nodes.h revision 57b81ecbe74138992dd447251e94ed06cd5eb802
1/*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#ifndef ART_COMPILER_OPTIMIZING_NODES_H_
18#define ART_COMPILER_OPTIMIZING_NODES_H_
19
20#include <type_traits>
21
22#include "base/arena_containers.h"
23#include "base/arena_object.h"
24#include "dex/compiler_enums.h"
25#include "entrypoints/quick/quick_entrypoints_enum.h"
26#include "handle.h"
27#include "handle_scope.h"
28#include "invoke_type.h"
29#include "locations.h"
30#include "mirror/class.h"
31#include "offsets.h"
32#include "primitive.h"
33#include "utils/arena_bit_vector.h"
34#include "utils/growable_array.h"
35
36namespace art {
37
38class GraphChecker;
39class HBasicBlock;
40class HCurrentMethod;
41class HDoubleConstant;
42class HEnvironment;
43class HFakeString;
44class HFloatConstant;
45class HGraphBuilder;
46class HGraphVisitor;
47class HInstruction;
48class HIntConstant;
49class HInvoke;
50class HLongConstant;
51class HNullConstant;
52class HPhi;
53class HSuspendCheck;
54class HTryBoundary;
55class LiveInterval;
56class LocationSummary;
57class SlowPathCode;
58class SsaBuilder;
59
60static const int kDefaultNumberOfBlocks = 8;
61static const int kDefaultNumberOfSuccessors = 2;
62static const int kDefaultNumberOfPredecessors = 2;
63static const int kDefaultNumberOfExceptionalPredecessors = 0;
64static const int kDefaultNumberOfDominatedBlocks = 1;
65static const int kDefaultNumberOfBackEdges = 1;
66
67static constexpr uint32_t kMaxIntShiftValue = 0x1f;
68static constexpr uint64_t kMaxLongShiftValue = 0x3f;
69
70static constexpr uint32_t kUnknownFieldIndex = static_cast<uint32_t>(-1);
71
72static constexpr InvokeType kInvalidInvokeType = static_cast<InvokeType>(-1);
73
74enum IfCondition {
75  kCondEQ,
76  kCondNE,
77  kCondLT,
78  kCondLE,
79  kCondGT,
80  kCondGE,
81};
82
83class HInstructionList {
84 public:
85  HInstructionList() : first_instruction_(nullptr), last_instruction_(nullptr) {}
86
87  void AddInstruction(HInstruction* instruction);
88  void RemoveInstruction(HInstruction* instruction);
89
90  // Insert `instruction` before/after an existing instruction `cursor`.
91  void InsertInstructionBefore(HInstruction* instruction, HInstruction* cursor);
92  void InsertInstructionAfter(HInstruction* instruction, HInstruction* cursor);
93
94  // Return true if this list contains `instruction`.
95  bool Contains(HInstruction* instruction) const;
96
97  // Return true if `instruction1` is found before `instruction2` in
98  // this instruction list and false otherwise.  Abort if none
99  // of these instructions is found.
100  bool FoundBefore(const HInstruction* instruction1,
101                   const HInstruction* instruction2) const;
102
103  bool IsEmpty() const { return first_instruction_ == nullptr; }
104  void Clear() { first_instruction_ = last_instruction_ = nullptr; }
105
106  // Update the block of all instructions to be `block`.
107  void SetBlockOfInstructions(HBasicBlock* block) const;
108
109  void AddAfter(HInstruction* cursor, const HInstructionList& instruction_list);
110  void Add(const HInstructionList& instruction_list);
111
112  // Return the number of instructions in the list. This is an expensive operation.
113  size_t CountSize() const;
114
115 private:
116  HInstruction* first_instruction_;
117  HInstruction* last_instruction_;
118
119  friend class HBasicBlock;
120  friend class HGraph;
121  friend class HInstruction;
122  friend class HInstructionIterator;
123  friend class HBackwardInstructionIterator;
124
125  DISALLOW_COPY_AND_ASSIGN(HInstructionList);
126};
127
128// Control-flow graph of a method. Contains a list of basic blocks.
129class HGraph : public ArenaObject<kArenaAllocMisc> {
130 public:
131  HGraph(ArenaAllocator* arena,
132         const DexFile& dex_file,
133         uint32_t method_idx,
134         bool should_generate_constructor_barrier,
135         InstructionSet instruction_set,
136         InvokeType invoke_type = kInvalidInvokeType,
137         bool debuggable = false,
138         int start_instruction_id = 0)
139      : arena_(arena),
140        blocks_(arena, kDefaultNumberOfBlocks),
141        reverse_post_order_(arena, kDefaultNumberOfBlocks),
142        linear_order_(arena, kDefaultNumberOfBlocks),
143        entry_block_(nullptr),
144        exit_block_(nullptr),
145        maximum_number_of_out_vregs_(0),
146        number_of_vregs_(0),
147        number_of_in_vregs_(0),
148        temporaries_vreg_slots_(0),
149        has_bounds_checks_(false),
150        debuggable_(debuggable),
151        current_instruction_id_(start_instruction_id),
152        dex_file_(dex_file),
153        method_idx_(method_idx),
154        invoke_type_(invoke_type),
155        in_ssa_form_(false),
156        should_generate_constructor_barrier_(should_generate_constructor_barrier),
157        instruction_set_(instruction_set),
158        cached_null_constant_(nullptr),
159        cached_int_constants_(std::less<int32_t>(), arena->Adapter()),
160        cached_float_constants_(std::less<int32_t>(), arena->Adapter()),
161        cached_long_constants_(std::less<int64_t>(), arena->Adapter()),
162        cached_double_constants_(std::less<int64_t>(), arena->Adapter()),
163        cached_current_method_(nullptr) {}
164
165  ArenaAllocator* GetArena() const { return arena_; }
166  const GrowableArray<HBasicBlock*>& GetBlocks() const { return blocks_; }
167  HBasicBlock* GetBlock(size_t id) const { return blocks_.Get(id); }
168
169  bool IsInSsaForm() const { return in_ssa_form_; }
170
171  HBasicBlock* GetEntryBlock() const { return entry_block_; }
172  HBasicBlock* GetExitBlock() const { return exit_block_; }
173  bool HasExitBlock() const { return exit_block_ != nullptr; }
174
175  void SetEntryBlock(HBasicBlock* block) { entry_block_ = block; }
176  void SetExitBlock(HBasicBlock* block) { exit_block_ = block; }
177
178  void AddBlock(HBasicBlock* block);
179
180  // Try building the SSA form of this graph, with dominance computation and loop
181  // recognition. Returns whether it was successful in doing all these steps.
182  bool TryBuildingSsa() {
183    BuildDominatorTree();
184    // The SSA builder requires loops to all be natural. Specifically, the dead phi
185    // elimination phase checks the consistency of the graph when doing a post-order
186    // visit for eliminating dead phis: a dead phi can only have loop header phi
187    // users remaining when being visited.
188    if (!AnalyzeNaturalLoops()) return false;
189    // Precompute per-block try membership before entering the SSA builder,
190    // which needs the information to build catch block phis from values of
191    // locals at throwing instructions inside try blocks.
192    ComputeTryBlockInformation();
193    TransformToSsa();
194    in_ssa_form_ = true;
195    return true;
196  }
197
198  void ComputeDominanceInformation();
199  void ClearDominanceInformation();
200
201  void BuildDominatorTree();
202  void TransformToSsa();
203  void SimplifyCFG();
204  void SimplifyCatchBlocks();
205
206  // Analyze all natural loops in this graph. Returns false if one
207  // loop is not natural, that is the header does not dominate the
208  // back edge.
209  bool AnalyzeNaturalLoops() const;
210
211  // Iterate over blocks to compute try block membership. Needs reverse post
212  // order and loop information.
213  void ComputeTryBlockInformation();
214
215  // Inline this graph in `outer_graph`, replacing the given `invoke` instruction.
216  // Returns the instruction used to replace the invoke expression or null if the
217  // invoke is for a void method.
218  HInstruction* InlineInto(HGraph* outer_graph, HInvoke* invoke);
219
220  // Need to add a couple of blocks to test if the loop body is entered and
221  // put deoptimization instructions, etc.
222  void TransformLoopHeaderForBCE(HBasicBlock* header);
223
224  // Removes `block` from the graph.
225  void DeleteDeadBlock(HBasicBlock* block);
226
227  // Splits the edge between `block` and `successor` while preserving the
228  // indices in the predecessor/successor lists. If there are multiple edges
229  // between the blocks, the lowest indices are used.
230  // Returns the new block which is empty and has the same dex pc as `successor`.
231  HBasicBlock* SplitEdge(HBasicBlock* block, HBasicBlock* successor);
232
233  void SplitCriticalEdge(HBasicBlock* block, HBasicBlock* successor);
234  void SimplifyLoop(HBasicBlock* header);
235
236  int32_t GetNextInstructionId() {
237    DCHECK_NE(current_instruction_id_, INT32_MAX);
238    return current_instruction_id_++;
239  }
240
241  int32_t GetCurrentInstructionId() const {
242    return current_instruction_id_;
243  }
244
245  void SetCurrentInstructionId(int32_t id) {
246    current_instruction_id_ = id;
247  }
248
249  uint16_t GetMaximumNumberOfOutVRegs() const {
250    return maximum_number_of_out_vregs_;
251  }
252
253  void SetMaximumNumberOfOutVRegs(uint16_t new_value) {
254    maximum_number_of_out_vregs_ = new_value;
255  }
256
257  void UpdateMaximumNumberOfOutVRegs(uint16_t other_value) {
258    maximum_number_of_out_vregs_ = std::max(maximum_number_of_out_vregs_, other_value);
259  }
260
261  void UpdateTemporariesVRegSlots(size_t slots) {
262    temporaries_vreg_slots_ = std::max(slots, temporaries_vreg_slots_);
263  }
264
265  size_t GetTemporariesVRegSlots() const {
266    DCHECK(!in_ssa_form_);
267    return temporaries_vreg_slots_;
268  }
269
270  void SetNumberOfVRegs(uint16_t number_of_vregs) {
271    number_of_vregs_ = number_of_vregs;
272  }
273
274  uint16_t GetNumberOfVRegs() const {
275    DCHECK(!in_ssa_form_);
276    return number_of_vregs_;
277  }
278
279  void SetNumberOfInVRegs(uint16_t value) {
280    number_of_in_vregs_ = value;
281  }
282
283  uint16_t GetNumberOfLocalVRegs() const {
284    DCHECK(!in_ssa_form_);
285    return number_of_vregs_ - number_of_in_vregs_;
286  }
287
288  const GrowableArray<HBasicBlock*>& GetReversePostOrder() const {
289    return reverse_post_order_;
290  }
291
292  const GrowableArray<HBasicBlock*>& GetLinearOrder() const {
293    return linear_order_;
294  }
295
296  bool HasBoundsChecks() const {
297    return has_bounds_checks_;
298  }
299
300  void SetHasBoundsChecks(bool value) {
301    has_bounds_checks_ = value;
302  }
303
304  bool ShouldGenerateConstructorBarrier() const {
305    return should_generate_constructor_barrier_;
306  }
307
308  bool IsDebuggable() const { return debuggable_; }
309
310  // Returns a constant of the given type and value. If it does not exist
311  // already, it is created and inserted into the graph. This method is only for
312  // integral types.
313  HConstant* GetConstant(Primitive::Type type, int64_t value);
314
315  // TODO: This is problematic for the consistency of reference type propagation
316  // because it can be created anytime after the pass and thus it will be left
317  // with an invalid type.
318  HNullConstant* GetNullConstant();
319
320  HIntConstant* GetIntConstant(int32_t value) {
321    return CreateConstant(value, &cached_int_constants_);
322  }
323  HLongConstant* GetLongConstant(int64_t value) {
324    return CreateConstant(value, &cached_long_constants_);
325  }
326  HFloatConstant* GetFloatConstant(float value) {
327    return CreateConstant(bit_cast<int32_t, float>(value), &cached_float_constants_);
328  }
329  HDoubleConstant* GetDoubleConstant(double value) {
330    return CreateConstant(bit_cast<int64_t, double>(value), &cached_double_constants_);
331  }
332
333  HCurrentMethod* GetCurrentMethod();
334
335  HBasicBlock* FindCommonDominator(HBasicBlock* first, HBasicBlock* second) const;
336
337  const DexFile& GetDexFile() const {
338    return dex_file_;
339  }
340
341  uint32_t GetMethodIdx() const {
342    return method_idx_;
343  }
344
345  InvokeType GetInvokeType() const {
346    return invoke_type_;
347  }
348
349  InstructionSet GetInstructionSet() const {
350    return instruction_set_;
351  }
352
353 private:
354  void VisitBlockForDominatorTree(HBasicBlock* block,
355                                  HBasicBlock* predecessor,
356                                  GrowableArray<size_t>* visits);
357  void FindBackEdges(ArenaBitVector* visited);
358  void VisitBlockForBackEdges(HBasicBlock* block,
359                              ArenaBitVector* visited,
360                              ArenaBitVector* visiting);
361  void RemoveInstructionsAsUsersFromDeadBlocks(const ArenaBitVector& visited) const;
362  void RemoveDeadBlocks(const ArenaBitVector& visited);
363
364  template <class InstructionType, typename ValueType>
365  InstructionType* CreateConstant(ValueType value,
366                                  ArenaSafeMap<ValueType, InstructionType*>* cache) {
367    // Try to find an existing constant of the given value.
368    InstructionType* constant = nullptr;
369    auto cached_constant = cache->find(value);
370    if (cached_constant != cache->end()) {
371      constant = cached_constant->second;
372    }
373
374    // If not found or previously deleted, create and cache a new instruction.
375    // Don't bother reviving a previously deleted instruction, for simplicity.
376    if (constant == nullptr || constant->GetBlock() == nullptr) {
377      constant = new (arena_) InstructionType(value);
378      cache->Overwrite(value, constant);
379      InsertConstant(constant);
380    }
381    return constant;
382  }
383
384  void InsertConstant(HConstant* instruction);
385
386  // Cache a float constant into the graph. This method should only be
387  // called by the SsaBuilder when creating "equivalent" instructions.
388  void CacheFloatConstant(HFloatConstant* constant);
389
390  // See CacheFloatConstant comment.
391  void CacheDoubleConstant(HDoubleConstant* constant);
392
393  ArenaAllocator* const arena_;
394
395  // List of blocks in insertion order.
396  GrowableArray<HBasicBlock*> blocks_;
397
398  // List of blocks to perform a reverse post order tree traversal.
399  GrowableArray<HBasicBlock*> reverse_post_order_;
400
401  // List of blocks to perform a linear order tree traversal.
402  GrowableArray<HBasicBlock*> linear_order_;
403
404  HBasicBlock* entry_block_;
405  HBasicBlock* exit_block_;
406
407  // The maximum number of virtual registers arguments passed to a HInvoke in this graph.
408  uint16_t maximum_number_of_out_vregs_;
409
410  // The number of virtual registers in this method. Contains the parameters.
411  uint16_t number_of_vregs_;
412
413  // The number of virtual registers used by parameters of this method.
414  uint16_t number_of_in_vregs_;
415
416  // Number of vreg size slots that the temporaries use (used in baseline compiler).
417  size_t temporaries_vreg_slots_;
418
419  // Has bounds checks. We can totally skip BCE if it's false.
420  bool has_bounds_checks_;
421
422  // Indicates whether the graph should be compiled in a way that
423  // ensures full debuggability. If false, we can apply more
424  // aggressive optimizations that may limit the level of debugging.
425  const bool debuggable_;
426
427  // The current id to assign to a newly added instruction. See HInstruction.id_.
428  int32_t current_instruction_id_;
429
430  // The dex file from which the method is from.
431  const DexFile& dex_file_;
432
433  // The method index in the dex file.
434  const uint32_t method_idx_;
435
436  // If inlined, this encodes how the callee is being invoked.
437  const InvokeType invoke_type_;
438
439  // Whether the graph has been transformed to SSA form. Only used
440  // in debug mode to ensure we are not using properties only valid
441  // for non-SSA form (like the number of temporaries).
442  bool in_ssa_form_;
443
444  const bool should_generate_constructor_barrier_;
445
446  const InstructionSet instruction_set_;
447
448  // Cached constants.
449  HNullConstant* cached_null_constant_;
450  ArenaSafeMap<int32_t, HIntConstant*> cached_int_constants_;
451  ArenaSafeMap<int32_t, HFloatConstant*> cached_float_constants_;
452  ArenaSafeMap<int64_t, HLongConstant*> cached_long_constants_;
453  ArenaSafeMap<int64_t, HDoubleConstant*> cached_double_constants_;
454
455  HCurrentMethod* cached_current_method_;
456
457  friend class SsaBuilder;           // For caching constants.
458  friend class SsaLivenessAnalysis;  // For the linear order.
459  ART_FRIEND_TEST(GraphTest, IfSuccessorSimpleJoinBlock1);
460  DISALLOW_COPY_AND_ASSIGN(HGraph);
461};
462
463class HLoopInformation : public ArenaObject<kArenaAllocMisc> {
464 public:
465  HLoopInformation(HBasicBlock* header, HGraph* graph)
466      : header_(header),
467        suspend_check_(nullptr),
468        back_edges_(graph->GetArena(), kDefaultNumberOfBackEdges),
469        // Make bit vector growable, as the number of blocks may change.
470        blocks_(graph->GetArena(), graph->GetBlocks().Size(), true) {}
471
472  HBasicBlock* GetHeader() const {
473    return header_;
474  }
475
476  void SetHeader(HBasicBlock* block) {
477    header_ = block;
478  }
479
480  HSuspendCheck* GetSuspendCheck() const { return suspend_check_; }
481  void SetSuspendCheck(HSuspendCheck* check) { suspend_check_ = check; }
482  bool HasSuspendCheck() const { return suspend_check_ != nullptr; }
483
484  void AddBackEdge(HBasicBlock* back_edge) {
485    back_edges_.Add(back_edge);
486  }
487
488  void RemoveBackEdge(HBasicBlock* back_edge) {
489    back_edges_.Delete(back_edge);
490  }
491
492  bool IsBackEdge(const HBasicBlock& block) const {
493    for (size_t i = 0, e = back_edges_.Size(); i < e; ++i) {
494      if (back_edges_.Get(i) == &block) return true;
495    }
496    return false;
497  }
498
499  size_t NumberOfBackEdges() const {
500    return back_edges_.Size();
501  }
502
503  HBasicBlock* GetPreHeader() const;
504
505  const GrowableArray<HBasicBlock*>& GetBackEdges() const {
506    return back_edges_;
507  }
508
509  // Returns the lifetime position of the back edge that has the
510  // greatest lifetime position.
511  size_t GetLifetimeEnd() const;
512
513  void ReplaceBackEdge(HBasicBlock* existing, HBasicBlock* new_back_edge) {
514    for (size_t i = 0, e = back_edges_.Size(); i < e; ++i) {
515      if (back_edges_.Get(i) == existing) {
516        back_edges_.Put(i, new_back_edge);
517        return;
518      }
519    }
520    UNREACHABLE();
521  }
522
523  // Finds blocks that are part of this loop. Returns whether the loop is a natural loop,
524  // that is the header dominates the back edge.
525  bool Populate();
526
527  // Reanalyzes the loop by removing loop info from its blocks and re-running
528  // Populate(). If there are no back edges left, the loop info is completely
529  // removed as well as its SuspendCheck instruction. It must be run on nested
530  // inner loops first.
531  void Update();
532
533  // Returns whether this loop information contains `block`.
534  // Note that this loop information *must* be populated before entering this function.
535  bool Contains(const HBasicBlock& block) const;
536
537  // Returns whether this loop information is an inner loop of `other`.
538  // Note that `other` *must* be populated before entering this function.
539  bool IsIn(const HLoopInformation& other) const;
540
541  const ArenaBitVector& GetBlocks() const { return blocks_; }
542
543  void Add(HBasicBlock* block);
544  void Remove(HBasicBlock* block);
545
546 private:
547  // Internal recursive implementation of `Populate`.
548  void PopulateRecursive(HBasicBlock* block);
549
550  HBasicBlock* header_;
551  HSuspendCheck* suspend_check_;
552  GrowableArray<HBasicBlock*> back_edges_;
553  ArenaBitVector blocks_;
554
555  DISALLOW_COPY_AND_ASSIGN(HLoopInformation);
556};
557
558static constexpr size_t kNoLifetime = -1;
559static constexpr uint32_t kNoDexPc = -1;
560
561// A block in a method. Contains the list of instructions represented
562// as a double linked list. Each block knows its predecessors and
563// successors.
564
565class HBasicBlock : public ArenaObject<kArenaAllocMisc> {
566 public:
567  explicit HBasicBlock(HGraph* graph, uint32_t dex_pc = kNoDexPc)
568      : graph_(graph),
569        predecessors_(graph->GetArena(), kDefaultNumberOfPredecessors),
570        exceptional_predecessors_(graph->GetArena(), kDefaultNumberOfExceptionalPredecessors),
571        successors_(graph->GetArena(), kDefaultNumberOfSuccessors),
572        loop_information_(nullptr),
573        dominator_(nullptr),
574        dominated_blocks_(graph->GetArena(), kDefaultNumberOfDominatedBlocks),
575        block_id_(-1),
576        dex_pc_(dex_pc),
577        lifetime_start_(kNoLifetime),
578        lifetime_end_(kNoLifetime),
579        is_catch_block_(false) {}
580
581  const GrowableArray<HBasicBlock*>& GetPredecessors() const {
582    return predecessors_;
583  }
584
585  const GrowableArray<HInstruction*>& GetExceptionalPredecessors() const {
586    return exceptional_predecessors_;
587  }
588
589  const GrowableArray<HBasicBlock*>& GetSuccessors() const {
590    return successors_;
591  }
592
593  const GrowableArray<HBasicBlock*>& GetDominatedBlocks() const {
594    return dominated_blocks_;
595  }
596
597  bool IsEntryBlock() const {
598    return graph_->GetEntryBlock() == this;
599  }
600
601  bool IsExitBlock() const {
602    return graph_->GetExitBlock() == this;
603  }
604
605  bool IsSingleGoto() const;
606  bool IsSingleTryBoundary() const;
607
608  // Returns true if this block emits nothing but a jump.
609  bool IsSingleJump() const {
610    HLoopInformation* loop_info = GetLoopInformation();
611    return (IsSingleGoto() || IsSingleTryBoundary())
612           // Back edges generate a suspend check.
613           && (loop_info == nullptr || !loop_info->IsBackEdge(*this));
614  }
615
616  void AddBackEdge(HBasicBlock* back_edge) {
617    if (loop_information_ == nullptr) {
618      loop_information_ = new (graph_->GetArena()) HLoopInformation(this, graph_);
619    }
620    DCHECK_EQ(loop_information_->GetHeader(), this);
621    loop_information_->AddBackEdge(back_edge);
622  }
623
624  HGraph* GetGraph() const { return graph_; }
625  void SetGraph(HGraph* graph) { graph_ = graph; }
626
627  int GetBlockId() const { return block_id_; }
628  void SetBlockId(int id) { block_id_ = id; }
629
630  HBasicBlock* GetDominator() const { return dominator_; }
631  void SetDominator(HBasicBlock* dominator) { dominator_ = dominator; }
632  void AddDominatedBlock(HBasicBlock* block) { dominated_blocks_.Add(block); }
633  void RemoveDominatedBlock(HBasicBlock* block) { dominated_blocks_.Delete(block); }
634  void ReplaceDominatedBlock(HBasicBlock* existing, HBasicBlock* new_block) {
635    for (size_t i = 0, e = dominated_blocks_.Size(); i < e; ++i) {
636      if (dominated_blocks_.Get(i) == existing) {
637        dominated_blocks_.Put(i, new_block);
638        return;
639      }
640    }
641    LOG(FATAL) << "Unreachable";
642    UNREACHABLE();
643  }
644  void ClearDominanceInformation();
645
646  int NumberOfBackEdges() const {
647    return IsLoopHeader() ? loop_information_->NumberOfBackEdges() : 0;
648  }
649
650  HInstruction* GetFirstInstruction() const { return instructions_.first_instruction_; }
651  HInstruction* GetLastInstruction() const { return instructions_.last_instruction_; }
652  const HInstructionList& GetInstructions() const { return instructions_; }
653  HInstruction* GetFirstPhi() const { return phis_.first_instruction_; }
654  HInstruction* GetLastPhi() const { return phis_.last_instruction_; }
655  const HInstructionList& GetPhis() const { return phis_; }
656
657  void AddExceptionalPredecessor(HInstruction* exceptional_predecessor);
658
659  void AddSuccessor(HBasicBlock* block) {
660    successors_.Add(block);
661    block->predecessors_.Add(this);
662  }
663
664  void ReplaceSuccessor(HBasicBlock* existing, HBasicBlock* new_block) {
665    size_t successor_index = GetSuccessorIndexOf(existing);
666    DCHECK_NE(successor_index, static_cast<size_t>(-1));
667    existing->RemovePredecessor(this);
668    new_block->predecessors_.Add(this);
669    successors_.Put(successor_index, new_block);
670  }
671
672  void ReplacePredecessor(HBasicBlock* existing, HBasicBlock* new_block) {
673    size_t predecessor_index = GetPredecessorIndexOf(existing);
674    DCHECK_NE(predecessor_index, static_cast<size_t>(-1));
675    existing->RemoveSuccessor(this);
676    new_block->successors_.Add(this);
677    predecessors_.Put(predecessor_index, new_block);
678  }
679
680  // Insert `this` between `predecessor` and `successor. This method
681  // preserves the indicies, and will update the first edge found between
682  // `predecessor` and `successor`.
