nodes.h revision 4dda3376b71209fae07f5c3c8ac3eb4b54207aa8
1/*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#ifndef ART_COMPILER_OPTIMIZING_NODES_H_
18#define ART_COMPILER_OPTIMIZING_NODES_H_
19
20#include "base/arena_containers.h"
21#include "base/arena_object.h"
22#include "dex/compiler_enums.h"
23#include "entrypoints/quick/quick_entrypoints_enum.h"
24#include "handle.h"
25#include "handle_scope.h"
26#include "invoke_type.h"
27#include "locations.h"
28#include "mirror/class.h"
29#include "offsets.h"
30#include "primitive.h"
31#include "utils/arena_bit_vector.h"
32#include "utils/growable_array.h"
33
34namespace art {
35
36class GraphChecker;
37class HBasicBlock;
38class HCurrentMethod;
39class HDoubleConstant;
40class HEnvironment;
41class HFloatConstant;
42class HGraphVisitor;
43class HInstruction;
44class HIntConstant;
45class HInvoke;
46class HLongConstant;
47class HNullConstant;
48class HPhi;
49class HSuspendCheck;
50class LiveInterval;
51class LocationSummary;
52class SlowPathCode;
53class SsaBuilder;
54
55static const int kDefaultNumberOfBlocks = 8;
56static const int kDefaultNumberOfSuccessors = 2;
57static const int kDefaultNumberOfPredecessors = 2;
58static const int kDefaultNumberOfDominatedBlocks = 1;
59static const int kDefaultNumberOfBackEdges = 1;
60
61static constexpr uint32_t kMaxIntShiftValue = 0x1f;
62static constexpr uint64_t kMaxLongShiftValue = 0x3f;
63
64static constexpr uint32_t kUnknownFieldIndex = static_cast<uint32_t>(-1);
65
66static constexpr InvokeType kInvalidInvokeType = static_cast<InvokeType>(-1);
67
68enum IfCondition {
69  kCondEQ,
70  kCondNE,
71  kCondLT,
72  kCondLE,
73  kCondGT,
74  kCondGE,
75};
76
77class HInstructionList {
78 public:
79  HInstructionList() : first_instruction_(nullptr), last_instruction_(nullptr) {}
80
81  void AddInstruction(HInstruction* instruction);
82  void RemoveInstruction(HInstruction* instruction);
83
84  // Insert `instruction` before/after an existing instruction `cursor`.
85  void InsertInstructionBefore(HInstruction* instruction, HInstruction* cursor);
86  void InsertInstructionAfter(HInstruction* instruction, HInstruction* cursor);
87
88  // Return true if this list contains `instruction`.
89  bool Contains(HInstruction* instruction) const;
90
91  // Return true if `instruction1` is found before `instruction2` in
92  // this instruction list and false otherwise.  Abort if none
93  // of these instructions is found.
94  bool FoundBefore(const HInstruction* instruction1,
95                   const HInstruction* instruction2) const;
96
97  bool IsEmpty() const { return first_instruction_ == nullptr; }
98  void Clear() { first_instruction_ = last_instruction_ = nullptr; }
99
100  // Update the block of all instructions to be `block`.
101  void SetBlockOfInstructions(HBasicBlock* block) const;
102
103  void AddAfter(HInstruction* cursor, const HInstructionList& instruction_list);
104  void Add(const HInstructionList& instruction_list);
105
106  // Return the number of instructions in the list. This is an expensive operation.
107  size_t CountSize() const;
108
109 private:
110  HInstruction* first_instruction_;
111  HInstruction* last_instruction_;
112
113  friend class HBasicBlock;
114  friend class HGraph;
115  friend class HInstruction;
116  friend class HInstructionIterator;
117  friend class HBackwardInstructionIterator;
118
119  DISALLOW_COPY_AND_ASSIGN(HInstructionList);
120};
121
122// Control-flow graph of a method. Contains a list of basic blocks.
123class HGraph : public ArenaObject<kArenaAllocMisc> {
124 public:
125  HGraph(ArenaAllocator* arena,
126         const DexFile& dex_file,
127         uint32_t method_idx,
128         bool should_generate_constructor_barrier,
129         InstructionSet instruction_set,
130         InvokeType invoke_type = kInvalidInvokeType,
131         bool debuggable = false,
132         int start_instruction_id = 0)
133      : arena_(arena),
134        blocks_(arena, kDefaultNumberOfBlocks),
135        reverse_post_order_(arena, kDefaultNumberOfBlocks),
136        linear_order_(arena, kDefaultNumberOfBlocks),
137        entry_block_(nullptr),
138        exit_block_(nullptr),
139        maximum_number_of_out_vregs_(0),
140        number_of_vregs_(0),
141        number_of_in_vregs_(0),
142        temporaries_vreg_slots_(0),
143        has_bounds_checks_(false),
144        debuggable_(debuggable),
145        current_instruction_id_(start_instruction_id),
146        dex_file_(dex_file),
147        method_idx_(method_idx),
148        invoke_type_(invoke_type),
149        in_ssa_form_(false),
150        should_generate_constructor_barrier_(should_generate_constructor_barrier),
151        instruction_set_(instruction_set),
152        cached_null_constant_(nullptr),
153        cached_int_constants_(std::less<int32_t>(), arena->Adapter()),
154        cached_float_constants_(std::less<int32_t>(), arena->Adapter()),
155        cached_long_constants_(std::less<int64_t>(), arena->Adapter()),
156        cached_double_constants_(std::less<int64_t>(), arena->Adapter()),
157        cached_current_method_(nullptr) {}
158
159  ArenaAllocator* GetArena() const { return arena_; }
160  const GrowableArray<HBasicBlock*>& GetBlocks() const { return blocks_; }
161  HBasicBlock* GetBlock(size_t id) const { return blocks_.Get(id); }
162
163  HBasicBlock* GetEntryBlock() const { return entry_block_; }
164  HBasicBlock* GetExitBlock() const { return exit_block_; }
165  bool HasExitBlock() const { return exit_block_ != nullptr; }
166
167  void SetEntryBlock(HBasicBlock* block) { entry_block_ = block; }
168  void SetExitBlock(HBasicBlock* block) { exit_block_ = block; }
169
170  void AddBlock(HBasicBlock* block);
171
172  // Try building the SSA form of this graph, with dominance computation and loop
173  // recognition. Returns whether it was successful in doing all these steps.
174  bool TryBuildingSsa() {
175    BuildDominatorTree();
176    // The SSA builder requires loops to all be natural. Specifically, the dead phi
177    // elimination phase checks the consistency of the graph when doing a post-order
178    // visit for eliminating dead phis: a dead phi can only have loop header phi
179    // users remaining when being visited.
180    if (!AnalyzeNaturalLoops()) return false;
181    TransformToSsa();
182    in_ssa_form_ = true;
183    return true;
184  }
185
186  void BuildDominatorTree();
187  void TransformToSsa();
188  void SimplifyCFG();
189
190  // Analyze all natural loops in this graph. Returns false if one
191  // loop is not natural, that is the header does not dominate the
192  // back edge.
193  bool AnalyzeNaturalLoops() const;
194
195  // Inline this graph in `outer_graph`, replacing the given `invoke` instruction.
196  void InlineInto(HGraph* outer_graph, HInvoke* invoke);
197
198  // Need to add a couple of blocks to test if the loop body is entered and
199  // put deoptimization instructions, etc.
200  void TransformLoopHeaderForBCE(HBasicBlock* header);
201
202  // Removes `block` from the graph.
203  void DeleteDeadBlock(HBasicBlock* block);
204
205  void SplitCriticalEdge(HBasicBlock* block, HBasicBlock* successor);
206  void SimplifyLoop(HBasicBlock* header);
207
208  int32_t GetNextInstructionId() {
209    DCHECK_NE(current_instruction_id_, INT32_MAX);
210    return current_instruction_id_++;
211  }
212
213  int32_t GetCurrentInstructionId() const {
214    return current_instruction_id_;
215  }
216
217  void SetCurrentInstructionId(int32_t id) {
218    current_instruction_id_ = id;
219  }
220
221  uint16_t GetMaximumNumberOfOutVRegs() const {
222    return maximum_number_of_out_vregs_;
223  }
224
225  void SetMaximumNumberOfOutVRegs(uint16_t new_value) {
226    maximum_number_of_out_vregs_ = new_value;
227  }
228
229  void UpdateMaximumNumberOfOutVRegs(uint16_t other_value) {
230    maximum_number_of_out_vregs_ = std::max(maximum_number_of_out_vregs_, other_value);
231  }
232
233  void UpdateTemporariesVRegSlots(size_t slots) {
234    temporaries_vreg_slots_ = std::max(slots, temporaries_vreg_slots_);
235  }
236
237  size_t GetTemporariesVRegSlots() const {
238    DCHECK(!in_ssa_form_);
239    return temporaries_vreg_slots_;
240  }
241
242  void SetNumberOfVRegs(uint16_t number_of_vregs) {
243    number_of_vregs_ = number_of_vregs;
244  }
245
246  uint16_t GetNumberOfVRegs() const {
247    DCHECK(!in_ssa_form_);
248    return number_of_vregs_;
249  }
250
251  void SetNumberOfInVRegs(uint16_t value) {
252    number_of_in_vregs_ = value;
253  }
254
255  uint16_t GetNumberOfLocalVRegs() const {
256    DCHECK(!in_ssa_form_);
257    return number_of_vregs_ - number_of_in_vregs_;
258  }
259
260  const GrowableArray<HBasicBlock*>& GetReversePostOrder() const {
261    return reverse_post_order_;
262  }
263
264  const GrowableArray<HBasicBlock*>& GetLinearOrder() const {
265    return linear_order_;
266  }
267
268  bool HasBoundsChecks() const {
269    return has_bounds_checks_;
270  }
271
272  void SetHasBoundsChecks(bool value) {
273    has_bounds_checks_ = value;
274  }
275
276  bool ShouldGenerateConstructorBarrier() const {
277    return should_generate_constructor_barrier_;
278  }
279
280  bool IsDebuggable() const { return debuggable_; }
281
282  // Returns a constant of the given type and value. If it does not exist
283  // already, it is created and inserted into the graph. This method is only for
284  // integral types.
285  HConstant* GetConstant(Primitive::Type type, int64_t value);
286  HNullConstant* GetNullConstant();
287  HIntConstant* GetIntConstant(int32_t value) {
288    return CreateConstant(value, &cached_int_constants_);
289  }
290  HLongConstant* GetLongConstant(int64_t value) {
291    return CreateConstant(value, &cached_long_constants_);
292  }
293  HFloatConstant* GetFloatConstant(float value) {
294    return CreateConstant(bit_cast<int32_t, float>(value), &cached_float_constants_);
295  }
296  HDoubleConstant* GetDoubleConstant(double value) {
297    return CreateConstant(bit_cast<int64_t, double>(value), &cached_double_constants_);
298  }
299
300  HCurrentMethod* GetCurrentMethod();
301
302  HBasicBlock* FindCommonDominator(HBasicBlock* first, HBasicBlock* second) const;
303
304  const DexFile& GetDexFile() const {
305    return dex_file_;
306  }
307
308  uint32_t GetMethodIdx() const {
309    return method_idx_;
310  }
311
312  InvokeType GetInvokeType() const {
313    return invoke_type_;
314  }
315
316 private:
317  void VisitBlockForDominatorTree(HBasicBlock* block,
318                                  HBasicBlock* predecessor,
319                                  GrowableArray<size_t>* visits);
320  void FindBackEdges(ArenaBitVector* visited);
321  void VisitBlockForBackEdges(HBasicBlock* block,
322                              ArenaBitVector* visited,
323                              ArenaBitVector* visiting);
324  void RemoveInstructionsAsUsersFromDeadBlocks(const ArenaBitVector& visited) const;
325  void RemoveDeadBlocks(const ArenaBitVector& visited);
326
327  template <class InstructionType, typename ValueType>
328  InstructionType* CreateConstant(ValueType value,
329                                  ArenaSafeMap<ValueType, InstructionType*>* cache) {
330    // Try to find an existing constant of the given value.
331    InstructionType* constant = nullptr;
332    auto cached_constant = cache->find(value);
333    if (cached_constant != cache->end()) {
334      constant = cached_constant->second;
335    }
336
337    // If not found or previously deleted, create and cache a new instruction.
338    // Don't bother reviving a previously deleted instruction, for simplicity.
339    if (constant == nullptr || constant->GetBlock() == nullptr) {
340      constant = new (arena_) InstructionType(value);
341      cache->Overwrite(value, constant);
342      InsertConstant(constant);
343    }
344    return constant;
345  }
346
347  void InsertConstant(HConstant* instruction);
348
349  // Cache a float constant into the graph. This method should only be
350  // called by the SsaBuilder when creating "equivalent" instructions.
351  void CacheFloatConstant(HFloatConstant* constant);
352
353  // See CacheFloatConstant comment.
354  void CacheDoubleConstant(HDoubleConstant* constant);
355
356  ArenaAllocator* const arena_;
357
358  // List of blocks in insertion order.
359  GrowableArray<HBasicBlock*> blocks_;
360
361  // List of blocks to perform a reverse post order tree traversal.
362  GrowableArray<HBasicBlock*> reverse_post_order_;
363
364  // List of blocks to perform a linear order tree traversal.
365  GrowableArray<HBasicBlock*> linear_order_;
366
367  HBasicBlock* entry_block_;
368  HBasicBlock* exit_block_;
369
370  // The maximum number of virtual registers arguments passed to a HInvoke in this graph.
371  uint16_t maximum_number_of_out_vregs_;
372
373  // The number of virtual registers in this method. Contains the parameters.
374  uint16_t number_of_vregs_;
375
376  // The number of virtual registers used by parameters of this method.
377  uint16_t number_of_in_vregs_;
378
379  // Number of vreg size slots that the temporaries use (used in baseline compiler).
380  size_t temporaries_vreg_slots_;
381
382  // Has bounds checks. We can totally skip BCE if it's false.
383  bool has_bounds_checks_;
384
385  // Indicates whether the graph should be compiled in a way that
386  // ensures full debuggability. If false, we can apply more
387  // aggressive optimizations that may limit the level of debugging.
388  const bool debuggable_;
389
390  // The current id to assign to a newly added instruction. See HInstruction.id_.
391  int32_t current_instruction_id_;
392
393  // The dex file from which the method is from.
394  const DexFile& dex_file_;
395
396  // The method index in the dex file.
397  const uint32_t method_idx_;
398
399  // If inlined, this encodes how the callee is being invoked.
400  const InvokeType invoke_type_;
401
402  // Whether the graph has been transformed to SSA form. Only used
403  // in debug mode to ensure we are not using properties only valid
404  // for non-SSA form (like the number of temporaries).
405  bool in_ssa_form_;
406
407  const bool should_generate_constructor_barrier_;
408
409  const InstructionSet instruction_set_;
410
411  // Cached constants.
412  HNullConstant* cached_null_constant_;
413  ArenaSafeMap<int32_t, HIntConstant*> cached_int_constants_;
414  ArenaSafeMap<int32_t, HFloatConstant*> cached_float_constants_;
415  ArenaSafeMap<int64_t, HLongConstant*> cached_long_constants_;
416  ArenaSafeMap<int64_t, HDoubleConstant*> cached_double_constants_;
417
418  HCurrentMethod* cached_current_method_;
419
420  friend class SsaBuilder;           // For caching constants.
421  friend class SsaLivenessAnalysis;  // For the linear order.
422  ART_FRIEND_TEST(GraphTest, IfSuccessorSimpleJoinBlock1);
423  DISALLOW_COPY_AND_ASSIGN(HGraph);
424};
425
426class HLoopInformation : public ArenaObject<kArenaAllocMisc> {
427 public:
428  HLoopInformation(HBasicBlock* header, HGraph* graph)
429      : header_(header),
430        suspend_check_(nullptr),
431        back_edges_(graph->GetArena(), kDefaultNumberOfBackEdges),
432        // Make bit vector growable, as the number of blocks may change.
433        blocks_(graph->GetArena(), graph->GetBlocks().Size(), true) {}
434
435  HBasicBlock* GetHeader() const {
436    return header_;
437  }
438
439  void SetHeader(HBasicBlock* block) {
440    header_ = block;
441  }
442
443  HSuspendCheck* GetSuspendCheck() const { return suspend_check_; }
444  void SetSuspendCheck(HSuspendCheck* check) { suspend_check_ = check; }
445  bool HasSuspendCheck() const { return suspend_check_ != nullptr; }
446
447  void AddBackEdge(HBasicBlock* back_edge) {
448    back_edges_.Add(back_edge);
449  }
450
451  void RemoveBackEdge(HBasicBlock* back_edge) {
452    back_edges_.Delete(back_edge);
453  }
454
455  bool IsBackEdge(const HBasicBlock& block) const {
456    for (size_t i = 0, e = back_edges_.Size(); i < e; ++i) {
457      if (back_edges_.Get(i) == &block) return true;
458    }
459    return false;
460  }
461
462  size_t NumberOfBackEdges() const {
463    return back_edges_.Size();
464  }
465
466  HBasicBlock* GetPreHeader() const;
467
468  const GrowableArray<HBasicBlock*>& GetBackEdges() const {
469    return back_edges_;
470  }
471
472  // Returns the lifetime position of the back edge that has the
473  // greatest lifetime position.
474  size_t GetLifetimeEnd() const;
475
476  void ReplaceBackEdge(HBasicBlock* existing, HBasicBlock* new_back_edge) {
477    for (size_t i = 0, e = back_edges_.Size(); i < e; ++i) {
478      if (back_edges_.Get(i) == existing) {
479        back_edges_.Put(i, new_back_edge);
480        return;
481      }
482    }
483    UNREACHABLE();
484  }
485
486  // Finds blocks that are part of this loop. Returns whether the loop is a natural loop,
487  // that is the header dominates the back edge.
488  bool Populate();
489
490  // Reanalyzes the loop by removing loop info from its blocks and re-running
491  // Populate(). If there are no back edges left, the loop info is completely
492  // removed as well as its SuspendCheck instruction. It must be run on nested
493  // inner loops first.
494  void Update();
495
496  // Returns whether this loop information contains `block`.
497  // Note that this loop information *must* be populated before entering this function.
498  bool Contains(const HBasicBlock& block) const;
499
500  // Returns whether this loop information is an inner loop of `other`.
501  // Note that `other` *must* be populated before entering this function.
502  bool IsIn(const HLoopInformation& other) const;
503
504  const ArenaBitVector& GetBlocks() const { return blocks_; }
505
506  void Add(HBasicBlock* block);
507  void Remove(HBasicBlock* block);
508
509 private:
510  // Internal recursive implementation of `Populate`.
511  void PopulateRecursive(HBasicBlock* block);
512
513  HBasicBlock* header_;
514  HSuspendCheck* suspend_check_;
515  GrowableArray<HBasicBlock*> back_edges_;
516  ArenaBitVector blocks_;
517
518  DISALLOW_COPY_AND_ASSIGN(HLoopInformation);
519};
520
521static constexpr size_t kNoLifetime = -1;
522static constexpr uint32_t kNoDexPc = -1;
523
524// A block in a method. Contains the list of instructions represented
525// as a double linked list. Each block knows its predecessors and
526// successors.
