nodes.h revision 391d01f3e8dedf3af3727bdf5d5b76ab35d52795
1/*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#ifndef ART_COMPILER_OPTIMIZING_NODES_H_
18#define ART_COMPILER_OPTIMIZING_NODES_H_
19
20#include <algorithm>
21#include <array>
22#include <type_traits>
23
24#include "base/arena_bit_vector.h"
25#include "base/arena_containers.h"
26#include "base/arena_object.h"
27#include "base/stl_util.h"
28#include "dex/compiler_enums.h"
29#include "entrypoints/quick/quick_entrypoints_enum.h"
30#include "handle.h"
31#include "handle_scope.h"
32#include "invoke_type.h"
33#include "locations.h"
34#include "method_reference.h"
35#include "mirror/class.h"
36#include "offsets.h"
37#include "primitive.h"
38
39namespace art {
40
41class GraphChecker;
42class HBasicBlock;
43class HCurrentMethod;
44class HDoubleConstant;
45class HEnvironment;
46class HFakeString;
47class HFloatConstant;
48class HGraphBuilder;
49class HGraphVisitor;
50class HInstruction;
51class HIntConstant;
52class HInvoke;
53class HLongConstant;
54class HNullConstant;
55class HPhi;
56class HSuspendCheck;
57class HTryBoundary;
58class LiveInterval;
59class LocationSummary;
60class SlowPathCode;
61class SsaBuilder;
62
63namespace mirror {
64class DexCache;
65}  // namespace mirror
66
67static const int kDefaultNumberOfBlocks = 8;
68static const int kDefaultNumberOfSuccessors = 2;
69static const int kDefaultNumberOfPredecessors = 2;
70static const int kDefaultNumberOfExceptionalPredecessors = 0;
71static const int kDefaultNumberOfDominatedBlocks = 1;
72static const int kDefaultNumberOfBackEdges = 1;
73
74static constexpr uint32_t kMaxIntShiftValue = 0x1f;
75static constexpr uint64_t kMaxLongShiftValue = 0x3f;
76
77static constexpr uint32_t kUnknownFieldIndex = static_cast<uint32_t>(-1);
78static constexpr uint16_t kUnknownClassDefIndex = static_cast<uint16_t>(-1);
79
80static constexpr InvokeType kInvalidInvokeType = static_cast<InvokeType>(-1);
81
82static constexpr uint32_t kNoDexPc = -1;
83
84enum IfCondition {
85  // All types.
86  kCondEQ,  // ==
87  kCondNE,  // !=
88  // Signed integers and floating-point numbers.
89  kCondLT,  // <
90  kCondLE,  // <=
91  kCondGT,  // >
92  kCondGE,  // >=
93  // Unsigned integers.
94  kCondB,   // <
95  kCondBE,  // <=
96  kCondA,   // >
97  kCondAE,  // >=
98};
99
100class HInstructionList : public ValueObject {
101 public:
102  HInstructionList() : first_instruction_(nullptr), last_instruction_(nullptr) {}
103
104  void AddInstruction(HInstruction* instruction);
105  void RemoveInstruction(HInstruction* instruction);
106
107  // Insert `instruction` before/after an existing instruction `cursor`.
108  void InsertInstructionBefore(HInstruction* instruction, HInstruction* cursor);
109  void InsertInstructionAfter(HInstruction* instruction, HInstruction* cursor);
110
111  // Return true if this list contains `instruction`.
112  bool Contains(HInstruction* instruction) const;
113
114  // Return true if `instruction1` is found before `instruction2` in
115  // this instruction list and false otherwise.  Abort if none
116  // of these instructions is found.
117  bool FoundBefore(const HInstruction* instruction1,
118                   const HInstruction* instruction2) const;
119
120  bool IsEmpty() const { return first_instruction_ == nullptr; }
121  void Clear() { first_instruction_ = last_instruction_ = nullptr; }
122
123  // Update the block of all instructions to be `block`.
124  void SetBlockOfInstructions(HBasicBlock* block) const;
125
126  void AddAfter(HInstruction* cursor, const HInstructionList& instruction_list);
127  void Add(const HInstructionList& instruction_list);
128
129  // Return the number of instructions in the list. This is an expensive operation.
130  size_t CountSize() const;
131
132 private:
133  HInstruction* first_instruction_;
134  HInstruction* last_instruction_;
135
136  friend class HBasicBlock;
137  friend class HGraph;
138  friend class HInstruction;
139  friend class HInstructionIterator;
140  friend class HBackwardInstructionIterator;
141
142  DISALLOW_COPY_AND_ASSIGN(HInstructionList);
143};
144
145// Control-flow graph of a method. Contains a list of basic blocks.
146class HGraph : public ArenaObject<kArenaAllocGraph> {
147 public:
148  HGraph(ArenaAllocator* arena,
149         const DexFile& dex_file,
150         uint32_t method_idx,
151         bool should_generate_constructor_barrier,
152         InstructionSet instruction_set,
153         InvokeType invoke_type = kInvalidInvokeType,
154         bool debuggable = false,
155         int start_instruction_id = 0)
156      : arena_(arena),
157        blocks_(arena->Adapter(kArenaAllocBlockList)),
158        reverse_post_order_(arena->Adapter(kArenaAllocReversePostOrder)),
159        linear_order_(arena->Adapter(kArenaAllocLinearOrder)),
160        entry_block_(nullptr),
161        exit_block_(nullptr),
162        maximum_number_of_out_vregs_(0),
163        number_of_vregs_(0),
164        number_of_in_vregs_(0),
165        temporaries_vreg_slots_(0),
166        has_bounds_checks_(false),
167        has_try_catch_(false),
168        debuggable_(debuggable),
169        current_instruction_id_(start_instruction_id),
170        dex_file_(dex_file),
171        method_idx_(method_idx),
172        invoke_type_(invoke_type),
173        in_ssa_form_(false),
174        should_generate_constructor_barrier_(should_generate_constructor_barrier),
175        instruction_set_(instruction_set),
176        cached_null_constant_(nullptr),
177        cached_int_constants_(std::less<int32_t>(), arena->Adapter(kArenaAllocConstantsMap)),
178        cached_float_constants_(std::less<int32_t>(), arena->Adapter(kArenaAllocConstantsMap)),
179        cached_long_constants_(std::less<int64_t>(), arena->Adapter(kArenaAllocConstantsMap)),
180        cached_double_constants_(std::less<int64_t>(), arena->Adapter(kArenaAllocConstantsMap)),
181        cached_current_method_(nullptr) {
182    blocks_.reserve(kDefaultNumberOfBlocks);
183  }
184
185  ArenaAllocator* GetArena() const { return arena_; }
186  const ArenaVector<HBasicBlock*>& GetBlocks() const { return blocks_; }
187
188  bool IsInSsaForm() const { return in_ssa_form_; }
189
190  HBasicBlock* GetEntryBlock() const { return entry_block_; }
191  HBasicBlock* GetExitBlock() const { return exit_block_; }
192  bool HasExitBlock() const { return exit_block_ != nullptr; }
193
194  void SetEntryBlock(HBasicBlock* block) { entry_block_ = block; }
195  void SetExitBlock(HBasicBlock* block) { exit_block_ = block; }
196
197  void AddBlock(HBasicBlock* block);
198
199  // Try building the SSA form of this graph, with dominance computation and loop
200  // recognition. Returns whether it was successful in doing all these steps.
201  bool TryBuildingSsa() {
202    BuildDominatorTree();
203    // The SSA builder requires loops to all be natural. Specifically, the dead phi
204    // elimination phase checks the consistency of the graph when doing a post-order
205    // visit for eliminating dead phis: a dead phi can only have loop header phi
206    // users remaining when being visited.
207    if (!AnalyzeNaturalLoops()) return false;
208    // Precompute per-block try membership before entering the SSA builder,
209    // which needs the information to build catch block phis from values of
210    // locals at throwing instructions inside try blocks.
211    ComputeTryBlockInformation();
212    TransformToSsa();
213    in_ssa_form_ = true;
214    return true;
215  }
216
217  void ComputeDominanceInformation();
218  void ClearDominanceInformation();
219
220  void BuildDominatorTree();
221  void TransformToSsa();
222  void SimplifyCFG();
223  void SimplifyCatchBlocks();
224
225  // Analyze all natural loops in this graph. Returns false if one
226  // loop is not natural, that is the header does not dominate the
227  // back edge.
228  bool AnalyzeNaturalLoops() const;
229
230  // Iterate over blocks to compute try block membership. Needs reverse post
231  // order and loop information.
232  void ComputeTryBlockInformation();
233
234  // Inline this graph in `outer_graph`, replacing the given `invoke` instruction.
235  // Returns the instruction used to replace the invoke expression or null if the
236  // invoke is for a void method.
237  HInstruction* InlineInto(HGraph* outer_graph, HInvoke* invoke);
238
239  // Need to add a couple of blocks to test if the loop body is entered and
240  // put deoptimization instructions, etc.
241  void TransformLoopHeaderForBCE(HBasicBlock* header);
242
243  // Removes `block` from the graph.
244  void DeleteDeadBlock(HBasicBlock* block);
245
246  // Splits the edge between `block` and `successor` while preserving the
247  // indices in the predecessor/successor lists. If there are multiple edges
248  // between the blocks, the lowest indices are used.
249  // Returns the new block which is empty and has the same dex pc as `successor`.
250  HBasicBlock* SplitEdge(HBasicBlock* block, HBasicBlock* successor);
251
252  void SplitCriticalEdge(HBasicBlock* block, HBasicBlock* successor);
253  void SimplifyLoop(HBasicBlock* header);
254
255  int32_t GetNextInstructionId() {
256    DCHECK_NE(current_instruction_id_, INT32_MAX);
257    return current_instruction_id_++;
258  }
259
260  int32_t GetCurrentInstructionId() const {
261    return current_instruction_id_;
262  }
263
264  void SetCurrentInstructionId(int32_t id) {
265    current_instruction_id_ = id;
266  }
267
268  uint16_t GetMaximumNumberOfOutVRegs() const {
269    return maximum_number_of_out_vregs_;
270  }
271
272  void SetMaximumNumberOfOutVRegs(uint16_t new_value) {
273    maximum_number_of_out_vregs_ = new_value;
274  }
275
276  void UpdateMaximumNumberOfOutVRegs(uint16_t other_value) {
277    maximum_number_of_out_vregs_ = std::max(maximum_number_of_out_vregs_, other_value);
278  }
279
280  void UpdateTemporariesVRegSlots(size_t slots) {
281    temporaries_vreg_slots_ = std::max(slots, temporaries_vreg_slots_);
282  }
283
284  size_t GetTemporariesVRegSlots() const {
285    DCHECK(!in_ssa_form_);
286    return temporaries_vreg_slots_;
287  }
288
289  void SetNumberOfVRegs(uint16_t number_of_vregs) {
290    number_of_vregs_ = number_of_vregs;
291  }
292
293  uint16_t GetNumberOfVRegs() const {
294    return number_of_vregs_;
295  }
296
297  void SetNumberOfInVRegs(uint16_t value) {
298    number_of_in_vregs_ = value;
299  }
300
301  uint16_t GetNumberOfLocalVRegs() const {
302    DCHECK(!in_ssa_form_);
303    return number_of_vregs_ - number_of_in_vregs_;
304  }
305
306  const ArenaVector<HBasicBlock*>& GetReversePostOrder() const {
307    return reverse_post_order_;
308  }
309
310  const ArenaVector<HBasicBlock*>& GetLinearOrder() const {
311    return linear_order_;
312  }
313
314  bool HasBoundsChecks() const {
315    return has_bounds_checks_;
316  }
317
318  void SetHasBoundsChecks(bool value) {
319    has_bounds_checks_ = value;
320  }
321
322  bool ShouldGenerateConstructorBarrier() const {
323    return should_generate_constructor_barrier_;
324  }
325
326  bool IsDebuggable() const { return debuggable_; }
327
328  // Returns a constant of the given type and value. If it does not exist
329  // already, it is created and inserted into the graph. This method is only for
330  // integral types.
331  HConstant* GetConstant(Primitive::Type type, int64_t value, uint32_t dex_pc = kNoDexPc);
332
333  // TODO: This is problematic for the consistency of reference type propagation
334  // because it can be created anytime after the pass and thus it will be left
335  // with an invalid type.
336  HNullConstant* GetNullConstant(uint32_t dex_pc = kNoDexPc);
337
338  HIntConstant* GetIntConstant(int32_t value, uint32_t dex_pc = kNoDexPc) {
339    return CreateConstant(value, &cached_int_constants_, dex_pc);
340  }
341  HLongConstant* GetLongConstant(int64_t value, uint32_t dex_pc = kNoDexPc) {
342    return CreateConstant(value, &cached_long_constants_, dex_pc);
343  }
344  HFloatConstant* GetFloatConstant(float value, uint32_t dex_pc = kNoDexPc) {
345    return CreateConstant(bit_cast<int32_t, float>(value), &cached_float_constants_, dex_pc);
346  }
347  HDoubleConstant* GetDoubleConstant(double value, uint32_t dex_pc = kNoDexPc) {
348    return CreateConstant(bit_cast<int64_t, double>(value), &cached_double_constants_, dex_pc);
349  }
350
351  HCurrentMethod* GetCurrentMethod();
352
353  const DexFile& GetDexFile() const {
354    return dex_file_;
355  }
356
357  uint32_t GetMethodIdx() const {
358    return method_idx_;
359  }
360
361  InvokeType GetInvokeType() const {
362    return invoke_type_;
363  }
364
365  InstructionSet GetInstructionSet() const {
366    return instruction_set_;
367  }
368
369  bool HasTryCatch() const { return has_try_catch_; }
370  void SetHasTryCatch(bool value) { has_try_catch_ = value; }
371
372 private:
373  void FindBackEdges(ArenaBitVector* visited);
374  void RemoveInstructionsAsUsersFromDeadBlocks(const ArenaBitVector& visited) const;
375  void RemoveDeadBlocks(const ArenaBitVector& visited);
376
377  template <class InstructionType, typename ValueType>
378  InstructionType* CreateConstant(ValueType value,
379                                  ArenaSafeMap<ValueType, InstructionType*>* cache,
380                                  uint32_t dex_pc = kNoDexPc) {
381    // Try to find an existing constant of the given value.
382    InstructionType* constant = nullptr;
383    auto cached_constant = cache->find(value);
384    if (cached_constant != cache->end()) {
385      constant = cached_constant->second;
386    }
387
388    // If not found or previously deleted, create and cache a new instruction.
389    // Don't bother reviving a previously deleted instruction, for simplicity.
390    if (constant == nullptr || constant->GetBlock() == nullptr) {
391      constant = new (arena_) InstructionType(value, dex_pc);
392      cache->Overwrite(value, constant);
393      InsertConstant(constant);
394    }
395    return constant;
396  }
397
398  void InsertConstant(HConstant* instruction);
399
400  // Cache a float constant into the graph. This method should only be
401  // called by the SsaBuilder when creating "equivalent" instructions.
402  void CacheFloatConstant(HFloatConstant* constant);
403
404  // See CacheFloatConstant comment.
405  void CacheDoubleConstant(HDoubleConstant* constant);
406
407  ArenaAllocator* const arena_;
408
409  // List of blocks in insertion order.
410  ArenaVector<HBasicBlock*> blocks_;
411
412  // List of blocks to perform a reverse post order tree traversal.
413  ArenaVector<HBasicBlock*> reverse_post_order_;
414
415  // List of blocks to perform a linear order tree traversal.
416  ArenaVector<HBasicBlock*> linear_order_;
417
418  HBasicBlock* entry_block_;
419  HBasicBlock* exit_block_;
420
421  // The maximum number of virtual registers arguments passed to a HInvoke in this graph.
422  uint16_t maximum_number_of_out_vregs_;
423
424  // The number of virtual registers in this method. Contains the parameters.
425  uint16_t number_of_vregs_;
426
427  // The number of virtual registers used by parameters of this method.
428  uint16_t number_of_in_vregs_;
429
430  // Number of vreg size slots that the temporaries use (used in baseline compiler).
431  size_t temporaries_vreg_slots_;
432
433  // Has bounds checks. We can totally skip BCE if it's false.
434  bool has_bounds_checks_;
435
436  // Flag whether there are any try/catch blocks in the graph. We will skip
437  // try/catch-related passes if false.
438  bool has_try_catch_;
439
440  // Indicates whether the graph should be compiled in a way that
441  // ensures full debuggability. If false, we can apply more
442  // aggressive optimizations that may limit the level of debugging.
443  const bool debuggable_;
444
445  // The current id to assign to a newly added instruction. See HInstruction.id_.
446  int32_t current_instruction_id_;
447
448  // The dex file from which the method is from.
449  const DexFile& dex_file_;
450
451  // The method index in the dex file.
452  const uint32_t method_idx_;
453
454  // If inlined, this encodes how the callee is being invoked.
455  const InvokeType invoke_type_;
456
457  // Whether the graph has been transformed to SSA form. Only used
458  // in debug mode to ensure we are not using properties only valid
459  // for non-SSA form (like the number of temporaries).
460  bool in_ssa_form_;
461
462  const bool should_generate_constructor_barrier_;
463
464  const InstructionSet instruction_set_;
465
466  // Cached constants.
467  HNullConstant* cached_null_constant_;
468  ArenaSafeMap<int32_t, HIntConstant*> cached_int_constants_;
469  ArenaSafeMap<int32_t, HFloatConstant*> cached_float_constants_;
470  ArenaSafeMap<int64_t, HLongConstant*> cached_long_constants_;
471  ArenaSafeMap<int64_t, HDoubleConstant*> cached_double_constants_;
472
473  HCurrentMethod* cached_current_method_;
474
475  friend class SsaBuilder;           // For caching constants.
476  friend class SsaLivenessAnalysis;  // For the linear order.
477  ART_FRIEND_TEST(GraphTest, IfSuccessorSimpleJoinBlock1);
478  DISALLOW_COPY_AND_ASSIGN(HGraph);
479};
480
481class HLoopInformation : public ArenaObject<kArenaAllocLoopInfo> {
482 public:
483  HLoopInformation(HBasicBlock* header, HGraph* graph)
484      : header_(header),
485        suspend_check_(nullptr),
486        back_edges_(graph->GetArena()->Adapter(kArenaAllocLoopInfoBackEdges)),
487        // Make bit vector growable, as the number of blocks may change.
488        blocks_(graph->GetArena(), graph->GetBlocks().size(), true) {
489    back_edges_.reserve(kDefaultNumberOfBackEdges);
490  }
491
492  HBasicBlock* GetHeader() const {
493    return header_;
494  }
495
496  void SetHeader(HBasicBlock* block) {
497    header_ = block;
498  }
499
500  HSuspendCheck* GetSuspendCheck() const { return suspend_check_; }
501  void SetSuspendCheck(HSuspendCheck* check) { suspend_check_ = check; }
502  bool HasSuspendCheck() const { return suspend_check_ != nullptr; }
503
504  void AddBackEdge(HBasicBlock* back_edge) {
505    back_edges_.push_back(back_edge);
506  }
507
508  void RemoveBackEdge(HBasicBlock* back_edge) {
509    RemoveElement(back_edges_, back_edge);
510  }
511
512  bool IsBackEdge(const HBasicBlock& block) const {
513    return ContainsElement(back_edges_, &block);
514  }
515
516  size_t NumberOfBackEdges() const {
517    return back_edges_.size();
518  }
519
520  HBasicBlock* GetPreHeader() const;
521
522  const ArenaVector<HBasicBlock*>& GetBackEdges() const {
523    return back_edges_;
524  }
525
526  // Returns the lifetime position of the back edge that has the
527  // greatest lifetime position.
528  size_t GetLifetimeEnd() const;
529
530  void ReplaceBackEdge(HBasicBlock* existing, HBasicBlock* new_back_edge) {
531    ReplaceElement(back_edges_, existing, new_back_edge);
532  }
533
534  // Finds blocks that are part of this loop. Returns whether the loop is a natural loop,
535  // that is the header dominates the back edge.
536  bool Populate();
537
538  // Reanalyzes the loop by removing loop info from its blocks and re-running
539  // Populate(). If there are no back edges left, the loop info is completely
540  // removed as well as its SuspendCheck instruction. It must be run on nested
541  // inner loops first.
542  void Update();
543
544  // Returns whether this loop information contains `block`.
545  // Note that this loop information *must* be populated before entering this function.
546  bool Contains(const HBasicBlock& block) const;
547
548  // Returns whether this loop information is an inner loop of `other`.
549  // Note that `other` *must* be populated before entering this function.
550  bool IsIn(const HLoopInformation& other) const;
551
552  // Returns true if instruction is not defined within this loop or any loop nested inside
553  // this loop. If must_dominate is set, only definitions that actually dominate the loop
554  // header can be invariant. Otherwise, any definition outside the loop, including
555  // definitions that appear after the loop, is invariant.
556  bool IsLoopInvariant(HInstruction* instruction, bool must_dominate) const;
557
558  const ArenaBitVector& GetBlocks() const { return blocks_; }
559
560  void Add(HBasicBlock* block);
561  void Remove(HBasicBlock* block);
562
563 private:
564  // Internal recursive implementation of `Populate`.
565  void PopulateRecursive(HBasicBlock* block);
566
567  HBasicBlock* header_;
568  HSuspendCheck* suspend_check_;
569  ArenaVector<HBasicBlock*> back_edges_;
570  ArenaBitVector blocks_;
571
572  DISALLOW_COPY_AND_ASSIGN(HLoopInformation);
573};
574
575// Stores try/catch information for basic blocks.
576// Note that HGraph is constructed so that catch blocks cannot simultaneously
577// be try blocks.
578class TryCatchInformation : public ArenaObject<kArenaAllocTryCatchInfo> {
579 public:
580  // Try block information constructor.
581  explicit TryCatchInformation(const HTryBoundary& try_entry)
582      : try_entry_(&try_entry),
583        catch_dex_file_(nullptr),
584        catch_type_index_(DexFile::kDexNoIndex16) {
585    DCHECK(try_entry_ != nullptr);
586  }
587
588  // Catch block information constructor.
589  TryCatchInformation(uint16_t catch_type_index, const DexFile& dex_file)
590      : try_entry_(nullptr),
591        catch_dex_file_(&dex_file),
592        catch_type_index_(catch_type_index) {}
593
594  bool IsTryBlock() const { return try_entry_ != nullptr; }
595
596  const HTryBoundary& GetTryEntry() const {
597    DCHECK(IsTryBlock());
598    return *try_entry_;
599  }
600
601  bool IsCatchBlock() const { return catch_dex_file_ != nullptr; }
602
603  bool IsCatchAllTypeIndex() const {
604    DCHECK(IsCatchBlock());
605    return catch_type_index_ == DexFile::kDexNoIndex16;
606  }
607
608  uint16_t GetCatchTypeIndex() const {
609    DCHECK(IsCatchBlock());
610    return catch_type_index_;
611  }
612
613  const DexFile& GetCatchDexFile() const {
614    DCHECK(IsCatchBlock());
615    return *catch_dex_file_;
616  }
617
618 private:
619  // One of possibly several TryBoundary instructions entering the block's try.
620  // Only set for try blocks.
621  const HTryBoundary* try_entry_;
622
623  // Exception type information. Only set for catch blocks.
624  const DexFile* catch_dex_file_;
625  const uint16_t catch_type_index_;
626};
627
628static constexpr size_t kNoLifetime = -1;
629static constexpr uint32_t kInvalidBlockId = static_cast<uint32_t>(-1);
630
631// A block in a method. Contains the list of instructions represented
632// as a double linked list. Each block knows its predecessors and
633// successors.
634
635class HBasicBlock : public ArenaObject<kArenaAllocBasicBlock> {
636 public:
637  HBasicBlock(HGraph* graph, uint32_t dex_pc = kNoDexPc)
638      : graph_(graph),
639        predecessors_(graph->GetArena()->Adapter(kArenaAllocPredecessors)),
640        successors_(graph->GetArena()->Adapter(kArenaAllocSuccessors)),
641        loop_information_(nullptr),
642        dominator_(nullptr),
643        dominated_blocks_(graph->GetArena()->Adapter(kArenaAllocDominated)),
644        block_id_(kInvalidBlockId),
645        dex_pc_(dex_pc),
646        lifetime_start_(kNoLifetime),
647        lifetime_end_(kNoLifetime),
648        try_catch_information_(nullptr) {
649    predecessors_.reserve(kDefaultNumberOfPredecessors);
650    successors_.reserve(kDefaultNumberOfSuccessors);
651    dominated_blocks_.reserve(kDefaultNumberOfDominatedBlocks);
652  }
653
654  const ArenaVector<HBasicBlock*>& GetPredecessors() const {
655    return predecessors_;
656  }
657
658  const ArenaVector<HBasicBlock*>& GetSuccessors() const {
659    return successors_;
660  }
661
662  bool HasSuccessor(const HBasicBlock* block, size_t start_from = 0u) {
663    return ContainsElement(successors_, block, start_from);
664  }
665
666  const ArenaVector<HBasicBlock*>& GetDominatedBlocks() const {
667    return dominated_blocks_;
668  }
669
670  bool IsEntryBlock() const {
671    return graph_->GetEntryBlock() == this;
672  }
673
674  bool IsExitBlock() const {
675    return graph_->GetExitBlock() == this;
676  }
677
678  bool IsSingleGoto() const;
679  bool IsSingleTryBoundary() const;
680
681  // Returns true if this block emits nothing but a jump.
682  bool IsSingleJump() const {
683    HLoopInformation* loop_info = GetLoopInformation();
684    return (IsSingleGoto() || IsSingleTryBoundary())
685           // Back edges generate a suspend check.
686           && (loop_info == nullptr || !loop_info->IsBackEdge(*this));
687  }
688
689  void AddBackEdge(HBasicBlock* back_edge) {
690    if (loop_information_ == nullptr) {
691      loop_information_ = new (graph_->GetArena()) HLoopInformation(this, graph_);
692    }
693    DCHECK_EQ(loop_information_->GetHeader(), this);
694    loop_information_->AddBackEdge(back_edge);
695  }
696
697  HGraph* GetGraph() const { return graph_; }
698  void SetGraph(HGraph* graph) { graph_ = graph; }
699
700  uint32_t GetBlockId() const { return block_id_; }
701  void SetBlockId(int id) { block_id_ = id; }
702  uint32_t GetDexPc() const { return dex_pc_; }
703
704  HBasicBlock* GetDominator() const { return dominator_; }
705  void SetDominator(HBasicBlock* dominator) { dominator_ = dominator; }
706  void AddDominatedBlock(HBasicBlock* block) { dominated_blocks_.push_back(block); }
707
708  void RemoveDominatedBlock(HBasicBlock* block) {
709    RemoveElement(dominated_blocks_, block);
710  }
711
712  void ReplaceDominatedBlock(HBasicBlock* existing, HBasicBlock* new_block) {
713    ReplaceElement(dominated_blocks_, existing, new_block);
714  }
715
716  void ClearDominanceInformation();
717
718  int NumberOfBackEdges() const {
719    return IsLoopHeader() ? loop_information_->NumberOfBackEdges() : 0;
720  }
721
722  HInstruction* GetFirstInstruction() const { return instructions_.first_instruction_; }
723  HInstruction* GetLastInstruction() const { return instructions_.last_instruction_; }
724  const HInstructionList& GetInstructions() const { return instructions_; }
725  HInstruction* GetFirstPhi() const { return phis_.first_instruction_; }
726  HInstruction* GetLastPhi() const { return phis_.last_instruction_; }
727  const HInstructionList& GetPhis() const { return phis_; }
728
729  void AddSuccessor(HBasicBlock* block) {
730    successors_.push_back(block);
731    block->predecessors_.push_back(this);
732  }
733
734  void ReplaceSuccessor(HBasicBlock* existing, HBasicBlock* new_block) {
735    size_t successor_index = GetSuccessorIndexOf(existing);
736    existing->RemovePredecessor(this);
737    new_block->predecessors_.push_back(this);
738    successors_[successor_index] = new_block;
739  }
740
741  void ReplacePredecessor(HBasicBlock* existing, HBasicBlock* new_block) {
742    size_t predecessor_index = GetPredecessorIndexOf(existing);
743    existing->RemoveSuccessor(this);
744    new_block->successors_.push_back(this);
745    predecessors_[predecessor_index] = new_block;
746  }
747
748  // Insert `this` between `predecessor` and `successor. This method
749  // preserves the indicies, and will update the first edge found between
750  // `predecessor` and `successor`.
