ASSIGN(HGraphDelegateVisitor);
3691};
3692
3693class HInsertionOrderIterator : public ValueObject {
3694 public:
3695  explicit HInsertionOrderIterator(const HGraph& graph) : graph_(graph), index_(0) {}
3696
3697  bool Done() const { return index_ == graph_.GetBlocks().Size(); }
3698  HBasicBlock* Current() const { return graph_.GetBlocks().Get(index_); }
3699  void Advance() { ++index_; }
3700
3701 private:
3702  const HGraph& graph_;
3703  size_t index_;
3704
3705  DISALLOW_COPY_AND_ASSIGN(HInsertionOrderIterator);
3706};
3707
3708class HReversePostOrderIterator : public ValueObject {
3709 public:
3710  explicit HReversePostOrderIterator(const HGraph& graph) : graph_(graph), index_(0) {
3711    // Check that reverse post order of the graph has been built.
3712    DCHECK(!graph.GetReversePostOrder().IsEmpty());
3713  }
3714
3715  bool Done() const { return index_ == graph_.GetReversePostOrder().Size(); }
3716  HBasicBlock* Current() const { return graph_.GetReversePostOrder().Get(index_); }
3717  void Advance() { ++index_; }
3718
3719 private:
3720  const HGraph& graph_;
3721  size_t index_;
3722
3723  DISALLOW_COPY_AND_ASSIGN(HReversePostOrderIterator);
3724};
3725
3726class HPostOrderIterator : public ValueObject {
3727 public:
3728  explicit HPostOrderIterator(const HGraph& graph)
3729      : graph_(graph), index_(graph_.GetReversePostOrder().Size()) {
3730    // Check that reverse post order of the graph has been built.
3731    DCHECK(!graph.GetReversePostOrder().IsEmpty());
3732  }
3733
3734  bool Done() const { return index_ == 0; }
3735  HBasicBlock* Current() const { return graph_.GetReversePostOrder().Get(index_ - 1); }
3736  void Advance() { --index_; }
3737
3738 private:
3739  const HGraph& graph_;
3740  size_t index_;
3741
3742  DISALLOW_COPY_AND_ASSIGN(HPostOrderIterator);
3743};
3744
3745class HLinearPostOrderIterator : public ValueObject {
3746 public:
3747  explicit HLinearPostOrderIterator(const HGraph& graph)
3748      : order_(graph.GetLinearOrder()), index_(graph.GetLinearOrder().Size()) {}
3749
3750  bool Done() const { return index_ == 0; }
3751
3752  HBasicBlock* Current() const { return order_.Get(index_ -1); }
3753
3754  void Advance() {
3755    --index_;
3756    DCHECK_GE(index_, 0U);
3757  }
3758
3759 private:
3760  const GrowableArray<HBasicBlock*>& order_;
3761  size_t index_;
3762
3763  DISALLOW_COPY_AND_ASSIGN(HLinearPostOrderIterator);
3764};
3765
3766class HLinearOrderIterator : public ValueObject {
3767 public:
3768  explicit HLinearOrderIterator(const HGraph& graph)
3769      : order_(graph.GetLinearOrder()), index_(0) {}
3770
3771  bool Done() const { return index_ == order_.Size(); }
3772  HBasicBlock* Current() const { return order_.Get(index_); }
3773  void Advance() { ++index_; }
3774
3775 private:
3776  const GrowableArray<HBasicBlock*>& order_;
3777  size_t index_;
3778
3779  DISALLOW_COPY_AND_ASSIGN(HLinearOrderIterator);
3780};
3781
3782// Iterator over the blocks that art part of the loop. Includes blocks part
3783// of an inner loop. The order in which the blocks are iterated is on their
3784// block id.
3785class HBlocksInLoopIterator : public ValueObject {
3786 public:
3787  explicit HBlocksInLoopIterator(const HLoopInformation& info)
3788      : blocks_in_loop_(info.GetBlocks()),
3789        blocks_(info.GetHeader()->GetGraph()->GetBlocks()),
3790        index_(0) {
3791    if (!blocks_in_loop_.IsBitSet(index_)) {
3792      Advance();
3793    }
3794  }
3795
3796  bool Done() const { return index_ == blocks_.Size(); }
3797  HBasicBlock* Current() const { return blocks_.Get(index_); }
3798  void Advance() {
3799    ++index_;
3800    for (size_t e = blocks_.Size(); index_ < e; ++index_) {
3801      if (blocks_in_loop_.IsBitSet(index_)) {
3802        break;
3803      }
3804    }
3805  }
3806
3807 private:
3808  const BitVector& blocks_in_loop_;
3809  const GrowableArray<HBasicBlock*>& blocks_;
3810  size_t index_;
3811
3812  DISALLOW_COPY_AND_ASSIGN(HBlocksInLoopIterator);
3813};
3814
3815inline int64_t Int64FromConstant(HConstant* constant) {
3816  DCHECK(constant->IsIntConstant() || constant->IsLongConstant());
3817  return constant->IsIntConstant() ? constant->AsIntConstant()->GetValue()
3818                                   : constant->AsLongConstant()->GetValue();
3819}
3820
3821}  // namespace art
3822
3823#endif  // ART_COMPILER_OPTIMIZING_NODES_H_
3824