527
528class HBasicBlock : public ArenaObject<kArenaAllocMisc> {
529 public:
530  explicit HBasicBlock(HGraph* graph, uint32_t dex_pc = kNoDexPc)
531      : graph_(graph),
532        predecessors_(graph->GetArena(), kDefaultNumberOfPredecessors),
533        successors_(graph->GetArena(), kDefaultNumberOfSuccessors),
534        loop_information_(nullptr),
535        dominator_(nullptr),
536        dominated_blocks_(graph->GetArena(), kDefaultNumberOfDominatedBlocks),
537        block_id_(-1),
538        dex_pc_(dex_pc),
539        lifetime_start_(kNoLifetime),
540        lifetime_end_(kNoLifetime),
541        is_catch_block_(false) {}
542
543  const GrowableArray<HBasicBlock*>& GetPredecessors() const {
544    return predecessors_;
545  }
546
547  const GrowableArray<HBasicBlock*>& GetSuccessors() const {
548    return successors_;
549  }
550
551  const GrowableArray<HBasicBlock*>& GetDominatedBlocks() const {
552    return dominated_blocks_;
553  }
554
555  bool IsEntryBlock() const {
556    return graph_->GetEntryBlock() == this;
557  }
558
559  bool IsExitBlock() const {
560    return graph_->GetExitBlock() == this;
561  }
562
563  bool IsSingleGoto() const;
564
565  void AddBackEdge(HBasicBlock* back_edge) {
566    if (loop_information_ == nullptr) {
567      loop_information_ = new (graph_->GetArena()) HLoopInformation(this, graph_);
568    }
569    DCHECK_EQ(loop_information_->GetHeader(), this);
570    loop_information_->AddBackEdge(back_edge);
571  }
572
573  HGraph* GetGraph() const { return graph_; }
574  void SetGraph(HGraph* graph) { graph_ = graph; }
575
576  int GetBlockId() const { return block_id_; }
577  void SetBlockId(int id) { block_id_ = id; }
578
579  HBasicBlock* GetDominator() const { return dominator_; }
580  void SetDominator(HBasicBlock* dominator) { dominator_ = dominator; }
581  void AddDominatedBlock(HBasicBlock* block) { dominated_blocks_.Add(block); }
582  void RemoveDominatedBlock(HBasicBlock* block) { dominated_blocks_.Delete(block); }
583  void ReplaceDominatedBlock(HBasicBlock* existing, HBasicBlock* new_block) {
584    for (size_t i = 0, e = dominated_blocks_.Size(); i < e; ++i) {
585      if (dominated_blocks_.Get(i) == existing) {
586        dominated_blocks_.Put(i, new_block);
587        return;
588      }
589    }
590    LOG(FATAL) << "Unreachable";
591    UNREACHABLE();
592  }
593
594  int NumberOfBackEdges() const {
595    return loop_information_ == nullptr
596        ? 0
597        : loop_information_->NumberOfBackEdges();
598  }
599
600  HInstruction* GetFirstInstruction() const { return instructions_.first_instruction_; }
601  HInstruction* GetLastInstruction() const { return instructions_.last_instruction_; }
602  const HInstructionList& GetInstructions() const { return instructions_; }
603  HInstruction* GetFirstPhi() const { return phis_.first_instruction_; }
604  HInstruction* GetLastPhi() const { return phis_.last_instruction_; }
605  const HInstructionList& GetPhis() const { return phis_; }
606
607  void AddSuccessor(HBasicBlock* block) {
608    successors_.Add(block);
609    block->predecessors_.Add(this);
610  }
611
612  void ReplaceSuccessor(HBasicBlock* existing, HBasicBlock* new_block) {
613    size_t successor_index = GetSuccessorIndexOf(existing);
614    DCHECK_NE(successor_index, static_cast<size_t>(-1));
615    existing->RemovePredecessor(this);
616    new_block->predecessors_.Add(this);
617    successors_.Put(successor_index, new_block);
618  }
619
620  void ReplacePredecessor(HBasicBlock* existing, HBasicBlock* new_block) {
621    size_t predecessor_index = GetPredecessorIndexOf(existing);
622    DCHECK_NE(predecessor_index, static_cast<size_t>(-1));
623    existing->RemoveSuccessor(this);
624    new_block->successors_.Add(this);
625    predecessors_.Put(predecessor_index, new_block);
626  }
627
628  void RemovePredecessor(HBasicBlock* block) {
629    predecessors_.Delete(block);
630  }
631
632  void RemoveSuccessor(HBasicBlock* block) {
633    successors_.Delete(block);
634  }
635
636  void ClearAllPredecessors() {
637    predecessors_.Reset();
638  }
639
640  void AddPredecessor(HBasicBlock* block) {
641    predecessors_.Add(block);
642    block->successors_.Add(this);
643  }
644
645  void SwapPredecessors() {
646    DCHECK_EQ(predecessors_.Size(), 2u);
647    HBasicBlock* temp = predecessors_.Get(0);
648    predecessors_.Put(0, predecessors_.Get(1));
649    predecessors_.Put(1, temp);
650  }
651
652  void SwapSuccessors() {
653    DCHECK_EQ(successors_.Size(), 2u);
654    HBasicBlock* temp = successors_.Get(0);
655    successors_.Put(0, successors_.Get(1));
656    successors_.Put(1, temp);
657  }
658
659  size_t GetPredecessorIndexOf(HBasicBlock* predecessor) {
660    for (size_t i = 0, e = predecessors_.Size(); i < e; ++i) {
661      if (predecessors_.Get(i) == predecessor) {
662        return i;
663      }
664    }
665    return -1;
666  }
667
668  size_t GetSuccessorIndexOf(HBasicBlock* successor) {
669    for (size_t i = 0, e = successors_.Size(); i < e; ++i) {
670      if (successors_.Get(i) == successor) {
671        return i;
672      }
673    }
674    return -1;
675  }
676
677  // Split the block into two blocks just after `cursor`. Returns the newly
678  // created block. Note that this method just updates raw block information,
679  // like predecessors, successors, dominators, and instruction list. It does not
680  // update the graph, reverse post order, loop information, nor make sure the
681  // blocks are consistent (for example ending with a control flow instruction).
682  HBasicBlock* SplitAfter(HInstruction* cursor);
683
684  // Merge `other` at the end of `this`. Successors and dominated blocks of
685  // `other` are changed to be successors and dominated blocks of `this`. Note
686  // that this method does not update the graph, reverse post order, loop
687  // information, nor make sure the blocks are consistent (for example ending
688  // with a control flow instruction).
689  void MergeWithInlined(HBasicBlock* other);
690
691  // Replace `this` with `other`. Predecessors, successors, and dominated blocks
692  // of `this` are moved to `other`.
693  // Note that this method does not update the graph, reverse post order, loop
694  // information, nor make sure the blocks are consistent (for example ending
695  // with a control flow instruction).
696  void ReplaceWith(HBasicBlock* other);
697
698  // Merge `other` at the end of `this`. This method updates loops, reverse post
699  // order, links to predecessors, successors, dominators and deletes the block
700  // from the graph. The two blocks must be successive, i.e. `this` the only
701  // predecessor of `other` and vice versa.
702  void MergeWith(HBasicBlock* other);
703
704  // Disconnects `this` from all its predecessors, successors and dominator,
705  // removes it from all loops it is included in and eventually from the graph.
706  // The block must not dominate any other block. Predecessors and successors
707  // are safely updated.
708  void DisconnectAndDelete();
709
710  void AddInstruction(HInstruction* instruction);
711  // Insert `instruction` before/after an existing instruction `cursor`.
712  void InsertInstructionBefore(HInstruction* instruction, HInstruction* cursor);
713  void InsertInstructionAfter(HInstruction* instruction, HInstruction* cursor);
714  // Replace instruction `initial` with `replacement` within this block.
715  void ReplaceAndRemoveInstructionWith(HInstruction* initial,
716                                       HInstruction* replacement);
717  void AddPhi(HPhi* phi);
718  void InsertPhiAfter(HPhi* instruction, HPhi* cursor);
719  // RemoveInstruction and RemovePhi delete a given instruction from the respective
720  // instruction list. With 'ensure_safety' set to true, it verifies that the
721  // instruction is not in use and removes it from the use lists of its inputs.
722  void RemoveInstruction(HInstruction* instruction, bool ensure_safety = true);
723  void RemovePhi(HPhi* phi, bool ensure_safety = true);
724  void RemoveInstructionOrPhi(HInstruction* instruction, bool ensure_safety = true);
725
726  bool IsLoopHeader() const {
727    return IsInLoop() && (loop_information_->GetHeader() == this);
728  }
729
730  bool IsLoopPreHeaderFirstPredecessor() const {
731    DCHECK(IsLoopHeader());
732    DCHECK(!GetPredecessors().IsEmpty());
733    return GetPredecessors().Get(0) == GetLoopInformation()->GetPreHeader();
734  }
735
736  HLoopInformation* GetLoopInformation() const {
737    return loop_information_;
738  }
739
740  // Set the loop_information_ on this block. Overrides the current
741  // loop_information if it is an outer loop of the passed loop information.
742  // Note that this method is called while creating the loop information.
743  void SetInLoop(HLoopInformation* info) {
744    if (IsLoopHeader()) {
745      // Nothing to do. This just means `info` is an outer loop.
746    } else if (!IsInLoop()) {
747      loop_information_ = info;
748    } else if (loop_information_->Contains(*info->GetHeader())) {
749      // Block is currently part of an outer loop. Make it part of this inner loop.
750      // Note that a non loop header having a loop information means this loop information
751      // has already been populated
752      loop_information_ = info;
753    } else {
754      // Block is part of an inner loop. Do not update the loop information.
755      // Note that we cannot do the check `info->Contains(loop_information_)->GetHeader()`
756      // at this point, because this method is being called while populating `info`.
757    }
758  }
759
760  // Raw update of the loop information.
761  void SetLoopInformation(HLoopInformation* info) {
762    loop_information_ = info;
763  }
764
765  bool IsInLoop() const { return loop_information_ != nullptr; }
766
767  // Returns whether this block dominates the blocked passed as parameter.
768  bool Dominates(HBasicBlock* block) const;
769
770  size_t GetLifetimeStart() const { return lifetime_start_; }
771  size_t GetLifetimeEnd() const { return lifetime_end_; }
772
773  void SetLifetimeStart(size_t start) { lifetime_start_ = start; }
774  void SetLifetimeEnd(size_t end) { lifetime_end_ = end; }
775
776  uint32_t GetDexPc() const { return dex_pc_; }
777
778  bool IsCatchBlock() const { return is_catch_block_; }
779  void SetIsCatchBlock() { is_catch_block_ = true; }
780
781  bool EndsWithControlFlowInstruction() const;
782  bool EndsWithIf() const;
783  bool HasSinglePhi() const;
784
785 private:
786  HGraph* graph_;
787  GrowableArray<HBasicBlock*> predecessors_;
788  GrowableArray<HBasicBlock*> successors_;
789  HInstructionList instructions_;
790  HInstructionList phis_;
791  HLoopInformation* loop_information_;
792  HBasicBlock* dominator_;
793  GrowableArray<HBasicBlock*> dominated_blocks_;
794  int block_id_;
795  // The dex program counter of the first instruction of this block.
796  const uint32_t dex_pc_;
797  size_t lifetime_start_;
798  size_t lifetime_end_;
799  bool is_catch_block_;
800
801  friend class HGraph;
802  friend class HInstruction;
803
804  DISALLOW_COPY_AND_ASSIGN(HBasicBlock);
805};
806
807// Iterates over the LoopInformation of all loops which contain 'block'
808// from the innermost to the outermost.
809class HLoopInformationOutwardIterator : public ValueObject {
810 public:
811  explicit HLoopInformationOutwardIterator(const HBasicBlock& block)
812      : current_(block.GetLoopInformation()) {}
813
814  bool Done() const { return current_ == nullptr; }
815
816  void Advance() {
817    DCHECK(!Done());
818    current_ = current_->GetPreHeader()->GetLoopInformation();
819  }
820
821  HLoopInformation* Current() const {
822    DCHECK(!Done());
823    return current_;
824  }
825
826 private:
827  HLoopInformation* current_;
828
829  DISALLOW_COPY_AND_ASSIGN(HLoopInformationOutwardIterator);
830};
831
832#define FOR_EACH_CONCRETE_INSTRUCTION_COMMON(M)                         \
833  M(Add, BinaryOperation)                                               \
834  M(And, BinaryOperation)                                               \
835  M(ArrayGet, Instruction)                                              \
836  M(ArrayLength, Instruction)                                           \
837  M(ArraySet, Instruction)                                              \
838  M(BooleanNot, UnaryOperation)                                         \
839  M(BoundsCheck, Instruction)                                           \
840  M(BoundType, Instruction)                                             \
841  M(CheckCast, Instruction)                                             \
842  M(ClinitCheck, Instruction)                                           \
843  M(Compare, BinaryOperation)                                           \
844  M(Condition, BinaryOperation)                                         \
845  M(CurrentMethod, Instruction)                                         \
846  M(Deoptimize, Instruction)                                            \
847  M(Div, BinaryOperation)                                               \
848  M(DivZeroCheck, Instruction)                                          \
849  M(DoubleConstant, Constant)                                           \
850  M(Equal, Condition)                                                   \
851  M(Exit, Instruction)                                                  \
852  M(FloatConstant, Constant)                                            \
853  M(Goto, Instruction)                                                  \
854  M(GreaterThan, Condition)                                             \
855  M(GreaterThanOrEqual, Condition)                                      \
856  M(If, Instruction)                                                    \
857  M(InstanceFieldGet, Instruction)                                      \
858  M(InstanceFieldSet, Instruction)                                      \
859  M(InstanceOf, Instruction)                                            \
860  M(IntConstant, Constant)                                              \
861  M(InvokeInterface, Invoke)                                            \
862  M(InvokeStaticOrDirect, Invoke)                                       \
863  M(InvokeVirtual, Invoke)                                              \
864  M(LessThan, Condition)                                                \
865  M(LessThanOrEqual, Condition)                                         \
866  M(LoadClass, Instruction)                                             \
867  M(LoadException, Instruction)                                         \
868  M(LoadLocal, Instruction)                                             \
869  M(LoadString, Instruction)                                            \
870  M(Local, Instruction)                                                 \
871  M(LongConstant, Constant)                                             \
872  M(MemoryBarrier, Instruction)                                         \
873  M(MonitorOperation, Instruction)                                      \
874  M(Mul, BinaryOperation)                                               \
875  M(Neg, UnaryOperation)                                                \
876  M(NewArray, Instruction)                                              \
877  M(NewInstance, Instruction)                                           \
878  M(Not, UnaryOperation)                                                \
879  M(NotEqual, Condition)                                                \
880  M(NullConstant, Instruction)                                          \
881  M(NullCheck, Instruction)                                             \
882  M(Or, BinaryOperation)                                                \
883  M(ParallelMove, Instruction)                                          \
884  M(ParameterValue, Instruction)                                        \
885  M(Phi, Instruction)                                                   \
886  M(Rem, BinaryOperation)                                               \
887  M(Return, Instruction)                                                \
888  M(ReturnVoid, Instruction)                                            \
889  M(Shl, BinaryOperation)                                               \
890  M(Shr, BinaryOperation)                                               \
891  M(StaticFieldGet, Instruction)                                        \
892  M(StaticFieldSet, Instruction)                                        \
893  M(StoreLocal, Instruction)                                            \
894  M(Sub, BinaryOperation)                                               \
895  M(SuspendCheck, Instruction)                                          \
896  M(Temporary, Instruction)                                             \
897  M(Throw, Instruction)                                                 \
898  M(TypeConversion, Instruction)                                        \
899  M(UShr, BinaryOperation)                                              \
900  M(Xor, BinaryOperation)                                               \
901
902#define FOR_EACH_CONCRETE_INSTRUCTION_ARM(M)
903
904#define FOR_EACH_CONCRETE_INSTRUCTION_ARM64(M)
905
906#define FOR_EACH_CONCRETE_INSTRUCTION_X86(M)
907
908#define FOR_EACH_CONCRETE_INSTRUCTION_X86_64(M)
909
910#define FOR_EACH_CONCRETE_INSTRUCTION(M)                                \
911  FOR_EACH_CONCRETE_INSTRUCTION_COMMON(M)                               \
912  FOR_EACH_CONCRETE_INSTRUCTION_ARM(M)                                  \
913  FOR_EACH_CONCRETE_INSTRUCTION_ARM64(M)                                \
914  FOR_EACH_CONCRETE_INSTRUCTION_X86(M)                                  \
915  FOR_EACH_CONCRETE_INSTRUCTION_X86_64(M)
916
917#define FOR_EACH_INSTRUCTION(M)                                         \
918  FOR_EACH_CONCRETE_INSTRUCTION(M)                                      \
919  M(Constant, Instruction)                                              \
920  M(UnaryOperation, Instruction)                                        \
921  M(BinaryOperation, Instruction)                                       \
922  M(Invoke, Instruction)
923
924#define FORWARD_DECLARATION(type, super) class H##type;
925FOR_EACH_INSTRUCTION(FORWARD_DECLARATION)
926#undef FORWARD_DECLARATION
927
928#define DECLARE_INSTRUCTION(type)                                       \
929  InstructionKind GetKind() const OVERRIDE { return k##type; }          \
930  const char* DebugName() const OVERRIDE { return #type; }              \
931  const H##type* As##type() const OVERRIDE { return this; }             \
932  H##type* As##type() OVERRIDE { return this; }                         \
933  bool InstructionTypeEquals(HInstruction* other) const OVERRIDE {      \
934    return other->Is##type();                                           \
935  }                                                                     \
936  void Accept(HGraphVisitor* visitor) OVERRIDE
937
938template <typename T> class HUseList;
939
940template <typename T>
941class HUseListNode : public ArenaObject<kArenaAllocMisc> {
942 public:
943  HUseListNode* GetPrevious() const { return prev_; }
944  HUseListNode* GetNext() const { return next_; }
945  T GetUser() const { return user_; }
946  size_t GetIndex() const { return index_; }
947  void SetIndex(size_t index) { index_ = index; }
948
949 private:
950  HUseListNode(T user, size_t index)
951      : user_(user), index_(index), prev_(nullptr), next_(nullptr) {}
952
953  T const user_;
954  size_t index_;
955  HUseListNode<T>* prev_;
956  HUseListNode<T>* next_;
957
958  friend class HUseList<T>;
959
960  DISALLOW_COPY_AND_ASSIGN(HUseListNode);
961};
962
963template <typename T>
964class HUseList : public ValueObject {
965 public:
966  HUseList() : first_(nullptr) {}
967
968  void Clear() {
969    first_ = nullptr;
970  }
971
972  // Adds a new entry at the beginning of the use list and returns
973  // the newly created node.
974  HUseListNode<T>* AddUse(T user, size_t index, ArenaAllocator* arena) {
975    HUseListNode<T>* new_node = new (arena) HUseListNode<T>(user, index);
976    if (IsEmpty()) {
977      first_ = new_node;
978    } else {
979      first_->prev_ = new_node;
980      new_node->next_ = first_;
981      first_ = new_node;
982    }
983    return new_node;
984  }
985
986  HUseListNode<T>* GetFirst() const {
987    return first_;
988  }
989
990  void Remove(HUseListNode<T>* node) {
991    DCHECK(node != nullptr);
992    DCHECK(Contains(node));
993
994    if (node->prev_ != nullptr) {
995      node->prev_->next_ = node->next_;
996    }
997    if (node->next_ != nullptr) {
998      node->next_->prev_ = node->prev_;
999    }
1000    if (node == first_) {
1001      first_ = node->next_;
1002    }
1003  }
1004
1005  bool Contains(const HUseListNode<T>* node) const {
1006    if (node == nullptr) {
1007      return false;
1008    }
1009    for (HUseListNode<T>* current = first_; current != nullptr; current = current->GetNext()) {
1010      if (current == node) {
1011        return true;
1012      }
1013    }
1014    return false;
1015  }
1016
1017  bool IsEmpty() const {
1018    return first_ == nullptr;
1019  }
1020
1021  bool HasOnlyOneUse() const {
1022    return first_ != nullptr && first_->next_ == nullptr;
1023  }
1024
1025  size_t SizeSlow() const {
1026    size_t count = 0;
1027    for (HUseListNode<T>* current = first_; current != nullptr; current = current->GetNext()) {
1028      ++count;
1029    }
1030    return count;
1031  }
1032
1033 private:
1034  HUseListNode<T>* first_;
1035};
1036
1037template<typename T>
1038class HUseIterator : public ValueObject {
1039 public:
1040  explicit HUseIterator(const HUseList<T>& uses) : current_(uses.GetFirst()) {}
1041
1042  bool Done() const { return current_ == nullptr; }
1043
1044  void Advance() {
1045    DCHECK(!Done());
1046    current_ = current_->GetNext();
1047  }
1048
1049  HUseListNode<T>* Current() const {
1050    DCHECK(!Done());
1051    return current_;
1052  }
1053
1054 private:
1055  HUseListNode<T>* current_;
1056
1057  friend class HValue;
1058};
1059
1060// This class is used by HEnvironment and HInstruction classes to record the
1061// instructions they use and pointers to the corresponding HUseListNodes kept
1062// by the used instructions.
1063template <typename T>
1064class HUserRecord : public ValueObject {
1065 public:
1066  HUserRecord() : instruction_(nullptr), use_node_(nullptr) {}
1067  explicit HUserRecord(HInstruction* instruction) : instruction_(instruction), use_node_(nullptr) {}
1068
1069  HUserRecord(const HUserRecord<T>& old_record, HUseListNode<T>* use_node)
1070    : instruction_(old_record.instruction_), use_node_(use_node) {
1071    DCHECK(instruction_ != nullptr);
1072    DCHECK(use_node_ != nullptr);
1073    DCHECK(old_record.use_node_ == nullptr);
1074  }
1075
1076  HInstruction* GetInstruction() const { return instruction_; }
1077  HUseListNode<T>* GetUseNode() const { return use_node_; }
1078
1079 private:
1080  // Instruction used by the user.
