nodes.h revision 418318f4d50e0cfc2d54330d7623ee030d4d727d
1/*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#ifndef ART_COMPILER_OPTIMIZING_NODES_H_
18#define ART_COMPILER_OPTIMIZING_NODES_H_
19
20#include <algorithm>
21#include <array>
22#include <type_traits>
23
24#include "base/arena_bit_vector.h"
25#include "base/arena_containers.h"
26#include "base/arena_object.h"
27#include "base/stl_util.h"
28#include "dex/compiler_enums.h"
29#include "entrypoints/quick/quick_entrypoints_enum.h"
30#include "handle.h"
31#include "handle_scope.h"
32#include "invoke_type.h"
33#include "locations.h"
34#include "method_reference.h"
35#include "mirror/class.h"
36#include "offsets.h"
37#include "primitive.h"
38#include "utils/array_ref.h"
39
40namespace art {
41
42class GraphChecker;
43class HBasicBlock;
44class HCurrentMethod;
45class HDoubleConstant;
46class HEnvironment;
47class HFakeString;
48class HFloatConstant;
49class HGraphBuilder;
50class HGraphVisitor;
51class HInstruction;
52class HIntConstant;
53class HInvoke;
54class HLongConstant;
55class HNullConstant;
56class HPhi;
57class HSuspendCheck;
58class HTryBoundary;
59class LiveInterval;
60class LocationSummary;
61class SlowPathCode;
62class SsaBuilder;
63
64namespace mirror {
65class DexCache;
66}  // namespace mirror
67
68static const int kDefaultNumberOfBlocks = 8;
69static const int kDefaultNumberOfSuccessors = 2;
70static const int kDefaultNumberOfPredecessors = 2;
71static const int kDefaultNumberOfExceptionalPredecessors = 0;
72static const int kDefaultNumberOfDominatedBlocks = 1;
73static const int kDefaultNumberOfBackEdges = 1;
74
75static constexpr uint32_t kMaxIntShiftValue = 0x1f;
76static constexpr uint64_t kMaxLongShiftValue = 0x3f;
77
78static constexpr uint32_t kUnknownFieldIndex = static_cast<uint32_t>(-1);
79static constexpr uint16_t kUnknownClassDefIndex = static_cast<uint16_t>(-1);
80
81static constexpr InvokeType kInvalidInvokeType = static_cast<InvokeType>(-1);
82
83static constexpr uint32_t kNoDexPc = -1;
84
85enum IfCondition {
86  // All types.
87  kCondEQ,  // ==
88  kCondNE,  // !=
89  // Signed integers and floating-point numbers.
90  kCondLT,  // <
91  kCondLE,  // <=
92  kCondGT,  // >
93  kCondGE,  // >=
94  // Unsigned integers.
95  kCondB,   // <
96  kCondBE,  // <=
97  kCondA,   // >
98  kCondAE,  // >=
99};
100
101class HInstructionList : public ValueObject {
102 public:
103  HInstructionList() : first_instruction_(nullptr), last_instruction_(nullptr) {}
104
105  void AddInstruction(HInstruction* instruction);
106  void RemoveInstruction(HInstruction* instruction);
107
108  // Insert `instruction` before/after an existing instruction `cursor`.
109  void InsertInstructionBefore(HInstruction* instruction, HInstruction* cursor);
110  void InsertInstructionAfter(HInstruction* instruction, HInstruction* cursor);
111
112  // Return true if this list contains `instruction`.
113  bool Contains(HInstruction* instruction) const;
114
115  // Return true if `instruction1` is found before `instruction2` in
116  // this instruction list and false otherwise.  Abort if none
117  // of these instructions is found.
118  bool FoundBefore(const HInstruction* instruction1,
119                   const HInstruction* instruction2) const;
120
121  bool IsEmpty() const { return first_instruction_ == nullptr; }
122  void Clear() { first_instruction_ = last_instruction_ = nullptr; }
123
124  // Update the block of all instructions to be `block`.
125  void SetBlockOfInstructions(HBasicBlock* block) const;
126
127  void AddAfter(HInstruction* cursor, const HInstructionList& instruction_list);
128  void Add(const HInstructionList& instruction_list);
129
130  // Return the number of instructions in the list. This is an expensive operation.
131  size_t CountSize() const;
132
133 private:
134  HInstruction* first_instruction_;
135  HInstruction* last_instruction_;
136
137  friend class HBasicBlock;
138  friend class HGraph;
139  friend class HInstruction;
140  friend class HInstructionIterator;
141  friend class HBackwardInstructionIterator;
142
143  DISALLOW_COPY_AND_ASSIGN(HInstructionList);
144};
145
146// Control-flow graph of a method. Contains a list of basic blocks.
147class HGraph : public ArenaObject<kArenaAllocGraph> {
148 public:
149  HGraph(ArenaAllocator* arena,
150         const DexFile& dex_file,
151         uint32_t method_idx,
152         bool should_generate_constructor_barrier,
153         InstructionSet instruction_set,
154         InvokeType invoke_type = kInvalidInvokeType,
155         bool debuggable = false,
156         int start_instruction_id = 0)
157      : arena_(arena),
158        blocks_(arena->Adapter(kArenaAllocBlockList)),
159        reverse_post_order_(arena->Adapter(kArenaAllocReversePostOrder)),
160        linear_order_(arena->Adapter(kArenaAllocLinearOrder)),
161        entry_block_(nullptr),
162        exit_block_(nullptr),
163        maximum_number_of_out_vregs_(0),
164        number_of_vregs_(0),
165        number_of_in_vregs_(0),
166        temporaries_vreg_slots_(0),
167        has_bounds_checks_(false),
168        has_try_catch_(false),
169        debuggable_(debuggable),
170        current_instruction_id_(start_instruction_id),
171        dex_file_(dex_file),
172        method_idx_(method_idx),
173        invoke_type_(invoke_type),
174        in_ssa_form_(false),
175        should_generate_constructor_barrier_(should_generate_constructor_barrier),
176        instruction_set_(instruction_set),
177        cached_null_constant_(nullptr),
178        cached_int_constants_(std::less<int32_t>(), arena->Adapter(kArenaAllocConstantsMap)),
179        cached_float_constants_(std::less<int32_t>(), arena->Adapter(kArenaAllocConstantsMap)),
180        cached_long_constants_(std::less<int64_t>(), arena->Adapter(kArenaAllocConstantsMap)),
181        cached_double_constants_(std::less<int64_t>(), arena->Adapter(kArenaAllocConstantsMap)),
182        cached_current_method_(nullptr) {
183    blocks_.reserve(kDefaultNumberOfBlocks);
184  }
185
186  ArenaAllocator* GetArena() const { return arena_; }
187  const ArenaVector<HBasicBlock*>& GetBlocks() const { return blocks_; }
188
189  bool IsInSsaForm() const { return in_ssa_form_; }
190
191  HBasicBlock* GetEntryBlock() const { return entry_block_; }
192  HBasicBlock* GetExitBlock() const { return exit_block_; }
193  bool HasExitBlock() const { return exit_block_ != nullptr; }
194
195  void SetEntryBlock(HBasicBlock* block) { entry_block_ = block; }
196  void SetExitBlock(HBasicBlock* block) { exit_block_ = block; }
197
198  void AddBlock(HBasicBlock* block);
199
200  // Try building the SSA form of this graph, with dominance computation and loop
201  // recognition. Returns whether it was successful in doing all these steps.
202  bool TryBuildingSsa() {
203    BuildDominatorTree();
204    // The SSA builder requires loops to all be natural. Specifically, the dead phi
205    // elimination phase checks the consistency of the graph when doing a post-order
206    // visit for eliminating dead phis: a dead phi can only have loop header phi
207    // users remaining when being visited.
208    if (!AnalyzeNaturalLoops()) return false;
209    // Precompute per-block try membership before entering the SSA builder,
210    // which needs the information to build catch block phis from values of
211    // locals at throwing instructions inside try blocks.
212    ComputeTryBlockInformation();
213    TransformToSsa();
214    in_ssa_form_ = true;
215    return true;
216  }
217
218  void ComputeDominanceInformation();
219  void ClearDominanceInformation();
220
221  void BuildDominatorTree();
222  void TransformToSsa();
223  void SimplifyCFG();
224  void SimplifyCatchBlocks();
225
226  // Analyze all natural loops in this graph. Returns false if one
227  // loop is not natural, that is the header does not dominate the
228  // back edge.
229  bool AnalyzeNaturalLoops() const;
230
231  // Iterate over blocks to compute try block membership. Needs reverse post
232  // order and loop information.
233  void ComputeTryBlockInformation();
234
235  // Inline this graph in `outer_graph`, replacing the given `invoke` instruction.
236  // Returns the instruction used to replace the invoke expression or null if the
237  // invoke is for a void method.
238  HInstruction* InlineInto(HGraph* outer_graph, HInvoke* invoke);
239
240  // Need to add a couple of blocks to test if the loop body is entered and
241  // put deoptimization instructions, etc.
242  void TransformLoopHeaderForBCE(HBasicBlock* header);
243
244  // Removes `block` from the graph. Assumes `block` has been disconnected from
245  // other blocks and has no instructions or phis.
246  void DeleteDeadEmptyBlock(HBasicBlock* block);
247
248  // Splits the edge between `block` and `successor` while preserving the
249  // indices in the predecessor/successor lists. If there are multiple edges
250  // between the blocks, the lowest indices are used.
251  // Returns the new block which is empty and has the same dex pc as `successor`.
252  HBasicBlock* SplitEdge(HBasicBlock* block, HBasicBlock* successor);
253
254  void SplitCriticalEdge(HBasicBlock* block, HBasicBlock* successor);
255  void SimplifyLoop(HBasicBlock* header);
256
257  int32_t GetNextInstructionId() {
258    DCHECK_NE(current_instruction_id_, INT32_MAX);
259    return current_instruction_id_++;
260  }
261
262  int32_t GetCurrentInstructionId() const {
263    return current_instruction_id_;
264  }
265
266  void SetCurrentInstructionId(int32_t id) {
267    current_instruction_id_ = id;
268  }
269
270  uint16_t GetMaximumNumberOfOutVRegs() const {
271    return maximum_number_of_out_vregs_;
272  }
273
274  void SetMaximumNumberOfOutVRegs(uint16_t new_value) {
275    maximum_number_of_out_vregs_ = new_value;
276  }
277
278  void UpdateMaximumNumberOfOutVRegs(uint16_t other_value) {
279    maximum_number_of_out_vregs_ = std::max(maximum_number_of_out_vregs_, other_value);
280  }
281
282  void UpdateTemporariesVRegSlots(size_t slots) {
283    temporaries_vreg_slots_ = std::max(slots, temporaries_vreg_slots_);
284  }
285
286  size_t GetTemporariesVRegSlots() const {
287    DCHECK(!in_ssa_form_);
288    return temporaries_vreg_slots_;
289  }
290
291  void SetNumberOfVRegs(uint16_t number_of_vregs) {
292    number_of_vregs_ = number_of_vregs;
293  }
294
295  uint16_t GetNumberOfVRegs() const {
296    return number_of_vregs_;
297  }
298
299  void SetNumberOfInVRegs(uint16_t value) {
300    number_of_in_vregs_ = value;
301  }
302
303  uint16_t GetNumberOfLocalVRegs() const {
304    DCHECK(!in_ssa_form_);
305    return number_of_vregs_ - number_of_in_vregs_;
306  }
307
308  const ArenaVector<HBasicBlock*>& GetReversePostOrder() const {
309    return reverse_post_order_;
310  }
311
312  const ArenaVector<HBasicBlock*>& GetLinearOrder() const {
313    return linear_order_;
314  }
315
316  bool HasBoundsChecks() const {
317    return has_bounds_checks_;
318  }
319
320  void SetHasBoundsChecks(bool value) {
321    has_bounds_checks_ = value;
322  }
323
324  bool ShouldGenerateConstructorBarrier() const {
325    return should_generate_constructor_barrier_;
326  }
327
328  bool IsDebuggable() const { return debuggable_; }
329
330  // Returns a constant of the given type and value. If it does not exist
331  // already, it is created and inserted into the graph. This method is only for
332  // integral types.
333  HConstant* GetConstant(Primitive::Type type, int64_t value, uint32_t dex_pc = kNoDexPc);
334
335  // TODO: This is problematic for the consistency of reference type propagation
336  // because it can be created anytime after the pass and thus it will be left
337  // with an invalid type.
338  HNullConstant* GetNullConstant(uint32_t dex_pc = kNoDexPc);
339
340  HIntConstant* GetIntConstant(int32_t value, uint32_t dex_pc = kNoDexPc) {
341    return CreateConstant(value, &cached_int_constants_, dex_pc);
342  }
343  HLongConstant* GetLongConstant(int64_t value, uint32_t dex_pc = kNoDexPc) {
344    return CreateConstant(value, &cached_long_constants_, dex_pc);
345  }
346  HFloatConstant* GetFloatConstant(float value, uint32_t dex_pc = kNoDexPc) {
347    return CreateConstant(bit_cast<int32_t, float>(value), &cached_float_constants_, dex_pc);
348  }
349  HDoubleConstant* GetDoubleConstant(double value, uint32_t dex_pc = kNoDexPc) {
350    return CreateConstant(bit_cast<int64_t, double>(value), &cached_double_constants_, dex_pc);
351  }
352
353  HCurrentMethod* GetCurrentMethod();
354
355  const DexFile& GetDexFile() const {
356    return dex_file_;
357  }
358
359  uint32_t GetMethodIdx() const {
360    return method_idx_;
361  }
362
363  InvokeType GetInvokeType() const {
364    return invoke_type_;
365  }
366
367  InstructionSet GetInstructionSet() const {
368    return instruction_set_;
369  }
370
371  bool HasTryCatch() const { return has_try_catch_; }
372  void SetHasTryCatch(bool value) { has_try_catch_ = value; }
373
374 private:
375  void FindBackEdges(ArenaBitVector* visited);
376  void RemoveInstructionsAsUsersFromDeadBlocks(const ArenaBitVector& visited) const;
377  void RemoveDeadBlocks(const ArenaBitVector& visited);
378
379  template <class InstructionType, typename ValueType>
380  InstructionType* CreateConstant(ValueType value,
381                                  ArenaSafeMap<ValueType, InstructionType*>* cache,
382                                  uint32_t dex_pc = kNoDexPc) {
383    // Try to find an existing constant of the given value.
384    InstructionType* constant = nullptr;
385    auto cached_constant = cache->find(value);
386    if (cached_constant != cache->end()) {
387      constant = cached_constant->second;
388    }
389
390    // If not found or previously deleted, create and cache a new instruction.
391    // Don't bother reviving a previously deleted instruction, for simplicity.
392    if (constant == nullptr || constant->GetBlock() == nullptr) {
393      constant = new (arena_) InstructionType(value, dex_pc);
394      cache->Overwrite(value, constant);
395      InsertConstant(constant);
396    }
397    return constant;
398  }
399
400  void InsertConstant(HConstant* instruction);
401
402  // Cache a float constant into the graph. This method should only be
403  // called by the SsaBuilder when creating "equivalent" instructions.
404  void CacheFloatConstant(HFloatConstant* constant);
405
406  // See CacheFloatConstant comment.
407  void CacheDoubleConstant(HDoubleConstant* constant);
408
409  ArenaAllocator* const arena_;
410
411  // List of blocks in insertion order.
412  ArenaVector<HBasicBlock*> blocks_;
413
414  // List of blocks to perform a reverse post order tree traversal.
415  ArenaVector<HBasicBlock*> reverse_post_order_;
416
417  // List of blocks to perform a linear order tree traversal.
418  ArenaVector<HBasicBlock*> linear_order_;
419
420  HBasicBlock* entry_block_;
421  HBasicBlock* exit_block_;
422
423  // The maximum number of virtual registers arguments passed to a HInvoke in this graph.
424  uint16_t maximum_number_of_out_vregs_;
425
426  // The number of virtual registers in this method. Contains the parameters.
427  uint16_t number_of_vregs_;
428
429  // The number of virtual registers used by parameters of this method.
430  uint16_t number_of_in_vregs_;
431
432  // Number of vreg size slots that the temporaries use (used in baseline compiler).
433  size_t temporaries_vreg_slots_;
434
435  // Has bounds checks. We can totally skip BCE if it's false.
436  bool has_bounds_checks_;
437
438  // Flag whether there are any try/catch blocks in the graph. We will skip
439  // try/catch-related passes if false.
440  bool has_try_catch_;
441
442  // Indicates whether the graph should be compiled in a way that
443  // ensures full debuggability. If false, we can apply more
444  // aggressive optimizations that may limit the level of debugging.
445  const bool debuggable_;
446
447  // The current id to assign to a newly added instruction. See HInstruction.id_.
448  int32_t current_instruction_id_;
449
450  // The dex file from which the method is from.
451  const DexFile& dex_file_;
452
453  // The method index in the dex file.
454  const uint32_t method_idx_;
455
456  // If inlined, this encodes how the callee is being invoked.
457  const InvokeType invoke_type_;
458
459  // Whether the graph has been transformed to SSA form. Only used
460  // in debug mode to ensure we are not using properties only valid
461  // for non-SSA form (like the number of temporaries).
462  bool in_ssa_form_;
463
464  const bool should_generate_constructor_barrier_;
465
466  const InstructionSet instruction_set_;
467
468  // Cached constants.
469  HNullConstant* cached_null_constant_;
470  ArenaSafeMap<int32_t, HIntConstant*> cached_int_constants_;
471  ArenaSafeMap<int32_t, HFloatConstant*> cached_float_constants_;
472  ArenaSafeMap<int64_t, HLongConstant*> cached_long_constants_;
473  ArenaSafeMap<int64_t, HDoubleConstant*> cached_double_constants_;
474
475  HCurrentMethod* cached_current_method_;
476
477  friend class SsaBuilder;           // For caching constants.
478  friend class SsaLivenessAnalysis;  // For the linear order.
479  ART_FRIEND_TEST(GraphTest, IfSuccessorSimpleJoinBlock1);
480  DISALLOW_COPY_AND_ASSIGN(HGraph);
481};
482
483class HLoopInformation : public ArenaObject<kArenaAllocLoopInfo> {
484 public:
485  HLoopInformation(HBasicBlock* header, HGraph* graph)
486      : header_(header),
487        suspend_check_(nullptr),
488        back_edges_(graph->GetArena()->Adapter(kArenaAllocLoopInfoBackEdges)),
489        // Make bit vector growable, as the number of blocks may change.
490        blocks_(graph->GetArena(), graph->GetBlocks().size(), true) {
491    back_edges_.reserve(kDefaultNumberOfBackEdges);
492  }
493
494  HBasicBlock* GetHeader() const {
495    return header_;
496  }
497
498  void SetHeader(HBasicBlock* block) {
499    header_ = block;
500  }
501
502  HSuspendCheck* GetSuspendCheck() const { return suspend_check_; }
503  void SetSuspendCheck(HSuspendCheck* check) { suspend_check_ = check; }
504  bool HasSuspendCheck() const { return suspend_check_ != nullptr; }
505
506  void AddBackEdge(HBasicBlock* back_edge) {
507    back_edges_.push_back(back_edge);
508  }
509
510  void RemoveBackEdge(HBasicBlock* back_edge) {
511    RemoveElement(back_edges_, back_edge);
512  }
513
514  bool IsBackEdge(const HBasicBlock& block) const {
515    return ContainsElement(back_edges_, &block);
516  }
517
518  size_t NumberOfBackEdges() const {
519    return back_edges_.size();
520  }
521
522  HBasicBlock* GetPreHeader() const;
523
524  const ArenaVector<HBasicBlock*>& GetBackEdges() const {
525    return back_edges_;
526  }
527
528  // Returns the lifetime position of the back edge that has the
529  // greatest lifetime position.
530  size_t GetLifetimeEnd() const;
531
532  void ReplaceBackEdge(HBasicBlock* existing, HBasicBlock* new_back_edge) {
533    ReplaceElement(back_edges_, existing, new_back_edge);
534  }
535
536  // Finds blocks that are part of this loop. Returns whether the loop is a natural loop,
537  // that is the header dominates the back edge.
538  bool Populate();
539
540  // Reanalyzes the loop by removing loop info from its blocks and re-running
541  // Populate(). If there are no back edges left, the loop info is completely
542  // removed as well as its SuspendCheck instruction. It must be run on nested
543  // inner loops first.
544  void Update();
545
546  // Returns whether this loop information contains `block`.
547  // Note that this loop information *must* be populated before entering this function.
548  bool Contains(const HBasicBlock& block) const;
549
550  // Returns whether this loop information is an inner loop of `other`.
551  // Note that `other` *must* be populated before entering this function.
552  bool IsIn(const HLoopInformation& other) const;
553
554  // Returns true if instruction is not defined within this loop or any loop nested inside
555  // this loop. If must_dominate is set, only definitions that actually dominate the loop
556  // header can be invariant. Otherwise, any definition outside the loop, including
557  // definitions that appear after the loop, is invariant.
558  bool IsLoopInvariant(HInstruction* instruction, bool must_dominate) const;
559
560  const ArenaBitVector& GetBlocks() const { return blocks_; }
561
562  void Add(HBasicBlock* block);
563  void Remove(HBasicBlock* block);
564
565 private:
566  // Internal recursive implementation of `Populate`.
567  void PopulateRecursive(HBasicBlock* block);
568
569  HBasicBlock* header_;
570  HSuspendCheck* suspend_check_;
571  ArenaVector<HBasicBlock*> back_edges_;
572  ArenaBitVector blocks_;
573
574  DISALLOW_COPY_AND_ASSIGN(HLoopInformation);
575};
576
577// Stores try/catch information for basic blocks.
578// Note that HGraph is constructed so that catch blocks cannot simultaneously
579// be try blocks.
580class TryCatchInformation : public ArenaObject<kArenaAllocTryCatchInfo> {
581 public:
582  // Try block information constructor.
583  explicit TryCatchInformation(const HTryBoundary& try_entry)
584      : try_entry_(&try_entry),
585        catch_dex_file_(nullptr),
586        catch_type_index_(DexFile::kDexNoIndex16) {
587    DCHECK(try_entry_ != nullptr);
588  }
589
590  // Catch block information constructor.
591  TryCatchInformation(uint16_t catch_type_index, const DexFile& dex_file)
592      : try_entry_(nullptr),
593        catch_dex_file_(&dex_file),
594        catch_type_index_(catch_type_index) {}
595
596  bool IsTryBlock() const { return try_entry_ != nullptr; }
597
598  const HTryBoundary& GetTryEntry() const {
599    DCHECK(IsTryBlock());
600    return *try_entry_;
601  }
602
603  bool IsCatchBlock() const { return catch_dex_file_ != nullptr; }
604
605  bool IsCatchAllTypeIndex() const {
606    DCHECK(IsCatchBlock());
607    return catch_type_index_ == DexFile::kDexNoIndex16;
608  }
609
610  uint16_t GetCatchTypeIndex() const {
611    DCHECK(IsCatchBlock());
612    return catch_type_index_;
613  }
614
615  const DexFile& GetCatchDexFile() const {
616    DCHECK(IsCatchBlock());
617    return *catch_dex_file_;
618  }
619
620 private:
621  // One of possibly several TryBoundary instructions entering the block's try.
622  // Only set for try blocks.
623  const HTryBoundary* try_entry_;
624
625  // Exception type information. Only set for catch blocks.
626  const DexFile* catch_dex_file_;
627  const uint16_t catch_type_index_;
628};
629
630static constexpr size_t kNoLifetime = -1;
631static constexpr uint32_t kInvalidBlockId = static_cast<uint32_t>(-1);
632
633// A block in a method. Contains the list of instructions represented
634// as a double linked list. Each block knows its predecessors and
635// successors.
636
637class HBasicBlock : public ArenaObject<kArenaAllocBasicBlock> {
638 public:
639  HBasicBlock(HGraph* graph, uint32_t dex_pc = kNoDexPc)
640      : graph_(graph),
641        predecessors_(graph->GetArena()->Adapter(kArenaAllocPredecessors)),
642        successors_(graph->GetArena()->Adapter(kArenaAllocSuccessors)),
643        loop_information_(nullptr),
644        dominator_(nullptr),
645        dominated_blocks_(graph->GetArena()->Adapter(kArenaAllocDominated)),
646        block_id_(kInvalidBlockId),
647        dex_pc_(dex_pc),
648        lifetime_start_(kNoLifetime),
649        lifetime_end_(kNoLifetime),
650        try_catch_information_(nullptr) {
651    predecessors_.reserve(kDefaultNumberOfPredecessors);
652    successors_.reserve(kDefaultNumberOfSuccessors);
653    dominated_blocks_.reserve(kDefaultNumberOfDominatedBlocks);
654  }
655
656  const ArenaVector<HBasicBlock*>& GetPredecessors() const {
657    return predecessors_;
658  }
659
660  const ArenaVector<HBasicBlock*>& GetSuccessors() const {
661    return successors_;
662  }
663
664  ArrayRef<HBasicBlock* const> GetNormalSuccessors() const;
665  ArrayRef<HBasicBlock* const> GetExceptionalSuccessors() const;
666
667  bool HasSuccessor(const HBasicBlock* block, size_t start_from = 0u) {
668    return ContainsElement(successors_, block, start_from);
669  }
670
671  const ArenaVector<HBasicBlock*>& GetDominatedBlocks() const {
672    return dominated_blocks_;
673  }
674
675  bool IsEntryBlock() const {
676    return graph_->GetEntryBlock() == this;
677  }
678
679  bool IsExitBlock() const {
680    return graph_->GetExitBlock() == this;
681  }
682
683  bool IsSingleGoto() const;
684  bool IsSingleTryBoundary() const;
685
686  // Returns true if this block emits nothing but a jump.
687  bool IsSingleJump() const {
688    HLoopInformation* loop_info = GetLoopInformation();
689    return (IsSingleGoto() || IsSingleTryBoundary())
690           // Back edges generate a suspend check.
691           && (loop_info == nullptr || !loop_info->IsBackEdge(*this));
692  }
693
694  void AddBackEdge(HBasicBlock* back_edge) {
695    if (loop_information_ == nullptr) {
696      loop_information_ = new (graph_->GetArena()) HLoopInformation(this, graph_);
697    }
698    DCHECK_EQ(loop_information_->GetHeader(), this);
699    loop_information_->AddBackEdge(back_edge);
700  }
701
702  HGraph* GetGraph() const { return graph_; }
703  void SetGraph(HGraph* graph) { graph_ = graph; }
704
705  uint32_t GetBlockId() const { return block_id_; }
706  void SetBlockId(int id) { block_id_ = id; }
707  uint32_t GetDexPc() const { return dex_pc_; }
708
709  HBasicBlock* GetDominator() const { return dominator_; }
710  void SetDominator(HBasicBlock* dominator) { dominator_ = dominator; }
711  void AddDominatedBlock(HBasicBlock* block) { dominated_blocks_.push_back(block); }
712
713  void RemoveDominatedBlock(HBasicBlock* block) {
714    RemoveElement(dominated_blocks_, block);
715  }
716
717  void ReplaceDominatedBlock(HBasicBlock* existing, HBasicBlock* new_block) {
718    ReplaceElement(dominated_blocks_, existing, new_block);
719  }
720
721  void ClearDominanceInformation();
722
723  int NumberOfBackEdges() const {
724    return IsLoopHeader() ? loop_information_->NumberOfBackEdges() : 0;
725  }
726
727  HInstruction* GetFirstInstruction() const { return instructions_.first_instruction_; }
728  HInstruction* GetLastInstruction() const { return instructions_.last_instruction_; }
729  const HInstructionList& GetInstructions() const { return instructions_; }
730  HInstruction* GetFirstPhi() const { return phis_.first_instruction_; }
731  HInstruction* GetLastPhi() const { return phis_.last_instruction_; }
732  const HInstructionList& GetPhis() const { return phis_; }
733
734  void AddSuccessor(HBasicBlock* block) {
735    successors_.push_back(block);
736    block->predecessors_.push_back(this);
737  }
738
739  void ReplaceSuccessor(HBasicBlock* existing, HBasicBlock* new_block) {
740    size_t successor_index = GetSuccessorIndexOf(existing);
741    existing->RemovePredecessor(this);
742    new_block->predecessors_.push_back(this);
743    successors_[successor_index] = new_block;
744  }
745
746  void ReplacePredecessor(HBasicBlock* existing, HBasicBlock* new_block) {
747    size_t predecessor_index = GetPredecessorIndexOf(existing);
748    existing->RemoveSuccessor(this);
749    new_block->successors_.push_back(this);
750    predecessors_[predecessor_index] = new_block;
751  }
752
753  // Insert `this` between `predecessor` and `successor. This method
754  // preserves the indicies, and will update the first edge found between
755  // `predecessor` and `successor`.