683  void InsertBetween(HBasicBlock* predecessor, HBasicBlock* successor) {
684    size_t predecessor_index = successor->GetPredecessorIndexOf(predecessor);
685    DCHECK_NE(predecessor_index, static_cast<size_t>(-1));
686    size_t successor_index = predecessor->GetSuccessorIndexOf(successor);
687    DCHECK_NE(successor_index, static_cast<size_t>(-1));
688    successor->predecessors_.Put(predecessor_index, this);
689    predecessor->successors_.Put(successor_index, this);
690    successors_.Add(successor);
691    predecessors_.Add(predecessor);
692  }
693
694  void RemovePredecessor(HBasicBlock* block) {
695    predecessors_.Delete(block);
696  }
697
698  void RemoveExceptionalPredecessor(HInstruction* instruction) {
699    exceptional_predecessors_.Delete(instruction);
700  }
701
702  void RemoveSuccessor(HBasicBlock* block) {
703    successors_.Delete(block);
704  }
705
706  void ClearAllPredecessors() {
707    predecessors_.Reset();
708  }
709
710  void AddPredecessor(HBasicBlock* block) {
711    predecessors_.Add(block);
712    block->successors_.Add(this);
713  }
714
715  void SwapPredecessors() {
716    DCHECK_EQ(predecessors_.Size(), 2u);
717    HBasicBlock* temp = predecessors_.Get(0);
718    predecessors_.Put(0, predecessors_.Get(1));
719    predecessors_.Put(1, temp);
720  }
721
722  void SwapSuccessors() {
723    DCHECK_EQ(successors_.Size(), 2u);
724    HBasicBlock* temp = successors_.Get(0);
725    successors_.Put(0, successors_.Get(1));
726    successors_.Put(1, temp);
727  }
728
729  size_t GetPredecessorIndexOf(HBasicBlock* predecessor) const {
730    for (size_t i = 0, e = predecessors_.Size(); i < e; ++i) {
731      if (predecessors_.Get(i) == predecessor) {
732        return i;
733      }
734    }
735    return -1;
736  }
737
738  size_t GetExceptionalPredecessorIndexOf(HInstruction* exceptional_predecessor) const {
739    for (size_t i = 0, e = exceptional_predecessors_.Size(); i < e; ++i) {
740      if (exceptional_predecessors_.Get(i) == exceptional_predecessor) {
741        return i;
742      }
743    }
744    return -1;
745  }
746
747  size_t GetSuccessorIndexOf(HBasicBlock* successor) const {
748    for (size_t i = 0, e = successors_.Size(); i < e; ++i) {
749      if (successors_.Get(i) == successor) {
750        return i;
751      }
752    }
753    return -1;
754  }
755
756  HBasicBlock* GetSinglePredecessor() const {
757    DCHECK_EQ(GetPredecessors().Size(), 1u);
758    return GetPredecessors().Get(0);
759  }
760
761  HBasicBlock* GetSingleSuccessor() const {
762    DCHECK_EQ(GetSuccessors().Size(), 1u);
763    return GetSuccessors().Get(0);
764  }
765
766  // Returns whether the first occurrence of `predecessor` in the list of
767  // predecessors is at index `idx`.
768  bool IsFirstIndexOfPredecessor(HBasicBlock* predecessor, size_t idx) const {
769    DCHECK_EQ(GetPredecessors().Get(idx), predecessor);
770    return GetPredecessorIndexOf(predecessor) == idx;
771  }
772
773  // Returns the number of non-exceptional successors. SsaChecker ensures that
774  // these are stored at the beginning of the successor list.
775  size_t NumberOfNormalSuccessors() const {
776    return EndsWithTryBoundary() ? 1 : GetSuccessors().Size();
777  }
778
779  // Split the block into two blocks just before `cursor`. Returns the newly
780  // created, latter block. Note that this method will add the block to the
781  // graph, create a Goto at the end of the former block and will create an edge
782  // between the blocks. It will not, however, update the reverse post order or
783  // loop information.
784  HBasicBlock* SplitBefore(HInstruction* cursor);
785
786  // Split the block into two blocks just after `cursor`. Returns the newly
787  // created block. Note that this method just updates raw block information,
788  // like predecessors, successors, dominators, and instruction list. It does not
789  // update the graph, reverse post order, loop information, nor make sure the
790  // blocks are consistent (for example ending with a control flow instruction).
791  HBasicBlock* SplitAfter(HInstruction* cursor);
792
793  // Merge `other` at the end of `this`. Successors and dominated blocks of
794  // `other` are changed to be successors and dominated blocks of `this`. Note
795  // that this method does not update the graph, reverse post order, loop
796  // information, nor make sure the blocks are consistent (for example ending
797  // with a control flow instruction).
798  void MergeWithInlined(HBasicBlock* other);
799
800  // Replace `this` with `other`. Predecessors, successors, and dominated blocks
801  // of `this` are moved to `other`.
802  // Note that this method does not update the graph, reverse post order, loop
803  // information, nor make sure the blocks are consistent (for example ending
804  // with a control flow instruction).
805  void ReplaceWith(HBasicBlock* other);
806
807  // Merge `other` at the end of `this`. This method updates loops, reverse post
808  // order, links to predecessors, successors, dominators and deletes the block
809  // from the graph. The two blocks must be successive, i.e. `this` the only
810  // predecessor of `other` and vice versa.
811  void MergeWith(HBasicBlock* other);
812
813  // Disconnects `this` from all its predecessors, successors and dominator,
814  // removes it from all loops it is included in and eventually from the graph.
815  // The block must not dominate any other block. Predecessors and successors
816  // are safely updated.
817  void DisconnectAndDelete();
818
819  void AddInstruction(HInstruction* instruction);
820  // Insert `instruction` before/after an existing instruction `cursor`.
821  void InsertInstructionBefore(HInstruction* instruction, HInstruction* cursor);
822  void InsertInstructionAfter(HInstruction* instruction, HInstruction* cursor);
823  // Replace instruction `initial` with `replacement` within this block.
824  void ReplaceAndRemoveInstructionWith(HInstruction* initial,
825                                       HInstruction* replacement);
826  void AddPhi(HPhi* phi);
827  void InsertPhiAfter(HPhi* instruction, HPhi* cursor);
828  // RemoveInstruction and RemovePhi delete a given instruction from the respective
829  // instruction list. With 'ensure_safety' set to true, it verifies that the
830  // instruction is not in use and removes it from the use lists of its inputs.
831  void RemoveInstruction(HInstruction* instruction, bool ensure_safety = true);
832  void RemovePhi(HPhi* phi, bool ensure_safety = true);
833  void RemoveInstructionOrPhi(HInstruction* instruction, bool ensure_safety = true);
834
835  bool IsLoopHeader() const {
836    return IsInLoop() && (loop_information_->GetHeader() == this);
837  }
838
839  bool IsLoopPreHeaderFirstPredecessor() const {
840    DCHECK(IsLoopHeader());
841    DCHECK(!GetPredecessors().IsEmpty());
842    return GetPredecessors().Get(0) == GetLoopInformation()->GetPreHeader();
843  }
844
845  HLoopInformation* GetLoopInformation() const {
846    return loop_information_;
847  }
848
849  // Set the loop_information_ on this block. Overrides the current
850  // loop_information if it is an outer loop of the passed loop information.
851  // Note that this method is called while creating the loop information.
852  void SetInLoop(HLoopInformation* info) {
853    if (IsLoopHeader()) {
854      // Nothing to do. This just means `info` is an outer loop.
855    } else if (!IsInLoop()) {
856      loop_information_ = info;
857    } else if (loop_information_->Contains(*info->GetHeader())) {
858      // Block is currently part of an outer loop. Make it part of this inner loop.
859      // Note that a non loop header having a loop information means this loop information
860      // has already been populated
861      loop_information_ = info;
862    } else {
863      // Block is part of an inner loop. Do not update the loop information.
864      // Note that we cannot do the check `info->Contains(loop_information_)->GetHeader()`
865      // at this point, because this method is being called while populating `info`.
866    }
867  }
868
869  // Raw update of the loop information.
870  void SetLoopInformation(HLoopInformation* info) {
871    loop_information_ = info;
872  }
873
874  bool IsInLoop() const { return loop_information_ != nullptr; }
875
876  HTryBoundary* GetTryEntry() const { return try_entry_; }
877  void SetTryEntry(HTryBoundary* try_entry) { try_entry_ = try_entry; }
878  bool IsInTry() const { return try_entry_ != nullptr; }
879
880  // Returns the try entry that this block's successors should have. They will
881  // be in the same try, unless the block ends in a try boundary. In that case,
882  // the appropriate try entry will be returned.
883  HTryBoundary* ComputeTryEntryOfSuccessors() const;
884
885  // Returns whether this block dominates the blocked passed as parameter.
886  bool Dominates(HBasicBlock* block) const;
887
888  size_t GetLifetimeStart() const { return lifetime_start_; }
889  size_t GetLifetimeEnd() const { return lifetime_end_; }
890
891  void SetLifetimeStart(size_t start) { lifetime_start_ = start; }
892  void SetLifetimeEnd(size_t end) { lifetime_end_ = end; }
893
894  uint32_t GetDexPc() const { return dex_pc_; }
895
896  bool IsCatchBlock() const { return is_catch_block_; }
897  void SetIsCatchBlock() { is_catch_block_ = true; }
898
899  bool EndsWithControlFlowInstruction() const;
900  bool EndsWithIf() const;
901  bool EndsWithTryBoundary() const;
902  bool HasSinglePhi() const;
903
904 private:
905  HGraph* graph_;
906  GrowableArray<HBasicBlock*> predecessors_;
907  GrowableArray<HInstruction*> exceptional_predecessors_;
908  GrowableArray<HBasicBlock*> successors_;
909  HInstructionList instructions_;
910  HInstructionList phis_;
911  HLoopInformation* loop_information_;
912  HBasicBlock* dominator_;
913  GrowableArray<HBasicBlock*> dominated_blocks_;
914  int block_id_;
915  // The dex program counter of the first instruction of this block.
916  const uint32_t dex_pc_;
917  size_t lifetime_start_;
918  size_t lifetime_end_;
919  bool is_catch_block_;
920
921  // If this block is in a try block, `try_entry_` stores one of, possibly
922  // several, TryBoundary instructions entering it.
923  HTryBoundary* try_entry_;
924
925  friend class HGraph;
926  friend class HInstruction;
927
928  DISALLOW_COPY_AND_ASSIGN(HBasicBlock);
929};
930
931// Iterates over the LoopInformation of all loops which contain 'block'
932// from the innermost to the outermost.
933class HLoopInformationOutwardIterator : public ValueObject {
934 public:
935  explicit HLoopInformationOutwardIterator(const HBasicBlock& block)
936      : current_(block.GetLoopInformation()) {}
937
938  bool Done() const { return current_ == nullptr; }
939
940  void Advance() {
941    DCHECK(!Done());
942    current_ = current_->GetPreHeader()->GetLoopInformation();
943  }
944
945  HLoopInformation* Current() const {
946    DCHECK(!Done());
947    return current_;
948  }
949
950 private:
951  HLoopInformation* current_;
952
953  DISALLOW_COPY_AND_ASSIGN(HLoopInformationOutwardIterator);
954};
955
956#define FOR_EACH_CONCRETE_INSTRUCTION_COMMON(M)                         \
957  M(Add, BinaryOperation)                                               \
958  M(And, BinaryOperation)                                               \
959  M(ArrayGet, Instruction)                                              \
960  M(ArrayLength, Instruction)                                           \
961  M(ArraySet, Instruction)                                              \
962  M(BooleanNot, UnaryOperation)                                         \
963  M(BoundsCheck, Instruction)                                           \
964  M(BoundType, Instruction)                                             \
965  M(CheckCast, Instruction)                                             \
966  M(ClearException, Instruction)                                        \
967  M(ClinitCheck, Instruction)                                           \
968  M(Compare, BinaryOperation)                                           \
969  M(Condition, BinaryOperation)                                         \
970  M(CurrentMethod, Instruction)                                         \
971  M(Deoptimize, Instruction)                                            \
972  M(Div, BinaryOperation)                                               \
973  M(DivZeroCheck, Instruction)                                          \
974  M(DoubleConstant, Constant)                                           \
975  M(Equal, Condition)                                                   \
976  M(Exit, Instruction)                                                  \
977  M(FakeString, Instruction)                                            \
978  M(FloatConstant, Constant)                                            \
979  M(Goto, Instruction)                                                  \
980  M(GreaterThan, Condition)                                             \
981  M(GreaterThanOrEqual, Condition)                                      \
982  M(If, Instruction)                                                    \
983  M(InstanceFieldGet, Instruction)                                      \
984  M(InstanceFieldSet, Instruction)                                      \
985  M(InstanceOf, Instruction)                                            \
986  M(IntConstant, Constant)                                              \
987  M(InvokeInterface, Invoke)                                            \
988  M(InvokeStaticOrDirect, Invoke)                                       \
989  M(InvokeVirtual, Invoke)                                              \
990  M(LessThan, Condition)                                                \
991  M(LessThanOrEqual, Condition)                                         \
992  M(LoadClass, Instruction)                                             \
993  M(LoadException, Instruction)                                         \
994  M(LoadLocal, Instruction)                                             \
995  M(LoadString, Instruction)                                            \
996  M(Local, Instruction)                                                 \
997  M(LongConstant, Constant)                                             \
998  M(MemoryBarrier, Instruction)                                         \
999  M(MonitorOperation, Instruction)                                      \
1000  M(Mul, BinaryOperation)                                               \
1001  M(Neg, UnaryOperation)                                                \
1002  M(NewArray, Instruction)                                              \
1003  M(NewInstance, Instruction)                                           \
1004  M(Not, UnaryOperation)                                                \
1005  M(NotEqual, Condition)                                                \
1006  M(NullConstant, Instruction)                                          \
1007  M(NullCheck, Instruction)                                             \
1008  M(Or, BinaryOperation)                                                \
1009  M(ParallelMove, Instruction)                                          \
1010  M(ParameterValue, Instruction)                                        \
1011  M(Phi, Instruction)                                                   \
1012  M(Rem, BinaryOperation)                                               \
1013  M(Return, Instruction)                                                \
1014  M(ReturnVoid, Instruction)                                            \
1015  M(Shl, BinaryOperation)                                               \
1016  M(Shr, BinaryOperation)                                               \
1017  M(StaticFieldGet, Instruction)                                        \
1018  M(StaticFieldSet, Instruction)                                        \
1019  M(StoreLocal, Instruction)                                            \
1020  M(Sub, BinaryOperation)                                               \
1021  M(SuspendCheck, Instruction)                                          \
1022  M(Temporary, Instruction)                                             \
1023  M(Throw, Instruction)                                                 \
1024  M(TryBoundary, Instruction)                                           \
1025  M(TypeConversion, Instruction)                                        \
1026  M(UShr, BinaryOperation)                                              \
1027  M(Xor, BinaryOperation)                                               \
1028
1029#define FOR_EACH_CONCRETE_INSTRUCTION_ARM(M)
1030
1031#define FOR_EACH_CONCRETE_INSTRUCTION_ARM64(M)
1032
1033#define FOR_EACH_CONCRETE_INSTRUCTION_MIPS64(M)
1034
1035#define FOR_EACH_CONCRETE_INSTRUCTION_X86(M)
1036
1037#define FOR_EACH_CONCRETE_INSTRUCTION_X86_64(M)
1038
1039#define FOR_EACH_CONCRETE_INSTRUCTION(M)                                \
1040  FOR_EACH_CONCRETE_INSTRUCTION_COMMON(M)                               \
1041  FOR_EACH_CONCRETE_INSTRUCTION_ARM(M)                                  \
1042  FOR_EACH_CONCRETE_INSTRUCTION_ARM64(M)                                \
1043  FOR_EACH_CONCRETE_INSTRUCTION_MIPS64(M)                               \
1044  FOR_EACH_CONCRETE_INSTRUCTION_X86(M)                                  \
1045  FOR_EACH_CONCRETE_INSTRUCTION_X86_64(M)
1046
1047#define FOR_EACH_INSTRUCTION(M)                                         \
1048  FOR_EACH_CONCRETE_INSTRUCTION(M)                                      \
1049  M(Constant, Instruction)                                              \
1050  M(UnaryOperation, Instruction)                                        \
1051  M(BinaryOperation, Instruction)                                       \
1052  M(Invoke, Instruction)
1053
1054#define FORWARD_DECLARATION(type, super) class H##type;
1055FOR_EACH_INSTRUCTION(FORWARD_DECLARATION)
1056#undef FORWARD_DECLARATION
1057
1058#define DECLARE_INSTRUCTION(type)                                       \
1059  InstructionKind GetKind() const OVERRIDE { return k##type; }          \
1060  const char* DebugName() const OVERRIDE { return #type; }              \
1061  const H##type* As##type() const OVERRIDE { return this; }             \
1062  H##type* As##type() OVERRIDE { return this; }                         \
1063  bool InstructionTypeEquals(HInstruction* other) const OVERRIDE {      \
1064    return other->Is##type();                                           \
1065  }                                                                     \
1066  void Accept(HGraphVisitor* visitor) OVERRIDE
1067
1068template <typename T> class HUseList;
1069
1070template <typename T>
1071class HUseListNode : public ArenaObject<kArenaAllocMisc> {
1072 public:
1073  HUseListNode* GetPrevious() const { return prev_; }
1074  HUseListNode* GetNext() const { return next_; }
1075  T GetUser() const { return user_; }
1076  size_t GetIndex() const { return index_; }
1077  void SetIndex(size_t index) { index_ = index; }
1078
1079 private:
1080  HUseListNode(T user, size_t index)
1081      : user_(user), index_(index), prev_(nullptr), next_(nullptr) {}
1082
1083  T const user_;
1084  size_t index_;
1085  HUseListNode<T>* prev_;
1086  HUseListNode<T>* next_;
1087
1088  friend class HUseList<T>;
1089
1090  DISALLOW_COPY_AND_ASSIGN(HUseListNode);
1091};
1092
1093template <typename T>
1094class HUseList : public ValueObject {
1095 public:
1096  HUseList() : first_(nullptr) {}
1097
1098  void Clear() {
1099    first_ = nullptr;
1100  }
1101
1102  // Adds a new entry at the beginning of the use list and returns
1103  // the newly created node.
1104  HUseListNode<T>* AddUse(T user, size_t index, ArenaAllocator* arena) {
1105    HUseListNode<T>* new_node = new (arena) HUseListNode<T>(user, index);
1106    if (IsEmpty()) {
1107      first_ = new_node;
1108    } else {
1109      first_->prev_ = new_node;
1110      new_node->next_ = first_;
1111      first_ = new_node;
1112    }
1113    return new_node;
1114  }
1115
1116  HUseListNode<T>* GetFirst() const {
1117    return first_;
1118  }
1119
1120  void Remove(HUseListNode<T>* node) {
1121    DCHECK(node != nullptr);
1122    DCHECK(Contains(node));
1123
1124    if (node->prev_ != nullptr) {
1125      node->prev_->next_ = node->next_;
1126    }
1127    if (node->next_ != nullptr) {
1128      node->next_->prev_ = node->prev_;
1129    }
1130    if (node == first_) {
1131      first_ = node->next_;
1132    }
1133  }
1134
1135  bool Contains(const HUseListNode<T>* node) const {
1136    if (node == nullptr) {
1137      return false;
1138    }
1139    for (HUseListNode<T>* current = first_; current != nullptr; current = current->GetNext()) {
1140      if (current == node) {
1141        return true;
1142      }
1143    }
1144    return false;
1145  }
1146
1147  bool IsEmpty() const {
1148    return first_ == nullptr;
1149  }
1150
1151  bool HasOnlyOneUse() const {
1152    return first_ != nullptr && first_->next_ == nullptr;
1153  }
1154
1155  size_t SizeSlow() const {
1156    size_t count = 0;
1157    for (HUseListNode<T>* current = first_; current != nullptr; current = current->GetNext()) {
1158      ++count;
1159    }
1160    return count;
1161  }
1162
1163 private:
1164  HUseListNode<T>* first_;
1165};
1166
1167template<typename T>
1168class HUseIterator : public ValueObject {
1169 public:
1170  explicit HUseIterator(const HUseList<T>& uses) : current_(uses.GetFirst()) {}
1171
1172  bool Done() const { return current_ == nullptr; }
1173
1174  void Advance() {
1175    DCHECK(!Done());
1176    current_ = current_->GetNext();
1177  }
1178
1179  HUseListNode<T>* Current() const {
1180    DCHECK(!Done());
1181    return current_;
1182  }
1183
1184 private:
1185  HUseListNode<T>* current_;
1186
1187  friend class HValue;
1188};
1189
1190// This class is used by HEnvironment and HInstruction classes to record the
1191// instructions they use and pointers to the corresponding HUseListNodes kept
1192// by the used instructions.
1193template <typename T>
1194class HUserRecord : public ValueObject {
1195 public:
1196  HUserRecord() : instruction_(nullptr), use_node_(nullptr) {}
1197  explicit HUserRecord(HInstruction* instruction) : instruction_(instruction), use_node_(nullptr) {}
1198
1199  HUserRecord(const HUserRecord<T>& old_record, HUseListNode<T>* use_node)
1200    : instruction_(old_record.instruction_), use_node_(use_node) {
1201    DCHECK(instruction_ != nullptr);
1202    DCHECK(use_node_ != nullptr);
1203    DCHECK(old_record.use_node_ == nullptr);
1204  }
1205
1206  HInstruction* GetInstruction() const { return instruction_; }
1207  HUseListNode<T>* GetUseNode() const { return use_node_; }
1208
1209 private:
1210  // Instruction used by the user.
1211  HInstruction* instruction_;
1212
1213  // Corresponding entry in the use list kept by 'instruction_'.
1214  HUseListNode<T>* use_node_;
1215};
1216
1217/**
1218 * Side-effects representation.
1219 *
1220 * For write/read dependences on fields/arrays, the dependence analysis uses
1221 * type disambiguation (e.g. a float field write cannot modify the value of an
1222 * integer field read) and the access type (e.g.  a reference array write cannot
1223 * modify the value of a reference field read [although it may modify the
1224 * reference fetch prior to reading the field, which is represented by its own
1225 * write/read dependence]). The analysis makes conservative points-to
1226 * assumptions on reference types (e.g. two same typed arrays are assumed to be
1227 * the same, and any reference read depends on any reference read without
1228 * further regard of its type).
1229 *
1230 * The internal representation uses 38-bit and is described in the table below.
1231 * The first line indicates the side effect, and for field/array accesses the
1232 * second line indicates the type of the access (in the order of the
1233 * Primitive::Type enum).
1234 * The two numbered lines below indicate the bit position in the bitfield (read
1235 * vertically).
1236 *
1237 *   |Depends on GC|ARRAY-R  |FIELD-R  |Can trigger GC|ARRAY-W  |FIELD-W  |
1238 *   +-------------+---------+---------+--------------+---------+---------+
1239 *   |             |DFJISCBZL|DFJISCBZL|              |DFJISCBZL|DFJISCBZL|
1240 *   |      3      |333333322|222222221|       1      |111111110|000000000|
1241 *   |      7      |654321098|765432109|       8      |765432109|876543210|
1242 *
1243 * Note that, to ease the implementation, 'changes' bits are least significant
1244 * bits, while 'dependency' bits are most significant bits.