1081  HInstruction* instruction_;
1082
1083  // Corresponding entry in the use list kept by 'instruction_'.
1084  HUseListNode<T>* use_node_;
1085};
1086
1087// TODO: Add better documentation to this class and maybe refactor with more suggestive names.
1088// - Has(All)SideEffects suggests that all the side effects are present but only ChangesSomething
1089//   flag is consider.
1090// - DependsOn suggests that there is a real dependency between side effects but it only
1091//   checks DependendsOnSomething flag.
1092//
1093// Represents the side effects an instruction may have.
1094class SideEffects : public ValueObject {
1095 public:
1096  SideEffects() : flags_(0) {}
1097
1098  static SideEffects None() {
1099    return SideEffects(0);
1100  }
1101
1102  static SideEffects All() {
1103    return SideEffects(ChangesSomething().flags_ | DependsOnSomething().flags_);
1104  }
1105
1106  static SideEffects ChangesSomething() {
1107    return SideEffects((1 << kFlagChangesCount) - 1);
1108  }
1109
1110  static SideEffects DependsOnSomething() {
1111    int count = kFlagDependsOnCount - kFlagChangesCount;
1112    return SideEffects(((1 << count) - 1) << kFlagChangesCount);
1113  }
1114
1115  SideEffects Union(SideEffects other) const {
1116    return SideEffects(flags_ | other.flags_);
1117  }
1118
1119  bool HasSideEffects() const {
1120    size_t all_bits_set = (1 << kFlagChangesCount) - 1;
1121    return (flags_ & all_bits_set) != 0;
1122  }
1123
1124  bool HasAllSideEffects() const {
1125    size_t all_bits_set = (1 << kFlagChangesCount) - 1;
1126    return all_bits_set == (flags_ & all_bits_set);
1127  }
1128
1129  bool DependsOn(SideEffects other) const {
1130    size_t depends_flags = other.ComputeDependsFlags();
1131    return (flags_ & depends_flags) != 0;
1132  }
1133
1134  bool HasDependencies() const {
1135    int count = kFlagDependsOnCount - kFlagChangesCount;
1136    size_t all_bits_set = (1 << count) - 1;
1137    return ((flags_ >> kFlagChangesCount) & all_bits_set) != 0;
1138  }
1139
1140 private:
1141  static constexpr int kFlagChangesSomething = 0;
1142  static constexpr int kFlagChangesCount = kFlagChangesSomething + 1;
1143
1144  static constexpr int kFlagDependsOnSomething = kFlagChangesCount;
1145  static constexpr int kFlagDependsOnCount = kFlagDependsOnSomething + 1;
1146
1147  explicit SideEffects(size_t flags) : flags_(flags) {}
1148
1149  size_t ComputeDependsFlags() const {
1150    return flags_ << kFlagChangesCount;
1151  }
1152
1153  size_t flags_;
1154};
1155
1156// A HEnvironment object contains the values of virtual registers at a given location.
1157class HEnvironment : public ArenaObject<kArenaAllocMisc> {
1158 public:
1159  HEnvironment(ArenaAllocator* arena,
1160               size_t number_of_vregs,
1161               const DexFile& dex_file,
1162               uint32_t method_idx,
1163               uint32_t dex_pc,
1164               InvokeType invoke_type,
1165               HInstruction* holder)
1166     : vregs_(arena, number_of_vregs),
1167       locations_(arena, number_of_vregs),
1168       parent_(nullptr),
1169       dex_file_(dex_file),
1170       method_idx_(method_idx),
1171       dex_pc_(dex_pc),
1172       invoke_type_(invoke_type),
1173       holder_(holder) {
1174    vregs_.SetSize(number_of_vregs);
1175    for (size_t i = 0; i < number_of_vregs; i++) {
1176      vregs_.Put(i, HUserRecord<HEnvironment*>());
1177    }
1178
1179    locations_.SetSize(number_of_vregs);
1180    for (size_t i = 0; i < number_of_vregs; ++i) {
1181      locations_.Put(i, Location());
1182    }
1183  }
1184
1185  HEnvironment(ArenaAllocator* arena, const HEnvironment& to_copy, HInstruction* holder)
1186      : HEnvironment(arena,
1187                     to_copy.Size(),
1188                     to_copy.GetDexFile(),
1189                     to_copy.GetMethodIdx(),
1190                     to_copy.GetDexPc(),
1191                     to_copy.GetInvokeType(),
1192                     holder) {}
1193
1194  void SetAndCopyParentChain(ArenaAllocator* allocator, HEnvironment* parent) {
1195    if (parent_ != nullptr) {
1196      parent_->SetAndCopyParentChain(allocator, parent);
1197    } else {
1198      parent_ = new (allocator) HEnvironment(allocator, *parent, holder_);
1199      parent_->CopyFrom(parent);
1200      if (parent->GetParent() != nullptr) {
1201        parent_->SetAndCopyParentChain(allocator, parent->GetParent());
1202      }
1203    }
1204  }
1205
1206  void CopyFrom(const GrowableArray<HInstruction*>& locals);
1207  void CopyFrom(HEnvironment* environment);
1208
1209  // Copy from `env`. If it's a loop phi for `loop_header`, copy the first
1210  // input to the loop phi instead. This is for inserting instructions that
1211  // require an environment (like HDeoptimization) in the loop pre-header.
1212  void CopyFromWithLoopPhiAdjustment(HEnvironment* env, HBasicBlock* loop_header);
1213
1214  void SetRawEnvAt(size_t index, HInstruction* instruction) {
1215    vregs_.Put(index, HUserRecord<HEnvironment*>(instruction));
1216  }
1217
1218  HInstruction* GetInstructionAt(size_t index) const {
1219    return vregs_.Get(index).GetInstruction();
1220  }
1221
1222  void RemoveAsUserOfInput(size_t index) const;
1223
1224  size_t Size() const { return vregs_.Size(); }
1225
1226  HEnvironment* GetParent() const { return parent_; }
1227
1228  void SetLocationAt(size_t index, Location location) {
1229    locations_.Put(index, location);
1230  }
1231
1232  Location GetLocationAt(size_t index) const {
1233    return locations_.Get(index);
1234  }
1235
1236  uint32_t GetDexPc() const {
1237    return dex_pc_;
1238  }
1239
1240  uint32_t GetMethodIdx() const {
1241    return method_idx_;
1242  }
1243
1244  InvokeType GetInvokeType() const {
1245    return invoke_type_;
1246  }
1247
1248  const DexFile& GetDexFile() const {
1249    return dex_file_;
1250  }
1251
1252  HInstruction* GetHolder() const {
1253    return holder_;
1254  }
1255
1256 private:
1257  // Record instructions' use entries of this environment for constant-time removal.
1258  // It should only be called by HInstruction when a new environment use is added.
1259  void RecordEnvUse(HUseListNode<HEnvironment*>* env_use) {
1260    DCHECK(env_use->GetUser() == this);
1261    size_t index = env_use->GetIndex();
1262    vregs_.Put(index, HUserRecord<HEnvironment*>(vregs_.Get(index), env_use));
1263  }
1264
1265  GrowableArray<HUserRecord<HEnvironment*> > vregs_;
1266  GrowableArray<Location> locations_;
1267  HEnvironment* parent_;
1268  const DexFile& dex_file_;
1269  const uint32_t method_idx_;
1270  const uint32_t dex_pc_;
1271  const InvokeType invoke_type_;
1272
1273  // The instruction that holds this environment. Only used in debug mode
1274  // to ensure the graph is consistent.
1275  HInstruction* const holder_;
1276
1277  friend class HInstruction;
1278
1279  DISALLOW_COPY_AND_ASSIGN(HEnvironment);
1280};
1281
1282class ReferenceTypeInfo : ValueObject {
1283 public:
1284  typedef Handle<mirror::Class> TypeHandle;
1285
1286  static ReferenceTypeInfo Create(TypeHandle type_handle, bool is_exact)
1287      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1288    if (type_handle->IsObjectClass()) {
1289      // Override the type handle to be consistent with the case when we get to
1290      // Top but don't have the Object class available. It avoids having to guess
1291      // what value the type_handle has when it's Top.
1292      return ReferenceTypeInfo(TypeHandle(), is_exact, true);
1293    } else {
1294      return ReferenceTypeInfo(type_handle, is_exact, false);
1295    }
1296  }
1297
1298  static ReferenceTypeInfo CreateTop(bool is_exact) {
1299    return ReferenceTypeInfo(TypeHandle(), is_exact, true);
1300  }
1301
1302  bool IsExact() const { return is_exact_; }
1303  bool IsTop() const { return is_top_; }
1304  bool IsInterface() const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1305    return !IsTop() && GetTypeHandle()->IsInterface();
1306  }
1307
1308  Handle<mirror::Class> GetTypeHandle() const { return type_handle_; }
1309
1310  bool IsSupertypeOf(ReferenceTypeInfo rti) const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1311    if (IsTop()) {
1312      // Top (equivalent for java.lang.Object) is supertype of anything.
1313      return true;
1314    }
1315    if (rti.IsTop()) {
1316      // If we get here `this` is not Top() so it can't be a supertype.
1317      return false;
1318    }
1319    return GetTypeHandle()->IsAssignableFrom(rti.GetTypeHandle().Get());
1320  }
1321
1322  // Returns true if the type information provide the same amount of details.
1323  // Note that it does not mean that the instructions have the same actual type
1324  // (e.g. tops are equal but they can be the result of a merge).
1325  bool IsEqual(ReferenceTypeInfo rti) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1326    if (IsExact() != rti.IsExact()) {
1327      return false;
1328    }
1329    if (IsTop() && rti.IsTop()) {
1330      // `Top` means java.lang.Object, so the types are equivalent.
1331      return true;
1332    }
1333    if (IsTop() || rti.IsTop()) {
1334      // If only one is top or object than they are not equivalent.
1335      // NB: We need this extra check because the type_handle of `Top` is invalid
1336      // and we cannot inspect its reference.
1337      return false;
1338    }
1339
1340    // Finally check the types.
1341    return GetTypeHandle().Get() == rti.GetTypeHandle().Get();
1342  }
1343
1344 private:
1345  ReferenceTypeInfo() : ReferenceTypeInfo(TypeHandle(), false, true) {}
1346  ReferenceTypeInfo(TypeHandle type_handle, bool is_exact, bool is_top)
1347      : type_handle_(type_handle), is_exact_(is_exact), is_top_(is_top) {}
1348
1349  // The class of the object.
1350  TypeHandle type_handle_;
1351  // Whether or not the type is exact or a superclass of the actual type.
1352  // Whether or not we have any information about this type.
1353  bool is_exact_;
1354  // A true value here means that the object type should be java.lang.Object.
1355  // We don't have access to the corresponding mirror object every time so this
1356  // flag acts as a substitute. When true, the TypeHandle refers to a null
1357  // pointer and should not be used.
1358  bool is_top_;
1359};
1360
1361std::ostream& operator<<(std::ostream& os, const ReferenceTypeInfo& rhs);
1362
1363class HInstruction : public ArenaObject<kArenaAllocMisc> {
1364 public:
1365  explicit HInstruction(SideEffects side_effects)
1366      : previous_(nullptr),
1367        next_(nullptr),
1368        block_(nullptr),
1369        id_(-1),
1370        ssa_index_(-1),
1371        environment_(nullptr),
1372        locations_(nullptr),
1373        live_interval_(nullptr),
1374        lifetime_position_(kNoLifetime),
1375        side_effects_(side_effects),
1376        reference_type_info_(ReferenceTypeInfo::CreateTop(/* is_exact */ false)) {}
1377
1378  virtual ~HInstruction() {}
1379
1380#define DECLARE_KIND(type, super) k##type,
1381  enum InstructionKind {
1382    FOR_EACH_INSTRUCTION(DECLARE_KIND)
1383  };
1384#undef DECLARE_KIND
1385
1386  HInstruction* GetNext() const { return next_; }
1387  HInstruction* GetPrevious() const { return previous_; }
1388
1389  HInstruction* GetNextDisregardingMoves() const;
1390  HInstruction* GetPreviousDisregardingMoves() const;
1391
1392  HBasicBlock* GetBlock() const { return block_; }
1393  void SetBlock(HBasicBlock* block) { block_ = block; }
1394  bool IsInBlock() const { return block_ != nullptr; }
1395  bool IsInLoop() const { return block_->IsInLoop(); }
1396  bool IsLoopHeaderPhi() { return IsPhi() && block_->IsLoopHeader(); }
1397
1398  virtual size_t InputCount() const = 0;
1399  HInstruction* InputAt(size_t i) const { return InputRecordAt(i).GetInstruction(); }
1400
1401  virtual void Accept(HGraphVisitor* visitor) = 0;
1402  virtual const char* DebugName() const = 0;
1403
1404  virtual Primitive::Type GetType() const { return Primitive::kPrimVoid; }
1405  void SetRawInputAt(size_t index, HInstruction* input) {
1406    SetRawInputRecordAt(index, HUserRecord<HInstruction*>(input));
1407  }
1408
1409  virtual bool NeedsEnvironment() const { return false; }
1410  virtual uint32_t GetDexPc() const {
1411    LOG(FATAL) << "GetDexPc() cannot be called on an instruction that"
1412                  " does not need an environment";
1413    UNREACHABLE();
1414  }
1415  virtual bool IsControlFlow() const { return false; }
1416  virtual bool CanThrow() const { return false; }
1417  bool HasSideEffects() const { return side_effects_.HasSideEffects(); }
1418
1419  // Does not apply for all instructions, but having this at top level greatly
1420  // simplifies the null check elimination.
1421  virtual bool CanBeNull() const {
1422    DCHECK_EQ(GetType(), Primitive::kPrimNot) << "CanBeNull only applies to reference types";
1423    return true;
1424  }
1425
1426  virtual bool CanDoImplicitNullCheckOn(HInstruction* obj) const {
1427    UNUSED(obj);
1428    return false;
1429  }
1430
1431  void SetReferenceTypeInfo(ReferenceTypeInfo reference_type_info) {
1432    DCHECK_EQ(GetType(), Primitive::kPrimNot);
1433    reference_type_info_ = reference_type_info;
1434  }
1435
1436  ReferenceTypeInfo GetReferenceTypeInfo() const {
1437    DCHECK_EQ(GetType(), Primitive::kPrimNot);
1438    return reference_type_info_;
1439  }
1440
1441  void AddUseAt(HInstruction* user, size_t index) {
1442    DCHECK(user != nullptr);
1443    HUseListNode<HInstruction*>* use =
1444        uses_.AddUse(user, index, GetBlock()->GetGraph()->GetArena());
1445    user->SetRawInputRecordAt(index, HUserRecord<HInstruction*>(user->InputRecordAt(index), use));
1446  }
1447
1448  void AddEnvUseAt(HEnvironment* user, size_t index) {
1449    DCHECK(user != nullptr);
1450    HUseListNode<HEnvironment*>* env_use =
1451        env_uses_.AddUse(user, index, GetBlock()->GetGraph()->GetArena());
1452    user->RecordEnvUse(env_use);
1453  }
1454
1455  void RemoveAsUserOfInput(size_t input) {
1456    HUserRecord<HInstruction*> input_use = InputRecordAt(input);
1457    input_use.GetInstruction()->uses_.Remove(input_use.GetUseNode());
1458  }
1459
1460  const HUseList<HInstruction*>& GetUses() const { return uses_; }
1461  const HUseList<HEnvironment*>& GetEnvUses() const { return env_uses_; }
1462
1463  bool HasUses() const { return !uses_.IsEmpty() || !env_uses_.IsEmpty(); }
1464  bool HasEnvironmentUses() const { return !env_uses_.IsEmpty(); }
1465  bool HasNonEnvironmentUses() const { return !uses_.IsEmpty(); }
1466  bool HasOnlyOneNonEnvironmentUse() const {
1467    return !HasEnvironmentUses() && GetUses().HasOnlyOneUse();
1468  }
1469
1470  // Does this instruction strictly dominate `other_instruction`?
1471  // Returns false if this instruction and `other_instruction` are the same.
1472  // Aborts if this instruction and `other_instruction` are both phis.
1473  bool StrictlyDominates(HInstruction* other_instruction) const;
1474
1475  int GetId() const { return id_; }
1476  void SetId(int id) { id_ = id; }
1477
1478  int GetSsaIndex() const { return ssa_index_; }
1479  void SetSsaIndex(int ssa_index) { ssa_index_ = ssa_index; }
1480  bool HasSsaIndex() const { return ssa_index_ != -1; }
1481
1482  bool HasEnvironment() const { return environment_ != nullptr; }
1483  HEnvironment* GetEnvironment() const { return environment_; }
1484  // Set the `environment_` field. Raw because this method does not
1485  // update the uses lists.
1486  void SetRawEnvironment(HEnvironment* environment) {
1487    DCHECK(environment_ == nullptr);
1488    DCHECK_EQ(environment->GetHolder(), this);
1489    environment_ = environment;
1490  }
1491
1492  // Set the environment of this instruction, copying it from `environment`. While
1493  // copying, the uses lists are being updated.
1494  void CopyEnvironmentFrom(HEnvironment* environment) {
1495    DCHECK(environment_ == nullptr);
1496    ArenaAllocator* allocator = GetBlock()->GetGraph()->GetArena();
1497    environment_ = new (allocator) HEnvironment(allocator, *environment, this);
1498    environment_->CopyFrom(environment);
1499    if (environment->GetParent() != nullptr) {
1500      environment_->SetAndCopyParentChain(allocator, environment->GetParent());
1501    }
1502  }
1503
1504  void CopyEnvironmentFromWithLoopPhiAdjustment(HEnvironment* environment,
1505                                                HBasicBlock* block) {
1506    DCHECK(environment_ == nullptr);
1507    ArenaAllocator* allocator = GetBlock()->GetGraph()->GetArena();
1508    environment_ = new (allocator) HEnvironment(allocator, *environment, this);
1509    environment_->CopyFromWithLoopPhiAdjustment(environment, block);
1510    if (environment->GetParent() != nullptr) {
1511      environment_->SetAndCopyParentChain(allocator, environment->GetParent());
1512    }
1513  }
1514
1515  // Returns the number of entries in the environment. Typically, that is the
1516  // number of dex registers in a method. It could be more in case of inlining.
1517  size_t EnvironmentSize() const;
1518
1519  LocationSummary* GetLocations() const { return locations_; }
1520  void SetLocations(LocationSummary* locations) { locations_ = locations; }
1521
1522  void ReplaceWith(HInstruction* instruction);
1523  void ReplaceInput(HInstruction* replacement, size_t index);
1524
1525  // This is almost the same as doing `ReplaceWith()`. But in this helper, the
1526  // uses of this instruction by `other` are *not* updated.
1527  void ReplaceWithExceptInReplacementAtIndex(HInstruction* other, size_t use_index) {
1528    ReplaceWith(other);
1529    other->ReplaceInput(this, use_index);
1530  }
1531
1532  // Move `this` instruction before `cursor`.
1533  void MoveBefore(HInstruction* cursor);
1534
1535#define INSTRUCTION_TYPE_CHECK(type, super)                                    \
1536  bool Is##type() const { return (As##type() != nullptr); }                    \
1537  virtual const H##type* As##type() const { return nullptr; }                  \
1538  virtual H##type* As##type() { return nullptr; }
1539
1540  FOR_EACH_INSTRUCTION(INSTRUCTION_TYPE_CHECK)
1541#undef INSTRUCTION_TYPE_CHECK
1542
1543  // Returns whether the instruction can be moved within the graph.
1544  virtual bool CanBeMoved() const { return false; }
1545
1546  // Returns whether the two instructions are of the same kind.
1547  virtual bool InstructionTypeEquals(HInstruction* other) const {
1548    UNUSED(other);
1549    return false;
1550  }
1551
1552  // Returns whether any data encoded in the two instructions is equal.
1553  // This method does not look at the inputs. Both instructions must be
1554  // of the same type, otherwise the method has undefined behavior.
1555  virtual bool InstructionDataEquals(HInstruction* other) const {
1556    UNUSED(other);
1557    return false;
1558  }
1559
1560  // Returns whether two instructions are equal, that is:
1561  // 1) They have the same type and contain the same data (InstructionDataEquals).