756  void InsertBetween(HBasicBlock* predecessor, HBasicBlock* successor) {
757    size_t predecessor_index = successor->GetPredecessorIndexOf(predecessor);
758    size_t successor_index = predecessor->GetSuccessorIndexOf(successor);
759    successor->predecessors_[predecessor_index] = this;
760    predecessor->successors_[successor_index] = this;
761    successors_.push_back(successor);
762    predecessors_.push_back(predecessor);
763  }
764
765  void RemovePredecessor(HBasicBlock* block) {
766    predecessors_.erase(predecessors_.begin() + GetPredecessorIndexOf(block));
767  }
768
769  void RemoveSuccessor(HBasicBlock* block) {
770    successors_.erase(successors_.begin() + GetSuccessorIndexOf(block));
771  }
772
773  void ClearAllPredecessors() {
774    predecessors_.clear();
775  }
776
777  void AddPredecessor(HBasicBlock* block) {
778    predecessors_.push_back(block);
779    block->successors_.push_back(this);
780  }
781
782  void SwapPredecessors() {
783    DCHECK_EQ(predecessors_.size(), 2u);
784    std::swap(predecessors_[0], predecessors_[1]);
785  }
786
787  void SwapSuccessors() {
788    DCHECK_EQ(successors_.size(), 2u);
789    std::swap(successors_[0], successors_[1]);
790  }
791
792  size_t GetPredecessorIndexOf(HBasicBlock* predecessor) const {
793    return IndexOfElement(predecessors_, predecessor);
794  }
795
796  size_t GetSuccessorIndexOf(HBasicBlock* successor) const {
797    return IndexOfElement(successors_, successor);
798  }
799
800  HBasicBlock* GetSinglePredecessor() const {
801    DCHECK_EQ(GetPredecessors().size(), 1u);
802    return GetPredecessors()[0];
803  }
804
805  HBasicBlock* GetSingleSuccessor() const {
806    DCHECK_EQ(GetSuccessors().size(), 1u);
807    return GetSuccessors()[0];
808  }
809
810  // Returns whether the first occurrence of `predecessor` in the list of
811  // predecessors is at index `idx`.
812  bool IsFirstIndexOfPredecessor(HBasicBlock* predecessor, size_t idx) const {
813    DCHECK_EQ(GetPredecessors()[idx], predecessor);
814    return GetPredecessorIndexOf(predecessor) == idx;
815  }
816
817  // Create a new block between this block and its predecessors. The new block
818  // is added to the graph, all predecessor edges are relinked to it and an edge
819  // is created to `this`. Returns the new empty block. Reverse post order or
820  // loop and try/catch information are not updated.
821  HBasicBlock* CreateImmediateDominator();
822
823  // Split the block into two blocks just before `cursor`. Returns the newly
824  // created, latter block. Note that this method will add the block to the
825  // graph, create a Goto at the end of the former block and will create an edge
826  // between the blocks. It will not, however, update the reverse post order or
827  // loop and try/catch information.
828  HBasicBlock* SplitBefore(HInstruction* cursor);
829
830  // Split the block into two blocks just after `cursor`. Returns the newly
831  // created block. Note that this method just updates raw block information,
832  // like predecessors, successors, dominators, and instruction list. It does not
833  // update the graph, reverse post order, loop information, nor make sure the
834  // blocks are consistent (for example ending with a control flow instruction).
835  HBasicBlock* SplitAfter(HInstruction* cursor);
836
837  // Split catch block into two blocks after the original move-exception bytecode
838  // instruction, or at the beginning if not present. Returns the newly created,
839  // latter block, or nullptr if such block could not be created (must be dead
840  // in that case). Note that this method just updates raw block information,
841  // like predecessors, successors, dominators, and instruction list. It does not
842  // update the graph, reverse post order, loop information, nor make sure the
843  // blocks are consistent (for example ending with a control flow instruction).
844  HBasicBlock* SplitCatchBlockAfterMoveException();
845
846  // Merge `other` at the end of `this`. Successors and dominated blocks of
847  // `other` are changed to be successors and dominated blocks of `this`. Note
848  // that this method does not update the graph, reverse post order, loop
849  // information, nor make sure the blocks are consistent (for example ending
850  // with a control flow instruction).
851  void MergeWithInlined(HBasicBlock* other);
852
853  // Replace `this` with `other`. Predecessors, successors, and dominated blocks
854  // of `this` are moved to `other`.
855  // Note that this method does not update the graph, reverse post order, loop
856  // information, nor make sure the blocks are consistent (for example ending
857  // with a control flow instruction).
858  void ReplaceWith(HBasicBlock* other);
859
860  // Merge `other` at the end of `this`. This method updates loops, reverse post
861  // order, links to predecessors, successors, dominators and deletes the block
862  // from the graph. The two blocks must be successive, i.e. `this` the only
863  // predecessor of `other` and vice versa.
864  void MergeWith(HBasicBlock* other);
865
866  // Disconnects `this` from all its predecessors, successors and dominator,
867  // removes it from all loops it is included in and eventually from the graph.
868  // The block must not dominate any other block. Predecessors and successors
869  // are safely updated.
870  void DisconnectAndDelete();
871
872  void AddInstruction(HInstruction* instruction);
873  // Insert `instruction` before/after an existing instruction `cursor`.
874  void InsertInstructionBefore(HInstruction* instruction, HInstruction* cursor);
875  void InsertInstructionAfter(HInstruction* instruction, HInstruction* cursor);
876  // Replace instruction `initial` with `replacement` within this block.
877  void ReplaceAndRemoveInstructionWith(HInstruction* initial,
878                                       HInstruction* replacement);
879  void AddPhi(HPhi* phi);
880  void InsertPhiAfter(HPhi* instruction, HPhi* cursor);
881  // RemoveInstruction and RemovePhi delete a given instruction from the respective
882  // instruction list. With 'ensure_safety' set to true, it verifies that the
883  // instruction is not in use and removes it from the use lists of its inputs.
884  void RemoveInstruction(HInstruction* instruction, bool ensure_safety = true);
885  void RemovePhi(HPhi* phi, bool ensure_safety = true);
886  void RemoveInstructionOrPhi(HInstruction* instruction, bool ensure_safety = true);
887
888  bool IsLoopHeader() const {
889    return IsInLoop() && (loop_information_->GetHeader() == this);
890  }
891
892  bool IsLoopPreHeaderFirstPredecessor() const {
893    DCHECK(IsLoopHeader());
894    return GetPredecessors()[0] == GetLoopInformation()->GetPreHeader();
895  }
896
897  HLoopInformation* GetLoopInformation() const {
898    return loop_information_;
899  }
900
901  // Set the loop_information_ on this block. Overrides the current
902  // loop_information if it is an outer loop of the passed loop information.
903  // Note that this method is called while creating the loop information.
904  void SetInLoop(HLoopInformation* info) {
905    if (IsLoopHeader()) {
906      // Nothing to do. This just means `info` is an outer loop.
907    } else if (!IsInLoop()) {
908      loop_information_ = info;
909    } else if (loop_information_->Contains(*info->GetHeader())) {
910      // Block is currently part of an outer loop. Make it part of this inner loop.
911      // Note that a non loop header having a loop information means this loop information
912      // has already been populated
913      loop_information_ = info;
914    } else {
915      // Block is part of an inner loop. Do not update the loop information.
916      // Note that we cannot do the check `info->Contains(loop_information_)->GetHeader()`
917      // at this point, because this method is being called while populating `info`.
918    }
919  }
920
921  // Raw update of the loop information.
922  void SetLoopInformation(HLoopInformation* info) {
923    loop_information_ = info;
924  }
925
926  bool IsInLoop() const { return loop_information_ != nullptr; }
927
928  TryCatchInformation* GetTryCatchInformation() const { return try_catch_information_; }
929
930  void SetTryCatchInformation(TryCatchInformation* try_catch_information) {
931    try_catch_information_ = try_catch_information;
932  }
933
934  bool IsTryBlock() const {
935    return try_catch_information_ != nullptr && try_catch_information_->IsTryBlock();
936  }
937
938  bool IsCatchBlock() const {
939    return try_catch_information_ != nullptr && try_catch_information_->IsCatchBlock();
940  }
941
942  // Returns the try entry that this block's successors should have. They will
943  // be in the same try, unless the block ends in a try boundary. In that case,
944  // the appropriate try entry will be returned.
945  const HTryBoundary* ComputeTryEntryOfSuccessors() const;
946
947  bool HasThrowingInstructions() const;
948
949  // Returns whether this block dominates the blocked passed as parameter.
950  bool Dominates(HBasicBlock* block) const;
951
952  size_t GetLifetimeStart() const { return lifetime_start_; }
953  size_t GetLifetimeEnd() const { return lifetime_end_; }
954
955  void SetLifetimeStart(size_t start) { lifetime_start_ = start; }
956  void SetLifetimeEnd(size_t end) { lifetime_end_ = end; }
957
958  bool EndsWithControlFlowInstruction() const;
959  bool EndsWithIf() const;
960  bool EndsWithTryBoundary() const;
961  bool HasSinglePhi() const;
962
963 private:
964  HGraph* graph_;
965  ArenaVector<HBasicBlock*> predecessors_;
966  ArenaVector<HBasicBlock*> successors_;
967  HInstructionList instructions_;
968  HInstructionList phis_;
969  HLoopInformation* loop_information_;
970  HBasicBlock* dominator_;
971  ArenaVector<HBasicBlock*> dominated_blocks_;
972  uint32_t block_id_;
973  // The dex program counter of the first instruction of this block.
974  const uint32_t dex_pc_;
975  size_t lifetime_start_;
976  size_t lifetime_end_;
977  TryCatchInformation* try_catch_information_;
978
979  friend class HGraph;
980  friend class HInstruction;
981
982  DISALLOW_COPY_AND_ASSIGN(HBasicBlock);
983};
984
985// Iterates over the LoopInformation of all loops which contain 'block'
986// from the innermost to the outermost.
987class HLoopInformationOutwardIterator : public ValueObject {
988 public:
989  explicit HLoopInformationOutwardIterator(const HBasicBlock& block)
990      : current_(block.GetLoopInformation()) {}
991
992  bool Done() const { return current_ == nullptr; }
993
994  void Advance() {
995    DCHECK(!Done());
996    current_ = current_->GetPreHeader()->GetLoopInformation();
997  }
998
999  HLoopInformation* Current() const {
1000    DCHECK(!Done());
1001    return current_;
1002  }
1003
1004 private:
1005  HLoopInformation* current_;
1006
1007  DISALLOW_COPY_AND_ASSIGN(HLoopInformationOutwardIterator);
1008};
1009
1010#define FOR_EACH_CONCRETE_INSTRUCTION_COMMON(M)                         \
1011  M(Above, Condition)                                                   \
1012  M(AboveOrEqual, Condition)                                            \
1013  M(Add, BinaryOperation)                                               \
1014  M(And, BinaryOperation)                                               \
1015  M(ArrayGet, Instruction)                                              \
1016  M(ArrayLength, Instruction)                                           \
1017  M(ArraySet, Instruction)                                              \
1018  M(Below, Condition)                                                   \
1019  M(BelowOrEqual, Condition)                                            \
1020  M(BooleanNot, UnaryOperation)                                         \
1021  M(BoundsCheck, Instruction)                                           \
1022  M(BoundType, Instruction)                                             \
1023  M(CheckCast, Instruction)                                             \
1024  M(ClearException, Instruction)                                        \
1025  M(ClinitCheck, Instruction)                                           \
1026  M(Compare, BinaryOperation)                                           \
1027  M(Condition, BinaryOperation)                                         \
1028  M(CurrentMethod, Instruction)                                         \
1029  M(Deoptimize, Instruction)                                            \
1030  M(Div, BinaryOperation)                                               \
1031  M(DivZeroCheck, Instruction)                                          \
1032  M(DoubleConstant, Constant)                                           \
1033  M(Equal, Condition)                                                   \
1034  M(Exit, Instruction)                                                  \
1035  M(FakeString, Instruction)                                            \
1036  M(FloatConstant, Constant)                                            \
1037  M(Goto, Instruction)                                                  \
1038  M(GreaterThan, Condition)                                             \
1039  M(GreaterThanOrEqual, Condition)                                      \
1040  M(If, Instruction)                                                    \
1041  M(InstanceFieldGet, Instruction)                                      \
1042  M(InstanceFieldSet, Instruction)                                      \
1043  M(InstanceOf, Instruction)                                            \
1044  M(IntConstant, Constant)                                              \
1045  M(InvokeUnresolved, Invoke)                                           \
1046  M(InvokeInterface, Invoke)                                            \
1047  M(InvokeStaticOrDirect, Invoke)                                       \
1048  M(InvokeVirtual, Invoke)                                              \
1049  M(LessThan, Condition)                                                \
1050  M(LessThanOrEqual, Condition)                                         \
1051  M(LoadClass, Instruction)                                             \
1052  M(LoadException, Instruction)                                         \
1053  M(LoadLocal, Instruction)                                             \
1054  M(LoadString, Instruction)                                            \
1055  M(Local, Instruction)                                                 \
1056  M(LongConstant, Constant)                                             \
1057  M(MemoryBarrier, Instruction)                                         \
1058  M(MonitorOperation, Instruction)                                      \
1059  M(Mul, BinaryOperation)                                               \
1060  M(Neg, UnaryOperation)                                                \
1061  M(NewArray, Instruction)                                              \
1062  M(NewInstance, Instruction)                                           \
1063  M(Not, UnaryOperation)                                                \
1064  M(NotEqual, Condition)                                                \
1065  M(NullConstant, Instruction)                                          \
1066  M(NullCheck, Instruction)                                             \
1067  M(Or, BinaryOperation)                                                \
1068  M(PackedSwitch, Instruction)                                          \
1069  M(ParallelMove, Instruction)                                          \
1070  M(ParameterValue, Instruction)                                        \
1071  M(Phi, Instruction)                                                   \
1072  M(Rem, BinaryOperation)                                               \
1073  M(Return, Instruction)                                                \
1074  M(ReturnVoid, Instruction)                                            \
1075  M(Shl, BinaryOperation)                                               \
1076  M(Shr, BinaryOperation)                                               \
1077  M(StaticFieldGet, Instruction)                                        \
1078  M(StaticFieldSet, Instruction)                                        \
1079  M(UnresolvedInstanceFieldGet, Instruction)                            \
1080  M(UnresolvedInstanceFieldSet, Instruction)                            \
1081  M(UnresolvedStaticFieldGet, Instruction)                              \
1082  M(UnresolvedStaticFieldSet, Instruction)                              \
1083  M(StoreLocal, Instruction)                                            \
1084  M(Sub, BinaryOperation)                                               \
1085  M(SuspendCheck, Instruction)                                          \
1086  M(Temporary, Instruction)                                             \
1087  M(Throw, Instruction)                                                 \
1088  M(TryBoundary, Instruction)                                           \
1089  M(TypeConversion, Instruction)                                        \
1090  M(UShr, BinaryOperation)                                              \
1091  M(Xor, BinaryOperation)                                               \
1092
1093#define FOR_EACH_CONCRETE_INSTRUCTION_ARM(M)
1094
1095#ifndef ART_ENABLE_CODEGEN_arm64
1096#define FOR_EACH_CONCRETE_INSTRUCTION_ARM64(M)
1097#else
1098#define FOR_EACH_CONCRETE_INSTRUCTION_ARM64(M)                          \
1099  M(Arm64IntermediateAddress, Instruction)                              \
1100  M(Arm64MultiplyAccumulate, Instruction)
1101#endif
1102
1103#define FOR_EACH_CONCRETE_INSTRUCTION_MIPS(M)
1104
1105#define FOR_EACH_CONCRETE_INSTRUCTION_MIPS64(M)
1106
1107#ifndef ART_ENABLE_CODEGEN_x86
1108#define FOR_EACH_CONCRETE_INSTRUCTION_X86(M)
1109#else
1110#define FOR_EACH_CONCRETE_INSTRUCTION_X86(M)                            \
1111  M(X86ComputeBaseMethodAddress, Instruction)                           \
1112  M(X86LoadFromConstantTable, Instruction)                              \
1113  M(X86PackedSwitch, Instruction)
1114#endif
1115
1116#define FOR_EACH_CONCRETE_INSTRUCTION_X86_64(M)
1117
1118#define FOR_EACH_CONCRETE_INSTRUCTION(M)                                \
1119  FOR_EACH_CONCRETE_INSTRUCTION_COMMON(M)                               \
1120  FOR_EACH_CONCRETE_INSTRUCTION_ARM(M)                                  \
1121  FOR_EACH_CONCRETE_INSTRUCTION_ARM64(M)                                \
1122  FOR_EACH_CONCRETE_INSTRUCTION_MIPS(M)                                 \
1123  FOR_EACH_CONCRETE_INSTRUCTION_MIPS64(M)                               \
1124  FOR_EACH_CONCRETE_INSTRUCTION_X86(M)                                  \
1125  FOR_EACH_CONCRETE_INSTRUCTION_X86_64(M)
1126
1127#define FOR_EACH_INSTRUCTION(M)                                         \
1128  FOR_EACH_CONCRETE_INSTRUCTION(M)                                      \
1129  M(Constant, Instruction)                                              \
1130  M(UnaryOperation, Instruction)                                        \
1131  M(BinaryOperation, Instruction)                                       \
1132  M(Invoke, Instruction)
1133
1134#define FORWARD_DECLARATION(type, super) class H##type;
1135FOR_EACH_INSTRUCTION(FORWARD_DECLARATION)
1136#undef FORWARD_DECLARATION
1137
1138#define DECLARE_INSTRUCTION(type)                                       \
1139  InstructionKind GetKind() const OVERRIDE { return k##type; }          \
1140  const char* DebugName() const OVERRIDE { return #type; }              \
1141  const H##type* As##type() const OVERRIDE { return this; }             \
1142  H##type* As##type() OVERRIDE { return this; }                         \
1143  bool InstructionTypeEquals(HInstruction* other) const OVERRIDE {      \
1144    return other->Is##type();                                           \
1145  }                                                                     \
1146  void Accept(HGraphVisitor* visitor) OVERRIDE
1147
1148template <typename T> class HUseList;
1149
1150template <typename T>
1151class HUseListNode : public ArenaObject<kArenaAllocUseListNode> {
1152 public:
1153  HUseListNode* GetPrevious() const { return prev_; }
1154  HUseListNode* GetNext() const { return next_; }
1155  T GetUser() const { return user_; }
1156  size_t GetIndex() const { return index_; }
1157  void SetIndex(size_t index) { index_ = index; }
1158
1159 private:
1160  HUseListNode(T user, size_t index)
1161      : user_(user), index_(index), prev_(nullptr), next_(nullptr) {}
1162
1163  T const user_;
1164  size_t index_;
1165  HUseListNode<T>* prev_;
1166  HUseListNode<T>* next_;
1167
1168  friend class HUseList<T>;
1169
1170  DISALLOW_COPY_AND_ASSIGN(HUseListNode);
1171};
1172
1173template <typename T>
1174class HUseList : public ValueObject {
1175 public:
1176  HUseList() : first_(nullptr) {}
1177
1178  void Clear() {
1179    first_ = nullptr;
1180  }
1181
1182  // Adds a new entry at the beginning of the use list and returns
1183  // the newly created node.
1184  HUseListNode<T>* AddUse(T user, size_t index, ArenaAllocator* arena) {
1185    HUseListNode<T>* new_node = new (arena) HUseListNode<T>(user, index);
1186    if (IsEmpty()) {
1187      first_ = new_node;
1188    } else {
1189      first_->prev_ = new_node;
1190      new_node->next_ = first_;
1191      first_ = new_node;
1192    }
1193    return new_node;
1194  }
1195
1196  HUseListNode<T>* GetFirst() const {
1197    return first_;
1198  }
1199
1200  void Remove(HUseListNode<T>* node) {
1201    DCHECK(node != nullptr);
1202    DCHECK(Contains(node));
1203
1204    if (node->prev_ != nullptr) {
1205      node->prev_->next_ = node->next_;
1206    }
1207    if (node->next_ != nullptr) {
1208      node->next_->prev_ = node->prev_;
1209    }
1210    if (node == first_) {
1211      first_ = node->next_;
1212    }
1213  }
1214
1215  bool Contains(const HUseListNode<T>* node) const {
1216    if (node == nullptr) {
1217      return false;
1218    }
1219    for (HUseListNode<T>* current = first_; current != nullptr; current = current->GetNext()) {
1220      if (current == node) {
1221        return true;
1222      }
1223    }
1224    return false;
1225  }
1226
1227  bool IsEmpty() const {
1228    return first_ == nullptr;
1229  }
1230
1231  bool HasOnlyOneUse() const {
1232    return first_ != nullptr && first_->next_ == nullptr;
1233  }
1234
1235  size_t SizeSlow() const {
1236    size_t count = 0;
1237    for (HUseListNode<T>* current = first_; current != nullptr; current = current->GetNext()) {
1238      ++count;
1239    }
1240    return count;
1241  }
1242
1243 private:
1244  HUseListNode<T>* first_;
1245};
1246
1247template<typename T>
1248class HUseIterator : public ValueObject {
1249 public:
1250  explicit HUseIterator(const HUseList<T>& uses) : current_(uses.GetFirst()) {}
1251
1252  bool Done() const { return current_ == nullptr; }
1253
1254  void Advance() {
1255    DCHECK(!Done());
1256    current_ = current_->GetNext();
1257  }
1258
1259  HUseListNode<T>* Current() const {
1260    DCHECK(!Done());
1261    return current_;
1262  }
1263
1264 private:
1265  HUseListNode<T>* current_;
1266
1267  friend class HValue;
1268};
1269
1270// This class is used by HEnvironment and HInstruction classes to record the
1271// instructions they use and pointers to the corresponding HUseListNodes kept
1272// by the used instructions.
1273template <typename T>
1274class HUserRecord : public ValueObject {
1275 public:
1276  HUserRecord() : instruction_(nullptr), use_node_(nullptr) {}
1277  explicit HUserRecord(HInstruction* instruction) : instruction_(instruction), use_node_(nullptr) {}
1278
1279  HUserRecord(const HUserRecord<T>& old_record, HUseListNode<T>* use_node)
1280    : instruction_(old_record.instruction_), use_node_(use_node) {
1281    DCHECK(instruction_ != nullptr);
1282    DCHECK(use_node_ != nullptr);
1283    DCHECK(old_record.use_node_ == nullptr);
1284  }
1285
1286  HInstruction* GetInstruction() const { return instruction_; }
1287  HUseListNode<T>* GetUseNode() const { return use_node_; }
1288
1289 private:
1290  // Instruction used by the user.
1291  HInstruction* instruction_;
1292
1293  // Corresponding entry in the use list kept by 'instruction_'.
1294  HUseListNode<T>* use_node_;
1295};
1296
1297/**
1298 * Side-effects representation.
1299 *
1300 * For write/read dependences on fields/arrays, the dependence analysis uses
1301 * type disambiguation (e.g. a float field write cannot modify the value of an
1302 * integer field read) and the access type (e.g.  a reference array write cannot
1303 * modify the value of a reference field read [although it may modify the
1304 * reference fetch prior to reading the field, which is represented by its own
1305 * write/read dependence]). The analysis makes conservative points-to
1306 * assumptions on reference types (e.g. two same typed arrays are assumed to be
1307 * the same, and any reference read depends on any reference read without
1308 * further regard of its type).
1309 *
1310 * The internal representation uses 38-bit and is described in the table below.
1311 * The first line indicates the side effect, and for field/array accesses the
1312 * second line indicates the type of the access (in the order of the
1313 * Primitive::Type enum).
1314 * The two numbered lines below indicate the bit position in the bitfield (read
1315 * vertically).
1316 *
1317 *   |Depends on GC|ARRAY-R  |FIELD-R  |Can trigger GC|ARRAY-W  |FIELD-W  |
1318 *   +-------------+---------+---------+--------------+---------+---------+
1319 *   |             |DFJISCBZL|DFJISCBZL|              |DFJISCBZL|DFJISCBZL|
1320 *   |      3      |333333322|222222221|       1      |111111110|000000000|
1321 *   |      7      |654321098|765432109|       8      |765432109|876543210|
1322 *
1323 * Note that, to ease the implementation, 'changes' bits are least significant
1324 * bits, while 'dependency' bits are most significant bits.
1325 */
1326class SideEffects : public ValueObject {
1327 public:
1328  SideEffects() : flags_(0) {}
1329
1330  static SideEffects None() {
1331    return SideEffects(0);
1332  }
1333
1334  static SideEffects All() {
1335    return SideEffects(kAllChangeBits | kAllDependOnBits);
1336  }
1337
1338  static SideEffects AllChanges() {
1339    return SideEffects(kAllChangeBits);
1340  }
1341
1342  static SideEffects AllDependencies() {
1343    return SideEffects(kAllDependOnBits);
1344  }
1345
1346  static SideEffects AllExceptGCDependency() {
1347    return AllWritesAndReads().Union(SideEffects::CanTriggerGC());
1348  }
1349
1350  static SideEffects AllWritesAndReads() {
1351    return SideEffects(kAllWrites | kAllReads);
1352  }
1353
1354  static SideEffects AllWrites() {
1355    return SideEffects(kAllWrites);
1356  }
1357
1358  static SideEffects AllReads() {
1359    return SideEffects(kAllReads);
1360  }
1361
1362  static SideEffects FieldWriteOfType(Primitive::Type type, bool is_volatile) {
1363    return is_volatile
1364        ? AllWritesAndReads()
1365        : SideEffects(TypeFlagWithAlias(type, kFieldWriteOffset));
1366  }
1367
1368  static SideEffects ArrayWriteOfType(Primitive::Type type) {
1369    return SideEffects(TypeFlagWithAlias(type, kArrayWriteOffset));
1370  }
1371
1372  static SideEffects FieldReadOfType(Primitive::Type type, bool is_volatile) {
1373    return is_volatile
1374        ? AllWritesAndReads()
1375        : SideEffects(TypeFlagWithAlias(type, kFieldReadOffset));
1376  }
1377
1378  static SideEffects ArrayReadOfType(Primitive::Type type) {
1379    return SideEffects(TypeFlagWithAlias(type, kArrayReadOffset));
1380  }
1381
1382  static SideEffects CanTriggerGC() {
1383    return SideEffects(1ULL << kCanTriggerGCBit);
1384  }
1385
1386  static SideEffects DependsOnGC() {
1387    return SideEffects(1ULL << kDependsOnGCBit);
1388  }
1389
1390  // Combines the side-effects of this and the other.
1391  SideEffects Union(SideEffects other) const {
1392    return SideEffects(flags_ | other.flags_);
1393  }
1394
1395  SideEffects Exclusion(SideEffects other) const {
1396    return SideEffects(flags_ & ~other.flags_);
1397  }
1398
1399  void Add(SideEffects other) {
1400    flags_ |= other.flags_;
1401  }
1402
1403  bool Includes(SideEffects other) const {
1404    return (other.flags_ & flags_) == other.flags_;
1405  }
1406
1407  bool HasSideEffects() const {
1408    return (flags_ & kAllChangeBits);
1409  }
1410
1411  bool HasDependencies() const {
1412    return (flags_ & kAllDependOnBits);
1413  }
1414
1415  // Returns true if there are no side effects or dependencies.
1416  bool DoesNothing() const {
1417    return flags_ == 0;
1418  }
1419
1420  // Returns true if something is written.
1421  bool DoesAnyWrite() const {
1422    return (flags_ & kAllWrites);
1423  }
1424
1425  // Returns true if something is read.
1426  bool DoesAnyRead() const {
1427    return (flags_ & kAllReads);
1428  }
1429
1430  // Returns true if potentially everything is written and read
1431  // (every type and every kind of access).
1432  bool DoesAllReadWrite() const {
1433    return (flags_ & (kAllWrites | kAllReads)) == (kAllWrites | kAllReads);
1434  }
1435
1436  bool DoesAll() const {
1437    return flags_ == (kAllChangeBits | kAllDependOnBits);
1438  }
1439
1440  // Returns true if `this` may read something written by `other`.