1245 */
1246class SideEffects : public ValueObject {
1247 public:
1248  SideEffects() : flags_(0) {}
1249
1250  static SideEffects None() {
1251    return SideEffects(0);
1252  }
1253
1254  static SideEffects All() {
1255    return SideEffects(kAllChangeBits | kAllDependOnBits);
1256  }
1257
1258  static SideEffects AllChanges() {
1259    return SideEffects(kAllChangeBits);
1260  }
1261
1262  static SideEffects AllDependencies() {
1263    return SideEffects(kAllDependOnBits);
1264  }
1265
1266  static SideEffects AllExceptGCDependency() {
1267    return AllWritesAndReads().Union(SideEffects::CanTriggerGC());
1268  }
1269
1270  static SideEffects AllWritesAndReads() {
1271    return SideEffects(kAllWrites | kAllReads);
1272  }
1273
1274  static SideEffects AllWrites() {
1275    return SideEffects(kAllWrites);
1276  }
1277
1278  static SideEffects AllReads() {
1279    return SideEffects(kAllReads);
1280  }
1281
1282  static SideEffects FieldWriteOfType(Primitive::Type type, bool is_volatile) {
1283    return is_volatile
1284        ? AllWritesAndReads()
1285        : SideEffects(TypeFlagWithAlias(type, kFieldWriteOffset));
1286  }
1287
1288  static SideEffects ArrayWriteOfType(Primitive::Type type) {
1289    return SideEffects(TypeFlagWithAlias(type, kArrayWriteOffset));
1290  }
1291
1292  static SideEffects FieldReadOfType(Primitive::Type type, bool is_volatile) {
1293    return is_volatile
1294        ? AllWritesAndReads()
1295        : SideEffects(TypeFlagWithAlias(type, kFieldReadOffset));
1296  }
1297
1298  static SideEffects ArrayReadOfType(Primitive::Type type) {
1299    return SideEffects(TypeFlagWithAlias(type, kArrayReadOffset));
1300  }
1301
1302  static SideEffects CanTriggerGC() {
1303    return SideEffects(1ULL << kCanTriggerGCBit);
1304  }
1305
1306  static SideEffects DependsOnGC() {
1307    return SideEffects(1ULL << kDependsOnGCBit);
1308  }
1309
1310  // Combines the side-effects of this and the other.
1311  SideEffects Union(SideEffects other) const {
1312    return SideEffects(flags_ | other.flags_);
1313  }
1314
1315  SideEffects Exclusion(SideEffects other) const {
1316    return SideEffects(flags_ & ~other.flags_);
1317  }
1318
1319  bool Includes(SideEffects other) const {
1320    return (other.flags_ & flags_) == other.flags_;
1321  }
1322
1323  bool HasSideEffects() const {
1324    return (flags_ & kAllChangeBits);
1325  }
1326
1327  bool HasDependencies() const {
1328    return (flags_ & kAllDependOnBits);
1329  }
1330
1331  // Returns true if there are no side effects or dependencies.
1332  bool DoesNothing() const {
1333    return flags_ == 0;
1334  }
1335
1336  // Returns true if something is written.
1337  bool DoesAnyWrite() const {
1338    return (flags_ & kAllWrites);
1339  }
1340
1341  // Returns true if something is read.
1342  bool DoesAnyRead() const {
1343    return (flags_ & kAllReads);
1344  }
1345
1346  // Returns true if potentially everything is written and read
1347  // (every type and every kind of access).
1348  bool DoesAllReadWrite() const {
1349    return (flags_ & (kAllWrites | kAllReads)) == (kAllWrites | kAllReads);
1350  }
1351
1352  bool DoesAll() const {
1353    return flags_ == (kAllChangeBits | kAllDependOnBits);
1354  }
1355
1356  // Returns true if this may read something written by other.
1357  bool MayDependOn(SideEffects other) const {
1358    const uint64_t depends_on_flags = (flags_ & kAllDependOnBits) >> kChangeBits;
1359    return (other.flags_ & depends_on_flags);
1360  }
1361
1362  // Returns string representation of flags (for debugging only).
1363  // Format: |x|DFJISCBZL|DFJISCBZL|y|DFJISCBZL|DFJISCBZL|
1364  std::string ToString() const {
1365    std::string flags = "|";
1366    for (int s = kLastBit; s >= 0; s--) {
1367      bool current_bit_is_set = ((flags_ >> s) & 1) != 0;
1368      if ((s == kDependsOnGCBit) || (s == kCanTriggerGCBit)) {
1369        // This is a bit for the GC side effect.
1370        if (current_bit_is_set) {
1371          flags += "GC";
1372        }
1373        flags += "|";
1374      } else {
1375        // This is a bit for the array/field analysis.
1376        // The underscore character stands for the 'can trigger GC' bit.
1377        static const char *kDebug = "LZBCSIJFDLZBCSIJFD_LZBCSIJFDLZBCSIJFD";
1378        if (current_bit_is_set) {
1379          flags += kDebug[s];
1380        }
1381        if ((s == kFieldWriteOffset) || (s == kArrayWriteOffset) ||
1382            (s == kFieldReadOffset) || (s == kArrayReadOffset)) {
1383          flags += "|";
1384        }
1385      }
1386    }
1387    return flags;
1388  }
1389
1390  bool Equals(const SideEffects& other) const { return flags_ == other.flags_; }
1391
1392 private:
1393  static constexpr int kFieldArrayAnalysisBits = 9;
1394
1395  static constexpr int kFieldWriteOffset = 0;
1396  static constexpr int kArrayWriteOffset = kFieldWriteOffset + kFieldArrayAnalysisBits;
1397  static constexpr int kLastBitForWrites = kArrayWriteOffset + kFieldArrayAnalysisBits - 1;
1398  static constexpr int kCanTriggerGCBit = kLastBitForWrites + 1;
1399
1400  static constexpr int kChangeBits = kCanTriggerGCBit + 1;
1401
1402  static constexpr int kFieldReadOffset = kCanTriggerGCBit + 1;
1403  static constexpr int kArrayReadOffset = kFieldReadOffset + kFieldArrayAnalysisBits;
1404  static constexpr int kLastBitForReads = kArrayReadOffset + kFieldArrayAnalysisBits - 1;
1405  static constexpr int kDependsOnGCBit = kLastBitForReads + 1;
1406
1407  static constexpr int kLastBit = kDependsOnGCBit;
1408  static constexpr int kDependOnBits = kLastBit + 1 - kChangeBits;
1409
1410  // Aliases.
1411
1412  static_assert(kChangeBits == kDependOnBits,
1413                "the 'change' bits should match the 'depend on' bits.");
1414
1415  static constexpr uint64_t kAllChangeBits = ((1ULL << kChangeBits) - 1);
1416  static constexpr uint64_t kAllDependOnBits = ((1ULL << kDependOnBits) - 1) << kChangeBits;
1417  static constexpr uint64_t kAllWrites =
1418      ((1ULL << (kLastBitForWrites + 1 - kFieldWriteOffset)) - 1) << kFieldWriteOffset;
1419  static constexpr uint64_t kAllReads =
1420      ((1ULL << (kLastBitForReads + 1 - kFieldReadOffset)) - 1) << kFieldReadOffset;
1421
1422  // Work around the fact that HIR aliases I/F and J/D.
1423  // TODO: remove this interceptor once HIR types are clean
1424  static uint64_t TypeFlagWithAlias(Primitive::Type type, int offset) {
1425    switch (type) {
1426      case Primitive::kPrimInt:
1427      case Primitive::kPrimFloat:
1428        return TypeFlag(Primitive::kPrimInt, offset) |
1429               TypeFlag(Primitive::kPrimFloat, offset);
1430      case Primitive::kPrimLong:
1431      case Primitive::kPrimDouble:
1432        return TypeFlag(Primitive::kPrimLong, offset) |
1433               TypeFlag(Primitive::kPrimDouble, offset);
1434      default:
1435        return TypeFlag(type, offset);
1436    }
1437  }
1438
1439  // Translates type to bit flag.
1440  static uint64_t TypeFlag(Primitive::Type type, int offset) {
1441    CHECK_NE(type, Primitive::kPrimVoid);
1442    const uint64_t one = 1;
1443    const int shift = type;  // 0-based consecutive enum
1444    DCHECK_LE(kFieldWriteOffset, shift);
1445    DCHECK_LT(shift, kArrayWriteOffset);
1446    return one << (type + offset);
1447  }
1448
1449  // Private constructor on direct flags value.
1450  explicit SideEffects(uint64_t flags) : flags_(flags) {}
1451
1452  uint64_t flags_;
1453};
1454
1455// A HEnvironment object contains the values of virtual registers at a given location.
1456class HEnvironment : public ArenaObject<kArenaAllocMisc> {
1457 public:
1458  HEnvironment(ArenaAllocator* arena,
1459               size_t number_of_vregs,
1460               const DexFile& dex_file,
1461               uint32_t method_idx,
1462               uint32_t dex_pc,
1463               InvokeType invoke_type,
1464               HInstruction* holder)
1465     : vregs_(arena, number_of_vregs),
1466       locations_(arena, number_of_vregs),
1467       parent_(nullptr),
1468       dex_file_(dex_file),
1469       method_idx_(method_idx),
1470       dex_pc_(dex_pc),
1471       invoke_type_(invoke_type),
1472       holder_(holder) {
1473    vregs_.SetSize(number_of_vregs);
1474    for (size_t i = 0; i < number_of_vregs; i++) {
1475      vregs_.Put(i, HUserRecord<HEnvironment*>());
1476    }
1477
1478    locations_.SetSize(number_of_vregs);
1479    for (size_t i = 0; i < number_of_vregs; ++i) {
1480      locations_.Put(i, Location());
1481    }
1482  }
1483
1484  HEnvironment(ArenaAllocator* arena, const HEnvironment& to_copy, HInstruction* holder)
1485      : HEnvironment(arena,
1486                     to_copy.Size(),
1487                     to_copy.GetDexFile(),
1488                     to_copy.GetMethodIdx(),
1489                     to_copy.GetDexPc(),
1490                     to_copy.GetInvokeType(),
1491                     holder) {}
1492
1493  void SetAndCopyParentChain(ArenaAllocator* allocator, HEnvironment* parent) {
1494    if (parent_ != nullptr) {
1495      parent_->SetAndCopyParentChain(allocator, parent);
1496    } else {
1497      parent_ = new (allocator) HEnvironment(allocator, *parent, holder_);
1498      parent_->CopyFrom(parent);
1499      if (parent->GetParent() != nullptr) {
1500        parent_->SetAndCopyParentChain(allocator, parent->GetParent());
1501      }
1502    }
1503  }
1504
1505  void CopyFrom(const GrowableArray<HInstruction*>& locals);
1506  void CopyFrom(HEnvironment* environment);
1507
1508  // Copy from `env`. If it's a loop phi for `loop_header`, copy the first
1509  // input to the loop phi instead. This is for inserting instructions that
1510  // require an environment (like HDeoptimization) in the loop pre-header.
1511  void CopyFromWithLoopPhiAdjustment(HEnvironment* env, HBasicBlock* loop_header);
1512
1513  void SetRawEnvAt(size_t index, HInstruction* instruction) {
1514    vregs_.Put(index, HUserRecord<HEnvironment*>(instruction));
1515  }
1516
1517  HInstruction* GetInstructionAt(size_t index) const {
1518    return vregs_.Get(index).GetInstruction();
1519  }
1520
1521  void RemoveAsUserOfInput(size_t index) const;
1522
1523  size_t Size() const { return vregs_.Size(); }
1524
1525  HEnvironment* GetParent() const { return parent_; }
1526
1527  void SetLocationAt(size_t index, Location location) {
1528    locations_.Put(index, location);
1529  }
1530
1531  Location GetLocationAt(size_t index) const {
1532    return locations_.Get(index);
1533  }
1534
1535  uint32_t GetDexPc() const {
1536    return dex_pc_;
1537  }
1538
1539  uint32_t GetMethodIdx() const {
1540    return method_idx_;
1541  }
1542
1543  InvokeType GetInvokeType() const {
1544    return invoke_type_;
1545  }
1546
1547  const DexFile& GetDexFile() const {
1548    return dex_file_;
1549  }
1550
1551  HInstruction* GetHolder() const {
1552    return holder_;
1553  }
1554
1555 private:
1556  // Record instructions' use entries of this environment for constant-time removal.
1557  // It should only be called by HInstruction when a new environment use is added.
1558  void RecordEnvUse(HUseListNode<HEnvironment*>* env_use) {
1559    DCHECK(env_use->GetUser() == this);
1560    size_t index = env_use->GetIndex();
1561    vregs_.Put(index, HUserRecord<HEnvironment*>(vregs_.Get(index), env_use));
1562  }
1563
1564  GrowableArray<HUserRecord<HEnvironment*> > vregs_;
1565  GrowableArray<Location> locations_;
1566  HEnvironment* parent_;
1567  const DexFile& dex_file_;
1568  const uint32_t method_idx_;
1569  const uint32_t dex_pc_;
1570  const InvokeType invoke_type_;
1571
1572  // The instruction that holds this environment.
1573  HInstruction* const holder_;
1574
1575  friend class HInstruction;
1576
1577  DISALLOW_COPY_AND_ASSIGN(HEnvironment);
1578};
1579
1580class ReferenceTypeInfo : ValueObject {
1581 public:
1582  typedef Handle<mirror::Class> TypeHandle;
1583
1584  static ReferenceTypeInfo Create(TypeHandle type_handle, bool is_exact) {
1585    // The constructor will check that the type_handle is valid.
1586    return ReferenceTypeInfo(type_handle, is_exact);
1587  }
1588
1589  static ReferenceTypeInfo CreateInvalid() { return ReferenceTypeInfo(); }
1590
1591  static bool IsValidHandle(TypeHandle handle) SHARED_REQUIRES(Locks::mutator_lock_) {
1592    return handle.GetReference() != nullptr;
1593  }
1594
1595  bool IsValid() const SHARED_REQUIRES(Locks::mutator_lock_) {
1596    return IsValidHandle(type_handle_);
1597  }
1598  bool IsExact() const { return is_exact_; }
1599
1600  bool IsObjectClass() const SHARED_REQUIRES(Locks::mutator_lock_) {
1601    DCHECK(IsValid());
1602    return GetTypeHandle()->IsObjectClass();
1603  }
1604  bool IsInterface() const SHARED_REQUIRES(Locks::mutator_lock_) {
1605    DCHECK(IsValid());
1606    return GetTypeHandle()->IsInterface();
1607  }
1608
1609  Handle<mirror::Class> GetTypeHandle() const { return type_handle_; }
1610
1611  bool IsSupertypeOf(ReferenceTypeInfo rti) const SHARED_REQUIRES(Locks::mutator_lock_) {
1612    DCHECK(IsValid());
1613    DCHECK(rti.IsValid());
1614    return GetTypeHandle()->IsAssignableFrom(rti.GetTypeHandle().Get());
1615  }
1616
1617  // Returns true if the type information provide the same amount of details.
1618  // Note that it does not mean that the instructions have the same actual type
1619  // (because the type can be the result of a merge).
1620  bool IsEqual(ReferenceTypeInfo rti) SHARED_REQUIRES(Locks::mutator_lock_) {
1621    if (!IsValid() && !rti.IsValid()) {
1622      // Invalid types are equal.
1623      return true;
1624    }
1625    if (!IsValid() || !rti.IsValid()) {
1626      // One is valid, the other not.
1627      return false;
1628    }
1629    return IsExact() == rti.IsExact()
1630        && GetTypeHandle().Get() == rti.GetTypeHandle().Get();
1631  }
1632
1633 private:
1634  ReferenceTypeInfo();
1635  ReferenceTypeInfo(TypeHandle type_handle, bool is_exact);
1636
1637  // The class of the object.
1638  TypeHandle type_handle_;
1639  // Whether or not the type is exact or a superclass of the actual type.
1640  // Whether or not we have any information about this type.
1641  bool is_exact_;
1642};
1643
1644std::ostream& operator<<(std::ostream& os, const ReferenceTypeInfo& rhs);
1645
1646class HInstruction : public ArenaObject<kArenaAllocMisc> {
1647 public:
1648  explicit HInstruction(SideEffects side_effects)
1649      : previous_(nullptr),
1650        next_(nullptr),
1651        block_(nullptr),
1652        id_(-1),
1653        ssa_index_(-1),
1654        environment_(nullptr),
1655        locations_(nullptr),
1656        live_interval_(nullptr),
1657        lifetime_position_(kNoLifetime),
1658        side_effects_(side_effects),
1659        reference_type_info_(ReferenceTypeInfo::CreateInvalid()) {}
1660
1661  virtual ~HInstruction() {}
1662
1663#define DECLARE_KIND(type, super) k##type,
1664  enum InstructionKind {
1665    FOR_EACH_INSTRUCTION(DECLARE_KIND)
1666  };
1667#undef DECLARE_KIND
1668
1669  HInstruction* GetNext() const { return next_; }
1670  HInstruction* GetPrevious() const { return previous_; }
1671
1672  HInstruction* GetNextDisregardingMoves() const;
1673  HInstruction* GetPreviousDisregardingMoves() const;
1674
1675  HBasicBlock* GetBlock() const { return block_; }
1676  ArenaAllocator* GetArena() const { return block_->GetGraph()->GetArena(); }
1677  void SetBlock(HBasicBlock* block) { block_ = block; }
1678  bool IsInBlock() const { return block_ != nullptr; }
1679  bool IsInLoop() const { return block_->IsInLoop(); }
1680  bool IsLoopHeaderPhi() { return IsPhi() && block_->IsLoopHeader(); }
1681
1682  virtual size_t InputCount() const = 0;
1683  HInstruction* InputAt(size_t i) const { return InputRecordAt(i).GetInstruction(); }
1684
1685  virtual void Accept(HGraphVisitor* visitor) = 0;
1686  virtual const char* DebugName() const = 0;
1687
1688  virtual Primitive::Type GetType() const { return Primitive::kPrimVoid; }
1689  void SetRawInputAt(size_t index, HInstruction* input) {
1690    SetRawInputRecordAt(index, HUserRecord<HInstruction*>(input));
1691  }
1692
1693  virtual bool NeedsEnvironment() const { return false; }
1694  virtual uint32_t GetDexPc() const {
1695    LOG(FATAL) << "GetDexPc() cannot be called on an instruction that"
1696                  " does not need an environment";
1697    UNREACHABLE();
1698  }
1699  virtual bool IsControlFlow() const { return false; }
1700  virtual bool CanThrow() const { return false; }
1701
1702  bool HasSideEffects() const { return side_effects_.HasSideEffects(); }
1703  bool DoesAnyWrite() const { return side_effects_.DoesAnyWrite(); }
1704
1705  // Does not apply for all instructions, but having this at top level greatly
1706  // simplifies the null check elimination.
1707  // TODO: Consider merging can_be_null into ReferenceTypeInfo.
1708  virtual bool CanBeNull() const {
1709    DCHECK_EQ(GetType(), Primitive::kPrimNot) << "CanBeNull only applies to reference types";
1710    return true;
1711  }
1712
1713  virtual bool CanDoImplicitNullCheckOn(HInstruction* obj) const {
1714    UNUSED(obj);
1715    return false;
1716  }
1717
1718  void SetReferenceTypeInfo(ReferenceTypeInfo rti);
1719
1720  ReferenceTypeInfo GetReferenceTypeInfo() const {
1721    DCHECK_EQ(GetType(), Primitive::kPrimNot);
1722    return reference_type_info_;
1723  }
1724
1725  void AddUseAt(HInstruction* user, size_t index) {
1726    DCHECK(user != nullptr);
1727    HUseListNode<HInstruction*>* use =
1728        uses_.AddUse(user, index, GetBlock()->GetGraph()->GetArena());
1729    user->SetRawInputRecordAt(index, HUserRecord<HInstruction*>(user->InputRecordAt(index), use));
1730  }
1731
1732  void AddEnvUseAt(HEnvironment* user, size_t index) {
1733    DCHECK(user != nullptr);
1734    HUseListNode<HEnvironment*>* env_use =
1735        env_uses_.AddUse(user, index, GetBlock()->GetGraph()->GetArena());
1736    user->RecordEnvUse(env_use);
1737  }
1738
1739  void RemoveAsUserOfInput(size_t input) {
1740    HUserRecord<HInstruction*> input_use = InputRecordAt(input);
1741    input_use.GetInstruction()->uses_.Remove(input_use.GetUseNode());
1742  }
1743
1744  const HUseList<HInstruction*>& GetUses() const { return uses_; }
1745  const HUseList<HEnvironment*>& GetEnvUses() const { return env_uses_; }
1746
1747  bool HasUses() const { return !uses_.IsEmpty() || !env_uses_.IsEmpty(); }
1748  bool HasEnvironmentUses() const { return !env_uses_.IsEmpty(); }
1749  bool HasNonEnvironmentUses() const { return !uses_.IsEmpty(); }
1750  bool HasOnlyOneNonEnvironmentUse() const {
1751    return !HasEnvironmentUses() && GetUses().HasOnlyOneUse();
1752  }
1753
1754  // Does this instruction strictly dominate `other_instruction`?
1755  // Returns false if this instruction and `other_instruction` are the same.
1756  // Aborts if this instruction and `other_instruction` are both phis.
1757  bool StrictlyDominates(HInstruction* other_instruction) const;
1758
1759  int GetId() const { return id_; }
1760  void SetId(int id) { id_ = id; }
1761
1762  int GetSsaIndex() const { return ssa_index_; }
1763  void SetSsaIndex(int ssa_index) { ssa_index_ = ssa_index; }
1764  bool HasSsaIndex() const { return ssa_index_ != -1; }
1765
1766  bool HasEnvironment() const { return environment_ != nullptr; }
1767  HEnvironment* GetEnvironment() const { return environment_; }
1768  // Set the `environment_` field. Raw because this method does not
1769  // update the uses lists.
1770  void SetRawEnvironment(HEnvironment* environment) {
1771    DCHECK(environment_ == nullptr);
1772    DCHECK_EQ(environment->GetHolder(), this);
1773    environment_ = environment;
1774  }
1775
1776  // Set the environment of this instruction, copying it from `environment`. While
1777  // copying, the uses lists are being updated.
1778  void CopyEnvironmentFrom(HEnvironment* environment) {
1779    DCHECK(environment_ == nullptr);
1780    ArenaAllocator* allocator = GetBlock()->GetGraph()->GetArena();
1781    environment_ = new (allocator) HEnvironment(allocator, *environment, this);
1782    environment_->CopyFrom(environment);
1783    if (environment->GetParent() != nullptr) {
1784      environment_->SetAndCopyParentChain(allocator, environment->GetParent());
1785    }
1786  }
1787
1788  void CopyEnvironmentFromWithLoopPhiAdjustment(HEnvironment* environment,
1789                                                HBasicBlock* block) {
1790    DCHECK(environment_ == nullptr);
1791    ArenaAllocator* allocator = GetBlock()->GetGraph()->GetArena();
1792    environment_ = new (allocator) HEnvironment(allocator, *environment, this);
1793    environment_->CopyFromWithLoopPhiAdjustment(environment, block);
1794    if (environment->GetParent() != nullptr) {
1795      environment_->SetAndCopyParentChain(allocator, environment->GetParent());
1796    }
1797  }
1798
1799  // Returns the number of entries in the environment. Typically, that is the
1800  // number of dex registers in a method. It could be more in case of inlining.
1801  size_t EnvironmentSize() const;
1802
1803  LocationSummary* GetLocations() const { return locations_; }
1804  void SetLocations(LocationSummary* locations) { locations_ = locations; }
1805
1806  void ReplaceWith(HInstruction* instruction);
1807  void ReplaceInput(HInstruction* replacement, size_t index);
1808
1809  // This is almost the same as doing `ReplaceWith()`. But in this helper, the
1810  // uses of this instruction by `other` are *not* updated.
1811  void ReplaceWithExceptInReplacementAtIndex(HInstruction* other, size_t use_index) {
1812    ReplaceWith(other);
1813    other->ReplaceInput(this, use_index);
1814  }
1815
1816  // Move `this` instruction before `cursor`.