1562  // 2) Their inputs are identical.
1563  bool Equals(HInstruction* other) const;
1564
1565  virtual InstructionKind GetKind() const = 0;
1566
1567  virtual size_t ComputeHashCode() const {
1568    size_t result = GetKind();
1569    for (size_t i = 0, e = InputCount(); i < e; ++i) {
1570      result = (result * 31) + InputAt(i)->GetId();
1571    }
1572    return result;
1573  }
1574
1575  SideEffects GetSideEffects() const { return side_effects_; }
1576
1577  size_t GetLifetimePosition() const { return lifetime_position_; }
1578  void SetLifetimePosition(size_t position) { lifetime_position_ = position; }
1579  LiveInterval* GetLiveInterval() const { return live_interval_; }
1580  void SetLiveInterval(LiveInterval* interval) { live_interval_ = interval; }
1581  bool HasLiveInterval() const { return live_interval_ != nullptr; }
1582
1583  bool IsSuspendCheckEntry() const { return IsSuspendCheck() && GetBlock()->IsEntryBlock(); }
1584
1585  // Returns whether the code generation of the instruction will require to have access
1586  // to the current method. Such instructions are:
1587  // (1): Instructions that require an environment, as calling the runtime requires
1588  //      to walk the stack and have the current method stored at a specific stack address.
1589  // (2): Object literals like classes and strings, that are loaded from the dex cache
1590  //      fields of the current method.
1591  bool NeedsCurrentMethod() const {
1592    return NeedsEnvironment() || IsLoadClass() || IsLoadString();
1593  }
1594
1595  virtual bool NeedsDexCache() const { return false; }
1596
1597 protected:
1598  virtual const HUserRecord<HInstruction*> InputRecordAt(size_t i) const = 0;
1599  virtual void SetRawInputRecordAt(size_t index, const HUserRecord<HInstruction*>& input) = 0;
1600
1601 private:
1602  void RemoveEnvironmentUser(HUseListNode<HEnvironment*>* use_node) { env_uses_.Remove(use_node); }
1603
1604  HInstruction* previous_;
1605  HInstruction* next_;
1606  HBasicBlock* block_;
1607
1608  // An instruction gets an id when it is added to the graph.
1609  // It reflects creation order. A negative id means the instruction
1610  // has not been added to the graph.
1611  int id_;
1612
1613  // When doing liveness analysis, instructions that have uses get an SSA index.
1614  int ssa_index_;
1615
1616  // List of instructions that have this instruction as input.
1617  HUseList<HInstruction*> uses_;
1618
1619  // List of environments that contain this instruction.
1620  HUseList<HEnvironment*> env_uses_;
1621
1622  // The environment associated with this instruction. Not null if the instruction
1623  // might jump out of the method.
1624  HEnvironment* environment_;
1625
1626  // Set by the code generator.
1627  LocationSummary* locations_;
1628
1629  // Set by the liveness analysis.
1630  LiveInterval* live_interval_;
1631
1632  // Set by the liveness analysis, this is the position in a linear
1633  // order of blocks where this instruction's live interval start.
1634  size_t lifetime_position_;
1635
1636  const SideEffects side_effects_;
1637
1638  // TODO: for primitive types this should be marked as invalid.
1639  ReferenceTypeInfo reference_type_info_;
1640
1641  friend class GraphChecker;
1642  friend class HBasicBlock;
1643  friend class HEnvironment;
1644  friend class HGraph;
1645  friend class HInstructionList;
1646
1647  DISALLOW_COPY_AND_ASSIGN(HInstruction);
1648};
1649std::ostream& operator<<(std::ostream& os, const HInstruction::InstructionKind& rhs);
1650
1651class HInputIterator : public ValueObject {
1652 public:
1653  explicit HInputIterator(HInstruction* instruction) : instruction_(instruction), index_(0) {}
1654
1655  bool Done() const { return index_ == instruction_->InputCount(); }
1656  HInstruction* Current() const { return instruction_->InputAt(index_); }
1657  void Advance() { index_++; }
1658
1659 private:
1660  HInstruction* instruction_;
1661  size_t index_;
1662
1663  DISALLOW_COPY_AND_ASSIGN(HInputIterator);
1664};
1665
1666class HInstructionIterator : public ValueObject {
1667 public:
1668  explicit HInstructionIterator(const HInstructionList& instructions)
1669      : instruction_(instructions.first_instruction_) {
1670    next_ = Done() ? nullptr : instruction_->GetNext();
1671  }
1672
1673  bool Done() const { return instruction_ == nullptr; }
1674  HInstruction* Current() const { return instruction_; }
1675  void Advance() {
1676    instruction_ = next_;
1677    next_ = Done() ? nullptr : instruction_->GetNext();
1678  }
1679
1680 private:
1681  HInstruction* instruction_;
1682  HInstruction* next_;
1683
1684  DISALLOW_COPY_AND_ASSIGN(HInstructionIterator);
1685};
1686
1687class HBackwardInstructionIterator : public ValueObject {
1688 public:
1689  explicit HBackwardInstructionIterator(const HInstructionList& instructions)
1690      : instruction_(instructions.last_instruction_) {
1691    next_ = Done() ? nullptr : instruction_->GetPrevious();
1692  }
1693
1694  bool Done() const { return instruction_ == nullptr; }
1695  HInstruction* Current() const { return instruction_; }
1696  void Advance() {
1697    instruction_ = next_;
1698    next_ = Done() ? nullptr : instruction_->GetPrevious();
1699  }
1700
1701 private:
1702  HInstruction* instruction_;
1703  HInstruction* next_;
1704
1705  DISALLOW_COPY_AND_ASSIGN(HBackwardInstructionIterator);
1706};
1707
1708// An embedded container with N elements of type T.  Used (with partial
1709// specialization for N=0) because embedded arrays cannot have size 0.
1710template<typename T, intptr_t N>
1711class EmbeddedArray {
1712 public:
1713  EmbeddedArray() : elements_() {}
1714
1715  intptr_t GetLength() const { return N; }
1716
1717  const T& operator[](intptr_t i) const {
1718    DCHECK_LT(i, GetLength());
1719    return elements_[i];
1720  }
1721
1722  T& operator[](intptr_t i) {
1723    DCHECK_LT(i, GetLength());
1724    return elements_[i];
1725  }
1726
1727  const T& At(intptr_t i) const {
1728    return (*this)[i];
1729  }
1730
1731  void SetAt(intptr_t i, const T& val) {
1732    (*this)[i] = val;
1733  }
1734
1735 private:
1736  T elements_[N];
1737};
1738
1739template<typename T>
1740class EmbeddedArray<T, 0> {
1741 public:
1742  intptr_t length() const { return 0; }
1743  const T& operator[](intptr_t i) const {
1744    UNUSED(i);
1745    LOG(FATAL) << "Unreachable";
1746    UNREACHABLE();
1747  }
1748  T& operator[](intptr_t i) {
1749    UNUSED(i);
1750    LOG(FATAL) << "Unreachable";
1751    UNREACHABLE();
1752  }
1753};
1754
1755template<intptr_t N>
1756class HTemplateInstruction: public HInstruction {
1757 public:
1758  HTemplateInstruction<N>(SideEffects side_effects)
1759      : HInstruction(side_effects), inputs_() {}
1760  virtual ~HTemplateInstruction() {}
1761
1762  size_t InputCount() const OVERRIDE { return N; }
1763
1764 protected:
1765  const HUserRecord<HInstruction*> InputRecordAt(size_t i) const OVERRIDE { return inputs_[i]; }
1766
1767  void SetRawInputRecordAt(size_t i, const HUserRecord<HInstruction*>& input) OVERRIDE {
1768    inputs_[i] = input;
1769  }
1770
1771 private:
1772  EmbeddedArray<HUserRecord<HInstruction*>, N> inputs_;
1773
1774  friend class SsaBuilder;
1775};
1776
1777template<intptr_t N>
1778class HExpression : public HTemplateInstruction<N> {
1779 public:
1780  HExpression<N>(Primitive::Type type, SideEffects side_effects)
1781      : HTemplateInstruction<N>(side_effects), type_(type) {}
1782  virtual ~HExpression() {}
1783
1784  Primitive::Type GetType() const OVERRIDE { return type_; }
1785
1786 protected:
1787  Primitive::Type type_;
1788};
1789
1790// Represents dex's RETURN_VOID opcode. A HReturnVoid is a control flow
1791// instruction that branches to the exit block.
1792class HReturnVoid : public HTemplateInstruction<0> {
1793 public:
1794  HReturnVoid() : HTemplateInstruction(SideEffects::None()) {}
1795
1796  bool IsControlFlow() const OVERRIDE { return true; }
1797
1798  DECLARE_INSTRUCTION(ReturnVoid);
1799
1800 private:
1801  DISALLOW_COPY_AND_ASSIGN(HReturnVoid);
1802};
1803
1804// Represents dex's RETURN opcodes. A HReturn is a control flow
1805// instruction that branches to the exit block.
1806class HReturn : public HTemplateInstruction<1> {
1807 public:
1808  explicit HReturn(HInstruction* value) : HTemplateInstruction(SideEffects::None()) {
1809    SetRawInputAt(0, value);
1810  }
1811
1812  bool IsControlFlow() const OVERRIDE { return true; }
1813
1814  DECLARE_INSTRUCTION(Return);
1815
1816 private:
1817  DISALLOW_COPY_AND_ASSIGN(HReturn);
1818};
1819
1820// The exit instruction is the only instruction of the exit block.
1821// Instructions aborting the method (HThrow and HReturn) must branch to the
1822// exit block.
1823class HExit : public HTemplateInstruction<0> {
1824 public:
1825  HExit() : HTemplateInstruction(SideEffects::None()) {}
1826
1827  bool IsControlFlow() const OVERRIDE { return true; }
1828
1829  DECLARE_INSTRUCTION(Exit);
1830
1831 private:
1832  DISALLOW_COPY_AND_ASSIGN(HExit);
1833};
1834
1835// Jumps from one block to another.
1836class HGoto : public HTemplateInstruction<0> {
1837 public:
1838  HGoto() : HTemplateInstruction(SideEffects::None()) {}
1839
1840  bool IsControlFlow() const OVERRIDE { return true; }
1841
1842  HBasicBlock* GetSuccessor() const {
1843    return GetBlock()->GetSuccessors().Get(0);
1844  }
1845
1846  DECLARE_INSTRUCTION(Goto);
1847
1848 private:
1849  DISALLOW_COPY_AND_ASSIGN(HGoto);
1850};
1851
1852
1853// Conditional branch. A block ending with an HIf instruction must have
1854// two successors.
1855class HIf : public HTemplateInstruction<1> {
1856 public:
1857  explicit HIf(HInstruction* input) : HTemplateInstruction(SideEffects::None()) {
1858    SetRawInputAt(0, input);
1859  }
1860
1861  bool IsControlFlow() const OVERRIDE { return true; }
1862
1863  HBasicBlock* IfTrueSuccessor() const {
1864    return GetBlock()->GetSuccessors().Get(0);
1865  }
1866
1867  HBasicBlock* IfFalseSuccessor() const {
1868    return GetBlock()->GetSuccessors().Get(1);
1869  }
1870
1871  DECLARE_INSTRUCTION(If);
1872
1873 private:
1874  DISALLOW_COPY_AND_ASSIGN(HIf);
1875};
1876
1877// Deoptimize to interpreter, upon checking a condition.
1878class HDeoptimize : public HTemplateInstruction<1> {
1879 public:
1880  HDeoptimize(HInstruction* cond, uint32_t dex_pc)
1881      : HTemplateInstruction(SideEffects::None()),
1882        dex_pc_(dex_pc) {
1883    SetRawInputAt(0, cond);
1884  }
1885
1886  bool NeedsEnvironment() const OVERRIDE { return true; }
1887  bool CanThrow() const OVERRIDE { return true; }
1888  uint32_t GetDexPc() const OVERRIDE { return dex_pc_; }
1889
1890  DECLARE_INSTRUCTION(Deoptimize);
1891
1892 private:
1893  uint32_t dex_pc_;
1894
1895  DISALLOW_COPY_AND_ASSIGN(HDeoptimize);
1896};
1897
1898// Represents the ArtMethod that was passed as a first argument to
1899// the method. It is used by instructions that depend on it, like
1900// instructions that work with the dex cache.
1901class HCurrentMethod : public HExpression<0> {
1902 public:
1903  explicit HCurrentMethod(Primitive::Type type) : HExpression(type, SideEffects::None()) {}
1904
1905  DECLARE_INSTRUCTION(CurrentMethod);
1906
1907 private:
1908  DISALLOW_COPY_AND_ASSIGN(HCurrentMethod);
1909};
1910
1911class HUnaryOperation : public HExpression<1> {
1912 public:
1913  HUnaryOperation(Primitive::Type result_type, HInstruction* input)
1914      : HExpression(result_type, SideEffects::None()) {
1915    SetRawInputAt(0, input);
1916  }
1917
1918  HInstruction* GetInput() const { return InputAt(0); }
1919  Primitive::Type GetResultType() const { return GetType(); }
1920
1921  bool CanBeMoved() const OVERRIDE { return true; }
1922  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
1923    UNUSED(other);
1924    return true;
1925  }
1926
1927  // Try to statically evaluate `operation` and return a HConstant
1928  // containing the result of this evaluation.  If `operation` cannot
1929  // be evaluated as a constant, return null.
1930  HConstant* TryStaticEvaluation() const;
1931
1932  // Apply this operation to `x`.
1933  virtual int32_t Evaluate(int32_t x) const = 0;
1934  virtual int64_t Evaluate(int64_t x) const = 0;
1935
1936  DECLARE_INSTRUCTION(UnaryOperation);
1937
1938 private:
1939  DISALLOW_COPY_AND_ASSIGN(HUnaryOperation);
1940};
1941
1942class HBinaryOperation : public HExpression<2> {
1943 public:
1944  HBinaryOperation(Primitive::Type result_type,
1945                   HInstruction* left,
1946                   HInstruction* right) : HExpression(result_type, SideEffects::None()) {
1947    SetRawInputAt(0, left);
1948    SetRawInputAt(1, right);
1949  }
1950
1951  HInstruction* GetLeft() const { return InputAt(0); }
1952  HInstruction* GetRight() const { return InputAt(1); }
1953  Primitive::Type GetResultType() const { return GetType(); }
1954
1955  virtual bool IsCommutative() const { return false; }
1956
1957  // Put constant on the right.
1958  // Returns whether order is changed.
1959  bool OrderInputsWithConstantOnTheRight() {
1960    HInstruction* left = InputAt(0);
1961    HInstruction* right = InputAt(1);
1962    if (left->IsConstant() && !right->IsConstant()) {
1963      ReplaceInput(right, 0);
1964      ReplaceInput(left, 1);
1965      return true;
1966    }
1967    return false;
1968  }
1969
1970  // Order inputs by instruction id, but favor constant on the right side.
1971  // This helps GVN for commutative ops.
1972  void OrderInputs() {
1973    DCHECK(IsCommutative());
1974    HInstruction* left = InputAt(0);
1975    HInstruction* right = InputAt(1);
1976    if (left == right || (!left->IsConstant() && right->IsConstant())) {
1977      return;
1978    }
1979    if (OrderInputsWithConstantOnTheRight()) {
1980      return;
1981    }
1982    // Order according to instruction id.
1983    if (left->GetId() > right->GetId()) {
1984      ReplaceInput(right, 0);
1985      ReplaceInput(left, 1);
1986    }
1987  }
1988
1989  bool CanBeMoved() const OVERRIDE { return true; }
1990  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
1991    UNUSED(other);
1992    return true;
1993  }
1994
1995  // Try to statically evaluate `operation` and return a HConstant
1996  // containing the result of this evaluation.  If `operation` cannot
1997  // be evaluated as a constant, return null.
1998  HConstant* TryStaticEvaluation() const;
1999
2000  // Apply this operation to `x` and `y`.
2001  virtual int32_t Evaluate(int32_t x, int32_t y) const = 0;
2002  virtual int64_t Evaluate(int64_t x, int64_t y) const = 0;
2003
2004  // Returns an input that can legally be used as the right input and is
2005  // constant, or null.
2006  HConstant* GetConstantRight() const;
2007
2008  // If `GetConstantRight()` returns one of the input, this returns the other
2009  // one. Otherwise it returns null.
2010  HInstruction* GetLeastConstantLeft() const;
2011
2012  DECLARE_INSTRUCTION(BinaryOperation);
2013
2014 private:
2015  DISALLOW_COPY_AND_ASSIGN(HBinaryOperation);
2016};
2017
2018class HCondition : public HBinaryOperation {
2019 public:
2020  HCondition(HInstruction* first, HInstruction* second)
2021      : HBinaryOperation(Primitive::kPrimBoolean, first, second),
2022        needs_materialization_(true) {}
2023
2024  bool NeedsMaterialization() const { return needs_materialization_; }
2025  void ClearNeedsMaterialization() { needs_materialization_ = false; }
2026
2027  // For code generation purposes, returns whether this instruction is just before
2028  // `instruction`, and disregard moves in between.
2029  bool IsBeforeWhenDisregardMoves(HInstruction* instruction) const;
2030
2031  DECLARE_INSTRUCTION(Condition);
2032
2033  virtual IfCondition GetCondition() const = 0;
2034
2035 private:
2036  // For register allocation purposes, returns whether this instruction needs to be
2037  // materialized (that is, not just be in the processor flags).
2038  bool needs_materialization_;
2039
2040  DISALLOW_COPY_AND_ASSIGN(HCondition);
2041};
2042
2043// Instruction to check if two inputs are equal to each other.
2044class HEqual : public HCondition {
2045 public:
2046  HEqual(HInstruction* first, HInstruction* second)
2047      : HCondition(first, second) {}
2048
2049  bool IsCommutative() const OVERRIDE { return true; }
2050
2051  int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE {
2052    return x == y ? 1 : 0;
2053  }
2054  int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE {
2055    return x == y ? 1 : 0;
2056  }
2057
2058  DECLARE_INSTRUCTION(Equal);
2059
2060  IfCondition GetCondition() const OVERRIDE {
2061    return kCondEQ;
2062  }
2063
2064 private:
2065  DISALLOW_COPY_AND_ASSIGN(HEqual);
2066};
2067
2068class HNotEqual : public HCondition {
2069 public:
2070  HNotEqual(HInstruction* first, HInstruction* second)
2071      : HCondition(first, second) {}
2072
2073  bool IsCommutative() const OVERRIDE { return true; }
2074
2075  int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE {
2076    return x != y ? 1 : 0;
2077  }
2078  int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE {
2079    return x != y ? 1 : 0;
2080  }
2081
2082  DECLARE_INSTRUCTION(NotEqual);
2083
2084  IfCondition GetCondition() const OVERRIDE {
2085    return kCondNE;
2086  }
2087
2088 private:
2089  DISALLOW_COPY_AND_ASSIGN(HNotEqual);
2090};
2091
2092class HLessThan : public HCondition {
2093 public:
2094  HLessThan(HInstruction* first, HInstruction* second)
2095      : HCondition(first, second) {}
2096
2097  int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE {
2098    return x < y ? 1 : 0;
2099  }
2100  int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE {
2101    return x < y ? 1 : 0;
2102  }
2103
2104  DECLARE_INSTRUCTION(LessThan);
2105
2106  IfCondition GetCondition() const OVERRIDE {
2107    return kCondLT;
2108  }
2109
2110 private:
2111  DISALLOW_COPY_AND_ASSIGN(HLessThan);
2112};
2113
2114class HLessThanOrEqual : public HCondition {
2115 public:
2116  HLessThanOrEqual(HInstruction* first, HInstruction* second)
2117      : HCondition(first, second) {}
2118
2119  int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE {
2120    return x <= y ? 1 : 0;
2121  }
2122  int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE {
2123    return x <= y ? 1 : 0;
2124  }
2125
2126  DECLARE_INSTRUCTION(LessThanOrEqual);
2127
2128  IfCondition GetCondition() const OVERRIDE {
2129    return kCondLE;
2130  }
2131
2132 private:
2133  DISALLOW_COPY_AND_ASSIGN(HLessThanOrEqual);
2134};
2135
2136class HGreaterThan : public HCondition {
2137 public:
2138  HGreaterThan(HInstruction* first, HInstruction* second)
2139      : HCondition(first, second) {}
2140
2141  int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE {
2142    return x > y ? 1 : 0;
2143  }
2144  int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE {
2145    return x > y ? 1 : 0;
2146  }
2147
2148  DECLARE_INSTRUCTION(GreaterThan);
2149
2150  IfCondition GetCondition() const OVERRIDE {
2151    return kCondGT;
2152  }
2153
2154 private:
2155  DISALLOW_COPY_AND_ASSIGN(HGreaterThan);
2156};
2157
2158class HGreaterThanOrEqual : public HCondition {
2159 public:
2160  HGreaterThanOrEqual(HInstruction* first, HInstruction* second)
2161      : HCondition(first, second) {}
2162
2163  int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE {
2164    return x >= y ? 1 : 0;
2165  }
2166  int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE {
2167    return x >= y ? 1 : 0;
2168  }
2169
2170  DECLARE_INSTRUCTION(GreaterThanOrEqual);
2171
2172  IfCondition GetCondition() const OVERRIDE {
2173    return kCondGE;
2174  }
2175
2176 private:
2177  DISALLOW_COPY_AND_ASSIGN(HGreaterThanOrEqual);
2178};
2179
2180
2181// Instruction to check how two inputs compare to each other.