1441  bool MayDependOn(SideEffects other) const {
1442    const uint64_t depends_on_flags = (flags_ & kAllDependOnBits) >> kChangeBits;
1443    return (other.flags_ & depends_on_flags);
1444  }
1445
1446  // Returns string representation of flags (for debugging only).
1447  // Format: |x|DFJISCBZL|DFJISCBZL|y|DFJISCBZL|DFJISCBZL|
1448  std::string ToString() const {
1449    std::string flags = "|";
1450    for (int s = kLastBit; s >= 0; s--) {
1451      bool current_bit_is_set = ((flags_ >> s) & 1) != 0;
1452      if ((s == kDependsOnGCBit) || (s == kCanTriggerGCBit)) {
1453        // This is a bit for the GC side effect.
1454        if (current_bit_is_set) {
1455          flags += "GC";
1456        }
1457        flags += "|";
1458      } else {
1459        // This is a bit for the array/field analysis.
1460        // The underscore character stands for the 'can trigger GC' bit.
1461        static const char *kDebug = "LZBCSIJFDLZBCSIJFD_LZBCSIJFDLZBCSIJFD";
1462        if (current_bit_is_set) {
1463          flags += kDebug[s];
1464        }
1465        if ((s == kFieldWriteOffset) || (s == kArrayWriteOffset) ||
1466            (s == kFieldReadOffset) || (s == kArrayReadOffset)) {
1467          flags += "|";
1468        }
1469      }
1470    }
1471    return flags;
1472  }
1473
1474  bool Equals(const SideEffects& other) const { return flags_ == other.flags_; }
1475
1476 private:
1477  static constexpr int kFieldArrayAnalysisBits = 9;
1478
1479  static constexpr int kFieldWriteOffset = 0;
1480  static constexpr int kArrayWriteOffset = kFieldWriteOffset + kFieldArrayAnalysisBits;
1481  static constexpr int kLastBitForWrites = kArrayWriteOffset + kFieldArrayAnalysisBits - 1;
1482  static constexpr int kCanTriggerGCBit = kLastBitForWrites + 1;
1483
1484  static constexpr int kChangeBits = kCanTriggerGCBit + 1;
1485
1486  static constexpr int kFieldReadOffset = kCanTriggerGCBit + 1;
1487  static constexpr int kArrayReadOffset = kFieldReadOffset + kFieldArrayAnalysisBits;
1488  static constexpr int kLastBitForReads = kArrayReadOffset + kFieldArrayAnalysisBits - 1;
1489  static constexpr int kDependsOnGCBit = kLastBitForReads + 1;
1490
1491  static constexpr int kLastBit = kDependsOnGCBit;
1492  static constexpr int kDependOnBits = kLastBit + 1 - kChangeBits;
1493
1494  // Aliases.
1495
1496  static_assert(kChangeBits == kDependOnBits,
1497                "the 'change' bits should match the 'depend on' bits.");
1498
1499  static constexpr uint64_t kAllChangeBits = ((1ULL << kChangeBits) - 1);
1500  static constexpr uint64_t kAllDependOnBits = ((1ULL << kDependOnBits) - 1) << kChangeBits;
1501  static constexpr uint64_t kAllWrites =
1502      ((1ULL << (kLastBitForWrites + 1 - kFieldWriteOffset)) - 1) << kFieldWriteOffset;
1503  static constexpr uint64_t kAllReads =
1504      ((1ULL << (kLastBitForReads + 1 - kFieldReadOffset)) - 1) << kFieldReadOffset;
1505
1506  // Work around the fact that HIR aliases I/F and J/D.
1507  // TODO: remove this interceptor once HIR types are clean
1508  static uint64_t TypeFlagWithAlias(Primitive::Type type, int offset) {
1509    switch (type) {
1510      case Primitive::kPrimInt:
1511      case Primitive::kPrimFloat:
1512        return TypeFlag(Primitive::kPrimInt, offset) |
1513               TypeFlag(Primitive::kPrimFloat, offset);
1514      case Primitive::kPrimLong:
1515      case Primitive::kPrimDouble:
1516        return TypeFlag(Primitive::kPrimLong, offset) |
1517               TypeFlag(Primitive::kPrimDouble, offset);
1518      default:
1519        return TypeFlag(type, offset);
1520    }
1521  }
1522
1523  // Translates type to bit flag.
1524  static uint64_t TypeFlag(Primitive::Type type, int offset) {
1525    CHECK_NE(type, Primitive::kPrimVoid);
1526    const uint64_t one = 1;
1527    const int shift = type;  // 0-based consecutive enum
1528    DCHECK_LE(kFieldWriteOffset, shift);
1529    DCHECK_LT(shift, kArrayWriteOffset);
1530    return one << (type + offset);
1531  }
1532
1533  // Private constructor on direct flags value.
1534  explicit SideEffects(uint64_t flags) : flags_(flags) {}
1535
1536  uint64_t flags_;
1537};
1538
1539// A HEnvironment object contains the values of virtual registers at a given location.
1540class HEnvironment : public ArenaObject<kArenaAllocEnvironment> {
1541 public:
1542  HEnvironment(ArenaAllocator* arena,
1543               size_t number_of_vregs,
1544               const DexFile& dex_file,
1545               uint32_t method_idx,
1546               uint32_t dex_pc,
1547               InvokeType invoke_type,
1548               HInstruction* holder)
1549     : vregs_(number_of_vregs, arena->Adapter(kArenaAllocEnvironmentVRegs)),
1550       locations_(number_of_vregs, arena->Adapter(kArenaAllocEnvironmentLocations)),
1551       parent_(nullptr),
1552       dex_file_(dex_file),
1553       method_idx_(method_idx),
1554       dex_pc_(dex_pc),
1555       invoke_type_(invoke_type),
1556       holder_(holder) {
1557  }
1558
1559  HEnvironment(ArenaAllocator* arena, const HEnvironment& to_copy, HInstruction* holder)
1560      : HEnvironment(arena,
1561                     to_copy.Size(),
1562                     to_copy.GetDexFile(),
1563                     to_copy.GetMethodIdx(),
1564                     to_copy.GetDexPc(),
1565                     to_copy.GetInvokeType(),
1566                     holder) {}
1567
1568  void SetAndCopyParentChain(ArenaAllocator* allocator, HEnvironment* parent) {
1569    if (parent_ != nullptr) {
1570      parent_->SetAndCopyParentChain(allocator, parent);
1571    } else {
1572      parent_ = new (allocator) HEnvironment(allocator, *parent, holder_);
1573      parent_->CopyFrom(parent);
1574      if (parent->GetParent() != nullptr) {
1575        parent_->SetAndCopyParentChain(allocator, parent->GetParent());
1576      }
1577    }
1578  }
1579
1580  void CopyFrom(const ArenaVector<HInstruction*>& locals);
1581  void CopyFrom(HEnvironment* environment);
1582
1583  // Copy from `env`. If it's a loop phi for `loop_header`, copy the first
1584  // input to the loop phi instead. This is for inserting instructions that
1585  // require an environment (like HDeoptimization) in the loop pre-header.
1586  void CopyFromWithLoopPhiAdjustment(HEnvironment* env, HBasicBlock* loop_header);
1587
1588  void SetRawEnvAt(size_t index, HInstruction* instruction) {
1589    vregs_[index] = HUserRecord<HEnvironment*>(instruction);
1590  }
1591
1592  HInstruction* GetInstructionAt(size_t index) const {
1593    return vregs_[index].GetInstruction();
1594  }
1595
1596  void RemoveAsUserOfInput(size_t index) const;
1597
1598  size_t Size() const { return vregs_.size(); }
1599
1600  HEnvironment* GetParent() const { return parent_; }
1601
1602  void SetLocationAt(size_t index, Location location) {
1603    locations_[index] = location;
1604  }
1605
1606  Location GetLocationAt(size_t index) const {
1607    return locations_[index];
1608  }
1609
1610  uint32_t GetDexPc() const {
1611    return dex_pc_;
1612  }
1613
1614  uint32_t GetMethodIdx() const {
1615    return method_idx_;
1616  }
1617
1618  InvokeType GetInvokeType() const {
1619    return invoke_type_;
1620  }
1621
1622  const DexFile& GetDexFile() const {
1623    return dex_file_;
1624  }
1625
1626  HInstruction* GetHolder() const {
1627    return holder_;
1628  }
1629
1630 private:
1631  // Record instructions' use entries of this environment for constant-time removal.
1632  // It should only be called by HInstruction when a new environment use is added.
1633  void RecordEnvUse(HUseListNode<HEnvironment*>* env_use) {
1634    DCHECK(env_use->GetUser() == this);
1635    size_t index = env_use->GetIndex();
1636    vregs_[index] = HUserRecord<HEnvironment*>(vregs_[index], env_use);
1637  }
1638
1639  ArenaVector<HUserRecord<HEnvironment*>> vregs_;
1640  ArenaVector<Location> locations_;
1641  HEnvironment* parent_;
1642  const DexFile& dex_file_;
1643  const uint32_t method_idx_;
1644  const uint32_t dex_pc_;
1645  const InvokeType invoke_type_;
1646
1647  // The instruction that holds this environment.
1648  HInstruction* const holder_;
1649
1650  friend class HInstruction;
1651
1652  DISALLOW_COPY_AND_ASSIGN(HEnvironment);
1653};
1654
1655class ReferenceTypeInfo : ValueObject {
1656 public:
1657  typedef Handle<mirror::Class> TypeHandle;
1658
1659  static ReferenceTypeInfo Create(TypeHandle type_handle, bool is_exact) {
1660    // The constructor will check that the type_handle is valid.
1661    return ReferenceTypeInfo(type_handle, is_exact);
1662  }
1663
1664  static ReferenceTypeInfo CreateInvalid() { return ReferenceTypeInfo(); }
1665
1666  static bool IsValidHandle(TypeHandle handle) SHARED_REQUIRES(Locks::mutator_lock_) {
1667    return handle.GetReference() != nullptr;
1668  }
1669
1670  bool IsValid() const SHARED_REQUIRES(Locks::mutator_lock_) {
1671    return IsValidHandle(type_handle_);
1672  }
1673
1674  bool IsExact() const { return is_exact_; }
1675
1676  bool IsObjectClass() const SHARED_REQUIRES(Locks::mutator_lock_) {
1677    DCHECK(IsValid());
1678    return GetTypeHandle()->IsObjectClass();
1679  }
1680
1681  bool IsStringClass() const SHARED_REQUIRES(Locks::mutator_lock_) {
1682    DCHECK(IsValid());
1683    return GetTypeHandle()->IsStringClass();
1684  }
1685
1686  bool IsObjectArray() const SHARED_REQUIRES(Locks::mutator_lock_) {
1687    DCHECK(IsValid());
1688    return IsArrayClass() && GetTypeHandle()->GetComponentType()->IsObjectClass();
1689  }
1690
1691  bool IsInterface() const SHARED_REQUIRES(Locks::mutator_lock_) {
1692    DCHECK(IsValid());
1693    return GetTypeHandle()->IsInterface();
1694  }
1695
1696  bool IsArrayClass() const SHARED_REQUIRES(Locks::mutator_lock_) {
1697    DCHECK(IsValid());
1698    return GetTypeHandle()->IsArrayClass();
1699  }
1700
1701  bool IsPrimitiveArrayClass() const SHARED_REQUIRES(Locks::mutator_lock_) {
1702    DCHECK(IsValid());
1703    return GetTypeHandle()->IsPrimitiveArray();
1704  }
1705
1706  bool IsNonPrimitiveArrayClass() const SHARED_REQUIRES(Locks::mutator_lock_) {
1707    DCHECK(IsValid());
1708    return GetTypeHandle()->IsArrayClass() && !GetTypeHandle()->IsPrimitiveArray();
1709  }
1710
1711  bool CanArrayHold(ReferenceTypeInfo rti)  const SHARED_REQUIRES(Locks::mutator_lock_) {
1712    DCHECK(IsValid());
1713    if (!IsExact()) return false;
1714    if (!IsArrayClass()) return false;
1715    return GetTypeHandle()->GetComponentType()->IsAssignableFrom(rti.GetTypeHandle().Get());
1716  }
1717
1718  bool CanArrayHoldValuesOf(ReferenceTypeInfo rti)  const SHARED_REQUIRES(Locks::mutator_lock_) {
1719    DCHECK(IsValid());
1720    if (!IsExact()) return false;
1721    if (!IsArrayClass()) return false;
1722    if (!rti.IsArrayClass()) return false;
1723    return GetTypeHandle()->GetComponentType()->IsAssignableFrom(
1724        rti.GetTypeHandle()->GetComponentType());
1725  }
1726
1727  Handle<mirror::Class> GetTypeHandle() const { return type_handle_; }
1728
1729  bool IsSupertypeOf(ReferenceTypeInfo rti) const SHARED_REQUIRES(Locks::mutator_lock_) {
1730    DCHECK(IsValid());
1731    DCHECK(rti.IsValid());
1732    return GetTypeHandle()->IsAssignableFrom(rti.GetTypeHandle().Get());
1733  }
1734
1735  bool IsStrictSupertypeOf(ReferenceTypeInfo rti) const SHARED_REQUIRES(Locks::mutator_lock_) {
1736    DCHECK(IsValid());
1737    DCHECK(rti.IsValid());
1738    return GetTypeHandle().Get() != rti.GetTypeHandle().Get() &&
1739        GetTypeHandle()->IsAssignableFrom(rti.GetTypeHandle().Get());
1740  }
1741
1742  // Returns true if the type information provide the same amount of details.
1743  // Note that it does not mean that the instructions have the same actual type
1744  // (because the type can be the result of a merge).
1745  bool IsEqual(ReferenceTypeInfo rti) SHARED_REQUIRES(Locks::mutator_lock_) {
1746    if (!IsValid() && !rti.IsValid()) {
1747      // Invalid types are equal.
1748      return true;
1749    }
1750    if (!IsValid() || !rti.IsValid()) {
1751      // One is valid, the other not.
1752      return false;
1753    }
1754    return IsExact() == rti.IsExact()
1755        && GetTypeHandle().Get() == rti.GetTypeHandle().Get();
1756  }
1757
1758 private:
1759  ReferenceTypeInfo();
1760  ReferenceTypeInfo(TypeHandle type_handle, bool is_exact);
1761
1762  // The class of the object.
1763  TypeHandle type_handle_;
1764  // Whether or not the type is exact or a superclass of the actual type.
1765  // Whether or not we have any information about this type.
1766  bool is_exact_;
1767};
1768
1769std::ostream& operator<<(std::ostream& os, const ReferenceTypeInfo& rhs);
1770
1771class HInstruction : public ArenaObject<kArenaAllocInstruction> {
1772 public:
1773  HInstruction(SideEffects side_effects, uint32_t dex_pc)
1774      : previous_(nullptr),
1775        next_(nullptr),
1776        block_(nullptr),
1777        dex_pc_(dex_pc),
1778        id_(-1),
1779        ssa_index_(-1),
1780        environment_(nullptr),
1781        locations_(nullptr),
1782        live_interval_(nullptr),
1783        lifetime_position_(kNoLifetime),
1784        side_effects_(side_effects),
1785        reference_type_info_(ReferenceTypeInfo::CreateInvalid()) {}
1786
1787  virtual ~HInstruction() {}
1788
1789#define DECLARE_KIND(type, super) k##type,
1790  enum InstructionKind {
1791    FOR_EACH_INSTRUCTION(DECLARE_KIND)
1792  };
1793#undef DECLARE_KIND
1794
1795  HInstruction* GetNext() const { return next_; }
1796  HInstruction* GetPrevious() const { return previous_; }
1797
1798  HInstruction* GetNextDisregardingMoves() const;
1799  HInstruction* GetPreviousDisregardingMoves() const;
1800
1801  HBasicBlock* GetBlock() const { return block_; }
1802  ArenaAllocator* GetArena() const { return block_->GetGraph()->GetArena(); }
1803  void SetBlock(HBasicBlock* block) { block_ = block; }
1804  bool IsInBlock() const { return block_ != nullptr; }
1805  bool IsInLoop() const { return block_->IsInLoop(); }
1806  bool IsLoopHeaderPhi() { return IsPhi() && block_->IsLoopHeader(); }
1807
1808  virtual size_t InputCount() const = 0;
1809  HInstruction* InputAt(size_t i) const { return InputRecordAt(i).GetInstruction(); }
1810
1811  virtual void Accept(HGraphVisitor* visitor) = 0;
1812  virtual const char* DebugName() const = 0;
1813
1814  virtual Primitive::Type GetType() const { return Primitive::kPrimVoid; }
1815  void SetRawInputAt(size_t index, HInstruction* input) {
1816    SetRawInputRecordAt(index, HUserRecord<HInstruction*>(input));
1817  }
1818
1819  virtual bool NeedsEnvironment() const { return false; }
1820
1821  uint32_t GetDexPc() const { return dex_pc_; }
1822
1823  virtual bool IsControlFlow() const { return false; }
1824
1825  virtual bool CanThrow() const { return false; }
1826  bool CanThrowIntoCatchBlock() const { return CanThrow() && block_->IsTryBlock(); }
1827
1828  bool HasSideEffects() const { return side_effects_.HasSideEffects(); }
1829  bool DoesAnyWrite() const { return side_effects_.DoesAnyWrite(); }
1830
1831  // Does not apply for all instructions, but having this at top level greatly
1832  // simplifies the null check elimination.
1833  // TODO: Consider merging can_be_null into ReferenceTypeInfo.
1834  virtual bool CanBeNull() const {
1835    DCHECK_EQ(GetType(), Primitive::kPrimNot) << "CanBeNull only applies to reference types";
1836    return true;
1837  }
1838
1839  virtual bool CanDoImplicitNullCheckOn(HInstruction* obj ATTRIBUTE_UNUSED) const {
1840    return false;
1841  }
1842
1843  void SetReferenceTypeInfo(ReferenceTypeInfo rti);
1844
1845  ReferenceTypeInfo GetReferenceTypeInfo() const {
1846    DCHECK_EQ(GetType(), Primitive::kPrimNot);
1847    return reference_type_info_;
1848  }
1849
1850  void AddUseAt(HInstruction* user, size_t index) {
1851    DCHECK(user != nullptr);
1852    HUseListNode<HInstruction*>* use =
1853        uses_.AddUse(user, index, GetBlock()->GetGraph()->GetArena());
1854    user->SetRawInputRecordAt(index, HUserRecord<HInstruction*>(user->InputRecordAt(index), use));
1855  }
1856
1857  void AddEnvUseAt(HEnvironment* user, size_t index) {
1858    DCHECK(user != nullptr);
1859    HUseListNode<HEnvironment*>* env_use =
1860        env_uses_.AddUse(user, index, GetBlock()->GetGraph()->GetArena());
1861    user->RecordEnvUse(env_use);
1862  }
1863
1864  void RemoveAsUserOfInput(size_t input) {
1865    HUserRecord<HInstruction*> input_use = InputRecordAt(input);
1866    input_use.GetInstruction()->uses_.Remove(input_use.GetUseNode());
1867  }
1868
1869  const HUseList<HInstruction*>& GetUses() const { return uses_; }
1870  const HUseList<HEnvironment*>& GetEnvUses() const { return env_uses_; }
1871
1872  bool HasUses() const { return !uses_.IsEmpty() || !env_uses_.IsEmpty(); }
1873  bool HasEnvironmentUses() const { return !env_uses_.IsEmpty(); }
1874  bool HasNonEnvironmentUses() const { return !uses_.IsEmpty(); }
1875  bool HasOnlyOneNonEnvironmentUse() const {
1876    return !HasEnvironmentUses() && GetUses().HasOnlyOneUse();
1877  }
1878
1879  // Does this instruction strictly dominate `other_instruction`?
1880  // Returns false if this instruction and `other_instruction` are the same.
1881  // Aborts if this instruction and `other_instruction` are both phis.
1882  bool StrictlyDominates(HInstruction* other_instruction) const;
1883
1884  int GetId() const { return id_; }
1885  void SetId(int id) { id_ = id; }
1886
1887  int GetSsaIndex() const { return ssa_index_; }
1888  void SetSsaIndex(int ssa_index) { ssa_index_ = ssa_index; }
1889  bool HasSsaIndex() const { return ssa_index_ != -1; }
1890
1891  bool HasEnvironment() const { return environment_ != nullptr; }
1892  HEnvironment* GetEnvironment() const { return environment_; }
1893  // Set the `environment_` field. Raw because this method does not
1894  // update the uses lists.
1895  void SetRawEnvironment(HEnvironment* environment) {
1896    DCHECK(environment_ == nullptr);
1897    DCHECK_EQ(environment->GetHolder(), this);
1898    environment_ = environment;
1899  }
1900
1901  // Set the environment of this instruction, copying it from `environment`. While
1902  // copying, the uses lists are being updated.
1903  void CopyEnvironmentFrom(HEnvironment* environment) {
1904    DCHECK(environment_ == nullptr);
1905    ArenaAllocator* allocator = GetBlock()->GetGraph()->GetArena();
1906    environment_ = new (allocator) HEnvironment(allocator, *environment, this);
1907    environment_->CopyFrom(environment);
1908    if (environment->GetParent() != nullptr) {
1909      environment_->SetAndCopyParentChain(allocator, environment->GetParent());
1910    }
1911  }
1912
1913  void CopyEnvironmentFromWithLoopPhiAdjustment(HEnvironment* environment,
1914                                                HBasicBlock* block) {
1915    DCHECK(environment_ == nullptr);
1916    ArenaAllocator* allocator = GetBlock()->GetGraph()->GetArena();
1917    environment_ = new (allocator) HEnvironment(allocator, *environment, this);
1918    environment_->CopyFromWithLoopPhiAdjustment(environment, block);
1919    if (environment->GetParent() != nullptr) {
1920      environment_->SetAndCopyParentChain(allocator, environment->GetParent());
1921    }
1922  }
1923
1924  // Returns the number of entries in the environment. Typically, that is the
1925  // number of dex registers in a method. It could be more in case of inlining.
1926  size_t EnvironmentSize() const;
1927
1928  LocationSummary* GetLocations() const { return locations_; }
1929  void SetLocations(LocationSummary* locations) { locations_ = locations; }
1930
1931  void ReplaceWith(HInstruction* instruction);
1932  void ReplaceInput(HInstruction* replacement, size_t index);
1933
1934  // This is almost the same as doing `ReplaceWith()`. But in this helper, the
1935  // uses of this instruction by `other` are *not* updated.
1936  void ReplaceWithExceptInReplacementAtIndex(HInstruction* other, size_t use_index) {
1937    ReplaceWith(other);
1938    other->ReplaceInput(this, use_index);
1939  }
1940
1941  // Move `this` instruction before `cursor`.
1942  void MoveBefore(HInstruction* cursor);
1943
1944#define INSTRUCTION_TYPE_CHECK(type, super)                                    \
1945  bool Is##type() const { return (As##type() != nullptr); }                    \
1946  virtual const H##type* As##type() const { return nullptr; }                  \
1947  virtual H##type* As##type() { return nullptr; }
1948
1949  FOR_EACH_INSTRUCTION(INSTRUCTION_TYPE_CHECK)
1950#undef INSTRUCTION_TYPE_CHECK
1951
1952  // Returns whether the instruction can be moved within the graph.
1953  virtual bool CanBeMoved() const { return false; }
1954
1955  // Returns whether the two instructions are of the same kind.
1956  virtual bool InstructionTypeEquals(HInstruction* other ATTRIBUTE_UNUSED) const {
1957    return false;
1958  }
1959
1960  // Returns whether any data encoded in the two instructions is equal.
1961  // This method does not look at the inputs. Both instructions must be
1962  // of the same type, otherwise the method has undefined behavior.
1963  virtual bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const {
1964    return false;
1965  }
1966
1967  // Returns whether two instructions are equal, that is:
1968  // 1) They have the same type and contain the same data (InstructionDataEquals).
1969  // 2) Their inputs are identical.
1970  bool Equals(HInstruction* other) const;
1971
1972  virtual InstructionKind GetKind() const = 0;
1973
1974  virtual size_t ComputeHashCode() const {
1975    size_t result = GetKind();
1976    for (size_t i = 0, e = InputCount(); i < e; ++i) {
1977      result = (result * 31) + InputAt(i)->GetId();
1978    }
1979    return result;
1980  }
1981
1982  SideEffects GetSideEffects() const { return side_effects_; }
1983  void AddSideEffects(SideEffects other) { side_effects_.Add(other); }
1984
1985  size_t GetLifetimePosition() const { return lifetime_position_; }
1986  void SetLifetimePosition(size_t position) { lifetime_position_ = position; }
1987  LiveInterval* GetLiveInterval() const { return live_interval_; }
1988  void SetLiveInterval(LiveInterval* interval) { live_interval_ = interval; }
1989  bool HasLiveInterval() const { return live_interval_ != nullptr; }
1990
1991  bool IsSuspendCheckEntry() const { return IsSuspendCheck() && GetBlock()->IsEntryBlock(); }
1992
1993  // Returns whether the code generation of the instruction will require to have access
1994  // to the current method. Such instructions are:
1995  // (1): Instructions that require an environment, as calling the runtime requires
1996  //      to walk the stack and have the current method stored at a specific stack address.
1997  // (2): Object literals like classes and strings, that are loaded from the dex cache
1998  //      fields of the current method.
1999  bool NeedsCurrentMethod() const {
2000    return NeedsEnvironment() || IsLoadClass() || IsLoadString();
2001  }
2002
2003  // Returns whether the code generation of the instruction will require to have access
2004  // to the dex cache of the current method's declaring class via the current method.
2005  virtual bool NeedsDexCacheOfDeclaringClass() const { return false; }
2006
2007  // Does this instruction have any use in an environment before
2008  // control flow hits 'other'?
2009  bool HasAnyEnvironmentUseBefore(HInstruction* other);
2010
2011  // Remove all references to environment uses of this instruction.
2012  // The caller must ensure that this is safe to do.
2013  void RemoveEnvironmentUsers();
2014
2015 protected:
2016  virtual const HUserRecord<HInstruction*> InputRecordAt(size_t i) const = 0;
2017  virtual void SetRawInputRecordAt(size_t index, const HUserRecord<HInstruction*>& input) = 0;
2018
2019 private:
2020  void RemoveEnvironmentUser(HUseListNode<HEnvironment*>* use_node) { env_uses_.Remove(use_node); }
2021
2022  HInstruction* previous_;
2023  HInstruction* next_;
2024  HBasicBlock* block_;
2025  const uint32_t dex_pc_;
2026
2027  // An instruction gets an id when it is added to the graph.
2028  // It reflects creation order. A negative id means the instruction
2029  // has not been added to the graph.
2030  int id_;
2031
2032  // When doing liveness analysis, instructions that have uses get an SSA index.
2033  int ssa_index_;
2034
2035  // List of instructions that have this instruction as input.
2036  HUseList<HInstruction*> uses_;
2037
2038  // List of environments that contain this instruction.
2039  HUseList<HEnvironment*> env_uses_;
2040
2041  // The environment associated with this instruction. Not null if the instruction
2042  // might jump out of the method.
2043  HEnvironment* environment_;
2044
2045  // Set by the code generator.
2046  LocationSummary* locations_;
2047
2048  // Set by the liveness analysis.
2049  LiveInterval* live_interval_;
2050
2051  // Set by the liveness analysis, this is the position in a linear
2052  // order of blocks where this instruction's live interval start.
2053  size_t lifetime_position_;
2054
2055  SideEffects side_effects_;
2056
2057  // TODO: for primitive types this should be marked as invalid.