751  void InsertBetween(HBasicBlock* predecessor, HBasicBlock* successor) {
752    size_t predecessor_index = successor->GetPredecessorIndexOf(predecessor);
753    size_t successor_index = predecessor->GetSuccessorIndexOf(successor);
754    successor->predecessors_[predecessor_index] = this;
755    predecessor->successors_[successor_index] = this;
756    successors_.push_back(successor);
757    predecessors_.push_back(predecessor);
758  }
759
760  void RemovePredecessor(HBasicBlock* block) {
761    predecessors_.erase(predecessors_.begin() + GetPredecessorIndexOf(block));
762  }
763
764  void RemoveSuccessor(HBasicBlock* block) {
765    successors_.erase(successors_.begin() + GetSuccessorIndexOf(block));
766  }
767
768  void ClearAllPredecessors() {
769    predecessors_.clear();
770  }
771
772  void AddPredecessor(HBasicBlock* block) {
773    predecessors_.push_back(block);
774    block->successors_.push_back(this);
775  }
776
777  void SwapPredecessors() {
778    DCHECK_EQ(predecessors_.size(), 2u);
779    std::swap(predecessors_[0], predecessors_[1]);
780  }
781
782  void SwapSuccessors() {
783    DCHECK_EQ(successors_.size(), 2u);
784    std::swap(successors_[0], successors_[1]);
785  }
786
787  size_t GetPredecessorIndexOf(HBasicBlock* predecessor) const {
788    return IndexOfElement(predecessors_, predecessor);
789  }
790
791  size_t GetSuccessorIndexOf(HBasicBlock* successor) const {
792    return IndexOfElement(successors_, successor);
793  }
794
795  HBasicBlock* GetSinglePredecessor() const {
796    DCHECK_EQ(GetPredecessors().size(), 1u);
797    return GetPredecessors()[0];
798  }
799
800  HBasicBlock* GetSingleSuccessor() const {
801    DCHECK_EQ(GetSuccessors().size(), 1u);
802    return GetSuccessors()[0];
803  }
804
805  // Returns whether the first occurrence of `predecessor` in the list of
806  // predecessors is at index `idx`.
807  bool IsFirstIndexOfPredecessor(HBasicBlock* predecessor, size_t idx) const {
808    DCHECK_EQ(GetPredecessors()[idx], predecessor);
809    return GetPredecessorIndexOf(predecessor) == idx;
810  }
811
812  // Returns the number of non-exceptional successors. SsaChecker ensures that
813  // these are stored at the beginning of the successor list.
814  size_t NumberOfNormalSuccessors() const {
815    return EndsWithTryBoundary() ? 1 : GetSuccessors().size();
816  }
817
818  // Create a new block between this block and its predecessors. The new block
819  // is added to the graph, all predecessor edges are relinked to it and an edge
820  // is created to `this`. Returns the new empty block. Reverse post order or
821  // loop and try/catch information are not updated.
822  HBasicBlock* CreateImmediateDominator();
823
824  // Split the block into two blocks just before `cursor`. Returns the newly
825  // created, latter block. Note that this method will add the block to the
826  // graph, create a Goto at the end of the former block and will create an edge
827  // between the blocks. It will not, however, update the reverse post order or
828  // loop and try/catch information.
829  HBasicBlock* SplitBefore(HInstruction* cursor);
830
831  // Split the block into two blocks just after `cursor`. Returns the newly
832  // created block. Note that this method just updates raw block information,
833  // like predecessors, successors, dominators, and instruction list. It does not
834  // update the graph, reverse post order, loop information, nor make sure the
835  // blocks are consistent (for example ending with a control flow instruction).
836  HBasicBlock* SplitAfter(HInstruction* cursor);
837
838  // Merge `other` at the end of `this`. Successors and dominated blocks of
839  // `other` are changed to be successors and dominated blocks of `this`. Note
840  // that this method does not update the graph, reverse post order, loop
841  // information, nor make sure the blocks are consistent (for example ending
842  // with a control flow instruction).
843  void MergeWithInlined(HBasicBlock* other);
844
845  // Replace `this` with `other`. Predecessors, successors, and dominated blocks
846  // of `this` are moved to `other`.
847  // Note that this method does not update the graph, reverse post order, loop
848  // information, nor make sure the blocks are consistent (for example ending
849  // with a control flow instruction).
850  void ReplaceWith(HBasicBlock* other);
851
852  // Merge `other` at the end of `this`. This method updates loops, reverse post
853  // order, links to predecessors, successors, dominators and deletes the block
854  // from the graph. The two blocks must be successive, i.e. `this` the only
855  // predecessor of `other` and vice versa.
856  void MergeWith(HBasicBlock* other);
857
858  // Disconnects `this` from all its predecessors, successors and dominator,
859  // removes it from all loops it is included in and eventually from the graph.
860  // The block must not dominate any other block. Predecessors and successors
861  // are safely updated.
862  void DisconnectAndDelete();
863
864  void AddInstruction(HInstruction* instruction);
865  // Insert `instruction` before/after an existing instruction `cursor`.
866  void InsertInstructionBefore(HInstruction* instruction, HInstruction* cursor);
867  void InsertInstructionAfter(HInstruction* instruction, HInstruction* cursor);
868  // Replace instruction `initial` with `replacement` within this block.
869  void ReplaceAndRemoveInstructionWith(HInstruction* initial,
870                                       HInstruction* replacement);
871  void AddPhi(HPhi* phi);
872  void InsertPhiAfter(HPhi* instruction, HPhi* cursor);
873  // RemoveInstruction and RemovePhi delete a given instruction from the respective
874  // instruction list. With 'ensure_safety' set to true, it verifies that the
875  // instruction is not in use and removes it from the use lists of its inputs.
876  void RemoveInstruction(HInstruction* instruction, bool ensure_safety = true);
877  void RemovePhi(HPhi* phi, bool ensure_safety = true);
878  void RemoveInstructionOrPhi(HInstruction* instruction, bool ensure_safety = true);
879
880  bool IsLoopHeader() const {
881    return IsInLoop() && (loop_information_->GetHeader() == this);
882  }
883
884  bool IsLoopPreHeaderFirstPredecessor() const {
885    DCHECK(IsLoopHeader());
886    return GetPredecessors()[0] == GetLoopInformation()->GetPreHeader();
887  }
888
889  HLoopInformation* GetLoopInformation() const {
890    return loop_information_;
891  }
892
893  // Set the loop_information_ on this block. Overrides the current
894  // loop_information if it is an outer loop of the passed loop information.
895  // Note that this method is called while creating the loop information.
896  void SetInLoop(HLoopInformation* info) {
897    if (IsLoopHeader()) {
898      // Nothing to do. This just means `info` is an outer loop.
899    } else if (!IsInLoop()) {
900      loop_information_ = info;
901    } else if (loop_information_->Contains(*info->GetHeader())) {
902      // Block is currently part of an outer loop. Make it part of this inner loop.
903      // Note that a non loop header having a loop information means this loop information
904      // has already been populated
905      loop_information_ = info;
906    } else {
907      // Block is part of an inner loop. Do not update the loop information.
908      // Note that we cannot do the check `info->Contains(loop_information_)->GetHeader()`
909      // at this point, because this method is being called while populating `info`.
910    }
911  }
912
913  // Raw update of the loop information.
914  void SetLoopInformation(HLoopInformation* info) {
915    loop_information_ = info;
916  }
917
918  bool IsInLoop() const { return loop_information_ != nullptr; }
919
920  TryCatchInformation* GetTryCatchInformation() const { return try_catch_information_; }
921
922  void SetTryCatchInformation(TryCatchInformation* try_catch_information) {
923    try_catch_information_ = try_catch_information;
924  }
925
926  bool IsTryBlock() const {
927    return try_catch_information_ != nullptr && try_catch_information_->IsTryBlock();
928  }
929
930  bool IsCatchBlock() const {
931    return try_catch_information_ != nullptr && try_catch_information_->IsCatchBlock();
932  }
933
934  // Returns the try entry that this block's successors should have. They will
935  // be in the same try, unless the block ends in a try boundary. In that case,
936  // the appropriate try entry will be returned.
937  const HTryBoundary* ComputeTryEntryOfSuccessors() const;
938
939  bool HasThrowingInstructions() const;
940
941  // Returns whether this block dominates the blocked passed as parameter.
942  bool Dominates(HBasicBlock* block) const;
943
944  size_t GetLifetimeStart() const { return lifetime_start_; }
945  size_t GetLifetimeEnd() const { return lifetime_end_; }
946
947  void SetLifetimeStart(size_t start) { lifetime_start_ = start; }
948  void SetLifetimeEnd(size_t end) { lifetime_end_ = end; }
949
950  bool EndsWithControlFlowInstruction() const;
951  bool EndsWithIf() const;
952  bool EndsWithTryBoundary() const;
953  bool HasSinglePhi() const;
954
955 private:
956  HGraph* graph_;
957  ArenaVector<HBasicBlock*> predecessors_;
958  ArenaVector<HBasicBlock*> successors_;
959  HInstructionList instructions_;
960  HInstructionList phis_;
961  HLoopInformation* loop_information_;
962  HBasicBlock* dominator_;
963  ArenaVector<HBasicBlock*> dominated_blocks_;
964  uint32_t block_id_;
965  // The dex program counter of the first instruction of this block.
966  const uint32_t dex_pc_;
967  size_t lifetime_start_;
968  size_t lifetime_end_;
969  TryCatchInformation* try_catch_information_;
970
971  friend class HGraph;
972  friend class HInstruction;
973
974  DISALLOW_COPY_AND_ASSIGN(HBasicBlock);
975};
976
977// Iterates over the LoopInformation of all loops which contain 'block'
978// from the innermost to the outermost.
979class HLoopInformationOutwardIterator : public ValueObject {
980 public:
981  explicit HLoopInformationOutwardIterator(const HBasicBlock& block)
982      : current_(block.GetLoopInformation()) {}
983
984  bool Done() const { return current_ == nullptr; }
985
986  void Advance() {
987    DCHECK(!Done());
988    current_ = current_->GetPreHeader()->GetLoopInformation();
989  }
990
991  HLoopInformation* Current() const {
992    DCHECK(!Done());
993    return current_;
994  }
995
996 private:
997  HLoopInformation* current_;
998
999  DISALLOW_COPY_AND_ASSIGN(HLoopInformationOutwardIterator);
1000};
1001
1002#define FOR_EACH_CONCRETE_INSTRUCTION_COMMON(M)                         \
1003  M(Above, Condition)                                                   \
1004  M(AboveOrEqual, Condition)                                            \
1005  M(Add, BinaryOperation)                                               \
1006  M(And, BinaryOperation)                                               \
1007  M(ArrayGet, Instruction)                                              \
1008  M(ArrayLength, Instruction)                                           \
1009  M(ArraySet, Instruction)                                              \
1010  M(Below, Condition)                                                   \
1011  M(BelowOrEqual, Condition)                                            \
1012  M(BooleanNot, UnaryOperation)                                         \
1013  M(BoundsCheck, Instruction)                                           \
1014  M(BoundType, Instruction)                                             \
1015  M(CheckCast, Instruction)                                             \
1016  M(ClearException, Instruction)                                        \
1017  M(ClinitCheck, Instruction)                                           \
1018  M(Compare, BinaryOperation)                                           \
1019  M(Condition, BinaryOperation)                                         \
1020  M(CurrentMethod, Instruction)                                         \
1021  M(Deoptimize, Instruction)                                            \
1022  M(Div, BinaryOperation)                                               \
1023  M(DivZeroCheck, Instruction)                                          \
1024  M(DoubleConstant, Constant)                                           \
1025  M(Equal, Condition)                                                   \
1026  M(Exit, Instruction)                                                  \
1027  M(FakeString, Instruction)                                            \
1028  M(FloatConstant, Constant)                                            \
1029  M(Goto, Instruction)                                                  \
1030  M(GreaterThan, Condition)                                             \
1031  M(GreaterThanOrEqual, Condition)                                      \
1032  M(If, Instruction)                                                    \
1033  M(InstanceFieldGet, Instruction)                                      \
1034  M(InstanceFieldSet, Instruction)                                      \
1035  M(InstanceOf, Instruction)                                            \
1036  M(IntConstant, Constant)                                              \
1037  M(InvokeUnresolved, Invoke)                                           \
1038  M(InvokeInterface, Invoke)                                            \
1039  M(InvokeStaticOrDirect, Invoke)                                       \
1040  M(InvokeVirtual, Invoke)                                              \
1041  M(LessThan, Condition)                                                \
1042  M(LessThanOrEqual, Condition)                                         \
1043  M(LoadClass, Instruction)                                             \
1044  M(LoadException, Instruction)                                         \
1045  M(LoadLocal, Instruction)                                             \
1046  M(LoadString, Instruction)                                            \
1047  M(Local, Instruction)                                                 \
1048  M(LongConstant, Constant)                                             \
1049  M(MemoryBarrier, Instruction)                                         \
1050  M(MonitorOperation, Instruction)                                      \
1051  M(Mul, BinaryOperation)                                               \
1052  M(Neg, UnaryOperation)                                                \
1053  M(NewArray, Instruction)                                              \
1054  M(NewInstance, Instruction)                                           \
1055  M(Not, UnaryOperation)                                                \
1056  M(NotEqual, Condition)                                                \
1057  M(NullConstant, Instruction)                                          \
1058  M(NullCheck, Instruction)                                             \
1059  M(Or, BinaryOperation)                                                \
1060  M(PackedSwitch, Instruction)                                          \
1061  M(ParallelMove, Instruction)                                          \
1062  M(ParameterValue, Instruction)                                        \
1063  M(Phi, Instruction)                                                   \
1064  M(Rem, BinaryOperation)                                               \
1065  M(Return, Instruction)                                                \
1066  M(ReturnVoid, Instruction)                                            \
1067  M(Shl, BinaryOperation)                                               \
1068  M(Shr, BinaryOperation)                                               \
1069  M(StaticFieldGet, Instruction)                                        \
1070  M(StaticFieldSet, Instruction)                                        \
1071  M(UnresolvedInstanceFieldGet, Instruction)                            \
1072  M(UnresolvedInstanceFieldSet, Instruction)                            \
1073  M(UnresolvedStaticFieldGet, Instruction)                              \
1074  M(UnresolvedStaticFieldSet, Instruction)                              \
1075  M(StoreLocal, Instruction)                                            \
1076  M(Sub, BinaryOperation)                                               \
1077  M(SuspendCheck, Instruction)                                          \
1078  M(Temporary, Instruction)                                             \
1079  M(Throw, Instruction)                                                 \
1080  M(TryBoundary, Instruction)                                           \
1081  M(TypeConversion, Instruction)                                        \
1082  M(UShr, BinaryOperation)                                              \
1083  M(Xor, BinaryOperation)                                               \
1084
1085#define FOR_EACH_CONCRETE_INSTRUCTION_ARM(M)
1086
1087#ifndef ART_ENABLE_CODEGEN_arm64
1088#define FOR_EACH_CONCRETE_INSTRUCTION_ARM64(M)
1089#else
1090#define FOR_EACH_CONCRETE_INSTRUCTION_ARM64(M)                          \
1091  M(Arm64IntermediateAddress, Instruction)
1092#endif
1093
1094#define FOR_EACH_CONCRETE_INSTRUCTION_MIPS(M)
1095
1096#define FOR_EACH_CONCRETE_INSTRUCTION_MIPS64(M)
1097
1098#ifndef ART_ENABLE_CODEGEN_x86
1099#define FOR_EACH_CONCRETE_INSTRUCTION_X86(M)
1100#else
1101#define FOR_EACH_CONCRETE_INSTRUCTION_X86(M)                            \
1102  M(X86ComputeBaseMethodAddress, Instruction)                           \
1103  M(X86LoadFromConstantTable, Instruction)                              \
1104  M(X86PackedSwitch, Instruction)
1105#endif
1106
1107#define FOR_EACH_CONCRETE_INSTRUCTION_X86_64(M)
1108
1109#define FOR_EACH_CONCRETE_INSTRUCTION(M)                                \
1110  FOR_EACH_CONCRETE_INSTRUCTION_COMMON(M)                               \
1111  FOR_EACH_CONCRETE_INSTRUCTION_ARM(M)                                  \
1112  FOR_EACH_CONCRETE_INSTRUCTION_ARM64(M)                                \
1113  FOR_EACH_CONCRETE_INSTRUCTION_MIPS(M)                                 \
1114  FOR_EACH_CONCRETE_INSTRUCTION_MIPS64(M)                               \
1115  FOR_EACH_CONCRETE_INSTRUCTION_X86(M)                                  \
1116  FOR_EACH_CONCRETE_INSTRUCTION_X86_64(M)
1117
1118#define FOR_EACH_INSTRUCTION(M)                                         \
1119  FOR_EACH_CONCRETE_INSTRUCTION(M)                                      \
1120  M(Constant, Instruction)                                              \
1121  M(UnaryOperation, Instruction)                                        \
1122  M(BinaryOperation, Instruction)                                       \
1123  M(Invoke, Instruction)
1124
1125#define FORWARD_DECLARATION(type, super) class H##type;
1126FOR_EACH_INSTRUCTION(FORWARD_DECLARATION)
1127#undef FORWARD_DECLARATION
1128
1129#define DECLARE_INSTRUCTION(type)                                       \
1130  InstructionKind GetKind() const OVERRIDE { return k##type; }          \
1131  const char* DebugName() const OVERRIDE { return #type; }              \
1132  const H##type* As##type() const OVERRIDE { return this; }             \
1133  H##type* As##type() OVERRIDE { return this; }                         \
1134  bool InstructionTypeEquals(HInstruction* other) const OVERRIDE {      \
1135    return other->Is##type();                                           \
1136  }                                                                     \
1137  void Accept(HGraphVisitor* visitor) OVERRIDE
1138
1139template <typename T> class HUseList;
1140
1141template <typename T>
1142class HUseListNode : public ArenaObject<kArenaAllocUseListNode> {
1143 public:
1144  HUseListNode* GetPrevious() const { return prev_; }
1145  HUseListNode* GetNext() const { return next_; }
1146  T GetUser() const { return user_; }
1147  size_t GetIndex() const { return index_; }
1148  void SetIndex(size_t index) { index_ = index; }
1149
1150 private:
1151  HUseListNode(T user, size_t index)
1152      : user_(user), index_(index), prev_(nullptr), next_(nullptr) {}
1153
1154  T const user_;
1155  size_t index_;
1156  HUseListNode<T>* prev_;
1157  HUseListNode<T>* next_;
1158
1159  friend class HUseList<T>;
1160
1161  DISALLOW_COPY_AND_ASSIGN(HUseListNode);
1162};
1163
1164template <typename T>
1165class HUseList : public ValueObject {
1166 public:
1167  HUseList() : first_(nullptr) {}
1168
1169  void Clear() {
1170    first_ = nullptr;
1171  }
1172
1173  // Adds a new entry at the beginning of the use list and returns
1174  // the newly created node.
1175  HUseListNode<T>* AddUse(T user, size_t index, ArenaAllocator* arena) {
1176    HUseListNode<T>* new_node = new (arena) HUseListNode<T>(user, index);
1177    if (IsEmpty()) {
1178      first_ = new_node;
1179    } else {
1180      first_->prev_ = new_node;
1181      new_node->next_ = first_;
1182      first_ = new_node;
1183    }
1184    return new_node;
1185  }
1186
1187  HUseListNode<T>* GetFirst() const {
1188    return first_;
1189  }
1190
1191  void Remove(HUseListNode<T>* node) {
1192    DCHECK(node != nullptr);
1193    DCHECK(Contains(node));
1194
1195    if (node->prev_ != nullptr) {
1196      node->prev_->next_ = node->next_;
1197    }
1198    if (node->next_ != nullptr) {
1199      node->next_->prev_ = node->prev_;
1200    }
1201    if (node == first_) {
1202      first_ = node->next_;
1203    }
1204  }
1205
1206  bool Contains(const HUseListNode<T>* node) const {
1207    if (node == nullptr) {
1208      return false;
1209    }
1210    for (HUseListNode<T>* current = first_; current != nullptr; current = current->GetNext()) {
1211      if (current == node) {
1212        return true;
1213      }
1214    }
1215    return false;
1216  }
1217
1218  bool IsEmpty() const {
1219    return first_ == nullptr;
1220  }
1221
1222  bool HasOnlyOneUse() const {
1223    return first_ != nullptr && first_->next_ == nullptr;
1224  }
1225
1226  size_t SizeSlow() const {
1227    size_t count = 0;
1228    for (HUseListNode<T>* current = first_; current != nullptr; current = current->GetNext()) {
1229      ++count;
1230    }
1231    return count;
1232  }
1233
1234 private:
1235  HUseListNode<T>* first_;
1236};
1237
1238template<typename T>
1239class HUseIterator : public ValueObject {
1240 public:
1241  explicit HUseIterator(const HUseList<T>& uses) : current_(uses.GetFirst()) {}
1242
1243  bool Done() const { return current_ == nullptr; }
1244
1245  void Advance() {
1246    DCHECK(!Done());
1247    current_ = current_->GetNext();
1248  }
1249
1250  HUseListNode<T>* Current() const {
1251    DCHECK(!Done());
1252    return current_;
1253  }
1254
1255 private:
1256  HUseListNode<T>* current_;
1257
1258  friend class HValue;
1259};
1260
1261// This class is used by HEnvironment and HInstruction classes to record the
1262// instructions they use and pointers to the corresponding HUseListNodes kept
1263// by the used instructions.
1264template <typename T>
1265class HUserRecord : public ValueObject {
1266 public:
1267  HUserRecord() : instruction_(nullptr), use_node_(nullptr) {}
1268  explicit HUserRecord(HInstruction* instruction) : instruction_(instruction), use_node_(nullptr) {}
1269
1270  HUserRecord(const HUserRecord<T>& old_record, HUseListNode<T>* use_node)
1271    : instruction_(old_record.instruction_), use_node_(use_node) {
1272    DCHECK(instruction_ != nullptr);
1273    DCHECK(use_node_ != nullptr);
1274    DCHECK(old_record.use_node_ == nullptr);
1275  }
1276
1277  HInstruction* GetInstruction() const { return instruction_; }
1278  HUseListNode<T>* GetUseNode() const { return use_node_; }
1279
1280 private:
1281  // Instruction used by the user.
1282  HInstruction* instruction_;
1283
1284  // Corresponding entry in the use list kept by 'instruction_'.
1285  HUseListNode<T>* use_node_;
1286};
1287
1288/**
1289 * Side-effects representation.
1290 *
1291 * For write/read dependences on fields/arrays, the dependence analysis uses
1292 * type disambiguation (e.g. a float field write cannot modify the value of an
1293 * integer field read) and the access type (e.g.  a reference array write cannot
1294 * modify the value of a reference field read [although it may modify the
1295 * reference fetch prior to reading the field, which is represented by its own
1296 * write/read dependence]). The analysis makes conservative points-to
1297 * assumptions on reference types (e.g. two same typed arrays are assumed to be
1298 * the same, and any reference read depends on any reference read without
1299 * further regard of its type).
1300 *
1301 * The internal representation uses 38-bit and is described in the table below.
1302 * The first line indicates the side effect, and for field/array accesses the
1303 * second line indicates the type of the access (in the order of the
1304 * Primitive::Type enum).
1305 * The two numbered lines below indicate the bit position in the bitfield (read
1306 * vertically).
1307 *
1308 *   |Depends on GC|ARRAY-R  |FIELD-R  |Can trigger GC|ARRAY-W  |FIELD-W  |
1309 *   +-------------+---------+---------+--------------+---------+---------+
1310 *   |             |DFJISCBZL|DFJISCBZL|              |DFJISCBZL|DFJISCBZL|
1311 *   |      3      |333333322|222222221|       1      |111111110|000000000|
1312 *   |      7      |654321098|765432109|       8      |765432109|876543210|
1313 *
1314 * Note that, to ease the implementation, 'changes' bits are least significant
1315 * bits, while 'dependency' bits are most significant bits.
1316 */
1317class SideEffects : public ValueObject {
1318 public:
1319  SideEffects() : flags_(0) {}
1320
1321  static SideEffects None() {
1322    return SideEffects(0);
1323  }
1324
1325  static SideEffects All() {
1326    return SideEffects(kAllChangeBits | kAllDependOnBits);
1327  }
1328
1329  static SideEffects AllChanges() {
1330    return SideEffects(kAllChangeBits);
1331  }
1332
1333  static SideEffects AllDependencies() {
1334    return SideEffects(kAllDependOnBits);
1335  }
1336
1337  static SideEffects AllExceptGCDependency() {
1338    return AllWritesAndReads().Union(SideEffects::CanTriggerGC());
1339  }
1340
1341  static SideEffects AllWritesAndReads() {
1342    return SideEffects(kAllWrites | kAllReads);
1343  }
1344
1345  static SideEffects AllWrites() {
1346    return SideEffects(kAllWrites);
1347  }
1348
1349  static SideEffects AllReads() {
1350    return SideEffects(kAllReads);
1351  }
1352
1353  static SideEffects FieldWriteOfType(Primitive::Type type, bool is_volatile) {
1354    return is_volatile
1355        ? AllWritesAndReads()
1356        : SideEffects(TypeFlagWithAlias(type, kFieldWriteOffset));
1357  }
1358
1359  static SideEffects ArrayWriteOfType(Primitive::Type type) {
1360    return SideEffects(TypeFlagWithAlias(type, kArrayWriteOffset));
1361  }
1362
1363  static SideEffects FieldReadOfType(Primitive::Type type, bool is_volatile) {
1364    return is_volatile
1365        ? AllWritesAndReads()
1366        : SideEffects(TypeFlagWithAlias(type, kFieldReadOffset));
1367  }
1368
1369  static SideEffects ArrayReadOfType(Primitive::Type type) {
1370    return SideEffects(TypeFlagWithAlias(type, kArrayReadOffset));
1371  }
1372
1373  static SideEffects CanTriggerGC() {
1374    return SideEffects(1ULL << kCanTriggerGCBit);
1375  }
1376
1377  static SideEffects DependsOnGC() {
1378    return SideEffects(1ULL << kDependsOnGCBit);
1379  }
1380
1381  // Combines the side-effects of this and the other.
1382  SideEffects Union(SideEffects other) const {
1383    return SideEffects(flags_ | other.flags_);
1384  }
1385
1386  SideEffects Exclusion(SideEffects other) const {
1387    return SideEffects(flags_ & ~other.flags_);
1388  }
1389
1390  void Add(SideEffects other) {
1391    flags_ |= other.flags_;
1392  }
1393
1394  bool Includes(SideEffects other) const {
1395    return (other.flags_ & flags_) == other.flags_;
1396  }
1397
1398  bool HasSideEffects() const {
1399    return (flags_ & kAllChangeBits);
1400  }
1401
1402  bool HasDependencies() const {
1403    return (flags_ & kAllDependOnBits);
1404  }
1405
1406  // Returns true if there are no side effects or dependencies.
1407  bool DoesNothing() const {
1408    return flags_ == 0;
1409  }
1410
1411  // Returns true if something is written.
1412  bool DoesAnyWrite() const {
1413    return (flags_ & kAllWrites);
1414  }
1415
1416  // Returns true if something is read.