1817  void MoveBefore(HInstruction* cursor);
1818
1819#define INSTRUCTION_TYPE_CHECK(type, super)                                    \
1820  bool Is##type() const { return (As##type() != nullptr); }                    \
1821  virtual const H##type* As##type() const { return nullptr; }                  \
1822  virtual H##type* As##type() { return nullptr; }
1823
1824  FOR_EACH_INSTRUCTION(INSTRUCTION_TYPE_CHECK)
1825#undef INSTRUCTION_TYPE_CHECK
1826
1827  // Returns whether the instruction can be moved within the graph.
1828  virtual bool CanBeMoved() const { return false; }
1829
1830  // Returns whether the two instructions are of the same kind.
1831  virtual bool InstructionTypeEquals(HInstruction* other) const {
1832    UNUSED(other);
1833    return false;
1834  }
1835
1836  // Returns whether any data encoded in the two instructions is equal.
1837  // This method does not look at the inputs. Both instructions must be
1838  // of the same type, otherwise the method has undefined behavior.
1839  virtual bool InstructionDataEquals(HInstruction* other) const {
1840    UNUSED(other);
1841    return false;
1842  }
1843
1844  // Returns whether two instructions are equal, that is:
1845  // 1) They have the same type and contain the same data (InstructionDataEquals).
1846  // 2) Their inputs are identical.
1847  bool Equals(HInstruction* other) const;
1848
1849  virtual InstructionKind GetKind() const = 0;
1850
1851  virtual size_t ComputeHashCode() const {
1852    size_t result = GetKind();
1853    for (size_t i = 0, e = InputCount(); i < e; ++i) {
1854      result = (result * 31) + InputAt(i)->GetId();
1855    }
1856    return result;
1857  }
1858
1859  SideEffects GetSideEffects() const { return side_effects_; }
1860
1861  size_t GetLifetimePosition() const { return lifetime_position_; }
1862  void SetLifetimePosition(size_t position) { lifetime_position_ = position; }
1863  LiveInterval* GetLiveInterval() const { return live_interval_; }
1864  void SetLiveInterval(LiveInterval* interval) { live_interval_ = interval; }
1865  bool HasLiveInterval() const { return live_interval_ != nullptr; }
1866
1867  bool IsSuspendCheckEntry() const { return IsSuspendCheck() && GetBlock()->IsEntryBlock(); }
1868
1869  // Returns whether the code generation of the instruction will require to have access
1870  // to the current method. Such instructions are:
1871  // (1): Instructions that require an environment, as calling the runtime requires
1872  //      to walk the stack and have the current method stored at a specific stack address.
1873  // (2): Object literals like classes and strings, that are loaded from the dex cache
1874  //      fields of the current method.
1875  bool NeedsCurrentMethod() const {
1876    return NeedsEnvironment() || IsLoadClass() || IsLoadString();
1877  }
1878
1879  virtual bool NeedsDexCache() const { return false; }
1880
1881  // Does this instruction have any use in an environment before
1882  // control flow hits 'other'?
1883  bool HasAnyEnvironmentUseBefore(HInstruction* other);
1884
1885  // Remove all references to environment uses of this instruction.
1886  // The caller must ensure that this is safe to do.
1887  void RemoveEnvironmentUsers();
1888
1889 protected:
1890  virtual const HUserRecord<HInstruction*> InputRecordAt(size_t i) const = 0;
1891  virtual void SetRawInputRecordAt(size_t index, const HUserRecord<HInstruction*>& input) = 0;
1892
1893 private:
1894  void RemoveEnvironmentUser(HUseListNode<HEnvironment*>* use_node) { env_uses_.Remove(use_node); }
1895
1896  HInstruction* previous_;
1897  HInstruction* next_;
1898  HBasicBlock* block_;
1899
1900  // An instruction gets an id when it is added to the graph.
1901  // It reflects creation order. A negative id means the instruction
1902  // has not been added to the graph.
1903  int id_;
1904
1905  // When doing liveness analysis, instructions that have uses get an SSA index.
1906  int ssa_index_;
1907
1908  // List of instructions that have this instruction as input.
1909  HUseList<HInstruction*> uses_;
1910
1911  // List of environments that contain this instruction.
1912  HUseList<HEnvironment*> env_uses_;
1913
1914  // The environment associated with this instruction. Not null if the instruction
1915  // might jump out of the method.
1916  HEnvironment* environment_;
1917
1918  // Set by the code generator.
1919  LocationSummary* locations_;
1920
1921  // Set by the liveness analysis.
1922  LiveInterval* live_interval_;
1923
1924  // Set by the liveness analysis, this is the position in a linear
1925  // order of blocks where this instruction's live interval start.
1926  size_t lifetime_position_;
1927
1928  const SideEffects side_effects_;
1929
1930  // TODO: for primitive types this should be marked as invalid.
1931  ReferenceTypeInfo reference_type_info_;
1932
1933  friend class GraphChecker;
1934  friend class HBasicBlock;
1935  friend class HEnvironment;
1936  friend class HGraph;
1937  friend class HInstructionList;
1938
1939  DISALLOW_COPY_AND_ASSIGN(HInstruction);
1940};
1941std::ostream& operator<<(std::ostream& os, const HInstruction::InstructionKind& rhs);
1942
1943class HInputIterator : public ValueObject {
1944 public:
1945  explicit HInputIterator(HInstruction* instruction) : instruction_(instruction), index_(0) {}
1946
1947  bool Done() const { return index_ == instruction_->InputCount(); }
1948  HInstruction* Current() const { return instruction_->InputAt(index_); }
1949  void Advance() { index_++; }
1950
1951 private:
1952  HInstruction* instruction_;
1953  size_t index_;
1954
1955  DISALLOW_COPY_AND_ASSIGN(HInputIterator);
1956};
1957
1958class HInstructionIterator : public ValueObject {
1959 public:
1960  explicit HInstructionIterator(const HInstructionList& instructions)
1961      : instruction_(instructions.first_instruction_) {
1962    next_ = Done() ? nullptr : instruction_->GetNext();
1963  }
1964
1965  bool Done() const { return instruction_ == nullptr; }
1966  HInstruction* Current() const { return instruction_; }
1967  void Advance() {
1968    instruction_ = next_;
1969    next_ = Done() ? nullptr : instruction_->GetNext();
1970  }
1971
1972 private:
1973  HInstruction* instruction_;
1974  HInstruction* next_;
1975
1976  DISALLOW_COPY_AND_ASSIGN(HInstructionIterator);
1977};
1978
1979class HBackwardInstructionIterator : public ValueObject {
1980 public:
1981  explicit HBackwardInstructionIterator(const HInstructionList& instructions)
1982      : instruction_(instructions.last_instruction_) {
1983    next_ = Done() ? nullptr : instruction_->GetPrevious();
1984  }
1985
1986  bool Done() const { return instruction_ == nullptr; }
1987  HInstruction* Current() const { return instruction_; }
1988  void Advance() {
1989    instruction_ = next_;
1990    next_ = Done() ? nullptr : instruction_->GetPrevious();
1991  }
1992
1993 private:
1994  HInstruction* instruction_;
1995  HInstruction* next_;
1996
1997  DISALLOW_COPY_AND_ASSIGN(HBackwardInstructionIterator);
1998};
1999
2000// An embedded container with N elements of type T.  Used (with partial
2001// specialization for N=0) because embedded arrays cannot have size 0.
2002template<typename T, intptr_t N>
2003class EmbeddedArray {
2004 public:
2005  EmbeddedArray() : elements_() {}
2006
2007  intptr_t GetLength() const { return N; }
2008
2009  const T& operator[](intptr_t i) const {
2010    DCHECK_LT(i, GetLength());
2011    return elements_[i];
2012  }
2013
2014  T& operator[](intptr_t i) {
2015    DCHECK_LT(i, GetLength());
2016    return elements_[i];
2017  }
2018
2019  const T& At(intptr_t i) const {
2020    return (*this)[i];
2021  }
2022
2023  void SetAt(intptr_t i, const T& val) {
2024    (*this)[i] = val;
2025  }
2026
2027 private:
2028  T elements_[N];
2029};
2030
2031template<typename T>
2032class EmbeddedArray<T, 0> {
2033 public:
2034  intptr_t length() const { return 0; }
2035  const T& operator[](intptr_t i) const {
2036    UNUSED(i);
2037    LOG(FATAL) << "Unreachable";
2038    UNREACHABLE();
2039  }
2040  T& operator[](intptr_t i) {
2041    UNUSED(i);
2042    LOG(FATAL) << "Unreachable";
2043    UNREACHABLE();
2044  }
2045};
2046
2047template<intptr_t N>
2048class HTemplateInstruction: public HInstruction {
2049 public:
2050  HTemplateInstruction<N>(SideEffects side_effects)
2051      : HInstruction(side_effects), inputs_() {}
2052  virtual ~HTemplateInstruction() {}
2053
2054  size_t InputCount() const OVERRIDE { return N; }
2055
2056 protected:
2057  const HUserRecord<HInstruction*> InputRecordAt(size_t i) const OVERRIDE { return inputs_[i]; }
2058
2059  void SetRawInputRecordAt(size_t i, const HUserRecord<HInstruction*>& input) OVERRIDE {
2060    inputs_[i] = input;
2061  }
2062
2063 private:
2064  EmbeddedArray<HUserRecord<HInstruction*>, N> inputs_;
2065
2066  friend class SsaBuilder;
2067};
2068
2069template<intptr_t N>
2070class HExpression : public HTemplateInstruction<N> {
2071 public:
2072  HExpression<N>(Primitive::Type type, SideEffects side_effects)
2073      : HTemplateInstruction<N>(side_effects), type_(type) {}
2074  virtual ~HExpression() {}
2075
2076  Primitive::Type GetType() const OVERRIDE { return type_; }
2077
2078 protected:
2079  Primitive::Type type_;
2080};
2081
2082// Represents dex's RETURN_VOID opcode. A HReturnVoid is a control flow
2083// instruction that branches to the exit block.
2084class HReturnVoid : public HTemplateInstruction<0> {
2085 public:
2086  HReturnVoid() : HTemplateInstruction(SideEffects::None()) {}
2087
2088  bool IsControlFlow() const OVERRIDE { return true; }
2089
2090  DECLARE_INSTRUCTION(ReturnVoid);
2091
2092 private:
2093  DISALLOW_COPY_AND_ASSIGN(HReturnVoid);
2094};
2095
2096// Represents dex's RETURN opcodes. A HReturn is a control flow
2097// instruction that branches to the exit block.
2098class HReturn : public HTemplateInstruction<1> {
2099 public:
2100  explicit HReturn(HInstruction* value) : HTemplateInstruction(SideEffects::None()) {
2101    SetRawInputAt(0, value);
2102  }
2103
2104  bool IsControlFlow() const OVERRIDE { return true; }
2105
2106  DECLARE_INSTRUCTION(Return);
2107
2108 private:
2109  DISALLOW_COPY_AND_ASSIGN(HReturn);
2110};
2111
2112// The exit instruction is the only instruction of the exit block.
2113// Instructions aborting the method (HThrow and HReturn) must branch to the
2114// exit block.
2115class HExit : public HTemplateInstruction<0> {
2116 public:
2117  HExit() : HTemplateInstruction(SideEffects::None()) {}
2118
2119  bool IsControlFlow() const OVERRIDE { return true; }
2120
2121  DECLARE_INSTRUCTION(Exit);
2122
2123 private:
2124  DISALLOW_COPY_AND_ASSIGN(HExit);
2125};
2126
2127// Jumps from one block to another.
2128class HGoto : public HTemplateInstruction<0> {
2129 public:
2130  HGoto() : HTemplateInstruction(SideEffects::None()) {}
2131
2132  bool IsControlFlow() const OVERRIDE { return true; }
2133
2134  HBasicBlock* GetSuccessor() const {
2135    return GetBlock()->GetSingleSuccessor();
2136  }
2137
2138  DECLARE_INSTRUCTION(Goto);
2139
2140 private:
2141  DISALLOW_COPY_AND_ASSIGN(HGoto);
2142};
2143
2144class HConstant : public HExpression<0> {
2145 public:
2146  explicit HConstant(Primitive::Type type) : HExpression(type, SideEffects::None()) {}
2147
2148  bool CanBeMoved() const OVERRIDE { return true; }
2149
2150  virtual bool IsMinusOne() const { return false; }
2151  virtual bool IsZero() const { return false; }
2152  virtual bool IsOne() const { return false; }
2153
2154  DECLARE_INSTRUCTION(Constant);
2155
2156 private:
2157  DISALLOW_COPY_AND_ASSIGN(HConstant);
2158};
2159
2160class HNullConstant : public HConstant {
2161 public:
2162  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
2163    return true;
2164  }
2165
2166  size_t ComputeHashCode() const OVERRIDE { return 0; }
2167
2168  DECLARE_INSTRUCTION(NullConstant);
2169
2170 private:
2171  HNullConstant() : HConstant(Primitive::kPrimNot) {}
2172
2173  friend class HGraph;
2174  DISALLOW_COPY_AND_ASSIGN(HNullConstant);
2175};
2176
2177// Constants of the type int. Those can be from Dex instructions, or
2178// synthesized (for example with the if-eqz instruction).
2179class HIntConstant : public HConstant {
2180 public:
2181  int32_t GetValue() const { return value_; }
2182
2183  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2184    DCHECK(other->IsIntConstant());
2185    return other->AsIntConstant()->value_ == value_;
2186  }
2187
2188  size_t ComputeHashCode() const OVERRIDE { return GetValue(); }
2189
2190  bool IsMinusOne() const OVERRIDE { return GetValue() == -1; }
2191  bool IsZero() const OVERRIDE { return GetValue() == 0; }
2192  bool IsOne() const OVERRIDE { return GetValue() == 1; }
2193
2194  DECLARE_INSTRUCTION(IntConstant);
2195
2196 private:
2197  explicit HIntConstant(int32_t value) : HConstant(Primitive::kPrimInt), value_(value) {}
2198  explicit HIntConstant(bool value) : HConstant(Primitive::kPrimInt), value_(value ? 1 : 0) {}
2199
2200  const int32_t value_;
2201
2202  friend class HGraph;
2203  ART_FRIEND_TEST(GraphTest, InsertInstructionBefore);
2204  ART_FRIEND_TYPED_TEST(ParallelMoveTest, ConstantLast);
2205  DISALLOW_COPY_AND_ASSIGN(HIntConstant);
2206};
2207
2208class HLongConstant : public HConstant {
2209 public:
2210  int64_t GetValue() const { return value_; }
2211
2212  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2213    DCHECK(other->IsLongConstant());
2214    return other->AsLongConstant()->value_ == value_;
2215  }
2216
2217  size_t ComputeHashCode() const OVERRIDE { return static_cast<size_t>(GetValue()); }
2218
2219  bool IsMinusOne() const OVERRIDE { return GetValue() == -1; }
2220  bool IsZero() const OVERRIDE { return GetValue() == 0; }
2221  bool IsOne() const OVERRIDE { return GetValue() == 1; }
2222
2223  DECLARE_INSTRUCTION(LongConstant);
2224
2225 private:
2226  explicit HLongConstant(int64_t value) : HConstant(Primitive::kPrimLong), value_(value) {}
2227
2228  const int64_t value_;
2229
2230  friend class HGraph;
2231  DISALLOW_COPY_AND_ASSIGN(HLongConstant);
2232};
2233
2234// Conditional branch. A block ending with an HIf instruction must have
2235// two successors.
2236class HIf : public HTemplateInstruction<1> {
2237 public:
2238  explicit HIf(HInstruction* input) : HTemplateInstruction(SideEffects::None()) {
2239    SetRawInputAt(0, input);
2240  }
2241
2242  bool IsControlFlow() const OVERRIDE { return true; }
2243
2244  HBasicBlock* IfTrueSuccessor() const {
2245    return GetBlock()->GetSuccessors().Get(0);
2246  }
2247
2248  HBasicBlock* IfFalseSuccessor() const {
2249    return GetBlock()->GetSuccessors().Get(1);
2250  }
2251
2252  DECLARE_INSTRUCTION(If);
2253
2254 private:
2255  DISALLOW_COPY_AND_ASSIGN(HIf);
2256};
2257
2258
2259// Abstract instruction which marks the beginning and/or end of a try block and
2260// links it to the respective exception handlers. Behaves the same as a Goto in
2261// non-exceptional control flow.
2262// Normal-flow successor is stored at index zero, exception handlers under
2263// higher indices in no particular order.
2264class HTryBoundary : public HTemplateInstruction<0> {
2265 public:
2266  enum BoundaryKind {
2267    kEntry,
2268    kExit,
2269  };
2270
2271  explicit HTryBoundary(BoundaryKind kind)
2272      : HTemplateInstruction(SideEffects::None()), kind_(kind) {}
2273
2274  bool IsControlFlow() const OVERRIDE { return true; }
2275
2276  // Returns the block's non-exceptional successor (index zero).
2277  HBasicBlock* GetNormalFlowSuccessor() const { return GetBlock()->GetSuccessors().Get(0); }
2278
2279  // Returns whether `handler` is among its exception handlers (non-zero index
2280  // successors).
2281  bool HasExceptionHandler(const HBasicBlock& handler) const {
2282    DCHECK(handler.IsCatchBlock());
2283    return GetBlock()->GetSuccessors().Contains(
2284        const_cast<HBasicBlock*>(&handler), /* start_from */ 1);
2285  }
2286
2287  // If not present already, adds `handler` to its block's list of exception
2288  // handlers.
2289  void AddExceptionHandler(HBasicBlock* handler) {
2290    if (!HasExceptionHandler(*handler)) {
2291      GetBlock()->AddSuccessor(handler);
2292    }
2293  }
2294
2295  bool IsEntry() const { return kind_ == BoundaryKind::kEntry; }
2296
2297  bool HasSameExceptionHandlersAs(const HTryBoundary& other) const;
2298
2299  DECLARE_INSTRUCTION(TryBoundary);
2300
2301 private:
2302  const BoundaryKind kind_;
2303
2304  DISALLOW_COPY_AND_ASSIGN(HTryBoundary);
2305};
2306
2307// Iterator over exception handlers of a given HTryBoundary, i.e. over
2308// exceptional successors of its basic block.
2309class HExceptionHandlerIterator : public ValueObject {
2310 public:
2311  explicit HExceptionHandlerIterator(const HTryBoundary& try_boundary)
2312    : block_(*try_boundary.GetBlock()), index_(block_.NumberOfNormalSuccessors()) {}
2313
2314  bool Done() const { return index_ == block_.GetSuccessors().Size(); }
2315  HBasicBlock* Current() const { return block_.GetSuccessors().Get(index_); }
2316  size_t CurrentSuccessorIndex() const { return index_; }
2317  void Advance() { ++index_; }
2318
2319 private:
2320  const HBasicBlock& block_;
2321  size_t index_;
2322
2323  DISALLOW_COPY_AND_ASSIGN(HExceptionHandlerIterator);
2324};
2325
2326// Deoptimize to interpreter, upon checking a condition.
2327class HDeoptimize : public HTemplateInstruction<1> {
2328 public:
2329  HDeoptimize(HInstruction* cond, uint32_t dex_pc)
2330      : HTemplateInstruction(SideEffects::None()),
2331        dex_pc_(dex_pc) {
2332    SetRawInputAt(0, cond);
2333  }
2334
2335  bool NeedsEnvironment() const OVERRIDE { return true; }
2336  bool CanThrow() const OVERRIDE { return true; }
2337  uint32_t GetDexPc() const OVERRIDE { return dex_pc_; }
2338
2339  DECLARE_INSTRUCTION(Deoptimize);
2340
2341 private:
2342  uint32_t dex_pc_;
2343
2344  DISALLOW_COPY_AND_ASSIGN(HDeoptimize);
2345};
2346
2347// Represents the ArtMethod that was passed as a first argument to
2348// the method. It is used by instructions that depend on it, like
2349// instructions that work with the dex cache.
2350class HCurrentMethod : public HExpression<0> {
2351 public:
2352  explicit HCurrentMethod(Primitive::Type type) : HExpression(type, SideEffects::None()) {}
2353
2354  DECLARE_INSTRUCTION(CurrentMethod);
2355
2356 private:
2357  DISALLOW_COPY_AND_ASSIGN(HCurrentMethod);
2358};
2359
2360class HUnaryOperation : public HExpression<1> {
2361 public:
2362  HUnaryOperation(Primitive::Type result_type, HInstruction* input)
2363      : HExpression(result_type, SideEffects::None()) {
2364    SetRawInputAt(0, input);
2365  }
2366
2367  HInstruction* GetInput() const { return InputAt(0); }
2368  Primitive::Type GetResultType() const { return GetType(); }
2369
2370  bool CanBeMoved() const OVERRIDE { return true; }
2371  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2372    UNUSED(other);
2373    return true;
2374  }
2375
2376  // Try to statically evaluate `operation` and return a HConstant
2377  // containing the result of this evaluation.  If `operation` cannot
2378  // be evaluated as a constant, return null.
2379  HConstant* TryStaticEvaluation() const;
2380
2381  // Apply this operation to `x`.
2382  virtual HConstant* Evaluate(HIntConstant* x) const = 0;
2383  virtual HConstant* Evaluate(HLongConstant* x) const = 0;
2384
2385  DECLARE_INSTRUCTION(UnaryOperation);
2386
2387 private:
2388  DISALLOW_COPY_AND_ASSIGN(HUnaryOperation);
2389};
2390
2391class HBinaryOperation : public HExpression<2> {
2392 public:
2393  HBinaryOperation(Primitive::Type result_type,
2394                   HInstruction* left,
2395                   HInstruction* right,
2396                   SideEffects side_effects = SideEffects::None())
2397      : HExpression(result_type, side_effects) {
2398    SetRawInputAt(0, left);
2399    SetRawInputAt(1, right);
2400  }
2401
2402  HInstruction* GetLeft() const { return InputAt(0); }
2403  HInstruction* GetRight() const { return InputAt(1); }
2404  Primitive::Type GetResultType() const { return GetType(); }
2405
2406  virtual bool IsCommutative() const { return false; }
2407
2408  // Put constant on the right.
2409  // Returns whether order is changed.
2410  bool OrderInputsWithConstantOnTheRight() {
2411    HInstruction* left = InputAt(0);
2412    HInstruction* right = InputAt(1);
2413    if (left->IsConstant() && !right->IsConstant()) {
2414      ReplaceInput(right, 0);
2415      ReplaceInput(left, 1);
2416      return true;
2417    }
2418    return false;
2419  }
2420
2421  // Order inputs by instruction id, but favor constant on the right side.
2422  // This helps GVN for commutative ops.
2423  void OrderInputs() {
2424    DCHECK(IsCommutative());
2425    HInstruction* left = InputAt(0);
2426    HInstruction* right = InputAt(1);
2427    if (left == right || (!left->IsConstant() && right->IsConstant())) {
2428      return;
2429    }
2430    if (OrderInputsWithConstantOnTheRight()) {
2431      return;
2432    }
2433    // Order according to instruction id.
2434    if (left->GetId() > right->GetId()) {
2435      ReplaceInput(right, 0);
2436      ReplaceInput(left, 1);
2437    }
2438  }
2439
2440  bool CanBeMoved() const OVERRIDE { return true; }
2441  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2442    UNUSED(other);
2443    return true;
2444  }
2445
2446  // Try to statically evaluate `operation` and return a HConstant
2447  // containing the result of this evaluation.  If `operation` cannot
2448  // be evaluated as a constant, return null.
2449  HConstant* TryStaticEvaluation() const;
2450
2451  // Apply this operation to `x` and `y`.
2452  virtual HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const = 0;
2453  virtual HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const = 0;
2454  virtual HConstant* Evaluate(HIntConstant* x ATTRIBUTE_UNUSED,
2455                              HLongConstant* y ATTRIBUTE_UNUSED) const {
2456    VLOG(compiler) << DebugName() << " is not defined for the (int, long) case.";
2457    return nullptr;
2458  }
2459  virtual HConstant* Evaluate(HLongConstant* x ATTRIBUTE_UNUSED,
2460                              HIntConstant* y ATTRIBUTE_UNUSED) const {
2461    VLOG(compiler) << DebugName() << " is not defined for the (long, int) case.";
2462    return nullptr;
2463  }
2464
2465  // Returns an input that can legally be used as the right input and is
2466  // constant, or null.
2467  HConstant* GetConstantRight() const;
2468
2469  // If `GetConstantRight()` returns one of the input, this returns the other
2470  // one. Otherwise it returns null.