2182// Result is 0 if input0 == input1, 1 if input0 > input1, or -1 if input0 < input1.
2183class HCompare : public HBinaryOperation {
2184 public:
2185  // The bias applies for floating point operations and indicates how NaN
2186  // comparisons are treated:
2187  enum Bias {
2188    kNoBias,  // bias is not applicable (i.e. for long operation)
2189    kGtBias,  // return 1 for NaN comparisons
2190    kLtBias,  // return -1 for NaN comparisons
2191  };
2192
2193  HCompare(Primitive::Type type,
2194           HInstruction* first,
2195           HInstruction* second,
2196           Bias bias,
2197           uint32_t dex_pc)
2198      : HBinaryOperation(Primitive::kPrimInt, first, second), bias_(bias), dex_pc_(dex_pc) {
2199    DCHECK_EQ(type, first->GetType());
2200    DCHECK_EQ(type, second->GetType());
2201  }
2202
2203  int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE {
2204    return
2205      x == y ? 0 :
2206      x > y ? 1 :
2207      -1;
2208  }
2209
2210  int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE {
2211    return
2212      x == y ? 0 :
2213      x > y ? 1 :
2214      -1;
2215  }
2216
2217  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2218    return bias_ == other->AsCompare()->bias_;
2219  }
2220
2221  bool IsGtBias() { return bias_ == kGtBias; }
2222
2223  uint32_t GetDexPc() const { return dex_pc_; }
2224
2225  DECLARE_INSTRUCTION(Compare);
2226
2227 private:
2228  const Bias bias_;
2229  const uint32_t dex_pc_;
2230
2231  DISALLOW_COPY_AND_ASSIGN(HCompare);
2232};
2233
2234// A local in the graph. Corresponds to a Dex register.
2235class HLocal : public HTemplateInstruction<0> {
2236 public:
2237  explicit HLocal(uint16_t reg_number)
2238      : HTemplateInstruction(SideEffects::None()), reg_number_(reg_number) {}
2239
2240  DECLARE_INSTRUCTION(Local);
2241
2242  uint16_t GetRegNumber() const { return reg_number_; }
2243
2244 private:
2245  // The Dex register number.
2246  const uint16_t reg_number_;
2247
2248  DISALLOW_COPY_AND_ASSIGN(HLocal);
2249};
2250
2251// Load a given local. The local is an input of this instruction.
2252class HLoadLocal : public HExpression<1> {
2253 public:
2254  HLoadLocal(HLocal* local, Primitive::Type type)
2255      : HExpression(type, SideEffects::None()) {
2256    SetRawInputAt(0, local);
2257  }
2258
2259  HLocal* GetLocal() const { return reinterpret_cast<HLocal*>(InputAt(0)); }
2260
2261  DECLARE_INSTRUCTION(LoadLocal);
2262
2263 private:
2264  DISALLOW_COPY_AND_ASSIGN(HLoadLocal);
2265};
2266
2267// Store a value in a given local. This instruction has two inputs: the value
2268// and the local.
2269class HStoreLocal : public HTemplateInstruction<2> {
2270 public:
2271  HStoreLocal(HLocal* local, HInstruction* value) : HTemplateInstruction(SideEffects::None()) {
2272    SetRawInputAt(0, local);
2273    SetRawInputAt(1, value);
2274  }
2275
2276  HLocal* GetLocal() const { return reinterpret_cast<HLocal*>(InputAt(0)); }
2277
2278  DECLARE_INSTRUCTION(StoreLocal);
2279
2280 private:
2281  DISALLOW_COPY_AND_ASSIGN(HStoreLocal);
2282};
2283
2284class HConstant : public HExpression<0> {
2285 public:
2286  explicit HConstant(Primitive::Type type) : HExpression(type, SideEffects::None()) {}
2287
2288  bool CanBeMoved() const OVERRIDE { return true; }
2289
2290  virtual bool IsMinusOne() const { return false; }
2291  virtual bool IsZero() const { return false; }
2292  virtual bool IsOne() const { return false; }
2293
2294  DECLARE_INSTRUCTION(Constant);
2295
2296 private:
2297  DISALLOW_COPY_AND_ASSIGN(HConstant);
2298};
2299
2300class HFloatConstant : public HConstant {
2301 public:
2302  float GetValue() const { return value_; }
2303
2304  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2305    return bit_cast<uint32_t, float>(other->AsFloatConstant()->value_) ==
2306        bit_cast<uint32_t, float>(value_);
2307  }
2308
2309  size_t ComputeHashCode() const OVERRIDE { return static_cast<size_t>(GetValue()); }
2310
2311  bool IsMinusOne() const OVERRIDE {
2312    return bit_cast<uint32_t, float>(value_) == bit_cast<uint32_t, float>((-1.0f));
2313  }
2314  bool IsZero() const OVERRIDE {
2315    return value_ == 0.0f;
2316  }
2317  bool IsOne() const OVERRIDE {
2318    return bit_cast<uint32_t, float>(value_) == bit_cast<uint32_t, float>(1.0f);
2319  }
2320  bool IsNaN() const {
2321    return std::isnan(value_);
2322  }
2323
2324  DECLARE_INSTRUCTION(FloatConstant);
2325
2326 private:
2327  explicit HFloatConstant(float value) : HConstant(Primitive::kPrimFloat), value_(value) {}
2328  explicit HFloatConstant(int32_t value)
2329      : HConstant(Primitive::kPrimFloat), value_(bit_cast<float, int32_t>(value)) {}
2330
2331  const float value_;
2332
2333  // Only the SsaBuilder and HGraph can create floating-point constants.
2334  friend class SsaBuilder;
2335  friend class HGraph;
2336  DISALLOW_COPY_AND_ASSIGN(HFloatConstant);
2337};
2338
2339class HDoubleConstant : public HConstant {
2340 public:
2341  double GetValue() const { return value_; }
2342
2343  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2344    return bit_cast<uint64_t, double>(other->AsDoubleConstant()->value_) ==
2345        bit_cast<uint64_t, double>(value_);
2346  }
2347
2348  size_t ComputeHashCode() const OVERRIDE { return static_cast<size_t>(GetValue()); }
2349
2350  bool IsMinusOne() const OVERRIDE {
2351    return bit_cast<uint64_t, double>(value_) == bit_cast<uint64_t, double>((-1.0));
2352  }
2353  bool IsZero() const OVERRIDE {
2354    return value_ == 0.0;
2355  }
2356  bool IsOne() const OVERRIDE {
2357    return bit_cast<uint64_t, double>(value_) == bit_cast<uint64_t, double>(1.0);
2358  }
2359  bool IsNaN() const {
2360    return std::isnan(value_);
2361  }
2362
2363  DECLARE_INSTRUCTION(DoubleConstant);
2364
2365 private:
2366  explicit HDoubleConstant(double value) : HConstant(Primitive::kPrimDouble), value_(value) {}
2367  explicit HDoubleConstant(int64_t value)
2368      : HConstant(Primitive::kPrimDouble), value_(bit_cast<double, int64_t>(value)) {}
2369
2370  const double value_;
2371
2372  // Only the SsaBuilder and HGraph can create floating-point constants.
2373  friend class SsaBuilder;
2374  friend class HGraph;
2375  DISALLOW_COPY_AND_ASSIGN(HDoubleConstant);
2376};
2377
2378class HNullConstant : public HConstant {
2379 public:
2380  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
2381    return true;
2382  }
2383
2384  size_t ComputeHashCode() const OVERRIDE { return 0; }
2385
2386  DECLARE_INSTRUCTION(NullConstant);
2387
2388 private:
2389  HNullConstant() : HConstant(Primitive::kPrimNot) {}
2390
2391  friend class HGraph;
2392  DISALLOW_COPY_AND_ASSIGN(HNullConstant);
2393};
2394
2395// Constants of the type int. Those can be from Dex instructions, or
2396// synthesized (for example with the if-eqz instruction).
2397class HIntConstant : public HConstant {
2398 public:
2399  int32_t GetValue() const { return value_; }
2400
2401  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2402    return other->AsIntConstant()->value_ == value_;
2403  }
2404
2405  size_t ComputeHashCode() const OVERRIDE { return GetValue(); }
2406
2407  bool IsMinusOne() const OVERRIDE { return GetValue() == -1; }
2408  bool IsZero() const OVERRIDE { return GetValue() == 0; }
2409  bool IsOne() const OVERRIDE { return GetValue() == 1; }
2410
2411  DECLARE_INSTRUCTION(IntConstant);
2412
2413 private:
2414  explicit HIntConstant(int32_t value) : HConstant(Primitive::kPrimInt), value_(value) {}
2415
2416  const int32_t value_;
2417
2418  friend class HGraph;
2419  ART_FRIEND_TEST(GraphTest, InsertInstructionBefore);
2420  ART_FRIEND_TYPED_TEST(ParallelMoveTest, ConstantLast);
2421  DISALLOW_COPY_AND_ASSIGN(HIntConstant);
2422};
2423
2424class HLongConstant : public HConstant {
2425 public:
2426  int64_t GetValue() const { return value_; }
2427
2428  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2429    return other->AsLongConstant()->value_ == value_;
2430  }
2431
2432  size_t ComputeHashCode() const OVERRIDE { return static_cast<size_t>(GetValue()); }
2433
2434  bool IsMinusOne() const OVERRIDE { return GetValue() == -1; }
2435  bool IsZero() const OVERRIDE { return GetValue() == 0; }
2436  bool IsOne() const OVERRIDE { return GetValue() == 1; }
2437
2438  DECLARE_INSTRUCTION(LongConstant);
2439
2440 private:
2441  explicit HLongConstant(int64_t value) : HConstant(Primitive::kPrimLong), value_(value) {}
2442
2443  const int64_t value_;
2444
2445  friend class HGraph;
2446  DISALLOW_COPY_AND_ASSIGN(HLongConstant);
2447};
2448
2449enum class Intrinsics {
2450#define OPTIMIZING_INTRINSICS(Name, IsStatic) k ## Name,
2451#include "intrinsics_list.h"
2452  kNone,
2453  INTRINSICS_LIST(OPTIMIZING_INTRINSICS)
2454#undef INTRINSICS_LIST
2455#undef OPTIMIZING_INTRINSICS
2456};
2457std::ostream& operator<<(std::ostream& os, const Intrinsics& intrinsic);
2458
2459class HInvoke : public HInstruction {
2460 public:
2461  size_t InputCount() const OVERRIDE { return inputs_.Size(); }
2462
2463  // Runtime needs to walk the stack, so Dex -> Dex calls need to
2464  // know their environment.
2465  bool NeedsEnvironment() const OVERRIDE { return true; }
2466
2467  void SetArgumentAt(size_t index, HInstruction* argument) {
2468    SetRawInputAt(index, argument);
2469  }
2470
2471  // Return the number of arguments.  This number can be lower than
2472  // the number of inputs returned by InputCount(), as some invoke
2473  // instructions (e.g. HInvokeStaticOrDirect) can have non-argument
2474  // inputs at the end of their list of inputs.
2475  uint32_t GetNumberOfArguments() const { return number_of_arguments_; }
2476
2477  Primitive::Type GetType() const OVERRIDE { return return_type_; }
2478
2479  uint32_t GetDexPc() const OVERRIDE { return dex_pc_; }
2480
2481  uint32_t GetDexMethodIndex() const { return dex_method_index_; }
2482  const DexFile& GetDexFile() const { return GetEnvironment()->GetDexFile(); }
2483
2484  InvokeType GetOriginalInvokeType() const { return original_invoke_type_; }
2485
2486  Intrinsics GetIntrinsic() const {
2487    return intrinsic_;
2488  }
2489
2490  void SetIntrinsic(Intrinsics intrinsic) {
2491    intrinsic_ = intrinsic;
2492  }
2493
2494  bool IsFromInlinedInvoke() const {
2495    return GetEnvironment()->GetParent() != nullptr;
2496  }
2497
2498  bool CanThrow() const OVERRIDE { return true; }
2499
2500  DECLARE_INSTRUCTION(Invoke);
2501
2502 protected:
2503  HInvoke(ArenaAllocator* arena,
2504          uint32_t number_of_arguments,
2505          uint32_t number_of_other_inputs,
2506          Primitive::Type return_type,
2507          uint32_t dex_pc,
2508          uint32_t dex_method_index,
2509          InvokeType original_invoke_type)
2510    : HInstruction(SideEffects::All()),
2511      number_of_arguments_(number_of_arguments),
2512      inputs_(arena, number_of_arguments),
2513      return_type_(return_type),
2514      dex_pc_(dex_pc),
2515      dex_method_index_(dex_method_index),
2516      original_invoke_type_(original_invoke_type),
2517      intrinsic_(Intrinsics::kNone) {
2518    uint32_t number_of_inputs = number_of_arguments + number_of_other_inputs;
2519    inputs_.SetSize(number_of_inputs);
2520  }
2521
2522  const HUserRecord<HInstruction*> InputRecordAt(size_t i) const OVERRIDE { return inputs_.Get(i); }
2523  void SetRawInputRecordAt(size_t index, const HUserRecord<HInstruction*>& input) OVERRIDE {
2524    inputs_.Put(index, input);
2525  }
2526
2527  uint32_t number_of_arguments_;
2528  GrowableArray<HUserRecord<HInstruction*> > inputs_;
2529  const Primitive::Type return_type_;
2530  const uint32_t dex_pc_;
2531  const uint32_t dex_method_index_;
2532  const InvokeType original_invoke_type_;
2533  Intrinsics intrinsic_;
2534
2535 private:
2536  DISALLOW_COPY_AND_ASSIGN(HInvoke);
2537};
2538
2539class HInvokeStaticOrDirect : public HInvoke {
2540 public:
2541  // Requirements of this method call regarding the class
2542  // initialization (clinit) check of its declaring class.
2543  enum class ClinitCheckRequirement {
2544    kNone,      // Class already initialized.
2545    kExplicit,  // Static call having explicit clinit check as last input.
2546    kImplicit,  // Static call implicitly requiring a clinit check.
2547  };
2548
2549  HInvokeStaticOrDirect(ArenaAllocator* arena,
2550                        uint32_t number_of_arguments,
2551                        Primitive::Type return_type,
2552                        uint32_t dex_pc,
2553                        uint32_t dex_method_index,
2554                        bool is_recursive,
2555                        int32_t string_init_offset,
2556                        InvokeType original_invoke_type,
2557                        InvokeType invoke_type,
2558                        ClinitCheckRequirement clinit_check_requirement)
2559      : HInvoke(arena,
2560                number_of_arguments,
2561                // There is one extra argument for the  HCurrentMethod node, and
2562                // potentially one other if the clinit check is explicit.
2563                clinit_check_requirement == ClinitCheckRequirement::kExplicit ? 2u : 1u,
2564                return_type,
2565                dex_pc,
2566                dex_method_index,
2567                original_invoke_type),
2568        invoke_type_(invoke_type),
2569        is_recursive_(is_recursive),
2570        clinit_check_requirement_(clinit_check_requirement),
2571        string_init_offset_(string_init_offset) {}
2572
2573  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
2574    UNUSED(obj);
2575    // We access the method via the dex cache so we can't do an implicit null check.
2576    // TODO: for intrinsics we can generate implicit null checks.
2577    return false;
2578  }
2579
2580  InvokeType GetInvokeType() const { return invoke_type_; }
2581  bool IsRecursive() const { return is_recursive_; }
2582  bool NeedsDexCache() const OVERRIDE { return !IsRecursive(); }
2583  bool IsStringInit() const { return string_init_offset_ != 0; }
2584  int32_t GetStringInitOffset() const { return string_init_offset_; }
2585  uint32_t GetCurrentMethodInputIndex() const { return GetNumberOfArguments(); }
2586
2587  // Is this instruction a call to a static method?
2588  bool IsStatic() const {
2589    return GetInvokeType() == kStatic;
2590  }
2591
2592  // Remove the art::HLoadClass instruction set as last input by
2593  // art::PrepareForRegisterAllocation::VisitClinitCheck in lieu of
2594  // the initial art::HClinitCheck instruction (only relevant for
2595  // static calls with explicit clinit check).
2596  void RemoveLoadClassAsLastInput() {
2597    DCHECK(IsStaticWithExplicitClinitCheck());
2598    size_t last_input_index = InputCount() - 1;
2599    HInstruction* last_input = InputAt(last_input_index);
2600    DCHECK(last_input != nullptr);
2601    DCHECK(last_input->IsLoadClass()) << last_input->DebugName();
2602    RemoveAsUserOfInput(last_input_index);
2603    inputs_.DeleteAt(last_input_index);
2604    clinit_check_requirement_ = ClinitCheckRequirement::kImplicit;
2605    DCHECK(IsStaticWithImplicitClinitCheck());
2606  }
2607
2608  // Is this a call to a static method whose declaring class has an
2609  // explicit intialization check in the graph?
2610  bool IsStaticWithExplicitClinitCheck() const {
2611    return IsStatic() && (clinit_check_requirement_ == ClinitCheckRequirement::kExplicit);
2612  }
2613
2614  // Is this a call to a static method whose declaring class has an
2615  // implicit intialization check requirement?
2616  bool IsStaticWithImplicitClinitCheck() const {
2617    return IsStatic() && (clinit_check_requirement_ == ClinitCheckRequirement::kImplicit);
2618  }
2619
2620  DECLARE_INSTRUCTION(InvokeStaticOrDirect);
2621
2622 protected:
2623  const HUserRecord<HInstruction*> InputRecordAt(size_t i) const OVERRIDE {
2624    const HUserRecord<HInstruction*> input_record = HInvoke::InputRecordAt(i);
2625    if (kIsDebugBuild && IsStaticWithExplicitClinitCheck() && (i == InputCount() - 1)) {
2626      HInstruction* input = input_record.GetInstruction();
2627      // `input` is the last input of a static invoke marked as having
2628      // an explicit clinit check. It must either be:
2629      // - an art::HClinitCheck instruction, set by art::HGraphBuilder; or
2630      // - an art::HLoadClass instruction, set by art::PrepareForRegisterAllocation.
2631      DCHECK(input != nullptr);
2632      DCHECK(input->IsClinitCheck() || input->IsLoadClass()) << input->DebugName();
2633    }
2634    return input_record;
2635  }
2636
2637 private:
2638  const InvokeType invoke_type_;
2639  const bool is_recursive_;
2640  ClinitCheckRequirement clinit_check_requirement_;
2641  // Thread entrypoint offset for string init method if this is a string init invoke.
2642  // Note that there are multiple string init methods, each having its own offset.
2643  int32_t string_init_offset_;
2644
2645  DISALLOW_COPY_AND_ASSIGN(HInvokeStaticOrDirect);
2646};
2647
2648class HInvokeVirtual : public HInvoke {
2649 public:
2650  HInvokeVirtual(ArenaAllocator* arena,
2651                 uint32_t number_of_arguments,
2652                 Primitive::Type return_type,
2653                 uint32_t dex_pc,
2654                 uint32_t dex_method_index,
2655                 uint32_t vtable_index)
2656      : HInvoke(arena, number_of_arguments, 0u, return_type, dex_pc, dex_method_index, kVirtual),
2657        vtable_index_(vtable_index) {}
2658
2659  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
2660    // TODO: Add implicit null checks in intrinsics.
