nodes.h revision 5d75afe333f57546786686d9bee16b52f1bbe971
1/*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#ifndef ART_COMPILER_OPTIMIZING_NODES_H_
18#define ART_COMPILER_OPTIMIZING_NODES_H_
19
20#include <algorithm>
21#include <array>
22#include <type_traits>
23
24#include "base/arena_bit_vector.h"
25#include "base/arena_containers.h"
26#include "base/arena_object.h"
27#include "base/stl_util.h"
28#include "dex/compiler_enums.h"
29#include "entrypoints/quick/quick_entrypoints_enum.h"
30#include "handle.h"
31#include "handle_scope.h"
32#include "invoke_type.h"
33#include "locations.h"
34#include "method_reference.h"
35#include "mirror/class.h"
36#include "offsets.h"
37#include "primitive.h"
38#include "utils/array_ref.h"
39
40namespace art {
41
42class GraphChecker;
43class HBasicBlock;
44class HCurrentMethod;
45class HDoubleConstant;
46class HEnvironment;
47class HFakeString;
48class HFloatConstant;
49class HGraphBuilder;
50class HGraphVisitor;
51class HInstruction;
52class HIntConstant;
53class HInvoke;
54class HLongConstant;
55class HNullConstant;
56class HPhi;
57class HSuspendCheck;
58class HTryBoundary;
59class LiveInterval;
60class LocationSummary;
61class SlowPathCode;
62class SsaBuilder;
63
64namespace mirror {
65class DexCache;
66}  // namespace mirror
67
68static const int kDefaultNumberOfBlocks = 8;
69static const int kDefaultNumberOfSuccessors = 2;
70static const int kDefaultNumberOfPredecessors = 2;
71static const int kDefaultNumberOfExceptionalPredecessors = 0;
72static const int kDefaultNumberOfDominatedBlocks = 1;
73static const int kDefaultNumberOfBackEdges = 1;
74
75static constexpr uint32_t kMaxIntShiftValue = 0x1f;
76static constexpr uint64_t kMaxLongShiftValue = 0x3f;
77
78static constexpr uint32_t kUnknownFieldIndex = static_cast<uint32_t>(-1);
79static constexpr uint16_t kUnknownClassDefIndex = static_cast<uint16_t>(-1);
80
81static constexpr InvokeType kInvalidInvokeType = static_cast<InvokeType>(-1);
82
83static constexpr uint32_t kNoDexPc = -1;
84
85enum IfCondition {
86  // All types.
87  kCondEQ,  // ==
88  kCondNE,  // !=
89  // Signed integers and floating-point numbers.
90  kCondLT,  // <
91  kCondLE,  // <=
92  kCondGT,  // >
93  kCondGE,  // >=
94  // Unsigned integers.
95  kCondB,   // <
96  kCondBE,  // <=
97  kCondA,   // >
98  kCondAE,  // >=
99};
100
101class HInstructionList : public ValueObject {
102 public:
103  HInstructionList() : first_instruction_(nullptr), last_instruction_(nullptr) {}
104
105  void AddInstruction(HInstruction* instruction);
106  void RemoveInstruction(HInstruction* instruction);
107
108  // Insert `instruction` before/after an existing instruction `cursor`.
109  void InsertInstructionBefore(HInstruction* instruction, HInstruction* cursor);
110  void InsertInstructionAfter(HInstruction* instruction, HInstruction* cursor);
111
112  // Return true if this list contains `instruction`.
113  bool Contains(HInstruction* instruction) const;
114
115  // Return true if `instruction1` is found before `instruction2` in
116  // this instruction list and false otherwise.  Abort if none
117  // of these instructions is found.
118  bool FoundBefore(const HInstruction* instruction1,
119                   const HInstruction* instruction2) const;
120
121  bool IsEmpty() const { return first_instruction_ == nullptr; }
122  void Clear() { first_instruction_ = last_instruction_ = nullptr; }
123
124  // Update the block of all instructions to be `block`.
125  void SetBlockOfInstructions(HBasicBlock* block) const;
126
127  void AddAfter(HInstruction* cursor, const HInstructionList& instruction_list);
128  void Add(const HInstructionList& instruction_list);
129
130  // Return the number of instructions in the list. This is an expensive operation.
131  size_t CountSize() const;
132
133 private:
134  HInstruction* first_instruction_;
135  HInstruction* last_instruction_;
136
137  friend class HBasicBlock;
138  friend class HGraph;
139  friend class HInstruction;
140  friend class HInstructionIterator;
141  friend class HBackwardInstructionIterator;
142
143  DISALLOW_COPY_AND_ASSIGN(HInstructionList);
144};
145
146// Control-flow graph of a method. Contains a list of basic blocks.
147class HGraph : public ArenaObject<kArenaAllocGraph> {
148 public:
149  HGraph(ArenaAllocator* arena,
150         const DexFile& dex_file,
151         uint32_t method_idx,
152         bool should_generate_constructor_barrier,
153         InstructionSet instruction_set,
154         InvokeType invoke_type = kInvalidInvokeType,
155         bool debuggable = false,
156         int start_instruction_id = 0)
157      : arena_(arena),
158        blocks_(arena->Adapter(kArenaAllocBlockList)),
159        reverse_post_order_(arena->Adapter(kArenaAllocReversePostOrder)),
160        linear_order_(arena->Adapter(kArenaAllocLinearOrder)),
161        entry_block_(nullptr),
162        exit_block_(nullptr),
163        maximum_number_of_out_vregs_(0),
164        number_of_vregs_(0),
165        number_of_in_vregs_(0),
166        temporaries_vreg_slots_(0),
167        has_bounds_checks_(false),
168        has_try_catch_(false),
169        debuggable_(debuggable),
170        current_instruction_id_(start_instruction_id),
171        dex_file_(dex_file),
172        method_idx_(method_idx),
173        invoke_type_(invoke_type),
174        in_ssa_form_(false),
175        should_generate_constructor_barrier_(should_generate_constructor_barrier),
176        instruction_set_(instruction_set),
177        cached_null_constant_(nullptr),
178        cached_int_constants_(std::less<int32_t>(), arena->Adapter(kArenaAllocConstantsMap)),
179        cached_float_constants_(std::less<int32_t>(), arena->Adapter(kArenaAllocConstantsMap)),
180        cached_long_constants_(std::less<int64_t>(), arena->Adapter(kArenaAllocConstantsMap)),
181        cached_double_constants_(std::less<int64_t>(), arena->Adapter(kArenaAllocConstantsMap)),
182        cached_current_method_(nullptr) {
183    blocks_.reserve(kDefaultNumberOfBlocks);
184  }
185
186  ArenaAllocator* GetArena() const { return arena_; }
187  const ArenaVector<HBasicBlock*>& GetBlocks() const { return blocks_; }
188
189  bool IsInSsaForm() const { return in_ssa_form_; }
190
191  HBasicBlock* GetEntryBlock() const { return entry_block_; }
192  HBasicBlock* GetExitBlock() const { return exit_block_; }
193  bool HasExitBlock() const { return exit_block_ != nullptr; }
194
195  void SetEntryBlock(HBasicBlock* block) { entry_block_ = block; }
196  void SetExitBlock(HBasicBlock* block) { exit_block_ = block; }
197
198  void AddBlock(HBasicBlock* block);
199
200  // Try building the SSA form of this graph, with dominance computation and loop
201  // recognition. Returns whether it was successful in doing all these steps.
202  bool TryBuildingSsa() {
203    BuildDominatorTree();
204    // The SSA builder requires loops to all be natural. Specifically, the dead phi
205    // elimination phase checks the consistency of the graph when doing a post-order
206    // visit for eliminating dead phis: a dead phi can only have loop header phi
207    // users remaining when being visited.
208    if (!AnalyzeNaturalLoops()) return false;
209    // Precompute per-block try membership before entering the SSA builder,
210    // which needs the information to build catch block phis from values of
211    // locals at throwing instructions inside try blocks.
212    ComputeTryBlockInformation();
213    TransformToSsa();
214    in_ssa_form_ = true;
215    return true;
216  }
217
218  void ComputeDominanceInformation();
219  void ClearDominanceInformation();
220
221  void BuildDominatorTree();
222  void TransformToSsa();
223  void SimplifyCFG();
224  void SimplifyCatchBlocks();
225
226  // Analyze all natural loops in this graph. Returns false if one
227  // loop is not natural, that is the header does not dominate the
228  // back edge.
229  bool AnalyzeNaturalLoops() const;
230
231  // Iterate over blocks to compute try block membership. Needs reverse post
232  // order and loop information.
233  void ComputeTryBlockInformation();
234
235  // Inline this graph in `outer_graph`, replacing the given `invoke` instruction.
236  // Returns the instruction used to replace the invoke expression or null if the
237  // invoke is for a void method.
238  HInstruction* InlineInto(HGraph* outer_graph, HInvoke* invoke);
239
240  // Need to add a couple of blocks to test if the loop body is entered and
241  // put deoptimization instructions, etc.
242  void TransformLoopHeaderForBCE(HBasicBlock* header);
243
244  // Removes `block` from the graph. Assumes `block` has been disconnected from
245  // other blocks and has no instructions or phis.
246  void DeleteDeadEmptyBlock(HBasicBlock* block);
247
248  // Splits the edge between `block` and `successor` while preserving the
249  // indices in the predecessor/successor lists. If there are multiple edges
250  // between the blocks, the lowest indices are used.
251  // Returns the new block which is empty and has the same dex pc as `successor`.
252  HBasicBlock* SplitEdge(HBasicBlock* block, HBasicBlock* successor);
253
254  void SplitCriticalEdge(HBasicBlock* block, HBasicBlock* successor);
255  void SimplifyLoop(HBasicBlock* header);
256
257  int32_t GetNextInstructionId() {
258    DCHECK_NE(current_instruction_id_, INT32_MAX);
259    return current_instruction_id_++;
260  }
261
262  int32_t GetCurrentInstructionId() const {
263    return current_instruction_id_;
264  }
265
266  void SetCurrentInstructionId(int32_t id) {
267    current_instruction_id_ = id;
268  }
269
270  uint16_t GetMaximumNumberOfOutVRegs() const {
271    return maximum_number_of_out_vregs_;
272  }
273
274  void SetMaximumNumberOfOutVRegs(uint16_t new_value) {
275    maximum_number_of_out_vregs_ = new_value;
276  }
277
278  void UpdateMaximumNumberOfOutVRegs(uint16_t other_value) {
279    maximum_number_of_out_vregs_ = std::max(maximum_number_of_out_vregs_, other_value);
280  }
281
282  void UpdateTemporariesVRegSlots(size_t slots) {
283    temporaries_vreg_slots_ = std::max(slots, temporaries_vreg_slots_);
284  }
285
286  size_t GetTemporariesVRegSlots() const {
287    DCHECK(!in_ssa_form_);
288    return temporaries_vreg_slots_;
289  }
290
291  void SetNumberOfVRegs(uint16_t number_of_vregs) {
292    number_of_vregs_ = number_of_vregs;
293  }
294
295  uint16_t GetNumberOfVRegs() const {
296    return number_of_vregs_;
297  }
298
299  void SetNumberOfInVRegs(uint16_t value) {
300    number_of_in_vregs_ = value;
301  }
302
303  uint16_t GetNumberOfLocalVRegs() const {
304    DCHECK(!in_ssa_form_);
305    return number_of_vregs_ - number_of_in_vregs_;
306  }
307
308  const ArenaVector<HBasicBlock*>& GetReversePostOrder() const {
309    return reverse_post_order_;
310  }
311
312  const ArenaVector<HBasicBlock*>& GetLinearOrder() const {
313    return linear_order_;
314  }
315
316  bool HasBoundsChecks() const {
317    return has_bounds_checks_;
318  }
319
320  void SetHasBoundsChecks(bool value) {
321    has_bounds_checks_ = value;
322  }
323
324  bool ShouldGenerateConstructorBarrier() const {
325    return should_generate_constructor_barrier_;
326  }
327
328  bool IsDebuggable() const { return debuggable_; }
329
330  // Returns a constant of the given type and value. If it does not exist
331  // already, it is created and inserted into the graph. This method is only for
332  // integral types.
333  HConstant* GetConstant(Primitive::Type type, int64_t value, uint32_t dex_pc = kNoDexPc);
334
335  // TODO: This is problematic for the consistency of reference type propagation
336  // because it can be created anytime after the pass and thus it will be left
337  // with an invalid type.
338  HNullConstant* GetNullConstant(uint32_t dex_pc = kNoDexPc);
339
340  HIntConstant* GetIntConstant(int32_t value, uint32_t dex_pc = kNoDexPc) {
341    return CreateConstant(value, &cached_int_constants_, dex_pc);
342  }
343  HLongConstant* GetLongConstant(int64_t value, uint32_t dex_pc = kNoDexPc) {
344    return CreateConstant(value, &cached_long_constants_, dex_pc);
345  }
346  HFloatConstant* GetFloatConstant(float value, uint32_t dex_pc = kNoDexPc) {
347    return CreateConstant(bit_cast<int32_t, float>(value), &cached_float_constants_, dex_pc);
348  }
349  HDoubleConstant* GetDoubleConstant(double value, uint32_t dex_pc = kNoDexPc) {
350    return CreateConstant(bit_cast<int64_t, double>(value), &cached_double_constants_, dex_pc);
351  }
352
353  HCurrentMethod* GetCurrentMethod();
354
355  const DexFile& GetDexFile() const {
356    return dex_file_;
357  }
358
359  uint32_t GetMethodIdx() const {
360    return method_idx_;
361  }
362
363  InvokeType GetInvokeType() const {
364    return invoke_type_;
365  }
366
367  InstructionSet GetInstructionSet() const {
368    return instruction_set_;
369  }
370
371  bool HasTryCatch() const { return has_try_catch_; }
372  void SetHasTryCatch(bool value) { has_try_catch_ = value; }
373
374  ArtMethod* GetArtMethod() const { return art_method_; }
375  void SetArtMethod(ArtMethod* method) { art_method_ = method; }
376
377  // Returns an instruction with the opposite boolean value from 'cond'.
378  // The instruction has been inserted into the graph, either as a constant, or
379  // before cursor.
380  HInstruction* InsertOppositeCondition(HInstruction* cond, HInstruction* cursor);
381
382 private:
383  void FindBackEdges(ArenaBitVector* visited);
384  void RemoveInstructionsAsUsersFromDeadBlocks(const ArenaBitVector& visited) const;
385  void RemoveDeadBlocks(const ArenaBitVector& visited);
386
387  template <class InstructionType, typename ValueType>
388  InstructionType* CreateConstant(ValueType value,
389                                  ArenaSafeMap<ValueType, InstructionType*>* cache,
390                                  uint32_t dex_pc = kNoDexPc) {
391    // Try to find an existing constant of the given value.
392    InstructionType* constant = nullptr;
393    auto cached_constant = cache->find(value);
394    if (cached_constant != cache->end()) {
395      constant = cached_constant->second;
396    }
397
398    // If not found or previously deleted, create and cache a new instruction.
399    // Don't bother reviving a previously deleted instruction, for simplicity.
400    if (constant == nullptr || constant->GetBlock() == nullptr) {
401      constant = new (arena_) InstructionType(value, dex_pc);
402      cache->Overwrite(value, constant);
403      InsertConstant(constant);
404    }
405    return constant;
406  }
407
408  void InsertConstant(HConstant* instruction);
409
410  // Cache a float constant into the graph. This method should only be
411  // called by the SsaBuilder when creating "equivalent" instructions.
412  void CacheFloatConstant(HFloatConstant* constant);
413
414  // See CacheFloatConstant comment.
415  void CacheDoubleConstant(HDoubleConstant* constant);
416
417  ArenaAllocator* const arena_;
418
419  // List of blocks in insertion order.
420  ArenaVector<HBasicBlock*> blocks_;
421
422  // List of blocks to perform a reverse post order tree traversal.
423  ArenaVector<HBasicBlock*> reverse_post_order_;
424
425  // List of blocks to perform a linear order tree traversal.
426  ArenaVector<HBasicBlock*> linear_order_;
427
428  HBasicBlock* entry_block_;
429  HBasicBlock* exit_block_;
430
431  // The maximum number of virtual registers arguments passed to a HInvoke in this graph.
432  uint16_t maximum_number_of_out_vregs_;
433
434  // The number of virtual registers in this method. Contains the parameters.
435  uint16_t number_of_vregs_;
436
437  // The number of virtual registers used by parameters of this method.
438  uint16_t number_of_in_vregs_;
439
440  // Number of vreg size slots that the temporaries use (used in baseline compiler).
441  size_t temporaries_vreg_slots_;
442
443  // Has bounds checks. We can totally skip BCE if it's false.
444  bool has_bounds_checks_;
445
446  // Flag whether there are any try/catch blocks in the graph. We will skip
447  // try/catch-related passes if false.
448  bool has_try_catch_;
449
450  // Indicates whether the graph should be compiled in a way that
451  // ensures full debuggability. If false, we can apply more
452  // aggressive optimizations that may limit the level of debugging.
453  const bool debuggable_;
454
455  // The current id to assign to a newly added instruction. See HInstruction.id_.
456  int32_t current_instruction_id_;
457
458  // The dex file from which the method is from.
459  const DexFile& dex_file_;
460
461  // The method index in the dex file.
462  const uint32_t method_idx_;
463
464  // If inlined, this encodes how the callee is being invoked.
465  const InvokeType invoke_type_;
466
467  // Whether the graph has been transformed to SSA form. Only used
468  // in debug mode to ensure we are not using properties only valid
469  // for non-SSA form (like the number of temporaries).
470  bool in_ssa_form_;
471
472  const bool should_generate_constructor_barrier_;
473
474  const InstructionSet instruction_set_;
475
476  // Cached constants.
477  HNullConstant* cached_null_constant_;
478  ArenaSafeMap<int32_t, HIntConstant*> cached_int_constants_;
479  ArenaSafeMap<int32_t, HFloatConstant*> cached_float_constants_;
480  ArenaSafeMap<int64_t, HLongConstant*> cached_long_constants_;
481  ArenaSafeMap<int64_t, HDoubleConstant*> cached_double_constants_;
482
483  HCurrentMethod* cached_current_method_;
484
485  // The ArtMethod this graph is for. Note that for AOT, it may be null,
486  // for example for methods whose declaring class could not be resolved
487  // (such as when the superclass could not be found).
488  ArtMethod* art_method_;
489
490  friend class SsaBuilder;           // For caching constants.
491  friend class SsaLivenessAnalysis;  // For the linear order.
492  ART_FRIEND_TEST(GraphTest, IfSuccessorSimpleJoinBlock1);
493  DISALLOW_COPY_AND_ASSIGN(HGraph);
494};
495
496class HLoopInformation : public ArenaObject<kArenaAllocLoopInfo> {
497 public:
498  HLoopInformation(HBasicBlock* header, HGraph* graph)
499      : header_(header),
500        suspend_check_(nullptr),
501        back_edges_(graph->GetArena()->Adapter(kArenaAllocLoopInfoBackEdges)),
502        // Make bit vector growable, as the number of blocks may change.
503        blocks_(graph->GetArena(), graph->GetBlocks().size(), true) {
504    back_edges_.reserve(kDefaultNumberOfBackEdges);
505  }
506
507  HBasicBlock* GetHeader() const {
508    return header_;
509  }
510
511  void SetHeader(HBasicBlock* block) {
512    header_ = block;
513  }
514
515  HSuspendCheck* GetSuspendCheck() const { return suspend_check_; }
516  void SetSuspendCheck(HSuspendCheck* check) { suspend_check_ = check; }
517  bool HasSuspendCheck() const { return suspend_check_ != nullptr; }
518
519  void AddBackEdge(HBasicBlock* back_edge) {
520    back_edges_.push_back(back_edge);
521  }
522
523  void RemoveBackEdge(HBasicBlock* back_edge) {
524    RemoveElement(back_edges_, back_edge);
525  }
526
527  bool IsBackEdge(const HBasicBlock& block) const {
528    return ContainsElement(back_edges_, &block);
529  }
530
531  size_t NumberOfBackEdges() const {
532    return back_edges_.size();
533  }
534
535  HBasicBlock* GetPreHeader() const;
536
537  const ArenaVector<HBasicBlock*>& GetBackEdges() const {
538    return back_edges_;
539  }
540
541  // Returns the lifetime position of the back edge that has the
542  // greatest lifetime position.
543  size_t GetLifetimeEnd() const;
544
545  void ReplaceBackEdge(HBasicBlock* existing, HBasicBlock* new_back_edge) {
546    ReplaceElement(back_edges_, existing, new_back_edge);
547  }
548
549  // Finds blocks that are part of this loop. Returns whether the loop is a natural loop,
550  // that is the header dominates the back edge.
551  bool Populate();
552
553  // Reanalyzes the loop by removing loop info from its blocks and re-running
554  // Populate(). If there are no back edges left, the loop info is completely
555  // removed as well as its SuspendCheck instruction. It must be run on nested
556  // inner loops first.
557  void Update();
558
559  // Returns whether this loop information contains `block`.
560  // Note that this loop information *must* be populated before entering this function.
561  bool Contains(const HBasicBlock& block) const;
562
563  // Returns whether this loop information is an inner loop of `other`.
564  // Note that `other` *must* be populated before entering this function.
565  bool IsIn(const HLoopInformation& other) const;
566
567  // Returns true if instruction is not defined within this loop.
568  bool IsDefinedOutOfTheLoop(HInstruction* instruction) const;
569
570  const ArenaBitVector& GetBlocks() const { return blocks_; }
571
572  void Add(HBasicBlock* block);
573  void Remove(HBasicBlock* block);
574
575 private:
576  // Internal recursive implementation of `Populate`.
577  void PopulateRecursive(HBasicBlock* block);
578
579  HBasicBlock* header_;
580  HSuspendCheck* suspend_check_;
581  ArenaVector<HBasicBlock*> back_edges_;
582  ArenaBitVector blocks_;
583
584  DISALLOW_COPY_AND_ASSIGN(HLoopInformation);
585};
586
587// Stores try/catch information for basic blocks.
588// Note that HGraph is constructed so that catch blocks cannot simultaneously
589// be try blocks.
590class TryCatchInformation : public ArenaObject<kArenaAllocTryCatchInfo> {
591 public:
592  // Try block information constructor.
593  explicit TryCatchInformation(const HTryBoundary& try_entry)
594      : try_entry_(&try_entry),
595        catch_dex_file_(nullptr),
596        catch_type_index_(DexFile::kDexNoIndex16) {
597    DCHECK(try_entry_ != nullptr);
598  }
599
600  // Catch block information constructor.
601  TryCatchInformation(uint16_t catch_type_index, const DexFile& dex_file)
602      : try_entry_(nullptr),
603        catch_dex_file_(&dex_file),
604        catch_type_index_(catch_type_index) {}
605
606  bool IsTryBlock() const { return try_entry_ != nullptr; }
607
608  const HTryBoundary& GetTryEntry() const {
609    DCHECK(IsTryBlock());
610    return *try_entry_;
611  }
612
613  bool IsCatchBlock() const { return catch_dex_file_ != nullptr; }
614
615  bool IsCatchAllTypeIndex() const {
616    DCHECK(IsCatchBlock());
617    return catch_type_index_ == DexFile::kDexNoIndex16;
618  }
619
620  uint16_t GetCatchTypeIndex() const {
621    DCHECK(IsCatchBlock());
622    return catch_type_index_;
623  }
624
625  const DexFile& GetCatchDexFile() const {
626    DCHECK(IsCatchBlock());
627    return *catch_dex_file_;
628  }
629
630 private:
631  // One of possibly several TryBoundary instructions entering the block's try.
632  // Only set for try blocks.
633  const HTryBoundary* try_entry_;
634
635  // Exception type information. Only set for catch blocks.
636  const DexFile* catch_dex_file_;
637  const uint16_t catch_type_index_;
638};
639
640static constexpr size_t kNoLifetime = -1;
641static constexpr uint32_t kInvalidBlockId = static_cast<uint32_t>(-1);
642
643// A block in a method. Contains the list of instructions represented
644// as a double linked list. Each block knows its predecessors and
645// successors.