2471  HInstruction* GetLeastConstantLeft() const;
2472
2473  DECLARE_INSTRUCTION(BinaryOperation);
2474
2475 private:
2476  DISALLOW_COPY_AND_ASSIGN(HBinaryOperation);
2477};
2478
2479// The comparison bias applies for floating point operations and indicates how NaN
2480// comparisons are treated:
2481enum class ComparisonBias {
2482  kNoBias,  // bias is not applicable (i.e. for long operation)
2483  kGtBias,  // return 1 for NaN comparisons
2484  kLtBias,  // return -1 for NaN comparisons
2485};
2486
2487class HCondition : public HBinaryOperation {
2488 public:
2489  HCondition(HInstruction* first, HInstruction* second)
2490      : HBinaryOperation(Primitive::kPrimBoolean, first, second),
2491        needs_materialization_(true),
2492        bias_(ComparisonBias::kNoBias) {}
2493
2494  bool NeedsMaterialization() const { return needs_materialization_; }
2495  void ClearNeedsMaterialization() { needs_materialization_ = false; }
2496
2497  // For code generation purposes, returns whether this instruction is just before
2498  // `instruction`, and disregard moves in between.
2499  bool IsBeforeWhenDisregardMoves(HInstruction* instruction) const;
2500
2501  DECLARE_INSTRUCTION(Condition);
2502
2503  virtual IfCondition GetCondition() const = 0;
2504
2505  virtual IfCondition GetOppositeCondition() const = 0;
2506
2507  bool IsGtBias() const { return bias_ == ComparisonBias::kGtBias; }
2508
2509  void SetBias(ComparisonBias bias) { bias_ = bias; }
2510
2511  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2512    return bias_ == other->AsCondition()->bias_;
2513  }
2514
2515  bool IsFPConditionTrueIfNaN() const {
2516    DCHECK(Primitive::IsFloatingPointType(InputAt(0)->GetType()));
2517    IfCondition if_cond = GetCondition();
2518    return IsGtBias() ? ((if_cond == kCondGT) || (if_cond == kCondGE)) : (if_cond == kCondNE);
2519  }
2520
2521  bool IsFPConditionFalseIfNaN() const {
2522    DCHECK(Primitive::IsFloatingPointType(InputAt(0)->GetType()));
2523    IfCondition if_cond = GetCondition();
2524    return IsGtBias() ? ((if_cond == kCondLT) || (if_cond == kCondLE)) : (if_cond == kCondEQ);
2525  }
2526
2527 private:
2528  // For register allocation purposes, returns whether this instruction needs to be
2529  // materialized (that is, not just be in the processor flags).
2530  bool needs_materialization_;
2531
2532  // Needed if we merge a HCompare into a HCondition.
2533  ComparisonBias bias_;
2534
2535  DISALLOW_COPY_AND_ASSIGN(HCondition);
2536};
2537
2538// Instruction to check if two inputs are equal to each other.
2539class HEqual : public HCondition {
2540 public:
2541  HEqual(HInstruction* first, HInstruction* second)
2542      : HCondition(first, second) {}
2543
2544  bool IsCommutative() const OVERRIDE { return true; }
2545
2546  template <typename T> bool Compute(T x, T y) const { return x == y; }
2547
2548  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2549    return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue(), y->GetValue()));
2550  }
2551  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2552    return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue(), y->GetValue()));
2553  }
2554
2555  DECLARE_INSTRUCTION(Equal);
2556
2557  IfCondition GetCondition() const OVERRIDE {
2558    return kCondEQ;
2559  }
2560
2561  IfCondition GetOppositeCondition() const OVERRIDE {
2562    return kCondNE;
2563  }
2564
2565 private:
2566  DISALLOW_COPY_AND_ASSIGN(HEqual);
2567};
2568
2569class HNotEqual : public HCondition {
2570 public:
2571  HNotEqual(HInstruction* first, HInstruction* second)
2572      : HCondition(first, second) {}
2573
2574  bool IsCommutative() const OVERRIDE { return true; }
2575
2576  template <typename T> bool Compute(T x, T y) const { return x != y; }
2577
2578  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2579    return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue(), y->GetValue()));
2580  }
2581  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2582    return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue(), y->GetValue()));
2583  }
2584
2585  DECLARE_INSTRUCTION(NotEqual);
2586
2587  IfCondition GetCondition() const OVERRIDE {
2588    return kCondNE;
2589  }
2590
2591  IfCondition GetOppositeCondition() const OVERRIDE {
2592    return kCondEQ;
2593  }
2594
2595 private:
2596  DISALLOW_COPY_AND_ASSIGN(HNotEqual);
2597};
2598
2599class HLessThan : public HCondition {
2600 public:
2601  HLessThan(HInstruction* first, HInstruction* second)
2602      : HCondition(first, second) {}
2603
2604  template <typename T> bool Compute(T x, T y) const { return x < y; }
2605
2606  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2607    return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue(), y->GetValue()));
2608  }
2609  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2610    return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue(), y->GetValue()));
2611  }
2612
2613  DECLARE_INSTRUCTION(LessThan);
2614
2615  IfCondition GetCondition() const OVERRIDE {
2616    return kCondLT;
2617  }
2618
2619  IfCondition GetOppositeCondition() const OVERRIDE {
2620    return kCondGE;
2621  }
2622
2623 private:
2624  DISALLOW_COPY_AND_ASSIGN(HLessThan);
2625};
2626
2627class HLessThanOrEqual : public HCondition {
2628 public:
2629  HLessThanOrEqual(HInstruction* first, HInstruction* second)
2630      : HCondition(first, second) {}
2631
2632  template <typename T> bool Compute(T x, T y) const { return x <= y; }
2633
2634  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2635    return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue(), y->GetValue()));
2636  }
2637  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2638    return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue(), y->GetValue()));
2639  }
2640
2641  DECLARE_INSTRUCTION(LessThanOrEqual);
2642
2643  IfCondition GetCondition() const OVERRIDE {
2644    return kCondLE;
2645  }
2646
2647  IfCondition GetOppositeCondition() const OVERRIDE {
2648    return kCondGT;
2649  }
2650
2651 private:
2652  DISALLOW_COPY_AND_ASSIGN(HLessThanOrEqual);
2653};
2654
2655class HGreaterThan : public HCondition {
2656 public:
2657  HGreaterThan(HInstruction* first, HInstruction* second)
2658      : HCondition(first, second) {}
2659
2660  template <typename T> bool Compute(T x, T y) const { return x > y; }
2661
2662  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2663    return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue(), y->GetValue()));
2664  }
2665  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2666    return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue(), y->GetValue()));
2667  }
2668
2669  DECLARE_INSTRUCTION(GreaterThan);
2670
2671  IfCondition GetCondition() const OVERRIDE {
2672    return kCondGT;
2673  }
2674
2675  IfCondition GetOppositeCondition() const OVERRIDE {
2676    return kCondLE;
2677  }
2678
2679 private:
2680  DISALLOW_COPY_AND_ASSIGN(HGreaterThan);
2681};
2682
2683class HGreaterThanOrEqual : public HCondition {
2684 public:
2685  HGreaterThanOrEqual(HInstruction* first, HInstruction* second)
2686      : HCondition(first, second) {}
2687
2688  template <typename T> bool Compute(T x, T y) const { return x >= y; }
2689
2690  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2691    return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue(), y->GetValue()));
2692  }
2693  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2694    return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue(), y->GetValue()));
2695  }
2696
2697  DECLARE_INSTRUCTION(GreaterThanOrEqual);
2698
2699  IfCondition GetCondition() const OVERRIDE {
2700    return kCondGE;
2701  }
2702
2703  IfCondition GetOppositeCondition() const OVERRIDE {
2704    return kCondLT;
2705  }
2706
2707 private:
2708  DISALLOW_COPY_AND_ASSIGN(HGreaterThanOrEqual);
2709};
2710
2711
2712// Instruction to check how two inputs compare to each other.
2713// Result is 0 if input0 == input1, 1 if input0 > input1, or -1 if input0 < input1.
2714class HCompare : public HBinaryOperation {
2715 public:
2716  HCompare(Primitive::Type type,
2717           HInstruction* first,
2718           HInstruction* second,
2719           ComparisonBias bias,
2720           uint32_t dex_pc)
2721      : HBinaryOperation(Primitive::kPrimInt, first, second, SideEffectsForArchRuntimeCalls(type)),
2722        bias_(bias),
2723        dex_pc_(dex_pc) {
2724    DCHECK_EQ(type, first->GetType());
2725    DCHECK_EQ(type, second->GetType());
2726  }
2727
2728  template <typename T>
2729  int32_t Compute(T x, T y) const { return x == y ? 0 : x > y ? 1 : -1; }
2730
2731  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2732    return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue(), y->GetValue()));
2733  }
2734  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2735    return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue(), y->GetValue()));
2736  }
2737
2738  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2739    return bias_ == other->AsCompare()->bias_;
2740  }
2741
2742  ComparisonBias GetBias() const { return bias_; }
2743
2744  bool IsGtBias() { return bias_ == ComparisonBias::kGtBias; }
2745
2746  uint32_t GetDexPc() const OVERRIDE { return dex_pc_; }
2747
2748  static SideEffects SideEffectsForArchRuntimeCalls(Primitive::Type type) {
2749    // MIPS64 uses a runtime call for FP comparisons.
2750    return Primitive::IsFloatingPointType(type) ? SideEffects::CanTriggerGC() : SideEffects::None();
2751  }
2752
2753  DECLARE_INSTRUCTION(Compare);
2754
2755 private:
2756  const ComparisonBias bias_;
2757  const uint32_t dex_pc_;
2758
2759  DISALLOW_COPY_AND_ASSIGN(HCompare);
2760};
2761
2762// A local in the graph. Corresponds to a Dex register.
2763class HLocal : public HTemplateInstruction<0> {
2764 public:
2765  explicit HLocal(uint16_t reg_number)
2766      : HTemplateInstruction(SideEffects::None()), reg_number_(reg_number) {}
2767
2768  DECLARE_INSTRUCTION(Local);
2769
2770  uint16_t GetRegNumber() const { return reg_number_; }
2771
2772 private:
2773  // The Dex register number.
2774  const uint16_t reg_number_;
2775
2776  DISALLOW_COPY_AND_ASSIGN(HLocal);
2777};
2778
2779// Load a given local. The local is an input of this instruction.
2780class HLoadLocal : public HExpression<1> {
2781 public:
2782  HLoadLocal(HLocal* local, Primitive::Type type)
2783      : HExpression(type, SideEffects::None()) {
2784    SetRawInputAt(0, local);
2785  }
2786
2787  HLocal* GetLocal() const { return reinterpret_cast<HLocal*>(InputAt(0)); }
2788
2789  DECLARE_INSTRUCTION(LoadLocal);
2790
2791 private:
2792  DISALLOW_COPY_AND_ASSIGN(HLoadLocal);
2793};
2794
2795// Store a value in a given local. This instruction has two inputs: the value
2796// and the local.
2797class HStoreLocal : public HTemplateInstruction<2> {
2798 public:
2799  HStoreLocal(HLocal* local, HInstruction* value) : HTemplateInstruction(SideEffects::None()) {
2800    SetRawInputAt(0, local);
2801    SetRawInputAt(1, value);
2802  }
2803
2804  HLocal* GetLocal() const { return reinterpret_cast<HLocal*>(InputAt(0)); }
2805
2806  DECLARE_INSTRUCTION(StoreLocal);
2807
2808 private:
2809  DISALLOW_COPY_AND_ASSIGN(HStoreLocal);
2810};
2811
2812class HFloatConstant : public HConstant {
2813 public:
2814  float GetValue() const { return value_; }
2815
2816  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2817    DCHECK(other->IsFloatConstant());
2818    return bit_cast<uint32_t, float>(other->AsFloatConstant()->value_) ==
2819        bit_cast<uint32_t, float>(value_);
2820  }
2821
2822  size_t ComputeHashCode() const OVERRIDE { return static_cast<size_t>(GetValue()); }
2823
2824  bool IsMinusOne() const OVERRIDE {
2825    return bit_cast<uint32_t, float>(value_) == bit_cast<uint32_t, float>((-1.0f));
2826  }
2827  bool IsZero() const OVERRIDE {
2828    return value_ == 0.0f;
2829  }
2830  bool IsOne() const OVERRIDE {
2831    return bit_cast<uint32_t, float>(value_) == bit_cast<uint32_t, float>(1.0f);
2832  }
2833  bool IsNaN() const {
2834    return std::isnan(value_);
2835  }
2836
2837  DECLARE_INSTRUCTION(FloatConstant);
2838
2839 private:
2840  explicit HFloatConstant(float value) : HConstant(Primitive::kPrimFloat), value_(value) {}
2841  explicit HFloatConstant(int32_t value)
2842      : HConstant(Primitive::kPrimFloat), value_(bit_cast<float, int32_t>(value)) {}
2843
2844  const float value_;
2845
2846  // Only the SsaBuilder and HGraph can create floating-point constants.
2847  friend class SsaBuilder;
2848  friend class HGraph;
2849  DISALLOW_COPY_AND_ASSIGN(HFloatConstant);
2850};
2851
2852class HDoubleConstant : public HConstant {
2853 public:
2854  double GetValue() const { return value_; }
2855
2856  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2857    DCHECK(other->IsDoubleConstant());
2858    return bit_cast<uint64_t, double>(other->AsDoubleConstant()->value_) ==
2859        bit_cast<uint64_t, double>(value_);
2860  }
2861
2862  size_t ComputeHashCode() const OVERRIDE { return static_cast<size_t>(GetValue()); }
2863
2864  bool IsMinusOne() const OVERRIDE {
2865    return bit_cast<uint64_t, double>(value_) == bit_cast<uint64_t, double>((-1.0));
2866  }
2867  bool IsZero() const OVERRIDE {
2868    return value_ == 0.0;
2869  }
2870  bool IsOne() const OVERRIDE {
2871    return bit_cast<uint64_t, double>(value_) == bit_cast<uint64_t, double>(1.0);
2872  }
2873  bool IsNaN() const {
2874    return std::isnan(value_);
2875  }
2876
2877  DECLARE_INSTRUCTION(DoubleConstant);
2878
2879 private:
2880  explicit HDoubleConstant(double value) : HConstant(Primitive::kPrimDouble), value_(value) {}
2881  explicit HDoubleConstant(int64_t value)
2882      : HConstant(Primitive::kPrimDouble), value_(bit_cast<double, int64_t>(value)) {}
2883
2884  const double value_;
2885
2886  // Only the SsaBuilder and HGraph can create floating-point constants.
2887  friend class SsaBuilder;
2888  friend class HGraph;
2889  DISALLOW_COPY_AND_ASSIGN(HDoubleConstant);
2890};
2891
2892enum class Intrinsics {
2893#define OPTIMIZING_INTRINSICS(Name, IsStatic, NeedsEnvironment) k ## Name,
2894#include "intrinsics_list.h"
2895  kNone,
2896  INTRINSICS_LIST(OPTIMIZING_INTRINSICS)
2897#undef INTRINSICS_LIST
2898#undef OPTIMIZING_INTRINSICS
2899};
2900std::ostream& operator<<(std::ostream& os, const Intrinsics& intrinsic);
2901
2902enum IntrinsicNeedsEnvironment {
2903  kNoEnvironment,        // Intrinsic does not require an environment.
2904  kNeedsEnvironment      // Intrinsic requires an environment.
2905};
2906
2907class HInvoke : public HInstruction {
2908 public:
2909  size_t InputCount() const OVERRIDE { return inputs_.Size(); }
2910
2911  // Runtime needs to walk the stack, so Dex -> Dex calls need to
2912  // know their environment.
2913  bool NeedsEnvironment() const OVERRIDE { return needs_environment_ == kNeedsEnvironment; }
2914
2915  void SetArgumentAt(size_t index, HInstruction* argument) {
2916    SetRawInputAt(index, argument);
2917  }
2918
2919  // Return the number of arguments.  This number can be lower than
2920  // the number of inputs returned by InputCount(), as some invoke
2921  // instructions (e.g. HInvokeStaticOrDirect) can have non-argument
2922  // inputs at the end of their list of inputs.
2923  uint32_t GetNumberOfArguments() const { return number_of_arguments_; }
2924
2925  Primitive::Type GetType() const OVERRIDE { return return_type_; }
2926
2927  uint32_t GetDexPc() const OVERRIDE { return dex_pc_; }
2928
2929  uint32_t GetDexMethodIndex() const { return dex_method_index_; }
2930  const DexFile& GetDexFile() const { return GetEnvironment()->GetDexFile(); }
2931
2932  InvokeType GetOriginalInvokeType() const { return original_invoke_type_; }
2933
2934  Intrinsics GetIntrinsic() const {
2935    return intrinsic_;
2936  }
2937
2938  void SetIntrinsic(Intrinsics intrinsic, IntrinsicNeedsEnvironment needs_environment) {
2939    intrinsic_ = intrinsic;
2940    needs_environment_ = needs_environment;
2941  }
2942
2943  bool IsFromInlinedInvoke() const {
2944    return GetEnvironment()->GetParent() != nullptr;
2945  }
2946
2947  bool CanThrow() const OVERRIDE { return true; }
2948
2949  DECLARE_INSTRUCTION(Invoke);
2950
2951 protected:
2952  HInvoke(ArenaAllocator* arena,
2953          uint32_t number_of_arguments,
2954          uint32_t number_of_other_inputs,
2955          Primitive::Type return_type,
2956          uint32_t dex_pc,
2957          uint32_t dex_method_index,
2958          InvokeType original_invoke_type)
2959    : HInstruction(
2960          SideEffects::AllExceptGCDependency()),  // Assume write/read on all fields/arrays.
2961      number_of_arguments_(number_of_arguments),
2962      inputs_(arena, number_of_arguments),
2963      return_type_(return_type),
2964      dex_pc_(dex_pc),
2965      dex_method_index_(dex_method_index),
2966      original_invoke_type_(original_invoke_type),
2967      intrinsic_(Intrinsics::kNone),
2968      needs_environment_(kNeedsEnvironment) {
2969    uint32_t number_of_inputs = number_of_arguments + number_of_other_inputs;
2970    inputs_.SetSize(number_of_inputs);
2971  }
2972
2973  const HUserRecord<HInstruction*> InputRecordAt(size_t i) const OVERRIDE { return inputs_.Get(i); }
2974  void SetRawInputRecordAt(size_t index, const HUserRecord<HInstruction*>& input) OVERRIDE {
2975    inputs_.Put(index, input);
2976  }
2977
2978  uint32_t number_of_arguments_;
2979  GrowableArray<HUserRecord<HInstruction*> > inputs_;
2980  const Primitive::Type return_type_;
2981  const uint32_t dex_pc_;
2982  const uint32_t dex_method_index_;
2983  const InvokeType original_invoke_type_;
2984  Intrinsics intrinsic_;
2985  IntrinsicNeedsEnvironment needs_environment_;
2986
2987 private:
2988  DISALLOW_COPY_AND_ASSIGN(HInvoke);
2989};
2990
2991class HInvokeStaticOrDirect : public HInvoke {
2992 public:
2993  // Requirements of this method call regarding the class
2994  // initialization (clinit) check of its declaring class.
2995  enum class ClinitCheckRequirement {
2996    kNone,      // Class already initialized.
2997    kExplicit,  // Static call having explicit clinit check as last input.
2998    kImplicit,  // Static call implicitly requiring a clinit check.
2999  };
3000
3001  HInvokeStaticOrDirect(ArenaAllocator* arena,
3002                        uint32_t number_of_arguments,
3003                        Primitive::Type return_type,
3004                        uint32_t dex_pc,
3005                        uint32_t dex_method_index,
3006                        bool is_recursive,
3007                        int32_t string_init_offset,
3008                        InvokeType original_invoke_type,
3009                        InvokeType invoke_type,
3010                        ClinitCheckRequirement clinit_check_requirement)
3011      : HInvoke(arena,
3012                number_of_arguments,
3013                // There is one extra argument for the HCurrentMethod node, and
3014                // potentially one other if the clinit check is explicit, and one other
3015                // if the method is a string factory.
3016                1u + (clinit_check_requirement == ClinitCheckRequirement::kExplicit ? 1u : 0u)
3017                   + (string_init_offset ? 1u : 0u),
3018                return_type,
3019                dex_pc,
3020                dex_method_index,
3021                original_invoke_type),
3022        invoke_type_(invoke_type),
3023        is_recursive_(is_recursive),
3024        clinit_check_requirement_(clinit_check_requirement),
3025        string_init_offset_(string_init_offset) {}
3026
3027  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
3028    UNUSED(obj);
3029    // We access the method via the dex cache so we can't do an implicit null check.
3030    // TODO: for intrinsics we can generate implicit null checks.
3031    return false;
3032  }
3033
3034  InvokeType GetInvokeType() const { return invoke_type_; }
3035  bool IsRecursive() const { return is_recursive_; }
3036  bool NeedsDexCache() const OVERRIDE { return !IsRecursive(); }
3037  bool IsStringInit() const { return string_init_offset_ != 0; }
3038  int32_t GetStringInitOffset() const { return string_init_offset_; }
3039  uint32_t GetCurrentMethodInputIndex() const { return GetNumberOfArguments(); }
3040
3041  // Is this instruction a call to a static method?
3042  bool IsStatic() const {
3043    return GetInvokeType() == kStatic;
3044  }
3045
3046  // Remove the art::HLoadClass instruction set as last input by
3047  // art::PrepareForRegisterAllocation::VisitClinitCheck in lieu of
3048  // the initial art::HClinitCheck instruction (only relevant for
3049  // static calls with explicit clinit check).
3050  void RemoveLoadClassAsLastInput() {
3051    DCHECK(IsStaticWithExplicitClinitCheck());
3052    size_t last_input_index = InputCount() - 1;
3053    HInstruction* last_input = InputAt(last_input_index);
3054    DCHECK(last_input != nullptr);
3055    DCHECK(last_input->IsLoadClass()) << last_input->DebugName();
3056    RemoveAsUserOfInput(last_input_index);
3057    inputs_.DeleteAt(last_input_index);
3058    clinit_check_requirement_ = ClinitCheckRequirement::kImplicit;
3059    DCHECK(IsStaticWithImplicitClinitCheck());
3060  }
3061
3062  bool IsStringFactoryFor(HFakeString* str) const {
3063    if (!IsStringInit()) return false;
3064    // +1 for the current method.
3065    if (InputCount() == (number_of_arguments_ + 1)) return false;
3066    return InputAt(InputCount() - 1)->AsFakeString() == str;
3067  }
3068
3069  void RemoveFakeStringArgumentAsLastInput() {
3070    DCHECK(IsStringInit());
3071    size_t last_input_index = InputCount() - 1;
3072    HInstruction* last_input = InputAt(last_input_index);
3073    DCHECK(last_input != nullptr);
3074    DCHECK(last_input->IsFakeString()) << last_input->DebugName();
3075    RemoveAsUserOfInput(last_input_index);
3076    inputs_.DeleteAt(last_input_index);
3077  }
3078
3079  // Is this a call to a static method whose declaring class has an
3080  // explicit intialization check in the graph?
3081  bool IsStaticWithExplicitClinitCheck() const {
3082    return IsStatic() && (clinit_check_requirement_ == ClinitCheckRequirement::kExplicit);
3083  }
3084
3085  // Is this a call to a static method whose declaring class has an
3086  // implicit intialization check requirement?
3087  bool IsStaticWithImplicitClinitCheck() const {
3088    return IsStatic() && (clinit_check_requirement_ == ClinitCheckRequirement::kImplicit);
3089  }
3090
3091  DECLARE_INSTRUCTION(InvokeStaticOrDirect);
3092
3093 protected:
3094  const HUserRecord<HInstruction*> InputRecordAt(size_t i) const OVERRIDE {
3095    const HUserRecord<HInstruction*> input_record = HInvoke::InputRecordAt(i);
3096    if (kIsDebugBuild && IsStaticWithExplicitClinitCheck() && (i == InputCount() - 1)) {
3097      HInstruction* input = input_record.GetInstruction();
3098      // `input` is the last input of a static invoke marked as having
3099      // an explicit clinit check. It must either be:
3100      // - an art::HClinitCheck instruction, set by art::HGraphBuilder; or
3101      // - an art::HLoadClass instruction, set by art::PrepareForRegisterAllocation.
3102      DCHECK(input != nullptr);
3103      DCHECK(input->IsClinitCheck() || input->IsLoadClass()) << input->DebugName();
3104    }
3105    return input_record;
3106  }
3107
3108 private:
3109  const InvokeType invoke_type_;
3110  const bool is_recursive_;
3111  ClinitCheckRequirement clinit_check_requirement_;
3112  // Thread entrypoint offset for string init method if this is a string init invoke.