2661    return (obj == InputAt(0)) && !GetLocations()->Intrinsified();
2662  }
2663
2664  uint32_t GetVTableIndex() const { return vtable_index_; }
2665
2666  DECLARE_INSTRUCTION(InvokeVirtual);
2667
2668 private:
2669  const uint32_t vtable_index_;
2670
2671  DISALLOW_COPY_AND_ASSIGN(HInvokeVirtual);
2672};
2673
2674class HInvokeInterface : public HInvoke {
2675 public:
2676  HInvokeInterface(ArenaAllocator* arena,
2677                   uint32_t number_of_arguments,
2678                   Primitive::Type return_type,
2679                   uint32_t dex_pc,
2680                   uint32_t dex_method_index,
2681                   uint32_t imt_index)
2682      : HInvoke(arena, number_of_arguments, 0u, return_type, dex_pc, dex_method_index, kInterface),
2683        imt_index_(imt_index) {}
2684
2685  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
2686    // TODO: Add implicit null checks in intrinsics.
2687    return (obj == InputAt(0)) && !GetLocations()->Intrinsified();
2688  }
2689
2690  uint32_t GetImtIndex() const { return imt_index_; }
2691  uint32_t GetDexMethodIndex() const { return dex_method_index_; }
2692
2693  DECLARE_INSTRUCTION(InvokeInterface);
2694
2695 private:
2696  const uint32_t imt_index_;
2697
2698  DISALLOW_COPY_AND_ASSIGN(HInvokeInterface);
2699};
2700
2701class HNewInstance : public HExpression<1> {
2702 public:
2703  HNewInstance(HCurrentMethod* current_method,
2704               uint32_t dex_pc,
2705               uint16_t type_index,
2706               const DexFile& dex_file,
2707               QuickEntrypointEnum entrypoint)
2708      : HExpression(Primitive::kPrimNot, SideEffects::None()),
2709        dex_pc_(dex_pc),
2710        type_index_(type_index),
2711        dex_file_(dex_file),
2712        entrypoint_(entrypoint) {
2713    SetRawInputAt(0, current_method);
2714  }
2715
2716  uint32_t GetDexPc() const OVERRIDE { return dex_pc_; }
2717  uint16_t GetTypeIndex() const { return type_index_; }
2718  const DexFile& GetDexFile() const { return dex_file_; }
2719
2720  // Calls runtime so needs an environment.
2721  bool NeedsEnvironment() const OVERRIDE { return true; }
2722  // It may throw when called on:
2723  //   - interfaces
2724  //   - abstract/innaccessible/unknown classes
2725  // TODO: optimize when possible.
2726  bool CanThrow() const OVERRIDE { return true; }
2727
2728  bool CanBeNull() const OVERRIDE { return false; }
2729
2730  QuickEntrypointEnum GetEntrypoint() const { return entrypoint_; }
2731
2732  DECLARE_INSTRUCTION(NewInstance);
2733
2734 private:
2735  const uint32_t dex_pc_;
2736  const uint16_t type_index_;
2737  const DexFile& dex_file_;
2738  const QuickEntrypointEnum entrypoint_;
2739
2740  DISALLOW_COPY_AND_ASSIGN(HNewInstance);
2741};
2742
2743class HNeg : public HUnaryOperation {
2744 public:
2745  explicit HNeg(Primitive::Type result_type, HInstruction* input)
2746      : HUnaryOperation(result_type, input) {}
2747
2748  int32_t Evaluate(int32_t x) const OVERRIDE { return -x; }
2749  int64_t Evaluate(int64_t x) const OVERRIDE { return -x; }
2750
2751  DECLARE_INSTRUCTION(Neg);
2752
2753 private:
2754  DISALLOW_COPY_AND_ASSIGN(HNeg);
2755};
2756
2757class HNewArray : public HExpression<2> {
2758 public:
2759  HNewArray(HInstruction* length,
2760            HCurrentMethod* current_method,
2761            uint32_t dex_pc,
2762            uint16_t type_index,
2763            const DexFile& dex_file,
2764            QuickEntrypointEnum entrypoint)
2765      : HExpression(Primitive::kPrimNot, SideEffects::None()),
2766        dex_pc_(dex_pc),
2767        type_index_(type_index),
2768        dex_file_(dex_file),
2769        entrypoint_(entrypoint) {
2770    SetRawInputAt(0, length);
2771    SetRawInputAt(1, current_method);
2772  }
2773
2774  uint32_t GetDexPc() const OVERRIDE { return dex_pc_; }
2775  uint16_t GetTypeIndex() const { return type_index_; }
2776  const DexFile& GetDexFile() const { return dex_file_; }
2777
2778  // Calls runtime so needs an environment.
2779  bool NeedsEnvironment() const OVERRIDE { return true; }
2780
2781  // May throw NegativeArraySizeException, OutOfMemoryError, etc.
2782  bool CanThrow() const OVERRIDE { return true; }
2783
2784  bool CanBeNull() const OVERRIDE { return false; }
2785
2786  QuickEntrypointEnum GetEntrypoint() const { return entrypoint_; }
2787
2788  DECLARE_INSTRUCTION(NewArray);
2789
2790 private:
2791  const uint32_t dex_pc_;
2792  const uint16_t type_index_;
2793  const DexFile& dex_file_;
2794  const QuickEntrypointEnum entrypoint_;
2795
2796  DISALLOW_COPY_AND_ASSIGN(HNewArray);
2797};
2798
2799class HAdd : public HBinaryOperation {
2800 public:
2801  HAdd(Primitive::Type result_type, HInstruction* left, HInstruction* right)
2802      : HBinaryOperation(result_type, left, right) {}
2803
2804  bool IsCommutative() const OVERRIDE { return true; }
2805
2806  int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE {
2807    return x + y;
2808  }
2809  int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE {
2810    return x + y;
2811  }
2812
2813  DECLARE_INSTRUCTION(Add);
2814
2815 private:
2816  DISALLOW_COPY_AND_ASSIGN(HAdd);
2817};
2818
2819class HSub : public HBinaryOperation {
2820 public:
2821  HSub(Primitive::Type result_type, HInstruction* left, HInstruction* right)
2822      : HBinaryOperation(result_type, left, right) {}
2823
2824  int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE {
2825    return x - y;
2826  }
2827  int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE {
2828    return x - y;
2829  }
2830
2831  DECLARE_INSTRUCTION(Sub);
2832
2833 private:
2834  DISALLOW_COPY_AND_ASSIGN(HSub);
2835};
2836
2837class HMul : public HBinaryOperation {
2838 public:
2839  HMul(Primitive::Type result_type, HInstruction* left, HInstruction* right)
2840      : HBinaryOperation(result_type, left, right) {}
2841
2842  bool IsCommutative() const OVERRIDE { return true; }
2843
2844  int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE { return x * y; }
2845  int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE { return x * y; }
2846
2847  DECLARE_INSTRUCTION(Mul);
2848
2849 private:
2850  DISALLOW_COPY_AND_ASSIGN(HMul);
2851};
2852
2853class HDiv : public HBinaryOperation {
2854 public:
2855  HDiv(Primitive::Type result_type, HInstruction* left, HInstruction* right, uint32_t dex_pc)
2856      : HBinaryOperation(result_type, left, right), dex_pc_(dex_pc) {}
2857
2858  int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE {
2859    // Our graph structure ensures we never have 0 for `y` during constant folding.
2860    DCHECK_NE(y, 0);
2861    // Special case -1 to avoid getting a SIGFPE on x86(_64).
2862    return (y == -1) ? -x : x / y;
2863  }
2864
2865  int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE {
2866    DCHECK_NE(y, 0);
2867    // Special case -1 to avoid getting a SIGFPE on x86(_64).
2868    return (y == -1) ? -x : x / y;
2869  }
2870
2871  uint32_t GetDexPc() const OVERRIDE { return dex_pc_; }
2872
2873  DECLARE_INSTRUCTION(Div);
2874
2875 private:
2876  const uint32_t dex_pc_;
2877
2878  DISALLOW_COPY_AND_ASSIGN(HDiv);
2879};
2880
2881class HRem : public HBinaryOperation {
2882 public:
2883  HRem(Primitive::Type result_type, HInstruction* left, HInstruction* right, uint32_t dex_pc)
2884      : HBinaryOperation(result_type, left, right), dex_pc_(dex_pc) {}
2885
2886  int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE {
2887    DCHECK_NE(y, 0);
2888    // Special case -1 to avoid getting a SIGFPE on x86(_64).
2889    return (y == -1) ? 0 : x % y;
2890  }
2891
2892  int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE {
2893    DCHECK_NE(y, 0);
2894    // Special case -1 to avoid getting a SIGFPE on x86(_64).
2895    return (y == -1) ? 0 : x % y;
2896  }
2897
2898  uint32_t GetDexPc() const OVERRIDE { return dex_pc_; }
2899
2900  DECLARE_INSTRUCTION(Rem);
2901
2902 private:
2903  const uint32_t dex_pc_;
2904
2905  DISALLOW_COPY_AND_ASSIGN(HRem);
2906};
2907
2908class HDivZeroCheck : public HExpression<1> {
2909 public:
2910  HDivZeroCheck(HInstruction* value, uint32_t dex_pc)
2911      : HExpression(value->GetType(), SideEffects::None()), dex_pc_(dex_pc) {
2912    SetRawInputAt(0, value);
2913  }
2914
2915  bool CanBeMoved() const OVERRIDE { return true; }
2916
2917  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2918    UNUSED(other);
2919    return true;
2920  }
2921
2922  bool NeedsEnvironment() const OVERRIDE { return true; }
2923  bool CanThrow() const OVERRIDE { return true; }
2924
2925  uint32_t GetDexPc() const OVERRIDE { return dex_pc_; }
2926
2927  DECLARE_INSTRUCTION(DivZeroCheck);
2928
2929 private:
2930  const uint32_t dex_pc_;
2931
2932  DISALLOW_COPY_AND_ASSIGN(HDivZeroCheck);
2933};
2934
2935class HShl : public HBinaryOperation {
2936 public:
2937  HShl(Primitive::Type result_type, HInstruction* left, HInstruction* right)
2938      : HBinaryOperation(result_type, left, right) {}
2939
2940  int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE { return x << (y & kMaxIntShiftValue); }
2941  int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE { return x << (y & kMaxLongShiftValue); }
2942
2943  DECLARE_INSTRUCTION(Shl);
2944
2945 private:
2946  DISALLOW_COPY_AND_ASSIGN(HShl);
2947};
2948
2949class HShr : public HBinaryOperation {
2950 public:
2951  HShr(Primitive::Type result_type, HInstruction* left, HInstruction* right)
2952      : HBinaryOperation(result_type, left, right) {}
2953
2954  int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE { return x >> (y & kMaxIntShiftValue); }
2955  int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE { return x >> (y & kMaxLongShiftValue); }
2956
2957  DECLARE_INSTRUCTION(Shr);
2958
2959 private:
2960  DISALLOW_COPY_AND_ASSIGN(HShr);
2961};
2962
2963class HUShr : public HBinaryOperation {
2964 public:
2965  HUShr(Primitive::Type result_type, HInstruction* left, HInstruction* right)
2966      : HBinaryOperation(result_type, left, right) {}
2967
2968  int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE {
2969    uint32_t ux = static_cast<uint32_t>(x);
2970    uint32_t uy = static_cast<uint32_t>(y) & kMaxIntShiftValue;
2971    return static_cast<int32_t>(ux >> uy);
2972  }
2973
2974  int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE {
2975    uint64_t ux = static_cast<uint64_t>(x);
2976    uint64_t uy = static_cast<uint64_t>(y) & kMaxLongShiftValue;
2977    return static_cast<int64_t>(ux >> uy);
2978  }
2979
2980  DECLARE_INSTRUCTION(UShr);
2981
2982 private:
2983  DISALLOW_COPY_AND_ASSIGN(HUShr);
2984};
2985
2986class HAnd : public HBinaryOperation {
2987 public:
2988  HAnd(Primitive::Type result_type, HInstruction* left, HInstruction* right)
2989      : HBinaryOperation(result_type, left, right) {}
2990
2991  bool IsCommutative() const OVERRIDE { return true; }
2992
2993  int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE { return x & y; }
2994  int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE { return x & y; }
2995
2996  DECLARE_INSTRUCTION(And);
2997
2998 private:
2999  DISALLOW_COPY_AND_ASSIGN(HAnd);
3000};
3001
3002class HOr : public HBinaryOperation {
3003 public:
3004  HOr(Primitive::Type result_type, HInstruction* left, HInstruction* right)
3005      : HBinaryOperation(result_type, left, right) {}
3006
3007  bool IsCommutative() const OVERRIDE { return true; }
3008
3009  int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE { return x | y; }
3010  int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE { return x | y; }
3011
3012  DECLARE_INSTRUCTION(Or);
3013
3014 private:
3015  DISALLOW_COPY_AND_ASSIGN(HOr);
3016};
3017
3018class HXor : public HBinaryOperation {
3019 public:
3020  HXor(Primitive::Type result_type, HInstruction* left, HInstruction* right)
3021      : HBinaryOperation(result_type, left, right) {}
3022
3023  bool IsCommutative() const OVERRIDE { return true; }
3024
3025  int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE { return x ^ y; }
3026  int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE { return x ^ y; }
3027
3028  DECLARE_INSTRUCTION(Xor);
3029
3030 private:
3031  DISALLOW_COPY_AND_ASSIGN(HXor);
3032};
3033
3034// The value of a parameter in this method. Its location depends on
3035// the calling convention.
3036class HParameterValue : public HExpression<0> {
3037 public:
3038  HParameterValue(uint8_t index, Primitive::Type parameter_type, bool is_this = false)
3039      : HExpression(parameter_type, SideEffects::None()), index_(index), is_this_(is_this) {}
3040
3041  uint8_t GetIndex() const { return index_; }
3042
3043  bool CanBeNull() const OVERRIDE { return !is_this_; }
3044
3045  bool IsThis() const { return is_this_; }
3046
3047  DECLARE_INSTRUCTION(ParameterValue);
3048
3049 private:
3050  // The index of this parameter in the parameters list. Must be less
3051  // than HGraph::number_of_in_vregs_.
3052  const uint8_t index_;
3053
3054  // Whether or not the parameter value corresponds to 'this' argument.
3055  const bool is_this_;
3056
3057  DISALLOW_COPY_AND_ASSIGN(HParameterValue);
3058};
3059
3060class HNot : public HUnaryOperation {
3061 public:
3062  explicit HNot(Primitive::Type result_type, HInstruction* input)
3063      : HUnaryOperation(result_type, input) {}
3064
3065  bool CanBeMoved() const OVERRIDE { return true; }
3066  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
3067    UNUSED(other);
3068    return true;
3069  }
3070
3071  int32_t Evaluate(int32_t x) const OVERRIDE { return ~x; }
3072  int64_t Evaluate(int64_t x) const OVERRIDE { return ~x; }
3073
3074  DECLARE_INSTRUCTION(Not);
3075
3076 private:
3077  DISALLOW_COPY_AND_ASSIGN(HNot);
3078};
3079
3080class HBooleanNot : public HUnaryOperation {
3081 public:
3082  explicit HBooleanNot(HInstruction* input)
3083      : HUnaryOperation(Primitive::Type::kPrimBoolean, input) {}
3084
3085  bool CanBeMoved() const OVERRIDE { return true; }
3086  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
3087    UNUSED(other);
3088    return true;
3089  }
3090
3091  int32_t Evaluate(int32_t x) const OVERRIDE {
3092    DCHECK(IsUint<1>(x));
3093    return !x;
3094  }
3095
3096  int64_t Evaluate(int64_t x ATTRIBUTE_UNUSED) const OVERRIDE {
3097    LOG(FATAL) << DebugName() << " cannot be used with 64-bit values";
3098    UNREACHABLE();
3099  }
3100
3101  DECLARE_INSTRUCTION(BooleanNot);
3102
3103 private:
3104  DISALLOW_COPY_AND_ASSIGN(HBooleanNot);
3105};
3106
3107class HTypeConversion : public HExpression<1> {
3108 public:
3109  // Instantiate a type conversion of `input` to `result_type`.
3110  HTypeConversion(Primitive::Type result_type, HInstruction* input, uint32_t dex_pc)
3111      : HExpression(result_type, SideEffects::None()), dex_pc_(dex_pc) {
3112    SetRawInputAt(0, input);
3113    DCHECK_NE(input->GetType(), result_type);
3114  }
3115
3116  HInstruction* GetInput() const { return InputAt(0); }
3117  Primitive::Type GetInputType() const { return GetInput()->GetType(); }
3118  Primitive::Type GetResultType() const { return GetType(); }
3119
3120  // Required by the x86 and ARM code generators when producing calls
3121  // to the runtime.
3122  uint32_t GetDexPc() const OVERRIDE { return dex_pc_; }
3123
3124  bool CanBeMoved() const OVERRIDE { return true; }
3125  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE { return true; }
3126
3127  // Try to statically evaluate the conversion and return a HConstant
3128  // containing the result.  If the input cannot be converted, return nullptr.
3129  HConstant* TryStaticEvaluation() const;
3130
3131  DECLARE_INSTRUCTION(TypeConversion);
3132
3133 private:
3134  const uint32_t dex_pc_;
3135
3136  DISALLOW_COPY_AND_ASSIGN(HTypeConversion);
3137};
3138
3139static constexpr uint32_t kNoRegNumber = -1;
3140
3141class HPhi : public HInstruction {
3142 public:
3143  HPhi(ArenaAllocator* arena, uint32_t reg_number, size_t number_of_inputs, Primitive::Type type)
3144      : HInstruction(SideEffects::None()),
3145        inputs_(arena, number_of_inputs),
3146        reg_number_(reg_number),
3147        type_(type),
3148        is_live_(false),
3149        can_be_null_(true) {
3150    inputs_.SetSize(number_of_inputs);
3151  }
3152
3153  // Returns a type equivalent to the given `type`, but that a `HPhi` can hold.
3154  static Primitive::Type ToPhiType(Primitive::Type type) {
3155    switch (type) {
3156      case Primitive::kPrimBoolean:
3157      case Primitive::kPrimByte:
3158      case Primitive::kPrimShort:
3159      case Primitive::kPrimChar:
3160        return Primitive::kPrimInt;
3161      default:
3162        return type;
3163    }
3164  }
3165
3166  size_t InputCount() const OVERRIDE { return inputs_.Size(); }
3167
3168  void AddInput(HInstruction* input);
3169  void RemoveInputAt(size_t index);
3170
3171  Primitive::Type GetType() const OVERRIDE { return type_; }
3172  void SetType(Primitive::Type type) { type_ = type; }
3173
3174  bool CanBeNull() const OVERRIDE { return can_be_null_; }
3175  void SetCanBeNull(bool can_be_null) { can_be_null_ = can_be_null; }
3176
3177  uint32_t GetRegNumber() const { return reg_number_; }
3178
3179  void SetDead() { is_live_ = false; }
3180  void SetLive() { is_live_ = true; }
3181  bool IsDead() const { return !is_live_; }
3182  bool IsLive() const { return is_live_; }
3183
3184  // Returns the next equivalent phi (starting from the current one) or null if there is none.
3185  // An equivalent phi is a phi having the same dex register and type.
3186  // It assumes that phis with the same dex register are adjacent.