646
647class HBasicBlock : public ArenaObject<kArenaAllocBasicBlock> {
648 public:
649  HBasicBlock(HGraph* graph, uint32_t dex_pc = kNoDexPc)
650      : graph_(graph),
651        predecessors_(graph->GetArena()->Adapter(kArenaAllocPredecessors)),
652        successors_(graph->GetArena()->Adapter(kArenaAllocSuccessors)),
653        loop_information_(nullptr),
654        dominator_(nullptr),
655        dominated_blocks_(graph->GetArena()->Adapter(kArenaAllocDominated)),
656        block_id_(kInvalidBlockId),
657        dex_pc_(dex_pc),
658        lifetime_start_(kNoLifetime),
659        lifetime_end_(kNoLifetime),
660        try_catch_information_(nullptr) {
661    predecessors_.reserve(kDefaultNumberOfPredecessors);
662    successors_.reserve(kDefaultNumberOfSuccessors);
663    dominated_blocks_.reserve(kDefaultNumberOfDominatedBlocks);
664  }
665
666  const ArenaVector<HBasicBlock*>& GetPredecessors() const {
667    return predecessors_;
668  }
669
670  const ArenaVector<HBasicBlock*>& GetSuccessors() const {
671    return successors_;
672  }
673
674  ArrayRef<HBasicBlock* const> GetNormalSuccessors() const;
675  ArrayRef<HBasicBlock* const> GetExceptionalSuccessors() const;
676
677  bool HasSuccessor(const HBasicBlock* block, size_t start_from = 0u) {
678    return ContainsElement(successors_, block, start_from);
679  }
680
681  const ArenaVector<HBasicBlock*>& GetDominatedBlocks() const {
682    return dominated_blocks_;
683  }
684
685  bool IsEntryBlock() const {
686    return graph_->GetEntryBlock() == this;
687  }
688
689  bool IsExitBlock() const {
690    return graph_->GetExitBlock() == this;
691  }
692
693  bool IsSingleGoto() const;
694  bool IsSingleTryBoundary() const;
695
696  // Returns true if this block emits nothing but a jump.
697  bool IsSingleJump() const {
698    HLoopInformation* loop_info = GetLoopInformation();
699    return (IsSingleGoto() || IsSingleTryBoundary())
700           // Back edges generate a suspend check.
701           && (loop_info == nullptr || !loop_info->IsBackEdge(*this));
702  }
703
704  void AddBackEdge(HBasicBlock* back_edge) {
705    if (loop_information_ == nullptr) {
706      loop_information_ = new (graph_->GetArena()) HLoopInformation(this, graph_);
707    }
708    DCHECK_EQ(loop_information_->GetHeader(), this);
709    loop_information_->AddBackEdge(back_edge);
710  }
711
712  HGraph* GetGraph() const { return graph_; }
713  void SetGraph(HGraph* graph) { graph_ = graph; }
714
715  uint32_t GetBlockId() const { return block_id_; }
716  void SetBlockId(int id) { block_id_ = id; }
717  uint32_t GetDexPc() const { return dex_pc_; }
718
719  HBasicBlock* GetDominator() const { return dominator_; }
720  void SetDominator(HBasicBlock* dominator) { dominator_ = dominator; }
721  void AddDominatedBlock(HBasicBlock* block) { dominated_blocks_.push_back(block); }
722
723  void RemoveDominatedBlock(HBasicBlock* block) {
724    RemoveElement(dominated_blocks_, block);
725  }
726
727  void ReplaceDominatedBlock(HBasicBlock* existing, HBasicBlock* new_block) {
728    ReplaceElement(dominated_blocks_, existing, new_block);
729  }
730
731  void ClearDominanceInformation();
732
733  int NumberOfBackEdges() const {
734    return IsLoopHeader() ? loop_information_->NumberOfBackEdges() : 0;
735  }
736
737  HInstruction* GetFirstInstruction() const { return instructions_.first_instruction_; }
738  HInstruction* GetLastInstruction() const { return instructions_.last_instruction_; }
739  const HInstructionList& GetInstructions() const { return instructions_; }
740  HInstruction* GetFirstPhi() const { return phis_.first_instruction_; }
741  HInstruction* GetLastPhi() const { return phis_.last_instruction_; }
742  const HInstructionList& GetPhis() const { return phis_; }
743
744  void AddSuccessor(HBasicBlock* block) {
745    successors_.push_back(block);
746    block->predecessors_.push_back(this);
747  }
748
749  void ReplaceSuccessor(HBasicBlock* existing, HBasicBlock* new_block) {
750    size_t successor_index = GetSuccessorIndexOf(existing);
751    existing->RemovePredecessor(this);
752    new_block->predecessors_.push_back(this);
753    successors_[successor_index] = new_block;
754  }
755
756  void ReplacePredecessor(HBasicBlock* existing, HBasicBlock* new_block) {
757    size_t predecessor_index = GetPredecessorIndexOf(existing);
758    existing->RemoveSuccessor(this);
759    new_block->successors_.push_back(this);
760    predecessors_[predecessor_index] = new_block;
761  }
762
763  // Insert `this` between `predecessor` and `successor. This method
764  // preserves the indicies, and will update the first edge found between
765  // `predecessor` and `successor`.
766  void InsertBetween(HBasicBlock* predecessor, HBasicBlock* successor) {
767    size_t predecessor_index = successor->GetPredecessorIndexOf(predecessor);
768    size_t successor_index = predecessor->GetSuccessorIndexOf(successor);
769    successor->predecessors_[predecessor_index] = this;
770    predecessor->successors_[successor_index] = this;
771    successors_.push_back(successor);
772    predecessors_.push_back(predecessor);
773  }
774
775  void RemovePredecessor(HBasicBlock* block) {
776    predecessors_.erase(predecessors_.begin() + GetPredecessorIndexOf(block));
777  }
778
779  void RemoveSuccessor(HBasicBlock* block) {
780    successors_.erase(successors_.begin() + GetSuccessorIndexOf(block));
781  }
782
783  void ClearAllPredecessors() {
784    predecessors_.clear();
785  }
786
787  void AddPredecessor(HBasicBlock* block) {
788    predecessors_.push_back(block);
789    block->successors_.push_back(this);
790  }
791
792  void SwapPredecessors() {
793    DCHECK_EQ(predecessors_.size(), 2u);
794    std::swap(predecessors_[0], predecessors_[1]);
795  }
796
797  void SwapSuccessors() {
798    DCHECK_EQ(successors_.size(), 2u);
799    std::swap(successors_[0], successors_[1]);
800  }
801
802  size_t GetPredecessorIndexOf(HBasicBlock* predecessor) const {
803    return IndexOfElement(predecessors_, predecessor);
804  }
805
806  size_t GetSuccessorIndexOf(HBasicBlock* successor) const {
807    return IndexOfElement(successors_, successor);
808  }
809
810  HBasicBlock* GetSinglePredecessor() const {
811    DCHECK_EQ(GetPredecessors().size(), 1u);
812    return GetPredecessors()[0];
813  }
814
815  HBasicBlock* GetSingleSuccessor() const {
816    DCHECK_EQ(GetSuccessors().size(), 1u);
817    return GetSuccessors()[0];
818  }
819
820  // Returns whether the first occurrence of `predecessor` in the list of
821  // predecessors is at index `idx`.
822  bool IsFirstIndexOfPredecessor(HBasicBlock* predecessor, size_t idx) const {
823    DCHECK_EQ(GetPredecessors()[idx], predecessor);
824    return GetPredecessorIndexOf(predecessor) == idx;
825  }
826
827  // Create a new block between this block and its predecessors. The new block
828  // is added to the graph, all predecessor edges are relinked to it and an edge
829  // is created to `this`. Returns the new empty block. Reverse post order or
830  // loop and try/catch information are not updated.
831  HBasicBlock* CreateImmediateDominator();
832
833  // Split the block into two blocks just before `cursor`. Returns the newly
834  // created, latter block. Note that this method will add the block to the
835  // graph, create a Goto at the end of the former block and will create an edge
836  // between the blocks. It will not, however, update the reverse post order or
837  // loop and try/catch information.
838  HBasicBlock* SplitBefore(HInstruction* cursor);
839
840  // Split the block into two blocks just after `cursor`. Returns the newly
841  // created block. Note that this method just updates raw block information,
842  // like predecessors, successors, dominators, and instruction list. It does not
843  // update the graph, reverse post order, loop information, nor make sure the
844  // blocks are consistent (for example ending with a control flow instruction).
845  HBasicBlock* SplitAfter(HInstruction* cursor);
846
847  // Split catch block into two blocks after the original move-exception bytecode
848  // instruction, or at the beginning if not present. Returns the newly created,
849  // latter block, or nullptr if such block could not be created (must be dead
850  // in that case). Note that this method just updates raw block information,
851  // like predecessors, successors, dominators, and instruction list. It does not
852  // update the graph, reverse post order, loop information, nor make sure the
853  // blocks are consistent (for example ending with a control flow instruction).
854  HBasicBlock* SplitCatchBlockAfterMoveException();
855
856  // Merge `other` at the end of `this`. Successors and dominated blocks of
857  // `other` are changed to be successors and dominated blocks of `this`. Note
858  // that this method does not update the graph, reverse post order, loop
859  // information, nor make sure the blocks are consistent (for example ending
860  // with a control flow instruction).
861  void MergeWithInlined(HBasicBlock* other);
862
863  // Replace `this` with `other`. Predecessors, successors, and dominated blocks
864  // of `this` are moved to `other`.
865  // Note that this method does not update the graph, reverse post order, loop
866  // information, nor make sure the blocks are consistent (for example ending
867  // with a control flow instruction).
868  void ReplaceWith(HBasicBlock* other);
869
870  // Merge `other` at the end of `this`. This method updates loops, reverse post
871  // order, links to predecessors, successors, dominators and deletes the block
872  // from the graph. The two blocks must be successive, i.e. `this` the only
873  // predecessor of `other` and vice versa.
874  void MergeWith(HBasicBlock* other);
875
876  // Disconnects `this` from all its predecessors, successors and dominator,
877  // removes it from all loops it is included in and eventually from the graph.
878  // The block must not dominate any other block. Predecessors and successors
879  // are safely updated.
880  void DisconnectAndDelete();
881
882  void AddInstruction(HInstruction* instruction);
883  // Insert `instruction` before/after an existing instruction `cursor`.
884  void InsertInstructionBefore(HInstruction* instruction, HInstruction* cursor);
885  void InsertInstructionAfter(HInstruction* instruction, HInstruction* cursor);
886  // Replace instruction `initial` with `replacement` within this block.
887  void ReplaceAndRemoveInstructionWith(HInstruction* initial,
888                                       HInstruction* replacement);
889  void AddPhi(HPhi* phi);
890  void InsertPhiAfter(HPhi* instruction, HPhi* cursor);
891  // RemoveInstruction and RemovePhi delete a given instruction from the respective
892  // instruction list. With 'ensure_safety' set to true, it verifies that the
893  // instruction is not in use and removes it from the use lists of its inputs.
894  void RemoveInstruction(HInstruction* instruction, bool ensure_safety = true);
895  void RemovePhi(HPhi* phi, bool ensure_safety = true);
896  void RemoveInstructionOrPhi(HInstruction* instruction, bool ensure_safety = true);
897
898  bool IsLoopHeader() const {
899    return IsInLoop() && (loop_information_->GetHeader() == this);
900  }
901
902  bool IsLoopPreHeaderFirstPredecessor() const {
903    DCHECK(IsLoopHeader());
904    return GetPredecessors()[0] == GetLoopInformation()->GetPreHeader();
905  }
906
907  HLoopInformation* GetLoopInformation() const {
908    return loop_information_;
909  }
910
911  // Set the loop_information_ on this block. Overrides the current
912  // loop_information if it is an outer loop of the passed loop information.
913  // Note that this method is called while creating the loop information.
914  void SetInLoop(HLoopInformation* info) {
915    if (IsLoopHeader()) {
916      // Nothing to do. This just means `info` is an outer loop.
917    } else if (!IsInLoop()) {
918      loop_information_ = info;
919    } else if (loop_information_->Contains(*info->GetHeader())) {
920      // Block is currently part of an outer loop. Make it part of this inner loop.
921      // Note that a non loop header having a loop information means this loop information
922      // has already been populated
923      loop_information_ = info;
924    } else {
925      // Block is part of an inner loop. Do not update the loop information.
926      // Note that we cannot do the check `info->Contains(loop_information_)->GetHeader()`
927      // at this point, because this method is being called while populating `info`.
928    }
929  }
930
931  // Raw update of the loop information.
932  void SetLoopInformation(HLoopInformation* info) {
933    loop_information_ = info;
934  }
935
936  bool IsInLoop() const { return loop_information_ != nullptr; }
937
938  TryCatchInformation* GetTryCatchInformation() const { return try_catch_information_; }
939
940  void SetTryCatchInformation(TryCatchInformation* try_catch_information) {
941    try_catch_information_ = try_catch_information;
942  }
943
944  bool IsTryBlock() const {
945    return try_catch_information_ != nullptr && try_catch_information_->IsTryBlock();
946  }
947
948  bool IsCatchBlock() const {
949    return try_catch_information_ != nullptr && try_catch_information_->IsCatchBlock();
950  }
951
952  // Returns the try entry that this block's successors should have. They will
953  // be in the same try, unless the block ends in a try boundary. In that case,
954  // the appropriate try entry will be returned.
955  const HTryBoundary* ComputeTryEntryOfSuccessors() const;
956
957  bool HasThrowingInstructions() const;
958
959  // Returns whether this block dominates the blocked passed as parameter.
960  bool Dominates(HBasicBlock* block) const;
961
962  size_t GetLifetimeStart() const { return lifetime_start_; }
963  size_t GetLifetimeEnd() const { return lifetime_end_; }
964
965  void SetLifetimeStart(size_t start) { lifetime_start_ = start; }
966  void SetLifetimeEnd(size_t end) { lifetime_end_ = end; }
967
968  bool EndsWithControlFlowInstruction() const;
969  bool EndsWithIf() const;
970  bool EndsWithTryBoundary() const;
971  bool HasSinglePhi() const;
972
973 private:
974  HGraph* graph_;
975  ArenaVector<HBasicBlock*> predecessors_;
976  ArenaVector<HBasicBlock*> successors_;
977  HInstructionList instructions_;
978  HInstructionList phis_;
979  HLoopInformation* loop_information_;
980  HBasicBlock* dominator_;
981  ArenaVector<HBasicBlock*> dominated_blocks_;
982  uint32_t block_id_;
983  // The dex program counter of the first instruction of this block.
984  const uint32_t dex_pc_;
985  size_t lifetime_start_;
986  size_t lifetime_end_;
987  TryCatchInformation* try_catch_information_;
988
989  friend class HGraph;
990  friend class HInstruction;
991
992  DISALLOW_COPY_AND_ASSIGN(HBasicBlock);
993};
994
995// Iterates over the LoopInformation of all loops which contain 'block'
996// from the innermost to the outermost.
997class HLoopInformationOutwardIterator : public ValueObject {
998 public:
999  explicit HLoopInformationOutwardIterator(const HBasicBlock& block)
1000      : current_(block.GetLoopInformation()) {}
1001
1002  bool Done() const { return current_ == nullptr; }
1003
1004  void Advance() {
1005    DCHECK(!Done());
1006    current_ = current_->GetPreHeader()->GetLoopInformation();
1007  }
1008
1009  HLoopInformation* Current() const {
1010    DCHECK(!Done());
1011    return current_;
1012  }
1013
1014 private:
1015  HLoopInformation* current_;
1016
1017  DISALLOW_COPY_AND_ASSIGN(HLoopInformationOutwardIterator);
1018};
1019
1020#define FOR_EACH_CONCRETE_INSTRUCTION_COMMON(M)                         \
1021  M(Above, Condition)                                                   \
1022  M(AboveOrEqual, Condition)                                            \
1023  M(Add, BinaryOperation)                                               \
1024  M(And, BinaryOperation)                                               \
1025  M(ArrayGet, Instruction)                                              \
1026  M(ArrayLength, Instruction)                                           \
1027  M(ArraySet, Instruction)                                              \
1028  M(Below, Condition)                                                   \
1029  M(BelowOrEqual, Condition)                                            \
1030  M(BooleanNot, UnaryOperation)                                         \
1031  M(BoundsCheck, Instruction)                                           \
1032  M(BoundType, Instruction)                                             \
1033  M(CheckCast, Instruction)                                             \
1034  M(ClearException, Instruction)                                        \
1035  M(ClinitCheck, Instruction)                                           \
1036  M(Compare, BinaryOperation)                                           \
1037  M(CurrentMethod, Instruction)                                         \
1038  M(Deoptimize, Instruction)                                            \
1039  M(Div, BinaryOperation)                                               \
1040  M(DivZeroCheck, Instruction)                                          \
1041  M(DoubleConstant, Constant)                                           \
1042  M(Equal, Condition)                                                   \
1043  M(Exit, Instruction)                                                  \
1044  M(FakeString, Instruction)                                            \
1045  M(FloatConstant, Constant)                                            \
1046  M(Goto, Instruction)                                                  \
1047  M(GreaterThan, Condition)                                             \
1048  M(GreaterThanOrEqual, Condition)                                      \
1049  M(If, Instruction)                                                    \
1050  M(InstanceFieldGet, Instruction)                                      \
1051  M(InstanceFieldSet, Instruction)                                      \
1052  M(InstanceOf, Instruction)                                            \
1053  M(IntConstant, Constant)                                              \
1054  M(InvokeUnresolved, Invoke)                                           \
1055  M(InvokeInterface, Invoke)                                            \
1056  M(InvokeStaticOrDirect, Invoke)                                       \
1057  M(InvokeVirtual, Invoke)                                              \
1058  M(LessThan, Condition)                                                \
1059  M(LessThanOrEqual, Condition)                                         \
1060  M(LoadClass, Instruction)                                             \
1061  M(LoadException, Instruction)                                         \
1062  M(LoadLocal, Instruction)                                             \
1063  M(LoadString, Instruction)                                            \
1064  M(Local, Instruction)                                                 \
1065  M(LongConstant, Constant)                                             \
1066  M(MemoryBarrier, Instruction)                                         \
1067  M(MonitorOperation, Instruction)                                      \
1068  M(Mul, BinaryOperation)                                               \
1069  M(NativeDebugInfo, Instruction)                                       \
1070  M(Neg, UnaryOperation)                                                \
1071  M(NewArray, Instruction)                                              \
1072  M(NewInstance, Instruction)                                           \
1073  M(Not, UnaryOperation)                                                \
1074  M(NotEqual, Condition)                                                \
1075  M(NullConstant, Instruction)                                          \
1076  M(NullCheck, Instruction)                                             \
1077  M(Or, BinaryOperation)                                                \
1078  M(PackedSwitch, Instruction)                                          \
1079  M(ParallelMove, Instruction)                                          \
1080  M(ParameterValue, Instruction)                                        \
1081  M(Phi, Instruction)                                                   \
1082  M(Rem, BinaryOperation)                                               \
1083  M(Return, Instruction)                                                \
1084  M(ReturnVoid, Instruction)                                            \
1085  M(Ror, BinaryOperation)                                               \
1086  M(Shl, BinaryOperation)                                               \
1087  M(Shr, BinaryOperation)                                               \
1088  M(StaticFieldGet, Instruction)                                        \
1089  M(StaticFieldSet, Instruction)                                        \
1090  M(UnresolvedInstanceFieldGet, Instruction)                            \
1091  M(UnresolvedInstanceFieldSet, Instruction)                            \
1092  M(UnresolvedStaticFieldGet, Instruction)                              \
1093  M(UnresolvedStaticFieldSet, Instruction)                              \
1094  M(StoreLocal, Instruction)                                            \
1095  M(Sub, BinaryOperation)                                               \
1096  M(SuspendCheck, Instruction)                                          \
1097  M(Temporary, Instruction)                                             \
1098  M(Throw, Instruction)                                                 \
1099  M(TryBoundary, Instruction)                                           \
1100  M(TypeConversion, Instruction)                                        \
1101  M(UShr, BinaryOperation)                                              \
1102  M(Xor, BinaryOperation)                                               \
1103
1104#ifndef ART_ENABLE_CODEGEN_arm
1105#define FOR_EACH_CONCRETE_INSTRUCTION_ARM(M)
1106#else
1107#define FOR_EACH_CONCRETE_INSTRUCTION_ARM(M)                            \
1108  M(ArmDexCacheArraysBase, Instruction)
1109#endif
1110
1111#ifndef ART_ENABLE_CODEGEN_arm64
1112#define FOR_EACH_CONCRETE_INSTRUCTION_ARM64(M)
1113#else
1114#define FOR_EACH_CONCRETE_INSTRUCTION_ARM64(M)                          \
1115  M(Arm64DataProcWithShifterOp, Instruction)                            \
1116  M(Arm64IntermediateAddress, Instruction)                              \
1117  M(Arm64MultiplyAccumulate, Instruction)
1118#endif
1119
1120#define FOR_EACH_CONCRETE_INSTRUCTION_MIPS(M)
1121
1122#define FOR_EACH_CONCRETE_INSTRUCTION_MIPS64(M)
1123
1124#ifndef ART_ENABLE_CODEGEN_x86
1125#define FOR_EACH_CONCRETE_INSTRUCTION_X86(M)
1126#else
1127#define FOR_EACH_CONCRETE_INSTRUCTION_X86(M)                            \
1128  M(X86ComputeBaseMethodAddress, Instruction)                           \
1129  M(X86LoadFromConstantTable, Instruction)                              \
1130  M(X86PackedSwitch, Instruction)
1131#endif
1132
1133#define FOR_EACH_CONCRETE_INSTRUCTION_X86_64(M)
1134
1135#define FOR_EACH_CONCRETE_INSTRUCTION(M)                                \
1136  FOR_EACH_CONCRETE_INSTRUCTION_COMMON(M)                               \
1137  FOR_EACH_CONCRETE_INSTRUCTION_ARM(M)                                  \
1138  FOR_EACH_CONCRETE_INSTRUCTION_ARM64(M)                                \
1139  FOR_EACH_CONCRETE_INSTRUCTION_MIPS(M)                                 \
1140  FOR_EACH_CONCRETE_INSTRUCTION_MIPS64(M)                               \
1141  FOR_EACH_CONCRETE_INSTRUCTION_X86(M)                                  \
1142  FOR_EACH_CONCRETE_INSTRUCTION_X86_64(M)
1143
1144#define FOR_EACH_ABSTRACT_INSTRUCTION(M)                                \
1145  M(Condition, BinaryOperation)                                         \
1146  M(Constant, Instruction)                                              \
1147  M(UnaryOperation, Instruction)                                        \
1148  M(BinaryOperation, Instruction)                                       \
1149  M(Invoke, Instruction)
1150
1151#define FOR_EACH_INSTRUCTION(M)                                         \
1152  FOR_EACH_CONCRETE_INSTRUCTION(M)                                      \
1153  FOR_EACH_ABSTRACT_INSTRUCTION(M)
1154
1155#define FORWARD_DECLARATION(type, super) class H##type;
1156FOR_EACH_INSTRUCTION(FORWARD_DECLARATION)
1157#undef FORWARD_DECLARATION
1158
1159#define DECLARE_INSTRUCTION(type)                                       \
1160  InstructionKind GetKindInternal() const OVERRIDE { return k##type; }  \
1161  const char* DebugName() const OVERRIDE { return #type; }              \
1162  bool InstructionTypeEquals(HInstruction* other) const OVERRIDE {      \
1163    return other->Is##type();                                           \
1164  }                                                                     \
1165  void Accept(HGraphVisitor* visitor) OVERRIDE
1166
1167#define DECLARE_ABSTRACT_INSTRUCTION(type)                              \
1168  bool Is##type() const { return As##type() != nullptr; }               \
1169  const H##type* As##type() const { return this; }                      \
1170  H##type* As##type() { return this; }
1171
1172template <typename T> class HUseList;
1173
1174template <typename T>
1175class HUseListNode : public ArenaObject<kArenaAllocUseListNode> {
1176 public:
1177  HUseListNode* GetPrevious() const { return prev_; }
1178  HUseListNode* GetNext() const { return next_; }
1179  T GetUser() const { return user_; }
1180  size_t GetIndex() const { return index_; }
1181  void SetIndex(size_t index) { index_ = index; }
1182
1183 private:
1184  HUseListNode(T user, size_t index)
1185      : user_(user), index_(index), prev_(nullptr), next_(nullptr) {}
1186
1187  T const user_;
1188  size_t index_;
1189  HUseListNode<T>* prev_;
1190  HUseListNode<T>* next_;
1191
1192  friend class HUseList<T>;
1193
1194  DISALLOW_COPY_AND_ASSIGN(HUseListNode);
1195};
1196
1197template <typename T>
1198class HUseList : public ValueObject {
1199 public:
1200  HUseList() : first_(nullptr) {}
1201
1202  void Clear() {
1203    first_ = nullptr;
1204  }
1205
1206  // Adds a new entry at the beginning of the use list and returns
1207  // the newly created node.