2058  ReferenceTypeInfo reference_type_info_;
2059
2060  friend class GraphChecker;
2061  friend class HBasicBlock;
2062  friend class HEnvironment;
2063  friend class HGraph;
2064  friend class HInstructionList;
2065
2066  DISALLOW_COPY_AND_ASSIGN(HInstruction);
2067};
2068std::ostream& operator<<(std::ostream& os, const HInstruction::InstructionKind& rhs);
2069
2070class HInputIterator : public ValueObject {
2071 public:
2072  explicit HInputIterator(HInstruction* instruction) : instruction_(instruction), index_(0) {}
2073
2074  bool Done() const { return index_ == instruction_->InputCount(); }
2075  HInstruction* Current() const { return instruction_->InputAt(index_); }
2076  void Advance() { index_++; }
2077
2078 private:
2079  HInstruction* instruction_;
2080  size_t index_;
2081
2082  DISALLOW_COPY_AND_ASSIGN(HInputIterator);
2083};
2084
2085class HInstructionIterator : public ValueObject {
2086 public:
2087  explicit HInstructionIterator(const HInstructionList& instructions)
2088      : instruction_(instructions.first_instruction_) {
2089    next_ = Done() ? nullptr : instruction_->GetNext();
2090  }
2091
2092  bool Done() const { return instruction_ == nullptr; }
2093  HInstruction* Current() const { return instruction_; }
2094  void Advance() {
2095    instruction_ = next_;
2096    next_ = Done() ? nullptr : instruction_->GetNext();
2097  }
2098
2099 private:
2100  HInstruction* instruction_;
2101  HInstruction* next_;
2102
2103  DISALLOW_COPY_AND_ASSIGN(HInstructionIterator);
2104};
2105
2106class HBackwardInstructionIterator : public ValueObject {
2107 public:
2108  explicit HBackwardInstructionIterator(const HInstructionList& instructions)
2109      : instruction_(instructions.last_instruction_) {
2110    next_ = Done() ? nullptr : instruction_->GetPrevious();
2111  }
2112
2113  bool Done() const { return instruction_ == nullptr; }
2114  HInstruction* Current() const { return instruction_; }
2115  void Advance() {
2116    instruction_ = next_;
2117    next_ = Done() ? nullptr : instruction_->GetPrevious();
2118  }
2119
2120 private:
2121  HInstruction* instruction_;
2122  HInstruction* next_;
2123
2124  DISALLOW_COPY_AND_ASSIGN(HBackwardInstructionIterator);
2125};
2126
2127template<size_t N>
2128class HTemplateInstruction: public HInstruction {
2129 public:
2130  HTemplateInstruction<N>(SideEffects side_effects, uint32_t dex_pc)
2131      : HInstruction(side_effects, dex_pc), inputs_() {}
2132  virtual ~HTemplateInstruction() {}
2133
2134  size_t InputCount() const OVERRIDE { return N; }
2135
2136 protected:
2137  const HUserRecord<HInstruction*> InputRecordAt(size_t i) const OVERRIDE {
2138    DCHECK_LT(i, N);
2139    return inputs_[i];
2140  }
2141
2142  void SetRawInputRecordAt(size_t i, const HUserRecord<HInstruction*>& input) OVERRIDE {
2143    DCHECK_LT(i, N);
2144    inputs_[i] = input;
2145  }
2146
2147 private:
2148  std::array<HUserRecord<HInstruction*>, N> inputs_;
2149
2150  friend class SsaBuilder;
2151};
2152
2153// HTemplateInstruction specialization for N=0.
2154template<>
2155class HTemplateInstruction<0>: public HInstruction {
2156 public:
2157  explicit HTemplateInstruction<0>(SideEffects side_effects, uint32_t dex_pc)
2158      : HInstruction(side_effects, dex_pc) {}
2159
2160  virtual ~HTemplateInstruction() {}
2161
2162  size_t InputCount() const OVERRIDE { return 0; }
2163
2164 protected:
2165  const HUserRecord<HInstruction*> InputRecordAt(size_t i ATTRIBUTE_UNUSED) const OVERRIDE {
2166    LOG(FATAL) << "Unreachable";
2167    UNREACHABLE();
2168  }
2169
2170  void SetRawInputRecordAt(size_t i ATTRIBUTE_UNUSED,
2171                           const HUserRecord<HInstruction*>& input ATTRIBUTE_UNUSED) OVERRIDE {
2172    LOG(FATAL) << "Unreachable";
2173    UNREACHABLE();
2174  }
2175
2176 private:
2177  friend class SsaBuilder;
2178};
2179
2180template<intptr_t N>
2181class HExpression : public HTemplateInstruction<N> {
2182 public:
2183  HExpression<N>(Primitive::Type type, SideEffects side_effects, uint32_t dex_pc)
2184      : HTemplateInstruction<N>(side_effects, dex_pc), type_(type) {}
2185  virtual ~HExpression() {}
2186
2187  Primitive::Type GetType() const OVERRIDE { return type_; }
2188
2189 protected:
2190  Primitive::Type type_;
2191};
2192
2193// Represents dex's RETURN_VOID opcode. A HReturnVoid is a control flow
2194// instruction that branches to the exit block.
2195class HReturnVoid : public HTemplateInstruction<0> {
2196 public:
2197  explicit HReturnVoid(uint32_t dex_pc = kNoDexPc)
2198      : HTemplateInstruction(SideEffects::None(), dex_pc) {}
2199
2200  bool IsControlFlow() const OVERRIDE { return true; }
2201
2202  DECLARE_INSTRUCTION(ReturnVoid);
2203
2204 private:
2205  DISALLOW_COPY_AND_ASSIGN(HReturnVoid);
2206};
2207
2208// Represents dex's RETURN opcodes. A HReturn is a control flow
2209// instruction that branches to the exit block.
2210class HReturn : public HTemplateInstruction<1> {
2211 public:
2212  explicit HReturn(HInstruction* value, uint32_t dex_pc = kNoDexPc)
2213      : HTemplateInstruction(SideEffects::None(), dex_pc) {
2214    SetRawInputAt(0, value);
2215  }
2216
2217  bool IsControlFlow() const OVERRIDE { return true; }
2218
2219  DECLARE_INSTRUCTION(Return);
2220
2221 private:
2222  DISALLOW_COPY_AND_ASSIGN(HReturn);
2223};
2224
2225// The exit instruction is the only instruction of the exit block.
2226// Instructions aborting the method (HThrow and HReturn) must branch to the
2227// exit block.
2228class HExit : public HTemplateInstruction<0> {
2229 public:
2230  explicit HExit(uint32_t dex_pc = kNoDexPc) : HTemplateInstruction(SideEffects::None(), dex_pc) {}
2231
2232  bool IsControlFlow() const OVERRIDE { return true; }
2233
2234  DECLARE_INSTRUCTION(Exit);
2235
2236 private:
2237  DISALLOW_COPY_AND_ASSIGN(HExit);
2238};
2239
2240// Jumps from one block to another.
2241class HGoto : public HTemplateInstruction<0> {
2242 public:
2243  explicit HGoto(uint32_t dex_pc = kNoDexPc) : HTemplateInstruction(SideEffects::None(), dex_pc) {}
2244
2245  bool IsControlFlow() const OVERRIDE { return true; }
2246
2247  HBasicBlock* GetSuccessor() const {
2248    return GetBlock()->GetSingleSuccessor();
2249  }
2250
2251  DECLARE_INSTRUCTION(Goto);
2252
2253 private:
2254  DISALLOW_COPY_AND_ASSIGN(HGoto);
2255};
2256
2257class HConstant : public HExpression<0> {
2258 public:
2259  explicit HConstant(Primitive::Type type, uint32_t dex_pc = kNoDexPc)
2260      : HExpression(type, SideEffects::None(), dex_pc) {}
2261
2262  bool CanBeMoved() const OVERRIDE { return true; }
2263
2264  virtual bool IsMinusOne() const { return false; }
2265  virtual bool IsZero() const { return false; }
2266  virtual bool IsOne() const { return false; }
2267
2268  virtual uint64_t GetValueAsUint64() const = 0;
2269
2270  DECLARE_INSTRUCTION(Constant);
2271
2272 private:
2273  DISALLOW_COPY_AND_ASSIGN(HConstant);
2274};
2275
2276class HNullConstant : public HConstant {
2277 public:
2278  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
2279    return true;
2280  }
2281
2282  uint64_t GetValueAsUint64() const OVERRIDE { return 0; }
2283
2284  size_t ComputeHashCode() const OVERRIDE { return 0; }
2285
2286  DECLARE_INSTRUCTION(NullConstant);
2287
2288 private:
2289  explicit HNullConstant(uint32_t dex_pc = kNoDexPc) : HConstant(Primitive::kPrimNot, dex_pc) {}
2290
2291  friend class HGraph;
2292  DISALLOW_COPY_AND_ASSIGN(HNullConstant);
2293};
2294
2295// Constants of the type int. Those can be from Dex instructions, or
2296// synthesized (for example with the if-eqz instruction).
2297class HIntConstant : public HConstant {
2298 public:
2299  int32_t GetValue() const { return value_; }
2300
2301  uint64_t GetValueAsUint64() const OVERRIDE {
2302    return static_cast<uint64_t>(static_cast<uint32_t>(value_));
2303  }
2304
2305  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2306    DCHECK(other->IsIntConstant());
2307    return other->AsIntConstant()->value_ == value_;
2308  }
2309
2310  size_t ComputeHashCode() const OVERRIDE { return GetValue(); }
2311
2312  bool IsMinusOne() const OVERRIDE { return GetValue() == -1; }
2313  bool IsZero() const OVERRIDE { return GetValue() == 0; }
2314  bool IsOne() const OVERRIDE { return GetValue() == 1; }
2315
2316  DECLARE_INSTRUCTION(IntConstant);
2317
2318 private:
2319  explicit HIntConstant(int32_t value, uint32_t dex_pc = kNoDexPc)
2320      : HConstant(Primitive::kPrimInt, dex_pc), value_(value) {}
2321  explicit HIntConstant(bool value, uint32_t dex_pc = kNoDexPc)
2322      : HConstant(Primitive::kPrimInt, dex_pc), value_(value ? 1 : 0) {}
2323
2324  const int32_t value_;
2325
2326  friend class HGraph;
2327  ART_FRIEND_TEST(GraphTest, InsertInstructionBefore);
2328  ART_FRIEND_TYPED_TEST(ParallelMoveTest, ConstantLast);
2329  DISALLOW_COPY_AND_ASSIGN(HIntConstant);
2330};
2331
2332class HLongConstant : public HConstant {
2333 public:
2334  int64_t GetValue() const { return value_; }
2335
2336  uint64_t GetValueAsUint64() const OVERRIDE { return value_; }
2337
2338  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2339    DCHECK(other->IsLongConstant());
2340    return other->AsLongConstant()->value_ == value_;
2341  }
2342
2343  size_t ComputeHashCode() const OVERRIDE { return static_cast<size_t>(GetValue()); }
2344
2345  bool IsMinusOne() const OVERRIDE { return GetValue() == -1; }
2346  bool IsZero() const OVERRIDE { return GetValue() == 0; }
2347  bool IsOne() const OVERRIDE { return GetValue() == 1; }
2348
2349  DECLARE_INSTRUCTION(LongConstant);
2350
2351 private:
2352  explicit HLongConstant(int64_t value, uint32_t dex_pc = kNoDexPc)
2353      : HConstant(Primitive::kPrimLong, dex_pc), value_(value) {}
2354
2355  const int64_t value_;
2356
2357  friend class HGraph;
2358  DISALLOW_COPY_AND_ASSIGN(HLongConstant);
2359};
2360
2361// Conditional branch. A block ending with an HIf instruction must have
2362// two successors.
2363class HIf : public HTemplateInstruction<1> {
2364 public:
2365  explicit HIf(HInstruction* input, uint32_t dex_pc = kNoDexPc)
2366      : HTemplateInstruction(SideEffects::None(), dex_pc) {
2367    SetRawInputAt(0, input);
2368  }
2369
2370  bool IsControlFlow() const OVERRIDE { return true; }
2371
2372  HBasicBlock* IfTrueSuccessor() const {
2373    return GetBlock()->GetSuccessors()[0];
2374  }
2375
2376  HBasicBlock* IfFalseSuccessor() const {
2377    return GetBlock()->GetSuccessors()[1];
2378  }
2379
2380  DECLARE_INSTRUCTION(If);
2381
2382 private:
2383  DISALLOW_COPY_AND_ASSIGN(HIf);
2384};
2385
2386
2387// Abstract instruction which marks the beginning and/or end of a try block and
2388// links it to the respective exception handlers. Behaves the same as a Goto in
2389// non-exceptional control flow.
2390// Normal-flow successor is stored at index zero, exception handlers under
2391// higher indices in no particular order.
2392class HTryBoundary : public HTemplateInstruction<0> {
2393 public:
2394  enum BoundaryKind {
2395    kEntry,
2396    kExit,
2397  };
2398
2399  explicit HTryBoundary(BoundaryKind kind, uint32_t dex_pc = kNoDexPc)
2400      : HTemplateInstruction(SideEffects::None(), dex_pc), kind_(kind) {}
2401
2402  bool IsControlFlow() const OVERRIDE { return true; }
2403
2404  // Returns the block's non-exceptional successor (index zero).
2405  HBasicBlock* GetNormalFlowSuccessor() const { return GetBlock()->GetSuccessors()[0]; }
2406
2407  ArrayRef<HBasicBlock* const> GetExceptionHandlers() const {
2408    return ArrayRef<HBasicBlock* const>(GetBlock()->GetSuccessors()).SubArray(1u);
2409  }
2410
2411  // Returns whether `handler` is among its exception handlers (non-zero index
2412  // successors).
2413  bool HasExceptionHandler(const HBasicBlock& handler) const {
2414    DCHECK(handler.IsCatchBlock());
2415    return GetBlock()->HasSuccessor(&handler, 1u /* Skip first successor. */);
2416  }
2417
2418  // If not present already, adds `handler` to its block's list of exception
2419  // handlers.
2420  void AddExceptionHandler(HBasicBlock* handler) {
2421    if (!HasExceptionHandler(*handler)) {
2422      GetBlock()->AddSuccessor(handler);
2423    }
2424  }
2425
2426  bool IsEntry() const { return kind_ == BoundaryKind::kEntry; }
2427
2428  bool HasSameExceptionHandlersAs(const HTryBoundary& other) const;
2429
2430  DECLARE_INSTRUCTION(TryBoundary);
2431
2432 private:
2433  const BoundaryKind kind_;
2434
2435  DISALLOW_COPY_AND_ASSIGN(HTryBoundary);
2436};
2437
2438// Deoptimize to interpreter, upon checking a condition.
2439class HDeoptimize : public HTemplateInstruction<1> {
2440 public:
2441  explicit HDeoptimize(HInstruction* cond, uint32_t dex_pc)
2442      : HTemplateInstruction(SideEffects::None(), dex_pc) {
2443    SetRawInputAt(0, cond);
2444  }
2445
2446  bool NeedsEnvironment() const OVERRIDE { return true; }
2447  bool CanThrow() const OVERRIDE { return true; }
2448
2449  DECLARE_INSTRUCTION(Deoptimize);
2450
2451 private:
2452  DISALLOW_COPY_AND_ASSIGN(HDeoptimize);
2453};
2454
2455// Represents the ArtMethod that was passed as a first argument to
2456// the method. It is used by instructions that depend on it, like
2457// instructions that work with the dex cache.
2458class HCurrentMethod : public HExpression<0> {
2459 public:
2460  explicit HCurrentMethod(Primitive::Type type, uint32_t dex_pc = kNoDexPc)
2461      : HExpression(type, SideEffects::None(), dex_pc) {}
2462
2463  DECLARE_INSTRUCTION(CurrentMethod);
2464
2465 private:
2466  DISALLOW_COPY_AND_ASSIGN(HCurrentMethod);
2467};
2468
2469// PackedSwitch (jump table). A block ending with a PackedSwitch instruction will
2470// have one successor for each entry in the switch table, and the final successor
2471// will be the block containing the next Dex opcode.
2472class HPackedSwitch : public HTemplateInstruction<1> {
2473 public:
2474  HPackedSwitch(int32_t start_value,
2475                uint32_t num_entries,
2476                HInstruction* input,
2477                uint32_t dex_pc = kNoDexPc)
2478    : HTemplateInstruction(SideEffects::None(), dex_pc),
2479      start_value_(start_value),
2480      num_entries_(num_entries) {
2481    SetRawInputAt(0, input);
2482  }
2483
2484  bool IsControlFlow() const OVERRIDE { return true; }
2485
2486  int32_t GetStartValue() const { return start_value_; }
2487
2488  uint32_t GetNumEntries() const { return num_entries_; }
2489
2490  HBasicBlock* GetDefaultBlock() const {
2491    // Last entry is the default block.
2492    return GetBlock()->GetSuccessors()[num_entries_];
2493  }
2494  DECLARE_INSTRUCTION(PackedSwitch);
2495
2496 private:
2497  const int32_t start_value_;
2498  const uint32_t num_entries_;
2499
2500  DISALLOW_COPY_AND_ASSIGN(HPackedSwitch);
2501};
2502
2503class HUnaryOperation : public HExpression<1> {
2504 public:
2505  HUnaryOperation(Primitive::Type result_type, HInstruction* input, uint32_t dex_pc = kNoDexPc)
2506      : HExpression(result_type, SideEffects::None(), dex_pc) {
2507    SetRawInputAt(0, input);
2508  }
2509
2510  HInstruction* GetInput() const { return InputAt(0); }
2511  Primitive::Type GetResultType() const { return GetType(); }
2512
2513  bool CanBeMoved() const OVERRIDE { return true; }
2514  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
2515    return true;
2516  }
2517
2518  // Try to statically evaluate `operation` and return a HConstant
2519  // containing the result of this evaluation.  If `operation` cannot
2520  // be evaluated as a constant, return null.
2521  HConstant* TryStaticEvaluation() const;
2522
2523  // Apply this operation to `x`.
2524  virtual HConstant* Evaluate(HIntConstant* x) const = 0;
2525  virtual HConstant* Evaluate(HLongConstant* x) const = 0;
2526
2527  DECLARE_INSTRUCTION(UnaryOperation);
2528
2529 private:
2530  DISALLOW_COPY_AND_ASSIGN(HUnaryOperation);
2531};
2532
2533class HBinaryOperation : public HExpression<2> {
2534 public:
2535  HBinaryOperation(Primitive::Type result_type,
2536                   HInstruction* left,
2537                   HInstruction* right,
2538                   SideEffects side_effects = SideEffects::None(),
2539                   uint32_t dex_pc = kNoDexPc)
2540      : HExpression(result_type, side_effects, dex_pc) {
2541    SetRawInputAt(0, left);
2542    SetRawInputAt(1, right);
2543  }
2544
2545  HInstruction* GetLeft() const { return InputAt(0); }
2546  HInstruction* GetRight() const { return InputAt(1); }
2547  Primitive::Type GetResultType() const { return GetType(); }
2548
2549  virtual bool IsCommutative() const { return false; }
2550
2551  // Put constant on the right.
2552  // Returns whether order is changed.
2553  bool OrderInputsWithConstantOnTheRight() {
2554    HInstruction* left = InputAt(0);
2555    HInstruction* right = InputAt(1);
2556    if (left->IsConstant() && !right->IsConstant()) {
2557      ReplaceInput(right, 0);
2558      ReplaceInput(left, 1);
2559      return true;
2560    }
2561    return false;
2562  }
2563
2564  // Order inputs by instruction id, but favor constant on the right side.
2565  // This helps GVN for commutative ops.
2566  void OrderInputs() {
2567    DCHECK(IsCommutative());
2568    HInstruction* left = InputAt(0);
2569    HInstruction* right = InputAt(1);
2570    if (left == right || (!left->IsConstant() && right->IsConstant())) {
2571      return;
2572    }
2573    if (OrderInputsWithConstantOnTheRight()) {
2574      return;
2575    }
2576    // Order according to instruction id.
2577    if (left->GetId() > right->GetId()) {
2578      ReplaceInput(right, 0);
2579      ReplaceInput(left, 1);
2580    }
2581  }
2582
2583  bool CanBeMoved() const OVERRIDE { return true; }
2584  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
2585    return true;
2586  }
2587
2588  // Try to statically evaluate `operation` and return a HConstant
2589  // containing the result of this evaluation.  If `operation` cannot
2590  // be evaluated as a constant, return null.
2591  HConstant* TryStaticEvaluation() const;
2592
2593  // Apply this operation to `x` and `y`.
2594  virtual HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const = 0;
2595  virtual HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const = 0;
2596  virtual HConstant* Evaluate(HIntConstant* x ATTRIBUTE_UNUSED,
2597                              HLongConstant* y ATTRIBUTE_UNUSED) const {
2598    VLOG(compiler) << DebugName() << " is not defined for the (int, long) case.";
2599    return nullptr;
2600  }
2601  virtual HConstant* Evaluate(HLongConstant* x ATTRIBUTE_UNUSED,
2602                              HIntConstant* y ATTRIBUTE_UNUSED) const {
2603    VLOG(compiler) << DebugName() << " is not defined for the (long, int) case.";
2604    return nullptr;
2605  }
2606  virtual HConstant* Evaluate(HNullConstant* x ATTRIBUTE_UNUSED,
2607                              HNullConstant* y ATTRIBUTE_UNUSED) const {
2608    VLOG(compiler) << DebugName() << " is not defined for the (null, null) case.";
2609    return nullptr;
2610  }
2611
2612  // Returns an input that can legally be used as the right input and is
2613  // constant, or null.
2614  HConstant* GetConstantRight() const;
2615
2616  // If `GetConstantRight()` returns one of the input, this returns the other
2617  // one. Otherwise it returns null.
2618  HInstruction* GetLeastConstantLeft() const;
2619
2620  DECLARE_INSTRUCTION(BinaryOperation);
2621
2622 private:
2623  DISALLOW_COPY_AND_ASSIGN(HBinaryOperation);
2624};
2625
2626// The comparison bias applies for floating point operations and indicates how NaN
2627// comparisons are treated:
2628enum class ComparisonBias {
2629  kNoBias,  // bias is not applicable (i.e. for long operation)
2630  kGtBias,  // return 1 for NaN comparisons
2631  kLtBias,  // return -1 for NaN comparisons
2632};
2633
2634class HCondition : public HBinaryOperation {
2635 public:
2636  HCondition(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2637      : HBinaryOperation(Primitive::kPrimBoolean, first, second, SideEffects::None(), dex_pc),
2638        needs_materialization_(true),
2639        bias_(ComparisonBias::kNoBias) {}
2640
2641  bool NeedsMaterialization() const { return needs_materialization_; }
2642  void ClearNeedsMaterialization() { needs_materialization_ = false; }
2643
2644  // For code generation purposes, returns whether this instruction is just before
2645  // `instruction`, and disregard moves in between.
2646  bool IsBeforeWhenDisregardMoves(HInstruction* instruction) const;
2647
2648  DECLARE_INSTRUCTION(Condition);
2649
2650  virtual IfCondition GetCondition() const = 0;
2651
2652  virtual IfCondition GetOppositeCondition() const = 0;
2653
2654  bool IsGtBias() const { return bias_ == ComparisonBias::kGtBias; }
2655
2656  void SetBias(ComparisonBias bias) { bias_ = bias; }
2657
2658  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2659    return bias_ == other->AsCondition()->bias_;
2660  }
2661
2662  bool IsFPConditionTrueIfNaN() const {
2663    DCHECK(Primitive::IsFloatingPointType(InputAt(0)->GetType()));
2664    IfCondition if_cond = GetCondition();
2665    return IsGtBias() ? ((if_cond == kCondGT) || (if_cond == kCondGE)) : (if_cond == kCondNE);
2666  }
2667
2668  bool IsFPConditionFalseIfNaN() const {
2669    DCHECK(Primitive::IsFloatingPointType(InputAt(0)->GetType()));
2670    IfCondition if_cond = GetCondition();
2671    return IsGtBias() ? ((if_cond == kCondLT) || (if_cond == kCondLE)) : (if_cond == kCondEQ);
2672  }
2673
2674 private:
2675  // For register allocation purposes, returns whether this instruction needs to be
2676  // materialized (that is, not just be in the processor flags).
2677  bool needs_materialization_;
2678
2679  // Needed if we merge a HCompare into a HCondition.
2680  ComparisonBias bias_;
2681
2682  DISALLOW_COPY_AND_ASSIGN(HCondition);
2683};
2684
2685// Instruction to check if two inputs are equal to each other.