1417  bool DoesAnyRead() const {
1418    return (flags_ & kAllReads);
1419  }
1420
1421  // Returns true if potentially everything is written and read
1422  // (every type and every kind of access).
1423  bool DoesAllReadWrite() const {
1424    return (flags_ & (kAllWrites | kAllReads)) == (kAllWrites | kAllReads);
1425  }
1426
1427  bool DoesAll() const {
1428    return flags_ == (kAllChangeBits | kAllDependOnBits);
1429  }
1430
1431  // Returns true if this may read something written by other.
1432  bool MayDependOn(SideEffects other) const {
1433    const uint64_t depends_on_flags = (flags_ & kAllDependOnBits) >> kChangeBits;
1434    return (other.flags_ & depends_on_flags);
1435  }
1436
1437  // Returns string representation of flags (for debugging only).
1438  // Format: |x|DFJISCBZL|DFJISCBZL|y|DFJISCBZL|DFJISCBZL|
1439  std::string ToString() const {
1440    std::string flags = "|";
1441    for (int s = kLastBit; s >= 0; s--) {
1442      bool current_bit_is_set = ((flags_ >> s) & 1) != 0;
1443      if ((s == kDependsOnGCBit) || (s == kCanTriggerGCBit)) {
1444        // This is a bit for the GC side effect.
1445        if (current_bit_is_set) {
1446          flags += "GC";
1447        }
1448        flags += "|";
1449      } else {
1450        // This is a bit for the array/field analysis.
1451        // The underscore character stands for the 'can trigger GC' bit.
1452        static const char *kDebug = "LZBCSIJFDLZBCSIJFD_LZBCSIJFDLZBCSIJFD";
1453        if (current_bit_is_set) {
1454          flags += kDebug[s];
1455        }
1456        if ((s == kFieldWriteOffset) || (s == kArrayWriteOffset) ||
1457            (s == kFieldReadOffset) || (s == kArrayReadOffset)) {
1458          flags += "|";
1459        }
1460      }
1461    }
1462    return flags;
1463  }
1464
1465  bool Equals(const SideEffects& other) const { return flags_ == other.flags_; }
1466
1467 private:
1468  static constexpr int kFieldArrayAnalysisBits = 9;
1469
1470  static constexpr int kFieldWriteOffset = 0;
1471  static constexpr int kArrayWriteOffset = kFieldWriteOffset + kFieldArrayAnalysisBits;
1472  static constexpr int kLastBitForWrites = kArrayWriteOffset + kFieldArrayAnalysisBits - 1;
1473  static constexpr int kCanTriggerGCBit = kLastBitForWrites + 1;
1474
1475  static constexpr int kChangeBits = kCanTriggerGCBit + 1;
1476
1477  static constexpr int kFieldReadOffset = kCanTriggerGCBit + 1;
1478  static constexpr int kArrayReadOffset = kFieldReadOffset + kFieldArrayAnalysisBits;
1479  static constexpr int kLastBitForReads = kArrayReadOffset + kFieldArrayAnalysisBits - 1;
1480  static constexpr int kDependsOnGCBit = kLastBitForReads + 1;
1481
1482  static constexpr int kLastBit = kDependsOnGCBit;
1483  static constexpr int kDependOnBits = kLastBit + 1 - kChangeBits;
1484
1485  // Aliases.
1486
1487  static_assert(kChangeBits == kDependOnBits,
1488                "the 'change' bits should match the 'depend on' bits.");
1489
1490  static constexpr uint64_t kAllChangeBits = ((1ULL << kChangeBits) - 1);
1491  static constexpr uint64_t kAllDependOnBits = ((1ULL << kDependOnBits) - 1) << kChangeBits;
1492  static constexpr uint64_t kAllWrites =
1493      ((1ULL << (kLastBitForWrites + 1 - kFieldWriteOffset)) - 1) << kFieldWriteOffset;
1494  static constexpr uint64_t kAllReads =
1495      ((1ULL << (kLastBitForReads + 1 - kFieldReadOffset)) - 1) << kFieldReadOffset;
1496
1497  // Work around the fact that HIR aliases I/F and J/D.
1498  // TODO: remove this interceptor once HIR types are clean
1499  static uint64_t TypeFlagWithAlias(Primitive::Type type, int offset) {
1500    switch (type) {
1501      case Primitive::kPrimInt:
1502      case Primitive::kPrimFloat:
1503        return TypeFlag(Primitive::kPrimInt, offset) |
1504               TypeFlag(Primitive::kPrimFloat, offset);
1505      case Primitive::kPrimLong:
1506      case Primitive::kPrimDouble:
1507        return TypeFlag(Primitive::kPrimLong, offset) |
1508               TypeFlag(Primitive::kPrimDouble, offset);
1509      default:
1510        return TypeFlag(type, offset);
1511    }
1512  }
1513
1514  // Translates type to bit flag.
1515  static uint64_t TypeFlag(Primitive::Type type, int offset) {
1516    CHECK_NE(type, Primitive::kPrimVoid);
1517    const uint64_t one = 1;
1518    const int shift = type;  // 0-based consecutive enum
1519    DCHECK_LE(kFieldWriteOffset, shift);
1520    DCHECK_LT(shift, kArrayWriteOffset);
1521    return one << (type + offset);
1522  }
1523
1524  // Private constructor on direct flags value.
1525  explicit SideEffects(uint64_t flags) : flags_(flags) {}
1526
1527  uint64_t flags_;
1528};
1529
1530// A HEnvironment object contains the values of virtual registers at a given location.
1531class HEnvironment : public ArenaObject<kArenaAllocEnvironment> {
1532 public:
1533  HEnvironment(ArenaAllocator* arena,
1534               size_t number_of_vregs,
1535               const DexFile& dex_file,
1536               uint32_t method_idx,
1537               uint32_t dex_pc,
1538               InvokeType invoke_type,
1539               HInstruction* holder)
1540     : vregs_(number_of_vregs, arena->Adapter(kArenaAllocEnvironmentVRegs)),
1541       locations_(number_of_vregs, arena->Adapter(kArenaAllocEnvironmentLocations)),
1542       parent_(nullptr),
1543       dex_file_(dex_file),
1544       method_idx_(method_idx),
1545       dex_pc_(dex_pc),
1546       invoke_type_(invoke_type),
1547       holder_(holder) {
1548  }
1549
1550  HEnvironment(ArenaAllocator* arena, const HEnvironment& to_copy, HInstruction* holder)
1551      : HEnvironment(arena,
1552                     to_copy.Size(),
1553                     to_copy.GetDexFile(),
1554                     to_copy.GetMethodIdx(),
1555                     to_copy.GetDexPc(),
1556                     to_copy.GetInvokeType(),
1557                     holder) {}
1558
1559  void SetAndCopyParentChain(ArenaAllocator* allocator, HEnvironment* parent) {
1560    if (parent_ != nullptr) {
1561      parent_->SetAndCopyParentChain(allocator, parent);
1562    } else {
1563      parent_ = new (allocator) HEnvironment(allocator, *parent, holder_);
1564      parent_->CopyFrom(parent);
1565      if (parent->GetParent() != nullptr) {
1566        parent_->SetAndCopyParentChain(allocator, parent->GetParent());
1567      }
1568    }
1569  }
1570
1571  void CopyFrom(const ArenaVector<HInstruction*>& locals);
1572  void CopyFrom(HEnvironment* environment);
1573
1574  // Copy from `env`. If it's a loop phi for `loop_header`, copy the first
1575  // input to the loop phi instead. This is for inserting instructions that
1576  // require an environment (like HDeoptimization) in the loop pre-header.
1577  void CopyFromWithLoopPhiAdjustment(HEnvironment* env, HBasicBlock* loop_header);
1578
1579  void SetRawEnvAt(size_t index, HInstruction* instruction) {
1580    vregs_[index] = HUserRecord<HEnvironment*>(instruction);
1581  }
1582
1583  HInstruction* GetInstructionAt(size_t index) const {
1584    return vregs_[index].GetInstruction();
1585  }
1586
1587  void RemoveAsUserOfInput(size_t index) const;
1588
1589  size_t Size() const { return vregs_.size(); }
1590
1591  HEnvironment* GetParent() const { return parent_; }
1592
1593  void SetLocationAt(size_t index, Location location) {
1594    locations_[index] = location;
1595  }
1596
1597  Location GetLocationAt(size_t index) const {
1598    return locations_[index];
1599  }
1600
1601  uint32_t GetDexPc() const {
1602    return dex_pc_;
1603  }
1604
1605  uint32_t GetMethodIdx() const {
1606    return method_idx_;
1607  }
1608
1609  InvokeType GetInvokeType() const {
1610    return invoke_type_;
1611  }
1612
1613  const DexFile& GetDexFile() const {
1614    return dex_file_;
1615  }
1616
1617  HInstruction* GetHolder() const {
1618    return holder_;
1619  }
1620
1621 private:
1622  // Record instructions' use entries of this environment for constant-time removal.
1623  // It should only be called by HInstruction when a new environment use is added.
1624  void RecordEnvUse(HUseListNode<HEnvironment*>* env_use) {
1625    DCHECK(env_use->GetUser() == this);
1626    size_t index = env_use->GetIndex();
1627    vregs_[index] = HUserRecord<HEnvironment*>(vregs_[index], env_use);
1628  }
1629
1630  ArenaVector<HUserRecord<HEnvironment*>> vregs_;
1631  ArenaVector<Location> locations_;
1632  HEnvironment* parent_;
1633  const DexFile& dex_file_;
1634  const uint32_t method_idx_;
1635  const uint32_t dex_pc_;
1636  const InvokeType invoke_type_;
1637
1638  // The instruction that holds this environment.
1639  HInstruction* const holder_;
1640
1641  friend class HInstruction;
1642
1643  DISALLOW_COPY_AND_ASSIGN(HEnvironment);
1644};
1645
1646class ReferenceTypeInfo : ValueObject {
1647 public:
1648  typedef Handle<mirror::Class> TypeHandle;
1649
1650  static ReferenceTypeInfo Create(TypeHandle type_handle, bool is_exact) {
1651    // The constructor will check that the type_handle is valid.
1652    return ReferenceTypeInfo(type_handle, is_exact);
1653  }
1654
1655  static ReferenceTypeInfo CreateInvalid() { return ReferenceTypeInfo(); }
1656
1657  static bool IsValidHandle(TypeHandle handle) SHARED_REQUIRES(Locks::mutator_lock_) {
1658    return handle.GetReference() != nullptr;
1659  }
1660
1661  bool IsValid() const SHARED_REQUIRES(Locks::mutator_lock_) {
1662    return IsValidHandle(type_handle_);
1663  }
1664
1665  bool IsExact() const { return is_exact_; }
1666
1667  bool IsObjectClass() const SHARED_REQUIRES(Locks::mutator_lock_) {
1668    DCHECK(IsValid());
1669    return GetTypeHandle()->IsObjectClass();
1670  }
1671
1672  bool IsStringClass() const SHARED_REQUIRES(Locks::mutator_lock_) {
1673    DCHECK(IsValid());
1674    return GetTypeHandle()->IsStringClass();
1675  }
1676
1677  bool IsObjectArray() const SHARED_REQUIRES(Locks::mutator_lock_) {
1678    DCHECK(IsValid());
1679    return IsArrayClass() && GetTypeHandle()->GetComponentType()->IsObjectClass();
1680  }
1681
1682  bool IsInterface() const SHARED_REQUIRES(Locks::mutator_lock_) {
1683    DCHECK(IsValid());
1684    return GetTypeHandle()->IsInterface();
1685  }
1686
1687  bool IsArrayClass() const SHARED_REQUIRES(Locks::mutator_lock_) {
1688    DCHECK(IsValid());
1689    return GetTypeHandle()->IsArrayClass();
1690  }
1691
1692  bool IsPrimitiveArrayClass() const SHARED_REQUIRES(Locks::mutator_lock_) {
1693    DCHECK(IsValid());
1694    return GetTypeHandle()->IsPrimitiveArray();
1695  }
1696
1697  bool IsNonPrimitiveArrayClass() const SHARED_REQUIRES(Locks::mutator_lock_) {
1698    DCHECK(IsValid());
1699    return GetTypeHandle()->IsArrayClass() && !GetTypeHandle()->IsPrimitiveArray();
1700  }
1701
1702  bool CanArrayHold(ReferenceTypeInfo rti)  const SHARED_REQUIRES(Locks::mutator_lock_) {
1703    DCHECK(IsValid());
1704    if (!IsExact()) return false;
1705    if (!IsArrayClass()) return false;
1706    return GetTypeHandle()->GetComponentType()->IsAssignableFrom(rti.GetTypeHandle().Get());
1707  }
1708
1709  bool CanArrayHoldValuesOf(ReferenceTypeInfo rti)  const SHARED_REQUIRES(Locks::mutator_lock_) {
1710    DCHECK(IsValid());
1711    if (!IsExact()) return false;
1712    if (!IsArrayClass()) return false;
1713    if (!rti.IsArrayClass()) return false;
1714    return GetTypeHandle()->GetComponentType()->IsAssignableFrom(
1715        rti.GetTypeHandle()->GetComponentType());
1716  }
1717
1718  Handle<mirror::Class> GetTypeHandle() const { return type_handle_; }
1719
1720  bool IsSupertypeOf(ReferenceTypeInfo rti) const SHARED_REQUIRES(Locks::mutator_lock_) {
1721    DCHECK(IsValid());
1722    DCHECK(rti.IsValid());
1723    return GetTypeHandle()->IsAssignableFrom(rti.GetTypeHandle().Get());
1724  }
1725
1726  // Returns true if the type information provide the same amount of details.
1727  // Note that it does not mean that the instructions have the same actual type
1728  // (because the type can be the result of a merge).
1729  bool IsEqual(ReferenceTypeInfo rti) SHARED_REQUIRES(Locks::mutator_lock_) {
1730    if (!IsValid() && !rti.IsValid()) {
1731      // Invalid types are equal.
1732      return true;
1733    }
1734    if (!IsValid() || !rti.IsValid()) {
1735      // One is valid, the other not.
1736      return false;
1737    }
1738    return IsExact() == rti.IsExact()
1739        && GetTypeHandle().Get() == rti.GetTypeHandle().Get();
1740  }
1741
1742 private:
1743  ReferenceTypeInfo();
1744  ReferenceTypeInfo(TypeHandle type_handle, bool is_exact);
1745
1746  // The class of the object.
1747  TypeHandle type_handle_;
1748  // Whether or not the type is exact or a superclass of the actual type.
1749  // Whether or not we have any information about this type.
1750  bool is_exact_;
1751};
1752
1753std::ostream& operator<<(std::ostream& os, const ReferenceTypeInfo& rhs);
1754
1755class HInstruction : public ArenaObject<kArenaAllocInstruction> {
1756 public:
1757  HInstruction(SideEffects side_effects, uint32_t dex_pc)
1758      : previous_(nullptr),
1759        next_(nullptr),
1760        block_(nullptr),
1761        dex_pc_(dex_pc),
1762        id_(-1),
1763        ssa_index_(-1),
1764        environment_(nullptr),
1765        locations_(nullptr),
1766        live_interval_(nullptr),
1767        lifetime_position_(kNoLifetime),
1768        side_effects_(side_effects),
1769        reference_type_info_(ReferenceTypeInfo::CreateInvalid()) {}
1770
1771  virtual ~HInstruction() {}
1772
1773#define DECLARE_KIND(type, super) k##type,
1774  enum InstructionKind {
1775    FOR_EACH_INSTRUCTION(DECLARE_KIND)
1776  };
1777#undef DECLARE_KIND
1778
1779  HInstruction* GetNext() const { return next_; }
1780  HInstruction* GetPrevious() const { return previous_; }
1781
1782  HInstruction* GetNextDisregardingMoves() const;
1783  HInstruction* GetPreviousDisregardingMoves() const;
1784
1785  HBasicBlock* GetBlock() const { return block_; }
1786  ArenaAllocator* GetArena() const { return block_->GetGraph()->GetArena(); }
1787  void SetBlock(HBasicBlock* block) { block_ = block; }
1788  bool IsInBlock() const { return block_ != nullptr; }
1789  bool IsInLoop() const { return block_->IsInLoop(); }
1790  bool IsLoopHeaderPhi() { return IsPhi() && block_->IsLoopHeader(); }
1791
1792  virtual size_t InputCount() const = 0;
1793  HInstruction* InputAt(size_t i) const { return InputRecordAt(i).GetInstruction(); }
1794
1795  virtual void Accept(HGraphVisitor* visitor) = 0;
1796  virtual const char* DebugName() const = 0;
1797
1798  virtual Primitive::Type GetType() const { return Primitive::kPrimVoid; }
1799  void SetRawInputAt(size_t index, HInstruction* input) {
1800    SetRawInputRecordAt(index, HUserRecord<HInstruction*>(input));
1801  }
1802
1803  virtual bool NeedsEnvironment() const { return false; }
1804
1805  uint32_t GetDexPc() const { return dex_pc_; }
1806
1807  virtual bool IsControlFlow() const { return false; }
1808
1809  virtual bool CanThrow() const { return false; }
1810  bool CanThrowIntoCatchBlock() const { return CanThrow() && block_->IsTryBlock(); }
1811
1812  bool HasSideEffects() const { return side_effects_.HasSideEffects(); }
1813  bool DoesAnyWrite() const { return side_effects_.DoesAnyWrite(); }
1814
1815  // Does not apply for all instructions, but having this at top level greatly
1816  // simplifies the null check elimination.
1817  // TODO: Consider merging can_be_null into ReferenceTypeInfo.
1818  virtual bool CanBeNull() const {
1819    DCHECK_EQ(GetType(), Primitive::kPrimNot) << "CanBeNull only applies to reference types";
1820    return true;
1821  }
1822
1823  virtual bool CanDoImplicitNullCheckOn(HInstruction* obj ATTRIBUTE_UNUSED) const {
1824    return false;
1825  }
1826
1827  void SetReferenceTypeInfo(ReferenceTypeInfo rti);
1828
1829  ReferenceTypeInfo GetReferenceTypeInfo() const {
1830    DCHECK_EQ(GetType(), Primitive::kPrimNot);
1831    return reference_type_info_;
1832  }
1833
1834  void AddUseAt(HInstruction* user, size_t index) {
1835    DCHECK(user != nullptr);
1836    HUseListNode<HInstruction*>* use =
1837        uses_.AddUse(user, index, GetBlock()->GetGraph()->GetArena());
1838    user->SetRawInputRecordAt(index, HUserRecord<HInstruction*>(user->InputRecordAt(index), use));
1839  }
1840
1841  void AddEnvUseAt(HEnvironment* user, size_t index) {
1842    DCHECK(user != nullptr);
1843    HUseListNode<HEnvironment*>* env_use =
1844        env_uses_.AddUse(user, index, GetBlock()->GetGraph()->GetArena());
1845    user->RecordEnvUse(env_use);
1846  }
1847
1848  void RemoveAsUserOfInput(size_t input) {
1849    HUserRecord<HInstruction*> input_use = InputRecordAt(input);
1850    input_use.GetInstruction()->uses_.Remove(input_use.GetUseNode());
1851  }
1852
1853  const HUseList<HInstruction*>& GetUses() const { return uses_; }
1854  const HUseList<HEnvironment*>& GetEnvUses() const { return env_uses_; }
1855
1856  bool HasUses() const { return !uses_.IsEmpty() || !env_uses_.IsEmpty(); }
1857  bool HasEnvironmentUses() const { return !env_uses_.IsEmpty(); }
1858  bool HasNonEnvironmentUses() const { return !uses_.IsEmpty(); }
1859  bool HasOnlyOneNonEnvironmentUse() const {
1860    return !HasEnvironmentUses() && GetUses().HasOnlyOneUse();
1861  }
1862
1863  // Does this instruction strictly dominate `other_instruction`?
1864  // Returns false if this instruction and `other_instruction` are the same.
1865  // Aborts if this instruction and `other_instruction` are both phis.
1866  bool StrictlyDominates(HInstruction* other_instruction) const;
1867
1868  int GetId() const { return id_; }
1869  void SetId(int id) { id_ = id; }
1870
1871  int GetSsaIndex() const { return ssa_index_; }
1872  void SetSsaIndex(int ssa_index) { ssa_index_ = ssa_index; }
1873  bool HasSsaIndex() const { return ssa_index_ != -1; }
1874
1875  bool HasEnvironment() const { return environment_ != nullptr; }
1876  HEnvironment* GetEnvironment() const { return environment_; }
1877  // Set the `environment_` field. Raw because this method does not
1878  // update the uses lists.
1879  void SetRawEnvironment(HEnvironment* environment) {
1880    DCHECK(environment_ == nullptr);
1881    DCHECK_EQ(environment->GetHolder(), this);
1882    environment_ = environment;
1883  }
1884
1885  // Set the environment of this instruction, copying it from `environment`. While
1886  // copying, the uses lists are being updated.
1887  void CopyEnvironmentFrom(HEnvironment* environment) {
1888    DCHECK(environment_ == nullptr);
1889    ArenaAllocator* allocator = GetBlock()->GetGraph()->GetArena();
1890    environment_ = new (allocator) HEnvironment(allocator, *environment, this);
1891    environment_->CopyFrom(environment);
1892    if (environment->GetParent() != nullptr) {
1893      environment_->SetAndCopyParentChain(allocator, environment->GetParent());
1894    }
1895  }
1896
1897  void CopyEnvironmentFromWithLoopPhiAdjustment(HEnvironment* environment,
1898                                                HBasicBlock* block) {
1899    DCHECK(environment_ == nullptr);
1900    ArenaAllocator* allocator = GetBlock()->GetGraph()->GetArena();
1901    environment_ = new (allocator) HEnvironment(allocator, *environment, this);
1902    environment_->CopyFromWithLoopPhiAdjustment(environment, block);
1903    if (environment->GetParent() != nullptr) {
1904      environment_->SetAndCopyParentChain(allocator, environment->GetParent());
1905    }
1906  }
1907
1908  // Returns the number of entries in the environment. Typically, that is the
1909  // number of dex registers in a method. It could be more in case of inlining.
1910  size_t EnvironmentSize() const;
1911
1912  LocationSummary* GetLocations() const { return locations_; }
1913  void SetLocations(LocationSummary* locations) { locations_ = locations; }
1914
1915  void ReplaceWith(HInstruction* instruction);
1916  void ReplaceInput(HInstruction* replacement, size_t index);
1917
1918  // This is almost the same as doing `ReplaceWith()`. But in this helper, the
1919  // uses of this instruction by `other` are *not* updated.
1920  void ReplaceWithExceptInReplacementAtIndex(HInstruction* other, size_t use_index) {
1921    ReplaceWith(other);
1922    other->ReplaceInput(this, use_index);
1923  }
1924
1925  // Move `this` instruction before `cursor`.
1926  void MoveBefore(HInstruction* cursor);
1927
1928#define INSTRUCTION_TYPE_CHECK(type, super)                                    \
1929  bool Is##type() const { return (As##type() != nullptr); }                    \
1930  virtual const H##type* As##type() const { return nullptr; }                  \
1931  virtual H##type* As##type() { return nullptr; }
1932
1933  FOR_EACH_INSTRUCTION(INSTRUCTION_TYPE_CHECK)
1934#undef INSTRUCTION_TYPE_CHECK
1935
1936  // Returns whether the instruction can be moved within the graph.
1937  virtual bool CanBeMoved() const { return false; }
1938
1939  // Returns whether the two instructions are of the same kind.
1940  virtual bool InstructionTypeEquals(HInstruction* other ATTRIBUTE_UNUSED) const {
1941    return false;
1942  }
1943
1944  // Returns whether any data encoded in the two instructions is equal.
1945  // This method does not look at the inputs. Both instructions must be
1946  // of the same type, otherwise the method has undefined behavior.
1947  virtual bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const {
1948    return false;
1949  }
1950
1951  // Returns whether two instructions are equal, that is:
1952  // 1) They have the same type and contain the same data (InstructionDataEquals).
1953  // 2) Their inputs are identical.
1954  bool Equals(HInstruction* other) const;
1955
1956  virtual InstructionKind GetKind() const = 0;
1957
1958  virtual size_t ComputeHashCode() const {
1959    size_t result = GetKind();
1960    for (size_t i = 0, e = InputCount(); i < e; ++i) {
1961      result = (result * 31) + InputAt(i)->GetId();
1962    }
1963    return result;
1964  }
1965
1966  SideEffects GetSideEffects() const { return side_effects_; }
1967  void AddSideEffects(SideEffects other) { side_effects_.Add(other); }
1968
1969  size_t GetLifetimePosition() const { return lifetime_position_; }
1970  void SetLifetimePosition(size_t position) { lifetime_position_ = position; }
1971  LiveInterval* GetLiveInterval() const { return live_interval_; }
1972  void SetLiveInterval(LiveInterval* interval) { live_interval_ = interval; }
1973  bool HasLiveInterval() const { return live_interval_ != nullptr; }
1974
1975  bool IsSuspendCheckEntry() const { return IsSuspendCheck() && GetBlock()->IsEntryBlock(); }
1976
1977  // Returns whether the code generation of the instruction will require to have access
1978  // to the current method. Such instructions are:
1979  // (1): Instructions that require an environment, as calling the runtime requires
1980  //      to walk the stack and have the current method stored at a specific stack address.
1981  // (2): Object literals like classes and strings, that are loaded from the dex cache
1982  //      fields of the current method.
1983  bool NeedsCurrentMethod() const {
1984    return NeedsEnvironment() || IsLoadClass() || IsLoadString();
1985  }
1986
1987  // Returns whether the code generation of the instruction will require to have access
1988  // to the dex cache of the current method's declaring class via the current method.
1989  virtual bool NeedsDexCacheOfDeclaringClass() const { return false; }
1990
1991  // Does this instruction have any use in an environment before
1992  // control flow hits 'other'?
1993  bool HasAnyEnvironmentUseBefore(HInstruction* other);
1994
1995  // Remove all references to environment uses of this instruction.
1996  // The caller must ensure that this is safe to do.
1997  void RemoveEnvironmentUsers();
1998
1999 protected:
2000  virtual const HUserRecord<HInstruction*> InputRecordAt(size_t i) const = 0;
2001  virtual void SetRawInputRecordAt(size_t index, const HUserRecord<HInstruction*>& input) = 0;
2002
2003 private:
2004  void RemoveEnvironmentUser(HUseListNode<HEnvironment*>* use_node) { env_uses_.Remove(use_node); }
2005
2006  HInstruction* previous_;
2007  HInstruction* next_;
2008  HBasicBlock* block_;
2009  const uint32_t dex_pc_;
2010
2011  // An instruction gets an id when it is added to the graph.
2012  // It reflects creation order. A negative id means the instruction
2013  // has not been added to the graph.
2014  int id_;
2015
2016  // When doing liveness analysis, instructions that have uses get an SSA index.
2017  int ssa_index_;
2018
2019  // List of instructions that have this instruction as input.
2020  HUseList<HInstruction*> uses_;
2021
2022  // List of environments that contain this instruction.
2023  HUseList<HEnvironment*> env_uses_;
2024
2025  // The environment associated with this instruction. Not null if the instruction
2026  // might jump out of the method.
2027  HEnvironment* environment_;
2028
2029  // Set by the code generator.
2030  LocationSummary* locations_;
2031
2032  // Set by the liveness analysis.
2033  LiveInterval* live_interval_;
2034
2035  // Set by the liveness analysis, this is the position in a linear
2036  // order of blocks where this instruction's live interval start.
2037  size_t lifetime_position_;
2038
2039  SideEffects side_effects_;
2040
2041  // TODO: for primitive types this should be marked as invalid.