1208  HUseListNode<T>* AddUse(T user, size_t index, ArenaAllocator* arena) {
1209    HUseListNode<T>* new_node = new (arena) HUseListNode<T>(user, index);
1210    if (IsEmpty()) {
1211      first_ = new_node;
1212    } else {
1213      first_->prev_ = new_node;
1214      new_node->next_ = first_;
1215      first_ = new_node;
1216    }
1217    return new_node;
1218  }
1219
1220  HUseListNode<T>* GetFirst() const {
1221    return first_;
1222  }
1223
1224  void Remove(HUseListNode<T>* node) {
1225    DCHECK(node != nullptr);
1226    DCHECK(Contains(node));
1227
1228    if (node->prev_ != nullptr) {
1229      node->prev_->next_ = node->next_;
1230    }
1231    if (node->next_ != nullptr) {
1232      node->next_->prev_ = node->prev_;
1233    }
1234    if (node == first_) {
1235      first_ = node->next_;
1236    }
1237  }
1238
1239  bool Contains(const HUseListNode<T>* node) const {
1240    if (node == nullptr) {
1241      return false;
1242    }
1243    for (HUseListNode<T>* current = first_; current != nullptr; current = current->GetNext()) {
1244      if (current == node) {
1245        return true;
1246      }
1247    }
1248    return false;
1249  }
1250
1251  bool IsEmpty() const {
1252    return first_ == nullptr;
1253  }
1254
1255  bool HasOnlyOneUse() const {
1256    return first_ != nullptr && first_->next_ == nullptr;
1257  }
1258
1259  size_t SizeSlow() const {
1260    size_t count = 0;
1261    for (HUseListNode<T>* current = first_; current != nullptr; current = current->GetNext()) {
1262      ++count;
1263    }
1264    return count;
1265  }
1266
1267 private:
1268  HUseListNode<T>* first_;
1269};
1270
1271template<typename T>
1272class HUseIterator : public ValueObject {
1273 public:
1274  explicit HUseIterator(const HUseList<T>& uses) : current_(uses.GetFirst()) {}
1275
1276  bool Done() const { return current_ == nullptr; }
1277
1278  void Advance() {
1279    DCHECK(!Done());
1280    current_ = current_->GetNext();
1281  }
1282
1283  HUseListNode<T>* Current() const {
1284    DCHECK(!Done());
1285    return current_;
1286  }
1287
1288 private:
1289  HUseListNode<T>* current_;
1290
1291  friend class HValue;
1292};
1293
1294// This class is used by HEnvironment and HInstruction classes to record the
1295// instructions they use and pointers to the corresponding HUseListNodes kept
1296// by the used instructions.
1297template <typename T>
1298class HUserRecord : public ValueObject {
1299 public:
1300  HUserRecord() : instruction_(nullptr), use_node_(nullptr) {}
1301  explicit HUserRecord(HInstruction* instruction) : instruction_(instruction), use_node_(nullptr) {}
1302
1303  HUserRecord(const HUserRecord<T>& old_record, HUseListNode<T>* use_node)
1304    : instruction_(old_record.instruction_), use_node_(use_node) {
1305    DCHECK(instruction_ != nullptr);
1306    DCHECK(use_node_ != nullptr);
1307    DCHECK(old_record.use_node_ == nullptr);
1308  }
1309
1310  HInstruction* GetInstruction() const { return instruction_; }
1311  HUseListNode<T>* GetUseNode() const { return use_node_; }
1312
1313 private:
1314  // Instruction used by the user.
1315  HInstruction* instruction_;
1316
1317  // Corresponding entry in the use list kept by 'instruction_'.
1318  HUseListNode<T>* use_node_;
1319};
1320
1321/**
1322 * Side-effects representation.
1323 *
1324 * For write/read dependences on fields/arrays, the dependence analysis uses
1325 * type disambiguation (e.g. a float field write cannot modify the value of an
1326 * integer field read) and the access type (e.g.  a reference array write cannot
1327 * modify the value of a reference field read [although it may modify the
1328 * reference fetch prior to reading the field, which is represented by its own
1329 * write/read dependence]). The analysis makes conservative points-to
1330 * assumptions on reference types (e.g. two same typed arrays are assumed to be
1331 * the same, and any reference read depends on any reference read without
1332 * further regard of its type).
1333 *
1334 * The internal representation uses 38-bit and is described in the table below.
1335 * The first line indicates the side effect, and for field/array accesses the
1336 * second line indicates the type of the access (in the order of the
1337 * Primitive::Type enum).
1338 * The two numbered lines below indicate the bit position in the bitfield (read
1339 * vertically).
1340 *
1341 *   |Depends on GC|ARRAY-R  |FIELD-R  |Can trigger GC|ARRAY-W  |FIELD-W  |
1342 *   +-------------+---------+---------+--------------+---------+---------+
1343 *   |             |DFJISCBZL|DFJISCBZL|              |DFJISCBZL|DFJISCBZL|
1344 *   |      3      |333333322|222222221|       1      |111111110|000000000|
1345 *   |      7      |654321098|765432109|       8      |765432109|876543210|
1346 *
1347 * Note that, to ease the implementation, 'changes' bits are least significant
1348 * bits, while 'dependency' bits are most significant bits.
1349 */
1350class SideEffects : public ValueObject {
1351 public:
1352  SideEffects() : flags_(0) {}
1353
1354  static SideEffects None() {
1355    return SideEffects(0);
1356  }
1357
1358  static SideEffects All() {
1359    return SideEffects(kAllChangeBits | kAllDependOnBits);
1360  }
1361
1362  static SideEffects AllChanges() {
1363    return SideEffects(kAllChangeBits);
1364  }
1365
1366  static SideEffects AllDependencies() {
1367    return SideEffects(kAllDependOnBits);
1368  }
1369
1370  static SideEffects AllExceptGCDependency() {
1371    return AllWritesAndReads().Union(SideEffects::CanTriggerGC());
1372  }
1373
1374  static SideEffects AllWritesAndReads() {
1375    return SideEffects(kAllWrites | kAllReads);
1376  }
1377
1378  static SideEffects AllWrites() {
1379    return SideEffects(kAllWrites);
1380  }
1381
1382  static SideEffects AllReads() {
1383    return SideEffects(kAllReads);
1384  }
1385
1386  static SideEffects FieldWriteOfType(Primitive::Type type, bool is_volatile) {
1387    return is_volatile
1388        ? AllWritesAndReads()
1389        : SideEffects(TypeFlagWithAlias(type, kFieldWriteOffset));
1390  }
1391
1392  static SideEffects ArrayWriteOfType(Primitive::Type type) {
1393    return SideEffects(TypeFlagWithAlias(type, kArrayWriteOffset));
1394  }
1395
1396  static SideEffects FieldReadOfType(Primitive::Type type, bool is_volatile) {
1397    return is_volatile
1398        ? AllWritesAndReads()
1399        : SideEffects(TypeFlagWithAlias(type, kFieldReadOffset));
1400  }
1401
1402  static SideEffects ArrayReadOfType(Primitive::Type type) {
1403    return SideEffects(TypeFlagWithAlias(type, kArrayReadOffset));
1404  }
1405
1406  static SideEffects CanTriggerGC() {
1407    return SideEffects(1ULL << kCanTriggerGCBit);
1408  }
1409
1410  static SideEffects DependsOnGC() {
1411    return SideEffects(1ULL << kDependsOnGCBit);
1412  }
1413
1414  // Combines the side-effects of this and the other.
1415  SideEffects Union(SideEffects other) const {
1416    return SideEffects(flags_ | other.flags_);
1417  }
1418
1419  SideEffects Exclusion(SideEffects other) const {
1420    return SideEffects(flags_ & ~other.flags_);
1421  }
1422
1423  void Add(SideEffects other) {
1424    flags_ |= other.flags_;
1425  }
1426
1427  bool Includes(SideEffects other) const {
1428    return (other.flags_ & flags_) == other.flags_;
1429  }
1430
1431  bool HasSideEffects() const {
1432    return (flags_ & kAllChangeBits);
1433  }
1434
1435  bool HasDependencies() const {
1436    return (flags_ & kAllDependOnBits);
1437  }
1438
1439  // Returns true if there are no side effects or dependencies.
1440  bool DoesNothing() const {
1441    return flags_ == 0;
1442  }
1443
1444  // Returns true if something is written.
1445  bool DoesAnyWrite() const {
1446    return (flags_ & kAllWrites);
1447  }
1448
1449  // Returns true if something is read.
1450  bool DoesAnyRead() const {
1451    return (flags_ & kAllReads);
1452  }
1453
1454  // Returns true if potentially everything is written and read
1455  // (every type and every kind of access).
1456  bool DoesAllReadWrite() const {
1457    return (flags_ & (kAllWrites | kAllReads)) == (kAllWrites | kAllReads);
1458  }
1459
1460  bool DoesAll() const {
1461    return flags_ == (kAllChangeBits | kAllDependOnBits);
1462  }
1463
1464  // Returns true if `this` may read something written by `other`.
1465  bool MayDependOn(SideEffects other) const {
1466    const uint64_t depends_on_flags = (flags_ & kAllDependOnBits) >> kChangeBits;
1467    return (other.flags_ & depends_on_flags);
1468  }
1469
1470  // Returns string representation of flags (for debugging only).
1471  // Format: |x|DFJISCBZL|DFJISCBZL|y|DFJISCBZL|DFJISCBZL|
1472  std::string ToString() const {
1473    std::string flags = "|";
1474    for (int s = kLastBit; s >= 0; s--) {
1475      bool current_bit_is_set = ((flags_ >> s) & 1) != 0;
1476      if ((s == kDependsOnGCBit) || (s == kCanTriggerGCBit)) {
1477        // This is a bit for the GC side effect.
1478        if (current_bit_is_set) {
1479          flags += "GC";
1480        }
1481        flags += "|";
1482      } else {
1483        // This is a bit for the array/field analysis.
1484        // The underscore character stands for the 'can trigger GC' bit.
1485        static const char *kDebug = "LZBCSIJFDLZBCSIJFD_LZBCSIJFDLZBCSIJFD";
1486        if (current_bit_is_set) {
1487          flags += kDebug[s];
1488        }
1489        if ((s == kFieldWriteOffset) || (s == kArrayWriteOffset) ||
1490            (s == kFieldReadOffset) || (s == kArrayReadOffset)) {
1491          flags += "|";
1492        }
1493      }
1494    }
1495    return flags;
1496  }
1497
1498  bool Equals(const SideEffects& other) const { return flags_ == other.flags_; }
1499
1500 private:
1501  static constexpr int kFieldArrayAnalysisBits = 9;
1502
1503  static constexpr int kFieldWriteOffset = 0;
1504  static constexpr int kArrayWriteOffset = kFieldWriteOffset + kFieldArrayAnalysisBits;
1505  static constexpr int kLastBitForWrites = kArrayWriteOffset + kFieldArrayAnalysisBits - 1;
1506  static constexpr int kCanTriggerGCBit = kLastBitForWrites + 1;
1507
1508  static constexpr int kChangeBits = kCanTriggerGCBit + 1;
1509
1510  static constexpr int kFieldReadOffset = kCanTriggerGCBit + 1;
1511  static constexpr int kArrayReadOffset = kFieldReadOffset + kFieldArrayAnalysisBits;
1512  static constexpr int kLastBitForReads = kArrayReadOffset + kFieldArrayAnalysisBits - 1;
1513  static constexpr int kDependsOnGCBit = kLastBitForReads + 1;
1514
1515  static constexpr int kLastBit = kDependsOnGCBit;
1516  static constexpr int kDependOnBits = kLastBit + 1 - kChangeBits;
1517
1518  // Aliases.
1519
1520  static_assert(kChangeBits == kDependOnBits,
1521                "the 'change' bits should match the 'depend on' bits.");
1522
1523  static constexpr uint64_t kAllChangeBits = ((1ULL << kChangeBits) - 1);
1524  static constexpr uint64_t kAllDependOnBits = ((1ULL << kDependOnBits) - 1) << kChangeBits;
1525  static constexpr uint64_t kAllWrites =
1526      ((1ULL << (kLastBitForWrites + 1 - kFieldWriteOffset)) - 1) << kFieldWriteOffset;
1527  static constexpr uint64_t kAllReads =
1528      ((1ULL << (kLastBitForReads + 1 - kFieldReadOffset)) - 1) << kFieldReadOffset;
1529
1530  // Work around the fact that HIR aliases I/F and J/D.
1531  // TODO: remove this interceptor once HIR types are clean
1532  static uint64_t TypeFlagWithAlias(Primitive::Type type, int offset) {
1533    switch (type) {
1534      case Primitive::kPrimInt:
1535      case Primitive::kPrimFloat:
1536        return TypeFlag(Primitive::kPrimInt, offset) |
1537               TypeFlag(Primitive::kPrimFloat, offset);
1538      case Primitive::kPrimLong:
1539      case Primitive::kPrimDouble:
1540        return TypeFlag(Primitive::kPrimLong, offset) |
1541               TypeFlag(Primitive::kPrimDouble, offset);
1542      default:
1543        return TypeFlag(type, offset);
1544    }
1545  }
1546
1547  // Translates type to bit flag.
1548  static uint64_t TypeFlag(Primitive::Type type, int offset) {
1549    CHECK_NE(type, Primitive::kPrimVoid);
1550    const uint64_t one = 1;
1551    const int shift = type;  // 0-based consecutive enum
1552    DCHECK_LE(kFieldWriteOffset, shift);
1553    DCHECK_LT(shift, kArrayWriteOffset);
1554    return one << (type + offset);
1555  }
1556
1557  // Private constructor on direct flags value.
1558  explicit SideEffects(uint64_t flags) : flags_(flags) {}
1559
1560  uint64_t flags_;
1561};
1562
1563// A HEnvironment object contains the values of virtual registers at a given location.
1564class HEnvironment : public ArenaObject<kArenaAllocEnvironment> {
1565 public:
1566  HEnvironment(ArenaAllocator* arena,
1567               size_t number_of_vregs,
1568               const DexFile& dex_file,
1569               uint32_t method_idx,
1570               uint32_t dex_pc,
1571               InvokeType invoke_type,
1572               HInstruction* holder)
1573     : vregs_(number_of_vregs, arena->Adapter(kArenaAllocEnvironmentVRegs)),
1574       locations_(number_of_vregs, arena->Adapter(kArenaAllocEnvironmentLocations)),
1575       parent_(nullptr),
1576       dex_file_(dex_file),
1577       method_idx_(method_idx),
1578       dex_pc_(dex_pc),
1579       invoke_type_(invoke_type),
1580       holder_(holder) {
1581  }
1582
1583  HEnvironment(ArenaAllocator* arena, const HEnvironment& to_copy, HInstruction* holder)
1584      : HEnvironment(arena,
1585                     to_copy.Size(),
1586                     to_copy.GetDexFile(),
1587                     to_copy.GetMethodIdx(),
1588                     to_copy.GetDexPc(),
1589                     to_copy.GetInvokeType(),
1590                     holder) {}
1591
1592  void SetAndCopyParentChain(ArenaAllocator* allocator, HEnvironment* parent) {
1593    if (parent_ != nullptr) {
1594      parent_->SetAndCopyParentChain(allocator, parent);
1595    } else {
1596      parent_ = new (allocator) HEnvironment(allocator, *parent, holder_);
1597      parent_->CopyFrom(parent);
1598      if (parent->GetParent() != nullptr) {
1599        parent_->SetAndCopyParentChain(allocator, parent->GetParent());
1600      }
1601    }
1602  }
1603
1604  void CopyFrom(const ArenaVector<HInstruction*>& locals);
1605  void CopyFrom(HEnvironment* environment);
1606
1607  // Copy from `env`. If it's a loop phi for `loop_header`, copy the first
1608  // input to the loop phi instead. This is for inserting instructions that
1609  // require an environment (like HDeoptimization) in the loop pre-header.
1610  void CopyFromWithLoopPhiAdjustment(HEnvironment* env, HBasicBlock* loop_header);
1611
1612  void SetRawEnvAt(size_t index, HInstruction* instruction) {
1613    vregs_[index] = HUserRecord<HEnvironment*>(instruction);
1614  }
1615
1616  HInstruction* GetInstructionAt(size_t index) const {
1617    return vregs_[index].GetInstruction();
1618  }
1619
1620  void RemoveAsUserOfInput(size_t index) const;
1621
1622  size_t Size() const { return vregs_.size(); }
1623
1624  HEnvironment* GetParent() const { return parent_; }
1625
1626  void SetLocationAt(size_t index, Location location) {
1627    locations_[index] = location;
1628  }
1629
1630  Location GetLocationAt(size_t index) const {
1631    return locations_[index];
1632  }
1633
1634  uint32_t GetDexPc() const {
1635    return dex_pc_;
1636  }
1637
1638  uint32_t GetMethodIdx() const {
1639    return method_idx_;
1640  }
1641
1642  InvokeType GetInvokeType() const {
1643    return invoke_type_;
1644  }
1645
1646  const DexFile& GetDexFile() const {
1647    return dex_file_;
1648  }
1649
1650  HInstruction* GetHolder() const {
1651    return holder_;
1652  }
1653
1654
1655  bool IsFromInlinedInvoke() const {
1656    return GetParent() != nullptr;
1657  }
1658
1659 private:
1660  // Record instructions' use entries of this environment for constant-time removal.
1661  // It should only be called by HInstruction when a new environment use is added.
1662  void RecordEnvUse(HUseListNode<HEnvironment*>* env_use) {
1663    DCHECK(env_use->GetUser() == this);
1664    size_t index = env_use->GetIndex();
1665    vregs_[index] = HUserRecord<HEnvironment*>(vregs_[index], env_use);
1666  }
1667
1668  ArenaVector<HUserRecord<HEnvironment*>> vregs_;
1669  ArenaVector<Location> locations_;
1670  HEnvironment* parent_;
1671  const DexFile& dex_file_;
1672  const uint32_t method_idx_;
1673  const uint32_t dex_pc_;
1674  const InvokeType invoke_type_;
1675
1676  // The instruction that holds this environment.
1677  HInstruction* const holder_;
1678
1679  friend class HInstruction;
1680
1681  DISALLOW_COPY_AND_ASSIGN(HEnvironment);
1682};
1683
1684class ReferenceTypeInfo : ValueObject {
1685 public:
1686  typedef Handle<mirror::Class> TypeHandle;
1687
1688  static ReferenceTypeInfo Create(TypeHandle type_handle, bool is_exact) {
1689    // The constructor will check that the type_handle is valid.
1690    return ReferenceTypeInfo(type_handle, is_exact);
1691  }
1692
1693  static ReferenceTypeInfo CreateInvalid() { return ReferenceTypeInfo(); }
1694
1695  static bool IsValidHandle(TypeHandle handle) SHARED_REQUIRES(Locks::mutator_lock_) {
1696    return handle.GetReference() != nullptr;
1697  }
1698
1699  bool IsValid() const SHARED_REQUIRES(Locks::mutator_lock_) {
1700    return IsValidHandle(type_handle_);
1701  }
1702
1703  bool IsExact() const { return is_exact_; }
1704
1705  bool IsObjectClass() const SHARED_REQUIRES(Locks::mutator_lock_) {
1706    DCHECK(IsValid());
1707    return GetTypeHandle()->IsObjectClass();
1708  }
1709
1710  bool IsStringClass() const SHARED_REQUIRES(Locks::mutator_lock_) {
1711    DCHECK(IsValid());
1712    return GetTypeHandle()->IsStringClass();
1713  }
1714
1715  bool IsObjectArray() const SHARED_REQUIRES(Locks::mutator_lock_) {
1716    DCHECK(IsValid());
1717    return IsArrayClass() && GetTypeHandle()->GetComponentType()->IsObjectClass();
1718  }
1719
1720  bool IsInterface() const SHARED_REQUIRES(Locks::mutator_lock_) {
1721    DCHECK(IsValid());
1722    return GetTypeHandle()->IsInterface();
1723  }
1724
1725  bool IsArrayClass() const SHARED_REQUIRES(Locks::mutator_lock_) {
1726    DCHECK(IsValid());
1727    return GetTypeHandle()->IsArrayClass();
1728  }
1729
1730  bool IsPrimitiveArrayClass() const SHARED_REQUIRES(Locks::mutator_lock_) {
1731    DCHECK(IsValid());
1732    return GetTypeHandle()->IsPrimitiveArray();
1733  }
1734
1735  bool IsNonPrimitiveArrayClass() const SHARED_REQUIRES(Locks::mutator_lock_) {
1736    DCHECK(IsValid());
1737    return GetTypeHandle()->IsArrayClass() && !GetTypeHandle()->IsPrimitiveArray();
1738  }
1739
1740  bool CanArrayHold(ReferenceTypeInfo rti)  const SHARED_REQUIRES(Locks::mutator_lock_) {
1741    DCHECK(IsValid());
1742    if (!IsExact()) return false;
1743    if (!IsArrayClass()) return false;
1744    return GetTypeHandle()->GetComponentType()->IsAssignableFrom(rti.GetTypeHandle().Get());
1745  }
1746
1747  bool CanArrayHoldValuesOf(ReferenceTypeInfo rti)  const SHARED_REQUIRES(Locks::mutator_lock_) {
1748    DCHECK(IsValid());
1749    if (!IsExact()) return false;
1750    if (!IsArrayClass()) return false;
1751    if (!rti.IsArrayClass()) return false;
1752    return GetTypeHandle()->GetComponentType()->IsAssignableFrom(
1753        rti.GetTypeHandle()->GetComponentType());
1754  }
1755
1756  Handle<mirror::Class> GetTypeHandle() const { return type_handle_; }
1757
1758  bool IsSupertypeOf(ReferenceTypeInfo rti) const SHARED_REQUIRES(Locks::mutator_lock_) {
1759    DCHECK(IsValid());
1760    DCHECK(rti.IsValid());
1761    return GetTypeHandle()->IsAssignableFrom(rti.GetTypeHandle().Get());
1762  }
1763
1764  bool IsStrictSupertypeOf(ReferenceTypeInfo rti) const SHARED_REQUIRES(Locks::mutator_lock_) {
1765    DCHECK(IsValid());
1766    DCHECK(rti.IsValid());
1767    return GetTypeHandle().Get() != rti.GetTypeHandle().Get() &&
1768        GetTypeHandle()->IsAssignableFrom(rti.GetTypeHandle().Get());
1769  }
1770
1771  // Returns true if the type information provide the same amount of details.
1772  // Note that it does not mean that the instructions have the same actual type
1773  // (because the type can be the result of a merge).
1774  bool IsEqual(ReferenceTypeInfo rti) SHARED_REQUIRES(Locks::mutator_lock_) {
1775    if (!IsValid() && !rti.IsValid()) {
1776      // Invalid types are equal.
1777      return true;
1778    }
1779    if (!IsValid() || !rti.IsValid()) {
1780      // One is valid, the other not.
1781      return false;
1782    }
1783    return IsExact() == rti.IsExact()
1784        && GetTypeHandle().Get() == rti.GetTypeHandle().Get();
1785  }
1786
1787 private:
1788  ReferenceTypeInfo();
1789  ReferenceTypeInfo(TypeHandle type_handle, bool is_exact);
1790
1791  // The class of the object.
1792  TypeHandle type_handle_;
1793  // Whether or not the type is exact or a superclass of the actual type.
1794  // Whether or not we have any information about this type.
1795  bool is_exact_;
1796};
1797
1798std::ostream& operator<<(std::ostream& os, const ReferenceTypeInfo& rhs);
1799
1800class HInstruction : public ArenaObject<kArenaAllocInstruction> {
1801 public:
1802  HInstruction(SideEffects side_effects, uint32_t dex_pc)
1803      : previous_(nullptr),
1804        next_(nullptr),
1805        block_(nullptr),
1806        dex_pc_(dex_pc),
1807        id_(-1),
1808        ssa_index_(-1),
1809        environment_(nullptr),
1810        locations_(nullptr),
1811        live_interval_(nullptr),
1812        lifetime_position_(kNoLifetime),
1813        side_effects_(side_effects),
1814        reference_type_info_(ReferenceTypeInfo::CreateInvalid()) {}
1815
1816  virtual ~HInstruction() {}
1817
1818#define DECLARE_KIND(type, super) k##type,
1819  enum InstructionKind {
1820    FOR_EACH_INSTRUCTION(DECLARE_KIND)
1821  };
1822#undef DECLARE_KIND
1823
1824  HInstruction* GetNext() const { return next_; }
1825  HInstruction* GetPrevious() const { return previous_; }
1826
1827  HInstruction* GetNextDisregardingMoves() const;
1828  HInstruction* GetPreviousDisregardingMoves() const;
1829
1830  HBasicBlock* GetBlock() const { return block_; }
1831  ArenaAllocator* GetArena() const { return block_->GetGraph()->GetArena(); }
1832  void SetBlock(HBasicBlock* block) { block_ = block; }
1833  bool IsInBlock() const { return block_ != nullptr; }
1834  bool IsInLoop() const { return block_->IsInLoop(); }
1835  bool IsLoopHeaderPhi() { return IsPhi() && block_->IsLoopHeader(); }
1836
1837  virtual size_t InputCount() const = 0;
1838  HInstruction* InputAt(size_t i) const { return InputRecordAt(i).GetInstruction(); }
1839
1840  virtual void Accept(HGraphVisitor* visitor) = 0;
1841  virtual const char* DebugName() const = 0;
1842
1843  virtual Primitive::Type GetType() const { return Primitive::kPrimVoid; }
1844  void SetRawInputAt(size_t index, HInstruction* input) {
1845    SetRawInputRecordAt(index, HUserRecord<HInstruction*>(input));
1846  }
1847
1848  virtual bool NeedsEnvironment() const { return false; }
1849
1850  uint32_t GetDexPc() const { return dex_pc_; }
1851
1852  virtual bool IsControlFlow() const { return false; }
1853
1854  virtual bool CanThrow() const { return false; }
1855  bool CanThrowIntoCatchBlock() const { return CanThrow() && block_->IsTryBlock(); }
1856
1857  bool HasSideEffects() const { return side_effects_.HasSideEffects(); }
1858  bool DoesAnyWrite() const { return side_effects_.DoesAnyWrite(); }
1859
1860  // Does not apply for all instructions, but having this at top level greatly
1861  // simplifies the null check elimination.