3113  // Note that there are multiple string init methods, each having its own offset.
3114  int32_t string_init_offset_;
3115
3116  DISALLOW_COPY_AND_ASSIGN(HInvokeStaticOrDirect);
3117};
3118
3119class HInvokeVirtual : public HInvoke {
3120 public:
3121  HInvokeVirtual(ArenaAllocator* arena,
3122                 uint32_t number_of_arguments,
3123                 Primitive::Type return_type,
3124                 uint32_t dex_pc,
3125                 uint32_t dex_method_index,
3126                 uint32_t vtable_index)
3127      : HInvoke(arena, number_of_arguments, 0u, return_type, dex_pc, dex_method_index, kVirtual),
3128        vtable_index_(vtable_index) {}
3129
3130  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
3131    // TODO: Add implicit null checks in intrinsics.
3132    return (obj == InputAt(0)) && !GetLocations()->Intrinsified();
3133  }
3134
3135  uint32_t GetVTableIndex() const { return vtable_index_; }
3136
3137  DECLARE_INSTRUCTION(InvokeVirtual);
3138
3139 private:
3140  const uint32_t vtable_index_;
3141
3142  DISALLOW_COPY_AND_ASSIGN(HInvokeVirtual);
3143};
3144
3145class HInvokeInterface : public HInvoke {
3146 public:
3147  HInvokeInterface(ArenaAllocator* arena,
3148                   uint32_t number_of_arguments,
3149                   Primitive::Type return_type,
3150                   uint32_t dex_pc,
3151                   uint32_t dex_method_index,
3152                   uint32_t imt_index)
3153      : HInvoke(arena, number_of_arguments, 0u, return_type, dex_pc, dex_method_index, kInterface),
3154        imt_index_(imt_index) {}
3155
3156  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
3157    // TODO: Add implicit null checks in intrinsics.
3158    return (obj == InputAt(0)) && !GetLocations()->Intrinsified();
3159  }
3160
3161  uint32_t GetImtIndex() const { return imt_index_; }
3162  uint32_t GetDexMethodIndex() const { return dex_method_index_; }
3163
3164  DECLARE_INSTRUCTION(InvokeInterface);
3165
3166 private:
3167  const uint32_t imt_index_;
3168
3169  DISALLOW_COPY_AND_ASSIGN(HInvokeInterface);
3170};
3171
3172class HNewInstance : public HExpression<1> {
3173 public:
3174  HNewInstance(HCurrentMethod* current_method,
3175               uint32_t dex_pc,
3176               uint16_t type_index,
3177               const DexFile& dex_file,
3178               QuickEntrypointEnum entrypoint)
3179      : HExpression(Primitive::kPrimNot, SideEffects::CanTriggerGC()),
3180        dex_pc_(dex_pc),
3181        type_index_(type_index),
3182        dex_file_(dex_file),
3183        entrypoint_(entrypoint) {
3184    SetRawInputAt(0, current_method);
3185  }
3186
3187  uint32_t GetDexPc() const OVERRIDE { return dex_pc_; }
3188  uint16_t GetTypeIndex() const { return type_index_; }
3189  const DexFile& GetDexFile() const { return dex_file_; }
3190
3191  // Calls runtime so needs an environment.
3192  bool NeedsEnvironment() const OVERRIDE { return true; }
3193  // It may throw when called on:
3194  //   - interfaces
3195  //   - abstract/innaccessible/unknown classes
3196  // TODO: optimize when possible.
3197  bool CanThrow() const OVERRIDE { return true; }
3198
3199  bool CanBeNull() const OVERRIDE { return false; }
3200
3201  QuickEntrypointEnum GetEntrypoint() const { return entrypoint_; }
3202
3203  DECLARE_INSTRUCTION(NewInstance);
3204
3205 private:
3206  const uint32_t dex_pc_;
3207  const uint16_t type_index_;
3208  const DexFile& dex_file_;
3209  const QuickEntrypointEnum entrypoint_;
3210
3211  DISALLOW_COPY_AND_ASSIGN(HNewInstance);
3212};
3213
3214class HNeg : public HUnaryOperation {
3215 public:
3216  explicit HNeg(Primitive::Type result_type, HInstruction* input)
3217      : HUnaryOperation(result_type, input) {}
3218
3219  template <typename T> T Compute(T x) const { return -x; }
3220
3221  HConstant* Evaluate(HIntConstant* x) const OVERRIDE {
3222    return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue()));
3223  }
3224  HConstant* Evaluate(HLongConstant* x) const OVERRIDE {
3225    return GetBlock()->GetGraph()->GetLongConstant(Compute(x->GetValue()));
3226  }
3227
3228  DECLARE_INSTRUCTION(Neg);
3229
3230 private:
3231  DISALLOW_COPY_AND_ASSIGN(HNeg);
3232};
3233
3234class HNewArray : public HExpression<2> {
3235 public:
3236  HNewArray(HInstruction* length,
3237            HCurrentMethod* current_method,
3238            uint32_t dex_pc,
3239            uint16_t type_index,
3240            const DexFile& dex_file,
3241            QuickEntrypointEnum entrypoint)
3242      : HExpression(Primitive::kPrimNot, SideEffects::CanTriggerGC()),
3243        dex_pc_(dex_pc),
3244        type_index_(type_index),
3245        dex_file_(dex_file),
3246        entrypoint_(entrypoint) {
3247    SetRawInputAt(0, length);
3248    SetRawInputAt(1, current_method);
3249  }
3250
3251  uint32_t GetDexPc() const OVERRIDE { return dex_pc_; }
3252  uint16_t GetTypeIndex() const { return type_index_; }
3253  const DexFile& GetDexFile() const { return dex_file_; }
3254
3255  // Calls runtime so needs an environment.
3256  bool NeedsEnvironment() const OVERRIDE { return true; }
3257
3258  // May throw NegativeArraySizeException, OutOfMemoryError, etc.
3259  bool CanThrow() const OVERRIDE { return true; }
3260
3261  bool CanBeNull() const OVERRIDE { return false; }
3262
3263  QuickEntrypointEnum GetEntrypoint() const { return entrypoint_; }
3264
3265  DECLARE_INSTRUCTION(NewArray);
3266
3267 private:
3268  const uint32_t dex_pc_;
3269  const uint16_t type_index_;
3270  const DexFile& dex_file_;
3271  const QuickEntrypointEnum entrypoint_;
3272
3273  DISALLOW_COPY_AND_ASSIGN(HNewArray);
3274};
3275
3276class HAdd : public HBinaryOperation {
3277 public:
3278  HAdd(Primitive::Type result_type, HInstruction* left, HInstruction* right)
3279      : HBinaryOperation(result_type, left, right) {}
3280
3281  bool IsCommutative() const OVERRIDE { return true; }
3282
3283  template <typename T> T Compute(T x, T y) const { return x + y; }
3284
3285  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3286    return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue(), y->GetValue()));
3287  }
3288  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3289    return GetBlock()->GetGraph()->GetLongConstant(Compute(x->GetValue(), y->GetValue()));
3290  }
3291
3292  DECLARE_INSTRUCTION(Add);
3293
3294 private:
3295  DISALLOW_COPY_AND_ASSIGN(HAdd);
3296};
3297
3298class HSub : public HBinaryOperation {
3299 public:
3300  HSub(Primitive::Type result_type, HInstruction* left, HInstruction* right)
3301      : HBinaryOperation(result_type, left, right) {}
3302
3303  template <typename T> T Compute(T x, T y) const { return x - y; }
3304
3305  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3306    return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue(), y->GetValue()));
3307  }
3308  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3309    return GetBlock()->GetGraph()->GetLongConstant(Compute(x->GetValue(), y->GetValue()));
3310  }
3311
3312  DECLARE_INSTRUCTION(Sub);
3313
3314 private:
3315  DISALLOW_COPY_AND_ASSIGN(HSub);
3316};
3317
3318class HMul : public HBinaryOperation {
3319 public:
3320  HMul(Primitive::Type result_type, HInstruction* left, HInstruction* right)
3321      : HBinaryOperation(result_type, left, right) {}
3322
3323  bool IsCommutative() const OVERRIDE { return true; }
3324
3325  template <typename T> T Compute(T x, T y) const { return x * y; }
3326
3327  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3328    return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue(), y->GetValue()));
3329  }
3330  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3331    return GetBlock()->GetGraph()->GetLongConstant(Compute(x->GetValue(), y->GetValue()));
3332  }
3333
3334  DECLARE_INSTRUCTION(Mul);
3335
3336 private:
3337  DISALLOW_COPY_AND_ASSIGN(HMul);
3338};
3339
3340class HDiv : public HBinaryOperation {
3341 public:
3342  HDiv(Primitive::Type result_type, HInstruction* left, HInstruction* right, uint32_t dex_pc)
3343      : HBinaryOperation(result_type, left, right, SideEffectsForArchRuntimeCalls()),
3344        dex_pc_(dex_pc) {}
3345
3346  template <typename T>
3347  T Compute(T x, T y) const {
3348    // Our graph structure ensures we never have 0 for `y` during
3349    // constant folding.
3350    DCHECK_NE(y, 0);
3351    // Special case -1 to avoid getting a SIGFPE on x86(_64).
3352    return (y == -1) ? -x : x / y;
3353  }
3354
3355  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3356    return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue(), y->GetValue()));
3357  }
3358  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3359    return GetBlock()->GetGraph()->GetLongConstant(Compute(x->GetValue(), y->GetValue()));
3360  }
3361
3362  uint32_t GetDexPc() const OVERRIDE { return dex_pc_; }
3363
3364  static SideEffects SideEffectsForArchRuntimeCalls() {
3365    // The generated code can use a runtime call.
3366    return SideEffects::CanTriggerGC();
3367  }
3368
3369  DECLARE_INSTRUCTION(Div);
3370
3371 private:
3372  const uint32_t dex_pc_;
3373
3374  DISALLOW_COPY_AND_ASSIGN(HDiv);
3375};
3376
3377class HRem : public HBinaryOperation {
3378 public:
3379  HRem(Primitive::Type result_type, HInstruction* left, HInstruction* right, uint32_t dex_pc)
3380      : HBinaryOperation(result_type, left, right, SideEffectsForArchRuntimeCalls()),
3381        dex_pc_(dex_pc) {}
3382
3383  template <typename T>
3384  T Compute(T x, T y) const {
3385    // Our graph structure ensures we never have 0 for `y` during
3386    // constant folding.
3387    DCHECK_NE(y, 0);
3388    // Special case -1 to avoid getting a SIGFPE on x86(_64).
3389    return (y == -1) ? 0 : x % y;
3390  }
3391
3392  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3393    return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue(), y->GetValue()));
3394  }
3395  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3396    return GetBlock()->GetGraph()->GetLongConstant(Compute(x->GetValue(), y->GetValue()));
3397  }
3398
3399  uint32_t GetDexPc() const OVERRIDE { return dex_pc_; }
3400
3401  static SideEffects SideEffectsForArchRuntimeCalls() {
3402    return SideEffects::CanTriggerGC();
3403  }
3404
3405  DECLARE_INSTRUCTION(Rem);
3406
3407 private:
3408  const uint32_t dex_pc_;
3409
3410  DISALLOW_COPY_AND_ASSIGN(HRem);
3411};
3412
3413class HDivZeroCheck : public HExpression<1> {
3414 public:
3415  HDivZeroCheck(HInstruction* value, uint32_t dex_pc)
3416      : HExpression(value->GetType(), SideEffects::None()), dex_pc_(dex_pc) {
3417    SetRawInputAt(0, value);
3418  }
3419
3420  Primitive::Type GetType() const OVERRIDE { return InputAt(0)->GetType(); }
3421
3422  bool CanBeMoved() const OVERRIDE { return true; }
3423
3424  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
3425    UNUSED(other);
3426    return true;
3427  }
3428
3429  bool NeedsEnvironment() const OVERRIDE { return true; }
3430  bool CanThrow() const OVERRIDE { return true; }
3431
3432  uint32_t GetDexPc() const OVERRIDE { return dex_pc_; }
3433
3434  DECLARE_INSTRUCTION(DivZeroCheck);
3435
3436 private:
3437  const uint32_t dex_pc_;
3438
3439  DISALLOW_COPY_AND_ASSIGN(HDivZeroCheck);
3440};
3441
3442class HShl : public HBinaryOperation {
3443 public:
3444  HShl(Primitive::Type result_type, HInstruction* left, HInstruction* right)
3445      : HBinaryOperation(result_type, left, right) {}
3446
3447  template <typename T, typename U, typename V>
3448  T Compute(T x, U y, V max_shift_value) const {
3449    static_assert(std::is_same<V, typename std::make_unsigned<T>::type>::value,
3450                  "V is not the unsigned integer type corresponding to T");
3451    return x << (y & max_shift_value);
3452  }
3453
3454  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3455    return GetBlock()->GetGraph()->GetIntConstant(
3456        Compute(x->GetValue(), y->GetValue(), kMaxIntShiftValue));
3457  }
3458  // There is no `Evaluate(HIntConstant* x, HLongConstant* y)`, as this
3459  // case is handled as `x << static_cast<int>(y)`.
3460  HConstant* Evaluate(HLongConstant* x, HIntConstant* y) const OVERRIDE {
3461    return GetBlock()->GetGraph()->GetLongConstant(
3462        Compute(x->GetValue(), y->GetValue(), kMaxLongShiftValue));
3463  }
3464  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3465    return GetBlock()->GetGraph()->GetLongConstant(
3466        Compute(x->GetValue(), y->GetValue(), kMaxLongShiftValue));
3467  }
3468
3469  DECLARE_INSTRUCTION(Shl);
3470
3471 private:
3472  DISALLOW_COPY_AND_ASSIGN(HShl);
3473};
3474
3475class HShr : public HBinaryOperation {
3476 public:
3477  HShr(Primitive::Type result_type, HInstruction* left, HInstruction* right)
3478      : HBinaryOperation(result_type, left, right) {}
3479
3480  template <typename T, typename U, typename V>
3481  T Compute(T x, U y, V max_shift_value) const {
3482    static_assert(std::is_same<V, typename std::make_unsigned<T>::type>::value,
3483                  "V is not the unsigned integer type corresponding to T");
3484    return x >> (y & max_shift_value);
3485  }
3486
3487  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3488    return GetBlock()->GetGraph()->GetIntConstant(
3489        Compute(x->GetValue(), y->GetValue(), kMaxIntShiftValue));
3490  }
3491  // There is no `Evaluate(HIntConstant* x, HLongConstant* y)`, as this
3492  // case is handled as `x >> static_cast<int>(y)`.
3493  HConstant* Evaluate(HLongConstant* x, HIntConstant* y) const OVERRIDE {
3494    return GetBlock()->GetGraph()->GetLongConstant(
3495        Compute(x->GetValue(), y->GetValue(), kMaxLongShiftValue));
3496  }
3497  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3498    return GetBlock()->GetGraph()->GetLongConstant(
3499        Compute(x->GetValue(), y->GetValue(), kMaxLongShiftValue));
3500  }
3501
3502  DECLARE_INSTRUCTION(Shr);
3503
3504 private:
3505  DISALLOW_COPY_AND_ASSIGN(HShr);
3506};
3507
3508class HUShr : public HBinaryOperation {
3509 public:
3510  HUShr(Primitive::Type result_type, HInstruction* left, HInstruction* right)
3511      : HBinaryOperation(result_type, left, right) {}
3512
3513  template <typename T, typename U, typename V>
3514  T Compute(T x, U y, V max_shift_value) const {
3515    static_assert(std::is_same<V, typename std::make_unsigned<T>::type>::value,
3516                  "V is not the unsigned integer type corresponding to T");
3517    V ux = static_cast<V>(x);
3518    return static_cast<T>(ux >> (y & max_shift_value));
3519  }
3520
3521  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3522    return GetBlock()->GetGraph()->GetIntConstant(
3523        Compute(x->GetValue(), y->GetValue(), kMaxIntShiftValue));
3524  }
3525  // There is no `Evaluate(HIntConstant* x, HLongConstant* y)`, as this
3526  // case is handled as `x >>> static_cast<int>(y)`.
3527  HConstant* Evaluate(HLongConstant* x, HIntConstant* y) const OVERRIDE {
3528    return GetBlock()->GetGraph()->GetLongConstant(
3529        Compute(x->GetValue(), y->GetValue(), kMaxLongShiftValue));
3530  }
3531  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3532    return GetBlock()->GetGraph()->GetLongConstant(
3533        Compute(x->GetValue(), y->GetValue(), kMaxLongShiftValue));
3534  }
3535
3536  DECLARE_INSTRUCTION(UShr);
3537
3538 private:
3539  DISALLOW_COPY_AND_ASSIGN(HUShr);
3540};
3541
3542class HAnd : public HBinaryOperation {
3543 public:
3544  HAnd(Primitive::Type result_type, HInstruction* left, HInstruction* right)
3545      : HBinaryOperation(result_type, left, right) {}
3546
3547  bool IsCommutative() const OVERRIDE { return true; }
3548
3549  template <typename T, typename U>
3550  auto Compute(T x, U y) const -> decltype(x & y) { return x & y; }
3551
3552  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3553    return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue(), y->GetValue()));
3554  }
3555  HConstant* Evaluate(HIntConstant* x, HLongConstant* y) const OVERRIDE {
3556    return GetBlock()->GetGraph()->GetLongConstant(Compute(x->GetValue(), y->GetValue()));
3557  }
3558  HConstant* Evaluate(HLongConstant* x, HIntConstant* y) const OVERRIDE {
3559    return GetBlock()->GetGraph()->GetLongConstant(Compute(x->GetValue(), y->GetValue()));
3560  }
3561  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3562    return GetBlock()->GetGraph()->GetLongConstant(Compute(x->GetValue(), y->GetValue()));
3563  }
3564
3565  DECLARE_INSTRUCTION(And);
3566
3567 private:
3568  DISALLOW_COPY_AND_ASSIGN(HAnd);
3569};
3570
3571class HOr : public HBinaryOperation {
3572 public:
3573  HOr(Primitive::Type result_type, HInstruction* left, HInstruction* right)
3574      : HBinaryOperation(result_type, left, right) {}
3575
3576  bool IsCommutative() const OVERRIDE { return true; }
3577
3578  template <typename T, typename U>
3579  auto Compute(T x, U y) const -> decltype(x | y) { return x | y; }
3580
3581  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3582    return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue(), y->GetValue()));
3583  }
3584  HConstant* Evaluate(HIntConstant* x, HLongConstant* y) const OVERRIDE {
3585    return GetBlock()->GetGraph()->GetLongConstant(Compute(x->GetValue(), y->GetValue()));
3586  }
3587  HConstant* Evaluate(HLongConstant* x, HIntConstant* y) const OVERRIDE {
3588    return GetBlock()->GetGraph()->GetLongConstant(Compute(x->GetValue(), y->GetValue()));
3589  }
3590  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3591    return GetBlock()->GetGraph()->GetLongConstant(Compute(x->GetValue(), y->GetValue()));
3592  }
3593
3594  DECLARE_INSTRUCTION(Or);
3595
3596 private:
3597  DISALLOW_COPY_AND_ASSIGN(HOr);
3598};
3599
3600class HXor : public HBinaryOperation {
3601 public:
3602  HXor(Primitive::Type result_type, HInstruction* left, HInstruction* right)
3603      : HBinaryOperation(result_type, left, right) {}
3604
3605  bool IsCommutative() const OVERRIDE { return true; }
3606
3607  template <typename T, typename U>
3608  auto Compute(T x, U y) const -> decltype(x ^ y) { return x ^ y; }
3609
3610  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3611    return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue(), y->GetValue()));
3612  }
3613  HConstant* Evaluate(HIntConstant* x, HLongConstant* y) const OVERRIDE {
3614    return GetBlock()->GetGraph()->GetLongConstant(Compute(x->GetValue(), y->GetValue()));
3615  }
3616  HConstant* Evaluate(HLongConstant* x, HIntConstant* y) const OVERRIDE {
3617    return GetBlock()->GetGraph()->GetLongConstant(Compute(x->GetValue(), y->GetValue()));
3618  }
3619  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3620    return GetBlock()->GetGraph()->GetLongConstant(Compute(x->GetValue(), y->GetValue()));
3621  }
3622
3623  DECLARE_INSTRUCTION(Xor);
3624
3625 private:
3626  DISALLOW_COPY_AND_ASSIGN(HXor);
3627};
3628
3629// The value of a parameter in this method. Its location depends on
3630// the calling convention.
3631class HParameterValue : public HExpression<0> {
3632 public:
3633  HParameterValue(uint8_t index, Primitive::Type parameter_type, bool is_this = false)
3634      : HExpression(parameter_type, SideEffects::None()), index_(index), is_this_(is_this) {}
3635
3636  uint8_t GetIndex() const { return index_; }
3637
3638  bool CanBeNull() const OVERRIDE { return !is_this_; }
3639
3640  bool IsThis() const { return is_this_; }
3641
3642  DECLARE_INSTRUCTION(ParameterValue);
3643
3644 private:
3645  // The index of this parameter in the parameters list. Must be less
3646  // than HGraph::number_of_in_vregs_.
3647  const uint8_t index_;
3648
3649  // Whether or not the parameter value corresponds to 'this' argument.
3650  const bool is_this_;
3651
3652  DISALLOW_COPY_AND_ASSIGN(HParameterValue);
3653};
3654
3655class HNot : public HUnaryOperation {
3656 public:
3657  explicit HNot(Primitive::Type result_type, HInstruction* input)
3658      : HUnaryOperation(result_type, input) {}
3659
3660  bool CanBeMoved() const OVERRIDE { return true; }
3661  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
3662    UNUSED(other);
3663    return true;
3664  }
3665
3666  template <typename T> T Compute(T x) const { return ~x; }
3667
3668  HConstant* Evaluate(HIntConstant* x) const OVERRIDE {
3669    return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue()));
3670  }
3671  HConstant* Evaluate(HLongConstant* x) const OVERRIDE {
3672    return GetBlock()->GetGraph()->GetLongConstant(Compute(x->GetValue()));
3673  }
3674
3675  DECLARE_INSTRUCTION(Not);
3676
3677 private:
3678  DISALLOW_COPY_AND_ASSIGN(HNot);
3679};
3680
3681class HBooleanNot : public HUnaryOperation {
3682 public:
3683  explicit HBooleanNot(HInstruction* input)
3684      : HUnaryOperation(Primitive::Type::kPrimBoolean, input) {}
3685
3686  bool CanBeMoved() const OVERRIDE { return true; }
3687  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
3688    UNUSED(other);
3689    return true;
3690  }
3691
3692  template <typename T> bool Compute(T x) const {
3693    DCHECK(IsUint<1>(x));
3694    return !x;
3695  }
3696
3697  HConstant* Evaluate(HIntConstant* x) const OVERRIDE {
3698    return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue()));
3699  }
3700  HConstant* Evaluate(HLongConstant* x ATTRIBUTE_UNUSED) const OVERRIDE {
3701    LOG(FATAL) << DebugName() << " is not defined for long values";
3702    UNREACHABLE();
3703  }
3704
3705  DECLARE_INSTRUCTION(BooleanNot);
3706
3707 private:
3708  DISALLOW_COPY_AND_ASSIGN(HBooleanNot);
3709};
3710
3711class HTypeConversion : public HExpression<1> {
3712 public:
3713  // Instantiate a type conversion of `input` to `result_type`.
3714  HTypeConversion(Primitive::Type result_type, HInstruction* input, uint32_t dex_pc)
3715      : HExpression(result_type, SideEffectsForArchRuntimeCalls(input->GetType(), result_type)),
3716        dex_pc_(dex_pc) {
3717    SetRawInputAt(0, input);
3718    DCHECK_NE(input->GetType(), result_type);
3719  }
3720
3721  HInstruction* GetInput() const { return InputAt(0); }
3722  Primitive::Type GetInputType() const { return GetInput()->GetType(); }
3723  Primitive::Type GetResultType() const { return GetType(); }
3724
3725  // Required by the x86 and ARM code generators when producing calls
3726  // to the runtime.
3727  uint32_t GetDexPc() const OVERRIDE { return dex_pc_; }
3728
3729  bool CanBeMoved() const OVERRIDE { return true; }
3730  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE { return true; }
3731
3732  // Try to statically evaluate the conversion and return a HConstant
3733  // containing the result.  If the input cannot be converted, return nullptr.