3187  HPhi* GetNextEquivalentPhiWithSameType() {
3188    HInstruction* next = GetNext();
3189    while (next != nullptr && next->AsPhi()->GetRegNumber() == reg_number_) {
3190      if (next->GetType() == GetType()) {
3191        return next->AsPhi();
3192      }
3193      next = next->GetNext();
3194    }
3195    return nullptr;
3196  }
3197
3198  DECLARE_INSTRUCTION(Phi);
3199
3200 protected:
3201  const HUserRecord<HInstruction*> InputRecordAt(size_t i) const OVERRIDE { return inputs_.Get(i); }
3202
3203  void SetRawInputRecordAt(size_t index, const HUserRecord<HInstruction*>& input) OVERRIDE {
3204    inputs_.Put(index, input);
3205  }
3206
3207 private:
3208  GrowableArray<HUserRecord<HInstruction*> > inputs_;
3209  const uint32_t reg_number_;
3210  Primitive::Type type_;
3211  bool is_live_;
3212  bool can_be_null_;
3213
3214  DISALLOW_COPY_AND_ASSIGN(HPhi);
3215};
3216
3217class HNullCheck : public HExpression<1> {
3218 public:
3219  HNullCheck(HInstruction* value, uint32_t dex_pc)
3220      : HExpression(value->GetType(), SideEffects::None()), dex_pc_(dex_pc) {
3221    SetRawInputAt(0, value);
3222  }
3223
3224  bool CanBeMoved() const OVERRIDE { return true; }
3225  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
3226    UNUSED(other);
3227    return true;
3228  }
3229
3230  bool NeedsEnvironment() const OVERRIDE { return true; }
3231
3232  bool CanThrow() const OVERRIDE { return true; }
3233
3234  bool CanBeNull() const OVERRIDE { return false; }
3235
3236  uint32_t GetDexPc() const OVERRIDE { return dex_pc_; }
3237
3238  DECLARE_INSTRUCTION(NullCheck);
3239
3240 private:
3241  const uint32_t dex_pc_;
3242
3243  DISALLOW_COPY_AND_ASSIGN(HNullCheck);
3244};
3245
3246class FieldInfo : public ValueObject {
3247 public:
3248  FieldInfo(MemberOffset field_offset,
3249            Primitive::Type field_type,
3250            bool is_volatile,
3251            uint32_t index,
3252            const DexFile& dex_file)
3253      : field_offset_(field_offset),
3254        field_type_(field_type),
3255        is_volatile_(is_volatile),
3256        index_(index),
3257        dex_file_(dex_file) {}
3258
3259  MemberOffset GetFieldOffset() const { return field_offset_; }
3260  Primitive::Type GetFieldType() const { return field_type_; }
3261  uint32_t GetFieldIndex() const { return index_; }
3262  const DexFile& GetDexFile() const { return dex_file_; }
3263  bool IsVolatile() const { return is_volatile_; }
3264
3265 private:
3266  const MemberOffset field_offset_;
3267  const Primitive::Type field_type_;
3268  const bool is_volatile_;
3269  uint32_t index_;
3270  const DexFile& dex_file_;
3271};
3272
3273class HInstanceFieldGet : public HExpression<1> {
3274 public:
3275  HInstanceFieldGet(HInstruction* value,
3276                    Primitive::Type field_type,
3277                    MemberOffset field_offset,
3278                    bool is_volatile,
3279                    uint32_t field_idx,
3280                    const DexFile& dex_file)
3281      : HExpression(field_type, SideEffects::DependsOnSomething()),
3282        field_info_(field_offset, field_type, is_volatile, field_idx, dex_file) {
3283    SetRawInputAt(0, value);
3284  }
3285
3286  bool CanBeMoved() const OVERRIDE { return !IsVolatile(); }
3287
3288  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
3289    HInstanceFieldGet* other_get = other->AsInstanceFieldGet();
3290    return GetFieldOffset().SizeValue() == other_get->GetFieldOffset().SizeValue();
3291  }
3292
3293  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
3294    return (obj == InputAt(0)) && GetFieldOffset().Uint32Value() < kPageSize;
3295  }
3296
3297  size_t ComputeHashCode() const OVERRIDE {
3298    return (HInstruction::ComputeHashCode() << 7) | GetFieldOffset().SizeValue();
3299  }
3300
3301  const FieldInfo& GetFieldInfo() const { return field_info_; }
3302  MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
3303  Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); }
3304  bool IsVolatile() const { return field_info_.IsVolatile(); }
3305
3306  DECLARE_INSTRUCTION(InstanceFieldGet);
3307
3308 private:
3309  const FieldInfo field_info_;
3310
3311  DISALLOW_COPY_AND_ASSIGN(HInstanceFieldGet);
3312};
3313
3314class HInstanceFieldSet : public HTemplateInstruction<2> {
3315 public:
3316  HInstanceFieldSet(HInstruction* object,
3317                    HInstruction* value,
3318                    Primitive::Type field_type,
3319                    MemberOffset field_offset,
3320                    bool is_volatile,
3321                    uint32_t field_idx,
3322                    const DexFile& dex_file)
3323      : HTemplateInstruction(SideEffects::ChangesSomething()),
3324        field_info_(field_offset, field_type, is_volatile, field_idx, dex_file),
3325        value_can_be_null_(true) {
3326    SetRawInputAt(0, object);
3327    SetRawInputAt(1, value);
3328  }
3329
3330  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
3331    return (obj == InputAt(0)) && GetFieldOffset().Uint32Value() < kPageSize;
3332  }
3333
3334  const FieldInfo& GetFieldInfo() const { return field_info_; }
3335  MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
3336  Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); }
3337  bool IsVolatile() const { return field_info_.IsVolatile(); }
3338  HInstruction* GetValue() const { return InputAt(1); }
3339  bool GetValueCanBeNull() const { return value_can_be_null_; }
3340  void ClearValueCanBeNull() { value_can_be_null_ = false; }
3341
3342  DECLARE_INSTRUCTION(InstanceFieldSet);
3343
3344 private:
3345  const FieldInfo field_info_;
3346  bool value_can_be_null_;
3347
3348  DISALLOW_COPY_AND_ASSIGN(HInstanceFieldSet);
3349};
3350
3351class HArrayGet : public HExpression<2> {
3352 public:
3353  HArrayGet(HInstruction* array, HInstruction* index, Primitive::Type type)
3354      : HExpression(type, SideEffects::DependsOnSomething()) {
3355    SetRawInputAt(0, array);
3356    SetRawInputAt(1, index);
3357  }
3358
3359  bool CanBeMoved() const OVERRIDE { return true; }
3360  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
3361    UNUSED(other);
3362    return true;
3363  }
3364  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
3365    UNUSED(obj);
3366    // TODO: We can be smarter here.
3367    // Currently, the array access is always preceded by an ArrayLength or a NullCheck
3368    // which generates the implicit null check. There are cases when these can be removed
3369    // to produce better code. If we ever add optimizations to do so we should allow an
3370    // implicit check here (as long as the address falls in the first page).
3371    return false;
3372  }
3373
3374  void SetType(Primitive::Type type) { type_ = type; }
3375
3376  HInstruction* GetArray() const { return InputAt(0); }
3377  HInstruction* GetIndex() const { return InputAt(1); }
3378
3379  DECLARE_INSTRUCTION(ArrayGet);
3380
3381 private:
3382  DISALLOW_COPY_AND_ASSIGN(HArrayGet);
3383};
3384
3385class HArraySet : public HTemplateInstruction<3> {
3386 public:
3387  HArraySet(HInstruction* array,
3388            HInstruction* index,
3389            HInstruction* value,
3390            Primitive::Type expected_component_type,
3391            uint32_t dex_pc)
3392      : HTemplateInstruction(SideEffects::ChangesSomething()),
3393        dex_pc_(dex_pc),
3394        expected_component_type_(expected_component_type),
3395        needs_type_check_(value->GetType() == Primitive::kPrimNot),
3396        value_can_be_null_(true) {
3397    SetRawInputAt(0, array);
3398    SetRawInputAt(1, index);
3399    SetRawInputAt(2, value);
3400  }
3401
3402  bool NeedsEnvironment() const OVERRIDE {
3403    // We currently always call a runtime method to catch array store
3404    // exceptions.
3405    return needs_type_check_;
3406  }
3407
3408  // Can throw ArrayStoreException.
3409  bool CanThrow() const OVERRIDE { return needs_type_check_; }
3410
3411  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
3412    UNUSED(obj);
3413    // TODO: Same as for ArrayGet.
3414    return false;
3415  }
3416
3417  void ClearNeedsTypeCheck() {
3418    needs_type_check_ = false;
3419  }
3420
3421  void ClearValueCanBeNull() {
3422    value_can_be_null_ = false;
3423  }
3424
3425  bool GetValueCanBeNull() const { return value_can_be_null_; }
3426  bool NeedsTypeCheck() const { return needs_type_check_; }
3427
3428  uint32_t GetDexPc() const OVERRIDE { return dex_pc_; }
3429
3430  HInstruction* GetArray() const { return InputAt(0); }
3431  HInstruction* GetIndex() const { return InputAt(1); }
3432  HInstruction* GetValue() const { return InputAt(2); }
3433
3434  Primitive::Type GetComponentType() const {
3435    // The Dex format does not type floating point index operations. Since the
3436    // `expected_component_type_` is set during building and can therefore not
3437    // be correct, we also check what is the value type. If it is a floating
3438    // point type, we must use that type.
3439    Primitive::Type value_type = GetValue()->GetType();
3440    return ((value_type == Primitive::kPrimFloat) || (value_type == Primitive::kPrimDouble))
3441        ? value_type
3442        : expected_component_type_;
3443  }
3444
3445  DECLARE_INSTRUCTION(ArraySet);
3446
3447 private:
3448  const uint32_t dex_pc_;
3449  const Primitive::Type expected_component_type_;
3450  bool needs_type_check_;
3451  bool value_can_be_null_;
3452
3453  DISALLOW_COPY_AND_ASSIGN(HArraySet);
3454};
3455
3456class HArrayLength : public HExpression<1> {
3457 public:
3458  explicit HArrayLength(HInstruction* array)
3459      : HExpression(Primitive::kPrimInt, SideEffects::None()) {
3460    // Note that arrays do not change length, so the instruction does not
3461    // depend on any write.
3462    SetRawInputAt(0, array);
3463  }
3464
3465  bool CanBeMoved() const OVERRIDE { return true; }
3466  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
3467    UNUSED(other);
3468    return true;
3469  }
3470  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
3471    return obj == InputAt(0);
3472  }
3473
3474  DECLARE_INSTRUCTION(ArrayLength);
3475
3476 private:
3477  DISALLOW_COPY_AND_ASSIGN(HArrayLength);
3478};
3479
3480class HBoundsCheck : public HExpression<2> {
3481 public:
3482  HBoundsCheck(HInstruction* index, HInstruction* length, uint32_t dex_pc)
3483      : HExpression(index->GetType(), SideEffects::None()), dex_pc_(dex_pc) {
3484    DCHECK(index->GetType() == Primitive::kPrimInt);
3485    SetRawInputAt(0, index);
3486    SetRawInputAt(1, length);
3487  }
3488
3489  bool CanBeMoved() const OVERRIDE { return true; }
3490  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
3491    UNUSED(other);
3492    return true;
3493  }
3494
3495  bool NeedsEnvironment() const OVERRIDE { return true; }
3496
3497  bool CanThrow() const OVERRIDE { return true; }
3498
3499  uint32_t GetDexPc() const OVERRIDE { return dex_pc_; }
3500
3501  DECLARE_INSTRUCTION(BoundsCheck);
3502
3503 private:
3504  const uint32_t dex_pc_;
3505
3506  DISALLOW_COPY_AND_ASSIGN(HBoundsCheck);
3507};
3508
3509/**
3510 * Some DEX instructions are folded into multiple HInstructions that need
3511 * to stay live until the last HInstruction. This class
3512 * is used as a marker for the baseline compiler to ensure its preceding
3513 * HInstruction stays live. `index` represents the stack location index of the
3514 * instruction (the actual offset is computed as index * vreg_size).
3515 */
3516class HTemporary : public HTemplateInstruction<0> {
3517 public:
3518  explicit HTemporary(size_t index) : HTemplateInstruction(SideEffects::None()), index_(index) {}
3519
3520  size_t GetIndex() const { return index_; }
3521
3522  Primitive::Type GetType() const OVERRIDE {
3523    // The previous instruction is the one that will be stored in the temporary location.
3524    DCHECK(GetPrevious() != nullptr);
3525    return GetPrevious()->GetType();
3526  }
3527
3528  DECLARE_INSTRUCTION(Temporary);
3529
3530 private:
3531  const size_t index_;
3532
3533  DISALLOW_COPY_AND_ASSIGN(HTemporary);
3534};
3535
3536class HSuspendCheck : public HTemplateInstruction<0> {
3537 public:
3538  explicit HSuspendCheck(uint32_t dex_pc)
3539      : HTemplateInstruction(SideEffects::None()), dex_pc_(dex_pc), slow_path_(nullptr) {}
3540
3541  bool NeedsEnvironment() const OVERRIDE {
3542    return true;
3543  }
3544
3545  uint32_t GetDexPc() const OVERRIDE { return dex_pc_; }
3546  void SetSlowPath(SlowPathCode* slow_path) { slow_path_ = slow_path; }
3547  SlowPathCode* GetSlowPath() const { return slow_path_; }
3548
3549  DECLARE_INSTRUCTION(SuspendCheck);
3550
3551 private:
3552  const uint32_t dex_pc_;
3553
3554  // Only used for code generation, in order to share the same slow path between back edges
3555  // of a same loop.
3556  SlowPathCode* slow_path_;
3557
3558  DISALLOW_COPY_AND_ASSIGN(HSuspendCheck);
3559};
3560
3561/**
3562 * Instruction to load a Class object.
3563 */
3564class HLoadClass : public HExpression<1> {
3565 public:
3566  HLoadClass(HCurrentMethod* current_method,
3567             uint16_t type_index,
3568             const DexFile& dex_file,
3569             bool is_referrers_class,
3570             uint32_t dex_pc)
3571      : HExpression(Primitive::kPrimNot, SideEffects::None()),
3572        type_index_(type_index),
3573        dex_file_(dex_file),
3574        is_referrers_class_(is_referrers_class),
3575        dex_pc_(dex_pc),
3576        generate_clinit_check_(false),
3577        loaded_class_rti_(ReferenceTypeInfo::CreateTop(/* is_exact */ false)) {
3578    SetRawInputAt(0, current_method);
3579  }
3580
3581  bool CanBeMoved() const OVERRIDE { return true; }
3582
3583  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
3584    return other->AsLoadClass()->type_index_ == type_index_;
3585  }
3586
3587  size_t ComputeHashCode() const OVERRIDE { return type_index_; }
3588
3589  uint32_t GetDexPc() const OVERRIDE { return dex_pc_; }
3590  uint16_t GetTypeIndex() const { return type_index_; }
3591  bool IsReferrersClass() const { return is_referrers_class_; }
3592
3593  bool NeedsEnvironment() const OVERRIDE {
3594    // Will call runtime and load the class if the class is not loaded yet.
3595    // TODO: finer grain decision.
3596    return !is_referrers_class_;
3597  }
3598
3599  bool MustGenerateClinitCheck() const {
3600    return generate_clinit_check_;
3601  }
3602
3603  void SetMustGenerateClinitCheck(bool generate_clinit_check) {
3604    generate_clinit_check_ = generate_clinit_check;
3605  }
3606
3607  bool CanCallRuntime() const {
3608    return MustGenerateClinitCheck() || !is_referrers_class_;
3609  }
3610
3611  bool CanThrow() const OVERRIDE {
3612    // May call runtime and and therefore can throw.
3613    // TODO: finer grain decision.
3614    return CanCallRuntime();
3615  }
3616
3617  ReferenceTypeInfo GetLoadedClassRTI() {
3618    return loaded_class_rti_;
3619  }
3620
3621  void SetLoadedClassRTI(ReferenceTypeInfo rti) {
3622    // Make sure we only set exact types (the loaded class should never be merged).
3623    DCHECK(rti.IsExact());
3624    loaded_class_rti_ = rti;
3625  }
3626
3627  bool IsResolved() {
3628    return loaded_class_rti_.IsExact();
3629  }
3630
3631  const DexFile& GetDexFile() { return dex_file_; }
3632
3633  bool NeedsDexCache() const OVERRIDE { return !is_referrers_class_; }
3634
3635  DECLARE_INSTRUCTION(LoadClass);
3636
3637 private:
3638  const uint16_t type_index_;
3639  const DexFile& dex_file_;
3640  const bool is_referrers_class_;
3641  const uint32_t dex_pc_;
3642  // Whether this instruction must generate the initialization check.
3643  // Used for code generation.
3644  bool generate_clinit_check_;
3645
3646  ReferenceTypeInfo loaded_class_rti_;
3647
3648  DISALLOW_COPY_AND_ASSIGN(HLoadClass);
3649};
3650
3651class HLoadString : public HExpression<1> {
3652 public:
3653  HLoadString(HCurrentMethod* current_method, uint32_t string_index, uint32_t dex_pc)
3654      : HExpression(Primitive::kPrimNot, SideEffects::None()),
3655        string_index_(string_index),
3656        dex_pc_(dex_pc) {
3657    SetRawInputAt(0, current_method);
3658  }
3659
3660  bool CanBeMoved() const OVERRIDE { return true; }
3661
3662  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
3663    return other->AsLoadString()->string_index_ == string_index_;
3664  }
3665
3666  size_t ComputeHashCode() const OVERRIDE { return string_index_; }
3667
3668  uint32_t GetDexPc() const OVERRIDE { return dex_pc_; }
3669  uint32_t GetStringIndex() const { return string_index_; }
3670
3671  // TODO: Can we deopt or debug when we resolve a string?
3672  bool NeedsEnvironment() const OVERRIDE { return false; }
3673  bool NeedsDexCache() const OVERRIDE { return true; }
3674
3675  DECLARE_INSTRUCTION(LoadString);
3676
3677 private:
3678  const uint32_t string_index_;
3679  const uint32_t dex_pc_;
3680
3681  DISALLOW_COPY_AND_ASSIGN(HLoadString);
3682};
3683
3684/**
3685 * Performs an initialization check on its Class object input.
3686 */
3687class HClinitCheck : public HExpression<1> {
3688 public:
3689  explicit HClinitCheck(HLoadClass* constant, uint32_t dex_pc)
3690      : HExpression(Primitive::kPrimNot, SideEffects::ChangesSomething()),
3691        dex_pc_(dex_pc) {
3692    SetRawInputAt(0, constant);
3693  }
3694
3695  bool CanBeMoved() const OVERRIDE { return true; }
3696  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
3697    UNUSED(other);
3698    return true;
3699  }
3700
3701  bool NeedsEnvironment() const OVERRIDE {
3702    // May call runtime to initialize the class.
3703    return true;
3704  }
3705
3706  uint32_t GetDexPc() const OVERRIDE { return dex_pc_; }
3707
3708  HLoadClass* GetLoadClass() const { return InputAt(0)->AsLoadClass(); }
3709
3710  DECLARE_INSTRUCTION(ClinitCheck);
3711
3712 private:
3713  const uint32_t dex_pc_;
3714
3715  DISALLOW_COPY_AND_ASSIGN(HClinitCheck);
3716};
3717
3718class HStaticFieldGet : public HExpression<1> {
3719 public:
3720  HStaticFieldGet(HInstruction* cls,
3721                  Primitive::Type field_type,
3722                  MemberOffset field_offset,
3723                  bool is_volatile,
3724                  uint32_t field_idx,
3725                  const DexFile& dex_file)
3726      : HExpression(field_type, SideEffects::DependsOnSomething()),
3727        field_info_(field_offset, field_type, is_volatile, field_idx, dex_file) {
3728    SetRawInputAt(0, cls);
3729  }
3730
3731
3732  bool CanBeMoved() const OVERRIDE { return !IsVolatile(); }
3733
3734  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
3735    HStaticFieldGet* other_get = other->AsStaticFieldGet();
3736    return GetFieldOffset().SizeValue() == other_get->GetFieldOffset().SizeValue();
3737  }
3738
3739  size_t ComputeHashCode() const OVERRIDE {
3740    return (HInstruction::ComputeHashCode() << 7) | GetFieldOffset().SizeValue();
3741  }
3742
3743  const FieldInfo& GetFieldInfo() const { return field_info_; }
3744  MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
3745  Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); }
3746  bool IsVolatile() const { return field_info_.IsVolatile(); }
3747
3748  DECLARE_INSTRUCTION(StaticFieldGet);
3749
3750 private:
3751  const FieldInfo field_info_;
3752
3753  DISALLOW_COPY_AND_ASSIGN(HStaticFieldGet);
3754};
3755
3756class HStaticFieldSet : public HTemplateInstruction<2> {
3757 public:
3758  HStaticFieldSet(HInstruction* cls,
3759                  HInstruction* value,
3760                  Primitive::Type field_type,
3761                  MemberOffset field_offset,
3762                  bool is_volatile,
3763                  uint32_t field_idx,
3764                  const DexFile& dex_file)
3765      : HTemplateInstruction(SideEffects::ChangesSomething()),
3766        field_info_(field_offset, field_type, is_volatile, field_idx, dex_file),
3767        value_can_be_null_(true) {
3768    SetRawInputAt(0, cls);
3769    SetRawInputAt(1, value);
3770  }
3771
3772  const FieldInfo& GetFieldInfo() const { return field_info_; }
3773  MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
3774  Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); }
3775  bool IsVolatile() const { return field_info_.IsVolatile(); }
3776
3777  HInstruction* GetValue() const { return InputAt(1); }
3778  bool GetValueCanBeNull() const { return value_can_be_null_; }
3779  void ClearValueCanBeNull() { value_can_be_null_ = false; }
3780
3781  DECLARE_INSTRUCTION(StaticFieldSet);
3782
3783 private:
3784  const FieldInfo field_info_;
3785  bool value_can_be_null_;
3786
3787  DISALLOW_COPY_AND_ASSIGN(HStaticFieldSet);
3788};
3789
3790// Implement the move-exception DEX instruction.