1862  // TODO: Consider merging can_be_null into ReferenceTypeInfo.
1863  virtual bool CanBeNull() const {
1864    DCHECK_EQ(GetType(), Primitive::kPrimNot) << "CanBeNull only applies to reference types";
1865    return true;
1866  }
1867
1868  virtual bool CanDoImplicitNullCheckOn(HInstruction* obj ATTRIBUTE_UNUSED) const {
1869    return false;
1870  }
1871
1872  void SetReferenceTypeInfo(ReferenceTypeInfo rti);
1873
1874  ReferenceTypeInfo GetReferenceTypeInfo() const {
1875    DCHECK_EQ(GetType(), Primitive::kPrimNot);
1876    return reference_type_info_;
1877  }
1878
1879  void AddUseAt(HInstruction* user, size_t index) {
1880    DCHECK(user != nullptr);
1881    HUseListNode<HInstruction*>* use =
1882        uses_.AddUse(user, index, GetBlock()->GetGraph()->GetArena());
1883    user->SetRawInputRecordAt(index, HUserRecord<HInstruction*>(user->InputRecordAt(index), use));
1884  }
1885
1886  void AddEnvUseAt(HEnvironment* user, size_t index) {
1887    DCHECK(user != nullptr);
1888    HUseListNode<HEnvironment*>* env_use =
1889        env_uses_.AddUse(user, index, GetBlock()->GetGraph()->GetArena());
1890    user->RecordEnvUse(env_use);
1891  }
1892
1893  void RemoveAsUserOfInput(size_t input) {
1894    HUserRecord<HInstruction*> input_use = InputRecordAt(input);
1895    input_use.GetInstruction()->uses_.Remove(input_use.GetUseNode());
1896  }
1897
1898  const HUseList<HInstruction*>& GetUses() const { return uses_; }
1899  const HUseList<HEnvironment*>& GetEnvUses() const { return env_uses_; }
1900
1901  bool HasUses() const { return !uses_.IsEmpty() || !env_uses_.IsEmpty(); }
1902  bool HasEnvironmentUses() const { return !env_uses_.IsEmpty(); }
1903  bool HasNonEnvironmentUses() const { return !uses_.IsEmpty(); }
1904  bool HasOnlyOneNonEnvironmentUse() const {
1905    return !HasEnvironmentUses() && GetUses().HasOnlyOneUse();
1906  }
1907
1908  // Does this instruction strictly dominate `other_instruction`?
1909  // Returns false if this instruction and `other_instruction` are the same.
1910  // Aborts if this instruction and `other_instruction` are both phis.
1911  bool StrictlyDominates(HInstruction* other_instruction) const;
1912
1913  int GetId() const { return id_; }
1914  void SetId(int id) { id_ = id; }
1915
1916  int GetSsaIndex() const { return ssa_index_; }
1917  void SetSsaIndex(int ssa_index) { ssa_index_ = ssa_index; }
1918  bool HasSsaIndex() const { return ssa_index_ != -1; }
1919
1920  bool HasEnvironment() const { return environment_ != nullptr; }
1921  HEnvironment* GetEnvironment() const { return environment_; }
1922  // Set the `environment_` field. Raw because this method does not
1923  // update the uses lists.
1924  void SetRawEnvironment(HEnvironment* environment) {
1925    DCHECK(environment_ == nullptr);
1926    DCHECK_EQ(environment->GetHolder(), this);
1927    environment_ = environment;
1928  }
1929
1930  // Set the environment of this instruction, copying it from `environment`. While
1931  // copying, the uses lists are being updated.
1932  void CopyEnvironmentFrom(HEnvironment* environment) {
1933    DCHECK(environment_ == nullptr);
1934    ArenaAllocator* allocator = GetBlock()->GetGraph()->GetArena();
1935    environment_ = new (allocator) HEnvironment(allocator, *environment, this);
1936    environment_->CopyFrom(environment);
1937    if (environment->GetParent() != nullptr) {
1938      environment_->SetAndCopyParentChain(allocator, environment->GetParent());
1939    }
1940  }
1941
1942  void CopyEnvironmentFromWithLoopPhiAdjustment(HEnvironment* environment,
1943                                                HBasicBlock* block) {
1944    DCHECK(environment_ == nullptr);
1945    ArenaAllocator* allocator = GetBlock()->GetGraph()->GetArena();
1946    environment_ = new (allocator) HEnvironment(allocator, *environment, this);
1947    environment_->CopyFromWithLoopPhiAdjustment(environment, block);
1948    if (environment->GetParent() != nullptr) {
1949      environment_->SetAndCopyParentChain(allocator, environment->GetParent());
1950    }
1951  }
1952
1953  // Returns the number of entries in the environment. Typically, that is the
1954  // number of dex registers in a method. It could be more in case of inlining.
1955  size_t EnvironmentSize() const;
1956
1957  LocationSummary* GetLocations() const { return locations_; }
1958  void SetLocations(LocationSummary* locations) { locations_ = locations; }
1959
1960  void ReplaceWith(HInstruction* instruction);
1961  void ReplaceInput(HInstruction* replacement, size_t index);
1962
1963  // This is almost the same as doing `ReplaceWith()`. But in this helper, the
1964  // uses of this instruction by `other` are *not* updated.
1965  void ReplaceWithExceptInReplacementAtIndex(HInstruction* other, size_t use_index) {
1966    ReplaceWith(other);
1967    other->ReplaceInput(this, use_index);
1968  }
1969
1970  // Move `this` instruction before `cursor`.
1971  void MoveBefore(HInstruction* cursor);
1972
1973  // Move `this` before its first user and out of any loops. If there is no
1974  // out-of-loop user that dominates all other users, move the instruction
1975  // to the end of the out-of-loop common dominator of the user's blocks.
1976  //
1977  // This can be used only on non-throwing instructions with no side effects that
1978  // have at least one use but no environment uses.
1979  void MoveBeforeFirstUserAndOutOfLoops();
1980
1981#define INSTRUCTION_TYPE_CHECK(type, super)                                    \
1982  bool Is##type() const;                                                       \
1983  const H##type* As##type() const;                                             \
1984  H##type* As##type();
1985
1986  FOR_EACH_CONCRETE_INSTRUCTION(INSTRUCTION_TYPE_CHECK)
1987#undef INSTRUCTION_TYPE_CHECK
1988
1989#define INSTRUCTION_TYPE_CHECK(type, super)                                    \
1990  bool Is##type() const { return (As##type() != nullptr); }                    \
1991  virtual const H##type* As##type() const { return nullptr; }                  \
1992  virtual H##type* As##type() { return nullptr; }
1993  FOR_EACH_ABSTRACT_INSTRUCTION(INSTRUCTION_TYPE_CHECK)
1994#undef INSTRUCTION_TYPE_CHECK
1995
1996  // Returns whether the instruction can be moved within the graph.
1997  virtual bool CanBeMoved() const { return false; }
1998
1999  // Returns whether the two instructions are of the same kind.
2000  virtual bool InstructionTypeEquals(HInstruction* other ATTRIBUTE_UNUSED) const {
2001    return false;
2002  }
2003
2004  // Returns whether any data encoded in the two instructions is equal.
2005  // This method does not look at the inputs. Both instructions must be
2006  // of the same type, otherwise the method has undefined behavior.
2007  virtual bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const {
2008    return false;
2009  }
2010
2011  // Returns whether two instructions are equal, that is:
2012  // 1) They have the same type and contain the same data (InstructionDataEquals).
2013  // 2) Their inputs are identical.
2014  bool Equals(HInstruction* other) const;
2015
2016  // TODO: Remove this indirection when the [[pure]] attribute proposal (n3744)
2017  // is adopted and implemented by our C++ compiler(s). Fow now, we need to hide
2018  // the virtual function because the __attribute__((__pure__)) doesn't really
2019  // apply the strong requirement for virtual functions, preventing optimizations.
2020  InstructionKind GetKind() const PURE;
2021  virtual InstructionKind GetKindInternal() const = 0;
2022
2023  virtual size_t ComputeHashCode() const {
2024    size_t result = GetKind();
2025    for (size_t i = 0, e = InputCount(); i < e; ++i) {
2026      result = (result * 31) + InputAt(i)->GetId();
2027    }
2028    return result;
2029  }
2030
2031  SideEffects GetSideEffects() const { return side_effects_; }
2032  void AddSideEffects(SideEffects other) { side_effects_.Add(other); }
2033
2034  size_t GetLifetimePosition() const { return lifetime_position_; }
2035  void SetLifetimePosition(size_t position) { lifetime_position_ = position; }
2036  LiveInterval* GetLiveInterval() const { return live_interval_; }
2037  void SetLiveInterval(LiveInterval* interval) { live_interval_ = interval; }
2038  bool HasLiveInterval() const { return live_interval_ != nullptr; }
2039
2040  bool IsSuspendCheckEntry() const { return IsSuspendCheck() && GetBlock()->IsEntryBlock(); }
2041
2042  // Returns whether the code generation of the instruction will require to have access
2043  // to the current method. Such instructions are:
2044  // (1): Instructions that require an environment, as calling the runtime requires
2045  //      to walk the stack and have the current method stored at a specific stack address.
2046  // (2): Object literals like classes and strings, that are loaded from the dex cache
2047  //      fields of the current method.
2048  bool NeedsCurrentMethod() const {
2049    return NeedsEnvironment() || IsLoadClass() || IsLoadString();
2050  }
2051
2052  // Returns whether the code generation of the instruction will require to have access
2053  // to the dex cache of the current method's declaring class via the current method.
2054  virtual bool NeedsDexCacheOfDeclaringClass() const { return false; }
2055
2056  // Does this instruction have any use in an environment before
2057  // control flow hits 'other'?
2058  bool HasAnyEnvironmentUseBefore(HInstruction* other);
2059
2060  // Remove all references to environment uses of this instruction.
2061  // The caller must ensure that this is safe to do.
2062  void RemoveEnvironmentUsers();
2063
2064 protected:
2065  virtual const HUserRecord<HInstruction*> InputRecordAt(size_t i) const = 0;
2066  virtual void SetRawInputRecordAt(size_t index, const HUserRecord<HInstruction*>& input) = 0;
2067  void SetSideEffects(SideEffects other) { side_effects_ = other; }
2068
2069 private:
2070  void RemoveEnvironmentUser(HUseListNode<HEnvironment*>* use_node) { env_uses_.Remove(use_node); }
2071
2072  HInstruction* previous_;
2073  HInstruction* next_;
2074  HBasicBlock* block_;
2075  const uint32_t dex_pc_;
2076
2077  // An instruction gets an id when it is added to the graph.
2078  // It reflects creation order. A negative id means the instruction
2079  // has not been added to the graph.
2080  int id_;
2081
2082  // When doing liveness analysis, instructions that have uses get an SSA index.
2083  int ssa_index_;
2084
2085  // List of instructions that have this instruction as input.
2086  HUseList<HInstruction*> uses_;
2087
2088  // List of environments that contain this instruction.
2089  HUseList<HEnvironment*> env_uses_;
2090
2091  // The environment associated with this instruction. Not null if the instruction
2092  // might jump out of the method.
2093  HEnvironment* environment_;
2094
2095  // Set by the code generator.
2096  LocationSummary* locations_;
2097
2098  // Set by the liveness analysis.
2099  LiveInterval* live_interval_;
2100
2101  // Set by the liveness analysis, this is the position in a linear
2102  // order of blocks where this instruction's live interval start.
2103  size_t lifetime_position_;
2104
2105  SideEffects side_effects_;
2106
2107  // TODO: for primitive types this should be marked as invalid.
2108  ReferenceTypeInfo reference_type_info_;
2109
2110  friend class GraphChecker;
2111  friend class HBasicBlock;
2112  friend class HEnvironment;
2113  friend class HGraph;
2114  friend class HInstructionList;
2115
2116  DISALLOW_COPY_AND_ASSIGN(HInstruction);
2117};
2118std::ostream& operator<<(std::ostream& os, const HInstruction::InstructionKind& rhs);
2119
2120class HInputIterator : public ValueObject {
2121 public:
2122  explicit HInputIterator(HInstruction* instruction) : instruction_(instruction), index_(0) {}
2123
2124  bool Done() const { return index_ == instruction_->InputCount(); }
2125  HInstruction* Current() const { return instruction_->InputAt(index_); }
2126  void Advance() { index_++; }
2127
2128 private:
2129  HInstruction* instruction_;
2130  size_t index_;
2131
2132  DISALLOW_COPY_AND_ASSIGN(HInputIterator);
2133};
2134
2135class HInstructionIterator : public ValueObject {
2136 public:
2137  explicit HInstructionIterator(const HInstructionList& instructions)
2138      : instruction_(instructions.first_instruction_) {
2139    next_ = Done() ? nullptr : instruction_->GetNext();
2140  }
2141
2142  bool Done() const { return instruction_ == nullptr; }
2143  HInstruction* Current() const { return instruction_; }
2144  void Advance() {
2145    instruction_ = next_;
2146    next_ = Done() ? nullptr : instruction_->GetNext();
2147  }
2148
2149 private:
2150  HInstruction* instruction_;
2151  HInstruction* next_;
2152
2153  DISALLOW_COPY_AND_ASSIGN(HInstructionIterator);
2154};
2155
2156class HBackwardInstructionIterator : public ValueObject {
2157 public:
2158  explicit HBackwardInstructionIterator(const HInstructionList& instructions)
2159      : instruction_(instructions.last_instruction_) {
2160    next_ = Done() ? nullptr : instruction_->GetPrevious();
2161  }
2162
2163  bool Done() const { return instruction_ == nullptr; }
2164  HInstruction* Current() const { return instruction_; }
2165  void Advance() {
2166    instruction_ = next_;
2167    next_ = Done() ? nullptr : instruction_->GetPrevious();
2168  }
2169
2170 private:
2171  HInstruction* instruction_;
2172  HInstruction* next_;
2173
2174  DISALLOW_COPY_AND_ASSIGN(HBackwardInstructionIterator);
2175};
2176
2177template<size_t N>
2178class HTemplateInstruction: public HInstruction {
2179 public:
2180  HTemplateInstruction<N>(SideEffects side_effects, uint32_t dex_pc)
2181      : HInstruction(side_effects, dex_pc), inputs_() {}
2182  virtual ~HTemplateInstruction() {}
2183
2184  size_t InputCount() const OVERRIDE { return N; }
2185
2186 protected:
2187  const HUserRecord<HInstruction*> InputRecordAt(size_t i) const OVERRIDE {
2188    DCHECK_LT(i, N);
2189    return inputs_[i];
2190  }
2191
2192  void SetRawInputRecordAt(size_t i, const HUserRecord<HInstruction*>& input) OVERRIDE {
2193    DCHECK_LT(i, N);
2194    inputs_[i] = input;
2195  }
2196
2197 private:
2198  std::array<HUserRecord<HInstruction*>, N> inputs_;
2199
2200  friend class SsaBuilder;
2201};
2202
2203// HTemplateInstruction specialization for N=0.
2204template<>
2205class HTemplateInstruction<0>: public HInstruction {
2206 public:
2207  explicit HTemplateInstruction<0>(SideEffects side_effects, uint32_t dex_pc)
2208      : HInstruction(side_effects, dex_pc) {}
2209
2210  virtual ~HTemplateInstruction() {}
2211
2212  size_t InputCount() const OVERRIDE { return 0; }
2213
2214 protected:
2215  const HUserRecord<HInstruction*> InputRecordAt(size_t i ATTRIBUTE_UNUSED) const OVERRIDE {
2216    LOG(FATAL) << "Unreachable";
2217    UNREACHABLE();
2218  }
2219
2220  void SetRawInputRecordAt(size_t i ATTRIBUTE_UNUSED,
2221                           const HUserRecord<HInstruction*>& input ATTRIBUTE_UNUSED) OVERRIDE {
2222    LOG(FATAL) << "Unreachable";
2223    UNREACHABLE();
2224  }
2225
2226 private:
2227  friend class SsaBuilder;
2228};
2229
2230template<intptr_t N>
2231class HExpression : public HTemplateInstruction<N> {
2232 public:
2233  HExpression<N>(Primitive::Type type, SideEffects side_effects, uint32_t dex_pc)
2234      : HTemplateInstruction<N>(side_effects, dex_pc), type_(type) {}
2235  virtual ~HExpression() {}
2236
2237  Primitive::Type GetType() const OVERRIDE { return type_; }
2238
2239 protected:
2240  Primitive::Type type_;
2241};
2242
2243// Represents dex's RETURN_VOID opcode. A HReturnVoid is a control flow
2244// instruction that branches to the exit block.
2245class HReturnVoid : public HTemplateInstruction<0> {
2246 public:
2247  explicit HReturnVoid(uint32_t dex_pc = kNoDexPc)
2248      : HTemplateInstruction(SideEffects::None(), dex_pc) {}
2249
2250  bool IsControlFlow() const OVERRIDE { return true; }
2251
2252  DECLARE_INSTRUCTION(ReturnVoid);
2253
2254 private:
2255  DISALLOW_COPY_AND_ASSIGN(HReturnVoid);
2256};
2257
2258// Represents dex's RETURN opcodes. A HReturn is a control flow
2259// instruction that branches to the exit block.
2260class HReturn : public HTemplateInstruction<1> {
2261 public:
2262  explicit HReturn(HInstruction* value, uint32_t dex_pc = kNoDexPc)
2263      : HTemplateInstruction(SideEffects::None(), dex_pc) {
2264    SetRawInputAt(0, value);
2265  }
2266
2267  bool IsControlFlow() const OVERRIDE { return true; }
2268
2269  DECLARE_INSTRUCTION(Return);
2270
2271 private:
2272  DISALLOW_COPY_AND_ASSIGN(HReturn);
2273};
2274
2275// The exit instruction is the only instruction of the exit block.
2276// Instructions aborting the method (HThrow and HReturn) must branch to the
2277// exit block.
2278class HExit : public HTemplateInstruction<0> {
2279 public:
2280  explicit HExit(uint32_t dex_pc = kNoDexPc) : HTemplateInstruction(SideEffects::None(), dex_pc) {}
2281
2282  bool IsControlFlow() const OVERRIDE { return true; }
2283
2284  DECLARE_INSTRUCTION(Exit);
2285
2286 private:
2287  DISALLOW_COPY_AND_ASSIGN(HExit);
2288};
2289
2290// Jumps from one block to another.
2291class HGoto : public HTemplateInstruction<0> {
2292 public:
2293  explicit HGoto(uint32_t dex_pc = kNoDexPc) : HTemplateInstruction(SideEffects::None(), dex_pc) {}
2294
2295  bool IsControlFlow() const OVERRIDE { return true; }
2296
2297  HBasicBlock* GetSuccessor() const {
2298    return GetBlock()->GetSingleSuccessor();
2299  }
2300
2301  DECLARE_INSTRUCTION(Goto);
2302
2303 private:
2304  DISALLOW_COPY_AND_ASSIGN(HGoto);
2305};
2306
2307class HConstant : public HExpression<0> {
2308 public:
2309  explicit HConstant(Primitive::Type type, uint32_t dex_pc = kNoDexPc)
2310      : HExpression(type, SideEffects::None(), dex_pc) {}
2311
2312  bool CanBeMoved() const OVERRIDE { return true; }
2313
2314  virtual bool IsMinusOne() const { return false; }
2315  virtual bool IsZero() const { return false; }
2316  virtual bool IsOne() const { return false; }
2317
2318  virtual uint64_t GetValueAsUint64() const = 0;
2319
2320  DECLARE_ABSTRACT_INSTRUCTION(Constant);
2321
2322 private:
2323  DISALLOW_COPY_AND_ASSIGN(HConstant);
2324};
2325
2326class HNullConstant : public HConstant {
2327 public:
2328  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
2329    return true;
2330  }
2331
2332  uint64_t GetValueAsUint64() const OVERRIDE { return 0; }
2333
2334  size_t ComputeHashCode() const OVERRIDE { return 0; }
2335
2336  DECLARE_INSTRUCTION(NullConstant);
2337
2338 private:
2339  explicit HNullConstant(uint32_t dex_pc = kNoDexPc) : HConstant(Primitive::kPrimNot, dex_pc) {}
2340
2341  friend class HGraph;
2342  DISALLOW_COPY_AND_ASSIGN(HNullConstant);
2343};
2344
2345// Constants of the type int. Those can be from Dex instructions, or
2346// synthesized (for example with the if-eqz instruction).
2347class HIntConstant : public HConstant {
2348 public:
2349  int32_t GetValue() const { return value_; }
2350
2351  uint64_t GetValueAsUint64() const OVERRIDE {
2352    return static_cast<uint64_t>(static_cast<uint32_t>(value_));
2353  }
2354
2355  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2356    DCHECK(other->IsIntConstant());
2357    return other->AsIntConstant()->value_ == value_;
2358  }
2359
2360  size_t ComputeHashCode() const OVERRIDE { return GetValue(); }
2361
2362  bool IsMinusOne() const OVERRIDE { return GetValue() == -1; }
2363  bool IsZero() const OVERRIDE { return GetValue() == 0; }
2364  bool IsOne() const OVERRIDE { return GetValue() == 1; }
2365
2366  DECLARE_INSTRUCTION(IntConstant);
2367
2368 private:
2369  explicit HIntConstant(int32_t value, uint32_t dex_pc = kNoDexPc)
2370      : HConstant(Primitive::kPrimInt, dex_pc), value_(value) {}
2371  explicit HIntConstant(bool value, uint32_t dex_pc = kNoDexPc)
2372      : HConstant(Primitive::kPrimInt, dex_pc), value_(value ? 1 : 0) {}
2373
2374  const int32_t value_;
2375
2376  friend class HGraph;
2377  ART_FRIEND_TEST(GraphTest, InsertInstructionBefore);
2378  ART_FRIEND_TYPED_TEST(ParallelMoveTest, ConstantLast);
2379  DISALLOW_COPY_AND_ASSIGN(HIntConstant);
2380};
2381
2382class HLongConstant : public HConstant {
2383 public:
2384  int64_t GetValue() const { return value_; }
2385
2386  uint64_t GetValueAsUint64() const OVERRIDE { return value_; }
2387
2388  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2389    DCHECK(other->IsLongConstant());
2390    return other->AsLongConstant()->value_ == value_;
2391  }
2392
2393  size_t ComputeHashCode() const OVERRIDE { return static_cast<size_t>(GetValue()); }
2394
2395  bool IsMinusOne() const OVERRIDE { return GetValue() == -1; }
2396  bool IsZero() const OVERRIDE { return GetValue() == 0; }
2397  bool IsOne() const OVERRIDE { return GetValue() == 1; }
2398
2399  DECLARE_INSTRUCTION(LongConstant);
2400
2401 private:
2402  explicit HLongConstant(int64_t value, uint32_t dex_pc = kNoDexPc)
2403      : HConstant(Primitive::kPrimLong, dex_pc), value_(value) {}
2404
2405  const int64_t value_;
2406
2407  friend class HGraph;
2408  DISALLOW_COPY_AND_ASSIGN(HLongConstant);
2409};
2410
2411// Conditional branch. A block ending with an HIf instruction must have
2412// two successors.
2413class HIf : public HTemplateInstruction<1> {
2414 public:
2415  explicit HIf(HInstruction* input, uint32_t dex_pc = kNoDexPc)
2416      : HTemplateInstruction(SideEffects::None(), dex_pc) {
2417    SetRawInputAt(0, input);
2418  }
2419
2420  bool IsControlFlow() const OVERRIDE { return true; }
2421
2422  HBasicBlock* IfTrueSuccessor() const {
2423    return GetBlock()->GetSuccessors()[0];
2424  }
2425
2426  HBasicBlock* IfFalseSuccessor() const {
2427    return GetBlock()->GetSuccessors()[1];
2428  }
2429
2430  DECLARE_INSTRUCTION(If);
2431
2432 private:
2433  DISALLOW_COPY_AND_ASSIGN(HIf);
2434};
2435
2436
2437// Abstract instruction which marks the beginning and/or end of a try block and
2438// links it to the respective exception handlers. Behaves the same as a Goto in
2439// non-exceptional control flow.