2042  ReferenceTypeInfo reference_type_info_;
2043
2044  friend class GraphChecker;
2045  friend class HBasicBlock;
2046  friend class HEnvironment;
2047  friend class HGraph;
2048  friend class HInstructionList;
2049
2050  DISALLOW_COPY_AND_ASSIGN(HInstruction);
2051};
2052std::ostream& operator<<(std::ostream& os, const HInstruction::InstructionKind& rhs);
2053
2054class HInputIterator : public ValueObject {
2055 public:
2056  explicit HInputIterator(HInstruction* instruction) : instruction_(instruction), index_(0) {}
2057
2058  bool Done() const { return index_ == instruction_->InputCount(); }
2059  HInstruction* Current() const { return instruction_->InputAt(index_); }
2060  void Advance() { index_++; }
2061
2062 private:
2063  HInstruction* instruction_;
2064  size_t index_;
2065
2066  DISALLOW_COPY_AND_ASSIGN(HInputIterator);
2067};
2068
2069class HInstructionIterator : public ValueObject {
2070 public:
2071  explicit HInstructionIterator(const HInstructionList& instructions)
2072      : instruction_(instructions.first_instruction_) {
2073    next_ = Done() ? nullptr : instruction_->GetNext();
2074  }
2075
2076  bool Done() const { return instruction_ == nullptr; }
2077  HInstruction* Current() const { return instruction_; }
2078  void Advance() {
2079    instruction_ = next_;
2080    next_ = Done() ? nullptr : instruction_->GetNext();
2081  }
2082
2083 private:
2084  HInstruction* instruction_;
2085  HInstruction* next_;
2086
2087  DISALLOW_COPY_AND_ASSIGN(HInstructionIterator);
2088};
2089
2090class HBackwardInstructionIterator : public ValueObject {
2091 public:
2092  explicit HBackwardInstructionIterator(const HInstructionList& instructions)
2093      : instruction_(instructions.last_instruction_) {
2094    next_ = Done() ? nullptr : instruction_->GetPrevious();
2095  }
2096
2097  bool Done() const { return instruction_ == nullptr; }
2098  HInstruction* Current() const { return instruction_; }
2099  void Advance() {
2100    instruction_ = next_;
2101    next_ = Done() ? nullptr : instruction_->GetPrevious();
2102  }
2103
2104 private:
2105  HInstruction* instruction_;
2106  HInstruction* next_;
2107
2108  DISALLOW_COPY_AND_ASSIGN(HBackwardInstructionIterator);
2109};
2110
2111template<size_t N>
2112class HTemplateInstruction: public HInstruction {
2113 public:
2114  HTemplateInstruction<N>(SideEffects side_effects, uint32_t dex_pc)
2115      : HInstruction(side_effects, dex_pc), inputs_() {}
2116  virtual ~HTemplateInstruction() {}
2117
2118  size_t InputCount() const OVERRIDE { return N; }
2119
2120 protected:
2121  const HUserRecord<HInstruction*> InputRecordAt(size_t i) const OVERRIDE {
2122    DCHECK_LT(i, N);
2123    return inputs_[i];
2124  }
2125
2126  void SetRawInputRecordAt(size_t i, const HUserRecord<HInstruction*>& input) OVERRIDE {
2127    DCHECK_LT(i, N);
2128    inputs_[i] = input;
2129  }
2130
2131 private:
2132  std::array<HUserRecord<HInstruction*>, N> inputs_;
2133
2134  friend class SsaBuilder;
2135};
2136
2137// HTemplateInstruction specialization for N=0.
2138template<>
2139class HTemplateInstruction<0>: public HInstruction {
2140 public:
2141  explicit HTemplateInstruction<0>(SideEffects side_effects, uint32_t dex_pc)
2142      : HInstruction(side_effects, dex_pc) {}
2143
2144  virtual ~HTemplateInstruction() {}
2145
2146  size_t InputCount() const OVERRIDE { return 0; }
2147
2148 protected:
2149  const HUserRecord<HInstruction*> InputRecordAt(size_t i ATTRIBUTE_UNUSED) const OVERRIDE {
2150    LOG(FATAL) << "Unreachable";
2151    UNREACHABLE();
2152  }
2153
2154  void SetRawInputRecordAt(size_t i ATTRIBUTE_UNUSED,
2155                           const HUserRecord<HInstruction*>& input ATTRIBUTE_UNUSED) OVERRIDE {
2156    LOG(FATAL) << "Unreachable";
2157    UNREACHABLE();
2158  }
2159
2160 private:
2161  friend class SsaBuilder;
2162};
2163
2164template<intptr_t N>
2165class HExpression : public HTemplateInstruction<N> {
2166 public:
2167  HExpression<N>(Primitive::Type type, SideEffects side_effects, uint32_t dex_pc)
2168      : HTemplateInstruction<N>(side_effects, dex_pc), type_(type) {}
2169  virtual ~HExpression() {}
2170
2171  Primitive::Type GetType() const OVERRIDE { return type_; }
2172
2173 protected:
2174  Primitive::Type type_;
2175};
2176
2177// Represents dex's RETURN_VOID opcode. A HReturnVoid is a control flow
2178// instruction that branches to the exit block.
2179class HReturnVoid : public HTemplateInstruction<0> {
2180 public:
2181  explicit HReturnVoid(uint32_t dex_pc = kNoDexPc)
2182      : HTemplateInstruction(SideEffects::None(), dex_pc) {}
2183
2184  bool IsControlFlow() const OVERRIDE { return true; }
2185
2186  DECLARE_INSTRUCTION(ReturnVoid);
2187
2188 private:
2189  DISALLOW_COPY_AND_ASSIGN(HReturnVoid);
2190};
2191
2192// Represents dex's RETURN opcodes. A HReturn is a control flow
2193// instruction that branches to the exit block.
2194class HReturn : public HTemplateInstruction<1> {
2195 public:
2196  explicit HReturn(HInstruction* value, uint32_t dex_pc = kNoDexPc)
2197      : HTemplateInstruction(SideEffects::None(), dex_pc) {
2198    SetRawInputAt(0, value);
2199  }
2200
2201  bool IsControlFlow() const OVERRIDE { return true; }
2202
2203  DECLARE_INSTRUCTION(Return);
2204
2205 private:
2206  DISALLOW_COPY_AND_ASSIGN(HReturn);
2207};
2208
2209// The exit instruction is the only instruction of the exit block.
2210// Instructions aborting the method (HThrow and HReturn) must branch to the
2211// exit block.
2212class HExit : public HTemplateInstruction<0> {
2213 public:
2214  explicit HExit(uint32_t dex_pc = kNoDexPc) : HTemplateInstruction(SideEffects::None(), dex_pc) {}
2215
2216  bool IsControlFlow() const OVERRIDE { return true; }
2217
2218  DECLARE_INSTRUCTION(Exit);
2219
2220 private:
2221  DISALLOW_COPY_AND_ASSIGN(HExit);
2222};
2223
2224// Jumps from one block to another.
2225class HGoto : public HTemplateInstruction<0> {
2226 public:
2227  explicit HGoto(uint32_t dex_pc = kNoDexPc) : HTemplateInstruction(SideEffects::None(), dex_pc) {}
2228
2229  bool IsControlFlow() const OVERRIDE { return true; }
2230
2231  HBasicBlock* GetSuccessor() const {
2232    return GetBlock()->GetSingleSuccessor();
2233  }
2234
2235  DECLARE_INSTRUCTION(Goto);
2236
2237 private:
2238  DISALLOW_COPY_AND_ASSIGN(HGoto);
2239};
2240
2241class HConstant : public HExpression<0> {
2242 public:
2243  explicit HConstant(Primitive::Type type, uint32_t dex_pc = kNoDexPc)
2244      : HExpression(type, SideEffects::None(), dex_pc) {}
2245
2246  bool CanBeMoved() const OVERRIDE { return true; }
2247
2248  virtual bool IsMinusOne() const { return false; }
2249  virtual bool IsZero() const { return false; }
2250  virtual bool IsOne() const { return false; }
2251
2252  virtual uint64_t GetValueAsUint64() const = 0;
2253
2254  DECLARE_INSTRUCTION(Constant);
2255
2256 private:
2257  DISALLOW_COPY_AND_ASSIGN(HConstant);
2258};
2259
2260class HNullConstant : public HConstant {
2261 public:
2262  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
2263    return true;
2264  }
2265
2266  uint64_t GetValueAsUint64() const OVERRIDE { return 0; }
2267
2268  size_t ComputeHashCode() const OVERRIDE { return 0; }
2269
2270  DECLARE_INSTRUCTION(NullConstant);
2271
2272 private:
2273  explicit HNullConstant(uint32_t dex_pc = kNoDexPc) : HConstant(Primitive::kPrimNot, dex_pc) {}
2274
2275  friend class HGraph;
2276  DISALLOW_COPY_AND_ASSIGN(HNullConstant);
2277};
2278
2279// Constants of the type int. Those can be from Dex instructions, or
2280// synthesized (for example with the if-eqz instruction).
2281class HIntConstant : public HConstant {
2282 public:
2283  int32_t GetValue() const { return value_; }
2284
2285  uint64_t GetValueAsUint64() const OVERRIDE {
2286    return static_cast<uint64_t>(static_cast<uint32_t>(value_));
2287  }
2288
2289  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2290    DCHECK(other->IsIntConstant());
2291    return other->AsIntConstant()->value_ == value_;
2292  }
2293
2294  size_t ComputeHashCode() const OVERRIDE { return GetValue(); }
2295
2296  bool IsMinusOne() const OVERRIDE { return GetValue() == -1; }
2297  bool IsZero() const OVERRIDE { return GetValue() == 0; }
2298  bool IsOne() const OVERRIDE { return GetValue() == 1; }
2299
2300  DECLARE_INSTRUCTION(IntConstant);
2301
2302 private:
2303  explicit HIntConstant(int32_t value, uint32_t dex_pc = kNoDexPc)
2304      : HConstant(Primitive::kPrimInt, dex_pc), value_(value) {}
2305  explicit HIntConstant(bool value, uint32_t dex_pc = kNoDexPc)
2306      : HConstant(Primitive::kPrimInt, dex_pc), value_(value ? 1 : 0) {}
2307
2308  const int32_t value_;
2309
2310  friend class HGraph;
2311  ART_FRIEND_TEST(GraphTest, InsertInstructionBefore);
2312  ART_FRIEND_TYPED_TEST(ParallelMoveTest, ConstantLast);
2313  DISALLOW_COPY_AND_ASSIGN(HIntConstant);
2314};
2315
2316class HLongConstant : public HConstant {
2317 public:
2318  int64_t GetValue() const { return value_; }
2319
2320  uint64_t GetValueAsUint64() const OVERRIDE { return value_; }
2321
2322  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2323    DCHECK(other->IsLongConstant());
2324    return other->AsLongConstant()->value_ == value_;
2325  }
2326
2327  size_t ComputeHashCode() const OVERRIDE { return static_cast<size_t>(GetValue()); }
2328
2329  bool IsMinusOne() const OVERRIDE { return GetValue() == -1; }
2330  bool IsZero() const OVERRIDE { return GetValue() == 0; }
2331  bool IsOne() const OVERRIDE { return GetValue() == 1; }
2332
2333  DECLARE_INSTRUCTION(LongConstant);
2334
2335 private:
2336  explicit HLongConstant(int64_t value, uint32_t dex_pc = kNoDexPc)
2337      : HConstant(Primitive::kPrimLong, dex_pc), value_(value) {}
2338
2339  const int64_t value_;
2340
2341  friend class HGraph;
2342  DISALLOW_COPY_AND_ASSIGN(HLongConstant);
2343};
2344
2345// Conditional branch. A block ending with an HIf instruction must have
2346// two successors.
2347class HIf : public HTemplateInstruction<1> {
2348 public:
2349  explicit HIf(HInstruction* input, uint32_t dex_pc = kNoDexPc)
2350      : HTemplateInstruction(SideEffects::None(), dex_pc) {
2351    SetRawInputAt(0, input);
2352  }
2353
2354  bool IsControlFlow() const OVERRIDE { return true; }
2355
2356  HBasicBlock* IfTrueSuccessor() const {
2357    return GetBlock()->GetSuccessors()[0];
2358  }
2359
2360  HBasicBlock* IfFalseSuccessor() const {
2361    return GetBlock()->GetSuccessors()[1];
2362  }
2363
2364  DECLARE_INSTRUCTION(If);
2365
2366 private:
2367  DISALLOW_COPY_AND_ASSIGN(HIf);
2368};
2369
2370
2371// Abstract instruction which marks the beginning and/or end of a try block and
2372// links it to the respective exception handlers. Behaves the same as a Goto in
2373// non-exceptional control flow.
2374// Normal-flow successor is stored at index zero, exception handlers under
2375// higher indices in no particular order.
2376class HTryBoundary : public HTemplateInstruction<0> {
2377 public:
2378  enum BoundaryKind {
2379    kEntry,
2380    kExit,
2381  };
2382
2383  explicit HTryBoundary(BoundaryKind kind, uint32_t dex_pc = kNoDexPc)
2384      : HTemplateInstruction(SideEffects::None(), dex_pc), kind_(kind) {}
2385
2386  bool IsControlFlow() const OVERRIDE { return true; }
2387
2388  // Returns the block's non-exceptional successor (index zero).
2389  HBasicBlock* GetNormalFlowSuccessor() const { return GetBlock()->GetSuccessors()[0]; }
2390
2391  // Returns whether `handler` is among its exception handlers (non-zero index
2392  // successors).
2393  bool HasExceptionHandler(const HBasicBlock& handler) const {
2394    DCHECK(handler.IsCatchBlock());
2395    return GetBlock()->HasSuccessor(&handler, 1u /* Skip first successor. */);
2396  }
2397
2398  // If not present already, adds `handler` to its block's list of exception
2399  // handlers.
2400  void AddExceptionHandler(HBasicBlock* handler) {
2401    if (!HasExceptionHandler(*handler)) {
2402      GetBlock()->AddSuccessor(handler);
2403    }
2404  }
2405
2406  bool IsEntry() const { return kind_ == BoundaryKind::kEntry; }
2407
2408  bool HasSameExceptionHandlersAs(const HTryBoundary& other) const;
2409
2410  DECLARE_INSTRUCTION(TryBoundary);
2411
2412 private:
2413  const BoundaryKind kind_;
2414
2415  DISALLOW_COPY_AND_ASSIGN(HTryBoundary);
2416};
2417
2418// Iterator over exception handlers of a given HTryBoundary, i.e. over
2419// exceptional successors of its basic block.
2420class HExceptionHandlerIterator : public ValueObject {
2421 public:
2422  explicit HExceptionHandlerIterator(const HTryBoundary& try_boundary)
2423    : block_(*try_boundary.GetBlock()), index_(block_.NumberOfNormalSuccessors()) {}
2424
2425  bool Done() const { return index_ == block_.GetSuccessors().size(); }
2426  HBasicBlock* Current() const { return block_.GetSuccessors()[index_]; }
2427  size_t CurrentSuccessorIndex() const { return index_; }
2428  void Advance() { ++index_; }
2429
2430 private:
2431  const HBasicBlock& block_;
2432  size_t index_;
2433
2434  DISALLOW_COPY_AND_ASSIGN(HExceptionHandlerIterator);
2435};
2436
2437// Deoptimize to interpreter, upon checking a condition.
2438class HDeoptimize : public HTemplateInstruction<1> {
2439 public:
2440  explicit HDeoptimize(HInstruction* cond, uint32_t dex_pc)
2441      : HTemplateInstruction(SideEffects::None(), dex_pc) {
2442    SetRawInputAt(0, cond);
2443  }
2444
2445  bool NeedsEnvironment() const OVERRIDE { return true; }
2446  bool CanThrow() const OVERRIDE { return true; }
2447
2448  DECLARE_INSTRUCTION(Deoptimize);
2449
2450 private:
2451  DISALLOW_COPY_AND_ASSIGN(HDeoptimize);
2452};
2453
2454// Represents the ArtMethod that was passed as a first argument to
2455// the method. It is used by instructions that depend on it, like
2456// instructions that work with the dex cache.
2457class HCurrentMethod : public HExpression<0> {
2458 public:
2459  explicit HCurrentMethod(Primitive::Type type, uint32_t dex_pc = kNoDexPc)
2460      : HExpression(type, SideEffects::None(), dex_pc) {}
2461
2462  DECLARE_INSTRUCTION(CurrentMethod);
2463
2464 private:
2465  DISALLOW_COPY_AND_ASSIGN(HCurrentMethod);
2466};
2467
2468// PackedSwitch (jump table). A block ending with a PackedSwitch instruction will
2469// have one successor for each entry in the switch table, and the final successor
2470// will be the block containing the next Dex opcode.
2471class HPackedSwitch : public HTemplateInstruction<1> {
2472 public:
2473  HPackedSwitch(int32_t start_value,
2474                uint32_t num_entries,
2475                HInstruction* input,
2476                uint32_t dex_pc = kNoDexPc)
2477    : HTemplateInstruction(SideEffects::None(), dex_pc),
2478      start_value_(start_value),
2479      num_entries_(num_entries) {
2480    SetRawInputAt(0, input);
2481  }
2482
2483  bool IsControlFlow() const OVERRIDE { return true; }
2484
2485  int32_t GetStartValue() const { return start_value_; }
2486
2487  uint32_t GetNumEntries() const { return num_entries_; }
2488
2489  HBasicBlock* GetDefaultBlock() const {
2490    // Last entry is the default block.
2491    return GetBlock()->GetSuccessors()[num_entries_];
2492  }
2493  DECLARE_INSTRUCTION(PackedSwitch);
2494
2495 private:
2496  const int32_t start_value_;
2497  const uint32_t num_entries_;
2498
2499  DISALLOW_COPY_AND_ASSIGN(HPackedSwitch);
2500};
2501
2502class HUnaryOperation : public HExpression<1> {
2503 public:
2504  HUnaryOperation(Primitive::Type result_type, HInstruction* input, uint32_t dex_pc = kNoDexPc)
2505      : HExpression(result_type, SideEffects::None(), dex_pc) {
2506    SetRawInputAt(0, input);
2507  }
2508
2509  HInstruction* GetInput() const { return InputAt(0); }
2510  Primitive::Type GetResultType() const { return GetType(); }
2511
2512  bool CanBeMoved() const OVERRIDE { return true; }
2513  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
2514    return true;
2515  }
2516
2517  // Try to statically evaluate `operation` and return a HConstant
2518  // containing the result of this evaluation.  If `operation` cannot
2519  // be evaluated as a constant, return null.
2520  HConstant* TryStaticEvaluation() const;
2521
2522  // Apply this operation to `x`.
2523  virtual HConstant* Evaluate(HIntConstant* x) const = 0;
2524  virtual HConstant* Evaluate(HLongConstant* x) const = 0;
2525
2526  DECLARE_INSTRUCTION(UnaryOperation);
2527
2528 private:
2529  DISALLOW_COPY_AND_ASSIGN(HUnaryOperation);
2530};
2531
2532class HBinaryOperation : public HExpression<2> {
2533 public:
2534  HBinaryOperation(Primitive::Type result_type,
2535                   HInstruction* left,
2536                   HInstruction* right,
2537                   SideEffects side_effects = SideEffects::None(),
2538                   uint32_t dex_pc = kNoDexPc)
2539      : HExpression(result_type, side_effects, dex_pc) {
2540    SetRawInputAt(0, left);
2541    SetRawInputAt(1, right);
2542  }
2543
2544  HInstruction* GetLeft() const { return InputAt(0); }
2545  HInstruction* GetRight() const { return InputAt(1); }
2546  Primitive::Type GetResultType() const { return GetType(); }
2547
2548  virtual bool IsCommutative() const { return false; }
2549
2550  // Put constant on the right.
2551  // Returns whether order is changed.
2552  bool OrderInputsWithConstantOnTheRight() {
2553    HInstruction* left = InputAt(0);
2554    HInstruction* right = InputAt(1);
2555    if (left->IsConstant() && !right->IsConstant()) {
2556      ReplaceInput(right, 0);
2557      ReplaceInput(left, 1);
2558      return true;
2559    }
2560    return false;
2561  }
2562
2563  // Order inputs by instruction id, but favor constant on the right side.
2564  // This helps GVN for commutative ops.
2565  void OrderInputs() {
2566    DCHECK(IsCommutative());
2567    HInstruction* left = InputAt(0);
2568    HInstruction* right = InputAt(1);
2569    if (left == right || (!left->IsConstant() && right->IsConstant())) {
2570      return;
2571    }
2572    if (OrderInputsWithConstantOnTheRight()) {
2573      return;
2574    }
2575    // Order according to instruction id.
2576    if (left->GetId() > right->GetId()) {
2577      ReplaceInput(right, 0);
2578      ReplaceInput(left, 1);
2579    }
2580  }
2581
2582  bool CanBeMoved() const OVERRIDE { return true; }
2583  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
2584    return true;
2585  }
2586
2587  // Try to statically evaluate `operation` and return a HConstant
2588  // containing the result of this evaluation.  If `operation` cannot
2589  // be evaluated as a constant, return null.
2590  HConstant* TryStaticEvaluation() const;
2591
2592  // Apply this operation to `x` and `y`.
2593  virtual HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const = 0;
2594  virtual HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const = 0;
2595  virtual HConstant* Evaluate(HIntConstant* x ATTRIBUTE_UNUSED,
2596                              HLongConstant* y ATTRIBUTE_UNUSED) const {
2597    VLOG(compiler) << DebugName() << " is not defined for the (int, long) case.";
2598    return nullptr;
2599  }
2600  virtual HConstant* Evaluate(HLongConstant* x ATTRIBUTE_UNUSED,
2601                              HIntConstant* y ATTRIBUTE_UNUSED) const {
2602    VLOG(compiler) << DebugName() << " is not defined for the (long, int) case.";
2603    return nullptr;
2604  }
2605
2606  // Returns an input that can legally be used as the right input and is
2607  // constant, or null.
2608  HConstant* GetConstantRight() const;
2609
2610  // If `GetConstantRight()` returns one of the input, this returns the other
2611  // one. Otherwise it returns null.
2612  HInstruction* GetLeastConstantLeft() const;
2613
2614  DECLARE_INSTRUCTION(BinaryOperation);
2615
2616 private:
2617  DISALLOW_COPY_AND_ASSIGN(HBinaryOperation);
2618};
2619
2620// The comparison bias applies for floating point operations and indicates how NaN
2621// comparisons are treated:
2622enum class ComparisonBias {
2623  kNoBias,  // bias is not applicable (i.e. for long operation)
2624  kGtBias,  // return 1 for NaN comparisons
2625  kLtBias,  // return -1 for NaN comparisons
2626};
2627
2628class HCondition : public HBinaryOperation {
2629 public:
2630  HCondition(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2631      : HBinaryOperation(Primitive::kPrimBoolean, first, second, SideEffects::None(), dex_pc),
2632        needs_materialization_(true),
2633        bias_(ComparisonBias::kNoBias) {}
2634
2635  bool NeedsMaterialization() const { return needs_materialization_; }
2636  void ClearNeedsMaterialization() { needs_materialization_ = false; }
2637
2638  // For code generation purposes, returns whether this instruction is just before
2639  // `instruction`, and disregard moves in between.
2640  bool IsBeforeWhenDisregardMoves(HInstruction* instruction) const;
2641
2642  DECLARE_INSTRUCTION(Condition);
2643
2644  virtual IfCondition GetCondition() const = 0;
2645
2646  virtual IfCondition GetOppositeCondition() const = 0;
2647
2648  bool IsGtBias() const { return bias_ == ComparisonBias::kGtBias; }
2649
2650  void SetBias(ComparisonBias bias) { bias_ = bias; }
2651
2652  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2653    return bias_ == other->AsCondition()->bias_;
2654  }
2655
2656  bool IsFPConditionTrueIfNaN() const {
2657    DCHECK(Primitive::IsFloatingPointType(InputAt(0)->GetType()));
2658    IfCondition if_cond = GetCondition();
2659    return IsGtBias() ? ((if_cond == kCondGT) || (if_cond == kCondGE)) : (if_cond == kCondNE);
2660  }
2661
2662  bool IsFPConditionFalseIfNaN() const {
2663    DCHECK(Primitive::IsFloatingPointType(InputAt(0)->GetType()));
2664    IfCondition if_cond = GetCondition();
2665    return IsGtBias() ? ((if_cond == kCondLT) || (if_cond == kCondLE)) : (if_cond == kCondEQ);
2666  }
2667
2668 private:
2669  // For register allocation purposes, returns whether this instruction needs to be
2670  // materialized (that is, not just be in the processor flags).
2671  bool needs_materialization_;
2672
2673  // Needed if we merge a HCompare into a HCondition.
2674  ComparisonBias bias_;
2675
2676  DISALLOW_COPY_AND_ASSIGN(HCondition);
2677};
2678
2679// Instruction to check if two inputs are equal to each other.