3791class HLoadException : public HExpression<0> {
3792 public:
3793  HLoadException() : HExpression(Primitive::kPrimNot, SideEffects::None()) {}
3794
3795  DECLARE_INSTRUCTION(LoadException);
3796
3797 private:
3798  DISALLOW_COPY_AND_ASSIGN(HLoadException);
3799};
3800
3801class HThrow : public HTemplateInstruction<1> {
3802 public:
3803  HThrow(HInstruction* exception, uint32_t dex_pc)
3804      : HTemplateInstruction(SideEffects::None()), dex_pc_(dex_pc) {
3805    SetRawInputAt(0, exception);
3806  }
3807
3808  bool IsControlFlow() const OVERRIDE { return true; }
3809
3810  bool NeedsEnvironment() const OVERRIDE { return true; }
3811
3812  bool CanThrow() const OVERRIDE { return true; }
3813
3814  uint32_t GetDexPc() const OVERRIDE { return dex_pc_; }
3815
3816  DECLARE_INSTRUCTION(Throw);
3817
3818 private:
3819  const uint32_t dex_pc_;
3820
3821  DISALLOW_COPY_AND_ASSIGN(HThrow);
3822};
3823
3824class HInstanceOf : public HExpression<2> {
3825 public:
3826  HInstanceOf(HInstruction* object,
3827              HLoadClass* constant,
3828              bool class_is_final,
3829              uint32_t dex_pc)
3830      : HExpression(Primitive::kPrimBoolean, SideEffects::None()),
3831        class_is_final_(class_is_final),
3832        must_do_null_check_(true),
3833        dex_pc_(dex_pc) {
3834    SetRawInputAt(0, object);
3835    SetRawInputAt(1, constant);
3836  }
3837
3838  bool CanBeMoved() const OVERRIDE { return true; }
3839
3840  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
3841    return true;
3842  }
3843
3844  bool NeedsEnvironment() const OVERRIDE {
3845    return false;
3846  }
3847
3848  uint32_t GetDexPc() const OVERRIDE { return dex_pc_; }
3849
3850  bool IsClassFinal() const { return class_is_final_; }
3851
3852  // Used only in code generation.
3853  bool MustDoNullCheck() const { return must_do_null_check_; }
3854  void ClearMustDoNullCheck() { must_do_null_check_ = false; }
3855
3856  DECLARE_INSTRUCTION(InstanceOf);
3857
3858 private:
3859  const bool class_is_final_;
3860  bool must_do_null_check_;
3861  const uint32_t dex_pc_;
3862
3863  DISALLOW_COPY_AND_ASSIGN(HInstanceOf);
3864};
3865
3866class HBoundType : public HExpression<1> {
3867 public:
3868  HBoundType(HInstruction* input, ReferenceTypeInfo bound_type)
3869      : HExpression(Primitive::kPrimNot, SideEffects::None()),
3870        bound_type_(bound_type) {
3871    DCHECK_EQ(input->GetType(), Primitive::kPrimNot);
3872    SetRawInputAt(0, input);
3873  }
3874
3875  const ReferenceTypeInfo& GetBoundType() const { return bound_type_; }
3876
3877  bool CanBeNull() const OVERRIDE {
3878    // `null instanceof ClassX` always return false so we can't be null.
3879    return false;
3880  }
3881
3882  DECLARE_INSTRUCTION(BoundType);
3883
3884 private:
3885  // Encodes the most upper class that this instruction can have. In other words
3886  // it is always the case that GetBoundType().IsSupertypeOf(GetReferenceType()).
3887  // It is used to bound the type in cases like `if (x instanceof ClassX) {}`
3888  const ReferenceTypeInfo bound_type_;
3889
3890  DISALLOW_COPY_AND_ASSIGN(HBoundType);
3891};
3892
3893class HCheckCast : public HTemplateInstruction<2> {
3894 public:
3895  HCheckCast(HInstruction* object,
3896             HLoadClass* constant,
3897             bool class_is_final,
3898             uint32_t dex_pc)
3899      : HTemplateInstruction(SideEffects::None()),
3900        class_is_final_(class_is_final),
3901        must_do_null_check_(true),
3902        dex_pc_(dex_pc) {
3903    SetRawInputAt(0, object);
3904    SetRawInputAt(1, constant);
3905  }
3906
3907  bool CanBeMoved() const OVERRIDE { return true; }
3908
3909  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
3910    return true;
3911  }
3912
3913  bool NeedsEnvironment() const OVERRIDE {
3914    // Instruction may throw a CheckCastError.
3915    return true;
3916  }
3917
3918  bool CanThrow() const OVERRIDE { return true; }
3919
3920  bool MustDoNullCheck() const { return must_do_null_check_; }
3921  void ClearMustDoNullCheck() { must_do_null_check_ = false; }
3922
3923  uint32_t GetDexPc() const OVERRIDE { return dex_pc_; }
3924
3925  bool IsClassFinal() const { return class_is_final_; }
3926
3927  DECLARE_INSTRUCTION(CheckCast);
3928
3929 private:
3930  const bool class_is_final_;
3931  bool must_do_null_check_;
3932  const uint32_t dex_pc_;
3933
3934  DISALLOW_COPY_AND_ASSIGN(HCheckCast);
3935};
3936
3937class HMemoryBarrier : public HTemplateInstruction<0> {
3938 public:
3939  explicit HMemoryBarrier(MemBarrierKind barrier_kind)
3940      : HTemplateInstruction(SideEffects::None()),
3941        barrier_kind_(barrier_kind) {}
3942
3943  MemBarrierKind GetBarrierKind() { return barrier_kind_; }
3944
3945  DECLARE_INSTRUCTION(MemoryBarrier);
3946
3947 private:
3948  const MemBarrierKind barrier_kind_;
3949
3950  DISALLOW_COPY_AND_ASSIGN(HMemoryBarrier);
3951};
3952
3953class HMonitorOperation : public HTemplateInstruction<1> {
3954 public:
3955  enum OperationKind {
3956    kEnter,
3957    kExit,
3958  };
3959
3960  HMonitorOperation(HInstruction* object, OperationKind kind, uint32_t dex_pc)
3961    : HTemplateInstruction(SideEffects::None()), kind_(kind), dex_pc_(dex_pc) {
3962    SetRawInputAt(0, object);
3963  }
3964
3965  // Instruction may throw a Java exception, so we need an environment.
3966  bool NeedsEnvironment() const OVERRIDE { return true; }
3967  bool CanThrow() const OVERRIDE { return true; }
3968
3969  uint32_t GetDexPc() const OVERRIDE { return dex_pc_; }
3970
3971  bool IsEnter() const { return kind_ == kEnter; }
3972
3973  DECLARE_INSTRUCTION(MonitorOperation);
3974
3975 private:
3976  const OperationKind kind_;
3977  const uint32_t dex_pc_;
3978
3979 private:
3980  DISALLOW_COPY_AND_ASSIGN(HMonitorOperation);
3981};
3982
3983class MoveOperands : public ArenaObject<kArenaAllocMisc> {
3984 public:
3985  MoveOperands(Location source,
3986               Location destination,
3987               Primitive::Type type,
3988               HInstruction* instruction)
3989      : source_(source), destination_(destination), type_(type), instruction_(instruction) {}
3990
3991  Location GetSource() const { return source_; }
3992  Location GetDestination() const { return destination_; }
3993
3994  void SetSource(Location value) { source_ = value; }
3995  void SetDestination(Location value) { destination_ = value; }
3996
3997  // The parallel move resolver marks moves as "in-progress" by clearing the
3998  // destination (but not the source).
3999  Location MarkPending() {
4000    DCHECK(!IsPending());
4001    Location dest = destination_;
4002    destination_ = Location::NoLocation();
4003    return dest;
4004  }
4005
4006  void ClearPending(Location dest) {
4007    DCHECK(IsPending());
4008    destination_ = dest;
4009  }
4010
4011  bool IsPending() const {
4012    DCHECK(!source_.IsInvalid() || destination_.IsInvalid());
4013    return destination_.IsInvalid() && !source_.IsInvalid();
4014  }
4015
4016  // True if this blocks a move from the given location.
4017  bool Blocks(Location loc) const {
4018    return !IsEliminated() && source_.OverlapsWith(loc);
4019  }
4020
4021  // A move is redundant if it's been eliminated, if its source and
4022  // destination are the same, or if its destination is unneeded.
4023  bool IsRedundant() const {
4024    return IsEliminated() || destination_.IsInvalid() || source_.Equals(destination_);
4025  }
4026
4027  // We clear both operands to indicate move that's been eliminated.
4028  void Eliminate() {
4029    source_ = destination_ = Location::NoLocation();
4030  }
4031
4032  bool IsEliminated() const {
4033    DCHECK(!source_.IsInvalid() || destination_.IsInvalid());
4034    return source_.IsInvalid();
4035  }
4036
4037  Primitive::Type GetType() const { return type_; }
4038
4039  bool Is64BitMove() const {
4040    return Primitive::Is64BitType(type_);
4041  }
4042
4043  HInstruction* GetInstruction() const { return instruction_; }
4044
4045 private:
4046  Location source_;
4047  Location destination_;
4048  // The type this move is for.
4049  Primitive::Type type_;
4050  // The instruction this move is assocatied with. Null when this move is
4051  // for moving an input in the expected locations of user (including a phi user).
4052  // This is only used in debug mode, to ensure we do not connect interval siblings
4053  // in the same parallel move.
4054  HInstruction* instruction_;
4055};
4056
4057static constexpr size_t kDefaultNumberOfMoves = 4;
4058
4059class HParallelMove : public HTemplateInstruction<0> {
4060 public:
4061  explicit HParallelMove(ArenaAllocator* arena)
4062      : HTemplateInstruction(SideEffects::None()), moves_(arena, kDefaultNumberOfMoves) {}
4063
4064  void AddMove(Location source,
4065               Location destination,
4066               Primitive::Type type,
4067               HInstruction* instruction) {
4068    DCHECK(source.IsValid());
4069    DCHECK(destination.IsValid());
4070    if (kIsDebugBuild) {
4071      if (instruction != nullptr) {
4072        for (size_t i = 0, e = moves_.Size(); i < e; ++i) {
4073          if (moves_.Get(i).GetInstruction() == instruction) {
4074            // Special case the situation where the move is for the spill slot
4075            // of the instruction.
4076            if ((GetPrevious() == instruction)
4077                || ((GetPrevious() == nullptr)
4078                    && instruction->IsPhi()
4079                    && instruction->GetBlock() == GetBlock())) {
4080              DCHECK_NE(destination.GetKind(), moves_.Get(i).GetDestination().GetKind())
4081                  << "Doing parallel moves for the same instruction.";
4082            } else {
4083              DCHECK(false) << "Doing parallel moves for the same instruction.";
4084            }
4085          }
4086        }
4087      }
4088      for (size_t i = 0, e = moves_.Size(); i < e; ++i) {
4089        DCHECK(!destination.OverlapsWith(moves_.Get(i).GetDestination()))
4090            << "Overlapped destination for two moves in a parallel move: "
4091            << moves_.Get(i).GetSource() << " ==> " << moves_.Get(i).GetDestination() << " and "
4092            << source << " ==> " << destination;
4093      }
4094    }
4095    moves_.Add(MoveOperands(source, destination, type, instruction));
4096  }
4097
4098  MoveOperands* MoveOperandsAt(size_t index) const {
4099    return moves_.GetRawStorage() + index;
4100  }
4101
4102  size_t NumMoves() const { return moves_.Size(); }
4103
4104  DECLARE_INSTRUCTION(ParallelMove);
4105
4106 private:
4107  GrowableArray<MoveOperands> moves_;
4108
4109  DISALLOW_COPY_AND_ASSIGN(HParallelMove);
4110};
4111
4112class HGraphVisitor : public ValueObject {
4113 public:
4114  explicit HGraphVisitor(HGraph* graph) : graph_(graph) {}
4115  virtual ~HGraphVisitor() {}
4116
4117  virtual void VisitInstruction(HInstruction* instruction) { UNUSED(instruction); }
4118  virtual void VisitBasicBlock(HBasicBlock* block);
4119
4120  // Visit the graph following basic block insertion order.
4121  void VisitInsertionOrder();
4122
4123  // Visit the graph following dominator tree reverse post-order.
4124  void VisitReversePostOrder();
4125
4126  HGraph* GetGraph() const { return graph_; }
4127
4128  // Visit functions for instruction classes.
4129#define DECLARE_VISIT_INSTRUCTION(name, super)                                        \
4130  virtual void Visit##name(H##name* instr) { VisitInstruction(instr); }
4131
4132  FOR_EACH_INSTRUCTION(DECLARE_VISIT_INSTRUCTION)
4133
4134#undef DECLARE_VISIT_INSTRUCTION
4135
4136 private:
4137  HGraph* const graph_;
4138
4139  DISALLOW_COPY_AND_ASSIGN(HGraphVisitor);
4140};
4141
4142class HGraphDelegateVisitor : public HGraphVisitor {
4143 public:
4144  explicit HGraphDelegateVisitor(HGraph* graph) : HGraphVisitor(graph) {}
4145  virtual ~HGraphDelegateVisitor() {}
4146
4147  // Visit functions that delegate to to super class.
4148#define DECLARE_VISIT_INSTRUCTION(name, super)                                        \
4149  void Visit##name(H##name* instr) OVERRIDE { Visit##super(instr); }
4150
4151  FOR_EACH_INSTRUCTION(DECLARE_VISIT_INSTRUCTION)
4152
4153#undef DECLARE_VISIT_INSTRUCTION
4154
4155 private:
4156  DISALLOW_COPY_AND_ASSIGN(HGraphDelegateVisitor);
4157};
4158
4159class HInsertionOrderIterator : public ValueObject {
4160 public:
4161  explicit HInsertionOrderIterator(const HGraph& graph) : graph_(graph), index_(0) {}
4162
4163  bool Done() const { return index_ == graph_.GetBlocks().Size(); }
4164  HBasicBlock* Current() const { return graph_.GetBlocks().Get(index_); }
4165  void Advance() { ++index_; }
4166
4167 private:
4168  const HGraph& graph_;
4169  size_t index_;
4170
4171  DISALLOW_COPY_AND_ASSIGN(HInsertionOrderIterator);
4172};
4173
4174class HReversePostOrderIterator : public ValueObject {
4175 public:
4176  explicit HReversePostOrderIterator(const HGraph& graph) : graph_(graph), index_(0) {
4177    // Check that reverse post order of the graph has been built.
4178    DCHECK(!graph.GetReversePostOrder().IsEmpty());
4179  }
4180
4181  bool Done() const { return index_ == graph_.GetReversePostOrder().Size(); }
4182  HBasicBlock* Current() const { return graph_.GetReversePostOrder().Get(index_); }
4183  void Advance() { ++index_; }
4184
4185 private:
4186  const HGraph& graph_;
4187  size_t index_;
4188
4189  DISALLOW_COPY_AND_ASSIGN(HReversePostOrderIterator);
4190};
4191
4192class HPostOrderIterator : public ValueObject {
4193 public:
4194  explicit HPostOrderIterator(const HGraph& graph)
4195      : graph_(graph), index_(graph_.GetReversePostOrder().Size()) {
4196    // Check that reverse post order of the graph has been built.
4197    DCHECK(!graph.GetReversePostOrder().IsEmpty());
4198  }
4199
4200  bool Done() const { return index_ == 0; }
4201  HBasicBlock* Current() const { return graph_.GetReversePostOrder().Get(index_ - 1); }
4202  void Advance() { --index_; }
4203
4204 private:
4205  const HGraph& graph_;
4206  size_t index_;
4207
4208  DISALLOW_COPY_AND_ASSIGN(HPostOrderIterator);
4209};
4210
4211class HLinearPostOrderIterator : public ValueObject {
4212 public:
4213  explicit HLinearPostOrderIterator(const HGraph& graph)
4214      : order_(graph.GetLinearOrder()), index_(graph.GetLinearOrder().Size()) {}
4215
4216  bool Done() const { return index_ == 0; }
4217
4218  HBasicBlock* Current() const { return order_.Get(index_ -1); }
4219
4220  void Advance() {
4221    --index_;
4222    DCHECK_GE(index_, 0U);
4223  }
4224
4225 private:
4226  const GrowableArray<HBasicBlock*>& order_;
4227  size_t index_;
4228
4229  DISALLOW_COPY_AND_ASSIGN(HLinearPostOrderIterator);
4230};
4231
4232class HLinearOrderIterator : public ValueObject {
4233 public:
4234  explicit HLinearOrderIterator(const HGraph& graph)
4235      : order_(graph.GetLinearOrder()), index_(0) {}
4236
4237  bool Done() const { return index_ == order_.Size(); }
4238  HBasicBlock* Current() const { return order_.Get(index_); }
4239  void Advance() { ++index_; }
4240
4241 private:
4242  const GrowableArray<HBasicBlock*>& order_;
4243  size_t index_;
4244
4245  DISALLOW_COPY_AND_ASSIGN(HLinearOrderIterator);
4246};
4247
4248// Iterator over the blocks that art part of the loop. Includes blocks part
4249// of an inner loop. The order in which the blocks are iterated is on their
4250// block id.
4251class HBlocksInLoopIterator : public ValueObject {
4252 public:
4253  explicit HBlocksInLoopIterator(const HLoopInformation& info)
4254      : blocks_in_loop_(info.GetBlocks()),
4255        blocks_(info.GetHeader()->GetGraph()->GetBlocks()),
4256        index_(0) {
4257    if (!blocks_in_loop_.IsBitSet(index_)) {
4258      Advance();
4259    }
4260  }
4261
4262  bool Done() const { return index_ == blocks_.Size(); }
4263  HBasicBlock* Current() const { return blocks_.Get(index_); }
4264  void Advance() {
4265    ++index_;
4266    for (size_t e = blocks_.Size(); index_ < e; ++index_) {
4267      if (blocks_in_loop_.IsBitSet(index_)) {
4268        break;
4269      }
4270    }
4271  }
4272
4273 private:
4274  const BitVector& blocks_in_loop_;
4275  const GrowableArray<HBasicBlock*>& blocks_;
4276  size_t index_;
4277
4278  DISALLOW_COPY_AND_ASSIGN(HBlocksInLoopIterator);
4279};
4280
4281// Iterator over the blocks that art part of the loop. Includes blocks part
4282// of an inner loop. The order in which the blocks are iterated is reverse
4283// post order.
4284class HBlocksInLoopReversePostOrderIterator : public ValueObject {
4285 public:
4286  explicit HBlocksInLoopReversePostOrderIterator(const HLoopInformation& info)
4287      : blocks_in_loop_(info.GetBlocks()),
4288        blocks_(info.GetHeader()->GetGraph()->GetReversePostOrder()),
4289        index_(0) {
4290    if (!blocks_in_loop_.IsBitSet(blocks_.Get(index_)->GetBlockId())) {
4291      Advance();
4292    }
4293  }
4294
4295  bool Done() const { return index_ == blocks_.Size(); }
4296  HBasicBlock* Current() const { return blocks_.Get(index_); }
4297  void Advance() {
4298    ++index_;
4299    for (size_t e = blocks_.Size(); index_ < e; ++index_) {
4300      if (blocks_in_loop_.IsBitSet(blocks_.Get(index_)->GetBlockId())) {
4301        break;
4302      }
4303    }
4304  }
4305
4306 private:
4307  const BitVector& blocks_in_loop_;
4308  const GrowableArray<HBasicBlock*>& blocks_;
4309  size_t index_;
4310
4311  DISALLOW_COPY_AND_ASSIGN(HBlocksInLoopReversePostOrderIterator);
4312};
4313
4314inline int64_t Int64FromConstant(HConstant* constant) {
4315  DCHECK(constant->IsIntConstant() || constant->IsLongConstant());
4316  return constant->IsIntConstant() ? constant->AsIntConstant()->GetValue()
4317                                   : constant->AsLongConstant()->GetValue();
4318}
4319
4320}  // namespace art
4321
4322#endif  // ART_COMPILER_OPTIMIZING_NODES_H_
4323