2440// Normal-flow successor is stored at index zero, exception handlers under
2441// higher indices in no particular order.
2442class HTryBoundary : public HTemplateInstruction<0> {
2443 public:
2444  enum BoundaryKind {
2445    kEntry,
2446    kExit,
2447  };
2448
2449  explicit HTryBoundary(BoundaryKind kind, uint32_t dex_pc = kNoDexPc)
2450      : HTemplateInstruction(SideEffects::None(), dex_pc), kind_(kind) {}
2451
2452  bool IsControlFlow() const OVERRIDE { return true; }
2453
2454  // Returns the block's non-exceptional successor (index zero).
2455  HBasicBlock* GetNormalFlowSuccessor() const { return GetBlock()->GetSuccessors()[0]; }
2456
2457  ArrayRef<HBasicBlock* const> GetExceptionHandlers() const {
2458    return ArrayRef<HBasicBlock* const>(GetBlock()->GetSuccessors()).SubArray(1u);
2459  }
2460
2461  // Returns whether `handler` is among its exception handlers (non-zero index
2462  // successors).
2463  bool HasExceptionHandler(const HBasicBlock& handler) const {
2464    DCHECK(handler.IsCatchBlock());
2465    return GetBlock()->HasSuccessor(&handler, 1u /* Skip first successor. */);
2466  }
2467
2468  // If not present already, adds `handler` to its block's list of exception
2469  // handlers.
2470  void AddExceptionHandler(HBasicBlock* handler) {
2471    if (!HasExceptionHandler(*handler)) {
2472      GetBlock()->AddSuccessor(handler);
2473    }
2474  }
2475
2476  bool IsEntry() const { return kind_ == BoundaryKind::kEntry; }
2477
2478  bool HasSameExceptionHandlersAs(const HTryBoundary& other) const;
2479
2480  DECLARE_INSTRUCTION(TryBoundary);
2481
2482 private:
2483  const BoundaryKind kind_;
2484
2485  DISALLOW_COPY_AND_ASSIGN(HTryBoundary);
2486};
2487
2488// Deoptimize to interpreter, upon checking a condition.
2489class HDeoptimize : public HTemplateInstruction<1> {
2490 public:
2491  HDeoptimize(HInstruction* cond, uint32_t dex_pc)
2492      : HTemplateInstruction(SideEffects::None(), dex_pc) {
2493    SetRawInputAt(0, cond);
2494  }
2495
2496  bool CanBeMoved() const OVERRIDE { return true; }
2497  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
2498    return true;
2499  }
2500  bool NeedsEnvironment() const OVERRIDE { return true; }
2501  bool CanThrow() const OVERRIDE { return true; }
2502
2503  DECLARE_INSTRUCTION(Deoptimize);
2504
2505 private:
2506  DISALLOW_COPY_AND_ASSIGN(HDeoptimize);
2507};
2508
2509// Represents the ArtMethod that was passed as a first argument to
2510// the method. It is used by instructions that depend on it, like
2511// instructions that work with the dex cache.
2512class HCurrentMethod : public HExpression<0> {
2513 public:
2514  explicit HCurrentMethod(Primitive::Type type, uint32_t dex_pc = kNoDexPc)
2515      : HExpression(type, SideEffects::None(), dex_pc) {}
2516
2517  DECLARE_INSTRUCTION(CurrentMethod);
2518
2519 private:
2520  DISALLOW_COPY_AND_ASSIGN(HCurrentMethod);
2521};
2522
2523// PackedSwitch (jump table). A block ending with a PackedSwitch instruction will
2524// have one successor for each entry in the switch table, and the final successor
2525// will be the block containing the next Dex opcode.
2526class HPackedSwitch : public HTemplateInstruction<1> {
2527 public:
2528  HPackedSwitch(int32_t start_value,
2529                uint32_t num_entries,
2530                HInstruction* input,
2531                uint32_t dex_pc = kNoDexPc)
2532    : HTemplateInstruction(SideEffects::None(), dex_pc),
2533      start_value_(start_value),
2534      num_entries_(num_entries) {
2535    SetRawInputAt(0, input);
2536  }
2537
2538  bool IsControlFlow() const OVERRIDE { return true; }
2539
2540  int32_t GetStartValue() const { return start_value_; }
2541
2542  uint32_t GetNumEntries() const { return num_entries_; }
2543
2544  HBasicBlock* GetDefaultBlock() const {
2545    // Last entry is the default block.
2546    return GetBlock()->GetSuccessors()[num_entries_];
2547  }
2548  DECLARE_INSTRUCTION(PackedSwitch);
2549
2550 private:
2551  const int32_t start_value_;
2552  const uint32_t num_entries_;
2553
2554  DISALLOW_COPY_AND_ASSIGN(HPackedSwitch);
2555};
2556
2557class HUnaryOperation : public HExpression<1> {
2558 public:
2559  HUnaryOperation(Primitive::Type result_type, HInstruction* input, uint32_t dex_pc = kNoDexPc)
2560      : HExpression(result_type, SideEffects::None(), dex_pc) {
2561    SetRawInputAt(0, input);
2562  }
2563
2564  HInstruction* GetInput() const { return InputAt(0); }
2565  Primitive::Type GetResultType() const { return GetType(); }
2566
2567  bool CanBeMoved() const OVERRIDE { return true; }
2568  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
2569    return true;
2570  }
2571
2572  // Try to statically evaluate `operation` and return a HConstant
2573  // containing the result of this evaluation.  If `operation` cannot
2574  // be evaluated as a constant, return null.
2575  HConstant* TryStaticEvaluation() const;
2576
2577  // Apply this operation to `x`.
2578  virtual HConstant* Evaluate(HIntConstant* x) const = 0;
2579  virtual HConstant* Evaluate(HLongConstant* x) const = 0;
2580
2581  DECLARE_ABSTRACT_INSTRUCTION(UnaryOperation);
2582
2583 private:
2584  DISALLOW_COPY_AND_ASSIGN(HUnaryOperation);
2585};
2586
2587class HBinaryOperation : public HExpression<2> {
2588 public:
2589  HBinaryOperation(Primitive::Type result_type,
2590                   HInstruction* left,
2591                   HInstruction* right,
2592                   SideEffects side_effects = SideEffects::None(),
2593                   uint32_t dex_pc = kNoDexPc)
2594      : HExpression(result_type, side_effects, dex_pc) {
2595    SetRawInputAt(0, left);
2596    SetRawInputAt(1, right);
2597  }
2598
2599  HInstruction* GetLeft() const { return InputAt(0); }
2600  HInstruction* GetRight() const { return InputAt(1); }
2601  Primitive::Type GetResultType() const { return GetType(); }
2602
2603  virtual bool IsCommutative() const { return false; }
2604
2605  // Put constant on the right.
2606  // Returns whether order is changed.
2607  bool OrderInputsWithConstantOnTheRight() {
2608    HInstruction* left = InputAt(0);
2609    HInstruction* right = InputAt(1);
2610    if (left->IsConstant() && !right->IsConstant()) {
2611      ReplaceInput(right, 0);
2612      ReplaceInput(left, 1);
2613      return true;
2614    }
2615    return false;
2616  }
2617
2618  // Order inputs by instruction id, but favor constant on the right side.
2619  // This helps GVN for commutative ops.
2620  void OrderInputs() {
2621    DCHECK(IsCommutative());
2622    HInstruction* left = InputAt(0);
2623    HInstruction* right = InputAt(1);
2624    if (left == right || (!left->IsConstant() && right->IsConstant())) {
2625      return;
2626    }
2627    if (OrderInputsWithConstantOnTheRight()) {
2628      return;
2629    }
2630    // Order according to instruction id.
2631    if (left->GetId() > right->GetId()) {
2632      ReplaceInput(right, 0);
2633      ReplaceInput(left, 1);
2634    }
2635  }
2636
2637  bool CanBeMoved() const OVERRIDE { return true; }
2638  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
2639    return true;
2640  }
2641
2642  // Try to statically evaluate `operation` and return a HConstant
2643  // containing the result of this evaluation.  If `operation` cannot
2644  // be evaluated as a constant, return null.
2645  HConstant* TryStaticEvaluation() const;
2646
2647  // Apply this operation to `x` and `y`.
2648  virtual HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const = 0;
2649  virtual HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const = 0;
2650  virtual HConstant* Evaluate(HIntConstant* x ATTRIBUTE_UNUSED,
2651                              HLongConstant* y ATTRIBUTE_UNUSED) const {
2652    VLOG(compiler) << DebugName() << " is not defined for the (int, long) case.";
2653    return nullptr;
2654  }
2655  virtual HConstant* Evaluate(HLongConstant* x ATTRIBUTE_UNUSED,
2656                              HIntConstant* y ATTRIBUTE_UNUSED) const {
2657    VLOG(compiler) << DebugName() << " is not defined for the (long, int) case.";
2658    return nullptr;
2659  }
2660  virtual HConstant* Evaluate(HNullConstant* x ATTRIBUTE_UNUSED,
2661                              HNullConstant* y ATTRIBUTE_UNUSED) const {
2662    VLOG(compiler) << DebugName() << " is not defined for the (null, null) case.";
2663    return nullptr;
2664  }
2665
2666  // Returns an input that can legally be used as the right input and is
2667  // constant, or null.
2668  HConstant* GetConstantRight() const;
2669
2670  // If `GetConstantRight()` returns one of the input, this returns the other
2671  // one. Otherwise it returns null.
2672  HInstruction* GetLeastConstantLeft() const;
2673
2674  DECLARE_ABSTRACT_INSTRUCTION(BinaryOperation);
2675
2676 private:
2677  DISALLOW_COPY_AND_ASSIGN(HBinaryOperation);
2678};
2679
2680// The comparison bias applies for floating point operations and indicates how NaN
2681// comparisons are treated:
2682enum class ComparisonBias {
2683  kNoBias,  // bias is not applicable (i.e. for long operation)
2684  kGtBias,  // return 1 for NaN comparisons
2685  kLtBias,  // return -1 for NaN comparisons
2686};
2687
2688class HCondition : public HBinaryOperation {
2689 public:
2690  HCondition(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2691      : HBinaryOperation(Primitive::kPrimBoolean, first, second, SideEffects::None(), dex_pc),
2692        needs_materialization_(true),
2693        bias_(ComparisonBias::kNoBias) {}
2694
2695  bool NeedsMaterialization() const { return needs_materialization_; }
2696  void ClearNeedsMaterialization() { needs_materialization_ = false; }
2697
2698  // For code generation purposes, returns whether this instruction is just before
2699  // `instruction`, and disregard moves in between.
2700  bool IsBeforeWhenDisregardMoves(HInstruction* instruction) const;
2701
2702  DECLARE_ABSTRACT_INSTRUCTION(Condition);
2703
2704  virtual IfCondition GetCondition() const = 0;
2705
2706  virtual IfCondition GetOppositeCondition() const = 0;
2707
2708  bool IsGtBias() const { return bias_ == ComparisonBias::kGtBias; }
2709
2710  void SetBias(ComparisonBias bias) { bias_ = bias; }
2711
2712  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2713    return bias_ == other->AsCondition()->bias_;
2714  }
2715
2716  bool IsFPConditionTrueIfNaN() const {
2717    DCHECK(Primitive::IsFloatingPointType(InputAt(0)->GetType()));
2718    IfCondition if_cond = GetCondition();
2719    return IsGtBias() ? ((if_cond == kCondGT) || (if_cond == kCondGE)) : (if_cond == kCondNE);
2720  }
2721
2722  bool IsFPConditionFalseIfNaN() const {
2723    DCHECK(Primitive::IsFloatingPointType(InputAt(0)->GetType()));
2724    IfCondition if_cond = GetCondition();
2725    return IsGtBias() ? ((if_cond == kCondLT) || (if_cond == kCondLE)) : (if_cond == kCondEQ);
2726  }
2727
2728 private:
2729  // For register allocation purposes, returns whether this instruction needs to be
2730  // materialized (that is, not just be in the processor flags).
2731  bool needs_materialization_;
2732
2733  // Needed if we merge a HCompare into a HCondition.
2734  ComparisonBias bias_;
2735
2736  DISALLOW_COPY_AND_ASSIGN(HCondition);
2737};
2738
2739// Instruction to check if two inputs are equal to each other.
2740class HEqual : public HCondition {
2741 public:
2742  HEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2743      : HCondition(first, second, dex_pc) {}
2744
2745  bool IsCommutative() const OVERRIDE { return true; }
2746
2747  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2748    return GetBlock()->GetGraph()->GetIntConstant(
2749        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2750  }
2751  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2752    return GetBlock()->GetGraph()->GetIntConstant(
2753        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2754  }
2755  HConstant* Evaluate(HNullConstant* x ATTRIBUTE_UNUSED,
2756                      HNullConstant* y ATTRIBUTE_UNUSED) const OVERRIDE {
2757    return GetBlock()->GetGraph()->GetIntConstant(1);
2758  }
2759
2760  DECLARE_INSTRUCTION(Equal);
2761
2762  IfCondition GetCondition() const OVERRIDE {
2763    return kCondEQ;
2764  }
2765
2766  IfCondition GetOppositeCondition() const OVERRIDE {
2767    return kCondNE;
2768  }
2769
2770 private:
2771  template <typename T> bool Compute(T x, T y) const { return x == y; }
2772
2773  DISALLOW_COPY_AND_ASSIGN(HEqual);
2774};
2775
2776class HNotEqual : public HCondition {
2777 public:
2778  HNotEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2779      : HCondition(first, second, dex_pc) {}
2780
2781  bool IsCommutative() const OVERRIDE { return true; }
2782
2783  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2784    return GetBlock()->GetGraph()->GetIntConstant(
2785        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2786  }
2787  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2788    return GetBlock()->GetGraph()->GetIntConstant(
2789        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2790  }
2791  HConstant* Evaluate(HNullConstant* x ATTRIBUTE_UNUSED,
2792                      HNullConstant* y ATTRIBUTE_UNUSED) const OVERRIDE {
2793    return GetBlock()->GetGraph()->GetIntConstant(0);
2794  }
2795
2796  DECLARE_INSTRUCTION(NotEqual);
2797
2798  IfCondition GetCondition() const OVERRIDE {
2799    return kCondNE;
2800  }
2801
2802  IfCondition GetOppositeCondition() const OVERRIDE {
2803    return kCondEQ;
2804  }
2805
2806 private:
2807  template <typename T> bool Compute(T x, T y) const { return x != y; }
2808
2809  DISALLOW_COPY_AND_ASSIGN(HNotEqual);
2810};
2811
2812class HLessThan : public HCondition {
2813 public:
2814  HLessThan(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2815      : HCondition(first, second, dex_pc) {}
2816
2817  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2818    return GetBlock()->GetGraph()->GetIntConstant(
2819        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2820  }
2821  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2822    return GetBlock()->GetGraph()->GetIntConstant(
2823        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2824  }
2825
2826  DECLARE_INSTRUCTION(LessThan);
2827
2828  IfCondition GetCondition() const OVERRIDE {
2829    return kCondLT;
2830  }
2831
2832  IfCondition GetOppositeCondition() const OVERRIDE {
2833    return kCondGE;
2834  }
2835
2836 private:
2837  template <typename T> bool Compute(T x, T y) const { return x < y; }
2838
2839  DISALLOW_COPY_AND_ASSIGN(HLessThan);
2840};
2841
2842class HLessThanOrEqual : public HCondition {
2843 public:
2844  HLessThanOrEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2845      : HCondition(first, second, dex_pc) {}
2846
2847  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2848    return GetBlock()->GetGraph()->GetIntConstant(
2849        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2850  }
2851  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2852    return GetBlock()->GetGraph()->GetIntConstant(
2853        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2854  }
2855
2856  DECLARE_INSTRUCTION(LessThanOrEqual);
2857
2858  IfCondition GetCondition() const OVERRIDE {
2859    return kCondLE;
2860  }
2861
2862  IfCondition GetOppositeCondition() const OVERRIDE {
2863    return kCondGT;
2864  }
2865
2866 private:
2867  template <typename T> bool Compute(T x, T y) const { return x <= y; }
2868
2869  DISALLOW_COPY_AND_ASSIGN(HLessThanOrEqual);
2870};
2871
2872class HGreaterThan : public HCondition {
2873 public:
2874  HGreaterThan(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2875      : HCondition(first, second, dex_pc) {}
2876
2877  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2878    return GetBlock()->GetGraph()->GetIntConstant(
2879        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2880  }
2881  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2882    return GetBlock()->GetGraph()->GetIntConstant(
2883        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2884  }
2885
2886  DECLARE_INSTRUCTION(GreaterThan);
2887
2888  IfCondition GetCondition() const OVERRIDE {
2889    return kCondGT;
2890  }
2891
2892  IfCondition GetOppositeCondition() const OVERRIDE {
2893    return kCondLE;
2894  }
2895
2896 private:
2897  template <typename T> bool Compute(T x, T y) const { return x > y; }
2898
2899  DISALLOW_COPY_AND_ASSIGN(HGreaterThan);
2900};
2901
2902class HGreaterThanOrEqual : public HCondition {
2903 public:
2904  HGreaterThanOrEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2905      : HCondition(first, second, dex_pc) {}
2906
2907  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2908    return GetBlock()->GetGraph()->GetIntConstant(
2909        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2910  }
2911  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2912    return GetBlock()->GetGraph()->GetIntConstant(
2913        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2914  }
2915
2916  DECLARE_INSTRUCTION(GreaterThanOrEqual);
2917
2918  IfCondition GetCondition() const OVERRIDE {
2919    return kCondGE;
2920  }
2921
2922  IfCondition GetOppositeCondition() const OVERRIDE {
2923    return kCondLT;
2924  }
2925
2926 private:
2927  template <typename T> bool Compute(T x, T y) const { return x >= y; }
2928
2929  DISALLOW_COPY_AND_ASSIGN(HGreaterThanOrEqual);
2930};
2931
2932class HBelow : public HCondition {
2933 public:
2934  HBelow(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2935      : HCondition(first, second, dex_pc) {}
2936
2937  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2938    return GetBlock()->GetGraph()->GetIntConstant(
2939        Compute(static_cast<uint32_t>(x->GetValue()),
2940                static_cast<uint32_t>(y->GetValue())), GetDexPc());
2941  }
2942  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2943    return GetBlock()->GetGraph()->GetIntConstant(
2944        Compute(static_cast<uint64_t>(x->GetValue()),
2945                static_cast<uint64_t>(y->GetValue())), GetDexPc());
2946  }
2947
2948  DECLARE_INSTRUCTION(Below);
2949
2950  IfCondition GetCondition() const OVERRIDE {
2951    return kCondB;
2952  }
2953
2954  IfCondition GetOppositeCondition() const OVERRIDE {
2955    return kCondAE;
2956  }
2957
2958 private:
2959  template <typename T> bool Compute(T x, T y) const { return x < y; }
2960
2961  DISALLOW_COPY_AND_ASSIGN(HBelow);
2962};
2963
2964class HBelowOrEqual : public HCondition {
2965 public:
2966  HBelowOrEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2967      : HCondition(first, second, dex_pc) {}
2968
2969  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2970    return GetBlock()->GetGraph()->GetIntConstant(
2971        Compute(static_cast<uint32_t>(x->GetValue()),
2972                static_cast<uint32_t>(y->GetValue())), GetDexPc());
2973  }
2974  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2975    return GetBlock()->GetGraph()->GetIntConstant(
2976        Compute(static_cast<uint64_t>(x->GetValue()),
2977                static_cast<uint64_t>(y->GetValue())), GetDexPc());
2978  }
2979
2980  DECLARE_INSTRUCTION(BelowOrEqual);
2981
2982  IfCondition GetCondition() const OVERRIDE {
2983    return kCondBE;
2984  }
2985
2986  IfCondition GetOppositeCondition() const OVERRIDE {
2987    return kCondA;
2988  }
2989
2990 private:
2991  template <typename T> bool Compute(T x, T y) const { return x <= y; }
2992
2993  DISALLOW_COPY_AND_ASSIGN(HBelowOrEqual);
2994};
2995
2996class HAbove : public HCondition {
2997 public:
2998  HAbove(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2999      : HCondition(first, second, dex_pc) {}
3000
3001  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3002    return GetBlock()->GetGraph()->GetIntConstant(
3003        Compute(static_cast<uint32_t>(x->GetValue()),
3004                static_cast<uint32_t>(y->GetValue())), GetDexPc());
3005  }
3006  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3007    return GetBlock()->GetGraph()->GetIntConstant(
3008        Compute(static_cast<uint64_t>(x->GetValue()),
3009                static_cast<uint64_t>(y->GetValue())), GetDexPc());
3010  }
3011
3012  DECLARE_INSTRUCTION(Above);
3013
3014  IfCondition GetCondition() const OVERRIDE {
3015    return kCondA;
3016  }
3017
3018  IfCondition GetOppositeCondition() const OVERRIDE {
3019    return kCondBE;
3020  }
3021
3022 private:
3023  template <typename T> bool Compute(T x, T y) const { return x > y; }
3024
3025  DISALLOW_COPY_AND_ASSIGN(HAbove);
3026};
3027
3028class HAboveOrEqual : public HCondition {
3029 public:
3030  HAboveOrEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
3031      : HCondition(first, second, dex_pc) {}
3032
3033  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3034    return GetBlock()->GetGraph()->GetIntConstant(
3035        Compute(static_cast<uint32_t>(x->GetValue()),
3036                static_cast<uint32_t>(y->GetValue())), GetDexPc());
3037  }
3038  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3039    return GetBlock()->GetGraph()->GetIntConstant(
3040        Compute(static_cast<uint64_t>(x->GetValue()),
3041                static_cast<uint64_t>(y->GetValue())), GetDexPc());
3042  }
3043
3044  DECLARE_INSTRUCTION(AboveOrEqual);
3045
3046  IfCondition GetCondition() const OVERRIDE {
3047    return kCondAE;
3048  }
3049
3050  IfCondition GetOppositeCondition() const OVERRIDE {
3051    return kCondB;
3052  }
3053
3054 private:
3055  template <typename T> bool Compute(T x, T y) const { return x >= y; }
3056
3057  DISALLOW_COPY_AND_ASSIGN(HAboveOrEqual);
3058};
3059
3060// Instruction to check how two inputs compare to each other.
3061// Result is 0 if input0 == input1, 1 if input0 > input1, or -1 if input0 < input1.
3062class HCompare : public HBinaryOperation {
3063 public:
3064  HCompare(Primitive::Type type,
3065           HInstruction* first,
3066           HInstruction* second,
3067           ComparisonBias bias,
3068           uint32_t dex_pc)
3069      : HBinaryOperation(Primitive::kPrimInt,
3070                         first,
3071                         second,
3072                         SideEffectsForArchRuntimeCalls(type),
3073                         dex_pc),
3074        bias_(bias) {
3075    DCHECK_EQ(type, first->GetType());
3076    DCHECK_EQ(type, second->GetType());
3077  }
3078
3079  template <typename T>
3080  int32_t Compute(T x, T y) const { return x == y ? 0 : x > y ? 1 : -1; }
3081
3082  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3083    return GetBlock()->GetGraph()->GetIntConstant(
3084        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3085  }
3086  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3087    return GetBlock()->GetGraph()->GetIntConstant(
3088        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3089  }
3090
3091  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
3092    return bias_ == other->AsCompare()->bias_;
3093  }
3094
3095  ComparisonBias GetBias() const { return bias_; }
3096
3097  bool IsGtBias() { return bias_ == ComparisonBias::kGtBias; }
3098
3099
3100  static SideEffects SideEffectsForArchRuntimeCalls(Primitive::Type type) {
3101    // MIPS64 uses a runtime call for FP comparisons.
3102    return Primitive::IsFloatingPointType(type) ? SideEffects::CanTriggerGC() : SideEffects::None();
3103  }
3104
3105  DECLARE_INSTRUCTION(Compare);
3106
3107 private:
3108  const ComparisonBias bias_;
3109
3110  DISALLOW_COPY_AND_ASSIGN(HCompare);
3111};
3112
3113// A local in the graph. Corresponds to a Dex register.
3114class HLocal : public HTemplateInstruction<0> {
3115 public:
3116  explicit HLocal(uint16_t reg_number)
3117      : HTemplateInstruction(SideEffects::None(), kNoDexPc), reg_number_(reg_number) {}
3118
3119  DECLARE_INSTRUCTION(Local);
3120
3121  uint16_t GetRegNumber() const { return reg_number_; }
3122
3123 private:
3124  // The Dex register number.
3125  const uint16_t reg_number_;
3126
3127  DISALLOW_COPY_AND_ASSIGN(HLocal);
3128};
3129
3130// Load a given local. The local is an input of this instruction.