2680class HEqual : public HCondition {
2681 public:
2682  HEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2683      : HCondition(first, second, dex_pc) {}
2684
2685  bool IsCommutative() const OVERRIDE { return true; }
2686
2687  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2688    return GetBlock()->GetGraph()->GetIntConstant(
2689        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2690  }
2691  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2692    return GetBlock()->GetGraph()->GetIntConstant(
2693        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2694  }
2695
2696  DECLARE_INSTRUCTION(Equal);
2697
2698  IfCondition GetCondition() const OVERRIDE {
2699    return kCondEQ;
2700  }
2701
2702  IfCondition GetOppositeCondition() const OVERRIDE {
2703    return kCondNE;
2704  }
2705
2706 private:
2707  template <typename T> bool Compute(T x, T y) const { return x == y; }
2708
2709  DISALLOW_COPY_AND_ASSIGN(HEqual);
2710};
2711
2712class HNotEqual : public HCondition {
2713 public:
2714  HNotEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2715      : HCondition(first, second, dex_pc) {}
2716
2717  bool IsCommutative() const OVERRIDE { return true; }
2718
2719  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2720    return GetBlock()->GetGraph()->GetIntConstant(
2721        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2722  }
2723  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2724    return GetBlock()->GetGraph()->GetIntConstant(
2725        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2726  }
2727
2728  DECLARE_INSTRUCTION(NotEqual);
2729
2730  IfCondition GetCondition() const OVERRIDE {
2731    return kCondNE;
2732  }
2733
2734  IfCondition GetOppositeCondition() const OVERRIDE {
2735    return kCondEQ;
2736  }
2737
2738 private:
2739  template <typename T> bool Compute(T x, T y) const { return x != y; }
2740
2741  DISALLOW_COPY_AND_ASSIGN(HNotEqual);
2742};
2743
2744class HLessThan : public HCondition {
2745 public:
2746  HLessThan(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2747      : HCondition(first, second, dex_pc) {}
2748
2749  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2750    return GetBlock()->GetGraph()->GetIntConstant(
2751        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2752  }
2753  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2754    return GetBlock()->GetGraph()->GetIntConstant(
2755        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2756  }
2757
2758  DECLARE_INSTRUCTION(LessThan);
2759
2760  IfCondition GetCondition() const OVERRIDE {
2761    return kCondLT;
2762  }
2763
2764  IfCondition GetOppositeCondition() const OVERRIDE {
2765    return kCondGE;
2766  }
2767
2768 private:
2769  template <typename T> bool Compute(T x, T y) const { return x < y; }
2770
2771  DISALLOW_COPY_AND_ASSIGN(HLessThan);
2772};
2773
2774class HLessThanOrEqual : public HCondition {
2775 public:
2776  HLessThanOrEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2777      : HCondition(first, second, dex_pc) {}
2778
2779  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2780    return GetBlock()->GetGraph()->GetIntConstant(
2781        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2782  }
2783  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2784    return GetBlock()->GetGraph()->GetIntConstant(
2785        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2786  }
2787
2788  DECLARE_INSTRUCTION(LessThanOrEqual);
2789
2790  IfCondition GetCondition() const OVERRIDE {
2791    return kCondLE;
2792  }
2793
2794  IfCondition GetOppositeCondition() const OVERRIDE {
2795    return kCondGT;
2796  }
2797
2798 private:
2799  template <typename T> bool Compute(T x, T y) const { return x <= y; }
2800
2801  DISALLOW_COPY_AND_ASSIGN(HLessThanOrEqual);
2802};
2803
2804class HGreaterThan : public HCondition {
2805 public:
2806  HGreaterThan(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2807      : HCondition(first, second, dex_pc) {}
2808
2809  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2810    return GetBlock()->GetGraph()->GetIntConstant(
2811        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2812  }
2813  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2814    return GetBlock()->GetGraph()->GetIntConstant(
2815        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2816  }
2817
2818  DECLARE_INSTRUCTION(GreaterThan);
2819
2820  IfCondition GetCondition() const OVERRIDE {
2821    return kCondGT;
2822  }
2823
2824  IfCondition GetOppositeCondition() const OVERRIDE {
2825    return kCondLE;
2826  }
2827
2828 private:
2829  template <typename T> bool Compute(T x, T y) const { return x > y; }
2830
2831  DISALLOW_COPY_AND_ASSIGN(HGreaterThan);
2832};
2833
2834class HGreaterThanOrEqual : public HCondition {
2835 public:
2836  HGreaterThanOrEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2837      : HCondition(first, second, dex_pc) {}
2838
2839  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2840    return GetBlock()->GetGraph()->GetIntConstant(
2841        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2842  }
2843  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2844    return GetBlock()->GetGraph()->GetIntConstant(
2845        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2846  }
2847
2848  DECLARE_INSTRUCTION(GreaterThanOrEqual);
2849
2850  IfCondition GetCondition() const OVERRIDE {
2851    return kCondGE;
2852  }
2853
2854  IfCondition GetOppositeCondition() const OVERRIDE {
2855    return kCondLT;
2856  }
2857
2858 private:
2859  template <typename T> bool Compute(T x, T y) const { return x >= y; }
2860
2861  DISALLOW_COPY_AND_ASSIGN(HGreaterThanOrEqual);
2862};
2863
2864class HBelow : public HCondition {
2865 public:
2866  HBelow(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2867      : HCondition(first, second, dex_pc) {}
2868
2869  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2870    return GetBlock()->GetGraph()->GetIntConstant(
2871        Compute(static_cast<uint32_t>(x->GetValue()),
2872                static_cast<uint32_t>(y->GetValue())), GetDexPc());
2873  }
2874  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2875    return GetBlock()->GetGraph()->GetIntConstant(
2876        Compute(static_cast<uint64_t>(x->GetValue()),
2877                static_cast<uint64_t>(y->GetValue())), GetDexPc());
2878  }
2879
2880  DECLARE_INSTRUCTION(Below);
2881
2882  IfCondition GetCondition() const OVERRIDE {
2883    return kCondB;
2884  }
2885
2886  IfCondition GetOppositeCondition() const OVERRIDE {
2887    return kCondAE;
2888  }
2889
2890 private:
2891  template <typename T> bool Compute(T x, T y) const { return x < y; }
2892
2893  DISALLOW_COPY_AND_ASSIGN(HBelow);
2894};
2895
2896class HBelowOrEqual : public HCondition {
2897 public:
2898  HBelowOrEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2899      : HCondition(first, second, dex_pc) {}
2900
2901  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2902    return GetBlock()->GetGraph()->GetIntConstant(
2903        Compute(static_cast<uint32_t>(x->GetValue()),
2904                static_cast<uint32_t>(y->GetValue())), GetDexPc());
2905  }
2906  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2907    return GetBlock()->GetGraph()->GetIntConstant(
2908        Compute(static_cast<uint64_t>(x->GetValue()),
2909                static_cast<uint64_t>(y->GetValue())), GetDexPc());
2910  }
2911
2912  DECLARE_INSTRUCTION(BelowOrEqual);
2913
2914  IfCondition GetCondition() const OVERRIDE {
2915    return kCondBE;
2916  }
2917
2918  IfCondition GetOppositeCondition() const OVERRIDE {
2919    return kCondA;
2920  }
2921
2922 private:
2923  template <typename T> bool Compute(T x, T y) const { return x <= y; }
2924
2925  DISALLOW_COPY_AND_ASSIGN(HBelowOrEqual);
2926};
2927
2928class HAbove : public HCondition {
2929 public:
2930  HAbove(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2931      : HCondition(first, second, dex_pc) {}
2932
2933  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2934    return GetBlock()->GetGraph()->GetIntConstant(
2935        Compute(static_cast<uint32_t>(x->GetValue()),
2936                static_cast<uint32_t>(y->GetValue())), GetDexPc());
2937  }
2938  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2939    return GetBlock()->GetGraph()->GetIntConstant(
2940        Compute(static_cast<uint64_t>(x->GetValue()),
2941                static_cast<uint64_t>(y->GetValue())), GetDexPc());
2942  }
2943
2944  DECLARE_INSTRUCTION(Above);
2945
2946  IfCondition GetCondition() const OVERRIDE {
2947    return kCondA;
2948  }
2949
2950  IfCondition GetOppositeCondition() const OVERRIDE {
2951    return kCondBE;
2952  }
2953
2954 private:
2955  template <typename T> bool Compute(T x, T y) const { return x > y; }
2956
2957  DISALLOW_COPY_AND_ASSIGN(HAbove);
2958};
2959
2960class HAboveOrEqual : public HCondition {
2961 public:
2962  HAboveOrEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2963      : HCondition(first, second, dex_pc) {}
2964
2965  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2966    return GetBlock()->GetGraph()->GetIntConstant(
2967        Compute(static_cast<uint32_t>(x->GetValue()),
2968                static_cast<uint32_t>(y->GetValue())), GetDexPc());
2969  }
2970  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2971    return GetBlock()->GetGraph()->GetIntConstant(
2972        Compute(static_cast<uint64_t>(x->GetValue()),
2973                static_cast<uint64_t>(y->GetValue())), GetDexPc());
2974  }
2975
2976  DECLARE_INSTRUCTION(AboveOrEqual);
2977
2978  IfCondition GetCondition() const OVERRIDE {
2979    return kCondAE;
2980  }
2981
2982  IfCondition GetOppositeCondition() const OVERRIDE {
2983    return kCondB;
2984  }
2985
2986 private:
2987  template <typename T> bool Compute(T x, T y) const { return x >= y; }
2988
2989  DISALLOW_COPY_AND_ASSIGN(HAboveOrEqual);
2990};
2991
2992// Instruction to check how two inputs compare to each other.
2993// Result is 0 if input0 == input1, 1 if input0 > input1, or -1 if input0 < input1.
2994class HCompare : public HBinaryOperation {
2995 public:
2996  HCompare(Primitive::Type type,
2997           HInstruction* first,
2998           HInstruction* second,
2999           ComparisonBias bias,
3000           uint32_t dex_pc)
3001      : HBinaryOperation(Primitive::kPrimInt,
3002                         first,
3003                         second,
3004                         SideEffectsForArchRuntimeCalls(type),
3005                         dex_pc),
3006        bias_(bias) {
3007    DCHECK_EQ(type, first->GetType());
3008    DCHECK_EQ(type, second->GetType());
3009  }
3010
3011  template <typename T>
3012  int32_t Compute(T x, T y) const { return x == y ? 0 : x > y ? 1 : -1; }
3013
3014  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3015    return GetBlock()->GetGraph()->GetIntConstant(
3016        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3017  }
3018  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3019    return GetBlock()->GetGraph()->GetIntConstant(
3020        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3021  }
3022
3023  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
3024    return bias_ == other->AsCompare()->bias_;
3025  }
3026
3027  ComparisonBias GetBias() const { return bias_; }
3028
3029  bool IsGtBias() { return bias_ == ComparisonBias::kGtBias; }
3030
3031
3032  static SideEffects SideEffectsForArchRuntimeCalls(Primitive::Type type) {
3033    // MIPS64 uses a runtime call for FP comparisons.
3034    return Primitive::IsFloatingPointType(type) ? SideEffects::CanTriggerGC() : SideEffects::None();
3035  }
3036
3037  DECLARE_INSTRUCTION(Compare);
3038
3039 private:
3040  const ComparisonBias bias_;
3041
3042  DISALLOW_COPY_AND_ASSIGN(HCompare);
3043};
3044
3045// A local in the graph. Corresponds to a Dex register.
3046class HLocal : public HTemplateInstruction<0> {
3047 public:
3048  explicit HLocal(uint16_t reg_number)
3049      : HTemplateInstruction(SideEffects::None(), kNoDexPc), reg_number_(reg_number) {}
3050
3051  DECLARE_INSTRUCTION(Local);
3052
3053  uint16_t GetRegNumber() const { return reg_number_; }
3054
3055 private:
3056  // The Dex register number.
3057  const uint16_t reg_number_;
3058
3059  DISALLOW_COPY_AND_ASSIGN(HLocal);
3060};
3061
3062// Load a given local. The local is an input of this instruction.
3063class HLoadLocal : public HExpression<1> {
3064 public:
3065  HLoadLocal(HLocal* local, Primitive::Type type, uint32_t dex_pc = kNoDexPc)
3066      : HExpression(type, SideEffects::None(), dex_pc) {
3067    SetRawInputAt(0, local);
3068  }
3069
3070  HLocal* GetLocal() const { return reinterpret_cast<HLocal*>(InputAt(0)); }
3071
3072  DECLARE_INSTRUCTION(LoadLocal);
3073
3074 private:
3075  DISALLOW_COPY_AND_ASSIGN(HLoadLocal);
3076};
3077
3078// Store a value in a given local. This instruction has two inputs: the value
3079// and the local.
3080class HStoreLocal : public HTemplateInstruction<2> {
3081 public:
3082  HStoreLocal(HLocal* local, HInstruction* value, uint32_t dex_pc = kNoDexPc)
3083      : HTemplateInstruction(SideEffects::None(), dex_pc) {
3084    SetRawInputAt(0, local);
3085    SetRawInputAt(1, value);
3086  }
3087
3088  HLocal* GetLocal() const { return reinterpret_cast<HLocal*>(InputAt(0)); }
3089
3090  DECLARE_INSTRUCTION(StoreLocal);
3091
3092 private:
3093  DISALLOW_COPY_AND_ASSIGN(HStoreLocal);
3094};
3095
3096class HFloatConstant : public HConstant {
3097 public:
3098  float GetValue() const { return value_; }
3099
3100  uint64_t GetValueAsUint64() const OVERRIDE {
3101    return static_cast<uint64_t>(bit_cast<uint32_t, float>(value_));
3102  }
3103
3104  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
3105    DCHECK(other->IsFloatConstant());
3106    return other->AsFloatConstant()->GetValueAsUint64() == GetValueAsUint64();
3107  }
3108
3109  size_t ComputeHashCode() const OVERRIDE { return static_cast<size_t>(GetValue()); }
3110
3111  bool IsMinusOne() const OVERRIDE {
3112    return bit_cast<uint32_t, float>(value_) == bit_cast<uint32_t, float>((-1.0f));
3113  }
3114  bool IsZero() const OVERRIDE {
3115    return value_ == 0.0f;
3116  }
3117  bool IsOne() const OVERRIDE {
3118    return bit_cast<uint32_t, float>(value_) == bit_cast<uint32_t, float>(1.0f);
3119  }
3120  bool IsNaN() const {
3121    return std::isnan(value_);
3122  }
3123
3124  DECLARE_INSTRUCTION(FloatConstant);
3125
3126 private:
3127  explicit HFloatConstant(float value, uint32_t dex_pc = kNoDexPc)
3128      : HConstant(Primitive::kPrimFloat, dex_pc), value_(value) {}
3129  explicit HFloatConstant(int32_t value, uint32_t dex_pc = kNoDexPc)
3130      : HConstant(Primitive::kPrimFloat, dex_pc), value_(bit_cast<float, int32_t>(value)) {}
3131
3132  const float value_;
3133
3134  // Only the SsaBuilder and HGraph can create floating-point constants.
3135  friend class SsaBuilder;
3136  friend class HGraph;
3137  DISALLOW_COPY_AND_ASSIGN(HFloatConstant);
3138};
3139
3140class HDoubleConstant : public HConstant {
3141 public:
3142  double GetValue() const { return value_; }
3143
3144  uint64_t GetValueAsUint64() const OVERRIDE { return bit_cast<uint64_t, double>(value_); }
3145
3146  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
3147    DCHECK(other->IsDoubleConstant());
3148    return other->AsDoubleConstant()->GetValueAsUint64() == GetValueAsUint64();
3149  }
3150
3151  size_t ComputeHashCode() const OVERRIDE { return static_cast<size_t>(GetValue()); }
3152
3153  bool IsMinusOne() const OVERRIDE {
3154    return bit_cast<uint64_t, double>(value_) == bit_cast<uint64_t, double>((-1.0));
3155  }
3156  bool IsZero() const OVERRIDE {
3157    return value_ == 0.0;
3158  }
3159  bool IsOne() const OVERRIDE {
3160    return bit_cast<uint64_t, double>(value_) == bit_cast<uint64_t, double>(1.0);
3161  }
3162  bool IsNaN() const {
3163    return std::isnan(value_);
3164  }
3165
3166  DECLARE_INSTRUCTION(DoubleConstant);
3167
3168 private:
3169  explicit HDoubleConstant(double value, uint32_t dex_pc = kNoDexPc)
3170      : HConstant(Primitive::kPrimDouble, dex_pc), value_(value) {}
3171  explicit HDoubleConstant(int64_t value, uint32_t dex_pc = kNoDexPc)
3172      : HConstant(Primitive::kPrimDouble, dex_pc), value_(bit_cast<double, int64_t>(value)) {}
3173
3174  const double value_;
3175
3176  // Only the SsaBuilder and HGraph can create floating-point constants.
3177  friend class SsaBuilder;
3178  friend class HGraph;
3179  DISALLOW_COPY_AND_ASSIGN(HDoubleConstant);
3180};
3181
3182enum class Intrinsics {
3183#define OPTIMIZING_INTRINSICS(Name, IsStatic, NeedsEnvironmentOrCache) k ## Name,
3184#include "intrinsics_list.h"
3185  kNone,
3186  INTRINSICS_LIST(OPTIMIZING_INTRINSICS)
3187#undef INTRINSICS_LIST
3188#undef OPTIMIZING_INTRINSICS
3189};
3190std::ostream& operator<<(std::ostream& os, const Intrinsics& intrinsic);
3191
3192enum IntrinsicNeedsEnvironmentOrCache {
3193  kNoEnvironmentOrCache,        // Intrinsic does not require an environment or dex cache.
3194  kNeedsEnvironmentOrCache      // Intrinsic requires an environment or requires a dex cache.
3195};
3196
3197class HInvoke : public HInstruction {
3198 public:
3199  size_t InputCount() const OVERRIDE { return inputs_.size(); }
3200
3201  bool NeedsEnvironment() const OVERRIDE;
3202
3203  void SetArgumentAt(size_t index, HInstruction* argument) {
3204    SetRawInputAt(index, argument);
3205  }
3206
3207  // Return the number of arguments.  This number can be lower than
3208  // the number of inputs returned by InputCount(), as some invoke
3209  // instructions (e.g. HInvokeStaticOrDirect) can have non-argument
3210  // inputs at the end of their list of inputs.
3211  uint32_t GetNumberOfArguments() const { return number_of_arguments_; }
3212
3213  Primitive::Type GetType() const OVERRIDE { return return_type_; }
3214
3215
3216  uint32_t GetDexMethodIndex() const { return dex_method_index_; }
3217  const DexFile& GetDexFile() const { return GetEnvironment()->GetDexFile(); }
3218
3219  InvokeType GetOriginalInvokeType() const { return original_invoke_type_; }
3220
3221  Intrinsics GetIntrinsic() const {
3222    return intrinsic_;
3223  }
3224
3225  void SetIntrinsic(Intrinsics intrinsic, IntrinsicNeedsEnvironmentOrCache needs_env_or_cache);
3226
3227  bool IsFromInlinedInvoke() const {
3228    return GetEnvironment()->GetParent() != nullptr;
3229  }
3230
3231  bool CanThrow() const OVERRIDE { return true; }
3232
3233  uint32_t* GetIntrinsicOptimizations() {
3234    return &intrinsic_optimizations_;
3235  }
3236
3237  const uint32_t* GetIntrinsicOptimizations() const {
3238    return &intrinsic_optimizations_;
3239  }
3240
3241  bool IsIntrinsic() const { return intrinsic_ != Intrinsics::kNone; }
3242
3243  DECLARE_INSTRUCTION(Invoke);
3244
3245 protected:
3246  HInvoke(ArenaAllocator* arena,
3247          uint32_t number_of_arguments,
3248          uint32_t number_of_other_inputs,
3249          Primitive::Type return_type,
3250          uint32_t dex_pc,
3251          uint32_t dex_method_index,
3252          InvokeType original_invoke_type)
3253    : HInstruction(
3254          SideEffects::AllExceptGCDependency(), dex_pc),  // Assume write/read on all fields/arrays.
3255      number_of_arguments_(number_of_arguments),
3256      inputs_(number_of_arguments + number_of_other_inputs,
3257              arena->Adapter(kArenaAllocInvokeInputs)),
3258      return_type_(return_type),
3259      dex_method_index_(dex_method_index),
3260      original_invoke_type_(original_invoke_type),
3261      intrinsic_(Intrinsics::kNone),
3262      intrinsic_optimizations_(0) {
3263  }
3264
3265  const HUserRecord<HInstruction*> InputRecordAt(size_t index) const OVERRIDE {
3266    return inputs_[index];
3267  }
3268
3269  void SetRawInputRecordAt(size_t index, const HUserRecord<HInstruction*>& input) OVERRIDE {
3270    inputs_[index] = input;
3271  }
3272
3273  uint32_t number_of_arguments_;
3274  ArenaVector<HUserRecord<HInstruction*>> inputs_;
3275  const Primitive::Type return_type_;
3276  const uint32_t dex_method_index_;
3277  const InvokeType original_invoke_type_;
3278  Intrinsics intrinsic_;
3279
3280  // A magic word holding optimizations for intrinsics. See intrinsics.h.
3281  uint32_t intrinsic_optimizations_;
3282
3283 private:
3284  DISALLOW_COPY_AND_ASSIGN(HInvoke);
3285};
3286
3287class HInvokeUnresolved : public HInvoke {
3288 public:
3289  HInvokeUnresolved(ArenaAllocator* arena,
3290                    uint32_t number_of_arguments,
3291                    Primitive::Type return_type,
3292                    uint32_t dex_pc,
3293                    uint32_t dex_method_index,
3294                    InvokeType invoke_type)
3295      : HInvoke(arena,
3296                number_of_arguments,
3297                0u /* number_of_other_inputs */,
3298                return_type,
3299                dex_pc,
3300                dex_method_index,
3301                invoke_type) {
3302  }
3303
3304  DECLARE_INSTRUCTION(InvokeUnresolved);
3305
3306 private:
3307  DISALLOW_COPY_AND_ASSIGN(HInvokeUnresolved);
3308};
3309
3310class HInvokeStaticOrDirect : public HInvoke {
3311 public:
3312  // Requirements of this method call regarding the class
3313  // initialization (clinit) check of its declaring class.
3314  enum class ClinitCheckRequirement {
3315    kNone,      // Class already initialized.
3316    kExplicit,  // Static call having explicit clinit check as last input.
3317    kImplicit,  // Static call implicitly requiring a clinit check.
3318  };
3319
3320  // Determines how to load the target ArtMethod*.
3321  enum class MethodLoadKind {
3322    // Use a String init ArtMethod* loaded from Thread entrypoints.
3323    kStringInit,
3324
3325    // Use the method's own ArtMethod* loaded by the register allocator.
3326    kRecursive,
3327
3328    // Use ArtMethod* at a known address, embed the direct address in the code.
3329    // Used for app->boot calls with non-relocatable image and for JIT-compiled calls.
3330    kDirectAddress,
3331
3332    // Use ArtMethod* at an address that will be known at link time, embed the direct
3333    // address in the code. If the image is relocatable, emit .patch_oat entry.
3334    // Used for app->boot calls with relocatable image and boot->boot calls, whether
3335    // the image relocatable or not.
3336    kDirectAddressWithFixup,
3337
3338    // Load from resoved methods array in the dex cache using a PC-relative load.
3339    // Used when we need to use the dex cache, for example for invoke-static that
3340    // may cause class initialization (the entry may point to a resolution method),
3341    // and we know that we can access the dex cache arrays using a PC-relative load.
3342    kDexCachePcRelative,
3343
3344    // Use ArtMethod* from the resolved methods of the compiled method's own ArtMethod*.
3345    // Used for JIT when we need to use the dex cache. This is also the last-resort-kind
3346    // used when other kinds are unavailable (say, dex cache arrays are not PC-relative)
3347    // or unimplemented or impractical (i.e. slow) on a particular architecture.
3348    kDexCacheViaMethod,
3349  };
3350
3351  // Determines the location of the code pointer.
3352  enum class CodePtrLocation {
3353    // Recursive call, use local PC-relative call instruction.
3354    kCallSelf,
3355
3356    // Use PC-relative call instruction patched at link time.
3357    // Used for calls within an oat file, boot->boot or app->app.
3358    kCallPCRelative,
3359
3360    // Call to a known target address, embed the direct address in code.
3361    // Used for app->boot call with non-relocatable image and for JIT-compiled calls.
3362    kCallDirect,
3363
3364    // Call to a target address that will be known at link time, embed the direct
3365    // address in code. If the image is relocatable, emit .patch_oat entry.
3366    // Used for app->boot calls with relocatable image and boot->boot calls, whether
3367    // the image relocatable or not.
3368    kCallDirectWithFixup,
3369
3370    // Use code pointer from the ArtMethod*.
3371    // Used when we don't know the target code. This is also the last-resort-kind used when
3372    // other kinds are unimplemented or impractical (i.e. slow) on a particular architecture.
3373    kCallArtMethod,
3374  };
3375
3376  struct DispatchInfo {
3377    MethodLoadKind method_load_kind;
3378    CodePtrLocation code_ptr_location;
3379    // The method load data holds
3380    //   - thread entrypoint offset for kStringInit method if this is a string init invoke.
3381    //     Note that there are multiple string init methods, each having its own offset.
3382    //   - the method address for kDirectAddress
3383    //   - the dex cache arrays offset for kDexCachePcRel.
3384    uint64_t method_load_data;
3385    uint64_t direct_code_ptr;
3386  };
3387
3388  HInvokeStaticOrDirect(ArenaAllocator* arena,
3389                        uint32_t number_of_arguments,
3390                        Primitive::Type return_type,
3391                        uint32_t dex_pc,
3392                        uint32_t method_index,
3393                        MethodReference target_method,
3394                        DispatchInfo dispatch_info,
3395                        InvokeType original_invoke_type,
3396                        InvokeType invoke_type,
3397                        ClinitCheckRequirement clinit_check_requirement)
3398      : HInvoke(arena,
3399                number_of_arguments,
3400                // There is one extra argument for the HCurrentMethod node, and
3401                // potentially one other if the clinit check is explicit, and one other
3402                // if the method is a string factory.
3403                1u + (clinit_check_requirement == ClinitCheckRequirement::kExplicit ? 1u : 0u)
3404                   + (dispatch_info.method_load_kind == MethodLoadKind::kStringInit ? 1u : 0u),
3405                return_type,
3406                dex_pc,
3407                method_index,
3408                original_invoke_type),
3409        invoke_type_(invoke_type),
3410        clinit_check_requirement_(clinit_check_requirement),
3411        target_method_(target_method),
3412        dispatch_info_(dispatch_info) {}
3413
3414  void SetDispatchInfo(const DispatchInfo& dispatch_info) {
3415    dispatch_info_ = dispatch_info;
3416  }
3417
3418  bool CanDoImplicitNullCheckOn(HInstruction* obj ATTRIBUTE_UNUSED) const OVERRIDE {
3419    // We access the method via the dex cache so we can't do an implicit null check.
3420    // TODO: for intrinsics we can generate implicit null checks.
3421    return false;
3422  }
3423
3424  bool CanBeNull() const OVERRIDE {
3425    return return_type_ == Primitive::kPrimNot && !IsStringInit();
3426  }
3427
3428  InvokeType GetInvokeType() const { return invoke_type_; }
3429  MethodLoadKind GetMethodLoadKind() const { return dispatch_info_.method_load_kind; }
3430  CodePtrLocation GetCodePtrLocation() const { return dispatch_info_.code_ptr_location; }
3431  bool IsRecursive() const { return GetMethodLoadKind() == MethodLoadKind::kRecursive; }
3432  bool NeedsDexCacheOfDeclaringClass() const OVERRIDE;
3433  bool IsStringInit() const { return GetMethodLoadKind() == MethodLoadKind::kStringInit; }
3434  uint32_t GetCurrentMethodInputIndex() const { return GetNumberOfArguments(); }
3435  bool HasMethodAddress() const { return GetMethodLoadKind() == MethodLoadKind::kDirectAddress; }
3436  bool HasPcRelDexCache() const {
3437    return GetMethodLoadKind() == MethodLoadKind::kDexCachePcRelative;
3438  }
3439  bool HasDirectCodePtr() const { return GetCodePtrLocation() == CodePtrLocation::kCallDirect; }
3440  MethodReference GetTargetMethod() const { return target_method_; }
3441
3442  int32_t GetStringInitOffset() const {
3443    DCHECK(IsStringInit());
3444    return dispatch_info_.method_load_data;
3445  }
3446
3447  uint64_t GetMethodAddress() const {
3448    DCHECK(HasMethodAddress());
3449    return dispatch_info_.method_load_data;
3450  }
3451
3452  uint32_t GetDexCacheArrayOffset() const {
3453    DCHECK(HasPcRelDexCache());
3454    return dispatch_info_.method_load_data;
3455  }
3456
3457  uint64_t GetDirectCodePtr() const {
3458    DCHECK(HasDirectCodePtr());
3459    return dispatch_info_.direct_code_ptr;
3460  }
3461
3462  ClinitCheckRequirement GetClinitCheckRequirement() const { return clinit_check_requirement_; }
3463
3464  // Is this instruction a call to a static method?
3465  bool IsStatic() const {
3466    return GetInvokeType() == kStatic;
3467  }
3468
3469  // Remove the art::HLoadClass instruction set as last input by
3470  // art::PrepareForRegisterAllocation::VisitClinitCheck in lieu of
3471  // the initial art::HClinitCheck instruction (only relevant for
3472  // static calls with explicit clinit check).
3473  void RemoveLoadClassAsLastInput() {
3474    DCHECK(IsStaticWithExplicitClinitCheck());
3475    size_t last_input_index = InputCount() - 1;
3476    HInstruction* last_input = InputAt(last_input_index);
3477    DCHECK(last_input != nullptr);
3478    DCHECK(last_input->IsLoadClass()) << last_input->DebugName();
3479    RemoveAsUserOfInput(last_input_index);
3480    inputs_.pop_back();
3481    clinit_check_requirement_ = ClinitCheckRequirement::kImplicit;
3482    DCHECK(IsStaticWithImplicitClinitCheck());
3483  }
3484
3485  bool IsStringFactoryFor(HFakeString* str) const {
3486    if (!IsStringInit()) return false;
3487    // +1 for the current method.
3488    if (InputCount() == (number_of_arguments_ + 1)) return false;
3489    return InputAt(InputCount() - 1)->AsFakeString() == str;
3490  }
3491
3492  void RemoveFakeStringArgumentAsLastInput() {
3493    DCHECK(IsStringInit());
3494    size_t last_input_index = InputCount() - 1;
3495    HInstruction* last_input = InputAt(last_input_index);
3496    DCHECK(last_input != nullptr);
3497    DCHECK(last_input->IsFakeString()) << last_input->DebugName();
3498    RemoveAsUserOfInput(last_input_index);
3499    inputs_.pop_back();
3500  }
3501
3502  // Is this a call to a static method whose declaring class has an
3503  // explicit intialization check in the graph?