2686class HEqual : public HCondition {
2687 public:
2688  HEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2689      : HCondition(first, second, dex_pc) {}
2690
2691  bool IsCommutative() const OVERRIDE { return true; }
2692
2693  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2694    return GetBlock()->GetGraph()->GetIntConstant(
2695        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2696  }
2697  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2698    return GetBlock()->GetGraph()->GetIntConstant(
2699        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2700  }
2701  HConstant* Evaluate(HNullConstant* x ATTRIBUTE_UNUSED,
2702                      HNullConstant* y ATTRIBUTE_UNUSED) const OVERRIDE {
2703    return GetBlock()->GetGraph()->GetIntConstant(1);
2704  }
2705
2706  DECLARE_INSTRUCTION(Equal);
2707
2708  IfCondition GetCondition() const OVERRIDE {
2709    return kCondEQ;
2710  }
2711
2712  IfCondition GetOppositeCondition() const OVERRIDE {
2713    return kCondNE;
2714  }
2715
2716 private:
2717  template <typename T> bool Compute(T x, T y) const { return x == y; }
2718
2719  DISALLOW_COPY_AND_ASSIGN(HEqual);
2720};
2721
2722class HNotEqual : public HCondition {
2723 public:
2724  HNotEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2725      : HCondition(first, second, dex_pc) {}
2726
2727  bool IsCommutative() const OVERRIDE { return true; }
2728
2729  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2730    return GetBlock()->GetGraph()->GetIntConstant(
2731        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2732  }
2733  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2734    return GetBlock()->GetGraph()->GetIntConstant(
2735        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2736  }
2737  HConstant* Evaluate(HNullConstant* x ATTRIBUTE_UNUSED,
2738                      HNullConstant* y ATTRIBUTE_UNUSED) const OVERRIDE {
2739    return GetBlock()->GetGraph()->GetIntConstant(0);
2740  }
2741
2742  DECLARE_INSTRUCTION(NotEqual);
2743
2744  IfCondition GetCondition() const OVERRIDE {
2745    return kCondNE;
2746  }
2747
2748  IfCondition GetOppositeCondition() const OVERRIDE {
2749    return kCondEQ;
2750  }
2751
2752 private:
2753  template <typename T> bool Compute(T x, T y) const { return x != y; }
2754
2755  DISALLOW_COPY_AND_ASSIGN(HNotEqual);
2756};
2757
2758class HLessThan : public HCondition {
2759 public:
2760  HLessThan(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2761      : HCondition(first, second, dex_pc) {}
2762
2763  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2764    return GetBlock()->GetGraph()->GetIntConstant(
2765        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2766  }
2767  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2768    return GetBlock()->GetGraph()->GetIntConstant(
2769        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2770  }
2771
2772  DECLARE_INSTRUCTION(LessThan);
2773
2774  IfCondition GetCondition() const OVERRIDE {
2775    return kCondLT;
2776  }
2777
2778  IfCondition GetOppositeCondition() const OVERRIDE {
2779    return kCondGE;
2780  }
2781
2782 private:
2783  template <typename T> bool Compute(T x, T y) const { return x < y; }
2784
2785  DISALLOW_COPY_AND_ASSIGN(HLessThan);
2786};
2787
2788class HLessThanOrEqual : public HCondition {
2789 public:
2790  HLessThanOrEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2791      : HCondition(first, second, dex_pc) {}
2792
2793  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2794    return GetBlock()->GetGraph()->GetIntConstant(
2795        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2796  }
2797  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2798    return GetBlock()->GetGraph()->GetIntConstant(
2799        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2800  }
2801
2802  DECLARE_INSTRUCTION(LessThanOrEqual);
2803
2804  IfCondition GetCondition() const OVERRIDE {
2805    return kCondLE;
2806  }
2807
2808  IfCondition GetOppositeCondition() const OVERRIDE {
2809    return kCondGT;
2810  }
2811
2812 private:
2813  template <typename T> bool Compute(T x, T y) const { return x <= y; }
2814
2815  DISALLOW_COPY_AND_ASSIGN(HLessThanOrEqual);
2816};
2817
2818class HGreaterThan : public HCondition {
2819 public:
2820  HGreaterThan(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2821      : HCondition(first, second, dex_pc) {}
2822
2823  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2824    return GetBlock()->GetGraph()->GetIntConstant(
2825        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2826  }
2827  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2828    return GetBlock()->GetGraph()->GetIntConstant(
2829        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2830  }
2831
2832  DECLARE_INSTRUCTION(GreaterThan);
2833
2834  IfCondition GetCondition() const OVERRIDE {
2835    return kCondGT;
2836  }
2837
2838  IfCondition GetOppositeCondition() const OVERRIDE {
2839    return kCondLE;
2840  }
2841
2842 private:
2843  template <typename T> bool Compute(T x, T y) const { return x > y; }
2844
2845  DISALLOW_COPY_AND_ASSIGN(HGreaterThan);
2846};
2847
2848class HGreaterThanOrEqual : public HCondition {
2849 public:
2850  HGreaterThanOrEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2851      : HCondition(first, second, dex_pc) {}
2852
2853  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2854    return GetBlock()->GetGraph()->GetIntConstant(
2855        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2856  }
2857  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2858    return GetBlock()->GetGraph()->GetIntConstant(
2859        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2860  }
2861
2862  DECLARE_INSTRUCTION(GreaterThanOrEqual);
2863
2864  IfCondition GetCondition() const OVERRIDE {
2865    return kCondGE;
2866  }
2867
2868  IfCondition GetOppositeCondition() const OVERRIDE {
2869    return kCondLT;
2870  }
2871
2872 private:
2873  template <typename T> bool Compute(T x, T y) const { return x >= y; }
2874
2875  DISALLOW_COPY_AND_ASSIGN(HGreaterThanOrEqual);
2876};
2877
2878class HBelow : public HCondition {
2879 public:
2880  HBelow(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2881      : HCondition(first, second, dex_pc) {}
2882
2883  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2884    return GetBlock()->GetGraph()->GetIntConstant(
2885        Compute(static_cast<uint32_t>(x->GetValue()),
2886                static_cast<uint32_t>(y->GetValue())), GetDexPc());
2887  }
2888  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2889    return GetBlock()->GetGraph()->GetIntConstant(
2890        Compute(static_cast<uint64_t>(x->GetValue()),
2891                static_cast<uint64_t>(y->GetValue())), GetDexPc());
2892  }
2893
2894  DECLARE_INSTRUCTION(Below);
2895
2896  IfCondition GetCondition() const OVERRIDE {
2897    return kCondB;
2898  }
2899
2900  IfCondition GetOppositeCondition() const OVERRIDE {
2901    return kCondAE;
2902  }
2903
2904 private:
2905  template <typename T> bool Compute(T x, T y) const { return x < y; }
2906
2907  DISALLOW_COPY_AND_ASSIGN(HBelow);
2908};
2909
2910class HBelowOrEqual : public HCondition {
2911 public:
2912  HBelowOrEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2913      : HCondition(first, second, dex_pc) {}
2914
2915  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2916    return GetBlock()->GetGraph()->GetIntConstant(
2917        Compute(static_cast<uint32_t>(x->GetValue()),
2918                static_cast<uint32_t>(y->GetValue())), GetDexPc());
2919  }
2920  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2921    return GetBlock()->GetGraph()->GetIntConstant(
2922        Compute(static_cast<uint64_t>(x->GetValue()),
2923                static_cast<uint64_t>(y->GetValue())), GetDexPc());
2924  }
2925
2926  DECLARE_INSTRUCTION(BelowOrEqual);
2927
2928  IfCondition GetCondition() const OVERRIDE {
2929    return kCondBE;
2930  }
2931
2932  IfCondition GetOppositeCondition() const OVERRIDE {
2933    return kCondA;
2934  }
2935
2936 private:
2937  template <typename T> bool Compute(T x, T y) const { return x <= y; }
2938
2939  DISALLOW_COPY_AND_ASSIGN(HBelowOrEqual);
2940};
2941
2942class HAbove : public HCondition {
2943 public:
2944  HAbove(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2945      : HCondition(first, second, dex_pc) {}
2946
2947  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2948    return GetBlock()->GetGraph()->GetIntConstant(
2949        Compute(static_cast<uint32_t>(x->GetValue()),
2950                static_cast<uint32_t>(y->GetValue())), GetDexPc());
2951  }
2952  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2953    return GetBlock()->GetGraph()->GetIntConstant(
2954        Compute(static_cast<uint64_t>(x->GetValue()),
2955                static_cast<uint64_t>(y->GetValue())), GetDexPc());
2956  }
2957
2958  DECLARE_INSTRUCTION(Above);
2959
2960  IfCondition GetCondition() const OVERRIDE {
2961    return kCondA;
2962  }
2963
2964  IfCondition GetOppositeCondition() const OVERRIDE {
2965    return kCondBE;
2966  }
2967
2968 private:
2969  template <typename T> bool Compute(T x, T y) const { return x > y; }
2970
2971  DISALLOW_COPY_AND_ASSIGN(HAbove);
2972};
2973
2974class HAboveOrEqual : public HCondition {
2975 public:
2976  HAboveOrEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2977      : HCondition(first, second, dex_pc) {}
2978
2979  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2980    return GetBlock()->GetGraph()->GetIntConstant(
2981        Compute(static_cast<uint32_t>(x->GetValue()),
2982                static_cast<uint32_t>(y->GetValue())), GetDexPc());
2983  }
2984  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2985    return GetBlock()->GetGraph()->GetIntConstant(
2986        Compute(static_cast<uint64_t>(x->GetValue()),
2987                static_cast<uint64_t>(y->GetValue())), GetDexPc());
2988  }
2989
2990  DECLARE_INSTRUCTION(AboveOrEqual);
2991
2992  IfCondition GetCondition() const OVERRIDE {
2993    return kCondAE;
2994  }
2995
2996  IfCondition GetOppositeCondition() const OVERRIDE {
2997    return kCondB;
2998  }
2999
3000 private:
3001  template <typename T> bool Compute(T x, T y) const { return x >= y; }
3002
3003  DISALLOW_COPY_AND_ASSIGN(HAboveOrEqual);
3004};
3005
3006// Instruction to check how two inputs compare to each other.
3007// Result is 0 if input0 == input1, 1 if input0 > input1, or -1 if input0 < input1.
3008class HCompare : public HBinaryOperation {
3009 public:
3010  HCompare(Primitive::Type type,
3011           HInstruction* first,
3012           HInstruction* second,
3013           ComparisonBias bias,
3014           uint32_t dex_pc)
3015      : HBinaryOperation(Primitive::kPrimInt,
3016                         first,
3017                         second,
3018                         SideEffectsForArchRuntimeCalls(type),
3019                         dex_pc),
3020        bias_(bias) {
3021    DCHECK_EQ(type, first->GetType());
3022    DCHECK_EQ(type, second->GetType());
3023  }
3024
3025  template <typename T>
3026  int32_t Compute(T x, T y) const { return x == y ? 0 : x > y ? 1 : -1; }
3027
3028  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3029    return GetBlock()->GetGraph()->GetIntConstant(
3030        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3031  }
3032  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3033    return GetBlock()->GetGraph()->GetIntConstant(
3034        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3035  }
3036
3037  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
3038    return bias_ == other->AsCompare()->bias_;
3039  }
3040
3041  ComparisonBias GetBias() const { return bias_; }
3042
3043  bool IsGtBias() { return bias_ == ComparisonBias::kGtBias; }
3044
3045
3046  static SideEffects SideEffectsForArchRuntimeCalls(Primitive::Type type) {
3047    // MIPS64 uses a runtime call for FP comparisons.
3048    return Primitive::IsFloatingPointType(type) ? SideEffects::CanTriggerGC() : SideEffects::None();
3049  }
3050
3051  DECLARE_INSTRUCTION(Compare);
3052
3053 private:
3054  const ComparisonBias bias_;
3055
3056  DISALLOW_COPY_AND_ASSIGN(HCompare);
3057};
3058
3059// A local in the graph. Corresponds to a Dex register.
3060class HLocal : public HTemplateInstruction<0> {
3061 public:
3062  explicit HLocal(uint16_t reg_number)
3063      : HTemplateInstruction(SideEffects::None(), kNoDexPc), reg_number_(reg_number) {}
3064
3065  DECLARE_INSTRUCTION(Local);
3066
3067  uint16_t GetRegNumber() const { return reg_number_; }
3068
3069 private:
3070  // The Dex register number.
3071  const uint16_t reg_number_;
3072
3073  DISALLOW_COPY_AND_ASSIGN(HLocal);
3074};
3075
3076// Load a given local. The local is an input of this instruction.
3077class HLoadLocal : public HExpression<1> {
3078 public:
3079  HLoadLocal(HLocal* local, Primitive::Type type, uint32_t dex_pc = kNoDexPc)
3080      : HExpression(type, SideEffects::None(), dex_pc) {
3081    SetRawInputAt(0, local);
3082  }
3083
3084  HLocal* GetLocal() const { return reinterpret_cast<HLocal*>(InputAt(0)); }
3085
3086  DECLARE_INSTRUCTION(LoadLocal);
3087
3088 private:
3089  DISALLOW_COPY_AND_ASSIGN(HLoadLocal);
3090};
3091
3092// Store a value in a given local. This instruction has two inputs: the value
3093// and the local.
3094class HStoreLocal : public HTemplateInstruction<2> {
3095 public:
3096  HStoreLocal(HLocal* local, HInstruction* value, uint32_t dex_pc = kNoDexPc)
3097      : HTemplateInstruction(SideEffects::None(), dex_pc) {
3098    SetRawInputAt(0, local);
3099    SetRawInputAt(1, value);
3100  }
3101
3102  HLocal* GetLocal() const { return reinterpret_cast<HLocal*>(InputAt(0)); }
3103
3104  DECLARE_INSTRUCTION(StoreLocal);
3105
3106 private:
3107  DISALLOW_COPY_AND_ASSIGN(HStoreLocal);
3108};
3109
3110class HFloatConstant : public HConstant {
3111 public:
3112  float GetValue() const { return value_; }
3113
3114  uint64_t GetValueAsUint64() const OVERRIDE {
3115    return static_cast<uint64_t>(bit_cast<uint32_t, float>(value_));
3116  }
3117
3118  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
3119    DCHECK(other->IsFloatConstant());
3120    return other->AsFloatConstant()->GetValueAsUint64() == GetValueAsUint64();
3121  }
3122
3123  size_t ComputeHashCode() const OVERRIDE { return static_cast<size_t>(GetValue()); }
3124
3125  bool IsMinusOne() const OVERRIDE {
3126    return bit_cast<uint32_t, float>(value_) == bit_cast<uint32_t, float>((-1.0f));
3127  }
3128  bool IsZero() const OVERRIDE {
3129    return value_ == 0.0f;
3130  }
3131  bool IsOne() const OVERRIDE {
3132    return bit_cast<uint32_t, float>(value_) == bit_cast<uint32_t, float>(1.0f);
3133  }
3134  bool IsNaN() const {
3135    return std::isnan(value_);
3136  }
3137
3138  DECLARE_INSTRUCTION(FloatConstant);
3139
3140 private:
3141  explicit HFloatConstant(float value, uint32_t dex_pc = kNoDexPc)
3142      : HConstant(Primitive::kPrimFloat, dex_pc), value_(value) {}
3143  explicit HFloatConstant(int32_t value, uint32_t dex_pc = kNoDexPc)
3144      : HConstant(Primitive::kPrimFloat, dex_pc), value_(bit_cast<float, int32_t>(value)) {}
3145
3146  const float value_;
3147
3148  // Only the SsaBuilder and HGraph can create floating-point constants.
3149  friend class SsaBuilder;
3150  friend class HGraph;
3151  DISALLOW_COPY_AND_ASSIGN(HFloatConstant);
3152};
3153
3154class HDoubleConstant : public HConstant {
3155 public:
3156  double GetValue() const { return value_; }
3157
3158  uint64_t GetValueAsUint64() const OVERRIDE { return bit_cast<uint64_t, double>(value_); }
3159
3160  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
3161    DCHECK(other->IsDoubleConstant());
3162    return other->AsDoubleConstant()->GetValueAsUint64() == GetValueAsUint64();
3163  }
3164
3165  size_t ComputeHashCode() const OVERRIDE { return static_cast<size_t>(GetValue()); }
3166
3167  bool IsMinusOne() const OVERRIDE {
3168    return bit_cast<uint64_t, double>(value_) == bit_cast<uint64_t, double>((-1.0));
3169  }
3170  bool IsZero() const OVERRIDE {
3171    return value_ == 0.0;
3172  }
3173  bool IsOne() const OVERRIDE {
3174    return bit_cast<uint64_t, double>(value_) == bit_cast<uint64_t, double>(1.0);
3175  }
3176  bool IsNaN() const {
3177    return std::isnan(value_);
3178  }
3179
3180  DECLARE_INSTRUCTION(DoubleConstant);
3181
3182 private:
3183  explicit HDoubleConstant(double value, uint32_t dex_pc = kNoDexPc)
3184      : HConstant(Primitive::kPrimDouble, dex_pc), value_(value) {}
3185  explicit HDoubleConstant(int64_t value, uint32_t dex_pc = kNoDexPc)
3186      : HConstant(Primitive::kPrimDouble, dex_pc), value_(bit_cast<double, int64_t>(value)) {}
3187
3188  const double value_;
3189
3190  // Only the SsaBuilder and HGraph can create floating-point constants.
3191  friend class SsaBuilder;
3192  friend class HGraph;
3193  DISALLOW_COPY_AND_ASSIGN(HDoubleConstant);
3194};
3195
3196enum class Intrinsics {
3197#define OPTIMIZING_INTRINSICS(Name, IsStatic, NeedsEnvironmentOrCache) k ## Name,
3198#include "intrinsics_list.h"
3199  kNone,
3200  INTRINSICS_LIST(OPTIMIZING_INTRINSICS)
3201#undef INTRINSICS_LIST
3202#undef OPTIMIZING_INTRINSICS
3203};
3204std::ostream& operator<<(std::ostream& os, const Intrinsics& intrinsic);
3205
3206enum IntrinsicNeedsEnvironmentOrCache {
3207  kNoEnvironmentOrCache,        // Intrinsic does not require an environment or dex cache.
3208  kNeedsEnvironmentOrCache      // Intrinsic requires an environment or requires a dex cache.
3209};
3210
3211class HInvoke : public HInstruction {
3212 public:
3213  size_t InputCount() const OVERRIDE { return inputs_.size(); }
3214
3215  bool NeedsEnvironment() const OVERRIDE;
3216
3217  void SetArgumentAt(size_t index, HInstruction* argument) {
3218    SetRawInputAt(index, argument);
3219  }
3220
3221  // Return the number of arguments.  This number can be lower than
3222  // the number of inputs returned by InputCount(), as some invoke
3223  // instructions (e.g. HInvokeStaticOrDirect) can have non-argument
3224  // inputs at the end of their list of inputs.
3225  uint32_t GetNumberOfArguments() const { return number_of_arguments_; }
3226
3227  Primitive::Type GetType() const OVERRIDE { return return_type_; }
3228
3229
3230  uint32_t GetDexMethodIndex() const { return dex_method_index_; }
3231  const DexFile& GetDexFile() const { return GetEnvironment()->GetDexFile(); }
3232
3233  InvokeType GetOriginalInvokeType() const { return original_invoke_type_; }
3234
3235  Intrinsics GetIntrinsic() const {
3236    return intrinsic_;
3237  }
3238
3239  void SetIntrinsic(Intrinsics intrinsic, IntrinsicNeedsEnvironmentOrCache needs_env_or_cache);
3240
3241  bool IsFromInlinedInvoke() const {
3242    return GetEnvironment()->GetParent() != nullptr;
3243  }
3244
3245  bool CanThrow() const OVERRIDE { return true; }
3246
3247  uint32_t* GetIntrinsicOptimizations() {
3248    return &intrinsic_optimizations_;
3249  }
3250
3251  const uint32_t* GetIntrinsicOptimizations() const {
3252    return &intrinsic_optimizations_;
3253  }
3254
3255  bool IsIntrinsic() const { return intrinsic_ != Intrinsics::kNone; }
3256
3257  DECLARE_INSTRUCTION(Invoke);
3258
3259 protected:
3260  HInvoke(ArenaAllocator* arena,
3261          uint32_t number_of_arguments,
3262          uint32_t number_of_other_inputs,
3263          Primitive::Type return_type,
3264          uint32_t dex_pc,
3265          uint32_t dex_method_index,
3266          InvokeType original_invoke_type)
3267    : HInstruction(
3268          SideEffects::AllExceptGCDependency(), dex_pc),  // Assume write/read on all fields/arrays.
3269      number_of_arguments_(number_of_arguments),
3270      inputs_(number_of_arguments + number_of_other_inputs,
3271              arena->Adapter(kArenaAllocInvokeInputs)),
3272      return_type_(return_type),
3273      dex_method_index_(dex_method_index),
3274      original_invoke_type_(original_invoke_type),
3275      intrinsic_(Intrinsics::kNone),
3276      intrinsic_optimizations_(0) {
3277  }
3278
3279  const HUserRecord<HInstruction*> InputRecordAt(size_t index) const OVERRIDE {
3280    return inputs_[index];
3281  }
3282
3283  void SetRawInputRecordAt(size_t index, const HUserRecord<HInstruction*>& input) OVERRIDE {
3284    inputs_[index] = input;
3285  }
3286
3287  uint32_t number_of_arguments_;
3288  ArenaVector<HUserRecord<HInstruction*>> inputs_;
3289  const Primitive::Type return_type_;
3290  const uint32_t dex_method_index_;
3291  const InvokeType original_invoke_type_;
3292  Intrinsics intrinsic_;
3293
3294  // A magic word holding optimizations for intrinsics. See intrinsics.h.
3295  uint32_t intrinsic_optimizations_;
3296
3297 private:
3298  DISALLOW_COPY_AND_ASSIGN(HInvoke);
3299};
3300
3301class HInvokeUnresolved : public HInvoke {
3302 public:
3303  HInvokeUnresolved(ArenaAllocator* arena,
3304                    uint32_t number_of_arguments,
3305                    Primitive::Type return_type,
3306                    uint32_t dex_pc,
3307                    uint32_t dex_method_index,
3308                    InvokeType invoke_type)
3309      : HInvoke(arena,
3310                number_of_arguments,
3311                0u /* number_of_other_inputs */,
3312                return_type,
3313                dex_pc,
3314                dex_method_index,
3315                invoke_type) {
3316  }
3317
3318  DECLARE_INSTRUCTION(InvokeUnresolved);
3319
3320 private:
3321  DISALLOW_COPY_AND_ASSIGN(HInvokeUnresolved);
3322};
3323
3324class HInvokeStaticOrDirect : public HInvoke {
3325 public:
3326  // Requirements of this method call regarding the class
3327  // initialization (clinit) check of its declaring class.
3328  enum class ClinitCheckRequirement {
3329    kNone,      // Class already initialized.
3330    kExplicit,  // Static call having explicit clinit check as last input.
3331    kImplicit,  // Static call implicitly requiring a clinit check.
3332  };
3333
3334  // Determines how to load the target ArtMethod*.
3335  enum class MethodLoadKind {
3336    // Use a String init ArtMethod* loaded from Thread entrypoints.
3337    kStringInit,
3338
3339    // Use the method's own ArtMethod* loaded by the register allocator.
3340    kRecursive,
3341
3342    // Use ArtMethod* at a known address, embed the direct address in the code.
3343    // Used for app->boot calls with non-relocatable image and for JIT-compiled calls.
3344    kDirectAddress,
3345
3346    // Use ArtMethod* at an address that will be known at link time, embed the direct
3347    // address in the code. If the image is relocatable, emit .patch_oat entry.
3348    // Used for app->boot calls with relocatable image and boot->boot calls, whether
3349    // the image relocatable or not.
3350    kDirectAddressWithFixup,
3351
3352    // Load from resoved methods array in the dex cache using a PC-relative load.
3353    // Used when we need to use the dex cache, for example for invoke-static that
3354    // may cause class initialization (the entry may point to a resolution method),
3355    // and we know that we can access the dex cache arrays using a PC-relative load.
3356    kDexCachePcRelative,
3357
3358    // Use ArtMethod* from the resolved methods of the compiled method's own ArtMethod*.
3359    // Used for JIT when we need to use the dex cache. This is also the last-resort-kind
3360    // used when other kinds are unavailable (say, dex cache arrays are not PC-relative)
3361    // or unimplemented or impractical (i.e. slow) on a particular architecture.
3362    kDexCacheViaMethod,
3363  };
3364
3365  // Determines the location of the code pointer.
3366  enum class CodePtrLocation {
3367    // Recursive call, use local PC-relative call instruction.
3368    kCallSelf,
3369
3370    // Use PC-relative call instruction patched at link time.
3371    // Used for calls within an oat file, boot->boot or app->app.
3372    kCallPCRelative,
3373
3374    // Call to a known target address, embed the direct address in code.
3375    // Used for app->boot call with non-relocatable image and for JIT-compiled calls.
3376    kCallDirect,
3377
3378    // Call to a target address that will be known at link time, embed the direct
3379    // address in code. If the image is relocatable, emit .patch_oat entry.
3380    // Used for app->boot calls with relocatable image and boot->boot calls, whether
3381    // the image relocatable or not.
3382    kCallDirectWithFixup,
3383
3384    // Use code pointer from the ArtMethod*.
3385    // Used when we don't know the target code. This is also the last-resort-kind used when
3386    // other kinds are unimplemented or impractical (i.e. slow) on a particular architecture.
3387    kCallArtMethod,
3388  };
3389
3390  struct DispatchInfo {
3391    MethodLoadKind method_load_kind;
3392    CodePtrLocation code_ptr_location;
3393    // The method load data holds
3394    //   - thread entrypoint offset for kStringInit method if this is a string init invoke.
3395    //     Note that there are multiple string init methods, each having its own offset.
3396    //   - the method address for kDirectAddress
3397    //   - the dex cache arrays offset for kDexCachePcRel.
3398    uint64_t method_load_data;
3399    uint64_t direct_code_ptr;
3400  };
3401
3402  HInvokeStaticOrDirect(ArenaAllocator* arena,
3403                        uint32_t number_of_arguments,
3404                        Primitive::Type return_type,
3405                        uint32_t dex_pc,
3406                        uint32_t method_index,
3407                        MethodReference target_method,
3408                        DispatchInfo dispatch_info,
3409                        InvokeType original_invoke_type,
3410                        InvokeType invoke_type,
3411                        ClinitCheckRequirement clinit_check_requirement)
3412      : HInvoke(arena,
3413                number_of_arguments,
3414                // There is potentially one extra argument for the HCurrentMethod node, and
3415                // potentially one other if the clinit check is explicit, and potentially
3416                // one other if the method is a string factory.
3417                (NeedsCurrentMethodInput(dispatch_info.method_load_kind) ? 1u : 0u) +
3418                    (clinit_check_requirement == ClinitCheckRequirement::kExplicit ? 1u : 0u) +
3419                    (dispatch_info.method_load_kind == MethodLoadKind::kStringInit ? 1u : 0u),
3420                return_type,
3421                dex_pc,
3422                method_index,
3423                original_invoke_type),
3424        invoke_type_(invoke_type),
3425        clinit_check_requirement_(clinit_check_requirement),
3426        target_method_(target_method),
3427        dispatch_info_(dispatch_info) { }
3428
3429  void SetDispatchInfo(const DispatchInfo& dispatch_info) {
3430    bool had_current_method_input = HasCurrentMethodInput();
3431    bool needs_current_method_input = NeedsCurrentMethodInput(dispatch_info.method_load_kind);
3432
3433    // Using the current method is the default and once we find a better
3434    // method load kind, we should not go back to using the current method.
3435    DCHECK(had_current_method_input || !needs_current_method_input);
3436
3437    if (had_current_method_input && !needs_current_method_input) {
3438      DCHECK_EQ(InputAt(GetSpecialInputIndex()), GetBlock()->GetGraph()->GetCurrentMethod());
3439      RemoveInputAt(GetSpecialInputIndex());
3440    }
3441    dispatch_info_ = dispatch_info;
3442  }
3443
3444  void AddSpecialInput(HInstruction* input) {
3445    // We allow only one special input.
3446    DCHECK(!IsStringInit() && !HasCurrentMethodInput());
3447    DCHECK(InputCount() == GetSpecialInputIndex() ||
3448           (InputCount() == GetSpecialInputIndex() + 1 && IsStaticWithExplicitClinitCheck()));
3449    InsertInputAt(GetSpecialInputIndex(), input);
3450  }
3451
3452  bool CanDoImplicitNullCheckOn(HInstruction* obj ATTRIBUTE_UNUSED) const OVERRIDE {
3453    // We access the method via the dex cache so we can't do an implicit null check.
3454    // TODO: for intrinsics we can generate implicit null checks.
3455    return false;
3456  }
3457
3458  bool CanBeNull() const OVERRIDE {
3459    return return_type_ == Primitive::kPrimNot && !IsStringInit();
3460  }
3461
3462  // Get the index of the special input, if any.
3463  //
3464  // If the invoke IsStringInit(), it initially has a HFakeString special argument
3465  // which is removed by the instruction simplifier; if the invoke HasCurrentMethodInput(),
3466  // the "special input" is the current method pointer; otherwise there may be one
3467  // platform-specific special input, such as PC-relative addressing base.
3468  uint32_t GetSpecialInputIndex() const { return GetNumberOfArguments(); }
3469
3470  InvokeType GetInvokeType() const { return invoke_type_; }
3471  MethodLoadKind GetMethodLoadKind() const { return dispatch_info_.method_load_kind; }
3472  CodePtrLocation GetCodePtrLocation() const { return dispatch_info_.code_ptr_location; }
3473  bool IsRecursive() const { return GetMethodLoadKind() == MethodLoadKind::kRecursive; }
3474  bool NeedsDexCacheOfDeclaringClass() const OVERRIDE;
3475  bool IsStringInit() const { return GetMethodLoadKind() == MethodLoadKind::kStringInit; }
3476  bool HasMethodAddress() const { return GetMethodLoadKind() == MethodLoadKind::kDirectAddress; }
3477  bool HasPcRelativeDexCache() const {
3478    return GetMethodLoadKind() == MethodLoadKind::kDexCachePcRelative;
3479  }
3480  bool HasCurrentMethodInput() const {
3481    // This function can be called only after the invoke has been fully initialized by the builder.
3482    if (NeedsCurrentMethodInput(GetMethodLoadKind())) {
3483      DCHECK(InputAt(GetSpecialInputIndex())->IsCurrentMethod());
3484      return true;
3485    } else {
3486      DCHECK(InputCount() == GetSpecialInputIndex() ||
3487             !InputAt(GetSpecialInputIndex())->IsCurrentMethod());
3488      return false;
3489    }
3490  }
3491  bool HasDirectCodePtr() const { return GetCodePtrLocation() == CodePtrLocation::kCallDirect; }
3492  MethodReference GetTargetMethod() const { return target_method_; }
3493
3494  int32_t GetStringInitOffset() const {
3495    DCHECK(IsStringInit());
3496    return dispatch_info_.method_load_data;
3497  }
3498
3499  uint64_t GetMethodAddress() const {
3500    DCHECK(HasMethodAddress());
3501    return dispatch_info_.method_load_data;
3502  }
3503
3504  uint32_t GetDexCacheArrayOffset() const {
3505    DCHECK(HasPcRelativeDexCache());
3506    return dispatch_info_.method_load_data;
3507  }
3508
3509  uint64_t GetDirectCodePtr() const {
3510    DCHECK(HasDirectCodePtr());
3511    return dispatch_info_.direct_code_ptr;
3512  }
3513
3514  ClinitCheckRequirement GetClinitCheckRequirement() const { return clinit_check_requirement_; }
3515
3516  // Is this instruction a call to a static method?
3517  bool IsStatic() const {
3518    return GetInvokeType() == kStatic;
3519  }
3520
3521  // Remove the HClinitCheck or the replacement HLoadClass (set as last input by
3522  // PrepareForRegisterAllocation::VisitClinitCheck() in lieu of the initial HClinitCheck)
3523  // instruction; only relevant for static calls with explicit clinit check.
3524  void RemoveExplicitClinitCheck(ClinitCheckRequirement new_requirement) {
3525    DCHECK(IsStaticWithExplicitClinitCheck());
3526    size_t last_input_index = InputCount() - 1;
3527    HInstruction* last_input = InputAt(last_input_index);
3528    DCHECK(last_input != nullptr);
3529    DCHECK(last_input->IsLoadClass() || last_input->IsClinitCheck()) << last_input->DebugName();
3530    RemoveAsUserOfInput(last_input_index);
3531    inputs_.pop_back();
3532    clinit_check_requirement_ = new_requirement;
3533    DCHECK(!IsStaticWithExplicitClinitCheck());
3534  }
3535
3536  bool IsStringFactoryFor(HFakeString* str) const {
3537    if (!IsStringInit()) return false;
3538    DCHECK(!HasCurrentMethodInput());
3539    if (InputCount() == (number_of_arguments_)) return false;
3540    return InputAt(InputCount() - 1)->AsFakeString() == str;
3541  }
3542
3543  void RemoveFakeStringArgumentAsLastInput() {
3544    DCHECK(IsStringInit());
3545    size_t last_input_index = InputCount() - 1;
3546    HInstruction* last_input = InputAt(last_input_index);
3547    DCHECK(last_input != nullptr);
3548    DCHECK(last_input->IsFakeString()) << last_input->DebugName();
3549    RemoveAsUserOfInput(last_input_index);
3550    inputs_.pop_back();
3551  }
3552
3553  // Is this a call to a static method whose declaring class has an
3554  // explicit initialization check in the graph?