3131class HLoadLocal : public HExpression<1> {
3132 public:
3133  HLoadLocal(HLocal* local, Primitive::Type type, uint32_t dex_pc = kNoDexPc)
3134      : HExpression(type, SideEffects::None(), dex_pc) {
3135    SetRawInputAt(0, local);
3136  }
3137
3138  HLocal* GetLocal() const { return reinterpret_cast<HLocal*>(InputAt(0)); }
3139
3140  DECLARE_INSTRUCTION(LoadLocal);
3141
3142 private:
3143  DISALLOW_COPY_AND_ASSIGN(HLoadLocal);
3144};
3145
3146// Store a value in a given local. This instruction has two inputs: the value
3147// and the local.
3148class HStoreLocal : public HTemplateInstruction<2> {
3149 public:
3150  HStoreLocal(HLocal* local, HInstruction* value, uint32_t dex_pc = kNoDexPc)
3151      : HTemplateInstruction(SideEffects::None(), dex_pc) {
3152    SetRawInputAt(0, local);
3153    SetRawInputAt(1, value);
3154  }
3155
3156  HLocal* GetLocal() const { return reinterpret_cast<HLocal*>(InputAt(0)); }
3157
3158  DECLARE_INSTRUCTION(StoreLocal);
3159
3160 private:
3161  DISALLOW_COPY_AND_ASSIGN(HStoreLocal);
3162};
3163
3164class HFloatConstant : public HConstant {
3165 public:
3166  float GetValue() const { return value_; }
3167
3168  uint64_t GetValueAsUint64() const OVERRIDE {
3169    return static_cast<uint64_t>(bit_cast<uint32_t, float>(value_));
3170  }
3171
3172  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
3173    DCHECK(other->IsFloatConstant());
3174    return other->AsFloatConstant()->GetValueAsUint64() == GetValueAsUint64();
3175  }
3176
3177  size_t ComputeHashCode() const OVERRIDE { return static_cast<size_t>(GetValue()); }
3178
3179  bool IsMinusOne() const OVERRIDE {
3180    return bit_cast<uint32_t, float>(value_) == bit_cast<uint32_t, float>((-1.0f));
3181  }
3182  bool IsZero() const OVERRIDE {
3183    return value_ == 0.0f;
3184  }
3185  bool IsOne() const OVERRIDE {
3186    return bit_cast<uint32_t, float>(value_) == bit_cast<uint32_t, float>(1.0f);
3187  }
3188  bool IsNaN() const {
3189    return std::isnan(value_);
3190  }
3191
3192  DECLARE_INSTRUCTION(FloatConstant);
3193
3194 private:
3195  explicit HFloatConstant(float value, uint32_t dex_pc = kNoDexPc)
3196      : HConstant(Primitive::kPrimFloat, dex_pc), value_(value) {}
3197  explicit HFloatConstant(int32_t value, uint32_t dex_pc = kNoDexPc)
3198      : HConstant(Primitive::kPrimFloat, dex_pc), value_(bit_cast<float, int32_t>(value)) {}
3199
3200  const float value_;
3201
3202  // Only the SsaBuilder and HGraph can create floating-point constants.
3203  friend class SsaBuilder;
3204  friend class HGraph;
3205  DISALLOW_COPY_AND_ASSIGN(HFloatConstant);
3206};
3207
3208class HDoubleConstant : public HConstant {
3209 public:
3210  double GetValue() const { return value_; }
3211
3212  uint64_t GetValueAsUint64() const OVERRIDE { return bit_cast<uint64_t, double>(value_); }
3213
3214  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
3215    DCHECK(other->IsDoubleConstant());
3216    return other->AsDoubleConstant()->GetValueAsUint64() == GetValueAsUint64();
3217  }
3218
3219  size_t ComputeHashCode() const OVERRIDE { return static_cast<size_t>(GetValue()); }
3220
3221  bool IsMinusOne() const OVERRIDE {
3222    return bit_cast<uint64_t, double>(value_) == bit_cast<uint64_t, double>((-1.0));
3223  }
3224  bool IsZero() const OVERRIDE {
3225    return value_ == 0.0;
3226  }
3227  bool IsOne() const OVERRIDE {
3228    return bit_cast<uint64_t, double>(value_) == bit_cast<uint64_t, double>(1.0);
3229  }
3230  bool IsNaN() const {
3231    return std::isnan(value_);
3232  }
3233
3234  DECLARE_INSTRUCTION(DoubleConstant);
3235
3236 private:
3237  explicit HDoubleConstant(double value, uint32_t dex_pc = kNoDexPc)
3238      : HConstant(Primitive::kPrimDouble, dex_pc), value_(value) {}
3239  explicit HDoubleConstant(int64_t value, uint32_t dex_pc = kNoDexPc)
3240      : HConstant(Primitive::kPrimDouble, dex_pc), value_(bit_cast<double, int64_t>(value)) {}
3241
3242  const double value_;
3243
3244  // Only the SsaBuilder and HGraph can create floating-point constants.
3245  friend class SsaBuilder;
3246  friend class HGraph;
3247  DISALLOW_COPY_AND_ASSIGN(HDoubleConstant);
3248};
3249
3250enum class Intrinsics {
3251#define OPTIMIZING_INTRINSICS(Name, IsStatic, NeedsEnvironmentOrCache, SideEffects, Exceptions) \
3252  k ## Name,
3253#include "intrinsics_list.h"
3254  kNone,
3255  INTRINSICS_LIST(OPTIMIZING_INTRINSICS)
3256#undef INTRINSICS_LIST
3257#undef OPTIMIZING_INTRINSICS
3258};
3259std::ostream& operator<<(std::ostream& os, const Intrinsics& intrinsic);
3260
3261enum IntrinsicNeedsEnvironmentOrCache {
3262  kNoEnvironmentOrCache,        // Intrinsic does not require an environment or dex cache.
3263  kNeedsEnvironmentOrCache      // Intrinsic requires an environment or requires a dex cache.
3264};
3265
3266enum IntrinsicSideEffects {
3267  kNoSideEffects,     // Intrinsic does not have any heap memory side effects.
3268  kReadSideEffects,   // Intrinsic may read heap memory.
3269  kWriteSideEffects,  // Intrinsic may write heap memory.
3270  kAllSideEffects     // Intrinsic may read or write heap memory, or trigger GC.
3271};
3272
3273enum IntrinsicExceptions {
3274  kNoThrow,  // Intrinsic does not throw any exceptions.
3275  kCanThrow  // Intrinsic may throw exceptions.
3276};
3277
3278class HInvoke : public HInstruction {
3279 public:
3280  size_t InputCount() const OVERRIDE { return inputs_.size(); }
3281
3282  bool NeedsEnvironment() const OVERRIDE;
3283
3284  void SetArgumentAt(size_t index, HInstruction* argument) {
3285    SetRawInputAt(index, argument);
3286  }
3287
3288  // Return the number of arguments.  This number can be lower than
3289  // the number of inputs returned by InputCount(), as some invoke
3290  // instructions (e.g. HInvokeStaticOrDirect) can have non-argument
3291  // inputs at the end of their list of inputs.
3292  uint32_t GetNumberOfArguments() const { return number_of_arguments_; }
3293
3294  Primitive::Type GetType() const OVERRIDE { return return_type_; }
3295
3296  uint32_t GetDexMethodIndex() const { return dex_method_index_; }
3297  const DexFile& GetDexFile() const { return GetEnvironment()->GetDexFile(); }
3298
3299  InvokeType GetOriginalInvokeType() const { return original_invoke_type_; }
3300
3301  Intrinsics GetIntrinsic() const {
3302    return intrinsic_;
3303  }
3304
3305  void SetIntrinsic(Intrinsics intrinsic,
3306                    IntrinsicNeedsEnvironmentOrCache needs_env_or_cache,
3307                    IntrinsicSideEffects side_effects,
3308                    IntrinsicExceptions exceptions);
3309
3310  bool IsFromInlinedInvoke() const {
3311    return GetEnvironment()->IsFromInlinedInvoke();
3312  }
3313
3314  bool CanThrow() const OVERRIDE { return can_throw_; }
3315
3316  bool CanBeMoved() const OVERRIDE { return IsIntrinsic(); }
3317
3318  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
3319    return intrinsic_ != Intrinsics::kNone && intrinsic_ == other->AsInvoke()->intrinsic_;
3320  }
3321
3322  uint32_t* GetIntrinsicOptimizations() {
3323    return &intrinsic_optimizations_;
3324  }
3325
3326  const uint32_t* GetIntrinsicOptimizations() const {
3327    return &intrinsic_optimizations_;
3328  }
3329
3330  bool IsIntrinsic() const { return intrinsic_ != Intrinsics::kNone; }
3331
3332  DECLARE_ABSTRACT_INSTRUCTION(Invoke);
3333
3334 protected:
3335  HInvoke(ArenaAllocator* arena,
3336          uint32_t number_of_arguments,
3337          uint32_t number_of_other_inputs,
3338          Primitive::Type return_type,
3339          uint32_t dex_pc,
3340          uint32_t dex_method_index,
3341          InvokeType original_invoke_type)
3342    : HInstruction(
3343          SideEffects::AllExceptGCDependency(), dex_pc),  // Assume write/read on all fields/arrays.
3344      number_of_arguments_(number_of_arguments),
3345      inputs_(number_of_arguments + number_of_other_inputs,
3346              arena->Adapter(kArenaAllocInvokeInputs)),
3347      return_type_(return_type),
3348      dex_method_index_(dex_method_index),
3349      original_invoke_type_(original_invoke_type),
3350      can_throw_(true),
3351      intrinsic_(Intrinsics::kNone),
3352      intrinsic_optimizations_(0) {
3353  }
3354
3355  const HUserRecord<HInstruction*> InputRecordAt(size_t index) const OVERRIDE {
3356    return inputs_[index];
3357  }
3358
3359  void SetRawInputRecordAt(size_t index, const HUserRecord<HInstruction*>& input) OVERRIDE {
3360    inputs_[index] = input;
3361  }
3362
3363  void SetCanThrow(bool can_throw) { can_throw_ = can_throw; }
3364
3365  uint32_t number_of_arguments_;
3366  ArenaVector<HUserRecord<HInstruction*>> inputs_;
3367  const Primitive::Type return_type_;
3368  const uint32_t dex_method_index_;
3369  const InvokeType original_invoke_type_;
3370  bool can_throw_;
3371  Intrinsics intrinsic_;
3372
3373  // A magic word holding optimizations for intrinsics. See intrinsics.h.
3374  uint32_t intrinsic_optimizations_;
3375
3376 private:
3377  DISALLOW_COPY_AND_ASSIGN(HInvoke);
3378};
3379
3380class HInvokeUnresolved : public HInvoke {
3381 public:
3382  HInvokeUnresolved(ArenaAllocator* arena,
3383                    uint32_t number_of_arguments,
3384                    Primitive::Type return_type,
3385                    uint32_t dex_pc,
3386                    uint32_t dex_method_index,
3387                    InvokeType invoke_type)
3388      : HInvoke(arena,
3389                number_of_arguments,
3390                0u /* number_of_other_inputs */,
3391                return_type,
3392                dex_pc,
3393                dex_method_index,
3394                invoke_type) {
3395  }
3396
3397  DECLARE_INSTRUCTION(InvokeUnresolved);
3398
3399 private:
3400  DISALLOW_COPY_AND_ASSIGN(HInvokeUnresolved);
3401};
3402
3403class HInvokeStaticOrDirect : public HInvoke {
3404 public:
3405  // Requirements of this method call regarding the class
3406  // initialization (clinit) check of its declaring class.
3407  enum class ClinitCheckRequirement {
3408    kNone,      // Class already initialized.
3409    kExplicit,  // Static call having explicit clinit check as last input.
3410    kImplicit,  // Static call implicitly requiring a clinit check.
3411  };
3412
3413  // Determines how to load the target ArtMethod*.
3414  enum class MethodLoadKind {
3415    // Use a String init ArtMethod* loaded from Thread entrypoints.
3416    kStringInit,
3417
3418    // Use the method's own ArtMethod* loaded by the register allocator.
3419    kRecursive,
3420
3421    // Use ArtMethod* at a known address, embed the direct address in the code.
3422    // Used for app->boot calls with non-relocatable image and for JIT-compiled calls.
3423    kDirectAddress,
3424
3425    // Use ArtMethod* at an address that will be known at link time, embed the direct
3426    // address in the code. If the image is relocatable, emit .patch_oat entry.
3427    // Used for app->boot calls with relocatable image and boot->boot calls, whether
3428    // the image relocatable or not.
3429    kDirectAddressWithFixup,
3430
3431    // Load from resoved methods array in the dex cache using a PC-relative load.
3432    // Used when we need to use the dex cache, for example for invoke-static that
3433    // may cause class initialization (the entry may point to a resolution method),
3434    // and we know that we can access the dex cache arrays using a PC-relative load.
3435    kDexCachePcRelative,
3436
3437    // Use ArtMethod* from the resolved methods of the compiled method's own ArtMethod*.
3438    // Used for JIT when we need to use the dex cache. This is also the last-resort-kind
3439    // used when other kinds are unavailable (say, dex cache arrays are not PC-relative)
3440    // or unimplemented or impractical (i.e. slow) on a particular architecture.
3441    kDexCacheViaMethod,
3442  };
3443
3444  // Determines the location of the code pointer.
3445  enum class CodePtrLocation {
3446    // Recursive call, use local PC-relative call instruction.
3447    kCallSelf,
3448
3449    // Use PC-relative call instruction patched at link time.
3450    // Used for calls within an oat file, boot->boot or app->app.
3451    kCallPCRelative,
3452
3453    // Call to a known target address, embed the direct address in code.
3454    // Used for app->boot call with non-relocatable image and for JIT-compiled calls.
3455    kCallDirect,
3456
3457    // Call to a target address that will be known at link time, embed the direct
3458    // address in code. If the image is relocatable, emit .patch_oat entry.
3459    // Used for app->boot calls with relocatable image and boot->boot calls, whether
3460    // the image relocatable or not.
3461    kCallDirectWithFixup,
3462
3463    // Use code pointer from the ArtMethod*.
3464    // Used when we don't know the target code. This is also the last-resort-kind used when
3465    // other kinds are unimplemented or impractical (i.e. slow) on a particular architecture.
3466    kCallArtMethod,
3467  };
3468
3469  struct DispatchInfo {
3470    MethodLoadKind method_load_kind;
3471    CodePtrLocation code_ptr_location;
3472    // The method load data holds
3473    //   - thread entrypoint offset for kStringInit method if this is a string init invoke.
3474    //     Note that there are multiple string init methods, each having its own offset.
3475    //   - the method address for kDirectAddress
3476    //   - the dex cache arrays offset for kDexCachePcRel.
3477    uint64_t method_load_data;
3478    uint64_t direct_code_ptr;
3479  };
3480
3481  HInvokeStaticOrDirect(ArenaAllocator* arena,
3482                        uint32_t number_of_arguments,
3483                        Primitive::Type return_type,
3484                        uint32_t dex_pc,
3485                        uint32_t method_index,
3486                        MethodReference target_method,
3487                        DispatchInfo dispatch_info,
3488                        InvokeType original_invoke_type,
3489                        InvokeType optimized_invoke_type,
3490                        ClinitCheckRequirement clinit_check_requirement)
3491      : HInvoke(arena,
3492                number_of_arguments,
3493                // There is potentially one extra argument for the HCurrentMethod node, and
3494                // potentially one other if the clinit check is explicit, and potentially
3495                // one other if the method is a string factory.
3496                (NeedsCurrentMethodInput(dispatch_info.method_load_kind) ? 1u : 0u) +
3497                    (clinit_check_requirement == ClinitCheckRequirement::kExplicit ? 1u : 0u) +
3498                    (dispatch_info.method_load_kind == MethodLoadKind::kStringInit ? 1u : 0u),
3499                return_type,
3500                dex_pc,
3501                method_index,
3502                original_invoke_type),
3503        optimized_invoke_type_(optimized_invoke_type),
3504        clinit_check_requirement_(clinit_check_requirement),
3505        target_method_(target_method),
3506        dispatch_info_(dispatch_info) { }
3507
3508  void SetDispatchInfo(const DispatchInfo& dispatch_info) {
3509    bool had_current_method_input = HasCurrentMethodInput();
3510    bool needs_current_method_input = NeedsCurrentMethodInput(dispatch_info.method_load_kind);
3511
3512    // Using the current method is the default and once we find a better
3513    // method load kind, we should not go back to using the current method.
3514    DCHECK(had_current_method_input || !needs_current_method_input);
3515
3516    if (had_current_method_input && !needs_current_method_input) {
3517      DCHECK_EQ(InputAt(GetSpecialInputIndex()), GetBlock()->GetGraph()->GetCurrentMethod());
3518      RemoveInputAt(GetSpecialInputIndex());
3519    }
3520    dispatch_info_ = dispatch_info;
3521  }
3522
3523  void AddSpecialInput(HInstruction* input) {
3524    // We allow only one special input.
3525    DCHECK(!IsStringInit() && !HasCurrentMethodInput());
3526    DCHECK(InputCount() == GetSpecialInputIndex() ||
3527           (InputCount() == GetSpecialInputIndex() + 1 && IsStaticWithExplicitClinitCheck()));
3528    InsertInputAt(GetSpecialInputIndex(), input);
3529  }
3530
3531  bool CanDoImplicitNullCheckOn(HInstruction* obj ATTRIBUTE_UNUSED) const OVERRIDE {
3532    // We access the method via the dex cache so we can't do an implicit null check.
3533    // TODO: for intrinsics we can generate implicit null checks.
3534    return false;
3535  }
3536
3537  bool CanBeNull() const OVERRIDE {
3538    return return_type_ == Primitive::kPrimNot && !IsStringInit();
3539  }
3540
3541  // Get the index of the special input, if any.
3542  //
3543  // If the invoke IsStringInit(), it initially has a HFakeString special argument
3544  // which is removed by the instruction simplifier; if the invoke HasCurrentMethodInput(),
3545  // the "special input" is the current method pointer; otherwise there may be one
3546  // platform-specific special input, such as PC-relative addressing base.
3547  uint32_t GetSpecialInputIndex() const { return GetNumberOfArguments(); }
3548
3549  InvokeType GetOptimizedInvokeType() const { return optimized_invoke_type_; }
3550  void SetOptimizedInvokeType(InvokeType invoke_type) {
3551    optimized_invoke_type_ = invoke_type;
3552  }
3553
3554  MethodLoadKind GetMethodLoadKind() const { return dispatch_info_.method_load_kind; }
3555  CodePtrLocation GetCodePtrLocation() const { return dispatch_info_.code_ptr_location; }
3556  bool IsRecursive() const { return GetMethodLoadKind() == MethodLoadKind::kRecursive; }
3557  bool NeedsDexCacheOfDeclaringClass() const OVERRIDE;
3558  bool IsStringInit() const { return GetMethodLoadKind() == MethodLoadKind::kStringInit; }
3559  bool HasMethodAddress() const { return GetMethodLoadKind() == MethodLoadKind::kDirectAddress; }
3560  bool HasPcRelativeDexCache() const {
3561    return GetMethodLoadKind() == MethodLoadKind::kDexCachePcRelative;
3562  }
3563  bool HasCurrentMethodInput() const {
3564    // This function can be called only after the invoke has been fully initialized by the builder.
3565    if (NeedsCurrentMethodInput(GetMethodLoadKind())) {
3566      DCHECK(InputAt(GetSpecialInputIndex())->IsCurrentMethod());
3567      return true;
3568    } else {
3569      DCHECK(InputCount() == GetSpecialInputIndex() ||
3570             !InputAt(GetSpecialInputIndex())->IsCurrentMethod());
3571      return false;
3572    }
3573  }
3574  bool HasDirectCodePtr() const { return GetCodePtrLocation() == CodePtrLocation::kCallDirect; }
3575  MethodReference GetTargetMethod() const { return target_method_; }
3576  void SetTargetMethod(MethodReference method) { target_method_ = method; }
3577
3578  int32_t GetStringInitOffset() const {
3579    DCHECK(IsStringInit());
3580    return dispatch_info_.method_load_data;
3581  }
3582
3583  uint64_t GetMethodAddress() const {
3584    DCHECK(HasMethodAddress());
3585    return dispatch_info_.method_load_data;
3586  }
3587
3588  uint32_t GetDexCacheArrayOffset() const {
3589    DCHECK(HasPcRelativeDexCache());
3590    return dispatch_info_.method_load_data;
3591  }
3592
3593  uint64_t GetDirectCodePtr() const {
3594    DCHECK(HasDirectCodePtr());
3595    return dispatch_info_.direct_code_ptr;
3596  }
3597
3598  ClinitCheckRequirement GetClinitCheckRequirement() const { return clinit_check_requirement_; }
3599
3600  // Is this instruction a call to a static method?
3601  bool IsStatic() const {
3602    return GetOriginalInvokeType() == kStatic;
3603  }
3604
3605  // Remove the HClinitCheck or the replacement HLoadClass (set as last input by
3606  // PrepareForRegisterAllocation::VisitClinitCheck() in lieu of the initial HClinitCheck)
3607  // instruction; only relevant for static calls with explicit clinit check.
3608  void RemoveExplicitClinitCheck(ClinitCheckRequirement new_requirement) {
3609    DCHECK(IsStaticWithExplicitClinitCheck());
3610    size_t last_input_index = InputCount() - 1;
3611    HInstruction* last_input = InputAt(last_input_index);
3612    DCHECK(last_input != nullptr);
3613    DCHECK(last_input->IsLoadClass() || last_input->IsClinitCheck()) << last_input->DebugName();
3614    RemoveAsUserOfInput(last_input_index);
3615    inputs_.pop_back();
3616    clinit_check_requirement_ = new_requirement;
3617    DCHECK(!IsStaticWithExplicitClinitCheck());
3618  }
3619
3620  bool IsStringFactoryFor(HFakeString* str) const {
3621    if (!IsStringInit()) return false;
3622    DCHECK(!HasCurrentMethodInput());
3623    if (InputCount() == (number_of_arguments_)) return false;
3624    return InputAt(InputCount() - 1)->AsFakeString() == str;
3625  }
3626
3627  void RemoveFakeStringArgumentAsLastInput() {
3628    DCHECK(IsStringInit());
3629    size_t last_input_index = InputCount() - 1;
3630    HInstruction* last_input = InputAt(last_input_index);
3631    DCHECK(last_input != nullptr);
3632    DCHECK(last_input->IsFakeString()) << last_input->DebugName();
3633    RemoveAsUserOfInput(last_input_index);
3634    inputs_.pop_back();
3635  }
3636
3637  // Is this a call to a static method whose declaring class has an
3638  // explicit initialization check in the graph?
3639  bool IsStaticWithExplicitClinitCheck() const {
3640    return IsStatic() && (clinit_check_requirement_ == ClinitCheckRequirement::kExplicit);
3641  }
3642
3643  // Is this a call to a static method whose declaring class has an
3644  // implicit intialization check requirement?
3645  bool IsStaticWithImplicitClinitCheck() const {
3646    return IsStatic() && (clinit_check_requirement_ == ClinitCheckRequirement::kImplicit);
3647  }
3648
3649  // Does this method load kind need the current method as an input?
3650  static bool NeedsCurrentMethodInput(MethodLoadKind kind) {
3651    return kind == MethodLoadKind::kRecursive || kind == MethodLoadKind::kDexCacheViaMethod;
3652  }
3653
3654  DECLARE_INSTRUCTION(InvokeStaticOrDirect);
3655
3656 protected:
3657  const HUserRecord<HInstruction*> InputRecordAt(size_t i) const OVERRIDE {
3658    const HUserRecord<HInstruction*> input_record = HInvoke::InputRecordAt(i);
3659    if (kIsDebugBuild && IsStaticWithExplicitClinitCheck() && (i == InputCount() - 1)) {
3660      HInstruction* input = input_record.GetInstruction();
3661      // `input` is the last input of a static invoke marked as having
3662      // an explicit clinit check. It must either be:
3663      // - an art::HClinitCheck instruction, set by art::HGraphBuilder; or
3664      // - an art::HLoadClass instruction, set by art::PrepareForRegisterAllocation.
3665      DCHECK(input != nullptr);
3666      DCHECK(input->IsClinitCheck() || input->IsLoadClass()) << input->DebugName();
3667    }
3668    return input_record;
3669  }
3670
3671  void InsertInputAt(size_t index, HInstruction* input);
3672  void RemoveInputAt(size_t index);
3673
3674 private:
3675  InvokeType optimized_invoke_type_;
3676  ClinitCheckRequirement clinit_check_requirement_;
3677  // The target method may refer to different dex file or method index than the original
3678  // invoke. This happens for sharpened calls and for calls where a method was redeclared
3679  // in derived class to increase visibility.