3504  bool IsStaticWithExplicitClinitCheck() const {
3505    return IsStatic() && (clinit_check_requirement_ == ClinitCheckRequirement::kExplicit);
3506  }
3507
3508  // Is this a call to a static method whose declaring class has an
3509  // implicit intialization check requirement?
3510  bool IsStaticWithImplicitClinitCheck() const {
3511    return IsStatic() && (clinit_check_requirement_ == ClinitCheckRequirement::kImplicit);
3512  }
3513
3514  DECLARE_INSTRUCTION(InvokeStaticOrDirect);
3515
3516 protected:
3517  const HUserRecord<HInstruction*> InputRecordAt(size_t i) const OVERRIDE {
3518    const HUserRecord<HInstruction*> input_record = HInvoke::InputRecordAt(i);
3519    if (kIsDebugBuild && IsStaticWithExplicitClinitCheck() && (i == InputCount() - 1)) {
3520      HInstruction* input = input_record.GetInstruction();
3521      // `input` is the last input of a static invoke marked as having
3522      // an explicit clinit check. It must either be:
3523      // - an art::HClinitCheck instruction, set by art::HGraphBuilder; or
3524      // - an art::HLoadClass instruction, set by art::PrepareForRegisterAllocation.
3525      DCHECK(input != nullptr);
3526      DCHECK(input->IsClinitCheck() || input->IsLoadClass()) << input->DebugName();
3527    }
3528    return input_record;
3529  }
3530
3531 private:
3532  const InvokeType invoke_type_;
3533  ClinitCheckRequirement clinit_check_requirement_;
3534  // The target method may refer to different dex file or method index than the original
3535  // invoke. This happens for sharpened calls and for calls where a method was redeclared
3536  // in derived class to increase visibility.
3537  MethodReference target_method_;
3538  DispatchInfo dispatch_info_;
3539
3540  DISALLOW_COPY_AND_ASSIGN(HInvokeStaticOrDirect);
3541};
3542
3543class HInvokeVirtual : public HInvoke {
3544 public:
3545  HInvokeVirtual(ArenaAllocator* arena,
3546                 uint32_t number_of_arguments,
3547                 Primitive::Type return_type,
3548                 uint32_t dex_pc,
3549                 uint32_t dex_method_index,
3550                 uint32_t vtable_index)
3551      : HInvoke(arena, number_of_arguments, 0u, return_type, dex_pc, dex_method_index, kVirtual),
3552        vtable_index_(vtable_index) {}
3553
3554  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
3555    // TODO: Add implicit null checks in intrinsics.
3556    return (obj == InputAt(0)) && !GetLocations()->Intrinsified();
3557  }
3558
3559  uint32_t GetVTableIndex() const { return vtable_index_; }
3560
3561  DECLARE_INSTRUCTION(InvokeVirtual);
3562
3563 private:
3564  const uint32_t vtable_index_;
3565
3566  DISALLOW_COPY_AND_ASSIGN(HInvokeVirtual);
3567};
3568
3569class HInvokeInterface : public HInvoke {
3570 public:
3571  HInvokeInterface(ArenaAllocator* arena,
3572                   uint32_t number_of_arguments,
3573                   Primitive::Type return_type,
3574                   uint32_t dex_pc,
3575                   uint32_t dex_method_index,
3576                   uint32_t imt_index)
3577      : HInvoke(arena, number_of_arguments, 0u, return_type, dex_pc, dex_method_index, kInterface),
3578        imt_index_(imt_index) {}
3579
3580  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
3581    // TODO: Add implicit null checks in intrinsics.
3582    return (obj == InputAt(0)) && !GetLocations()->Intrinsified();
3583  }
3584
3585  uint32_t GetImtIndex() const { return imt_index_; }
3586  uint32_t GetDexMethodIndex() const { return dex_method_index_; }
3587
3588  DECLARE_INSTRUCTION(InvokeInterface);
3589
3590 private:
3591  const uint32_t imt_index_;
3592
3593  DISALLOW_COPY_AND_ASSIGN(HInvokeInterface);
3594};
3595
3596class HNewInstance : public HExpression<1> {
3597 public:
3598  HNewInstance(HCurrentMethod* current_method,
3599               uint32_t dex_pc,
3600               uint16_t type_index,
3601               const DexFile& dex_file,
3602               QuickEntrypointEnum entrypoint)
3603      : HExpression(Primitive::kPrimNot, SideEffects::CanTriggerGC(), dex_pc),
3604        type_index_(type_index),
3605        dex_file_(dex_file),
3606        entrypoint_(entrypoint) {
3607    SetRawInputAt(0, current_method);
3608  }
3609
3610  uint16_t GetTypeIndex() const { return type_index_; }
3611  const DexFile& GetDexFile() const { return dex_file_; }
3612
3613  // Calls runtime so needs an environment.
3614  bool NeedsEnvironment() const OVERRIDE { return true; }
3615  // It may throw when called on:
3616  //   - interfaces
3617  //   - abstract/innaccessible/unknown classes
3618  // TODO: optimize when possible.
3619  bool CanThrow() const OVERRIDE { return true; }
3620
3621  bool CanBeNull() const OVERRIDE { return false; }
3622
3623  QuickEntrypointEnum GetEntrypoint() const { return entrypoint_; }
3624
3625  DECLARE_INSTRUCTION(NewInstance);
3626
3627 private:
3628  const uint16_t type_index_;
3629  const DexFile& dex_file_;
3630  const QuickEntrypointEnum entrypoint_;
3631
3632  DISALLOW_COPY_AND_ASSIGN(HNewInstance);
3633};
3634
3635class HNeg : public HUnaryOperation {
3636 public:
3637  HNeg(Primitive::Type result_type, HInstruction* input, uint32_t dex_pc = kNoDexPc)
3638      : HUnaryOperation(result_type, input, dex_pc) {}
3639
3640  template <typename T> T Compute(T x) const { return -x; }
3641
3642  HConstant* Evaluate(HIntConstant* x) const OVERRIDE {
3643    return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue()), GetDexPc());
3644  }
3645  HConstant* Evaluate(HLongConstant* x) const OVERRIDE {
3646    return GetBlock()->GetGraph()->GetLongConstant(Compute(x->GetValue()), GetDexPc());
3647  }
3648
3649  DECLARE_INSTRUCTION(Neg);
3650
3651 private:
3652  DISALLOW_COPY_AND_ASSIGN(HNeg);
3653};
3654
3655class HNewArray : public HExpression<2> {
3656 public:
3657  HNewArray(HInstruction* length,
3658            HCurrentMethod* current_method,
3659            uint32_t dex_pc,
3660            uint16_t type_index,
3661            const DexFile& dex_file,
3662            QuickEntrypointEnum entrypoint)
3663      : HExpression(Primitive::kPrimNot, SideEffects::CanTriggerGC(), dex_pc),
3664        type_index_(type_index),
3665        dex_file_(dex_file),
3666        entrypoint_(entrypoint) {
3667    SetRawInputAt(0, length);
3668    SetRawInputAt(1, current_method);
3669  }
3670
3671  uint16_t GetTypeIndex() const { return type_index_; }
3672  const DexFile& GetDexFile() const { return dex_file_; }
3673
3674  // Calls runtime so needs an environment.
3675  bool NeedsEnvironment() const OVERRIDE { return true; }
3676
3677  // May throw NegativeArraySizeException, OutOfMemoryError, etc.
3678  bool CanThrow() const OVERRIDE { return true; }
3679
3680  bool CanBeNull() const OVERRIDE { return false; }
3681
3682  QuickEntrypointEnum GetEntrypoint() const { return entrypoint_; }
3683
3684  DECLARE_INSTRUCTION(NewArray);
3685
3686 private:
3687  const uint16_t type_index_;
3688  const DexFile& dex_file_;
3689  const QuickEntrypointEnum entrypoint_;
3690
3691  DISALLOW_COPY_AND_ASSIGN(HNewArray);
3692};
3693
3694class HAdd : public HBinaryOperation {
3695 public:
3696  HAdd(Primitive::Type result_type,
3697       HInstruction* left,
3698       HInstruction* right,
3699       uint32_t dex_pc = kNoDexPc)
3700      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
3701
3702  bool IsCommutative() const OVERRIDE { return true; }
3703
3704  template <typename T> T Compute(T x, T y) const { return x + y; }
3705
3706  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3707    return GetBlock()->GetGraph()->GetIntConstant(
3708        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3709  }
3710  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3711    return GetBlock()->GetGraph()->GetLongConstant(
3712        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3713  }
3714
3715  DECLARE_INSTRUCTION(Add);
3716
3717 private:
3718  DISALLOW_COPY_AND_ASSIGN(HAdd);
3719};
3720
3721class HSub : public HBinaryOperation {
3722 public:
3723  HSub(Primitive::Type result_type,
3724       HInstruction* left,
3725       HInstruction* right,
3726       uint32_t dex_pc = kNoDexPc)
3727      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
3728
3729  template <typename T> T Compute(T x, T y) const { return x - y; }
3730
3731  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3732    return GetBlock()->GetGraph()->GetIntConstant(
3733        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3734  }
3735  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3736    return GetBlock()->GetGraph()->GetLongConstant(
3737        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3738  }
3739
3740  DECLARE_INSTRUCTION(Sub);
3741
3742 private:
3743  DISALLOW_COPY_AND_ASSIGN(HSub);
3744};
3745
3746class HMul : public HBinaryOperation {
3747 public:
3748  HMul(Primitive::Type result_type,
3749       HInstruction* left,
3750       HInstruction* right,
3751       uint32_t dex_pc = kNoDexPc)
3752      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
3753
3754  bool IsCommutative() const OVERRIDE { return true; }
3755
3756  template <typename T> T Compute(T x, T y) const { return x * y; }
3757
3758  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3759    return GetBlock()->GetGraph()->GetIntConstant(
3760        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3761  }
3762  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3763    return GetBlock()->GetGraph()->GetLongConstant(
3764        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3765  }
3766
3767  DECLARE_INSTRUCTION(Mul);
3768
3769 private:
3770  DISALLOW_COPY_AND_ASSIGN(HMul);
3771};
3772
3773class HDiv : public HBinaryOperation {
3774 public:
3775  HDiv(Primitive::Type result_type,
3776       HInstruction* left,
3777       HInstruction* right,
3778       uint32_t dex_pc)
3779      : HBinaryOperation(result_type, left, right, SideEffectsForArchRuntimeCalls(), dex_pc) {}
3780
3781  template <typename T>
3782  T Compute(T x, T y) const {
3783    // Our graph structure ensures we never have 0 for `y` during
3784    // constant folding.
3785    DCHECK_NE(y, 0);
3786    // Special case -1 to avoid getting a SIGFPE on x86(_64).
3787    return (y == -1) ? -x : x / y;
3788  }
3789
3790  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3791    return GetBlock()->GetGraph()->GetIntConstant(
3792        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3793  }
3794  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3795    return GetBlock()->GetGraph()->GetLongConstant(
3796        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3797  }
3798
3799  static SideEffects SideEffectsForArchRuntimeCalls() {
3800    // The generated code can use a runtime call.
3801    return SideEffects::CanTriggerGC();
3802  }
3803
3804  DECLARE_INSTRUCTION(Div);
3805
3806 private:
3807  DISALLOW_COPY_AND_ASSIGN(HDiv);
3808};
3809
3810class HRem : public HBinaryOperation {
3811 public:
3812  HRem(Primitive::Type result_type,
3813       HInstruction* left,
3814       HInstruction* right,
3815       uint32_t dex_pc)
3816      : HBinaryOperation(result_type, left, right, SideEffectsForArchRuntimeCalls(), dex_pc) {}
3817
3818  template <typename T>
3819  T Compute(T x, T y) const {
3820    // Our graph structure ensures we never have 0 for `y` during
3821    // constant folding.
3822    DCHECK_NE(y, 0);
3823    // Special case -1 to avoid getting a SIGFPE on x86(_64).
3824    return (y == -1) ? 0 : x % y;
3825  }
3826
3827  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3828    return GetBlock()->GetGraph()->GetIntConstant(
3829        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3830  }
3831  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3832    return GetBlock()->GetGraph()->GetLongConstant(
3833        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3834  }
3835
3836
3837  static SideEffects SideEffectsForArchRuntimeCalls() {
3838    return SideEffects::CanTriggerGC();
3839  }
3840
3841  DECLARE_INSTRUCTION(Rem);
3842
3843 private:
3844  DISALLOW_COPY_AND_ASSIGN(HRem);
3845};
3846
3847class HDivZeroCheck : public HExpression<1> {
3848 public:
3849  HDivZeroCheck(HInstruction* value, uint32_t dex_pc)
3850      : HExpression(value->GetType(), SideEffects::None(), dex_pc) {
3851    SetRawInputAt(0, value);
3852  }
3853
3854  Primitive::Type GetType() const OVERRIDE { return InputAt(0)->GetType(); }
3855
3856  bool CanBeMoved() const OVERRIDE { return true; }
3857
3858  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
3859    return true;
3860  }
3861
3862  bool NeedsEnvironment() const OVERRIDE { return true; }
3863  bool CanThrow() const OVERRIDE { return true; }
3864
3865  DECLARE_INSTRUCTION(DivZeroCheck);
3866
3867 private:
3868  DISALLOW_COPY_AND_ASSIGN(HDivZeroCheck);
3869};
3870
3871class HShl : public HBinaryOperation {
3872 public:
3873  HShl(Primitive::Type result_type,
3874       HInstruction* left,
3875       HInstruction* right,
3876       uint32_t dex_pc = kNoDexPc)
3877      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
3878
3879  template <typename T, typename U, typename V>
3880  T Compute(T x, U y, V max_shift_value) const {
3881    static_assert(std::is_same<V, typename std::make_unsigned<T>::type>::value,
3882                  "V is not the unsigned integer type corresponding to T");
3883    return x << (y & max_shift_value);
3884  }
3885
3886  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3887    return GetBlock()->GetGraph()->GetIntConstant(
3888        Compute(x->GetValue(), y->GetValue(), kMaxIntShiftValue), GetDexPc());
3889  }
3890  // There is no `Evaluate(HIntConstant* x, HLongConstant* y)`, as this
3891  // case is handled as `x << static_cast<int>(y)`.
3892  HConstant* Evaluate(HLongConstant* x, HIntConstant* y) const OVERRIDE {
3893    return GetBlock()->GetGraph()->GetLongConstant(
3894        Compute(x->GetValue(), y->GetValue(), kMaxLongShiftValue), GetDexPc());
3895  }
3896  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3897    return GetBlock()->GetGraph()->GetLongConstant(
3898        Compute(x->GetValue(), y->GetValue(), kMaxLongShiftValue), GetDexPc());
3899  }
3900
3901  DECLARE_INSTRUCTION(Shl);
3902
3903 private:
3904  DISALLOW_COPY_AND_ASSIGN(HShl);
3905};
3906
3907class HShr : public HBinaryOperation {
3908 public:
3909  HShr(Primitive::Type result_type,
3910       HInstruction* left,
3911       HInstruction* right,
3912       uint32_t dex_pc = kNoDexPc)
3913      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
3914
3915  template <typename T, typename U, typename V>
3916  T Compute(T x, U y, V max_shift_value) const {
3917    static_assert(std::is_same<V, typename std::make_unsigned<T>::type>::value,
3918                  "V is not the unsigned integer type corresponding to T");
3919    return x >> (y & max_shift_value);
3920  }
3921
3922  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3923    return GetBlock()->GetGraph()->GetIntConstant(
3924        Compute(x->GetValue(), y->GetValue(), kMaxIntShiftValue), GetDexPc());
3925  }
3926  // There is no `Evaluate(HIntConstant* x, HLongConstant* y)`, as this
3927  // case is handled as `x >> static_cast<int>(y)`.
3928  HConstant* Evaluate(HLongConstant* x, HIntConstant* y) const OVERRIDE {
3929    return GetBlock()->GetGraph()->GetLongConstant(
3930        Compute(x->GetValue(), y->GetValue(), kMaxLongShiftValue), GetDexPc());
3931  }
3932  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3933    return GetBlock()->GetGraph()->GetLongConstant(
3934        Compute(x->GetValue(), y->GetValue(), kMaxLongShiftValue), GetDexPc());
3935  }
3936
3937  DECLARE_INSTRUCTION(Shr);
3938
3939 private:
3940  DISALLOW_COPY_AND_ASSIGN(HShr);
3941};
3942
3943class HUShr : public HBinaryOperation {
3944 public:
3945  HUShr(Primitive::Type result_type,
3946        HInstruction* left,
3947        HInstruction* right,
3948        uint32_t dex_pc = kNoDexPc)
3949      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
3950
3951  template <typename T, typename U, typename V>
3952  T Compute(T x, U y, V max_shift_value) const {
3953    static_assert(std::is_same<V, typename std::make_unsigned<T>::type>::value,
3954                  "V is not the unsigned integer type corresponding to T");
3955    V ux = static_cast<V>(x);
3956    return static_cast<T>(ux >> (y & max_shift_value));
3957  }
3958
3959  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3960    return GetBlock()->GetGraph()->GetIntConstant(
3961        Compute(x->GetValue(), y->GetValue(), kMaxIntShiftValue), GetDexPc());
3962  }
3963  // There is no `Evaluate(HIntConstant* x, HLongConstant* y)`, as this
3964  // case is handled as `x >>> static_cast<int>(y)`.
3965  HConstant* Evaluate(HLongConstant* x, HIntConstant* y) const OVERRIDE {
3966    return GetBlock()->GetGraph()->GetLongConstant(
3967        Compute(x->GetValue(), y->GetValue(), kMaxLongShiftValue), GetDexPc());
3968  }
3969  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3970    return GetBlock()->GetGraph()->GetLongConstant(
3971        Compute(x->GetValue(), y->GetValue(), kMaxLongShiftValue), GetDexPc());
3972  }
3973
3974  DECLARE_INSTRUCTION(UShr);
3975
3976 private:
3977  DISALLOW_COPY_AND_ASSIGN(HUShr);
3978};
3979
3980class HAnd : public HBinaryOperation {
3981 public:
3982  HAnd(Primitive::Type result_type,
3983       HInstruction* left,
3984       HInstruction* right,
3985       uint32_t dex_pc = kNoDexPc)
3986      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
3987
3988  bool IsCommutative() const OVERRIDE { return true; }
3989
3990  template <typename T, typename U>
3991  auto Compute(T x, U y) const -> decltype(x & y) { return x & y; }
3992
3993  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3994    return GetBlock()->GetGraph()->GetIntConstant(
3995        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3996  }
3997  HConstant* Evaluate(HIntConstant* x, HLongConstant* y) const OVERRIDE {
3998    return GetBlock()->GetGraph()->GetLongConstant(
3999        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4000  }
4001  HConstant* Evaluate(HLongConstant* x, HIntConstant* y) const OVERRIDE {
4002    return GetBlock()->GetGraph()->GetLongConstant(
4003        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4004  }
4005  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
4006    return GetBlock()->GetGraph()->GetLongConstant(
4007        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4008  }
4009
4010  DECLARE_INSTRUCTION(And);
4011
4012 private:
4013  DISALLOW_COPY_AND_ASSIGN(HAnd);
4014};
4015
4016class HOr : public HBinaryOperation {
4017 public:
4018  HOr(Primitive::Type result_type,
4019      HInstruction* left,
4020      HInstruction* right,
4021      uint32_t dex_pc = kNoDexPc)
4022      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
4023
4024  bool IsCommutative() const OVERRIDE { return true; }
4025
4026  template <typename T, typename U>
4027  auto Compute(T x, U y) const -> decltype(x | y) { return x | y; }
4028
4029  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
4030    return GetBlock()->GetGraph()->GetIntConstant(
4031        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4032  }
4033  HConstant* Evaluate(HIntConstant* x, HLongConstant* y) const OVERRIDE {
4034    return GetBlock()->GetGraph()->GetLongConstant(
4035        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4036  }
4037  HConstant* Evaluate(HLongConstant* x, HIntConstant* y) const OVERRIDE {
4038    return GetBlock()->GetGraph()->GetLongConstant(
4039        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4040  }
4041  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
4042    return GetBlock()->GetGraph()->GetLongConstant(
4043        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4044  }
4045
4046  DECLARE_INSTRUCTION(Or);
4047
4048 private:
4049  DISALLOW_COPY_AND_ASSIGN(HOr);
4050};
4051
4052class HXor : public HBinaryOperation {
4053 public:
4054  HXor(Primitive::Type result_type,
4055       HInstruction* left,
4056       HInstruction* right,
4057       uint32_t dex_pc = kNoDexPc)
4058      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
4059
4060  bool IsCommutative() const OVERRIDE { return true; }
4061
4062  template <typename T, typename U>
4063  auto Compute(T x, U y) const -> decltype(x ^ y) { return x ^ y; }
4064
4065  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
4066    return GetBlock()->GetGraph()->GetIntConstant(
4067        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4068  }
4069  HConstant* Evaluate(HIntConstant* x, HLongConstant* y) const OVERRIDE {
4070    return GetBlock()->GetGraph()->GetLongConstant(
4071        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4072  }
4073  HConstant* Evaluate(HLongConstant* x, HIntConstant* y) const OVERRIDE {
4074    return GetBlock()->GetGraph()->GetLongConstant(
4075        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4076  }
4077  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
4078    return GetBlock()->GetGraph()->GetLongConstant(
4079        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4080  }
4081
4082  DECLARE_INSTRUCTION(Xor);
4083
4084 private:
4085  DISALLOW_COPY_AND_ASSIGN(HXor);
4086};
4087
4088// The value of a parameter in this method. Its location depends on
4089// the calling convention.
4090class HParameterValue : public HExpression<0> {
4091 public:
4092  HParameterValue(const DexFile& dex_file,
4093                  uint16_t type_index,
4094                  uint8_t index,
4095                  Primitive::Type parameter_type,
4096                  bool is_this = false)
4097      : HExpression(parameter_type, SideEffects::None(), kNoDexPc),
4098        dex_file_(dex_file),
4099        type_index_(type_index),
4100        index_(index),
4101        is_this_(is_this),
4102        can_be_null_(!is_this) {}
4103
4104  const DexFile& GetDexFile() const { return dex_file_; }
4105  uint16_t GetTypeIndex() const { return type_index_; }
4106  uint8_t GetIndex() const { return index_; }
4107  bool IsThis() const { return is_this_; }
4108
4109  bool CanBeNull() const OVERRIDE { return can_be_null_; }
4110  void SetCanBeNull(bool can_be_null) { can_be_null_ = can_be_null; }
4111
4112  DECLARE_INSTRUCTION(ParameterValue);
4113
4114 private:
4115  const DexFile& dex_file_;
4116  const uint16_t type_index_;
4117  // The index of this parameter in the parameters list. Must be less
4118  // than HGraph::number_of_in_vregs_.
4119  const uint8_t index_;
4120
4121  // Whether or not the parameter value corresponds to 'this' argument.
4122  const bool is_this_;
4123
4124  bool can_be_null_;
4125
4126  DISALLOW_COPY_AND_ASSIGN(HParameterValue);
4127};
4128
4129class HNot : public HUnaryOperation {
4130 public:
4131  HNot(Primitive::Type result_type, HInstruction* input, uint32_t dex_pc = kNoDexPc)
4132      : HUnaryOperation(result_type, input, dex_pc) {}
4133
4134  bool CanBeMoved() const OVERRIDE { return true; }
4135  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
4136    return true;
4137  }
4138
4139  template <typename T> T Compute(T x) const { return ~x; }
4140
4141  HConstant* Evaluate(HIntConstant* x) const OVERRIDE {
4142    return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue()), GetDexPc());
4143  }
4144  HConstant* Evaluate(HLongConstant* x) const OVERRIDE {
4145    return GetBlock()->GetGraph()->GetLongConstant(Compute(x->GetValue()), GetDexPc());
4146  }
4147
4148  DECLARE_INSTRUCTION(Not);
4149
4150 private:
4151  DISALLOW_COPY_AND_ASSIGN(HNot);
4152};
4153
4154class HBooleanNot : public HUnaryOperation {
4155 public:
4156  explicit HBooleanNot(HInstruction* input, uint32_t dex_pc = kNoDexPc)
4157      : HUnaryOperation(Primitive::Type::kPrimBoolean, input, dex_pc) {}
4158
4159  bool CanBeMoved() const OVERRIDE { return true; }
4160  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
4161    return true;
4162  }
4163
4164  template <typename T> bool Compute(T x) const {
4165    DCHECK(IsUint<1>(x));
4166    return !x;
4167  }
4168
4169  HConstant* Evaluate(HIntConstant* x) const OVERRIDE {
4170    return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue()), GetDexPc());
4171  }
4172  HConstant* Evaluate(HLongConstant* x ATTRIBUTE_UNUSED) const OVERRIDE {
4173    LOG(FATAL) << DebugName() << " is not defined for long values";
4174    UNREACHABLE();
4175  }
4176
4177  DECLARE_INSTRUCTION(BooleanNot);
4178
4179 private:
4180  DISALLOW_COPY_AND_ASSIGN(HBooleanNot);
4181};
4182
4183class HTypeConversion : public HExpression<1> {
4184 public:
4185  // Instantiate a type conversion of `input` to `result_type`.
4186  HTypeConversion(Primitive::Type result_type, HInstruction* input, uint32_t dex_pc)
4187      : HExpression(result_type,
4188                    SideEffectsForArchRuntimeCalls(input->GetType(), result_type),
4189                    dex_pc) {
4190    SetRawInputAt(0, input);
4191    DCHECK_NE(input->GetType(), result_type);
4192  }
4193
4194  HInstruction* GetInput() const { return InputAt(0); }
4195  Primitive::Type GetInputType() const { return GetInput()->GetType(); }
4196  Primitive::Type GetResultType() const { return GetType(); }
4197
4198  // Required by the x86, ARM, MIPS and MIPS64 code generators when producing calls
4199  // to the runtime.
4200
4201  bool CanBeMoved() const OVERRIDE { return true; }
4202  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE { return true; }
4203
4204  // Try to statically evaluate the conversion and return a HConstant
4205  // containing the result.  If the input cannot be converted, return nullptr.
4206  HConstant* TryStaticEvaluation() const;
4207
4208  static SideEffects SideEffectsForArchRuntimeCalls(Primitive::Type input_type,
4209                                                    Primitive::Type result_type) {
4210    // Some architectures may not require the 'GC' side effects, but at this point
4211    // in the compilation process we do not know what architecture we will
4212    // generate code for, so we must be conservative.
4213    if ((Primitive::IsFloatingPointType(input_type) && Primitive::IsIntegralType(result_type))
4214        || (input_type == Primitive::kPrimLong && Primitive::IsFloatingPointType(result_type))) {
4215      return SideEffects::CanTriggerGC();
4216    }
4217    return SideEffects::None();
4218  }
4219
4220  DECLARE_INSTRUCTION(TypeConversion);
4221
4222 private:
4223  DISALLOW_COPY_AND_ASSIGN(HTypeConversion);
4224};
4225
4226static constexpr uint32_t kNoRegNumber = -1;
4227
4228class HPhi : public HInstruction {
4229 public:
4230  HPhi(ArenaAllocator* arena,
4231       uint32_t reg_number,
4232       size_t number_of_inputs,
4233       Primitive::Type type,
4234       uint32_t dex_pc = kNoDexPc)
4235      : HInstruction(SideEffects::None(), dex_pc),
4236        inputs_(number_of_inputs, arena->Adapter(kArenaAllocPhiInputs)),
4237        reg_number_(reg_number),
4238        type_(type),
4239        is_live_(false),
4240        can_be_null_(true) {
4241  }
4242
4243  // Returns a type equivalent to the given `type`, but that a `HPhi` can hold.