3555  bool IsStaticWithExplicitClinitCheck() const {
3556    return IsStatic() && (clinit_check_requirement_ == ClinitCheckRequirement::kExplicit);
3557  }
3558
3559  // Is this a call to a static method whose declaring class has an
3560  // implicit intialization check requirement?
3561  bool IsStaticWithImplicitClinitCheck() const {
3562    return IsStatic() && (clinit_check_requirement_ == ClinitCheckRequirement::kImplicit);
3563  }
3564
3565  // Does this method load kind need the current method as an input?
3566  static bool NeedsCurrentMethodInput(MethodLoadKind kind) {
3567    return kind == MethodLoadKind::kRecursive || kind == MethodLoadKind::kDexCacheViaMethod;
3568  }
3569
3570  DECLARE_INSTRUCTION(InvokeStaticOrDirect);
3571
3572 protected:
3573  const HUserRecord<HInstruction*> InputRecordAt(size_t i) const OVERRIDE {
3574    const HUserRecord<HInstruction*> input_record = HInvoke::InputRecordAt(i);
3575    if (kIsDebugBuild && IsStaticWithExplicitClinitCheck() && (i == InputCount() - 1)) {
3576      HInstruction* input = input_record.GetInstruction();
3577      // `input` is the last input of a static invoke marked as having
3578      // an explicit clinit check. It must either be:
3579      // - an art::HClinitCheck instruction, set by art::HGraphBuilder; or
3580      // - an art::HLoadClass instruction, set by art::PrepareForRegisterAllocation.
3581      DCHECK(input != nullptr);
3582      DCHECK(input->IsClinitCheck() || input->IsLoadClass()) << input->DebugName();
3583    }
3584    return input_record;
3585  }
3586
3587  void InsertInputAt(size_t index, HInstruction* input);
3588  void RemoveInputAt(size_t index);
3589
3590 private:
3591  const InvokeType invoke_type_;
3592  ClinitCheckRequirement clinit_check_requirement_;
3593  // The target method may refer to different dex file or method index than the original
3594  // invoke. This happens for sharpened calls and for calls where a method was redeclared
3595  // in derived class to increase visibility.
3596  MethodReference target_method_;
3597  DispatchInfo dispatch_info_;
3598
3599  DISALLOW_COPY_AND_ASSIGN(HInvokeStaticOrDirect);
3600};
3601std::ostream& operator<<(std::ostream& os, HInvokeStaticOrDirect::ClinitCheckRequirement rhs);
3602
3603class HInvokeVirtual : public HInvoke {
3604 public:
3605  HInvokeVirtual(ArenaAllocator* arena,
3606                 uint32_t number_of_arguments,
3607                 Primitive::Type return_type,
3608                 uint32_t dex_pc,
3609                 uint32_t dex_method_index,
3610                 uint32_t vtable_index)
3611      : HInvoke(arena, number_of_arguments, 0u, return_type, dex_pc, dex_method_index, kVirtual),
3612        vtable_index_(vtable_index) {}
3613
3614  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
3615    // TODO: Add implicit null checks in intrinsics.
3616    return (obj == InputAt(0)) && !GetLocations()->Intrinsified();
3617  }
3618
3619  uint32_t GetVTableIndex() const { return vtable_index_; }
3620
3621  DECLARE_INSTRUCTION(InvokeVirtual);
3622
3623 private:
3624  const uint32_t vtable_index_;
3625
3626  DISALLOW_COPY_AND_ASSIGN(HInvokeVirtual);
3627};
3628
3629class HInvokeInterface : public HInvoke {
3630 public:
3631  HInvokeInterface(ArenaAllocator* arena,
3632                   uint32_t number_of_arguments,
3633                   Primitive::Type return_type,
3634                   uint32_t dex_pc,
3635                   uint32_t dex_method_index,
3636                   uint32_t imt_index)
3637      : HInvoke(arena, number_of_arguments, 0u, return_type, dex_pc, dex_method_index, kInterface),
3638        imt_index_(imt_index) {}
3639
3640  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
3641    // TODO: Add implicit null checks in intrinsics.
3642    return (obj == InputAt(0)) && !GetLocations()->Intrinsified();
3643  }
3644
3645  uint32_t GetImtIndex() const { return imt_index_; }
3646  uint32_t GetDexMethodIndex() const { return dex_method_index_; }
3647
3648  DECLARE_INSTRUCTION(InvokeInterface);
3649
3650 private:
3651  const uint32_t imt_index_;
3652
3653  DISALLOW_COPY_AND_ASSIGN(HInvokeInterface);
3654};
3655
3656class HNewInstance : public HExpression<1> {
3657 public:
3658  HNewInstance(HCurrentMethod* current_method,
3659               uint32_t dex_pc,
3660               uint16_t type_index,
3661               const DexFile& dex_file,
3662               bool can_throw,
3663               bool finalizable,
3664               QuickEntrypointEnum entrypoint)
3665      : HExpression(Primitive::kPrimNot, SideEffects::CanTriggerGC(), dex_pc),
3666        type_index_(type_index),
3667        dex_file_(dex_file),
3668        can_throw_(can_throw),
3669        finalizable_(finalizable),
3670        entrypoint_(entrypoint) {
3671    SetRawInputAt(0, current_method);
3672  }
3673
3674  uint16_t GetTypeIndex() const { return type_index_; }
3675  const DexFile& GetDexFile() const { return dex_file_; }
3676
3677  // Calls runtime so needs an environment.
3678  bool NeedsEnvironment() const OVERRIDE { return true; }
3679
3680  // It may throw when called on type that's not instantiable/accessible.
3681  // It can throw OOME.
3682  // TODO: distinguish between the two cases so we can for example allow allocation elimination.
3683  bool CanThrow() const OVERRIDE { return can_throw_ || true; }
3684
3685  bool IsFinalizable() const { return finalizable_; }
3686
3687  bool CanBeNull() const OVERRIDE { return false; }
3688
3689  QuickEntrypointEnum GetEntrypoint() const { return entrypoint_; }
3690
3691  DECLARE_INSTRUCTION(NewInstance);
3692
3693 private:
3694  const uint16_t type_index_;
3695  const DexFile& dex_file_;
3696  const bool can_throw_;
3697  const bool finalizable_;
3698  const QuickEntrypointEnum entrypoint_;
3699
3700  DISALLOW_COPY_AND_ASSIGN(HNewInstance);
3701};
3702
3703class HNeg : public HUnaryOperation {
3704 public:
3705  HNeg(Primitive::Type result_type, HInstruction* input, uint32_t dex_pc = kNoDexPc)
3706      : HUnaryOperation(result_type, input, dex_pc) {}
3707
3708  template <typename T> T Compute(T x) const { return -x; }
3709
3710  HConstant* Evaluate(HIntConstant* x) const OVERRIDE {
3711    return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue()), GetDexPc());
3712  }
3713  HConstant* Evaluate(HLongConstant* x) const OVERRIDE {
3714    return GetBlock()->GetGraph()->GetLongConstant(Compute(x->GetValue()), GetDexPc());
3715  }
3716
3717  DECLARE_INSTRUCTION(Neg);
3718
3719 private:
3720  DISALLOW_COPY_AND_ASSIGN(HNeg);
3721};
3722
3723class HNewArray : public HExpression<2> {
3724 public:
3725  HNewArray(HInstruction* length,
3726            HCurrentMethod* current_method,
3727            uint32_t dex_pc,
3728            uint16_t type_index,
3729            const DexFile& dex_file,
3730            QuickEntrypointEnum entrypoint)
3731      : HExpression(Primitive::kPrimNot, SideEffects::CanTriggerGC(), dex_pc),
3732        type_index_(type_index),
3733        dex_file_(dex_file),
3734        entrypoint_(entrypoint) {
3735    SetRawInputAt(0, length);
3736    SetRawInputAt(1, current_method);
3737  }
3738
3739  uint16_t GetTypeIndex() const { return type_index_; }
3740  const DexFile& GetDexFile() const { return dex_file_; }
3741
3742  // Calls runtime so needs an environment.
3743  bool NeedsEnvironment() const OVERRIDE { return true; }
3744
3745  // May throw NegativeArraySizeException, OutOfMemoryError, etc.
3746  bool CanThrow() const OVERRIDE { return true; }
3747
3748  bool CanBeNull() const OVERRIDE { return false; }
3749
3750  QuickEntrypointEnum GetEntrypoint() const { return entrypoint_; }
3751
3752  DECLARE_INSTRUCTION(NewArray);
3753
3754 private:
3755  const uint16_t type_index_;
3756  const DexFile& dex_file_;
3757  const QuickEntrypointEnum entrypoint_;
3758
3759  DISALLOW_COPY_AND_ASSIGN(HNewArray);
3760};
3761
3762class HAdd : public HBinaryOperation {
3763 public:
3764  HAdd(Primitive::Type result_type,
3765       HInstruction* left,
3766       HInstruction* right,
3767       uint32_t dex_pc = kNoDexPc)
3768      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
3769
3770  bool IsCommutative() const OVERRIDE { return true; }
3771
3772  template <typename T> T Compute(T x, T y) const { return x + y; }
3773
3774  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3775    return GetBlock()->GetGraph()->GetIntConstant(
3776        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3777  }
3778  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3779    return GetBlock()->GetGraph()->GetLongConstant(
3780        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3781  }
3782
3783  DECLARE_INSTRUCTION(Add);
3784
3785 private:
3786  DISALLOW_COPY_AND_ASSIGN(HAdd);
3787};
3788
3789class HSub : public HBinaryOperation {
3790 public:
3791  HSub(Primitive::Type result_type,
3792       HInstruction* left,
3793       HInstruction* right,
3794       uint32_t dex_pc = kNoDexPc)
3795      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
3796
3797  template <typename T> T Compute(T x, T y) const { return x - y; }
3798
3799  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3800    return GetBlock()->GetGraph()->GetIntConstant(
3801        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3802  }
3803  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3804    return GetBlock()->GetGraph()->GetLongConstant(
3805        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3806  }
3807
3808  DECLARE_INSTRUCTION(Sub);
3809
3810 private:
3811  DISALLOW_COPY_AND_ASSIGN(HSub);
3812};
3813
3814class HMul : public HBinaryOperation {
3815 public:
3816  HMul(Primitive::Type result_type,
3817       HInstruction* left,
3818       HInstruction* right,
3819       uint32_t dex_pc = kNoDexPc)
3820      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
3821
3822  bool IsCommutative() const OVERRIDE { return true; }
3823
3824  template <typename T> T Compute(T x, T y) const { return x * y; }
3825
3826  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3827    return GetBlock()->GetGraph()->GetIntConstant(
3828        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3829  }
3830  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3831    return GetBlock()->GetGraph()->GetLongConstant(
3832        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3833  }
3834
3835  DECLARE_INSTRUCTION(Mul);
3836
3837 private:
3838  DISALLOW_COPY_AND_ASSIGN(HMul);
3839};
3840
3841class HDiv : public HBinaryOperation {
3842 public:
3843  HDiv(Primitive::Type result_type,
3844       HInstruction* left,
3845       HInstruction* right,
3846       uint32_t dex_pc)
3847      : HBinaryOperation(result_type, left, right, SideEffectsForArchRuntimeCalls(), dex_pc) {}
3848
3849  template <typename T>
3850  T Compute(T x, T y) const {
3851    // Our graph structure ensures we never have 0 for `y` during
3852    // constant folding.
3853    DCHECK_NE(y, 0);
3854    // Special case -1 to avoid getting a SIGFPE on x86(_64).
3855    return (y == -1) ? -x : x / y;
3856  }
3857
3858  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3859    return GetBlock()->GetGraph()->GetIntConstant(
3860        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3861  }
3862  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3863    return GetBlock()->GetGraph()->GetLongConstant(
3864        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3865  }
3866
3867  static SideEffects SideEffectsForArchRuntimeCalls() {
3868    // The generated code can use a runtime call.
3869    return SideEffects::CanTriggerGC();
3870  }
3871
3872  DECLARE_INSTRUCTION(Div);
3873
3874 private:
3875  DISALLOW_COPY_AND_ASSIGN(HDiv);
3876};
3877
3878class HRem : public HBinaryOperation {
3879 public:
3880  HRem(Primitive::Type result_type,
3881       HInstruction* left,
3882       HInstruction* right,
3883       uint32_t dex_pc)
3884      : HBinaryOperation(result_type, left, right, SideEffectsForArchRuntimeCalls(), dex_pc) {}
3885
3886  template <typename T>
3887  T Compute(T x, T y) const {
3888    // Our graph structure ensures we never have 0 for `y` during
3889    // constant folding.
3890    DCHECK_NE(y, 0);
3891    // Special case -1 to avoid getting a SIGFPE on x86(_64).
3892    return (y == -1) ? 0 : x % y;
3893  }
3894
3895  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3896    return GetBlock()->GetGraph()->GetIntConstant(
3897        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3898  }
3899  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3900    return GetBlock()->GetGraph()->GetLongConstant(
3901        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3902  }
3903
3904
3905  static SideEffects SideEffectsForArchRuntimeCalls() {
3906    return SideEffects::CanTriggerGC();
3907  }
3908
3909  DECLARE_INSTRUCTION(Rem);
3910
3911 private:
3912  DISALLOW_COPY_AND_ASSIGN(HRem);
3913};
3914
3915class HDivZeroCheck : public HExpression<1> {
3916 public:
3917  HDivZeroCheck(HInstruction* value, uint32_t dex_pc)
3918      : HExpression(value->GetType(), SideEffects::None(), dex_pc) {
3919    SetRawInputAt(0, value);
3920  }
3921
3922  Primitive::Type GetType() const OVERRIDE { return InputAt(0)->GetType(); }
3923
3924  bool CanBeMoved() const OVERRIDE { return true; }
3925
3926  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
3927    return true;
3928  }
3929
3930  bool NeedsEnvironment() const OVERRIDE { return true; }
3931  bool CanThrow() const OVERRIDE { return true; }
3932
3933  DECLARE_INSTRUCTION(DivZeroCheck);
3934
3935 private:
3936  DISALLOW_COPY_AND_ASSIGN(HDivZeroCheck);
3937};
3938
3939class HShl : public HBinaryOperation {
3940 public:
3941  HShl(Primitive::Type result_type,
3942       HInstruction* left,
3943       HInstruction* right,
3944       uint32_t dex_pc = kNoDexPc)
3945      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
3946
3947  template <typename T, typename U, typename V>
3948  T Compute(T x, U y, V max_shift_value) const {
3949    static_assert(std::is_same<V, typename std::make_unsigned<T>::type>::value,
3950                  "V is not the unsigned integer type corresponding to T");
3951    return x << (y & max_shift_value);
3952  }
3953
3954  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3955    return GetBlock()->GetGraph()->GetIntConstant(
3956        Compute(x->GetValue(), y->GetValue(), kMaxIntShiftValue), GetDexPc());
3957  }
3958  // There is no `Evaluate(HIntConstant* x, HLongConstant* y)`, as this
3959  // case is handled as `x << static_cast<int>(y)`.
3960  HConstant* Evaluate(HLongConstant* x, HIntConstant* y) const OVERRIDE {
3961    return GetBlock()->GetGraph()->GetLongConstant(
3962        Compute(x->GetValue(), y->GetValue(), kMaxLongShiftValue), GetDexPc());
3963  }
3964  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3965    return GetBlock()->GetGraph()->GetLongConstant(
3966        Compute(x->GetValue(), y->GetValue(), kMaxLongShiftValue), GetDexPc());
3967  }
3968
3969  DECLARE_INSTRUCTION(Shl);
3970
3971 private:
3972  DISALLOW_COPY_AND_ASSIGN(HShl);
3973};
3974
3975class HShr : public HBinaryOperation {
3976 public:
3977  HShr(Primitive::Type result_type,
3978       HInstruction* left,
3979       HInstruction* right,
3980       uint32_t dex_pc = kNoDexPc)
3981      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
3982
3983  template <typename T, typename U, typename V>
3984  T Compute(T x, U y, V max_shift_value) const {
3985    static_assert(std::is_same<V, typename std::make_unsigned<T>::type>::value,
3986                  "V is not the unsigned integer type corresponding to T");
3987    return x >> (y & max_shift_value);
3988  }
3989
3990  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3991    return GetBlock()->GetGraph()->GetIntConstant(
3992        Compute(x->GetValue(), y->GetValue(), kMaxIntShiftValue), GetDexPc());
3993  }
3994  // There is no `Evaluate(HIntConstant* x, HLongConstant* y)`, as this
3995  // case is handled as `x >> static_cast<int>(y)`.
3996  HConstant* Evaluate(HLongConstant* x, HIntConstant* y) const OVERRIDE {
3997    return GetBlock()->GetGraph()->GetLongConstant(
3998        Compute(x->GetValue(), y->GetValue(), kMaxLongShiftValue), GetDexPc());
3999  }
4000  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
4001    return GetBlock()->GetGraph()->GetLongConstant(
4002        Compute(x->GetValue(), y->GetValue(), kMaxLongShiftValue), GetDexPc());
4003  }
4004
4005  DECLARE_INSTRUCTION(Shr);
4006
4007 private:
4008  DISALLOW_COPY_AND_ASSIGN(HShr);
4009};
4010
4011class HUShr : public HBinaryOperation {
4012 public:
4013  HUShr(Primitive::Type result_type,
4014        HInstruction* left,
4015        HInstruction* right,
4016        uint32_t dex_pc = kNoDexPc)
4017      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
4018
4019  template <typename T, typename U, typename V>
4020  T Compute(T x, U y, V max_shift_value) const {
4021    static_assert(std::is_same<V, typename std::make_unsigned<T>::type>::value,
4022                  "V is not the unsigned integer type corresponding to T");
4023    V ux = static_cast<V>(x);
4024    return static_cast<T>(ux >> (y & max_shift_value));
4025  }
4026
4027  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
4028    return GetBlock()->GetGraph()->GetIntConstant(
4029        Compute(x->GetValue(), y->GetValue(), kMaxIntShiftValue), GetDexPc());
4030  }
4031  // There is no `Evaluate(HIntConstant* x, HLongConstant* y)`, as this
4032  // case is handled as `x >>> static_cast<int>(y)`.
4033  HConstant* Evaluate(HLongConstant* x, HIntConstant* y) const OVERRIDE {
4034    return GetBlock()->GetGraph()->GetLongConstant(
4035        Compute(x->GetValue(), y->GetValue(), kMaxLongShiftValue), GetDexPc());
4036  }
4037  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
4038    return GetBlock()->GetGraph()->GetLongConstant(
4039        Compute(x->GetValue(), y->GetValue(), kMaxLongShiftValue), GetDexPc());
4040  }
4041
4042  DECLARE_INSTRUCTION(UShr);
4043
4044 private:
4045  DISALLOW_COPY_AND_ASSIGN(HUShr);
4046};
4047
4048class HAnd : public HBinaryOperation {
4049 public:
4050  HAnd(Primitive::Type result_type,
4051       HInstruction* left,
4052       HInstruction* right,
4053       uint32_t dex_pc = kNoDexPc)
4054      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
4055
4056  bool IsCommutative() const OVERRIDE { return true; }
4057
4058  template <typename T, typename U>
4059  auto Compute(T x, U y) const -> decltype(x & y) { return x & y; }
4060
4061  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
4062    return GetBlock()->GetGraph()->GetIntConstant(
4063        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4064  }
4065  HConstant* Evaluate(HIntConstant* x, HLongConstant* y) const OVERRIDE {
4066    return GetBlock()->GetGraph()->GetLongConstant(
4067        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4068  }
4069  HConstant* Evaluate(HLongConstant* x, HIntConstant* y) const OVERRIDE {
4070    return GetBlock()->GetGraph()->GetLongConstant(
4071        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4072  }
4073  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
4074    return GetBlock()->GetGraph()->GetLongConstant(
4075        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4076  }
4077
4078  DECLARE_INSTRUCTION(And);
4079
4080 private:
4081  DISALLOW_COPY_AND_ASSIGN(HAnd);
4082};
4083
4084class HOr : public HBinaryOperation {
4085 public:
4086  HOr(Primitive::Type result_type,
4087      HInstruction* left,
4088      HInstruction* right,
4089      uint32_t dex_pc = kNoDexPc)
4090      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
4091
4092  bool IsCommutative() const OVERRIDE { return true; }
4093
4094  template <typename T, typename U>
4095  auto Compute(T x, U y) const -> decltype(x | y) { return x | y; }
4096
4097  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
4098    return GetBlock()->GetGraph()->GetIntConstant(
4099        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4100  }
4101  HConstant* Evaluate(HIntConstant* x, HLongConstant* y) const OVERRIDE {
4102    return GetBlock()->GetGraph()->GetLongConstant(
4103        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4104  }
4105  HConstant* Evaluate(HLongConstant* x, HIntConstant* y) const OVERRIDE {
4106    return GetBlock()->GetGraph()->GetLongConstant(
4107        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4108  }
4109  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
4110    return GetBlock()->GetGraph()->GetLongConstant(
4111        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4112  }
4113
4114  DECLARE_INSTRUCTION(Or);
4115
4116 private:
4117  DISALLOW_COPY_AND_ASSIGN(HOr);
4118};
4119
4120class HXor : public HBinaryOperation {
4121 public:
4122  HXor(Primitive::Type result_type,
4123       HInstruction* left,
4124       HInstruction* right,
4125       uint32_t dex_pc = kNoDexPc)
4126      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
4127
4128  bool IsCommutative() const OVERRIDE { return true; }
4129
4130  template <typename T, typename U>
4131  auto Compute(T x, U y) const -> decltype(x ^ y) { return x ^ y; }
4132
4133  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
4134    return GetBlock()->GetGraph()->GetIntConstant(
4135        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4136  }
4137  HConstant* Evaluate(HIntConstant* x, HLongConstant* y) const OVERRIDE {
4138    return GetBlock()->GetGraph()->GetLongConstant(
4139        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4140  }
4141  HConstant* Evaluate(HLongConstant* x, HIntConstant* y) const OVERRIDE {
4142    return GetBlock()->GetGraph()->GetLongConstant(
4143        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4144  }
4145  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
4146    return GetBlock()->GetGraph()->GetLongConstant(
4147        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4148  }
4149
4150  DECLARE_INSTRUCTION(Xor);
4151
4152 private:
4153  DISALLOW_COPY_AND_ASSIGN(HXor);
4154};
4155
4156// The value of a parameter in this method. Its location depends on
4157// the calling convention.
4158class HParameterValue : public HExpression<0> {
4159 public:
4160  HParameterValue(const DexFile& dex_file,
4161                  uint16_t type_index,
4162                  uint8_t index,
4163                  Primitive::Type parameter_type,
4164                  bool is_this = false)
4165      : HExpression(parameter_type, SideEffects::None(), kNoDexPc),
4166        dex_file_(dex_file),
4167        type_index_(type_index),
4168        index_(index),
4169        is_this_(is_this),
4170        can_be_null_(!is_this) {}
4171
4172  const DexFile& GetDexFile() const { return dex_file_; }
4173  uint16_t GetTypeIndex() const { return type_index_; }
4174  uint8_t GetIndex() const { return index_; }
4175  bool IsThis() const { return is_this_; }
4176
4177  bool CanBeNull() const OVERRIDE { return can_be_null_; }
4178  void SetCanBeNull(bool can_be_null) { can_be_null_ = can_be_null; }
4179
4180  DECLARE_INSTRUCTION(ParameterValue);
4181
4182 private:
4183  const DexFile& dex_file_;
4184  const uint16_t type_index_;
4185  // The index of this parameter in the parameters list. Must be less
4186  // than HGraph::number_of_in_vregs_.
4187  const uint8_t index_;
4188
4189  // Whether or not the parameter value corresponds to 'this' argument.
4190  const bool is_this_;
4191
4192  bool can_be_null_;
4193
4194  DISALLOW_COPY_AND_ASSIGN(HParameterValue);
4195};
4196
4197class HNot : public HUnaryOperation {
4198 public:
4199  HNot(Primitive::Type result_type, HInstruction* input, uint32_t dex_pc = kNoDexPc)
4200      : HUnaryOperation(result_type, input, dex_pc) {}
4201
4202  bool CanBeMoved() const OVERRIDE { return true; }
4203  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
4204    return true;
4205  }
4206
4207  template <typename T> T Compute(T x) const { return ~x; }
4208
4209  HConstant* Evaluate(HIntConstant* x) const OVERRIDE {
4210    return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue()), GetDexPc());
4211  }
4212  HConstant* Evaluate(HLongConstant* x) const OVERRIDE {
4213    return GetBlock()->GetGraph()->GetLongConstant(Compute(x->GetValue()), GetDexPc());
4214  }
4215
4216  DECLARE_INSTRUCTION(Not);
4217
4218 private:
4219  DISALLOW_COPY_AND_ASSIGN(HNot);
4220};
4221
4222class HBooleanNot : public HUnaryOperation {
4223 public:
4224  explicit HBooleanNot(HInstruction* input, uint32_t dex_pc = kNoDexPc)
4225      : HUnaryOperation(Primitive::Type::kPrimBoolean, input, dex_pc) {}
4226
4227  bool CanBeMoved() const OVERRIDE { return true; }
4228  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
4229    return true;
4230  }
4231
4232  template <typename T> bool Compute(T x) const {
4233    DCHECK(IsUint<1>(x));
4234    return !x;
4235  }
4236
4237  HConstant* Evaluate(HIntConstant* x) const OVERRIDE {
4238    return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue()), GetDexPc());
4239  }
4240  HConstant* Evaluate(HLongConstant* x ATTRIBUTE_UNUSED) const OVERRIDE {
4241    LOG(FATAL) << DebugName() << " is not defined for long values";
4242    UNREACHABLE();
4243  }
4244
4245  DECLARE_INSTRUCTION(BooleanNot);
4246
4247 private:
4248  DISALLOW_COPY_AND_ASSIGN(HBooleanNot);
4249};
4250
4251class HTypeConversion : public HExpression<1> {
4252 public:
4253  // Instantiate a type conversion of `input` to `result_type`.
4254  HTypeConversion(Primitive::Type result_type, HInstruction* input, uint32_t dex_pc)
4255      : HExpression(result_type,
4256                    SideEffectsForArchRuntimeCalls(input->GetType(), result_type),
4257                    dex_pc) {
4258    SetRawInputAt(0, input);
4259    DCHECK_NE(input->GetType(), result_type);
4260  }
4261
4262  HInstruction* GetInput() const { return InputAt(0); }
4263  Primitive::Type GetInputType() const { return GetInput()->GetType(); }
4264  Primitive::Type GetResultType() const { return GetType(); }
4265
4266  // Required by the x86, ARM, MIPS and MIPS64 code generators when producing calls
4267  // to the runtime.
4268
4269  bool CanBeMoved() const OVERRIDE { return true; }
4270  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE { return true; }
4271
4272  // Try to statically evaluate the conversion and return a HConstant
4273  // containing the result.  If the input cannot be converted, return nullptr.
4274  HConstant* TryStaticEvaluation() const;
4275
4276  static SideEffects SideEffectsForArchRuntimeCalls(Primitive::Type input_type,
4277                                                    Primitive::Type result_type) {
4278    // Some architectures may not require the 'GC' side effects, but at this point
4279    // in the compilation process we do not know what architecture we will
4280    // generate code for, so we must be conservative.