3680  MethodReference target_method_;
3681  DispatchInfo dispatch_info_;
3682
3683  DISALLOW_COPY_AND_ASSIGN(HInvokeStaticOrDirect);
3684};
3685std::ostream& operator<<(std::ostream& os, HInvokeStaticOrDirect::MethodLoadKind rhs);
3686std::ostream& operator<<(std::ostream& os, HInvokeStaticOrDirect::ClinitCheckRequirement rhs);
3687
3688class HInvokeVirtual : public HInvoke {
3689 public:
3690  HInvokeVirtual(ArenaAllocator* arena,
3691                 uint32_t number_of_arguments,
3692                 Primitive::Type return_type,
3693                 uint32_t dex_pc,
3694                 uint32_t dex_method_index,
3695                 uint32_t vtable_index)
3696      : HInvoke(arena, number_of_arguments, 0u, return_type, dex_pc, dex_method_index, kVirtual),
3697        vtable_index_(vtable_index) {}
3698
3699  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
3700    // TODO: Add implicit null checks in intrinsics.
3701    return (obj == InputAt(0)) && !GetLocations()->Intrinsified();
3702  }
3703
3704  uint32_t GetVTableIndex() const { return vtable_index_; }
3705
3706  DECLARE_INSTRUCTION(InvokeVirtual);
3707
3708 private:
3709  const uint32_t vtable_index_;
3710
3711  DISALLOW_COPY_AND_ASSIGN(HInvokeVirtual);
3712};
3713
3714class HInvokeInterface : public HInvoke {
3715 public:
3716  HInvokeInterface(ArenaAllocator* arena,
3717                   uint32_t number_of_arguments,
3718                   Primitive::Type return_type,
3719                   uint32_t dex_pc,
3720                   uint32_t dex_method_index,
3721                   uint32_t imt_index)
3722      : HInvoke(arena, number_of_arguments, 0u, return_type, dex_pc, dex_method_index, kInterface),
3723        imt_index_(imt_index) {}
3724
3725  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
3726    // TODO: Add implicit null checks in intrinsics.
3727    return (obj == InputAt(0)) && !GetLocations()->Intrinsified();
3728  }
3729
3730  uint32_t GetImtIndex() const { return imt_index_; }
3731  uint32_t GetDexMethodIndex() const { return dex_method_index_; }
3732
3733  DECLARE_INSTRUCTION(InvokeInterface);
3734
3735 private:
3736  const uint32_t imt_index_;
3737
3738  DISALLOW_COPY_AND_ASSIGN(HInvokeInterface);
3739};
3740
3741class HNewInstance : public HExpression<2> {
3742 public:
3743  HNewInstance(HInstruction* cls,
3744               HCurrentMethod* current_method,
3745               uint32_t dex_pc,
3746               uint16_t type_index,
3747               const DexFile& dex_file,
3748               bool can_throw,
3749               bool finalizable,
3750               QuickEntrypointEnum entrypoint)
3751      : HExpression(Primitive::kPrimNot, SideEffects::CanTriggerGC(), dex_pc),
3752        type_index_(type_index),
3753        dex_file_(dex_file),
3754        can_throw_(can_throw),
3755        finalizable_(finalizable),
3756        entrypoint_(entrypoint) {
3757    SetRawInputAt(0, cls);
3758    SetRawInputAt(1, current_method);
3759  }
3760
3761  uint16_t GetTypeIndex() const { return type_index_; }
3762  const DexFile& GetDexFile() const { return dex_file_; }
3763
3764  // Calls runtime so needs an environment.
3765  bool NeedsEnvironment() const OVERRIDE { return true; }
3766
3767  // It may throw when called on type that's not instantiable/accessible.
3768  // It can throw OOME.
3769  // TODO: distinguish between the two cases so we can for example allow allocation elimination.
3770  bool CanThrow() const OVERRIDE { return can_throw_ || true; }
3771
3772  bool IsFinalizable() const { return finalizable_; }
3773
3774  bool CanBeNull() const OVERRIDE { return false; }
3775
3776  QuickEntrypointEnum GetEntrypoint() const { return entrypoint_; }
3777
3778  void SetEntrypoint(QuickEntrypointEnum entrypoint) {
3779    entrypoint_ = entrypoint;
3780  }
3781
3782  DECLARE_INSTRUCTION(NewInstance);
3783
3784 private:
3785  const uint16_t type_index_;
3786  const DexFile& dex_file_;
3787  const bool can_throw_;
3788  const bool finalizable_;
3789  QuickEntrypointEnum entrypoint_;
3790
3791  DISALLOW_COPY_AND_ASSIGN(HNewInstance);
3792};
3793
3794class HNeg : public HUnaryOperation {
3795 public:
3796  HNeg(Primitive::Type result_type, HInstruction* input, uint32_t dex_pc = kNoDexPc)
3797      : HUnaryOperation(result_type, input, dex_pc) {}
3798
3799  template <typename T> T Compute(T x) const { return -x; }
3800
3801  HConstant* Evaluate(HIntConstant* x) const OVERRIDE {
3802    return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue()), GetDexPc());
3803  }
3804  HConstant* Evaluate(HLongConstant* x) const OVERRIDE {
3805    return GetBlock()->GetGraph()->GetLongConstant(Compute(x->GetValue()), GetDexPc());
3806  }
3807
3808  DECLARE_INSTRUCTION(Neg);
3809
3810 private:
3811  DISALLOW_COPY_AND_ASSIGN(HNeg);
3812};
3813
3814class HNewArray : public HExpression<2> {
3815 public:
3816  HNewArray(HInstruction* length,
3817            HCurrentMethod* current_method,
3818            uint32_t dex_pc,
3819            uint16_t type_index,
3820            const DexFile& dex_file,
3821            QuickEntrypointEnum entrypoint)
3822      : HExpression(Primitive::kPrimNot, SideEffects::CanTriggerGC(), dex_pc),
3823        type_index_(type_index),
3824        dex_file_(dex_file),
3825        entrypoint_(entrypoint) {
3826    SetRawInputAt(0, length);
3827    SetRawInputAt(1, current_method);
3828  }
3829
3830  uint16_t GetTypeIndex() const { return type_index_; }
3831  const DexFile& GetDexFile() const { return dex_file_; }
3832
3833  // Calls runtime so needs an environment.
3834  bool NeedsEnvironment() const OVERRIDE { return true; }
3835
3836  // May throw NegativeArraySizeException, OutOfMemoryError, etc.
3837  bool CanThrow() const OVERRIDE { return true; }
3838
3839  bool CanBeNull() const OVERRIDE { return false; }
3840
3841  QuickEntrypointEnum GetEntrypoint() const { return entrypoint_; }
3842
3843  DECLARE_INSTRUCTION(NewArray);
3844
3845 private:
3846  const uint16_t type_index_;
3847  const DexFile& dex_file_;
3848  const QuickEntrypointEnum entrypoint_;
3849
3850  DISALLOW_COPY_AND_ASSIGN(HNewArray);
3851};
3852
3853class HAdd : public HBinaryOperation {
3854 public:
3855  HAdd(Primitive::Type result_type,
3856       HInstruction* left,
3857       HInstruction* right,
3858       uint32_t dex_pc = kNoDexPc)
3859      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
3860
3861  bool IsCommutative() const OVERRIDE { return true; }
3862
3863  template <typename T> T Compute(T x, T y) const { return x + y; }
3864
3865  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3866    return GetBlock()->GetGraph()->GetIntConstant(
3867        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3868  }
3869  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3870    return GetBlock()->GetGraph()->GetLongConstant(
3871        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3872  }
3873
3874  DECLARE_INSTRUCTION(Add);
3875
3876 private:
3877  DISALLOW_COPY_AND_ASSIGN(HAdd);
3878};
3879
3880class HSub : public HBinaryOperation {
3881 public:
3882  HSub(Primitive::Type result_type,
3883       HInstruction* left,
3884       HInstruction* right,
3885       uint32_t dex_pc = kNoDexPc)
3886      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
3887
3888  template <typename T> T Compute(T x, T y) const { return x - y; }
3889
3890  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3891    return GetBlock()->GetGraph()->GetIntConstant(
3892        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3893  }
3894  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3895    return GetBlock()->GetGraph()->GetLongConstant(
3896        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3897  }
3898
3899  DECLARE_INSTRUCTION(Sub);
3900
3901 private:
3902  DISALLOW_COPY_AND_ASSIGN(HSub);
3903};
3904
3905class HMul : public HBinaryOperation {
3906 public:
3907  HMul(Primitive::Type result_type,
3908       HInstruction* left,
3909       HInstruction* right,
3910       uint32_t dex_pc = kNoDexPc)
3911      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
3912
3913  bool IsCommutative() const OVERRIDE { return true; }
3914
3915  template <typename T> T Compute(T x, T y) const { return x * y; }
3916
3917  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3918    return GetBlock()->GetGraph()->GetIntConstant(
3919        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3920  }
3921  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3922    return GetBlock()->GetGraph()->GetLongConstant(
3923        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3924  }
3925
3926  DECLARE_INSTRUCTION(Mul);
3927
3928 private:
3929  DISALLOW_COPY_AND_ASSIGN(HMul);
3930};
3931
3932class HDiv : public HBinaryOperation {
3933 public:
3934  HDiv(Primitive::Type result_type,
3935       HInstruction* left,
3936       HInstruction* right,
3937       uint32_t dex_pc)
3938      : HBinaryOperation(result_type, left, right, SideEffectsForArchRuntimeCalls(), dex_pc) {}
3939
3940  template <typename T>
3941  T Compute(T x, T y) const {
3942    // Our graph structure ensures we never have 0 for `y` during
3943    // constant folding.
3944    DCHECK_NE(y, 0);
3945    // Special case -1 to avoid getting a SIGFPE on x86(_64).
3946    return (y == -1) ? -x : x / y;
3947  }
3948
3949  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3950    return GetBlock()->GetGraph()->GetIntConstant(
3951        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3952  }
3953  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3954    return GetBlock()->GetGraph()->GetLongConstant(
3955        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3956  }
3957
3958  static SideEffects SideEffectsForArchRuntimeCalls() {
3959    // The generated code can use a runtime call.
3960    return SideEffects::CanTriggerGC();
3961  }
3962
3963  DECLARE_INSTRUCTION(Div);
3964
3965 private:
3966  DISALLOW_COPY_AND_ASSIGN(HDiv);
3967};
3968
3969class HRem : public HBinaryOperation {
3970 public:
3971  HRem(Primitive::Type result_type,
3972       HInstruction* left,
3973       HInstruction* right,
3974       uint32_t dex_pc)
3975      : HBinaryOperation(result_type, left, right, SideEffectsForArchRuntimeCalls(), dex_pc) {}
3976
3977  template <typename T>
3978  T Compute(T x, T y) const {
3979    // Our graph structure ensures we never have 0 for `y` during
3980    // constant folding.
3981    DCHECK_NE(y, 0);
3982    // Special case -1 to avoid getting a SIGFPE on x86(_64).
3983    return (y == -1) ? 0 : x % y;
3984  }
3985
3986  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3987    return GetBlock()->GetGraph()->GetIntConstant(
3988        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3989  }
3990  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3991    return GetBlock()->GetGraph()->GetLongConstant(
3992        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3993  }
3994
3995
3996  static SideEffects SideEffectsForArchRuntimeCalls() {
3997    return SideEffects::CanTriggerGC();
3998  }
3999
4000  DECLARE_INSTRUCTION(Rem);
4001
4002 private:
4003  DISALLOW_COPY_AND_ASSIGN(HRem);
4004};
4005
4006class HDivZeroCheck : public HExpression<1> {
4007 public:
4008  HDivZeroCheck(HInstruction* value, uint32_t dex_pc)
4009      : HExpression(value->GetType(), SideEffects::None(), dex_pc) {
4010    SetRawInputAt(0, value);
4011  }
4012
4013  Primitive::Type GetType() const OVERRIDE { return InputAt(0)->GetType(); }
4014
4015  bool CanBeMoved() const OVERRIDE { return true; }
4016
4017  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
4018    return true;
4019  }
4020
4021  bool NeedsEnvironment() const OVERRIDE { return true; }
4022  bool CanThrow() const OVERRIDE { return true; }
4023
4024  DECLARE_INSTRUCTION(DivZeroCheck);
4025
4026 private:
4027  DISALLOW_COPY_AND_ASSIGN(HDivZeroCheck);
4028};
4029
4030class HShl : public HBinaryOperation {
4031 public:
4032  HShl(Primitive::Type result_type,
4033       HInstruction* left,
4034       HInstruction* right,
4035       uint32_t dex_pc = kNoDexPc)
4036      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
4037
4038  template <typename T, typename U, typename V>
4039  T Compute(T x, U y, V max_shift_value) const {
4040    static_assert(std::is_same<V, typename std::make_unsigned<T>::type>::value,
4041                  "V is not the unsigned integer type corresponding to T");
4042    return x << (y & max_shift_value);
4043  }
4044
4045  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
4046    return GetBlock()->GetGraph()->GetIntConstant(
4047        Compute(x->GetValue(), y->GetValue(), kMaxIntShiftValue), GetDexPc());
4048  }
4049  // There is no `Evaluate(HIntConstant* x, HLongConstant* y)`, as this
4050  // case is handled as `x << static_cast<int>(y)`.
4051  HConstant* Evaluate(HLongConstant* x, HIntConstant* y) const OVERRIDE {
4052    return GetBlock()->GetGraph()->GetLongConstant(
4053        Compute(x->GetValue(), y->GetValue(), kMaxLongShiftValue), GetDexPc());
4054  }
4055  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
4056    return GetBlock()->GetGraph()->GetLongConstant(
4057        Compute(x->GetValue(), y->GetValue(), kMaxLongShiftValue), GetDexPc());
4058  }
4059
4060  DECLARE_INSTRUCTION(Shl);
4061
4062 private:
4063  DISALLOW_COPY_AND_ASSIGN(HShl);
4064};
4065
4066class HShr : public HBinaryOperation {
4067 public:
4068  HShr(Primitive::Type result_type,
4069       HInstruction* left,
4070       HInstruction* right,
4071       uint32_t dex_pc = kNoDexPc)
4072      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
4073
4074  template <typename T, typename U, typename V>
4075  T Compute(T x, U y, V max_shift_value) const {
4076    static_assert(std::is_same<V, typename std::make_unsigned<T>::type>::value,
4077                  "V is not the unsigned integer type corresponding to T");
4078    return x >> (y & max_shift_value);
4079  }
4080
4081  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
4082    return GetBlock()->GetGraph()->GetIntConstant(
4083        Compute(x->GetValue(), y->GetValue(), kMaxIntShiftValue), GetDexPc());
4084  }
4085  // There is no `Evaluate(HIntConstant* x, HLongConstant* y)`, as this
4086  // case is handled as `x >> static_cast<int>(y)`.
4087  HConstant* Evaluate(HLongConstant* x, HIntConstant* y) const OVERRIDE {
4088    return GetBlock()->GetGraph()->GetLongConstant(
4089        Compute(x->GetValue(), y->GetValue(), kMaxLongShiftValue), GetDexPc());
4090  }
4091  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
4092    return GetBlock()->GetGraph()->GetLongConstant(
4093        Compute(x->GetValue(), y->GetValue(), kMaxLongShiftValue), GetDexPc());
4094  }
4095
4096  DECLARE_INSTRUCTION(Shr);
4097
4098 private:
4099  DISALLOW_COPY_AND_ASSIGN(HShr);
4100};
4101
4102class HUShr : public HBinaryOperation {
4103 public:
4104  HUShr(Primitive::Type result_type,
4105        HInstruction* left,
4106        HInstruction* right,
4107        uint32_t dex_pc = kNoDexPc)
4108      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
4109
4110  template <typename T, typename U, typename V>
4111  T Compute(T x, U y, V max_shift_value) const {
4112    static_assert(std::is_same<V, typename std::make_unsigned<T>::type>::value,
4113                  "V is not the unsigned integer type corresponding to T");
4114    V ux = static_cast<V>(x);
4115    return static_cast<T>(ux >> (y & max_shift_value));
4116  }
4117
4118  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
4119    return GetBlock()->GetGraph()->GetIntConstant(
4120        Compute(x->GetValue(), y->GetValue(), kMaxIntShiftValue), GetDexPc());
4121  }
4122  // There is no `Evaluate(HIntConstant* x, HLongConstant* y)`, as this
4123  // case is handled as `x >>> static_cast<int>(y)`.
4124  HConstant* Evaluate(HLongConstant* x, HIntConstant* y) const OVERRIDE {
4125    return GetBlock()->GetGraph()->GetLongConstant(
4126        Compute(x->GetValue(), y->GetValue(), kMaxLongShiftValue), GetDexPc());
4127  }
4128  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
4129    return GetBlock()->GetGraph()->GetLongConstant(
4130        Compute(x->GetValue(), y->GetValue(), kMaxLongShiftValue), GetDexPc());
4131  }
4132
4133  DECLARE_INSTRUCTION(UShr);
4134
4135 private:
4136  DISALLOW_COPY_AND_ASSIGN(HUShr);
4137};
4138
4139class HAnd : public HBinaryOperation {
4140 public:
4141  HAnd(Primitive::Type result_type,
4142       HInstruction* left,
4143       HInstruction* right,
4144       uint32_t dex_pc = kNoDexPc)
4145      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
4146
4147  bool IsCommutative() const OVERRIDE { return true; }
4148
4149  template <typename T, typename U>
4150  auto Compute(T x, U y) const -> decltype(x & y) { return x & y; }
4151
4152  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
4153    return GetBlock()->GetGraph()->GetIntConstant(
4154        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4155  }
4156  HConstant* Evaluate(HIntConstant* x, HLongConstant* y) const OVERRIDE {
4157    return GetBlock()->GetGraph()->GetLongConstant(
4158        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4159  }
4160  HConstant* Evaluate(HLongConstant* x, HIntConstant* y) const OVERRIDE {
4161    return GetBlock()->GetGraph()->GetLongConstant(
4162        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4163  }
4164  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
4165    return GetBlock()->GetGraph()->GetLongConstant(
4166        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4167  }
4168
4169  DECLARE_INSTRUCTION(And);
4170
4171 private:
4172  DISALLOW_COPY_AND_ASSIGN(HAnd);
4173};
4174
4175class HOr : public HBinaryOperation {
4176 public:
4177  HOr(Primitive::Type result_type,
4178      HInstruction* left,
4179      HInstruction* right,
4180      uint32_t dex_pc = kNoDexPc)
4181      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
4182
4183  bool IsCommutative() const OVERRIDE { return true; }
4184
4185  template <typename T, typename U>
4186  auto Compute(T x, U y) const -> decltype(x | y) { return x | y; }
4187
4188  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
4189    return GetBlock()->GetGraph()->GetIntConstant(
4190        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4191  }
4192  HConstant* Evaluate(HIntConstant* x, HLongConstant* y) const OVERRIDE {
4193    return GetBlock()->GetGraph()->GetLongConstant(
4194        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4195  }
4196  HConstant* Evaluate(HLongConstant* x, HIntConstant* y) const OVERRIDE {
4197    return GetBlock()->GetGraph()->GetLongConstant(
4198        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4199  }
4200  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
4201    return GetBlock()->GetGraph()->GetLongConstant(
4202        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4203  }
4204
4205  DECLARE_INSTRUCTION(Or);
4206
4207 private:
4208  DISALLOW_COPY_AND_ASSIGN(HOr);
4209};
4210
4211class HXor : public HBinaryOperation {
4212 public:
4213  HXor(Primitive::Type result_type,
4214       HInstruction* left,
4215       HInstruction* right,
4216       uint32_t dex_pc = kNoDexPc)
4217      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
4218
4219  bool IsCommutative() const OVERRIDE { return true; }
4220
4221  template <typename T, typename U>
4222  auto Compute(T x, U y) const -> decltype(x ^ y) { return x ^ y; }
4223
4224  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
4225    return GetBlock()->GetGraph()->GetIntConstant(
4226        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4227  }
4228  HConstant* Evaluate(HIntConstant* x, HLongConstant* y) const OVERRIDE {
4229    return GetBlock()->GetGraph()->GetLongConstant(
4230        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4231  }
4232  HConstant* Evaluate(HLongConstant* x, HIntConstant* y) const OVERRIDE {
4233    return GetBlock()->GetGraph()->GetLongConstant(
4234        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4235  }
4236  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
4237    return GetBlock()->GetGraph()->GetLongConstant(
4238        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4239  }
4240
4241  DECLARE_INSTRUCTION(Xor);
4242
4243 private:
4244  DISALLOW_COPY_AND_ASSIGN(HXor);
4245};
4246
4247class HRor : public HBinaryOperation {
4248 public:
4249  HRor(Primitive::Type result_type, HInstruction* value, HInstruction* distance)
4250    : HBinaryOperation(result_type, value, distance) {}
4251
4252  template <typename T, typename U, typename V>
4253  T Compute(T x, U y, V max_shift_value) const {
4254    static_assert(std::is_same<V, typename std::make_unsigned<T>::type>::value,
4255                  "V is not the unsigned integer type corresponding to T");
4256    V ux = static_cast<V>(x);
4257    if ((y & max_shift_value) == 0) {
4258      return static_cast<T>(ux);
4259    } else {
4260      const V reg_bits = sizeof(T) * 8;
4261      return static_cast<T>(ux >> (y & max_shift_value)) |
4262                           (x << (reg_bits - (y & max_shift_value)));
4263    }
4264  }
4265
4266  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
4267    return GetBlock()->GetGraph()->GetIntConstant(
4268        Compute(x->GetValue(), y->GetValue(), kMaxIntShiftValue), GetDexPc());
4269  }
4270  HConstant* Evaluate(HLongConstant* x, HIntConstant* y) const OVERRIDE {
4271    return GetBlock()->GetGraph()->GetLongConstant(
4272        Compute(x->GetValue(), y->GetValue(), kMaxLongShiftValue), GetDexPc());
4273  }
4274  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
4275    return GetBlock()->GetGraph()->GetLongConstant(
4276        Compute(x->GetValue(), y->GetValue(), kMaxLongShiftValue), GetDexPc());
4277  }
4278
4279  DECLARE_INSTRUCTION(Ror);
4280
4281 private:
4282  DISALLOW_COPY_AND_ASSIGN(HRor);
4283};
4284
4285// The value of a parameter in this method. Its location depends on
4286// the calling convention.
4287class HParameterValue : public HExpression<0> {
4288 public:
4289  HParameterValue(const DexFile& dex_file,
4290                  uint16_t type_index,
4291                  uint8_t index,
4292                  Primitive::Type parameter_type,
4293                  bool is_this = false)
4294      : HExpression(parameter_type, SideEffects::None(), kNoDexPc),
4295        dex_file_(dex_file),
4296        type_index_(type_index),
4297        index_(index),
4298        is_this_(is_this),
4299        can_be_null_(!is_this) {}
4300
4301  const DexFile& GetDexFile() const { return dex_file_; }
4302  uint16_t GetTypeIndex() const { return type_index_; }
4303  uint8_t GetIndex() const { return index_; }
4304  bool IsThis() const { return is_this_; }
4305
4306  bool CanBeNull() const OVERRIDE { return can_be_null_; }
4307  void SetCanBeNull(bool can_be_null) { can_be_null_ = can_be_null; }
4308
4309  DECLARE_INSTRUCTION(ParameterValue);
4310
4311 private:
4312  const DexFile& dex_file_;
4313  const uint16_t type_index_;
4314  // The index of this parameter in the parameters list. Must be less
4315  // than HGraph::number_of_in_vregs_.
4316  const uint8_t index_;
4317
4318  // Whether or not the parameter value corresponds to 'this' argument.
4319  const bool is_this_;
4320
4321  bool can_be_null_;
4322
4323  DISALLOW_COPY_AND_ASSIGN(HParameterValue);
4324};
4325
4326class HNot : public HUnaryOperation {
4327 public:
4328  HNot(Primitive::Type result_type, HInstruction* input, uint32_t dex_pc = kNoDexPc)
4329      : HUnaryOperation(result_type, input, dex_pc) {}
4330
4331  bool CanBeMoved() const OVERRIDE { return true; }
4332  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
4333    return true;
4334  }
4335
4336  template <typename T> T Compute(T x) const { return ~x; }
4337
4338  HConstant* Evaluate(HIntConstant* x) const OVERRIDE {
4339    return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue()), GetDexPc());
4340  }
4341  HConstant* Evaluate(HLongConstant* x) const OVERRIDE {
4342    return GetBlock()->GetGraph()->GetLongConstant(Compute(x->GetValue()), GetDexPc());
4343  }
4344
4345  DECLARE_INSTRUCTION(Not);
4346
4347 private:
4348  DISALLOW_COPY_AND_ASSIGN(HNot);
4349};
4350
4351class HBooleanNot : public HUnaryOperation {
4352 public:
4353  explicit HBooleanNot(HInstruction* input, uint32_t dex_pc = kNoDexPc)
4354      : HUnaryOperation(Primitive::Type::kPrimBoolean, input, dex_pc) {}
4355
4356  bool CanBeMoved() const OVERRIDE { return true; }
4357  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
4358    return true;
4359  }
4360
4361  template <typename T> bool Compute(T x) const {
4362    DCHECK(IsUint<1>(x));
4363    return !x;
4364  }
4365
4366  HConstant* Evaluate(HIntConstant* x) const OVERRIDE {
4367    return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue()), GetDexPc());
4368  }
4369  HConstant* Evaluate(HLongConstant* x ATTRIBUTE_UNUSED) const OVERRIDE {
4370    LOG(FATAL) << DebugName() << " is not defined for long values";
4371    UNREACHABLE();
4372  }
4373
4374  DECLARE_INSTRUCTION(BooleanNot);
4375
4376 private:
4377  DISALLOW_COPY_AND_ASSIGN(HBooleanNot);
4378};
4379
4380class HTypeConversion : public HExpression<1> {
4381 public:
4382  // Instantiate a type conversion of `input` to `result_type`.