3734  HConstant* TryStaticEvaluation() const;
3735
3736  static SideEffects SideEffectsForArchRuntimeCalls(Primitive::Type input_type,
3737                                                    Primitive::Type result_type) {
3738    // Some architectures may not require the 'GC' side effects, but at this point
3739    // in the compilation process we do not know what architecture we will
3740    // generate code for, so we must be conservative.
3741    if (((input_type == Primitive::kPrimFloat || input_type == Primitive::kPrimDouble)
3742         && result_type == Primitive::kPrimLong)
3743        || (input_type == Primitive::kPrimLong && result_type == Primitive::kPrimFloat)) {
3744      return SideEffects::CanTriggerGC();
3745    }
3746    return SideEffects::None();
3747  }
3748
3749  DECLARE_INSTRUCTION(TypeConversion);
3750
3751 private:
3752  const uint32_t dex_pc_;
3753
3754  DISALLOW_COPY_AND_ASSIGN(HTypeConversion);
3755};
3756
3757static constexpr uint32_t kNoRegNumber = -1;
3758
3759class HPhi : public HInstruction {
3760 public:
3761  HPhi(ArenaAllocator* arena, uint32_t reg_number, size_t number_of_inputs, Primitive::Type type)
3762      : HInstruction(SideEffects::None()),
3763        inputs_(arena, number_of_inputs),
3764        reg_number_(reg_number),
3765        type_(type),
3766        is_live_(false),
3767        can_be_null_(true) {
3768    inputs_.SetSize(number_of_inputs);
3769  }
3770
3771  // Returns a type equivalent to the given `type`, but that a `HPhi` can hold.
3772  static Primitive::Type ToPhiType(Primitive::Type type) {
3773    switch (type) {
3774      case Primitive::kPrimBoolean:
3775      case Primitive::kPrimByte:
3776      case Primitive::kPrimShort:
3777      case Primitive::kPrimChar:
3778        return Primitive::kPrimInt;
3779      default:
3780        return type;
3781    }
3782  }
3783
3784  bool IsCatchPhi() const { return GetBlock()->IsCatchBlock(); }
3785
3786  size_t InputCount() const OVERRIDE { return inputs_.Size(); }
3787
3788  void AddInput(HInstruction* input);
3789  void RemoveInputAt(size_t index);
3790
3791  Primitive::Type GetType() const OVERRIDE { return type_; }
3792  void SetType(Primitive::Type type) { type_ = type; }
3793
3794  bool CanBeNull() const OVERRIDE { return can_be_null_; }
3795  void SetCanBeNull(bool can_be_null) { can_be_null_ = can_be_null; }
3796
3797  uint32_t GetRegNumber() const { return reg_number_; }
3798
3799  void SetDead() { is_live_ = false; }
3800  void SetLive() { is_live_ = true; }
3801  bool IsDead() const { return !is_live_; }
3802  bool IsLive() const { return is_live_; }
3803
3804  // Returns the next equivalent phi (starting from the current one) or null if there is none.
3805  // An equivalent phi is a phi having the same dex register and type.
3806  // It assumes that phis with the same dex register are adjacent.
3807  HPhi* GetNextEquivalentPhiWithSameType() {
3808    HInstruction* next = GetNext();
3809    while (next != nullptr && next->AsPhi()->GetRegNumber() == reg_number_) {
3810      if (next->GetType() == GetType()) {
3811        return next->AsPhi();
3812      }
3813      next = next->GetNext();
3814    }
3815    return nullptr;
3816  }
3817
3818  DECLARE_INSTRUCTION(Phi);
3819
3820 protected:
3821  const HUserRecord<HInstruction*> InputRecordAt(size_t i) const OVERRIDE { return inputs_.Get(i); }
3822
3823  void SetRawInputRecordAt(size_t index, const HUserRecord<HInstruction*>& input) OVERRIDE {
3824    inputs_.Put(index, input);
3825  }
3826
3827 private:
3828  GrowableArray<HUserRecord<HInstruction*> > inputs_;
3829  const uint32_t reg_number_;
3830  Primitive::Type type_;
3831  bool is_live_;
3832  bool can_be_null_;
3833
3834  DISALLOW_COPY_AND_ASSIGN(HPhi);
3835};
3836
3837class HNullCheck : public HExpression<1> {
3838 public:
3839  HNullCheck(HInstruction* value, uint32_t dex_pc)
3840      : HExpression(value->GetType(), SideEffects::None()), dex_pc_(dex_pc) {
3841    SetRawInputAt(0, value);
3842  }
3843
3844  bool CanBeMoved() const OVERRIDE { return true; }
3845  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
3846    UNUSED(other);
3847    return true;
3848  }
3849
3850  bool NeedsEnvironment() const OVERRIDE { return true; }
3851
3852  bool CanThrow() const OVERRIDE { return true; }
3853
3854  bool CanBeNull() const OVERRIDE { return false; }
3855
3856  uint32_t GetDexPc() const OVERRIDE { return dex_pc_; }
3857
3858  DECLARE_INSTRUCTION(NullCheck);
3859
3860 private:
3861  const uint32_t dex_pc_;
3862
3863  DISALLOW_COPY_AND_ASSIGN(HNullCheck);
3864};
3865
3866class FieldInfo : public ValueObject {
3867 public:
3868  FieldInfo(MemberOffset field_offset,
3869            Primitive::Type field_type,
3870            bool is_volatile,
3871            uint32_t index,
3872            const DexFile& dex_file)
3873      : field_offset_(field_offset),
3874        field_type_(field_type),
3875        is_volatile_(is_volatile),
3876        index_(index),
3877        dex_file_(dex_file) {}
3878
3879  MemberOffset GetFieldOffset() const { return field_offset_; }
3880  Primitive::Type GetFieldType() const { return field_type_; }
3881  uint32_t GetFieldIndex() const { return index_; }
3882  const DexFile& GetDexFile() const { return dex_file_; }
3883  bool IsVolatile() const { return is_volatile_; }
3884
3885 private:
3886  const MemberOffset field_offset_;
3887  const Primitive::Type field_type_;
3888  const bool is_volatile_;
3889  uint32_t index_;
3890  const DexFile& dex_file_;
3891};
3892
3893class HInstanceFieldGet : public HExpression<1> {
3894 public:
3895  HInstanceFieldGet(HInstruction* value,
3896                    Primitive::Type field_type,
3897                    MemberOffset field_offset,
3898                    bool is_volatile,
3899                    uint32_t field_idx,
3900                    const DexFile& dex_file)
3901      : HExpression(
3902            field_type,
3903            SideEffects::FieldReadOfType(field_type, is_volatile)),
3904        field_info_(field_offset, field_type, is_volatile, field_idx, dex_file) {
3905    SetRawInputAt(0, value);
3906  }
3907
3908  bool CanBeMoved() const OVERRIDE { return !IsVolatile(); }
3909
3910  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
3911    HInstanceFieldGet* other_get = other->AsInstanceFieldGet();
3912    return GetFieldOffset().SizeValue() == other_get->GetFieldOffset().SizeValue();
3913  }
3914
3915  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
3916    return (obj == InputAt(0)) && GetFieldOffset().Uint32Value() < kPageSize;
3917  }
3918
3919  size_t ComputeHashCode() const OVERRIDE {
3920    return (HInstruction::ComputeHashCode() << 7) | GetFieldOffset().SizeValue();
3921  }
3922
3923  const FieldInfo& GetFieldInfo() const { return field_info_; }
3924  MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
3925  Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); }
3926  bool IsVolatile() const { return field_info_.IsVolatile(); }
3927
3928  DECLARE_INSTRUCTION(InstanceFieldGet);
3929
3930 private:
3931  const FieldInfo field_info_;
3932
3933  DISALLOW_COPY_AND_ASSIGN(HInstanceFieldGet);
3934};
3935
3936class HInstanceFieldSet : public HTemplateInstruction<2> {
3937 public:
3938  HInstanceFieldSet(HInstruction* object,
3939                    HInstruction* value,
3940                    Primitive::Type field_type,
3941                    MemberOffset field_offset,
3942                    bool is_volatile,
3943                    uint32_t field_idx,
3944                    const DexFile& dex_file)
3945      : HTemplateInstruction(
3946          SideEffects::FieldWriteOfType(field_type, is_volatile)),
3947        field_info_(field_offset, field_type, is_volatile, field_idx, dex_file),
3948        value_can_be_null_(true) {
3949    SetRawInputAt(0, object);
3950    SetRawInputAt(1, value);
3951  }
3952
3953  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
3954    return (obj == InputAt(0)) && GetFieldOffset().Uint32Value() < kPageSize;
3955  }
3956
3957  const FieldInfo& GetFieldInfo() const { return field_info_; }
3958  MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
3959  Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); }
3960  bool IsVolatile() const { return field_info_.IsVolatile(); }
3961  HInstruction* GetValue() const { return InputAt(1); }
3962  bool GetValueCanBeNull() const { return value_can_be_null_; }
3963  void ClearValueCanBeNull() { value_can_be_null_ = false; }
3964
3965  DECLARE_INSTRUCTION(InstanceFieldSet);
3966
3967 private:
3968  const FieldInfo field_info_;
3969  bool value_can_be_null_;
3970
3971  DISALLOW_COPY_AND_ASSIGN(HInstanceFieldSet);
3972};
3973
3974class HArrayGet : public HExpression<2> {
3975 public:
3976  HArrayGet(HInstruction* array, HInstruction* index, Primitive::Type type)
3977      : HExpression(type, SideEffects::ArrayReadOfType(type)) {
3978    SetRawInputAt(0, array);
3979    SetRawInputAt(1, index);
3980  }
3981
3982  bool CanBeMoved() const OVERRIDE { return true; }
3983  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
3984    UNUSED(other);
3985    return true;
3986  }
3987  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
3988    UNUSED(obj);
3989    // TODO: We can be smarter here.
3990    // Currently, the array access is always preceded by an ArrayLength or a NullCheck
3991    // which generates the implicit null check. There are cases when these can be removed
3992    // to produce better code. If we ever add optimizations to do so we should allow an
3993    // implicit check here (as long as the address falls in the first page).
3994    return false;
3995  }
3996
3997  void SetType(Primitive::Type type) { type_ = type; }
3998
3999  HInstruction* GetArray() const { return InputAt(0); }
4000  HInstruction* GetIndex() const { return InputAt(1); }
4001
4002  DECLARE_INSTRUCTION(ArrayGet);
4003
4004 private:
4005  DISALLOW_COPY_AND_ASSIGN(HArrayGet);
4006};
4007
4008class HArraySet : public HTemplateInstruction<3> {
4009 public:
4010  HArraySet(HInstruction* array,
4011            HInstruction* index,
4012            HInstruction* value,
4013            Primitive::Type expected_component_type,
4014            uint32_t dex_pc)
4015      : HTemplateInstruction(
4016            SideEffects::ArrayWriteOfType(expected_component_type).Union(
4017                SideEffectsForArchRuntimeCalls(value->GetType()))),
4018        dex_pc_(dex_pc),
4019        expected_component_type_(expected_component_type),
4020        needs_type_check_(value->GetType() == Primitive::kPrimNot),
4021        value_can_be_null_(true) {
4022    SetRawInputAt(0, array);
4023    SetRawInputAt(1, index);
4024    SetRawInputAt(2, value);
4025  }
4026
4027  bool NeedsEnvironment() const OVERRIDE {
4028    // We currently always call a runtime method to catch array store
4029    // exceptions.
4030    return needs_type_check_;
4031  }
4032
4033  // Can throw ArrayStoreException.
4034  bool CanThrow() const OVERRIDE { return needs_type_check_; }
4035
4036  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
4037    UNUSED(obj);
4038    // TODO: Same as for ArrayGet.
4039    return false;
4040  }
4041
4042  void ClearNeedsTypeCheck() {
4043    needs_type_check_ = false;
4044  }
4045
4046  void ClearValueCanBeNull() {
4047    value_can_be_null_ = false;
4048  }
4049
4050  bool GetValueCanBeNull() const { return value_can_be_null_; }
4051  bool NeedsTypeCheck() const { return needs_type_check_; }
4052
4053  uint32_t GetDexPc() const OVERRIDE { return dex_pc_; }
4054
4055  HInstruction* GetArray() const { return InputAt(0); }
4056  HInstruction* GetIndex() const { return InputAt(1); }
4057  HInstruction* GetValue() const { return InputAt(2); }
4058
4059  Primitive::Type GetComponentType() const {
4060    // The Dex format does not type floating point index operations. Since the
4061    // `expected_component_type_` is set during building and can therefore not
4062    // be correct, we also check what is the value type. If it is a floating
4063    // point type, we must use that type.
4064    Primitive::Type value_type = GetValue()->GetType();
4065    return ((value_type == Primitive::kPrimFloat) || (value_type == Primitive::kPrimDouble))
4066        ? value_type
4067        : expected_component_type_;
4068  }
4069
4070  static SideEffects SideEffectsForArchRuntimeCalls(Primitive::Type value_type) {
4071    return (value_type == Primitive::kPrimNot) ? SideEffects::CanTriggerGC() : SideEffects::None();
4072  }
4073
4074  DECLARE_INSTRUCTION(ArraySet);
4075
4076 private:
4077  const uint32_t dex_pc_;
4078  const Primitive::Type expected_component_type_;
4079  bool needs_type_check_;
4080  bool value_can_be_null_;
4081
4082  DISALLOW_COPY_AND_ASSIGN(HArraySet);
4083};
4084
4085class HArrayLength : public HExpression<1> {
4086 public:
4087  explicit HArrayLength(HInstruction* array)
4088      : HExpression(Primitive::kPrimInt, SideEffects::None()) {
4089    // Note that arrays do not change length, so the instruction does not
4090    // depend on any write.
4091    SetRawInputAt(0, array);
4092  }
4093
4094  bool CanBeMoved() const OVERRIDE { return true; }
4095  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
4096    UNUSED(other);
4097    return true;
4098  }
4099  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
4100    return obj == InputAt(0);
4101  }
4102
4103  DECLARE_INSTRUCTION(ArrayLength);
4104
4105 private:
4106  DISALLOW_COPY_AND_ASSIGN(HArrayLength);
4107};
4108
4109class HBoundsCheck : public HExpression<2> {
4110 public:
4111  HBoundsCheck(HInstruction* index, HInstruction* length, uint32_t dex_pc)
4112      : HExpression(index->GetType(), SideEffects::None()), dex_pc_(dex_pc) {
4113    DCHECK(index->GetType() == Primitive::kPrimInt);
4114    SetRawInputAt(0, index);
4115    SetRawInputAt(1, length);
4116  }
4117
4118  bool CanBeMoved() const OVERRIDE { return true; }
4119  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
4120    UNUSED(other);
4121    return true;
4122  }
4123
4124  bool NeedsEnvironment() const OVERRIDE { return true; }
4125
4126  bool CanThrow() const OVERRIDE { return true; }
4127
4128  uint32_t GetDexPc() const OVERRIDE { return dex_pc_; }
4129
4130  DECLARE_INSTRUCTION(BoundsCheck);
4131
4132 private:
4133  const uint32_t dex_pc_;
4134
4135  DISALLOW_COPY_AND_ASSIGN(HBoundsCheck);
4136};
4137
4138/**
4139 * Some DEX instructions are folded into multiple HInstructions that need
4140 * to stay live until the last HInstruction. This class
4141 * is used as a marker for the baseline compiler to ensure its preceding
4142 * HInstruction stays live. `index` represents the stack location index of the
4143 * instruction (the actual offset is computed as index * vreg_size).
4144 */
4145class HTemporary : public HTemplateInstruction<0> {
4146 public:
4147  explicit HTemporary(size_t index) : HTemplateInstruction(SideEffects::None()), index_(index) {}
4148
4149  size_t GetIndex() const { return index_; }
4150
4151  Primitive::Type GetType() const OVERRIDE {
4152    // The previous instruction is the one that will be stored in the temporary location.
4153    DCHECK(GetPrevious() != nullptr);
4154    return GetPrevious()->GetType();
4155  }
4156
4157  DECLARE_INSTRUCTION(Temporary);
4158
4159 private:
4160  const size_t index_;
4161
4162  DISALLOW_COPY_AND_ASSIGN(HTemporary);
4163};
4164
4165class HSuspendCheck : public HTemplateInstruction<0> {
4166 public:
4167  explicit HSuspendCheck(uint32_t dex_pc)
4168      : HTemplateInstruction(SideEffects::CanTriggerGC()), dex_pc_(dex_pc), slow_path_(nullptr) {}
4169
4170  bool NeedsEnvironment() const OVERRIDE {
4171    return true;
4172  }
4173
4174  uint32_t GetDexPc() const OVERRIDE { return dex_pc_; }
4175  void SetSlowPath(SlowPathCode* slow_path) { slow_path_ = slow_path; }
4176  SlowPathCode* GetSlowPath() const { return slow_path_; }
4177
4178  DECLARE_INSTRUCTION(SuspendCheck);
4179
4180 private:
4181  const uint32_t dex_pc_;
4182
4183  // Only used for code generation, in order to share the same slow path between back edges
4184  // of a same loop.
4185  SlowPathCode* slow_path_;
4186
4187  DISALLOW_COPY_AND_ASSIGN(HSuspendCheck);
4188};
4189
4190/**
4191 * Instruction to load a Class object.
4192 */
4193class HLoadClass : public HExpression<1> {
4194 public:
4195  HLoadClass(HCurrentMethod* current_method,
4196             uint16_t type_index,
4197             const DexFile& dex_file,
4198             bool is_referrers_class,
4199             uint32_t dex_pc)
4200      : HExpression(Primitive::kPrimNot, SideEffectsForArchRuntimeCalls()),
4201        type_index_(type_index),
4202        dex_file_(dex_file),
4203        is_referrers_class_(is_referrers_class),
4204        dex_pc_(dex_pc),
4205        generate_clinit_check_(false),
4206        loaded_class_rti_(ReferenceTypeInfo::CreateInvalid()) {
4207    SetRawInputAt(0, current_method);
4208  }
4209
4210  bool CanBeMoved() const OVERRIDE { return true; }
4211
4212  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
4213    return other->AsLoadClass()->type_index_ == type_index_;
4214  }
4215
4216  size_t ComputeHashCode() const OVERRIDE { return type_index_; }
4217
4218  uint32_t GetDexPc() const OVERRIDE { return dex_pc_; }
4219  uint16_t GetTypeIndex() const { return type_index_; }
4220  bool IsReferrersClass() const { return is_referrers_class_; }
4221  bool CanBeNull() const OVERRIDE { return false; }
4222
4223  bool NeedsEnvironment() const OVERRIDE {
4224    // Will call runtime and load the class if the class is not loaded yet.
4225    // TODO: finer grain decision.
4226    return !is_referrers_class_;
4227  }
4228
4229  bool MustGenerateClinitCheck() const {
4230    return generate_clinit_check_;
4231  }
4232
4233  void SetMustGenerateClinitCheck(bool generate_clinit_check) {
4234    generate_clinit_check_ = generate_clinit_check;
4235  }
4236
4237  bool CanCallRuntime() const {
4238    return MustGenerateClinitCheck() || !is_referrers_class_;
4239  }
4240
4241  bool CanThrow() const OVERRIDE {
4242    // May call runtime and and therefore can throw.
4243    // TODO: finer grain decision.
4244    return CanCallRuntime();
4245  }
4246
4247  ReferenceTypeInfo GetLoadedClassRTI() {
4248    return loaded_class_rti_;
4249  }
4250
4251  void SetLoadedClassRTI(ReferenceTypeInfo rti) {
4252    // Make sure we only set exact types (the loaded class should never be merged).
4253    DCHECK(rti.IsExact());
4254    loaded_class_rti_ = rti;
4255  }
4256
4257  const DexFile& GetDexFile() { return dex_file_; }
4258
4259  bool NeedsDexCache() const OVERRIDE { return !is_referrers_class_; }
4260
4261  static SideEffects SideEffectsForArchRuntimeCalls() {
4262    return SideEffects::CanTriggerGC();
4263  }
4264
4265  DECLARE_INSTRUCTION(LoadClass);
4266
4267 private:
4268  const uint16_t type_index_;
4269  const DexFile& dex_file_;
4270  const bool is_referrers_class_;
4271  const uint32_t dex_pc_;
4272  // Whether this instruction must generate the initialization check.
4273  // Used for code generation.
4274  bool generate_clinit_check_;
4275
4276  ReferenceTypeInfo loaded_class_rti_;
4277
4278  DISALLOW_COPY_AND_ASSIGN(HLoadClass);
4279};
4280
4281class HLoadString : public HExpression<1> {
4282 public:
4283  HLoadString(HCurrentMethod* current_method, uint32_t string_index, uint32_t dex_pc)
4284      : HExpression(Primitive::kPrimNot, SideEffectsForArchRuntimeCalls()),
4285        string_index_(string_index),
4286        dex_pc_(dex_pc) {
4287    SetRawInputAt(0, current_method);
4288  }
4289
4290  bool CanBeMoved() const OVERRIDE { return true; }
4291
4292  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
4293    return other->AsLoadString()->string_index_ == string_index_;
4294  }
4295
4296  size_t ComputeHashCode() const OVERRIDE { return string_index_; }
4297
4298  uint32_t GetDexPc() const OVERRIDE { return dex_pc_; }
4299  uint32_t GetStringIndex() const { return string_index_; }
4300
4301  // TODO: Can we deopt or debug when we resolve a string?
4302  bool NeedsEnvironment() const OVERRIDE { return false; }
4303  bool NeedsDexCache() const OVERRIDE { return true; }
4304
4305  static SideEffects SideEffectsForArchRuntimeCalls() {
4306    return SideEffects::CanTriggerGC();
4307  }
4308
4309  DECLARE_INSTRUCTION(LoadString);
4310
4311 private:
4312  const uint32_t string_index_;
4313  const uint32_t dex_pc_;
4314
4315  DISALLOW_COPY_AND_ASSIGN(HLoadString);
4316};
4317
4318/**
4319 * Performs an initialization check on its Class object input.
4320 */
4321class HClinitCheck : public HExpression<1> {
4322 public:
4323  explicit HClinitCheck(HLoadClass* constant, uint32_t dex_pc)
4324      : HExpression(
4325            Primitive::kPrimNot,
4326            SideEffects::AllChanges()),  // Assume write/read on all fields/arrays.
4327        dex_pc_(dex_pc) {
4328    SetRawInputAt(0, constant);
4329  }
4330
4331  bool CanBeMoved() const OVERRIDE { return true; }
4332  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
4333    UNUSED(other);
4334    return true;
4335  }
4336
4337  bool NeedsEnvironment() const OVERRIDE {
4338    // May call runtime to initialize the class.