4281    if ((Primitive::IsFloatingPointType(input_type) && Primitive::IsIntegralType(result_type))
4282        || (input_type == Primitive::kPrimLong && Primitive::IsFloatingPointType(result_type))) {
4283      return SideEffects::CanTriggerGC();
4284    }
4285    return SideEffects::None();
4286  }
4287
4288  DECLARE_INSTRUCTION(TypeConversion);
4289
4290 private:
4291  DISALLOW_COPY_AND_ASSIGN(HTypeConversion);
4292};
4293
4294static constexpr uint32_t kNoRegNumber = -1;
4295
4296class HPhi : public HInstruction {
4297 public:
4298  HPhi(ArenaAllocator* arena,
4299       uint32_t reg_number,
4300       size_t number_of_inputs,
4301       Primitive::Type type,
4302       uint32_t dex_pc = kNoDexPc)
4303      : HInstruction(SideEffects::None(), dex_pc),
4304        inputs_(number_of_inputs, arena->Adapter(kArenaAllocPhiInputs)),
4305        reg_number_(reg_number),
4306        type_(type),
4307        is_live_(false),
4308        can_be_null_(true) {
4309  }
4310
4311  // Returns a type equivalent to the given `type`, but that a `HPhi` can hold.
4312  static Primitive::Type ToPhiType(Primitive::Type type) {
4313    switch (type) {
4314      case Primitive::kPrimBoolean:
4315      case Primitive::kPrimByte:
4316      case Primitive::kPrimShort:
4317      case Primitive::kPrimChar:
4318        return Primitive::kPrimInt;
4319      default:
4320        return type;
4321    }
4322  }
4323
4324  bool IsCatchPhi() const { return GetBlock()->IsCatchBlock(); }
4325
4326  size_t InputCount() const OVERRIDE { return inputs_.size(); }
4327
4328  void AddInput(HInstruction* input);
4329  void RemoveInputAt(size_t index);
4330
4331  Primitive::Type GetType() const OVERRIDE { return type_; }
4332  void SetType(Primitive::Type type) { type_ = type; }
4333
4334  bool CanBeNull() const OVERRIDE { return can_be_null_; }
4335  void SetCanBeNull(bool can_be_null) { can_be_null_ = can_be_null; }
4336
4337  uint32_t GetRegNumber() const { return reg_number_; }
4338
4339  void SetDead() { is_live_ = false; }
4340  void SetLive() { is_live_ = true; }
4341  bool IsDead() const { return !is_live_; }
4342  bool IsLive() const { return is_live_; }
4343
4344  bool IsVRegEquivalentOf(HInstruction* other) const {
4345    return other != nullptr
4346        && other->IsPhi()
4347        && other->AsPhi()->GetBlock() == GetBlock()
4348        && other->AsPhi()->GetRegNumber() == GetRegNumber();
4349  }
4350
4351  // Returns the next equivalent phi (starting from the current one) or null if there is none.
4352  // An equivalent phi is a phi having the same dex register and type.
4353  // It assumes that phis with the same dex register are adjacent.
4354  HPhi* GetNextEquivalentPhiWithSameType() {
4355    HInstruction* next = GetNext();
4356    while (next != nullptr && next->AsPhi()->GetRegNumber() == reg_number_) {
4357      if (next->GetType() == GetType()) {
4358        return next->AsPhi();
4359      }
4360      next = next->GetNext();
4361    }
4362    return nullptr;
4363  }
4364
4365  DECLARE_INSTRUCTION(Phi);
4366
4367 protected:
4368  const HUserRecord<HInstruction*> InputRecordAt(size_t index) const OVERRIDE {
4369    return inputs_[index];
4370  }
4371
4372  void SetRawInputRecordAt(size_t index, const HUserRecord<HInstruction*>& input) OVERRIDE {
4373    inputs_[index] = input;
4374  }
4375
4376 private:
4377  ArenaVector<HUserRecord<HInstruction*> > inputs_;
4378  const uint32_t reg_number_;
4379  Primitive::Type type_;
4380  bool is_live_;
4381  bool can_be_null_;
4382
4383  DISALLOW_COPY_AND_ASSIGN(HPhi);
4384};
4385
4386class HNullCheck : public HExpression<1> {
4387 public:
4388  HNullCheck(HInstruction* value, uint32_t dex_pc)
4389      : HExpression(value->GetType(), SideEffects::None(), dex_pc) {
4390    SetRawInputAt(0, value);
4391  }
4392
4393  bool CanBeMoved() const OVERRIDE { return true; }
4394  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
4395    return true;
4396  }
4397
4398  bool NeedsEnvironment() const OVERRIDE { return true; }
4399
4400  bool CanThrow() const OVERRIDE { return true; }
4401
4402  bool CanBeNull() const OVERRIDE { return false; }
4403
4404
4405  DECLARE_INSTRUCTION(NullCheck);
4406
4407 private:
4408  DISALLOW_COPY_AND_ASSIGN(HNullCheck);
4409};
4410
4411class FieldInfo : public ValueObject {
4412 public:
4413  FieldInfo(MemberOffset field_offset,
4414            Primitive::Type field_type,
4415            bool is_volatile,
4416            uint32_t index,
4417            uint16_t declaring_class_def_index,
4418            const DexFile& dex_file,
4419            Handle<mirror::DexCache> dex_cache)
4420      : field_offset_(field_offset),
4421        field_type_(field_type),
4422        is_volatile_(is_volatile),
4423        index_(index),
4424        declaring_class_def_index_(declaring_class_def_index),
4425        dex_file_(dex_file),
4426        dex_cache_(dex_cache) {}
4427
4428  MemberOffset GetFieldOffset() const { return field_offset_; }
4429  Primitive::Type GetFieldType() const { return field_type_; }
4430  uint32_t GetFieldIndex() const { return index_; }
4431  uint16_t GetDeclaringClassDefIndex() const { return declaring_class_def_index_;}
4432  const DexFile& GetDexFile() const { return dex_file_; }
4433  bool IsVolatile() const { return is_volatile_; }
4434  Handle<mirror::DexCache> GetDexCache() const { return dex_cache_; }
4435
4436 private:
4437  const MemberOffset field_offset_;
4438  const Primitive::Type field_type_;
4439  const bool is_volatile_;
4440  const uint32_t index_;
4441  const uint16_t declaring_class_def_index_;
4442  const DexFile& dex_file_;
4443  const Handle<mirror::DexCache> dex_cache_;
4444};
4445
4446class HInstanceFieldGet : public HExpression<1> {
4447 public:
4448  HInstanceFieldGet(HInstruction* value,
4449                    Primitive::Type field_type,
4450                    MemberOffset field_offset,
4451                    bool is_volatile,
4452                    uint32_t field_idx,
4453                    uint16_t declaring_class_def_index,
4454                    const DexFile& dex_file,
4455                    Handle<mirror::DexCache> dex_cache,
4456                    uint32_t dex_pc)
4457      : HExpression(field_type,
4458                    SideEffects::FieldReadOfType(field_type, is_volatile),
4459                    dex_pc),
4460        field_info_(field_offset,
4461                    field_type,
4462                    is_volatile,
4463                    field_idx,
4464                    declaring_class_def_index,
4465                    dex_file,
4466                    dex_cache) {
4467    SetRawInputAt(0, value);
4468  }
4469
4470  bool CanBeMoved() const OVERRIDE { return !IsVolatile(); }
4471
4472  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
4473    HInstanceFieldGet* other_get = other->AsInstanceFieldGet();
4474    return GetFieldOffset().SizeValue() == other_get->GetFieldOffset().SizeValue();
4475  }
4476
4477  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
4478    return (obj == InputAt(0)) && GetFieldOffset().Uint32Value() < kPageSize;
4479  }
4480
4481  size_t ComputeHashCode() const OVERRIDE {
4482    return (HInstruction::ComputeHashCode() << 7) | GetFieldOffset().SizeValue();
4483  }
4484
4485  const FieldInfo& GetFieldInfo() const { return field_info_; }
4486  MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
4487  Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); }
4488  bool IsVolatile() const { return field_info_.IsVolatile(); }
4489
4490  DECLARE_INSTRUCTION(InstanceFieldGet);
4491
4492 private:
4493  const FieldInfo field_info_;
4494
4495  DISALLOW_COPY_AND_ASSIGN(HInstanceFieldGet);
4496};
4497
4498class HInstanceFieldSet : public HTemplateInstruction<2> {
4499 public:
4500  HInstanceFieldSet(HInstruction* object,
4501                    HInstruction* value,
4502                    Primitive::Type field_type,
4503                    MemberOffset field_offset,
4504                    bool is_volatile,
4505                    uint32_t field_idx,
4506                    uint16_t declaring_class_def_index,
4507                    const DexFile& dex_file,
4508                    Handle<mirror::DexCache> dex_cache,
4509                    uint32_t dex_pc)
4510      : HTemplateInstruction(SideEffects::FieldWriteOfType(field_type, is_volatile),
4511                             dex_pc),
4512        field_info_(field_offset,
4513                    field_type,
4514                    is_volatile,
4515                    field_idx,
4516                    declaring_class_def_index,
4517                    dex_file,
4518                    dex_cache),
4519        value_can_be_null_(true) {
4520    SetRawInputAt(0, object);
4521    SetRawInputAt(1, value);
4522  }
4523
4524  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
4525    return (obj == InputAt(0)) && GetFieldOffset().Uint32Value() < kPageSize;
4526  }
4527
4528  const FieldInfo& GetFieldInfo() const { return field_info_; }
4529  MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
4530  Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); }
4531  bool IsVolatile() const { return field_info_.IsVolatile(); }
4532  HInstruction* GetValue() const { return InputAt(1); }
4533  bool GetValueCanBeNull() const { return value_can_be_null_; }
4534  void ClearValueCanBeNull() { value_can_be_null_ = false; }
4535
4536  DECLARE_INSTRUCTION(InstanceFieldSet);
4537
4538 private:
4539  const FieldInfo field_info_;
4540  bool value_can_be_null_;
4541
4542  DISALLOW_COPY_AND_ASSIGN(HInstanceFieldSet);
4543};
4544
4545class HArrayGet : public HExpression<2> {
4546 public:
4547  HArrayGet(HInstruction* array,
4548            HInstruction* index,
4549            Primitive::Type type,
4550            uint32_t dex_pc,
4551            SideEffects additional_side_effects = SideEffects::None())
4552      : HExpression(type,
4553                    SideEffects::ArrayReadOfType(type).Union(additional_side_effects),
4554                    dex_pc) {
4555    SetRawInputAt(0, array);
4556    SetRawInputAt(1, index);
4557  }
4558
4559  bool CanBeMoved() const OVERRIDE { return true; }
4560  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
4561    return true;
4562  }
4563  bool CanDoImplicitNullCheckOn(HInstruction* obj ATTRIBUTE_UNUSED) const OVERRIDE {
4564    // TODO: We can be smarter here.
4565    // Currently, the array access is always preceded by an ArrayLength or a NullCheck
4566    // which generates the implicit null check. There are cases when these can be removed
4567    // to produce better code. If we ever add optimizations to do so we should allow an
4568    // implicit check here (as long as the address falls in the first page).
4569    return false;
4570  }
4571
4572  void SetType(Primitive::Type type) { type_ = type; }
4573
4574  HInstruction* GetArray() const { return InputAt(0); }
4575  HInstruction* GetIndex() const { return InputAt(1); }
4576
4577  DECLARE_INSTRUCTION(ArrayGet);
4578
4579 private:
4580  DISALLOW_COPY_AND_ASSIGN(HArrayGet);
4581};
4582
4583class HArraySet : public HTemplateInstruction<3> {
4584 public:
4585  HArraySet(HInstruction* array,
4586            HInstruction* index,
4587            HInstruction* value,
4588            Primitive::Type expected_component_type,
4589            uint32_t dex_pc,
4590            SideEffects additional_side_effects = SideEffects::None())
4591      : HTemplateInstruction(
4592            SideEffects::ArrayWriteOfType(expected_component_type).Union(
4593                SideEffectsForArchRuntimeCalls(value->GetType())).Union(
4594                    additional_side_effects),
4595            dex_pc),
4596        expected_component_type_(expected_component_type),
4597        needs_type_check_(value->GetType() == Primitive::kPrimNot),
4598        value_can_be_null_(true),
4599        static_type_of_array_is_object_array_(false) {
4600    SetRawInputAt(0, array);
4601    SetRawInputAt(1, index);
4602    SetRawInputAt(2, value);
4603  }
4604
4605  bool NeedsEnvironment() const OVERRIDE {
4606    // We currently always call a runtime method to catch array store
4607    // exceptions.
4608    return needs_type_check_;
4609  }
4610
4611  // Can throw ArrayStoreException.
4612  bool CanThrow() const OVERRIDE { return needs_type_check_; }
4613
4614  bool CanDoImplicitNullCheckOn(HInstruction* obj ATTRIBUTE_UNUSED) const OVERRIDE {
4615    // TODO: Same as for ArrayGet.
4616    return false;
4617  }
4618
4619  void ClearNeedsTypeCheck() {
4620    needs_type_check_ = false;
4621  }
4622
4623  void ClearValueCanBeNull() {
4624    value_can_be_null_ = false;
4625  }
4626
4627  void SetStaticTypeOfArrayIsObjectArray() {
4628    static_type_of_array_is_object_array_ = true;
4629  }
4630
4631  bool GetValueCanBeNull() const { return value_can_be_null_; }
4632  bool NeedsTypeCheck() const { return needs_type_check_; }
4633  bool StaticTypeOfArrayIsObjectArray() const { return static_type_of_array_is_object_array_; }
4634
4635  HInstruction* GetArray() const { return InputAt(0); }
4636  HInstruction* GetIndex() const { return InputAt(1); }
4637  HInstruction* GetValue() const { return InputAt(2); }
4638
4639  Primitive::Type GetComponentType() const {
4640    // The Dex format does not type floating point index operations. Since the
4641    // `expected_component_type_` is set during building and can therefore not
4642    // be correct, we also check what is the value type. If it is a floating
4643    // point type, we must use that type.
4644    Primitive::Type value_type = GetValue()->GetType();
4645    return ((value_type == Primitive::kPrimFloat) || (value_type == Primitive::kPrimDouble))
4646        ? value_type
4647        : expected_component_type_;
4648  }
4649
4650  Primitive::Type GetRawExpectedComponentType() const {
4651    return expected_component_type_;
4652  }
4653
4654  static SideEffects SideEffectsForArchRuntimeCalls(Primitive::Type value_type) {
4655    return (value_type == Primitive::kPrimNot) ? SideEffects::CanTriggerGC() : SideEffects::None();
4656  }
4657
4658  DECLARE_INSTRUCTION(ArraySet);
4659
4660 private:
4661  const Primitive::Type expected_component_type_;
4662  bool needs_type_check_;
4663  bool value_can_be_null_;
4664  // Cached information for the reference_type_info_ so that codegen
4665  // does not need to inspect the static type.
4666  bool static_type_of_array_is_object_array_;
4667
4668  DISALLOW_COPY_AND_ASSIGN(HArraySet);
4669};
4670
4671class HArrayLength : public HExpression<1> {
4672 public:
4673  HArrayLength(HInstruction* array, uint32_t dex_pc)
4674      : HExpression(Primitive::kPrimInt, SideEffects::None(), dex_pc) {
4675    // Note that arrays do not change length, so the instruction does not
4676    // depend on any write.
4677    SetRawInputAt(0, array);
4678  }
4679
4680  bool CanBeMoved() const OVERRIDE { return true; }
4681  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
4682    return true;
4683  }
4684  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
4685    return obj == InputAt(0);
4686  }
4687
4688  DECLARE_INSTRUCTION(ArrayLength);
4689
4690 private:
4691  DISALLOW_COPY_AND_ASSIGN(HArrayLength);
4692};
4693
4694class HBoundsCheck : public HExpression<2> {
4695 public:
4696  HBoundsCheck(HInstruction* index, HInstruction* length, uint32_t dex_pc)
4697      : HExpression(index->GetType(), SideEffects::None(), dex_pc) {
4698    DCHECK(index->GetType() == Primitive::kPrimInt);
4699    SetRawInputAt(0, index);
4700    SetRawInputAt(1, length);
4701  }
4702
4703  bool CanBeMoved() const OVERRIDE { return true; }
4704  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
4705    return true;
4706  }
4707
4708  bool NeedsEnvironment() const OVERRIDE { return true; }
4709
4710  bool CanThrow() const OVERRIDE { return true; }
4711
4712  HInstruction* GetIndex() const { return InputAt(0); }
4713
4714  DECLARE_INSTRUCTION(BoundsCheck);
4715
4716 private:
4717  DISALLOW_COPY_AND_ASSIGN(HBoundsCheck);
4718};
4719
4720/**
4721 * Some DEX instructions are folded into multiple HInstructions that need
4722 * to stay live until the last HInstruction. This class
4723 * is used as a marker for the baseline compiler to ensure its preceding
4724 * HInstruction stays live. `index` represents the stack location index of the
4725 * instruction (the actual offset is computed as index * vreg_size).
4726 */
4727class HTemporary : public HTemplateInstruction<0> {
4728 public:
4729  explicit HTemporary(size_t index, uint32_t dex_pc = kNoDexPc)
4730      : HTemplateInstruction(SideEffects::None(), dex_pc), index_(index) {}
4731
4732  size_t GetIndex() const { return index_; }
4733
4734  Primitive::Type GetType() const OVERRIDE {
4735    // The previous instruction is the one that will be stored in the temporary location.
4736    DCHECK(GetPrevious() != nullptr);
4737    return GetPrevious()->GetType();
4738  }
4739
4740  DECLARE_INSTRUCTION(Temporary);
4741
4742 private:
4743  const size_t index_;
4744  DISALLOW_COPY_AND_ASSIGN(HTemporary);
4745};
4746
4747class HSuspendCheck : public HTemplateInstruction<0> {
4748 public:
4749  explicit HSuspendCheck(uint32_t dex_pc)
4750      : HTemplateInstruction(SideEffects::CanTriggerGC(), dex_pc), slow_path_(nullptr) {}
4751
4752  bool NeedsEnvironment() const OVERRIDE {
4753    return true;
4754  }
4755
4756  void SetSlowPath(SlowPathCode* slow_path) { slow_path_ = slow_path; }
4757  SlowPathCode* GetSlowPath() const { return slow_path_; }
4758
4759  DECLARE_INSTRUCTION(SuspendCheck);
4760
4761 private:
4762  // Only used for code generation, in order to share the same slow path between back edges
4763  // of a same loop.
4764  SlowPathCode* slow_path_;
4765
4766  DISALLOW_COPY_AND_ASSIGN(HSuspendCheck);
4767};
4768
4769/**
4770 * Instruction to load a Class object.
4771 */
4772class HLoadClass : public HExpression<1> {
4773 public:
4774  HLoadClass(HCurrentMethod* current_method,
4775             uint16_t type_index,
4776             const DexFile& dex_file,
4777             bool is_referrers_class,
4778             uint32_t dex_pc,
4779             bool needs_access_check)
4780      : HExpression(Primitive::kPrimNot, SideEffectsForArchRuntimeCalls(), dex_pc),
4781        type_index_(type_index),
4782        dex_file_(dex_file),
4783        is_referrers_class_(is_referrers_class),
4784        generate_clinit_check_(false),
4785        needs_access_check_(needs_access_check),
4786        loaded_class_rti_(ReferenceTypeInfo::CreateInvalid()) {
4787    // Referrers class should not need access check. We never inline unverified
4788    // methods so we can't possibly end up in this situation.
4789    DCHECK(!is_referrers_class_ || !needs_access_check_);
4790    SetRawInputAt(0, current_method);
4791  }
4792
4793  bool CanBeMoved() const OVERRIDE { return true; }
4794
4795  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
4796    // Note that we don't need to test for generate_clinit_check_.
4797    // Whether or not we need to generate the clinit check is processed in
4798    // prepare_for_register_allocator based on existing HInvokes and HClinitChecks.
4799    return other->AsLoadClass()->type_index_ == type_index_ &&
4800        other->AsLoadClass()->needs_access_check_ == needs_access_check_;
4801  }
4802
4803  size_t ComputeHashCode() const OVERRIDE { return type_index_; }
4804
4805  uint16_t GetTypeIndex() const { return type_index_; }
4806  bool IsReferrersClass() const { return is_referrers_class_; }
4807  bool CanBeNull() const OVERRIDE { return false; }
4808
4809  bool NeedsEnvironment() const OVERRIDE {
4810    // Will call runtime and load the class if the class is not loaded yet.
4811    // TODO: finer grain decision.
4812    return !is_referrers_class_;
4813  }
4814
4815  bool MustGenerateClinitCheck() const {
4816    return generate_clinit_check_;
4817  }
4818  void SetMustGenerateClinitCheck(bool generate_clinit_check) {
4819    // The entrypoint the code generator is going to call does not do
4820    // clinit of the class.
4821    DCHECK(!NeedsAccessCheck());
4822    generate_clinit_check_ = generate_clinit_check;
4823  }
4824
4825  bool CanCallRuntime() const {
4826    return MustGenerateClinitCheck() || !is_referrers_class_ || needs_access_check_;
4827  }
4828
4829  bool NeedsAccessCheck() const {
4830    return needs_access_check_;
4831  }
4832
4833  bool CanThrow() const OVERRIDE {
4834    // May call runtime and and therefore can throw.
4835    // TODO: finer grain decision.
4836    return CanCallRuntime();
4837  }
4838
4839  ReferenceTypeInfo GetLoadedClassRTI() {
4840    return loaded_class_rti_;
4841  }
4842
4843  void SetLoadedClassRTI(ReferenceTypeInfo rti) {
4844    // Make sure we only set exact types (the loaded class should never be merged).
4845    DCHECK(rti.IsExact());
4846    loaded_class_rti_ = rti;
4847  }
4848
4849  const DexFile& GetDexFile() { return dex_file_; }
4850
4851  bool NeedsDexCacheOfDeclaringClass() const OVERRIDE { return !is_referrers_class_; }
4852
4853  static SideEffects SideEffectsForArchRuntimeCalls() {
4854    return SideEffects::CanTriggerGC();
4855  }
4856
4857  DECLARE_INSTRUCTION(LoadClass);
4858
4859 private:
4860  const uint16_t type_index_;
4861  const DexFile& dex_file_;
4862  const bool is_referrers_class_;
4863  // Whether this instruction must generate the initialization check.
4864  // Used for code generation.
4865  bool generate_clinit_check_;
4866  bool needs_access_check_;
4867
4868  ReferenceTypeInfo loaded_class_rti_;
4869
4870  DISALLOW_COPY_AND_ASSIGN(HLoadClass);
4871};
4872
4873class HLoadString : public HExpression<1> {
4874 public:
4875  HLoadString(HCurrentMethod* current_method, uint32_t string_index, uint32_t dex_pc)
4876      : HExpression(Primitive::kPrimNot, SideEffectsForArchRuntimeCalls(), dex_pc),
4877        string_index_(string_index) {
4878    SetRawInputAt(0, current_method);
4879  }
4880
4881  bool CanBeMoved() const OVERRIDE { return true; }
4882
4883  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
4884    return other->AsLoadString()->string_index_ == string_index_;
4885  }
4886
4887  size_t ComputeHashCode() const OVERRIDE { return string_index_; }
4888
4889  uint32_t GetStringIndex() const { return string_index_; }
4890
4891  // TODO: Can we deopt or debug when we resolve a string?
4892  bool NeedsEnvironment() const OVERRIDE { return false; }
4893  bool NeedsDexCacheOfDeclaringClass() const OVERRIDE { return true; }
4894  bool CanBeNull() const OVERRIDE { return false; }
4895
4896  static SideEffects SideEffectsForArchRuntimeCalls() {
4897    return SideEffects::CanTriggerGC();
4898  }
4899
4900  DECLARE_INSTRUCTION(LoadString);
4901
4902 private:
4903  const uint32_t string_index_;
4904
4905  DISALLOW_COPY_AND_ASSIGN(HLoadString);
4906};
4907
4908/**
4909 * Performs an initialization check on its Class object input.
4910 */
4911class HClinitCheck : public HExpression<1> {
4912 public:
4913  HClinitCheck(HLoadClass* constant, uint32_t dex_pc)
4914      : HExpression(
4915            Primitive::kPrimNot,
4916            SideEffects::AllChanges(),  // Assume write/read on all fields/arrays.
4917            dex_pc) {
4918    SetRawInputAt(0, constant);
4919  }
4920
4921  bool CanBeMoved() const OVERRIDE { return true; }
4922  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
4923    return true;
4924  }
4925
4926  bool NeedsEnvironment() const OVERRIDE {
4927    // May call runtime to initialize the class.
4928    return true;
4929  }
4930
4931
4932  HLoadClass* GetLoadClass() const { return InputAt(0)->AsLoadClass(); }
4933
4934  DECLARE_INSTRUCTION(ClinitCheck);
4935
4936 private:
4937  DISALLOW_COPY_AND_ASSIGN(HClinitCheck);
4938};
4939
4940class HStaticFieldGet : public HExpression<1> {
4941 public:
4942  HStaticFieldGet(HInstruction* cls,
4943                  Primitive::Type field_type,
4944                  MemberOffset field_offset,
4945                  bool is_volatile,
4946                  uint32_t field_idx,
4947                  uint16_t declaring_class_def_index,
4948                  const DexFile& dex_file,
4949                  Handle<mirror::DexCache> dex_cache,
4950                  uint32_t dex_pc)
4951      : HExpression(field_type,
4952                    SideEffects::FieldReadOfType(field_type, is_volatile),
4953                    dex_pc),
4954        field_info_(field_offset,
4955                    field_type,
4956                    is_volatile,
4957                    field_idx,
4958                    declaring_class_def_index,
4959                    dex_file,
4960                    dex_cache) {
4961    SetRawInputAt(0, cls);
4962  }
4963
4964
4965  bool CanBeMoved() const OVERRIDE { return !IsVolatile(); }
4966
4967  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
4968    HStaticFieldGet* other_get = other->AsStaticFieldGet();
4969    return GetFieldOffset().SizeValue() == other_get->GetFieldOffset().SizeValue();
4970  }
4971
4972  size_t ComputeHashCode() const OVERRIDE {
4973    return (HInstruction::ComputeHashCode() << 7) | GetFieldOffset().SizeValue();
4974  }
4975
4976  const FieldInfo& GetFieldInfo() const { return field_info_; }
4977  MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
4978  Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); }
4979  bool IsVolatile() const { return field_info_.IsVolatile(); }
4980
4981  DECLARE_INSTRUCTION(StaticFieldGet);
4982
4983 private:
4984  const FieldInfo field_info_;
4985
4986  DISALLOW_COPY_AND_ASSIGN(HStaticFieldGet);
4987};
4988
4989class HStaticFieldSet : public HTemplateInstruction<2> {
4990 public:
4991  HStaticFieldSet(HInstruction* cls,
4992                  HInstruction* value,
4993                  Primitive::Type field_type,
4994                  MemberOffset field_offset,
4995                  bool is_volatile,
4996                  uint32_t field_idx,
4997                  uint16_t declaring_class_def_index,
4998                  const DexFile& dex_file,
4999                  Handle<mirror::DexCache> dex_cache,
5000                  uint32_t dex_pc)
5001      : HTemplateInstruction(SideEffects::FieldWriteOfType(field_type, is_volatile),
5002                             dex_pc),
5003        field_info_(field_offset,
5004                    field_type,
5005                    is_volatile,
5006                    field_idx,
5007                    declaring_class_def_index,
5008                    dex_file,
5009                    dex_cache),
5010        value_can_be_null_(true) {
5011    SetRawInputAt(0, cls);
5012    SetRawInputAt(1, value);
5013  }
5014
5015  const FieldInfo& GetFieldInfo() const { return field_info_; }
5016  MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
5017  Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); }
5018  bool IsVolatile() const { return field_info_.IsVolatile(); }
5019
5020  HInstruction* GetValue() const { return InputAt(1); }
5021  bool GetValueCanBeNull() const { return value_can_be_null_; }
5022  void ClearValueCanBeNull() { value_can_be_null_ = false; }
5023
5024  DECLARE_INSTRUCTION(StaticFieldSet);
5025
5026 private:
5027  const FieldInfo field_info_;
5028  bool value_can_be_null_;
5029
5030  DISALLOW_COPY_AND_ASSIGN(HStaticFieldSet);
5031};
5032
5033class HUnresolvedInstanceFieldGet : public HExpression<1> {
5034 public:
5035  HUnresolvedInstanceFieldGet(HInstruction* obj,
5036                              Primitive::Type field_type,
5037                              uint32_t field_index,
5038                              uint32_t dex_pc)
5039      : HExpression(field_type, SideEffects::AllExceptGCDependency(), dex_pc),
5040        field_index_(field_index) {
5041    SetRawInputAt(0, obj);
5042  }
5043
5044  bool NeedsEnvironment() const OVERRIDE { return true; }
5045  bool CanThrow() const OVERRIDE { return true; }
5046
5047  Primitive::Type GetFieldType() const { return GetType(); }
5048  uint32_t GetFieldIndex() const { return field_index_; }
5049
5050  DECLARE_INSTRUCTION(UnresolvedInstanceFieldGet);
5051
5052 private:
5053  const uint32_t field_index_;
5054
5055  DISALLOW_COPY_AND_ASSIGN(HUnresolvedInstanceFieldGet);
5056};
5057
5058class HUnresolvedInstanceFieldSet : public HTemplateInstruction<2> {
5059 public:
5060  HUnresolvedInstanceFieldSet(HInstruction* obj,
5061                              HInstruction* value,
5062                              Primitive::Type field_type,
5063                              uint32_t field_index,
5064                              uint32_t dex_pc)
5065      : HTemplateInstruction(SideEffects::AllExceptGCDependency(), dex_pc),
5066        field_type_(field_type),
5067        field_index_(field_index) {
5068    DCHECK_EQ(field_type, value->GetType());
5069    SetRawInputAt(0, obj);
5070    SetRawInputAt(1, value);
5071  }
5072
5073  bool NeedsEnvironment() const OVERRIDE { return true; }
5074  bool CanThrow() const OVERRIDE { return true; }
5075
5076  Primitive::Type GetFieldType() const { return field_type_; }
5077  uint32_t GetFieldIndex() const { return field_index_; }
5078
5079  DECLARE_INSTRUCTION(UnresolvedInstanceFieldSet);
5080
5081 private:
5082  const Primitive::Type field_type_;
5083  const uint32_t field_index_;
5084
5085  DISALLOW_COPY_AND_ASSIGN(HUnresolvedInstanceFieldSet);
5086};
5087
5088class HUnresolvedStaticFieldGet : public HExpression<0> {
5089 public:
5090  HUnresolvedStaticFieldGet(Primitive::Type field_type,
5091                            uint32_t field_index,
5092                            uint32_t dex_pc)
5093      : HExpression(field_type, SideEffects::AllExceptGCDependency(), dex_pc),
5094        field_index_(field_index) {
5095  }
5096
5097  bool NeedsEnvironment() const OVERRIDE { return true; }
5098  bool CanThrow() const OVERRIDE { return true; }
5099
5100  Primitive::Type GetFieldType() const { return GetType(); }
5101  uint32_t GetFieldIndex() const { return field_index_; }
5102
5103  DECLARE_INSTRUCTION(UnresolvedStaticFieldGet);
5104
5105 private:
5106  const uint32_t field_index_;
5107
5108  DISALLOW_COPY_AND_ASSIGN(HUnresolvedStaticFieldGet);
5109};
5110
5111class HUnresolvedStaticFieldSet : public HTemplateInstruction<1> {
5112 public:
5113  HUnresolvedStaticFieldSet(HInstruction* value,
5114                            Primitive::Type field_type,
5115                            uint32_t field_index,
5116                            uint32_t dex_pc)
5117      : HTemplateInstruction(SideEffects::AllExceptGCDependency(), dex_pc),
5118        field_type_(field_type),
5119        field_index_(field_index) {
5120    DCHECK_EQ(field_type, value->GetType());
5121    SetRawInputAt(0, value);
5122  }
5123
5124  bool NeedsEnvironment() const OVERRIDE { return true; }
5125  bool CanThrow() const OVERRIDE { return true; }
5126
5127  Primitive::Type GetFieldType() const { return field_type_; }
5128  uint32_t GetFieldIndex() const { return field_index_; }
5129
5130  DECLARE_INSTRUCTION(UnresolvedStaticFieldSet);
5131
5132 private:
5133  const Primitive::Type field_type_;
5134  const uint32_t field_index_;
5135
5136  DISALLOW_COPY_AND_ASSIGN(HUnresolvedStaticFieldSet);
5137};
5138
5139// Implement the move-exception DEX instruction.