4244  static Primitive::Type ToPhiType(Primitive::Type type) {
4245    switch (type) {
4246      case Primitive::kPrimBoolean:
4247      case Primitive::kPrimByte:
4248      case Primitive::kPrimShort:
4249      case Primitive::kPrimChar:
4250        return Primitive::kPrimInt;
4251      default:
4252        return type;
4253    }
4254  }
4255
4256  bool IsCatchPhi() const { return GetBlock()->IsCatchBlock(); }
4257
4258  size_t InputCount() const OVERRIDE { return inputs_.size(); }
4259
4260  void AddInput(HInstruction* input);
4261  void RemoveInputAt(size_t index);
4262
4263  Primitive::Type GetType() const OVERRIDE { return type_; }
4264  void SetType(Primitive::Type type) { type_ = type; }
4265
4266  bool CanBeNull() const OVERRIDE { return can_be_null_; }
4267  void SetCanBeNull(bool can_be_null) { can_be_null_ = can_be_null; }
4268
4269  uint32_t GetRegNumber() const { return reg_number_; }
4270
4271  void SetDead() { is_live_ = false; }
4272  void SetLive() { is_live_ = true; }
4273  bool IsDead() const { return !is_live_; }
4274  bool IsLive() const { return is_live_; }
4275
4276  bool IsVRegEquivalentOf(HInstruction* other) const {
4277    return other != nullptr
4278        && other->IsPhi()
4279        && other->AsPhi()->GetBlock() == GetBlock()
4280        && other->AsPhi()->GetRegNumber() == GetRegNumber();
4281  }
4282
4283  // Returns the next equivalent phi (starting from the current one) or null if there is none.
4284  // An equivalent phi is a phi having the same dex register and type.
4285  // It assumes that phis with the same dex register are adjacent.
4286  HPhi* GetNextEquivalentPhiWithSameType() {
4287    HInstruction* next = GetNext();
4288    while (next != nullptr && next->AsPhi()->GetRegNumber() == reg_number_) {
4289      if (next->GetType() == GetType()) {
4290        return next->AsPhi();
4291      }
4292      next = next->GetNext();
4293    }
4294    return nullptr;
4295  }
4296
4297  DECLARE_INSTRUCTION(Phi);
4298
4299 protected:
4300  const HUserRecord<HInstruction*> InputRecordAt(size_t index) const OVERRIDE {
4301    return inputs_[index];
4302  }
4303
4304  void SetRawInputRecordAt(size_t index, const HUserRecord<HInstruction*>& input) OVERRIDE {
4305    inputs_[index] = input;
4306  }
4307
4308 private:
4309  ArenaVector<HUserRecord<HInstruction*> > inputs_;
4310  const uint32_t reg_number_;
4311  Primitive::Type type_;
4312  bool is_live_;
4313  bool can_be_null_;
4314
4315  DISALLOW_COPY_AND_ASSIGN(HPhi);
4316};
4317
4318class HNullCheck : public HExpression<1> {
4319 public:
4320  HNullCheck(HInstruction* value, uint32_t dex_pc)
4321      : HExpression(value->GetType(), SideEffects::None(), dex_pc) {
4322    SetRawInputAt(0, value);
4323  }
4324
4325  bool CanBeMoved() const OVERRIDE { return true; }
4326  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
4327    return true;
4328  }
4329
4330  bool NeedsEnvironment() const OVERRIDE { return true; }
4331
4332  bool CanThrow() const OVERRIDE { return true; }
4333
4334  bool CanBeNull() const OVERRIDE { return false; }
4335
4336
4337  DECLARE_INSTRUCTION(NullCheck);
4338
4339 private:
4340  DISALLOW_COPY_AND_ASSIGN(HNullCheck);
4341};
4342
4343class FieldInfo : public ValueObject {
4344 public:
4345  FieldInfo(MemberOffset field_offset,
4346            Primitive::Type field_type,
4347            bool is_volatile,
4348            uint32_t index,
4349            uint16_t declaring_class_def_index,
4350            const DexFile& dex_file,
4351            Handle<mirror::DexCache> dex_cache)
4352      : field_offset_(field_offset),
4353        field_type_(field_type),
4354        is_volatile_(is_volatile),
4355        index_(index),
4356        declaring_class_def_index_(declaring_class_def_index),
4357        dex_file_(dex_file),
4358        dex_cache_(dex_cache) {}
4359
4360  MemberOffset GetFieldOffset() const { return field_offset_; }
4361  Primitive::Type GetFieldType() const { return field_type_; }
4362  uint32_t GetFieldIndex() const { return index_; }
4363  uint16_t GetDeclaringClassDefIndex() const { return declaring_class_def_index_;}
4364  const DexFile& GetDexFile() const { return dex_file_; }
4365  bool IsVolatile() const { return is_volatile_; }
4366  Handle<mirror::DexCache> GetDexCache() const { return dex_cache_; }
4367
4368 private:
4369  const MemberOffset field_offset_;
4370  const Primitive::Type field_type_;
4371  const bool is_volatile_;
4372  const uint32_t index_;
4373  const uint16_t declaring_class_def_index_;
4374  const DexFile& dex_file_;
4375  const Handle<mirror::DexCache> dex_cache_;
4376};
4377
4378class HInstanceFieldGet : public HExpression<1> {
4379 public:
4380  HInstanceFieldGet(HInstruction* value,
4381                    Primitive::Type field_type,
4382                    MemberOffset field_offset,
4383                    bool is_volatile,
4384                    uint32_t field_idx,
4385                    uint16_t declaring_class_def_index,
4386                    const DexFile& dex_file,
4387                    Handle<mirror::DexCache> dex_cache,
4388                    uint32_t dex_pc)
4389      : HExpression(field_type,
4390                    SideEffects::FieldReadOfType(field_type, is_volatile),
4391                    dex_pc),
4392        field_info_(field_offset,
4393                    field_type,
4394                    is_volatile,
4395                    field_idx,
4396                    declaring_class_def_index,
4397                    dex_file,
4398                    dex_cache) {
4399    SetRawInputAt(0, value);
4400  }
4401
4402  bool CanBeMoved() const OVERRIDE { return !IsVolatile(); }
4403
4404  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
4405    HInstanceFieldGet* other_get = other->AsInstanceFieldGet();
4406    return GetFieldOffset().SizeValue() == other_get->GetFieldOffset().SizeValue();
4407  }
4408
4409  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
4410    return (obj == InputAt(0)) && GetFieldOffset().Uint32Value() < kPageSize;
4411  }
4412
4413  size_t ComputeHashCode() const OVERRIDE {
4414    return (HInstruction::ComputeHashCode() << 7) | GetFieldOffset().SizeValue();
4415  }
4416
4417  const FieldInfo& GetFieldInfo() const { return field_info_; }
4418  MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
4419  Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); }
4420  bool IsVolatile() const { return field_info_.IsVolatile(); }
4421
4422  DECLARE_INSTRUCTION(InstanceFieldGet);
4423
4424 private:
4425  const FieldInfo field_info_;
4426
4427  DISALLOW_COPY_AND_ASSIGN(HInstanceFieldGet);
4428};
4429
4430class HInstanceFieldSet : public HTemplateInstruction<2> {
4431 public:
4432  HInstanceFieldSet(HInstruction* object,
4433                    HInstruction* value,
4434                    Primitive::Type field_type,
4435                    MemberOffset field_offset,
4436                    bool is_volatile,
4437                    uint32_t field_idx,
4438                    uint16_t declaring_class_def_index,
4439                    const DexFile& dex_file,
4440                    Handle<mirror::DexCache> dex_cache,
4441                    uint32_t dex_pc)
4442      : HTemplateInstruction(SideEffects::FieldWriteOfType(field_type, is_volatile),
4443                             dex_pc),
4444        field_info_(field_offset,
4445                    field_type,
4446                    is_volatile,
4447                    field_idx,
4448                    declaring_class_def_index,
4449                    dex_file,
4450                    dex_cache),
4451        value_can_be_null_(true) {
4452    SetRawInputAt(0, object);
4453    SetRawInputAt(1, value);
4454  }
4455
4456  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
4457    return (obj == InputAt(0)) && GetFieldOffset().Uint32Value() < kPageSize;
4458  }
4459
4460  const FieldInfo& GetFieldInfo() const { return field_info_; }
4461  MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
4462  Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); }
4463  bool IsVolatile() const { return field_info_.IsVolatile(); }
4464  HInstruction* GetValue() const { return InputAt(1); }
4465  bool GetValueCanBeNull() const { return value_can_be_null_; }
4466  void ClearValueCanBeNull() { value_can_be_null_ = false; }
4467
4468  DECLARE_INSTRUCTION(InstanceFieldSet);
4469
4470 private:
4471  const FieldInfo field_info_;
4472  bool value_can_be_null_;
4473
4474  DISALLOW_COPY_AND_ASSIGN(HInstanceFieldSet);
4475};
4476
4477class HArrayGet : public HExpression<2> {
4478 public:
4479  HArrayGet(HInstruction* array,
4480            HInstruction* index,
4481            Primitive::Type type,
4482            uint32_t dex_pc,
4483            SideEffects additional_side_effects = SideEffects::None())
4484      : HExpression(type,
4485                    SideEffects::ArrayReadOfType(type).Union(additional_side_effects),
4486                    dex_pc) {
4487    SetRawInputAt(0, array);
4488    SetRawInputAt(1, index);
4489  }
4490
4491  bool CanBeMoved() const OVERRIDE { return true; }
4492  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
4493    return true;
4494  }
4495  bool CanDoImplicitNullCheckOn(HInstruction* obj ATTRIBUTE_UNUSED) const OVERRIDE {
4496    // TODO: We can be smarter here.
4497    // Currently, the array access is always preceded by an ArrayLength or a NullCheck
4498    // which generates the implicit null check. There are cases when these can be removed
4499    // to produce better code. If we ever add optimizations to do so we should allow an
4500    // implicit check here (as long as the address falls in the first page).
4501    return false;
4502  }
4503
4504  void SetType(Primitive::Type type) { type_ = type; }
4505
4506  HInstruction* GetArray() const { return InputAt(0); }
4507  HInstruction* GetIndex() const { return InputAt(1); }
4508
4509  DECLARE_INSTRUCTION(ArrayGet);
4510
4511 private:
4512  DISALLOW_COPY_AND_ASSIGN(HArrayGet);
4513};
4514
4515class HArraySet : public HTemplateInstruction<3> {
4516 public:
4517  HArraySet(HInstruction* array,
4518            HInstruction* index,
4519            HInstruction* value,
4520            Primitive::Type expected_component_type,
4521            uint32_t dex_pc,
4522            SideEffects additional_side_effects = SideEffects::None())
4523      : HTemplateInstruction(
4524            SideEffects::ArrayWriteOfType(expected_component_type).Union(
4525                SideEffectsForArchRuntimeCalls(value->GetType())).Union(
4526                    additional_side_effects),
4527            dex_pc),
4528        expected_component_type_(expected_component_type),
4529        needs_type_check_(value->GetType() == Primitive::kPrimNot),
4530        value_can_be_null_(true),
4531        static_type_of_array_is_object_array_(false) {
4532    SetRawInputAt(0, array);
4533    SetRawInputAt(1, index);
4534    SetRawInputAt(2, value);
4535  }
4536
4537  bool NeedsEnvironment() const OVERRIDE {
4538    // We currently always call a runtime method to catch array store
4539    // exceptions.
4540    return needs_type_check_;
4541  }
4542
4543  // Can throw ArrayStoreException.
4544  bool CanThrow() const OVERRIDE { return needs_type_check_; }
4545
4546  bool CanDoImplicitNullCheckOn(HInstruction* obj ATTRIBUTE_UNUSED) const OVERRIDE {
4547    // TODO: Same as for ArrayGet.
4548    return false;
4549  }
4550
4551  void ClearNeedsTypeCheck() {
4552    needs_type_check_ = false;
4553  }
4554
4555  void ClearValueCanBeNull() {
4556    value_can_be_null_ = false;
4557  }
4558
4559  void SetStaticTypeOfArrayIsObjectArray() {
4560    static_type_of_array_is_object_array_ = true;
4561  }
4562
4563  bool GetValueCanBeNull() const { return value_can_be_null_; }
4564  bool NeedsTypeCheck() const { return needs_type_check_; }
4565  bool StaticTypeOfArrayIsObjectArray() const { return static_type_of_array_is_object_array_; }
4566
4567  HInstruction* GetArray() const { return InputAt(0); }
4568  HInstruction* GetIndex() const { return InputAt(1); }
4569  HInstruction* GetValue() const { return InputAt(2); }
4570
4571  Primitive::Type GetComponentType() const {
4572    // The Dex format does not type floating point index operations. Since the
4573    // `expected_component_type_` is set during building and can therefore not
4574    // be correct, we also check what is the value type. If it is a floating
4575    // point type, we must use that type.
4576    Primitive::Type value_type = GetValue()->GetType();
4577    return ((value_type == Primitive::kPrimFloat) || (value_type == Primitive::kPrimDouble))
4578        ? value_type
4579        : expected_component_type_;
4580  }
4581
4582  Primitive::Type GetRawExpectedComponentType() const {
4583    return expected_component_type_;
4584  }
4585
4586  static SideEffects SideEffectsForArchRuntimeCalls(Primitive::Type value_type) {
4587    return (value_type == Primitive::kPrimNot) ? SideEffects::CanTriggerGC() : SideEffects::None();
4588  }
4589
4590  DECLARE_INSTRUCTION(ArraySet);
4591
4592 private:
4593  const Primitive::Type expected_component_type_;
4594  bool needs_type_check_;
4595  bool value_can_be_null_;
4596  // Cached information for the reference_type_info_ so that codegen
4597  // does not need to inspect the static type.
4598  bool static_type_of_array_is_object_array_;
4599
4600  DISALLOW_COPY_AND_ASSIGN(HArraySet);
4601};
4602
4603class HArrayLength : public HExpression<1> {
4604 public:
4605  HArrayLength(HInstruction* array, uint32_t dex_pc)
4606      : HExpression(Primitive::kPrimInt, SideEffects::None(), dex_pc) {
4607    // Note that arrays do not change length, so the instruction does not
4608    // depend on any write.
4609    SetRawInputAt(0, array);
4610  }
4611
4612  bool CanBeMoved() const OVERRIDE { return true; }
4613  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
4614    return true;
4615  }
4616  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
4617    return obj == InputAt(0);
4618  }
4619
4620  DECLARE_INSTRUCTION(ArrayLength);
4621
4622 private:
4623  DISALLOW_COPY_AND_ASSIGN(HArrayLength);
4624};
4625
4626class HBoundsCheck : public HExpression<2> {
4627 public:
4628  HBoundsCheck(HInstruction* index, HInstruction* length, uint32_t dex_pc)
4629      : HExpression(index->GetType(), SideEffects::None(), dex_pc) {
4630    DCHECK(index->GetType() == Primitive::kPrimInt);
4631    SetRawInputAt(0, index);
4632    SetRawInputAt(1, length);
4633  }
4634
4635  bool CanBeMoved() const OVERRIDE { return true; }
4636  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
4637    return true;
4638  }
4639
4640  bool NeedsEnvironment() const OVERRIDE { return true; }
4641
4642  bool CanThrow() const OVERRIDE { return true; }
4643
4644  HInstruction* GetIndex() const { return InputAt(0); }
4645
4646  DECLARE_INSTRUCTION(BoundsCheck);
4647
4648 private:
4649  DISALLOW_COPY_AND_ASSIGN(HBoundsCheck);
4650};
4651
4652/**
4653 * Some DEX instructions are folded into multiple HInstructions that need
4654 * to stay live until the last HInstruction. This class
4655 * is used as a marker for the baseline compiler to ensure its preceding
4656 * HInstruction stays live. `index` represents the stack location index of the
4657 * instruction (the actual offset is computed as index * vreg_size).
4658 */
4659class HTemporary : public HTemplateInstruction<0> {
4660 public:
4661  explicit HTemporary(size_t index, uint32_t dex_pc = kNoDexPc)
4662      : HTemplateInstruction(SideEffects::None(), dex_pc), index_(index) {}
4663
4664  size_t GetIndex() const { return index_; }
4665
4666  Primitive::Type GetType() const OVERRIDE {
4667    // The previous instruction is the one that will be stored in the temporary location.
4668    DCHECK(GetPrevious() != nullptr);
4669    return GetPrevious()->GetType();
4670  }
4671
4672  DECLARE_INSTRUCTION(Temporary);
4673
4674 private:
4675  const size_t index_;
4676  DISALLOW_COPY_AND_ASSIGN(HTemporary);
4677};
4678
4679class HSuspendCheck : public HTemplateInstruction<0> {
4680 public:
4681  explicit HSuspendCheck(uint32_t dex_pc)
4682      : HTemplateInstruction(SideEffects::CanTriggerGC(), dex_pc), slow_path_(nullptr) {}
4683
4684  bool NeedsEnvironment() const OVERRIDE {
4685    return true;
4686  }
4687
4688  void SetSlowPath(SlowPathCode* slow_path) { slow_path_ = slow_path; }
4689  SlowPathCode* GetSlowPath() const { return slow_path_; }
4690
4691  DECLARE_INSTRUCTION(SuspendCheck);
4692
4693 private:
4694  // Only used for code generation, in order to share the same slow path between back edges
4695  // of a same loop.
4696  SlowPathCode* slow_path_;
4697
4698  DISALLOW_COPY_AND_ASSIGN(HSuspendCheck);
4699};
4700
4701/**
4702 * Instruction to load a Class object.
4703 */
4704class HLoadClass : public HExpression<1> {
4705 public:
4706  HLoadClass(HCurrentMethod* current_method,
4707             uint16_t type_index,
4708             const DexFile& dex_file,
4709             bool is_referrers_class,
4710             uint32_t dex_pc,
4711             bool needs_access_check)
4712      : HExpression(Primitive::kPrimNot, SideEffectsForArchRuntimeCalls(), dex_pc),
4713        type_index_(type_index),
4714        dex_file_(dex_file),
4715        is_referrers_class_(is_referrers_class),
4716        generate_clinit_check_(false),
4717        needs_access_check_(needs_access_check),
4718        loaded_class_rti_(ReferenceTypeInfo::CreateInvalid()) {
4719    // Referrers class should not need access check. We never inline unverified
4720    // methods so we can't possibly end up in this situation.
4721    DCHECK(!is_referrers_class_ || !needs_access_check_);
4722    SetRawInputAt(0, current_method);
4723  }
4724
4725  bool CanBeMoved() const OVERRIDE { return true; }
4726
4727  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
4728    // Note that we don't need to test for generate_clinit_check_.
4729    // Whether or not we need to generate the clinit check is processed in
4730    // prepare_for_register_allocator based on existing HInvokes and HClinitChecks.
4731    return other->AsLoadClass()->type_index_ == type_index_ &&
4732        other->AsLoadClass()->needs_access_check_ == needs_access_check_;
4733  }
4734
4735  size_t ComputeHashCode() const OVERRIDE { return type_index_; }
4736
4737  uint16_t GetTypeIndex() const { return type_index_; }
4738  bool IsReferrersClass() const { return is_referrers_class_; }
4739  bool CanBeNull() const OVERRIDE { return false; }
4740
4741  bool NeedsEnvironment() const OVERRIDE {
4742    // Will call runtime and load the class if the class is not loaded yet.
4743    // TODO: finer grain decision.
4744    return !is_referrers_class_;
4745  }
4746
4747  bool MustGenerateClinitCheck() const {
4748    return generate_clinit_check_;
4749  }
4750  void SetMustGenerateClinitCheck(bool generate_clinit_check) {
4751    // The entrypoint the code generator is going to call does not do
4752    // clinit of the class.
4753    DCHECK(!NeedsAccessCheck());
4754    generate_clinit_check_ = generate_clinit_check;
4755  }
4756
4757  bool CanCallRuntime() const {
4758    return MustGenerateClinitCheck() || !is_referrers_class_ || needs_access_check_;
4759  }
4760
4761  bool NeedsAccessCheck() const {
4762    return needs_access_check_;
4763  }
4764
4765  bool CanThrow() const OVERRIDE {
4766    // May call runtime and and therefore can throw.
4767    // TODO: finer grain decision.
4768    return CanCallRuntime();
4769  }
4770
4771  ReferenceTypeInfo GetLoadedClassRTI() {
4772    return loaded_class_rti_;
4773  }
4774
4775  void SetLoadedClassRTI(ReferenceTypeInfo rti) {
4776    // Make sure we only set exact types (the loaded class should never be merged).
4777    DCHECK(rti.IsExact());
4778    loaded_class_rti_ = rti;
4779  }
4780
4781  const DexFile& GetDexFile() { return dex_file_; }
4782
4783  bool NeedsDexCacheOfDeclaringClass() const OVERRIDE { return !is_referrers_class_; }
4784
4785  static SideEffects SideEffectsForArchRuntimeCalls() {
4786    return SideEffects::CanTriggerGC();
4787  }
4788
4789  DECLARE_INSTRUCTION(LoadClass);
4790
4791 private:
4792  const uint16_t type_index_;
4793  const DexFile& dex_file_;
4794  const bool is_referrers_class_;
4795  // Whether this instruction must generate the initialization check.
4796  // Used for code generation.
4797  bool generate_clinit_check_;
4798  bool needs_access_check_;
4799
4800  ReferenceTypeInfo loaded_class_rti_;
4801
4802  DISALLOW_COPY_AND_ASSIGN(HLoadClass);
4803};
4804
4805class HLoadString : public HExpression<1> {
4806 public:
4807  HLoadString(HCurrentMethod* current_method, uint32_t string_index, uint32_t dex_pc)
4808      : HExpression(Primitive::kPrimNot, SideEffectsForArchRuntimeCalls(), dex_pc),
4809        string_index_(string_index) {
4810    SetRawInputAt(0, current_method);
4811  }
4812
4813  bool CanBeMoved() const OVERRIDE { return true; }
4814
4815  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
4816    return other->AsLoadString()->string_index_ == string_index_;
4817  }
4818
4819  size_t ComputeHashCode() const OVERRIDE { return string_index_; }
4820
4821  uint32_t GetStringIndex() const { return string_index_; }
4822
4823  // TODO: Can we deopt or debug when we resolve a string?
4824  bool NeedsEnvironment() const OVERRIDE { return false; }
4825  bool NeedsDexCacheOfDeclaringClass() const OVERRIDE { return true; }
4826  bool CanBeNull() const OVERRIDE { return false; }
4827
4828  static SideEffects SideEffectsForArchRuntimeCalls() {
4829    return SideEffects::CanTriggerGC();
4830  }
4831
4832  DECLARE_INSTRUCTION(LoadString);
4833
4834 private:
4835  const uint32_t string_index_;
4836
4837  DISALLOW_COPY_AND_ASSIGN(HLoadString);
4838};
4839
4840/**
4841 * Performs an initialization check on its Class object input.
4842 */
4843class HClinitCheck : public HExpression<1> {
4844 public:
4845  HClinitCheck(HLoadClass* constant, uint32_t dex_pc)
4846      : HExpression(
4847            Primitive::kPrimNot,
4848            SideEffects::AllChanges(),  // Assume write/read on all fields/arrays.
4849            dex_pc) {
4850    SetRawInputAt(0, constant);
4851  }
4852
4853  bool CanBeMoved() const OVERRIDE { return true; }
4854  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
4855    return true;
4856  }
4857
4858  bool NeedsEnvironment() const OVERRIDE {
4859    // May call runtime to initialize the class.
4860    return true;
4861  }
4862
4863
4864  HLoadClass* GetLoadClass() const { return InputAt(0)->AsLoadClass(); }
4865
4866  DECLARE_INSTRUCTION(ClinitCheck);
4867
4868 private:
4869  DISALLOW_COPY_AND_ASSIGN(HClinitCheck);
4870};
4871
4872class HStaticFieldGet : public HExpression<1> {
4873 public:
4874  HStaticFieldGet(HInstruction* cls,
4875                  Primitive::Type field_type,
4876                  MemberOffset field_offset,
4877                  bool is_volatile,
4878                  uint32_t field_idx,
4879                  uint16_t declaring_class_def_index,
4880                  const DexFile& dex_file,
4881                  Handle<mirror::DexCache> dex_cache,
4882                  uint32_t dex_pc)
4883      : HExpression(field_type,
4884                    SideEffects::FieldReadOfType(field_type, is_volatile),
4885                    dex_pc),
4886        field_info_(field_offset,
4887                    field_type,
4888                    is_volatile,
4889                    field_idx,
4890                    declaring_class_def_index,
4891                    dex_file,
4892                    dex_cache) {
4893    SetRawInputAt(0, cls);
4894  }
4895
4896
4897  bool CanBeMoved() const OVERRIDE { return !IsVolatile(); }
4898
4899  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
4900    HStaticFieldGet* other_get = other->AsStaticFieldGet();
4901    return GetFieldOffset().SizeValue() == other_get->GetFieldOffset().SizeValue();
4902  }
4903
4904  size_t ComputeHashCode() const OVERRIDE {
4905    return (HInstruction::ComputeHashCode() << 7) | GetFieldOffset().SizeValue();
4906  }
4907
4908  const FieldInfo& GetFieldInfo() const { return field_info_; }
4909  MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
4910  Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); }
4911  bool IsVolatile() const { return field_info_.IsVolatile(); }
4912
4913  DECLARE_INSTRUCTION(StaticFieldGet);
4914
4915 private:
4916  const FieldInfo field_info_;
4917
4918  DISALLOW_COPY_AND_ASSIGN(HStaticFieldGet);
4919};
4920
4921class HStaticFieldSet : public HTemplateInstruction<2> {
4922 public:
4923  HStaticFieldSet(HInstruction* cls,
4924                  HInstruction* value,
4925                  Primitive::Type field_type,
4926                  MemberOffset field_offset,
4927                  bool is_volatile,
4928                  uint32_t field_idx,
4929                  uint16_t declaring_class_def_index,
4930                  const DexFile& dex_file,
4931                  Handle<mirror::DexCache> dex_cache,
4932                  uint32_t dex_pc)
4933      : HTemplateInstruction(SideEffects::FieldWriteOfType(field_type, is_volatile),
4934                             dex_pc),
4935        field_info_(field_offset,
4936                    field_type,
4937                    is_volatile,
4938                    field_idx,
4939                    declaring_class_def_index,
4940                    dex_file,
4941                    dex_cache),
4942        value_can_be_null_(true) {
4943    SetRawInputAt(0, cls);
4944    SetRawInputAt(1, value);
4945  }
4946
4947  const FieldInfo& GetFieldInfo() const { return field_info_; }
4948  MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
4949  Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); }
4950  bool IsVolatile() const { return field_info_.IsVolatile(); }
4951
4952  HInstruction* GetValue() const { return InputAt(1); }
4953  bool GetValueCanBeNull() const { return value_can_be_null_; }
4954  void ClearValueCanBeNull() { value_can_be_null_ = false; }
4955
4956  DECLARE_INSTRUCTION(StaticFieldSet);
4957
4958 private:
4959  const FieldInfo field_info_;
4960  bool value_can_be_null_;
4961
4962  DISALLOW_COPY_AND_ASSIGN(HStaticFieldSet);
4963};
4964
4965class HUnresolvedInstanceFieldGet : public HExpression<1> {
4966 public:
4967  HUnresolvedInstanceFieldGet(HInstruction* obj,
4968                              Primitive::Type field_type,
4969                              uint32_t field_index,
4970                              uint32_t dex_pc)
4971      : HExpression(field_type, SideEffects::AllExceptGCDependency(), dex_pc),
4972        field_index_(field_index) {
4973    SetRawInputAt(0, obj);
4974  }
4975
4976  bool NeedsEnvironment() const OVERRIDE { return true; }
4977  bool CanThrow() const OVERRIDE { return true; }
4978
4979  Primitive::Type GetFieldType() const { return GetType(); }
4980  uint32_t GetFieldIndex() const { return field_index_; }
4981
4982  DECLARE_INSTRUCTION(UnresolvedInstanceFieldGet);
4983
4984 private:
4985  const uint32_t field_index_;
4986
4987  DISALLOW_COPY_AND_ASSIGN(HUnresolvedInstanceFieldGet);
4988};
4989
4990class HUnresolvedInstanceFieldSet : public HTemplateInstruction<2> {
4991 public:
4992  HUnresolvedInstanceFieldSet(HInstruction* obj,
4993                              HInstruction* value,
4994                              Primitive::Type field_type,
4995                              uint32_t field_index,
4996                              uint32_t dex_pc)
4997      : HTemplateInstruction(SideEffects::AllExceptGCDependency(), dex_pc),
4998        field_type_(field_type),
4999        field_index_(field_index) {
5000    DCHECK_EQ(field_type, value->GetType());
5001    SetRawInputAt(0, obj);
5002    SetRawInputAt(1, value);
5003  }
5004
5005  bool NeedsEnvironment() const OVERRIDE { return true; }
5006  bool CanThrow() const OVERRIDE { return true; }
5007
5008  Primitive::Type GetFieldType() const { return field_type_; }
5009  uint32_t GetFieldIndex() const { return field_index_; }
5010
5011  DECLARE_INSTRUCTION(UnresolvedInstanceFieldSet);
5012
5013 private:
5014  const Primitive::Type field_type_;
5015  const uint32_t field_index_;
5016
5017  DISALLOW_COPY_AND_ASSIGN(HUnresolvedInstanceFieldSet);
5018};
5019
5020class HUnresolvedStaticFieldGet : public HExpression<0> {
5021 public:
5022  HUnresolvedStaticFieldGet(Primitive::Type field_type,
5023                            uint32_t field_index,
5024                            uint32_t dex_pc)
5025      : HExpression(field_type, SideEffects::AllExceptGCDependency(), dex_pc),
5026        field_index_(field_index) {
5027  }
5028
5029  bool NeedsEnvironment() const OVERRIDE { return true; }
5030  bool CanThrow() const OVERRIDE { return true; }
5031
5032  Primitive::Type GetFieldType() const { return GetType(); }
5033  uint32_t GetFieldIndex() const { return field_index_; }
5034
5035  DECLARE_INSTRUCTION(UnresolvedStaticFieldGet);
5036
5037 private:
5038  const uint32_t field_index_;
5039
5040  DISALLOW_COPY_AND_ASSIGN(HUnresolvedStaticFieldGet);
5041};
5042
5043class HUnresolvedStaticFieldSet : public HTemplateInstruction<1> {
5044 public:
5045  HUnresolvedStaticFieldSet(HInstruction* value,
5046                            Primitive::Type field_type,
5047                            uint32_t field_index,
5048                            uint32_t dex_pc)
5049      : HTemplateInstruction(SideEffects::AllExceptGCDependency(), dex_pc),
5050        field_type_(field_type),
5051        field_index_(field_index) {
5052    DCHECK_EQ(field_type, value->GetType());
5053    SetRawInputAt(0, value);
5054  }
5055
5056  bool NeedsEnvironment() const OVERRIDE { return true; }
5057  bool CanThrow() const OVERRIDE { return true; }
5058
5059  Primitive::Type GetFieldType() const { return field_type_; }
5060  uint32_t GetFieldIndex() const { return field_index_; }
5061
5062  DECLARE_INSTRUCTION(UnresolvedStaticFieldSet);
5063
5064 private:
5065  const Primitive::Type field_type_;
5066  const uint32_t field_index_;
5067
5068  DISALLOW_COPY_AND_ASSIGN(HUnresolvedStaticFieldSet);
5069};
5070
5071// Implement the move-exception DEX instruction.