4339    return true;
4340  }
4341
4342  uint32_t GetDexPc() const OVERRIDE { return dex_pc_; }
4343
4344  HLoadClass* GetLoadClass() const { return InputAt(0)->AsLoadClass(); }
4345
4346  DECLARE_INSTRUCTION(ClinitCheck);
4347
4348 private:
4349  const uint32_t dex_pc_;
4350
4351  DISALLOW_COPY_AND_ASSIGN(HClinitCheck);
4352};
4353
4354class HStaticFieldGet : public HExpression<1> {
4355 public:
4356  HStaticFieldGet(HInstruction* cls,
4357                  Primitive::Type field_type,
4358                  MemberOffset field_offset,
4359                  bool is_volatile,
4360                  uint32_t field_idx,
4361                  const DexFile& dex_file)
4362      : HExpression(
4363            field_type,
4364            SideEffects::FieldReadOfType(field_type, is_volatile)),
4365        field_info_(field_offset, field_type, is_volatile, field_idx, dex_file) {
4366    SetRawInputAt(0, cls);
4367  }
4368
4369
4370  bool CanBeMoved() const OVERRIDE { return !IsVolatile(); }
4371
4372  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
4373    HStaticFieldGet* other_get = other->AsStaticFieldGet();
4374    return GetFieldOffset().SizeValue() == other_get->GetFieldOffset().SizeValue();
4375  }
4376
4377  size_t ComputeHashCode() const OVERRIDE {
4378    return (HInstruction::ComputeHashCode() << 7) | GetFieldOffset().SizeValue();
4379  }
4380
4381  const FieldInfo& GetFieldInfo() const { return field_info_; }
4382  MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
4383  Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); }
4384  bool IsVolatile() const { return field_info_.IsVolatile(); }
4385
4386  DECLARE_INSTRUCTION(StaticFieldGet);
4387
4388 private:
4389  const FieldInfo field_info_;
4390
4391  DISALLOW_COPY_AND_ASSIGN(HStaticFieldGet);
4392};
4393
4394class HStaticFieldSet : public HTemplateInstruction<2> {
4395 public:
4396  HStaticFieldSet(HInstruction* cls,
4397                  HInstruction* value,
4398                  Primitive::Type field_type,
4399                  MemberOffset field_offset,
4400                  bool is_volatile,
4401                  uint32_t field_idx,
4402                  const DexFile& dex_file)
4403      : HTemplateInstruction(
4404          SideEffects::FieldWriteOfType(field_type, is_volatile)),
4405        field_info_(field_offset, field_type, is_volatile, field_idx, dex_file),
4406        value_can_be_null_(true) {
4407    SetRawInputAt(0, cls);
4408    SetRawInputAt(1, value);
4409  }
4410
4411  const FieldInfo& GetFieldInfo() const { return field_info_; }
4412  MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
4413  Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); }
4414  bool IsVolatile() const { return field_info_.IsVolatile(); }
4415
4416  HInstruction* GetValue() const { return InputAt(1); }
4417  bool GetValueCanBeNull() const { return value_can_be_null_; }
4418  void ClearValueCanBeNull() { value_can_be_null_ = false; }
4419
4420  DECLARE_INSTRUCTION(StaticFieldSet);
4421
4422 private:
4423  const FieldInfo field_info_;
4424  bool value_can_be_null_;
4425
4426  DISALLOW_COPY_AND_ASSIGN(HStaticFieldSet);
4427};
4428
4429// Implement the move-exception DEX instruction.
4430class HLoadException : public HExpression<0> {
4431 public:
4432  HLoadException() : HExpression(Primitive::kPrimNot, SideEffects::None()) {}
4433
4434  DECLARE_INSTRUCTION(LoadException);
4435
4436 private:
4437  DISALLOW_COPY_AND_ASSIGN(HLoadException);
4438};
4439
4440// Implicit part of move-exception which clears thread-local exception storage.
4441// Must not be removed because the runtime expects the TLS to get cleared.
4442class HClearException : public HTemplateInstruction<0> {
4443 public:
4444  HClearException() : HTemplateInstruction(SideEffects::AllWrites()) {}
4445
4446  DECLARE_INSTRUCTION(ClearException);
4447
4448 private:
4449  DISALLOW_COPY_AND_ASSIGN(HClearException);
4450};
4451
4452class HThrow : public HTemplateInstruction<1> {
4453 public:
4454  HThrow(HInstruction* exception, uint32_t dex_pc)
4455      : HTemplateInstruction(SideEffects::CanTriggerGC()), dex_pc_(dex_pc) {
4456    SetRawInputAt(0, exception);
4457  }
4458
4459  bool IsControlFlow() const OVERRIDE { return true; }
4460
4461  bool NeedsEnvironment() const OVERRIDE { return true; }
4462
4463  bool CanThrow() const OVERRIDE { return true; }
4464
4465  uint32_t GetDexPc() const OVERRIDE { return dex_pc_; }
4466
4467  DECLARE_INSTRUCTION(Throw);
4468
4469 private:
4470  const uint32_t dex_pc_;
4471
4472  DISALLOW_COPY_AND_ASSIGN(HThrow);
4473};
4474
4475class HInstanceOf : public HExpression<2> {
4476 public:
4477  HInstanceOf(HInstruction* object,
4478              HLoadClass* constant,
4479              bool class_is_final,
4480              uint32_t dex_pc)
4481      : HExpression(Primitive::kPrimBoolean, SideEffectsForArchRuntimeCalls(class_is_final)),
4482        class_is_final_(class_is_final),
4483        must_do_null_check_(true),
4484        dex_pc_(dex_pc) {
4485    SetRawInputAt(0, object);
4486    SetRawInputAt(1, constant);
4487  }
4488
4489  bool CanBeMoved() const OVERRIDE { return true; }
4490
4491  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
4492    return true;
4493  }
4494
4495  bool NeedsEnvironment() const OVERRIDE {
4496    return false;
4497  }
4498
4499  uint32_t GetDexPc() const OVERRIDE { return dex_pc_; }
4500
4501  bool IsClassFinal() const { return class_is_final_; }
4502
4503  // Used only in code generation.
4504  bool MustDoNullCheck() const { return must_do_null_check_; }
4505  void ClearMustDoNullCheck() { must_do_null_check_ = false; }
4506
4507  static SideEffects SideEffectsForArchRuntimeCalls(bool class_is_final) {
4508    return class_is_final ? SideEffects::None() : SideEffects::CanTriggerGC();
4509  }
4510
4511  DECLARE_INSTRUCTION(InstanceOf);
4512
4513 private:
4514  const bool class_is_final_;
4515  bool must_do_null_check_;
4516  const uint32_t dex_pc_;
4517
4518  DISALLOW_COPY_AND_ASSIGN(HInstanceOf);
4519};
4520
4521class HBoundType : public HExpression<1> {
4522 public:
4523  // Constructs an HBoundType with the given upper_bound.
4524  // Ensures that the upper_bound is valid.
4525  HBoundType(HInstruction* input, ReferenceTypeInfo upper_bound, bool upper_can_be_null)
4526      : HExpression(Primitive::kPrimNot, SideEffects::None()),
4527        upper_bound_(upper_bound),
4528        upper_can_be_null_(upper_can_be_null),
4529        can_be_null_(upper_can_be_null) {
4530    DCHECK_EQ(input->GetType(), Primitive::kPrimNot);
4531    SetRawInputAt(0, input);
4532    SetReferenceTypeInfo(upper_bound_);
4533  }
4534
4535  // GetUpper* should only be used in reference type propagation.
4536  const ReferenceTypeInfo& GetUpperBound() const { return upper_bound_; }
4537  bool GetUpperCanBeNull() const { return upper_can_be_null_; }
4538
4539  void SetCanBeNull(bool can_be_null) {
4540    DCHECK(upper_can_be_null_ || !can_be_null);
4541    can_be_null_ = can_be_null;
4542  }
4543
4544  bool CanBeNull() const OVERRIDE { return can_be_null_; }
4545
4546  DECLARE_INSTRUCTION(BoundType);
4547
4548 private:
4549  // Encodes the most upper class that this instruction can have. In other words
4550  // it is always the case that GetUpperBound().IsSupertypeOf(GetReferenceType()).
4551  // It is used to bound the type in cases like:
4552  //   if (x instanceof ClassX) {
4553  //     // uper_bound_ will be ClassX
4554  //   }
4555  const ReferenceTypeInfo upper_bound_;
4556  // Represents the top constraint that can_be_null_ cannot exceed (i.e. if this
4557  // is false then can_be_null_ cannot be true).
4558  const bool upper_can_be_null_;
4559  bool can_be_null_;
4560
4561  DISALLOW_COPY_AND_ASSIGN(HBoundType);
4562};
4563
4564class HCheckCast : public HTemplateInstruction<2> {
4565 public:
4566  HCheckCast(HInstruction* object,
4567             HLoadClass* constant,
4568             bool class_is_final,
4569             uint32_t dex_pc)
4570      : HTemplateInstruction(SideEffects::CanTriggerGC()),
4571        class_is_final_(class_is_final),
4572        must_do_null_check_(true),
4573        dex_pc_(dex_pc) {
4574    SetRawInputAt(0, object);
4575    SetRawInputAt(1, constant);
4576  }
4577
4578  bool CanBeMoved() const OVERRIDE { return true; }
4579
4580  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
4581    return true;
4582  }
4583
4584  bool NeedsEnvironment() const OVERRIDE {
4585    // Instruction may throw a CheckCastError.
4586    return true;
4587  }
4588
4589  bool CanThrow() const OVERRIDE { return true; }
4590
4591  bool MustDoNullCheck() const { return must_do_null_check_; }
4592  void ClearMustDoNullCheck() { must_do_null_check_ = false; }
4593
4594  uint32_t GetDexPc() const OVERRIDE { return dex_pc_; }
4595
4596  bool IsClassFinal() const { return class_is_final_; }
4597
4598  DECLARE_INSTRUCTION(CheckCast);
4599
4600 private:
4601  const bool class_is_final_;
4602  bool must_do_null_check_;
4603  const uint32_t dex_pc_;
4604
4605  DISALLOW_COPY_AND_ASSIGN(HCheckCast);
4606};
4607
4608class HMemoryBarrier : public HTemplateInstruction<0> {
4609 public:
4610  explicit HMemoryBarrier(MemBarrierKind barrier_kind)
4611      : HTemplateInstruction(
4612            SideEffects::AllWritesAndReads()),  // Assume write/read on all fields/arrays.
4613        barrier_kind_(barrier_kind) {}
4614
4615  MemBarrierKind GetBarrierKind() { return barrier_kind_; }
4616
4617  DECLARE_INSTRUCTION(MemoryBarrier);
4618
4619 private:
4620  const MemBarrierKind barrier_kind_;
4621
4622  DISALLOW_COPY_AND_ASSIGN(HMemoryBarrier);
4623};
4624
4625class HMonitorOperation : public HTemplateInstruction<1> {
4626 public:
4627  enum OperationKind {
4628    kEnter,
4629    kExit,
4630  };
4631
4632  HMonitorOperation(HInstruction* object, OperationKind kind, uint32_t dex_pc)
4633    : HTemplateInstruction(
4634          SideEffects::AllExceptGCDependency()),  // Assume write/read on all fields/arrays.
4635      kind_(kind), dex_pc_(dex_pc) {
4636    SetRawInputAt(0, object);
4637  }
4638
4639  // Instruction may throw a Java exception, so we need an environment.
4640  bool NeedsEnvironment() const OVERRIDE { return CanThrow(); }
4641
4642  bool CanThrow() const OVERRIDE {
4643    // Verifier guarantees that monitor-exit cannot throw.
4644    // This is important because it allows the HGraphBuilder to remove
4645    // a dead throw-catch loop generated for `synchronized` blocks/methods.
4646    return IsEnter();
4647  }
4648
4649  uint32_t GetDexPc() const OVERRIDE { return dex_pc_; }
4650
4651  bool IsEnter() const { return kind_ == kEnter; }
4652
4653  DECLARE_INSTRUCTION(MonitorOperation);
4654
4655 private:
4656  const OperationKind kind_;
4657  const uint32_t dex_pc_;
4658
4659 private:
4660  DISALLOW_COPY_AND_ASSIGN(HMonitorOperation);
4661};
4662
4663/**
4664 * A HInstruction used as a marker for the replacement of new + <init>
4665 * of a String to a call to a StringFactory. Only baseline will see
4666 * the node at code generation, where it will be be treated as null.
4667 * When compiling non-baseline, `HFakeString` instructions are being removed
4668 * in the instruction simplifier.
4669 */
4670class HFakeString : public HTemplateInstruction<0> {
4671 public:
4672  HFakeString() : HTemplateInstruction(SideEffects::None()) {}
4673
4674  Primitive::Type GetType() const OVERRIDE { return Primitive::kPrimNot; }
4675
4676  DECLARE_INSTRUCTION(FakeString);
4677
4678 private:
4679  DISALLOW_COPY_AND_ASSIGN(HFakeString);
4680};
4681
4682class MoveOperands : public ArenaObject<kArenaAllocMisc> {
4683 public:
4684  MoveOperands(Location source,
4685               Location destination,
4686               Primitive::Type type,
4687               HInstruction* instruction)
4688      : source_(source), destination_(destination), type_(type), instruction_(instruction) {}
4689
4690  Location GetSource() const { return source_; }
4691  Location GetDestination() const { return destination_; }
4692
4693  void SetSource(Location value) { source_ = value; }
4694  void SetDestination(Location value) { destination_ = value; }
4695
4696  // The parallel move resolver marks moves as "in-progress" by clearing the
4697  // destination (but not the source).
4698  Location MarkPending() {
4699    DCHECK(!IsPending());
4700    Location dest = destination_;
4701    destination_ = Location::NoLocation();
4702    return dest;
4703  }
4704
4705  void ClearPending(Location dest) {
4706    DCHECK(IsPending());
4707    destination_ = dest;
4708  }
4709
4710  bool IsPending() const {
4711    DCHECK(!source_.IsInvalid() || destination_.IsInvalid());
4712    return destination_.IsInvalid() && !source_.IsInvalid();
4713  }
4714
4715  // True if this blocks a move from the given location.
4716  bool Blocks(Location loc) const {
4717    return !IsEliminated() && source_.OverlapsWith(loc);
4718  }
4719
4720  // A move is redundant if it's been eliminated, if its source and
4721  // destination are the same, or if its destination is unneeded.
4722  bool IsRedundant() const {
4723    return IsEliminated() || destination_.IsInvalid() || source_.Equals(destination_);
4724  }
4725
4726  // We clear both operands to indicate move that's been eliminated.
4727  void Eliminate() {
4728    source_ = destination_ = Location::NoLocation();
4729  }
4730
4731  bool IsEliminated() const {
4732    DCHECK(!source_.IsInvalid() || destination_.IsInvalid());
4733    return source_.IsInvalid();
4734  }
4735
4736  Primitive::Type GetType() const { return type_; }
4737
4738  bool Is64BitMove() const {
4739    return Primitive::Is64BitType(type_);
4740  }
4741
4742  HInstruction* GetInstruction() const { return instruction_; }
4743
4744 private:
4745  Location source_;
4746  Location destination_;
4747  // The type this move is for.
4748  Primitive::Type type_;
4749  // The instruction this move is assocatied with. Null when this move is
4750  // for moving an input in the expected locations of user (including a phi user).
4751  // This is only used in debug mode, to ensure we do not connect interval siblings
4752  // in the same parallel move.
4753  HInstruction* instruction_;
4754};
4755
4756static constexpr size_t kDefaultNumberOfMoves = 4;
4757
4758class HParallelMove : public HTemplateInstruction<0> {
4759 public:
4760  explicit HParallelMove(ArenaAllocator* arena)
4761      : HTemplateInstruction(SideEffects::None()), moves_(arena, kDefaultNumberOfMoves) {}
4762
4763  void AddMove(Location source,
4764               Location destination,
4765               Primitive::Type type,
4766               HInstruction* instruction) {
4767    DCHECK(source.IsValid());
4768    DCHECK(destination.IsValid());
4769    if (kIsDebugBuild) {
4770      if (instruction != nullptr) {
4771        for (size_t i = 0, e = moves_.Size(); i < e; ++i) {
4772          if (moves_.Get(i).GetInstruction() == instruction) {
4773            // Special case the situation where the move is for the spill slot
4774            // of the instruction.
4775            if ((GetPrevious() == instruction)
4776                || ((GetPrevious() == nullptr)
4777                    && instruction->IsPhi()
4778                    && instruction->GetBlock() == GetBlock())) {
4779              DCHECK_NE(destination.GetKind(), moves_.Get(i).GetDestination().GetKind())
4780                  << "Doing parallel moves for the same instruction.";
4781            } else {
4782              DCHECK(false) << "Doing parallel moves for the same instruction.";
4783            }
4784          }
4785        }
4786      }
4787      for (size_t i = 0, e = moves_.Size(); i < e; ++i) {
4788        DCHECK(!destination.OverlapsWith(moves_.Get(i).GetDestination()))
4789            << "Overlapped destination for two moves in a parallel move: "
4790            << moves_.Get(i).GetSource() << " ==> " << moves_.Get(i).GetDestination() << " and "
4791            << source << " ==> " << destination;
4792      }
4793    }
4794    moves_.Add(MoveOperands(source, destination, type, instruction));
4795  }
4796
4797  MoveOperands* MoveOperandsAt(size_t index) const {
4798    return moves_.GetRawStorage() + index;
4799  }
4800
4801  size_t NumMoves() const { return moves_.Size(); }
4802
4803  DECLARE_INSTRUCTION(ParallelMove);
4804
4805 private:
4806  GrowableArray<MoveOperands> moves_;
4807
4808  DISALLOW_COPY_AND_ASSIGN(HParallelMove);
4809};
4810
4811class HGraphVisitor : public ValueObject {
4812 public:
4813  explicit HGraphVisitor(HGraph* graph) : graph_(graph) {}
4814  virtual ~HGraphVisitor() {}
4815
4816  virtual void VisitInstruction(HInstruction* instruction) { UNUSED(instruction); }
4817  virtual void VisitBasicBlock(HBasicBlock* block);
4818
4819  // Visit the graph following basic block insertion order.
4820  void VisitInsertionOrder();
4821
4822  // Visit the graph following dominator tree reverse post-order.
4823  void VisitReversePostOrder();
4824
4825  HGraph* GetGraph() const { return graph_; }
4826
4827  // Visit functions for instruction classes.
4828#define DECLARE_VISIT_INSTRUCTION(name, super)                                        \
4829  virtual void Visit##name(H##name* instr) { VisitInstruction(instr); }
4830
4831  FOR_EACH_INSTRUCTION(DECLARE_VISIT_INSTRUCTION)
4832
4833#undef DECLARE_VISIT_INSTRUCTION
4834
4835 private:
4836  HGraph* const graph_;
4837
4838  DISALLOW_COPY_AND_ASSIGN(HGraphVisitor);
4839};
4840
4841class HGraphDelegateVisitor : public HGraphVisitor {
4842 public:
4843  explicit HGraphDelegateVisitor(HGraph* graph) : HGraphVisitor(graph) {}
4844  virtual ~HGraphDelegateVisitor() {}
4845
4846  // Visit functions that delegate to to super class.
4847#define DECLARE_VISIT_INSTRUCTION(name, super)                                        \
4848  void Visit##name(H##name* instr) OVERRIDE { Visit##super(instr); }
4849
4850  FOR_EACH_INSTRUCTION(DECLARE_VISIT_INSTRUCTION)
4851
4852#undef DECLARE_VISIT_INSTRUCTION
4853
4854 private:
4855  DISALLOW_COPY_AND_ASSIGN(HGraphDelegateVisitor);
4856};
4857
4858class HInsertionOrderIterator : public ValueObject {
4859 public:
4860  explicit HInsertionOrderIterator(const HGraph& graph) : graph_(graph), index_(0) {}
4861
4862  bool Done() const { return index_ == graph_.GetBlocks().Size(); }
4863  HBasicBlock* Current() const { return graph_.GetBlocks().Get(index_); }
4864  void Advance() { ++index_; }
4865
4866 private:
4867  const HGraph& graph_;
4868  size_t index_;
4869
4870  DISALLOW_COPY_AND_ASSIGN(HInsertionOrderIterator);
4871};
4872
4873class HReversePostOrderIterator : public ValueObject {
4874 public:
4875  explicit HReversePostOrderIterator(const HGraph& graph) : graph_(graph), index_(0) {
4876    // Check that reverse post order of the graph has been built.
4877    DCHECK(!graph.GetReversePostOrder().IsEmpty());
4878  }
4879
4880  bool Done() const { return index_ == graph_.GetReversePostOrder().Size(); }
4881  HBasicBlock* Current() const { return graph_.GetReversePostOrder().Get(index_); }
4882  void Advance() { ++index_; }
4883
4884 private:
4885  const HGraph& graph_;
4886  size_t index_;
4887
4888  DISALLOW_COPY_AND_ASSIGN(HReversePostOrderIterator);
4889};
4890
4891class HPostOrderIterator : public ValueObject {
4892 public:
4893  explicit HPostOrderIterator(const HGraph& graph)
4894      : graph_(graph), index_(graph_.GetReversePostOrder().Size()) {
4895    // Check that reverse post order of the graph has been built.
4896    DCHECK(!graph.GetReversePostOrder().IsEmpty());
4897  }
4898
4899  bool Done() const { return index_ == 0; }
4900  HBasicBlock* Current() const { return graph_.GetReversePostOrder().Get(index_ - 1); }
4901  void Advance() { --index_; }
4902
4903 private:
4904  const HGraph& graph_;
4905  size_t index_;
4906
4907  DISALLOW_COPY_AND_ASSIGN(HPostOrderIterator);
4908};
4909
4910class HLinearPostOrderIterator : public ValueObject {
4911 public:
4912  explicit HLinearPostOrderIterator(const HGraph& graph)
4913      : order_(graph.GetLinearOrder()), index_(graph.GetLinearOrder().Size()) {}
4914
4915  bool Done() const { return index_ == 0; }
4916
4917  HBasicBlock* Current() const { return order_.Get(index_ -1); }
4918
4919  void Advance() {
4920    --index_;
4921    DCHECK_GE(index_, 0U);
4922  }
4923
4924 private:
4925  const GrowableArray<HBasicBlock*>& order_;
4926  size_t index_;
4927
4928  DISALLOW_COPY_AND_ASSIGN(HLinearPostOrderIterator);
4929};
4930
4931class HLinearOrderIterator : public ValueObject {
4932 public:
4933  explicit HLinearOrderIterator(const HGraph& graph)
4934      : order_(graph.GetLinearOrder()), index_(0) {}
4935
4936  bool Done() const { return index_ == order_.Size(); }
4937  HBasicBlock* Current() const { return order_.Get(index_); }
4938  void Advance() { ++index_; }
4939
4940 private:
4941  const GrowableArray<HBasicBlock*>& order_;
4942  size_t index_;
4943
4944  DISALLOW_COPY_AND_ASSIGN(HLinearOrderIterator);
4945};
4946
4947// Iterator over the blocks that art part of the loop. Includes blocks part
4948// of an inner loop. The order in which the blocks are iterated is on their
4949// block id.
4950class HBlocksInLoopIterator : public ValueObject {
4951 public:
4952  explicit HBlocksInLoopIterator(const HLoopInformation& info)
4953      : blocks_in_loop_(info.GetBlocks()),
4954        blocks_(info.GetHeader()->GetGraph()->GetBlocks()),
4955        index_(0) {
4956    if (!blocks_in_loop_.IsBitSet(index_)) {
4957      Advance();
4958    }
4959  }
4960
4961  bool Done() const { return index_ == blocks_.Size(); }
4962  HBasicBlock* Current() const { return blocks_.Get(index_); }
4963  void Advance() {
4964    ++index_;
4965    for (size_t e = blocks_.Size(); index_ < e; ++index_) {
4966      if (blocks_in_loop_.IsBitSet(index_)) {
4967        break;
4968      }
4969    }
4970  }
4971
4972 private:
4973  const BitVector& blocks_in_loop_;
4974  const GrowableArray<HBasicBlock*>& blocks_;
4975  size_t index_;
4976
4977  DISALLOW_COPY_AND_ASSIGN(HBlocksInLoopIterator);
4978};
4979
4980// Iterator over the blocks that art part of the loop. Includes blocks part
4981// of an inner loop. The order in which the blocks are iterated is reverse
4982// post order.
4983class HBlocksInLoopReversePostOrderIterator : public ValueObject {
4984 public:
4985  explicit HBlocksInLoopReversePostOrderIterator(const HLoopInformation& info)
4986      : blocks_in_loop_(info.GetBlocks()),
4987        blocks_(info.GetHeader()->GetGraph()->GetReversePostOrder()),
4988        index_(0) {
4989    if (!blocks_in_loop_.IsBitSet(blocks_.Get(index_)->GetBlockId())) {
4990      Advance();
4991    }
4992  }
4993
4994  bool Done() const { return index_ == blocks_.Size(); }
4995  HBasicBlock* Current() const { return blocks_.Get(index_); }
4996  void Advance() {
4997    ++index_;
4998    for (size_t e = blocks_.Size(); index_ < e; ++index_) {
4999      if (blocks_in_loop_.IsBitSet(blocks_.Get(index_)->GetBlockId())) {
5000        break;
5001      }
5002    }
5003  }
5004
5005 private:
5006  const BitVector& blocks_in_loop_;
5007  const GrowableArray<HBasicBlock*>& blocks_;
5008  size_t index_;
5009
5010  DISALLOW_COPY_AND_ASSIGN(HBlocksInLoopReversePostOrderIterator);
5011};
5012
5013inline int64_t Int64FromConstant(HConstant* constant) {
5014  DCHECK(constant->IsIntConstant() || constant->IsLongConstant());
5015  return constant->IsIntConstant() ? constant->AsIntConstant()->GetValue()
5016                                   : constant->AsLongConstant()->GetValue();
5017}
5018
5019}  // namespace art
5020
5021#endif  // ART_COMPILER_OPTIMIZING_NODES_H_
5022