5140class HLoadException : public HExpression<0> {
5141 public:
5142  explicit HLoadException(uint32_t dex_pc = kNoDexPc)
5143      : HExpression(Primitive::kPrimNot, SideEffects::None(), dex_pc) {}
5144
5145  bool CanBeNull() const OVERRIDE { return false; }
5146
5147  DECLARE_INSTRUCTION(LoadException);
5148
5149 private:
5150  DISALLOW_COPY_AND_ASSIGN(HLoadException);
5151};
5152
5153// Implicit part of move-exception which clears thread-local exception storage.
5154// Must not be removed because the runtime expects the TLS to get cleared.
5155class HClearException : public HTemplateInstruction<0> {
5156 public:
5157  explicit HClearException(uint32_t dex_pc = kNoDexPc)
5158      : HTemplateInstruction(SideEffects::AllWrites(), dex_pc) {}
5159
5160  DECLARE_INSTRUCTION(ClearException);
5161
5162 private:
5163  DISALLOW_COPY_AND_ASSIGN(HClearException);
5164};
5165
5166class HThrow : public HTemplateInstruction<1> {
5167 public:
5168  HThrow(HInstruction* exception, uint32_t dex_pc)
5169      : HTemplateInstruction(SideEffects::CanTriggerGC(), dex_pc) {
5170    SetRawInputAt(0, exception);
5171  }
5172
5173  bool IsControlFlow() const OVERRIDE { return true; }
5174
5175  bool NeedsEnvironment() const OVERRIDE { return true; }
5176
5177  bool CanThrow() const OVERRIDE { return true; }
5178
5179
5180  DECLARE_INSTRUCTION(Throw);
5181
5182 private:
5183  DISALLOW_COPY_AND_ASSIGN(HThrow);
5184};
5185
5186/**
5187 * Implementation strategies for the code generator of a HInstanceOf
5188 * or `HCheckCast`.
5189 */
5190enum class TypeCheckKind {
5191  kUnresolvedCheck,       // Check against an unresolved type.
5192  kExactCheck,            // Can do a single class compare.
5193  kClassHierarchyCheck,   // Can just walk the super class chain.
5194  kAbstractClassCheck,    // Can just walk the super class chain, starting one up.
5195  kInterfaceCheck,        // No optimization yet when checking against an interface.
5196  kArrayObjectCheck,      // Can just check if the array is not primitive.
5197  kArrayCheck             // No optimization yet when checking against a generic array.
5198};
5199
5200class HInstanceOf : public HExpression<2> {
5201 public:
5202  HInstanceOf(HInstruction* object,
5203              HLoadClass* constant,
5204              TypeCheckKind check_kind,
5205              uint32_t dex_pc)
5206      : HExpression(Primitive::kPrimBoolean,
5207                    SideEffectsForArchRuntimeCalls(check_kind),
5208                    dex_pc),
5209        check_kind_(check_kind),
5210        must_do_null_check_(true) {
5211    SetRawInputAt(0, object);
5212    SetRawInputAt(1, constant);
5213  }
5214
5215  bool CanBeMoved() const OVERRIDE { return true; }
5216
5217  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
5218    return true;
5219  }
5220
5221  bool NeedsEnvironment() const OVERRIDE {
5222    return false;
5223  }
5224
5225  bool IsExactCheck() const { return check_kind_ == TypeCheckKind::kExactCheck; }
5226
5227  TypeCheckKind GetTypeCheckKind() const { return check_kind_; }
5228
5229  // Used only in code generation.
5230  bool MustDoNullCheck() const { return must_do_null_check_; }
5231  void ClearMustDoNullCheck() { must_do_null_check_ = false; }
5232
5233  static SideEffects SideEffectsForArchRuntimeCalls(TypeCheckKind check_kind) {
5234    return (check_kind == TypeCheckKind::kExactCheck)
5235        ? SideEffects::None()
5236        // Mips currently does runtime calls for any other checks.
5237        : SideEffects::CanTriggerGC();
5238  }
5239
5240  DECLARE_INSTRUCTION(InstanceOf);
5241
5242 private:
5243  const TypeCheckKind check_kind_;
5244  bool must_do_null_check_;
5245
5246  DISALLOW_COPY_AND_ASSIGN(HInstanceOf);
5247};
5248
5249class HBoundType : public HExpression<1> {
5250 public:
5251  // Constructs an HBoundType with the given upper_bound.
5252  // Ensures that the upper_bound is valid.
5253  HBoundType(HInstruction* input,
5254             ReferenceTypeInfo upper_bound,
5255             bool upper_can_be_null,
5256             uint32_t dex_pc = kNoDexPc)
5257      : HExpression(Primitive::kPrimNot, SideEffects::None(), dex_pc),
5258        upper_bound_(upper_bound),
5259        upper_can_be_null_(upper_can_be_null),
5260        can_be_null_(upper_can_be_null) {
5261    DCHECK_EQ(input->GetType(), Primitive::kPrimNot);
5262    SetRawInputAt(0, input);
5263    SetReferenceTypeInfo(upper_bound_);
5264  }
5265
5266  // GetUpper* should only be used in reference type propagation.
5267  const ReferenceTypeInfo& GetUpperBound() const { return upper_bound_; }
5268  bool GetUpperCanBeNull() const { return upper_can_be_null_; }
5269
5270  void SetCanBeNull(bool can_be_null) {
5271    DCHECK(upper_can_be_null_ || !can_be_null);
5272    can_be_null_ = can_be_null;
5273  }
5274
5275  bool CanBeNull() const OVERRIDE { return can_be_null_; }
5276
5277  DECLARE_INSTRUCTION(BoundType);
5278
5279 private:
5280  // Encodes the most upper class that this instruction can have. In other words
5281  // it is always the case that GetUpperBound().IsSupertypeOf(GetReferenceType()).
5282  // It is used to bound the type in cases like:
5283  //   if (x instanceof ClassX) {
5284  //     // uper_bound_ will be ClassX
5285  //   }
5286  const ReferenceTypeInfo upper_bound_;
5287  // Represents the top constraint that can_be_null_ cannot exceed (i.e. if this
5288  // is false then can_be_null_ cannot be true).
5289  const bool upper_can_be_null_;
5290  bool can_be_null_;
5291
5292  DISALLOW_COPY_AND_ASSIGN(HBoundType);
5293};
5294
5295class HCheckCast : public HTemplateInstruction<2> {
5296 public:
5297  HCheckCast(HInstruction* object,
5298             HLoadClass* constant,
5299             TypeCheckKind check_kind,
5300             uint32_t dex_pc)
5301      : HTemplateInstruction(SideEffects::CanTriggerGC(), dex_pc),
5302        check_kind_(check_kind),
5303        must_do_null_check_(true) {
5304    SetRawInputAt(0, object);
5305    SetRawInputAt(1, constant);
5306  }
5307
5308  bool CanBeMoved() const OVERRIDE { return true; }
5309
5310  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
5311    return true;
5312  }
5313
5314  bool NeedsEnvironment() const OVERRIDE {
5315    // Instruction may throw a CheckCastError.
5316    return true;
5317  }
5318
5319  bool CanThrow() const OVERRIDE { return true; }
5320
5321  bool MustDoNullCheck() const { return must_do_null_check_; }
5322  void ClearMustDoNullCheck() { must_do_null_check_ = false; }
5323  TypeCheckKind GetTypeCheckKind() const { return check_kind_; }
5324
5325  bool IsExactCheck() const { return check_kind_ == TypeCheckKind::kExactCheck; }
5326
5327  DECLARE_INSTRUCTION(CheckCast);
5328
5329 private:
5330  const TypeCheckKind check_kind_;
5331  bool must_do_null_check_;
5332
5333  DISALLOW_COPY_AND_ASSIGN(HCheckCast);
5334};
5335
5336class HMemoryBarrier : public HTemplateInstruction<0> {
5337 public:
5338  explicit HMemoryBarrier(MemBarrierKind barrier_kind, uint32_t dex_pc = kNoDexPc)
5339      : HTemplateInstruction(
5340            SideEffects::AllWritesAndReads(), dex_pc),  // Assume write/read on all fields/arrays.
5341        barrier_kind_(barrier_kind) {}
5342
5343  MemBarrierKind GetBarrierKind() { return barrier_kind_; }
5344
5345  DECLARE_INSTRUCTION(MemoryBarrier);
5346
5347 private:
5348  const MemBarrierKind barrier_kind_;
5349
5350  DISALLOW_COPY_AND_ASSIGN(HMemoryBarrier);
5351};
5352
5353class HMonitorOperation : public HTemplateInstruction<1> {
5354 public:
5355  enum OperationKind {
5356    kEnter,
5357    kExit,
5358  };
5359
5360  HMonitorOperation(HInstruction* object, OperationKind kind, uint32_t dex_pc)
5361    : HTemplateInstruction(
5362          SideEffects::AllExceptGCDependency(), dex_pc),  // Assume write/read on all fields/arrays.
5363      kind_(kind) {
5364    SetRawInputAt(0, object);
5365  }
5366
5367  // Instruction may throw a Java exception, so we need an environment.
5368  bool NeedsEnvironment() const OVERRIDE { return CanThrow(); }
5369
5370  bool CanThrow() const OVERRIDE {
5371    // Verifier guarantees that monitor-exit cannot throw.
5372    // This is important because it allows the HGraphBuilder to remove
5373    // a dead throw-catch loop generated for `synchronized` blocks/methods.
5374    return IsEnter();
5375  }
5376
5377
5378  bool IsEnter() const { return kind_ == kEnter; }
5379
5380  DECLARE_INSTRUCTION(MonitorOperation);
5381
5382 private:
5383  const OperationKind kind_;
5384
5385 private:
5386  DISALLOW_COPY_AND_ASSIGN(HMonitorOperation);
5387};
5388
5389/**
5390 * A HInstruction used as a marker for the replacement of new + <init>
5391 * of a String to a call to a StringFactory. Only baseline will see
5392 * the node at code generation, where it will be be treated as null.
5393 * When compiling non-baseline, `HFakeString` instructions are being removed
5394 * in the instruction simplifier.
5395 */
5396class HFakeString : public HTemplateInstruction<0> {
5397 public:
5398  explicit HFakeString(uint32_t dex_pc = kNoDexPc)
5399      : HTemplateInstruction(SideEffects::None(), dex_pc) {}
5400
5401  Primitive::Type GetType() const OVERRIDE { return Primitive::kPrimNot; }
5402
5403  DECLARE_INSTRUCTION(FakeString);
5404
5405 private:
5406  DISALLOW_COPY_AND_ASSIGN(HFakeString);
5407};
5408
5409class MoveOperands : public ArenaObject<kArenaAllocMoveOperands> {
5410 public:
5411  MoveOperands(Location source,
5412               Location destination,
5413               Primitive::Type type,
5414               HInstruction* instruction)
5415      : source_(source), destination_(destination), type_(type), instruction_(instruction) {}
5416
5417  Location GetSource() const { return source_; }
5418  Location GetDestination() const { return destination_; }
5419
5420  void SetSource(Location value) { source_ = value; }
5421  void SetDestination(Location value) { destination_ = value; }
5422
5423  // The parallel move resolver marks moves as "in-progress" by clearing the
5424  // destination (but not the source).
5425  Location MarkPending() {
5426    DCHECK(!IsPending());
5427    Location dest = destination_;
5428    destination_ = Location::NoLocation();
5429    return dest;
5430  }
5431
5432  void ClearPending(Location dest) {
5433    DCHECK(IsPending());
5434    destination_ = dest;
5435  }
5436
5437  bool IsPending() const {
5438    DCHECK(!source_.IsInvalid() || destination_.IsInvalid());
5439    return destination_.IsInvalid() && !source_.IsInvalid();
5440  }
5441
5442  // True if this blocks a move from the given location.
5443  bool Blocks(Location loc) const {
5444    return !IsEliminated() && source_.OverlapsWith(loc);
5445  }
5446
5447  // A move is redundant if it's been eliminated, if its source and
5448  // destination are the same, or if its destination is unneeded.
5449  bool IsRedundant() const {
5450    return IsEliminated() || destination_.IsInvalid() || source_.Equals(destination_);
5451  }
5452
5453  // We clear both operands to indicate move that's been eliminated.
5454  void Eliminate() {
5455    source_ = destination_ = Location::NoLocation();
5456  }
5457
5458  bool IsEliminated() const {
5459    DCHECK(!source_.IsInvalid() || destination_.IsInvalid());
5460    return source_.IsInvalid();
5461  }
5462
5463  Primitive::Type GetType() const { return type_; }
5464
5465  bool Is64BitMove() const {
5466    return Primitive::Is64BitType(type_);
5467  }
5468
5469  HInstruction* GetInstruction() const { return instruction_; }
5470
5471 private:
5472  Location source_;
5473  Location destination_;
5474  // The type this move is for.
5475  Primitive::Type type_;
5476  // The instruction this move is assocatied with. Null when this move is
5477  // for moving an input in the expected locations of user (including a phi user).
5478  // This is only used in debug mode, to ensure we do not connect interval siblings
5479  // in the same parallel move.
5480  HInstruction* instruction_;
5481};
5482
5483static constexpr size_t kDefaultNumberOfMoves = 4;
5484
5485class HParallelMove : public HTemplateInstruction<0> {
5486 public:
5487  explicit HParallelMove(ArenaAllocator* arena, uint32_t dex_pc = kNoDexPc)
5488      : HTemplateInstruction(SideEffects::None(), dex_pc),
5489        moves_(arena->Adapter(kArenaAllocMoveOperands)) {
5490    moves_.reserve(kDefaultNumberOfMoves);
5491  }
5492
5493  void AddMove(Location source,
5494               Location destination,
5495               Primitive::Type type,
5496               HInstruction* instruction) {
5497    DCHECK(source.IsValid());
5498    DCHECK(destination.IsValid());
5499    if (kIsDebugBuild) {
5500      if (instruction != nullptr) {
5501        for (const MoveOperands& move : moves_) {
5502          if (move.GetInstruction() == instruction) {
5503            // Special case the situation where the move is for the spill slot
5504            // of the instruction.
5505            if ((GetPrevious() == instruction)
5506                || ((GetPrevious() == nullptr)
5507                    && instruction->IsPhi()
5508                    && instruction->GetBlock() == GetBlock())) {
5509              DCHECK_NE(destination.GetKind(), move.GetDestination().GetKind())
5510                  << "Doing parallel moves for the same instruction.";
5511            } else {
5512              DCHECK(false) << "Doing parallel moves for the same instruction.";
5513            }
5514          }
5515        }
5516      }
5517      for (const MoveOperands& move : moves_) {
5518        DCHECK(!destination.OverlapsWith(move.GetDestination()))
5519            << "Overlapped destination for two moves in a parallel move: "
5520            << move.GetSource() << " ==> " << move.GetDestination() << " and "
5521            << source << " ==> " << destination;
5522      }
5523    }
5524    moves_.emplace_back(source, destination, type, instruction);
5525  }
5526
5527  MoveOperands* MoveOperandsAt(size_t index) {
5528    return &moves_[index];
5529  }
5530
5531  size_t NumMoves() const { return moves_.size(); }
5532
5533  DECLARE_INSTRUCTION(ParallelMove);
5534
5535 private:
5536  ArenaVector<MoveOperands> moves_;
5537
5538  DISALLOW_COPY_AND_ASSIGN(HParallelMove);
5539};
5540
5541}  // namespace art
5542
5543#ifdef ART_ENABLE_CODEGEN_arm64
5544#include "nodes_arm64.h"
5545#endif
5546#ifdef ART_ENABLE_CODEGEN_x86
5547#include "nodes_x86.h"
5548#endif
5549
5550namespace art {
5551
5552class HGraphVisitor : public ValueObject {
5553 public:
5554  explicit HGraphVisitor(HGraph* graph) : graph_(graph) {}
5555  virtual ~HGraphVisitor() {}
5556
5557  virtual void VisitInstruction(HInstruction* instruction ATTRIBUTE_UNUSED) {}
5558  virtual void VisitBasicBlock(HBasicBlock* block);
5559
5560  // Visit the graph following basic block insertion order.
5561  void VisitInsertionOrder();
5562
5563  // Visit the graph following dominator tree reverse post-order.
5564  void VisitReversePostOrder();
5565
5566  HGraph* GetGraph() const { return graph_; }
5567
5568  // Visit functions for instruction classes.
5569#define DECLARE_VISIT_INSTRUCTION(name, super)                                        \
5570  virtual void Visit##name(H##name* instr) { VisitInstruction(instr); }
5571
5572  FOR_EACH_INSTRUCTION(DECLARE_VISIT_INSTRUCTION)
5573
5574#undef DECLARE_VISIT_INSTRUCTION
5575
5576 private:
5577  HGraph* const graph_;
5578
5579  DISALLOW_COPY_AND_ASSIGN(HGraphVisitor);
5580};
5581
5582class HGraphDelegateVisitor : public HGraphVisitor {
5583 public:
5584  explicit HGraphDelegateVisitor(HGraph* graph) : HGraphVisitor(graph) {}
5585  virtual ~HGraphDelegateVisitor() {}
5586
5587  // Visit functions that delegate to to super class.
5588#define DECLARE_VISIT_INSTRUCTION(name, super)                                        \
5589  void Visit##name(H##name* instr) OVERRIDE { Visit##super(instr); }
5590
5591  FOR_EACH_INSTRUCTION(DECLARE_VISIT_INSTRUCTION)
5592
5593#undef DECLARE_VISIT_INSTRUCTION
5594
5595 private:
5596  DISALLOW_COPY_AND_ASSIGN(HGraphDelegateVisitor);
5597};
5598
5599class HInsertionOrderIterator : public ValueObject {
5600 public:
5601  explicit HInsertionOrderIterator(const HGraph& graph) : graph_(graph), index_(0) {}
5602
5603  bool Done() const { return index_ == graph_.GetBlocks().size(); }
5604  HBasicBlock* Current() const { return graph_.GetBlocks()[index_]; }
5605  void Advance() { ++index_; }
5606
5607 private:
5608  const HGraph& graph_;
5609  size_t index_;
5610
5611  DISALLOW_COPY_AND_ASSIGN(HInsertionOrderIterator);
5612};
5613
5614class HReversePostOrderIterator : public ValueObject {
5615 public:
5616  explicit HReversePostOrderIterator(const HGraph& graph) : graph_(graph), index_(0) {
5617    // Check that reverse post order of the graph has been built.
5618    DCHECK(!graph.GetReversePostOrder().empty());
5619  }
5620
5621  bool Done() const { return index_ == graph_.GetReversePostOrder().size(); }
5622  HBasicBlock* Current() const { return graph_.GetReversePostOrder()[index_]; }
5623  void Advance() { ++index_; }
5624
5625 private:
5626  const HGraph& graph_;
5627  size_t index_;
5628
5629  DISALLOW_COPY_AND_ASSIGN(HReversePostOrderIterator);
5630};
5631
5632class HPostOrderIterator : public ValueObject {
5633 public:
5634  explicit HPostOrderIterator(const HGraph& graph)
5635      : graph_(graph), index_(graph_.GetReversePostOrder().size()) {
5636    // Check that reverse post order of the graph has been built.
5637    DCHECK(!graph.GetReversePostOrder().empty());
5638  }
5639
5640  bool Done() const { return index_ == 0; }
5641  HBasicBlock* Current() const { return graph_.GetReversePostOrder()[index_ - 1u]; }
5642  void Advance() { --index_; }
5643
5644 private:
5645  const HGraph& graph_;
5646  size_t index_;
5647
5648  DISALLOW_COPY_AND_ASSIGN(HPostOrderIterator);
5649};
5650
5651class HLinearPostOrderIterator : public ValueObject {
5652 public:
5653  explicit HLinearPostOrderIterator(const HGraph& graph)
5654      : order_(graph.GetLinearOrder()), index_(graph.GetLinearOrder().size()) {}
5655
5656  bool Done() const { return index_ == 0; }
5657
5658  HBasicBlock* Current() const { return order_[index_ - 1u]; }
5659
5660  void Advance() {
5661    --index_;
5662    DCHECK_GE(index_, 0U);
5663  }
5664
5665 private:
5666  const ArenaVector<HBasicBlock*>& order_;
5667  size_t index_;
5668
5669  DISALLOW_COPY_AND_ASSIGN(HLinearPostOrderIterator);
5670};
5671
5672class HLinearOrderIterator : public ValueObject {
5673 public:
5674  explicit HLinearOrderIterator(const HGraph& graph)
5675      : order_(graph.GetLinearOrder()), index_(0) {}
5676
5677  bool Done() const { return index_ == order_.size(); }
5678  HBasicBlock* Current() const { return order_[index_]; }
5679  void Advance() { ++index_; }
5680
5681 private:
5682  const ArenaVector<HBasicBlock*>& order_;
5683  size_t index_;
5684
5685  DISALLOW_COPY_AND_ASSIGN(HLinearOrderIterator);
5686};
5687
5688// Iterator over the blocks that art part of the loop. Includes blocks part
5689// of an inner loop. The order in which the blocks are iterated is on their
5690// block id.
5691class HBlocksInLoopIterator : public ValueObject {
5692 public:
5693  explicit HBlocksInLoopIterator(const HLoopInformation& info)
5694      : blocks_in_loop_(info.GetBlocks()),
5695        blocks_(info.GetHeader()->GetGraph()->GetBlocks()),
5696        index_(0) {
5697    if (!blocks_in_loop_.IsBitSet(index_)) {
5698      Advance();
5699    }
5700  }
5701
5702  bool Done() const { return index_ == blocks_.size(); }
5703  HBasicBlock* Current() const { return blocks_[index_]; }
5704  void Advance() {
5705    ++index_;
5706    for (size_t e = blocks_.size(); index_ < e; ++index_) {
5707      if (blocks_in_loop_.IsBitSet(index_)) {
5708        break;
5709      }
5710    }
5711  }
5712
5713 private:
5714  const BitVector& blocks_in_loop_;
5715  const ArenaVector<HBasicBlock*>& blocks_;
5716  size_t index_;
5717
5718  DISALLOW_COPY_AND_ASSIGN(HBlocksInLoopIterator);
5719};
5720
5721// Iterator over the blocks that art part of the loop. Includes blocks part
5722// of an inner loop. The order in which the blocks are iterated is reverse
5723// post order.
5724class HBlocksInLoopReversePostOrderIterator : public ValueObject {
5725 public:
5726  explicit HBlocksInLoopReversePostOrderIterator(const HLoopInformation& info)
5727      : blocks_in_loop_(info.GetBlocks()),
5728        blocks_(info.GetHeader()->GetGraph()->GetReversePostOrder()),
5729        index_(0) {
5730    if (!blocks_in_loop_.IsBitSet(blocks_[index_]->GetBlockId())) {
5731      Advance();
5732    }
5733  }
5734
5735  bool Done() const { return index_ == blocks_.size(); }
5736  HBasicBlock* Current() const { return blocks_[index_]; }
5737  void Advance() {
5738    ++index_;
5739    for (size_t e = blocks_.size(); index_ < e; ++index_) {
5740      if (blocks_in_loop_.IsBitSet(blocks_[index_]->GetBlockId())) {
5741        break;
5742      }
5743    }
5744  }
5745
5746 private:
5747  const BitVector& blocks_in_loop_;
5748  const ArenaVector<HBasicBlock*>& blocks_;
5749  size_t index_;
5750
5751  DISALLOW_COPY_AND_ASSIGN(HBlocksInLoopReversePostOrderIterator);
5752};
5753
5754inline int64_t Int64FromConstant(HConstant* constant) {
5755  DCHECK(constant->IsIntConstant() || constant->IsLongConstant());
5756  return constant->IsIntConstant() ? constant->AsIntConstant()->GetValue()
5757                                   : constant->AsLongConstant()->GetValue();
5758}
5759
5760inline bool IsSameDexFile(const DexFile& lhs, const DexFile& rhs) {
5761  // For the purposes of the compiler, the dex files must actually be the same object
5762  // if we want to safely treat them as the same. This is especially important for JIT
5763  // as custom class loaders can open the same underlying file (or memory) multiple
5764  // times and provide different class resolution but no two class loaders should ever
5765  // use the same DexFile object - doing so is an unsupported hack that can lead to
5766  // all sorts of weird failures.
5767  return &lhs == &rhs;
5768}
5769
5770}  // namespace art
5771
5772#endif  // ART_COMPILER_OPTIMIZING_NODES_H_
5773