5072class HLoadException : public HExpression<0> {
5073 public:
5074  explicit HLoadException(uint32_t dex_pc = kNoDexPc)
5075      : HExpression(Primitive::kPrimNot, SideEffects::None(), dex_pc) {}
5076
5077  bool CanBeNull() const OVERRIDE { return false; }
5078
5079  DECLARE_INSTRUCTION(LoadException);
5080
5081 private:
5082  DISALLOW_COPY_AND_ASSIGN(HLoadException);
5083};
5084
5085// Implicit part of move-exception which clears thread-local exception storage.
5086// Must not be removed because the runtime expects the TLS to get cleared.
5087class HClearException : public HTemplateInstruction<0> {
5088 public:
5089  explicit HClearException(uint32_t dex_pc = kNoDexPc)
5090      : HTemplateInstruction(SideEffects::AllWrites(), dex_pc) {}
5091
5092  DECLARE_INSTRUCTION(ClearException);
5093
5094 private:
5095  DISALLOW_COPY_AND_ASSIGN(HClearException);
5096};
5097
5098class HThrow : public HTemplateInstruction<1> {
5099 public:
5100  HThrow(HInstruction* exception, uint32_t dex_pc)
5101      : HTemplateInstruction(SideEffects::CanTriggerGC(), dex_pc) {
5102    SetRawInputAt(0, exception);
5103  }
5104
5105  bool IsControlFlow() const OVERRIDE { return true; }
5106
5107  bool NeedsEnvironment() const OVERRIDE { return true; }
5108
5109  bool CanThrow() const OVERRIDE { return true; }
5110
5111
5112  DECLARE_INSTRUCTION(Throw);
5113
5114 private:
5115  DISALLOW_COPY_AND_ASSIGN(HThrow);
5116};
5117
5118/**
5119 * Implementation strategies for the code generator of a HInstanceOf
5120 * or `HCheckCast`.
5121 */
5122enum class TypeCheckKind {
5123  kUnresolvedCheck,       // Check against an unresolved type.
5124  kExactCheck,            // Can do a single class compare.
5125  kClassHierarchyCheck,   // Can just walk the super class chain.
5126  kAbstractClassCheck,    // Can just walk the super class chain, starting one up.
5127  kInterfaceCheck,        // No optimization yet when checking against an interface.
5128  kArrayObjectCheck,      // Can just check if the array is not primitive.
5129  kArrayCheck             // No optimization yet when checking against a generic array.
5130};
5131
5132class HInstanceOf : public HExpression<2> {
5133 public:
5134  HInstanceOf(HInstruction* object,
5135              HLoadClass* constant,
5136              TypeCheckKind check_kind,
5137              uint32_t dex_pc)
5138      : HExpression(Primitive::kPrimBoolean,
5139                    SideEffectsForArchRuntimeCalls(check_kind),
5140                    dex_pc),
5141        check_kind_(check_kind),
5142        must_do_null_check_(true) {
5143    SetRawInputAt(0, object);
5144    SetRawInputAt(1, constant);
5145  }
5146
5147  bool CanBeMoved() const OVERRIDE { return true; }
5148
5149  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
5150    return true;
5151  }
5152
5153  bool NeedsEnvironment() const OVERRIDE {
5154    return false;
5155  }
5156
5157  bool IsExactCheck() const { return check_kind_ == TypeCheckKind::kExactCheck; }
5158
5159  TypeCheckKind GetTypeCheckKind() const { return check_kind_; }
5160
5161  // Used only in code generation.
5162  bool MustDoNullCheck() const { return must_do_null_check_; }
5163  void ClearMustDoNullCheck() { must_do_null_check_ = false; }
5164
5165  static SideEffects SideEffectsForArchRuntimeCalls(TypeCheckKind check_kind) {
5166    return (check_kind == TypeCheckKind::kExactCheck)
5167        ? SideEffects::None()
5168        // Mips currently does runtime calls for any other checks.
5169        : SideEffects::CanTriggerGC();
5170  }
5171
5172  DECLARE_INSTRUCTION(InstanceOf);
5173
5174 private:
5175  const TypeCheckKind check_kind_;
5176  bool must_do_null_check_;
5177
5178  DISALLOW_COPY_AND_ASSIGN(HInstanceOf);
5179};
5180
5181class HBoundType : public HExpression<1> {
5182 public:
5183  // Constructs an HBoundType with the given upper_bound.
5184  // Ensures that the upper_bound is valid.
5185  HBoundType(HInstruction* input,
5186             ReferenceTypeInfo upper_bound,
5187             bool upper_can_be_null,
5188             uint32_t dex_pc = kNoDexPc)
5189      : HExpression(Primitive::kPrimNot, SideEffects::None(), dex_pc),
5190        upper_bound_(upper_bound),
5191        upper_can_be_null_(upper_can_be_null),
5192        can_be_null_(upper_can_be_null) {
5193    DCHECK_EQ(input->GetType(), Primitive::kPrimNot);
5194    SetRawInputAt(0, input);
5195    SetReferenceTypeInfo(upper_bound_);
5196  }
5197
5198  // GetUpper* should only be used in reference type propagation.
5199  const ReferenceTypeInfo& GetUpperBound() const { return upper_bound_; }
5200  bool GetUpperCanBeNull() const { return upper_can_be_null_; }
5201
5202  void SetCanBeNull(bool can_be_null) {
5203    DCHECK(upper_can_be_null_ || !can_be_null);
5204    can_be_null_ = can_be_null;
5205  }
5206
5207  bool CanBeNull() const OVERRIDE { return can_be_null_; }
5208
5209  DECLARE_INSTRUCTION(BoundType);
5210
5211 private:
5212  // Encodes the most upper class that this instruction can have. In other words
5213  // it is always the case that GetUpperBound().IsSupertypeOf(GetReferenceType()).
5214  // It is used to bound the type in cases like:
5215  //   if (x instanceof ClassX) {
5216  //     // uper_bound_ will be ClassX
5217  //   }
5218  const ReferenceTypeInfo upper_bound_;
5219  // Represents the top constraint that can_be_null_ cannot exceed (i.e. if this
5220  // is false then can_be_null_ cannot be true).
5221  const bool upper_can_be_null_;
5222  bool can_be_null_;
5223
5224  DISALLOW_COPY_AND_ASSIGN(HBoundType);
5225};
5226
5227class HCheckCast : public HTemplateInstruction<2> {
5228 public:
5229  HCheckCast(HInstruction* object,
5230             HLoadClass* constant,
5231             TypeCheckKind check_kind,
5232             uint32_t dex_pc)
5233      : HTemplateInstruction(SideEffects::CanTriggerGC(), dex_pc),
5234        check_kind_(check_kind),
5235        must_do_null_check_(true) {
5236    SetRawInputAt(0, object);
5237    SetRawInputAt(1, constant);
5238  }
5239
5240  bool CanBeMoved() const OVERRIDE { return true; }
5241
5242  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
5243    return true;
5244  }
5245
5246  bool NeedsEnvironment() const OVERRIDE {
5247    // Instruction may throw a CheckCastError.
5248    return true;
5249  }
5250
5251  bool CanThrow() const OVERRIDE { return true; }
5252
5253  bool MustDoNullCheck() const { return must_do_null_check_; }
5254  void ClearMustDoNullCheck() { must_do_null_check_ = false; }
5255  TypeCheckKind GetTypeCheckKind() const { return check_kind_; }
5256
5257  bool IsExactCheck() const { return check_kind_ == TypeCheckKind::kExactCheck; }
5258
5259  DECLARE_INSTRUCTION(CheckCast);
5260
5261 private:
5262  const TypeCheckKind check_kind_;
5263  bool must_do_null_check_;
5264
5265  DISALLOW_COPY_AND_ASSIGN(HCheckCast);
5266};
5267
5268class HMemoryBarrier : public HTemplateInstruction<0> {
5269 public:
5270  explicit HMemoryBarrier(MemBarrierKind barrier_kind, uint32_t dex_pc = kNoDexPc)
5271      : HTemplateInstruction(
5272            SideEffects::AllWritesAndReads(), dex_pc),  // Assume write/read on all fields/arrays.
5273        barrier_kind_(barrier_kind) {}
5274
5275  MemBarrierKind GetBarrierKind() { return barrier_kind_; }
5276
5277  DECLARE_INSTRUCTION(MemoryBarrier);
5278
5279 private:
5280  const MemBarrierKind barrier_kind_;
5281
5282  DISALLOW_COPY_AND_ASSIGN(HMemoryBarrier);
5283};
5284
5285class HMonitorOperation : public HTemplateInstruction<1> {
5286 public:
5287  enum OperationKind {
5288    kEnter,
5289    kExit,
5290  };
5291
5292  HMonitorOperation(HInstruction* object, OperationKind kind, uint32_t dex_pc)
5293    : HTemplateInstruction(
5294          SideEffects::AllExceptGCDependency(), dex_pc),  // Assume write/read on all fields/arrays.
5295      kind_(kind) {
5296    SetRawInputAt(0, object);
5297  }
5298
5299  // Instruction may throw a Java exception, so we need an environment.
5300  bool NeedsEnvironment() const OVERRIDE { return CanThrow(); }
5301
5302  bool CanThrow() const OVERRIDE {
5303    // Verifier guarantees that monitor-exit cannot throw.
5304    // This is important because it allows the HGraphBuilder to remove
5305    // a dead throw-catch loop generated for `synchronized` blocks/methods.
5306    return IsEnter();
5307  }
5308
5309
5310  bool IsEnter() const { return kind_ == kEnter; }
5311
5312  DECLARE_INSTRUCTION(MonitorOperation);
5313
5314 private:
5315  const OperationKind kind_;
5316
5317 private:
5318  DISALLOW_COPY_AND_ASSIGN(HMonitorOperation);
5319};
5320
5321/**
5322 * A HInstruction used as a marker for the replacement of new + <init>
5323 * of a String to a call to a StringFactory. Only baseline will see
5324 * the node at code generation, where it will be be treated as null.
5325 * When compiling non-baseline, `HFakeString` instructions are being removed
5326 * in the instruction simplifier.
5327 */
5328class HFakeString : public HTemplateInstruction<0> {
5329 public:
5330  explicit HFakeString(uint32_t dex_pc = kNoDexPc)
5331      : HTemplateInstruction(SideEffects::None(), dex_pc) {}
5332
5333  Primitive::Type GetType() const OVERRIDE { return Primitive::kPrimNot; }
5334
5335  DECLARE_INSTRUCTION(FakeString);
5336
5337 private:
5338  DISALLOW_COPY_AND_ASSIGN(HFakeString);
5339};
5340
5341class MoveOperands : public ArenaObject<kArenaAllocMoveOperands> {
5342 public:
5343  MoveOperands(Location source,
5344               Location destination,
5345               Primitive::Type type,
5346               HInstruction* instruction)
5347      : source_(source), destination_(destination), type_(type), instruction_(instruction) {}
5348
5349  Location GetSource() const { return source_; }
5350  Location GetDestination() const { return destination_; }
5351
5352  void SetSource(Location value) { source_ = value; }
5353  void SetDestination(Location value) { destination_ = value; }
5354
5355  // The parallel move resolver marks moves as "in-progress" by clearing the
5356  // destination (but not the source).
5357  Location MarkPending() {
5358    DCHECK(!IsPending());
5359    Location dest = destination_;
5360    destination_ = Location::NoLocation();
5361    return dest;
5362  }
5363
5364  void ClearPending(Location dest) {
5365    DCHECK(IsPending());
5366    destination_ = dest;
5367  }
5368
5369  bool IsPending() const {
5370    DCHECK(!source_.IsInvalid() || destination_.IsInvalid());
5371    return destination_.IsInvalid() && !source_.IsInvalid();
5372  }
5373
5374  // True if this blocks a move from the given location.
5375  bool Blocks(Location loc) const {
5376    return !IsEliminated() && source_.OverlapsWith(loc);
5377  }
5378
5379  // A move is redundant if it's been eliminated, if its source and
5380  // destination are the same, or if its destination is unneeded.
5381  bool IsRedundant() const {
5382    return IsEliminated() || destination_.IsInvalid() || source_.Equals(destination_);
5383  }
5384
5385  // We clear both operands to indicate move that's been eliminated.
5386  void Eliminate() {
5387    source_ = destination_ = Location::NoLocation();
5388  }
5389
5390  bool IsEliminated() const {
5391    DCHECK(!source_.IsInvalid() || destination_.IsInvalid());
5392    return source_.IsInvalid();
5393  }
5394
5395  Primitive::Type GetType() const { return type_; }
5396
5397  bool Is64BitMove() const {
5398    return Primitive::Is64BitType(type_);
5399  }
5400
5401  HInstruction* GetInstruction() const { return instruction_; }
5402
5403 private:
5404  Location source_;
5405  Location destination_;
5406  // The type this move is for.
5407  Primitive::Type type_;
5408  // The instruction this move is assocatied with. Null when this move is
5409  // for moving an input in the expected locations of user (including a phi user).
5410  // This is only used in debug mode, to ensure we do not connect interval siblings
5411  // in the same parallel move.
5412  HInstruction* instruction_;
5413};
5414
5415static constexpr size_t kDefaultNumberOfMoves = 4;
5416
5417class HParallelMove : public HTemplateInstruction<0> {
5418 public:
5419  explicit HParallelMove(ArenaAllocator* arena, uint32_t dex_pc = kNoDexPc)
5420      : HTemplateInstruction(SideEffects::None(), dex_pc),
5421        moves_(arena->Adapter(kArenaAllocMoveOperands)) {
5422    moves_.reserve(kDefaultNumberOfMoves);
5423  }
5424
5425  void AddMove(Location source,
5426               Location destination,
5427               Primitive::Type type,
5428               HInstruction* instruction) {
5429    DCHECK(source.IsValid());
5430    DCHECK(destination.IsValid());
5431    if (kIsDebugBuild) {
5432      if (instruction != nullptr) {
5433        for (const MoveOperands& move : moves_) {
5434          if (move.GetInstruction() == instruction) {
5435            // Special case the situation where the move is for the spill slot
5436            // of the instruction.
5437            if ((GetPrevious() == instruction)
5438                || ((GetPrevious() == nullptr)
5439                    && instruction->IsPhi()
5440                    && instruction->GetBlock() == GetBlock())) {
5441              DCHECK_NE(destination.GetKind(), move.GetDestination().GetKind())
5442                  << "Doing parallel moves for the same instruction.";
5443            } else {
5444              DCHECK(false) << "Doing parallel moves for the same instruction.";
5445            }
5446          }
5447        }
5448      }
5449      for (const MoveOperands& move : moves_) {
5450        DCHECK(!destination.OverlapsWith(move.GetDestination()))
5451            << "Overlapped destination for two moves in a parallel move: "
5452            << move.GetSource() << " ==> " << move.GetDestination() << " and "
5453            << source << " ==> " << destination;
5454      }
5455    }
5456    moves_.emplace_back(source, destination, type, instruction);
5457  }
5458
5459  MoveOperands* MoveOperandsAt(size_t index) {
5460    return &moves_[index];
5461  }
5462
5463  size_t NumMoves() const { return moves_.size(); }
5464
5465  DECLARE_INSTRUCTION(ParallelMove);
5466
5467 private:
5468  ArenaVector<MoveOperands> moves_;
5469
5470  DISALLOW_COPY_AND_ASSIGN(HParallelMove);
5471};
5472
5473}  // namespace art
5474
5475#ifdef ART_ENABLE_CODEGEN_arm64
5476#include "nodes_arm64.h"
5477#endif
5478#ifdef ART_ENABLE_CODEGEN_x86
5479#include "nodes_x86.h"
5480#endif
5481
5482namespace art {
5483
5484class HGraphVisitor : public ValueObject {
5485 public:
5486  explicit HGraphVisitor(HGraph* graph) : graph_(graph) {}
5487  virtual ~HGraphVisitor() {}
5488
5489  virtual void VisitInstruction(HInstruction* instruction ATTRIBUTE_UNUSED) {}
5490  virtual void VisitBasicBlock(HBasicBlock* block);
5491
5492  // Visit the graph following basic block insertion order.
5493  void VisitInsertionOrder();
5494
5495  // Visit the graph following dominator tree reverse post-order.
5496  void VisitReversePostOrder();
5497
5498  HGraph* GetGraph() const { return graph_; }
5499
5500  // Visit functions for instruction classes.
5501#define DECLARE_VISIT_INSTRUCTION(name, super)                                        \
5502  virtual void Visit##name(H##name* instr) { VisitInstruction(instr); }
5503
5504  FOR_EACH_INSTRUCTION(DECLARE_VISIT_INSTRUCTION)
5505
5506#undef DECLARE_VISIT_INSTRUCTION
5507
5508 private:
5509  HGraph* const graph_;
5510
5511  DISALLOW_COPY_AND_ASSIGN(HGraphVisitor);
5512};
5513
5514class HGraphDelegateVisitor : public HGraphVisitor {
5515 public:
5516  explicit HGraphDelegateVisitor(HGraph* graph) : HGraphVisitor(graph) {}
5517  virtual ~HGraphDelegateVisitor() {}
5518
5519  // Visit functions that delegate to to super class.
5520#define DECLARE_VISIT_INSTRUCTION(name, super)                                        \
5521  void Visit##name(H##name* instr) OVERRIDE { Visit##super(instr); }
5522
5523  FOR_EACH_INSTRUCTION(DECLARE_VISIT_INSTRUCTION)
5524
5525#undef DECLARE_VISIT_INSTRUCTION
5526
5527 private:
5528  DISALLOW_COPY_AND_ASSIGN(HGraphDelegateVisitor);
5529};
5530
5531class HInsertionOrderIterator : public ValueObject {
5532 public:
5533  explicit HInsertionOrderIterator(const HGraph& graph) : graph_(graph), index_(0) {}
5534
5535  bool Done() const { return index_ == graph_.GetBlocks().size(); }
5536  HBasicBlock* Current() const { return graph_.GetBlocks()[index_]; }
5537  void Advance() { ++index_; }
5538
5539 private:
5540  const HGraph& graph_;
5541  size_t index_;
5542
5543  DISALLOW_COPY_AND_ASSIGN(HInsertionOrderIterator);
5544};
5545
5546class HReversePostOrderIterator : public ValueObject {
5547 public:
5548  explicit HReversePostOrderIterator(const HGraph& graph) : graph_(graph), index_(0) {
5549    // Check that reverse post order of the graph has been built.
5550    DCHECK(!graph.GetReversePostOrder().empty());
5551  }
5552
5553  bool Done() const { return index_ == graph_.GetReversePostOrder().size(); }
5554  HBasicBlock* Current() const { return graph_.GetReversePostOrder()[index_]; }
5555  void Advance() { ++index_; }
5556
5557 private:
5558  const HGraph& graph_;
5559  size_t index_;
5560
5561  DISALLOW_COPY_AND_ASSIGN(HReversePostOrderIterator);
5562};
5563
5564class HPostOrderIterator : public ValueObject {
5565 public:
5566  explicit HPostOrderIterator(const HGraph& graph)
5567      : graph_(graph), index_(graph_.GetReversePostOrder().size()) {
5568    // Check that reverse post order of the graph has been built.
5569    DCHECK(!graph.GetReversePostOrder().empty());
5570  }
5571
5572  bool Done() const { return index_ == 0; }
5573  HBasicBlock* Current() const { return graph_.GetReversePostOrder()[index_ - 1u]; }
5574  void Advance() { --index_; }
5575
5576 private:
5577  const HGraph& graph_;
5578  size_t index_;
5579
5580  DISALLOW_COPY_AND_ASSIGN(HPostOrderIterator);
5581};
5582
5583class HLinearPostOrderIterator : public ValueObject {
5584 public:
5585  explicit HLinearPostOrderIterator(const HGraph& graph)
5586      : order_(graph.GetLinearOrder()), index_(graph.GetLinearOrder().size()) {}
5587
5588  bool Done() const { return index_ == 0; }
5589
5590  HBasicBlock* Current() const { return order_[index_ - 1u]; }
5591
5592  void Advance() {
5593    --index_;
5594    DCHECK_GE(index_, 0U);
5595  }
5596
5597 private:
5598  const ArenaVector<HBasicBlock*>& order_;
5599  size_t index_;
5600
5601  DISALLOW_COPY_AND_ASSIGN(HLinearPostOrderIterator);
5602};
5603
5604class HLinearOrderIterator : public ValueObject {
5605 public:
5606  explicit HLinearOrderIterator(const HGraph& graph)
5607      : order_(graph.GetLinearOrder()), index_(0) {}
5608
5609  bool Done() const { return index_ == order_.size(); }
5610  HBasicBlock* Current() const { return order_[index_]; }
5611  void Advance() { ++index_; }
5612
5613 private:
5614  const ArenaVector<HBasicBlock*>& order_;
5615  size_t index_;
5616
5617  DISALLOW_COPY_AND_ASSIGN(HLinearOrderIterator);
5618};
5619
5620// Iterator over the blocks that art part of the loop. Includes blocks part
5621// of an inner loop. The order in which the blocks are iterated is on their
5622// block id.
5623class HBlocksInLoopIterator : public ValueObject {
5624 public:
5625  explicit HBlocksInLoopIterator(const HLoopInformation& info)
5626      : blocks_in_loop_(info.GetBlocks()),
5627        blocks_(info.GetHeader()->GetGraph()->GetBlocks()),
5628        index_(0) {
5629    if (!blocks_in_loop_.IsBitSet(index_)) {
5630      Advance();
5631    }
5632  }
5633
5634  bool Done() const { return index_ == blocks_.size(); }
5635  HBasicBlock* Current() const { return blocks_[index_]; }
5636  void Advance() {
5637    ++index_;
5638    for (size_t e = blocks_.size(); index_ < e; ++index_) {
5639      if (blocks_in_loop_.IsBitSet(index_)) {
5640        break;
5641      }
5642    }
5643  }
5644
5645 private:
5646  const BitVector& blocks_in_loop_;
5647  const ArenaVector<HBasicBlock*>& blocks_;
5648  size_t index_;
5649
5650  DISALLOW_COPY_AND_ASSIGN(HBlocksInLoopIterator);
5651};
5652
5653// Iterator over the blocks that art part of the loop. Includes blocks part
5654// of an inner loop. The order in which the blocks are iterated is reverse
5655// post order.
5656class HBlocksInLoopReversePostOrderIterator : public ValueObject {
5657 public:
5658  explicit HBlocksInLoopReversePostOrderIterator(const HLoopInformation& info)
5659      : blocks_in_loop_(info.GetBlocks()),
5660        blocks_(info.GetHeader()->GetGraph()->GetReversePostOrder()),
5661        index_(0) {
5662    if (!blocks_in_loop_.IsBitSet(blocks_[index_]->GetBlockId())) {
5663      Advance();
5664    }
5665  }
5666
5667  bool Done() const { return index_ == blocks_.size(); }
5668  HBasicBlock* Current() const { return blocks_[index_]; }
5669  void Advance() {
5670    ++index_;
5671    for (size_t e = blocks_.size(); index_ < e; ++index_) {
5672      if (blocks_in_loop_.IsBitSet(blocks_[index_]->GetBlockId())) {
5673        break;
5674      }
5675    }
5676  }
5677
5678 private:
5679  const BitVector& blocks_in_loop_;
5680  const ArenaVector<HBasicBlock*>& blocks_;
5681  size_t index_;
5682
5683  DISALLOW_COPY_AND_ASSIGN(HBlocksInLoopReversePostOrderIterator);
5684};
5685
5686inline int64_t Int64FromConstant(HConstant* constant) {
5687  DCHECK(constant->IsIntConstant() || constant->IsLongConstant());
5688  return constant->IsIntConstant() ? constant->AsIntConstant()->GetValue()
5689                                   : constant->AsLongConstant()->GetValue();
5690}
5691
5692inline bool IsSameDexFile(const DexFile& lhs, const DexFile& rhs) {
5693  // For the purposes of the compiler, the dex files must actually be the same object
5694  // if we want to safely treat them as the same. This is especially important for JIT
5695  // as custom class loaders can open the same underlying file (or memory) multiple
5696  // times and provide different class resolution but no two class loaders should ever
5697  // use the same DexFile object - doing so is an unsupported hack that can lead to
5698  // all sorts of weird failures.
5699  return &lhs == &rhs;
5700}
5701
5702}  // namespace art
5703
5704#endif  // ART_COMPILER_OPTIMIZING_NODES_H_
5705