4383  HTypeConversion(Primitive::Type result_type, HInstruction* input, uint32_t dex_pc)
4384      : HExpression(result_type,
4385                    SideEffectsForArchRuntimeCalls(input->GetType(), result_type),
4386                    dex_pc) {
4387    SetRawInputAt(0, input);
4388    DCHECK_NE(input->GetType(), result_type);
4389  }
4390
4391  HInstruction* GetInput() const { return InputAt(0); }
4392  Primitive::Type GetInputType() const { return GetInput()->GetType(); }
4393  Primitive::Type GetResultType() const { return GetType(); }
4394
4395  // Required by the x86, ARM, MIPS and MIPS64 code generators when producing calls
4396  // to the runtime.
4397
4398  bool CanBeMoved() const OVERRIDE { return true; }
4399  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE { return true; }
4400
4401  // Try to statically evaluate the conversion and return a HConstant
4402  // containing the result.  If the input cannot be converted, return nullptr.
4403  HConstant* TryStaticEvaluation() const;
4404
4405  static SideEffects SideEffectsForArchRuntimeCalls(Primitive::Type input_type,
4406                                                    Primitive::Type result_type) {
4407    // Some architectures may not require the 'GC' side effects, but at this point
4408    // in the compilation process we do not know what architecture we will
4409    // generate code for, so we must be conservative.
4410    if ((Primitive::IsFloatingPointType(input_type) && Primitive::IsIntegralType(result_type))
4411        || (input_type == Primitive::kPrimLong && Primitive::IsFloatingPointType(result_type))) {
4412      return SideEffects::CanTriggerGC();
4413    }
4414    return SideEffects::None();
4415  }
4416
4417  DECLARE_INSTRUCTION(TypeConversion);
4418
4419 private:
4420  DISALLOW_COPY_AND_ASSIGN(HTypeConversion);
4421};
4422
4423static constexpr uint32_t kNoRegNumber = -1;
4424
4425class HPhi : public HInstruction {
4426 public:
4427  HPhi(ArenaAllocator* arena,
4428       uint32_t reg_number,
4429       size_t number_of_inputs,
4430       Primitive::Type type,
4431       uint32_t dex_pc = kNoDexPc)
4432      : HInstruction(SideEffects::None(), dex_pc),
4433        inputs_(number_of_inputs, arena->Adapter(kArenaAllocPhiInputs)),
4434        reg_number_(reg_number),
4435        type_(ToPhiType(type)),
4436        // Phis are constructed live and marked dead if conflicting or unused.
4437        // Individual steps of SsaBuilder should assume that if a phi has been
4438        // marked dead, it can be ignored and will be removed by SsaPhiElimination.
4439        is_live_(true),
4440        can_be_null_(true) {
4441    DCHECK_NE(type_, Primitive::kPrimVoid);
4442  }
4443
4444  // Returns a type equivalent to the given `type`, but that a `HPhi` can hold.
4445  static Primitive::Type ToPhiType(Primitive::Type type) {
4446    switch (type) {
4447      case Primitive::kPrimBoolean:
4448      case Primitive::kPrimByte:
4449      case Primitive::kPrimShort:
4450      case Primitive::kPrimChar:
4451        return Primitive::kPrimInt;
4452      default:
4453        return type;
4454    }
4455  }
4456
4457  bool IsCatchPhi() const { return GetBlock()->IsCatchBlock(); }
4458
4459  size_t InputCount() const OVERRIDE { return inputs_.size(); }
4460
4461  void AddInput(HInstruction* input);
4462  void RemoveInputAt(size_t index);
4463
4464  Primitive::Type GetType() const OVERRIDE { return type_; }
4465  void SetType(Primitive::Type type) { type_ = type; }
4466
4467  bool CanBeNull() const OVERRIDE { return can_be_null_; }
4468  void SetCanBeNull(bool can_be_null) { can_be_null_ = can_be_null; }
4469
4470  uint32_t GetRegNumber() const { return reg_number_; }
4471
4472  void SetDead() { is_live_ = false; }
4473  void SetLive() { is_live_ = true; }
4474  bool IsDead() const { return !is_live_; }
4475  bool IsLive() const { return is_live_; }
4476
4477  bool IsVRegEquivalentOf(HInstruction* other) const {
4478    return other != nullptr
4479        && other->IsPhi()
4480        && other->AsPhi()->GetBlock() == GetBlock()
4481        && other->AsPhi()->GetRegNumber() == GetRegNumber();
4482  }
4483
4484  // Returns the next equivalent phi (starting from the current one) or null if there is none.
4485  // An equivalent phi is a phi having the same dex register and type.
4486  // It assumes that phis with the same dex register are adjacent.
4487  HPhi* GetNextEquivalentPhiWithSameType() {
4488    HInstruction* next = GetNext();
4489    while (next != nullptr && next->AsPhi()->GetRegNumber() == reg_number_) {
4490      if (next->GetType() == GetType()) {
4491        return next->AsPhi();
4492      }
4493      next = next->GetNext();
4494    }
4495    return nullptr;
4496  }
4497
4498  DECLARE_INSTRUCTION(Phi);
4499
4500 protected:
4501  const HUserRecord<HInstruction*> InputRecordAt(size_t index) const OVERRIDE {
4502    return inputs_[index];
4503  }
4504
4505  void SetRawInputRecordAt(size_t index, const HUserRecord<HInstruction*>& input) OVERRIDE {
4506    inputs_[index] = input;
4507  }
4508
4509 private:
4510  ArenaVector<HUserRecord<HInstruction*> > inputs_;
4511  const uint32_t reg_number_;
4512  Primitive::Type type_;
4513  bool is_live_;
4514  bool can_be_null_;
4515
4516  DISALLOW_COPY_AND_ASSIGN(HPhi);
4517};
4518
4519class HNullCheck : public HExpression<1> {
4520 public:
4521  HNullCheck(HInstruction* value, uint32_t dex_pc)
4522      : HExpression(value->GetType(), SideEffects::None(), dex_pc) {
4523    SetRawInputAt(0, value);
4524  }
4525
4526  bool CanBeMoved() const OVERRIDE { return true; }
4527  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
4528    return true;
4529  }
4530
4531  bool NeedsEnvironment() const OVERRIDE { return true; }
4532
4533  bool CanThrow() const OVERRIDE { return true; }
4534
4535  bool CanBeNull() const OVERRIDE { return false; }
4536
4537
4538  DECLARE_INSTRUCTION(NullCheck);
4539
4540 private:
4541  DISALLOW_COPY_AND_ASSIGN(HNullCheck);
4542};
4543
4544class FieldInfo : public ValueObject {
4545 public:
4546  FieldInfo(MemberOffset field_offset,
4547            Primitive::Type field_type,
4548            bool is_volatile,
4549            uint32_t index,
4550            uint16_t declaring_class_def_index,
4551            const DexFile& dex_file,
4552            Handle<mirror::DexCache> dex_cache)
4553      : field_offset_(field_offset),
4554        field_type_(field_type),
4555        is_volatile_(is_volatile),
4556        index_(index),
4557        declaring_class_def_index_(declaring_class_def_index),
4558        dex_file_(dex_file),
4559        dex_cache_(dex_cache) {}
4560
4561  MemberOffset GetFieldOffset() const { return field_offset_; }
4562  Primitive::Type GetFieldType() const { return field_type_; }
4563  uint32_t GetFieldIndex() const { return index_; }
4564  uint16_t GetDeclaringClassDefIndex() const { return declaring_class_def_index_;}
4565  const DexFile& GetDexFile() const { return dex_file_; }
4566  bool IsVolatile() const { return is_volatile_; }
4567  Handle<mirror::DexCache> GetDexCache() const { return dex_cache_; }
4568
4569 private:
4570  const MemberOffset field_offset_;
4571  const Primitive::Type field_type_;
4572  const bool is_volatile_;
4573  const uint32_t index_;
4574  const uint16_t declaring_class_def_index_;
4575  const DexFile& dex_file_;
4576  const Handle<mirror::DexCache> dex_cache_;
4577};
4578
4579class HInstanceFieldGet : public HExpression<1> {
4580 public:
4581  HInstanceFieldGet(HInstruction* value,
4582                    Primitive::Type field_type,
4583                    MemberOffset field_offset,
4584                    bool is_volatile,
4585                    uint32_t field_idx,
4586                    uint16_t declaring_class_def_index,
4587                    const DexFile& dex_file,
4588                    Handle<mirror::DexCache> dex_cache,
4589                    uint32_t dex_pc)
4590      : HExpression(field_type,
4591                    SideEffects::FieldReadOfType(field_type, is_volatile),
4592                    dex_pc),
4593        field_info_(field_offset,
4594                    field_type,
4595                    is_volatile,
4596                    field_idx,
4597                    declaring_class_def_index,
4598                    dex_file,
4599                    dex_cache) {
4600    SetRawInputAt(0, value);
4601  }
4602
4603  bool CanBeMoved() const OVERRIDE { return !IsVolatile(); }
4604
4605  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
4606    HInstanceFieldGet* other_get = other->AsInstanceFieldGet();
4607    return GetFieldOffset().SizeValue() == other_get->GetFieldOffset().SizeValue();
4608  }
4609
4610  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
4611    return (obj == InputAt(0)) && GetFieldOffset().Uint32Value() < kPageSize;
4612  }
4613
4614  size_t ComputeHashCode() const OVERRIDE {
4615    return (HInstruction::ComputeHashCode() << 7) | GetFieldOffset().SizeValue();
4616  }
4617
4618  const FieldInfo& GetFieldInfo() const { return field_info_; }
4619  MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
4620  Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); }
4621  bool IsVolatile() const { return field_info_.IsVolatile(); }
4622
4623  DECLARE_INSTRUCTION(InstanceFieldGet);
4624
4625 private:
4626  const FieldInfo field_info_;
4627
4628  DISALLOW_COPY_AND_ASSIGN(HInstanceFieldGet);
4629};
4630
4631class HInstanceFieldSet : public HTemplateInstruction<2> {
4632 public:
4633  HInstanceFieldSet(HInstruction* object,
4634                    HInstruction* value,
4635                    Primitive::Type field_type,
4636                    MemberOffset field_offset,
4637                    bool is_volatile,
4638                    uint32_t field_idx,
4639                    uint16_t declaring_class_def_index,
4640                    const DexFile& dex_file,
4641                    Handle<mirror::DexCache> dex_cache,
4642                    uint32_t dex_pc)
4643      : HTemplateInstruction(SideEffects::FieldWriteOfType(field_type, is_volatile),
4644                             dex_pc),
4645        field_info_(field_offset,
4646                    field_type,
4647                    is_volatile,
4648                    field_idx,
4649                    declaring_class_def_index,
4650                    dex_file,
4651                    dex_cache),
4652        value_can_be_null_(true) {
4653    SetRawInputAt(0, object);
4654    SetRawInputAt(1, value);
4655  }
4656
4657  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
4658    return (obj == InputAt(0)) && GetFieldOffset().Uint32Value() < kPageSize;
4659  }
4660
4661  const FieldInfo& GetFieldInfo() const { return field_info_; }
4662  MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
4663  Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); }
4664  bool IsVolatile() const { return field_info_.IsVolatile(); }
4665  HInstruction* GetValue() const { return InputAt(1); }
4666  bool GetValueCanBeNull() const { return value_can_be_null_; }
4667  void ClearValueCanBeNull() { value_can_be_null_ = false; }
4668
4669  DECLARE_INSTRUCTION(InstanceFieldSet);
4670
4671 private:
4672  const FieldInfo field_info_;
4673  bool value_can_be_null_;
4674
4675  DISALLOW_COPY_AND_ASSIGN(HInstanceFieldSet);
4676};
4677
4678class HArrayGet : public HExpression<2> {
4679 public:
4680  HArrayGet(HInstruction* array,
4681            HInstruction* index,
4682            Primitive::Type type,
4683            uint32_t dex_pc,
4684            SideEffects additional_side_effects = SideEffects::None())
4685      : HExpression(type,
4686                    SideEffects::ArrayReadOfType(type).Union(additional_side_effects),
4687                    dex_pc) {
4688    SetRawInputAt(0, array);
4689    SetRawInputAt(1, index);
4690  }
4691
4692  bool CanBeMoved() const OVERRIDE { return true; }
4693  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
4694    return true;
4695  }
4696  bool CanDoImplicitNullCheckOn(HInstruction* obj ATTRIBUTE_UNUSED) const OVERRIDE {
4697    // TODO: We can be smarter here.
4698    // Currently, the array access is always preceded by an ArrayLength or a NullCheck
4699    // which generates the implicit null check. There are cases when these can be removed
4700    // to produce better code. If we ever add optimizations to do so we should allow an
4701    // implicit check here (as long as the address falls in the first page).
4702    return false;
4703  }
4704
4705  void SetType(Primitive::Type type) { type_ = type; }
4706
4707  HInstruction* GetArray() const { return InputAt(0); }
4708  HInstruction* GetIndex() const { return InputAt(1); }
4709
4710  DECLARE_INSTRUCTION(ArrayGet);
4711
4712 private:
4713  DISALLOW_COPY_AND_ASSIGN(HArrayGet);
4714};
4715
4716class HArraySet : public HTemplateInstruction<3> {
4717 public:
4718  HArraySet(HInstruction* array,
4719            HInstruction* index,
4720            HInstruction* value,
4721            Primitive::Type expected_component_type,
4722            uint32_t dex_pc,
4723            SideEffects additional_side_effects = SideEffects::None())
4724      : HTemplateInstruction(
4725            SideEffects::ArrayWriteOfType(expected_component_type).Union(
4726                SideEffectsForArchRuntimeCalls(value->GetType())).Union(
4727                    additional_side_effects),
4728            dex_pc),
4729        expected_component_type_(expected_component_type),
4730        needs_type_check_(value->GetType() == Primitive::kPrimNot),
4731        value_can_be_null_(true),
4732        static_type_of_array_is_object_array_(false) {
4733    SetRawInputAt(0, array);
4734    SetRawInputAt(1, index);
4735    SetRawInputAt(2, value);
4736  }
4737
4738  bool NeedsEnvironment() const OVERRIDE {
4739    // We currently always call a runtime method to catch array store
4740    // exceptions.
4741    return needs_type_check_;
4742  }
4743
4744  // Can throw ArrayStoreException.
4745  bool CanThrow() const OVERRIDE { return needs_type_check_; }
4746
4747  bool CanDoImplicitNullCheckOn(HInstruction* obj ATTRIBUTE_UNUSED) const OVERRIDE {
4748    // TODO: Same as for ArrayGet.
4749    return false;
4750  }
4751
4752  void ClearNeedsTypeCheck() {
4753    needs_type_check_ = false;
4754  }
4755
4756  void ClearValueCanBeNull() {
4757    value_can_be_null_ = false;
4758  }
4759
4760  void SetStaticTypeOfArrayIsObjectArray() {
4761    static_type_of_array_is_object_array_ = true;
4762  }
4763
4764  bool GetValueCanBeNull() const { return value_can_be_null_; }
4765  bool NeedsTypeCheck() const { return needs_type_check_; }
4766  bool StaticTypeOfArrayIsObjectArray() const { return static_type_of_array_is_object_array_; }
4767
4768  HInstruction* GetArray() const { return InputAt(0); }
4769  HInstruction* GetIndex() const { return InputAt(1); }
4770  HInstruction* GetValue() const { return InputAt(2); }
4771
4772  Primitive::Type GetComponentType() const {
4773    // The Dex format does not type floating point index operations. Since the
4774    // `expected_component_type_` is set during building and can therefore not
4775    // be correct, we also check what is the value type. If it is a floating
4776    // point type, we must use that type.
4777    Primitive::Type value_type = GetValue()->GetType();
4778    return ((value_type == Primitive::kPrimFloat) || (value_type == Primitive::kPrimDouble))
4779        ? value_type
4780        : expected_component_type_;
4781  }
4782
4783  Primitive::Type GetRawExpectedComponentType() const {
4784    return expected_component_type_;
4785  }
4786
4787  static SideEffects SideEffectsForArchRuntimeCalls(Primitive::Type value_type) {
4788    return (value_type == Primitive::kPrimNot) ? SideEffects::CanTriggerGC() : SideEffects::None();
4789  }
4790
4791  DECLARE_INSTRUCTION(ArraySet);
4792
4793 private:
4794  const Primitive::Type expected_component_type_;
4795  bool needs_type_check_;
4796  bool value_can_be_null_;
4797  // Cached information for the reference_type_info_ so that codegen
4798  // does not need to inspect the static type.
4799  bool static_type_of_array_is_object_array_;
4800
4801  DISALLOW_COPY_AND_ASSIGN(HArraySet);
4802};
4803
4804class HArrayLength : public HExpression<1> {
4805 public:
4806  HArrayLength(HInstruction* array, uint32_t dex_pc)
4807      : HExpression(Primitive::kPrimInt, SideEffects::None(), dex_pc) {
4808    // Note that arrays do not change length, so the instruction does not
4809    // depend on any write.
4810    SetRawInputAt(0, array);
4811  }
4812
4813  bool CanBeMoved() const OVERRIDE { return true; }
4814  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
4815    return true;
4816  }
4817  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
4818    return obj == InputAt(0);
4819  }
4820
4821  DECLARE_INSTRUCTION(ArrayLength);
4822
4823 private:
4824  DISALLOW_COPY_AND_ASSIGN(HArrayLength);
4825};
4826
4827class HBoundsCheck : public HExpression<2> {
4828 public:
4829  HBoundsCheck(HInstruction* index, HInstruction* length, uint32_t dex_pc)
4830      : HExpression(index->GetType(), SideEffects::None(), dex_pc) {
4831    DCHECK(index->GetType() == Primitive::kPrimInt);
4832    SetRawInputAt(0, index);
4833    SetRawInputAt(1, length);
4834  }
4835
4836  bool CanBeMoved() const OVERRIDE { return true; }
4837  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
4838    return true;
4839  }
4840
4841  bool NeedsEnvironment() const OVERRIDE { return true; }
4842
4843  bool CanThrow() const OVERRIDE { return true; }
4844
4845  HInstruction* GetIndex() const { return InputAt(0); }
4846
4847  DECLARE_INSTRUCTION(BoundsCheck);
4848
4849 private:
4850  DISALLOW_COPY_AND_ASSIGN(HBoundsCheck);
4851};
4852
4853/**
4854 * Some DEX instructions are folded into multiple HInstructions that need
4855 * to stay live until the last HInstruction. This class
4856 * is used as a marker for the baseline compiler to ensure its preceding
4857 * HInstruction stays live. `index` represents the stack location index of the
4858 * instruction (the actual offset is computed as index * vreg_size).
4859 */
4860class HTemporary : public HTemplateInstruction<0> {
4861 public:
4862  explicit HTemporary(size_t index, uint32_t dex_pc = kNoDexPc)
4863      : HTemplateInstruction(SideEffects::None(), dex_pc), index_(index) {}
4864
4865  size_t GetIndex() const { return index_; }
4866
4867  Primitive::Type GetType() const OVERRIDE {
4868    // The previous instruction is the one that will be stored in the temporary location.
4869    DCHECK(GetPrevious() != nullptr);
4870    return GetPrevious()->GetType();
4871  }
4872
4873  DECLARE_INSTRUCTION(Temporary);
4874
4875 private:
4876  const size_t index_;
4877  DISALLOW_COPY_AND_ASSIGN(HTemporary);
4878};
4879
4880class HSuspendCheck : public HTemplateInstruction<0> {
4881 public:
4882  explicit HSuspendCheck(uint32_t dex_pc)
4883      : HTemplateInstruction(SideEffects::CanTriggerGC(), dex_pc), slow_path_(nullptr) {}
4884
4885  bool NeedsEnvironment() const OVERRIDE {
4886    return true;
4887  }
4888
4889  void SetSlowPath(SlowPathCode* slow_path) { slow_path_ = slow_path; }
4890  SlowPathCode* GetSlowPath() const { return slow_path_; }
4891
4892  DECLARE_INSTRUCTION(SuspendCheck);
4893
4894 private:
4895  // Only used for code generation, in order to share the same slow path between back edges
4896  // of a same loop.
4897  SlowPathCode* slow_path_;
4898
4899  DISALLOW_COPY_AND_ASSIGN(HSuspendCheck);
4900};
4901
4902// Pseudo-instruction which provides the native debugger with mapping information.
4903// It ensures that we can generate line number and local variables at this point.
4904class HNativeDebugInfo : public HTemplateInstruction<0> {
4905 public:
4906  explicit HNativeDebugInfo(uint32_t dex_pc)
4907      : HTemplateInstruction<0>(SideEffects::None(), dex_pc) {}
4908
4909  bool NeedsEnvironment() const OVERRIDE {
4910    return true;
4911  }
4912
4913  DECLARE_INSTRUCTION(NativeDebugInfo);
4914
4915 private:
4916  DISALLOW_COPY_AND_ASSIGN(HNativeDebugInfo);
4917};
4918
4919/**
4920 * Instruction to load a Class object.
4921 */
4922class HLoadClass : public HExpression<1> {
4923 public:
4924  HLoadClass(HCurrentMethod* current_method,
4925             uint16_t type_index,
4926             const DexFile& dex_file,
4927             bool is_referrers_class,
4928             uint32_t dex_pc,
4929             bool needs_access_check,
4930             bool is_in_dex_cache)
4931      : HExpression(Primitive::kPrimNot, SideEffectsForArchRuntimeCalls(), dex_pc),
4932        type_index_(type_index),
4933        dex_file_(dex_file),
4934        is_referrers_class_(is_referrers_class),
4935        generate_clinit_check_(false),
4936        needs_access_check_(needs_access_check),
4937        is_in_dex_cache_(is_in_dex_cache),
4938        loaded_class_rti_(ReferenceTypeInfo::CreateInvalid()) {
4939    // Referrers class should not need access check. We never inline unverified
4940    // methods so we can't possibly end up in this situation.
4941    DCHECK(!is_referrers_class_ || !needs_access_check_);
4942    SetRawInputAt(0, current_method);
4943  }
4944
4945  bool CanBeMoved() const OVERRIDE { return true; }
4946
4947  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
4948    // Note that we don't need to test for generate_clinit_check_.
4949    // Whether or not we need to generate the clinit check is processed in
4950    // prepare_for_register_allocator based on existing HInvokes and HClinitChecks.
4951    return other->AsLoadClass()->type_index_ == type_index_ &&
4952        other->AsLoadClass()->needs_access_check_ == needs_access_check_;
4953  }
4954
4955  size_t ComputeHashCode() const OVERRIDE { return type_index_; }
4956
4957  uint16_t GetTypeIndex() const { return type_index_; }
4958  bool IsReferrersClass() const { return is_referrers_class_; }
4959  bool CanBeNull() const OVERRIDE { return false; }
4960
4961  bool NeedsEnvironment() const OVERRIDE {
4962    return CanCallRuntime();
4963  }
4964
4965  bool MustGenerateClinitCheck() const {
4966    return generate_clinit_check_;
4967  }
4968
4969  void SetMustGenerateClinitCheck(bool generate_clinit_check) {
4970    // The entrypoint the code generator is going to call does not do
4971    // clinit of the class.
4972    DCHECK(!NeedsAccessCheck());
4973    generate_clinit_check_ = generate_clinit_check;
4974  }
4975
4976  bool CanCallRuntime() const {
4977    return MustGenerateClinitCheck() ||
4978           (!is_referrers_class_ && !is_in_dex_cache_) ||
4979           needs_access_check_;
4980  }
4981
4982  bool NeedsAccessCheck() const {
4983    return needs_access_check_;
4984  }
4985
4986  bool CanThrow() const OVERRIDE {
4987    return CanCallRuntime();
4988  }
4989
4990  ReferenceTypeInfo GetLoadedClassRTI() {
4991    return loaded_class_rti_;
4992  }
4993
4994  void SetLoadedClassRTI(ReferenceTypeInfo rti) {
4995    // Make sure we only set exact types (the loaded class should never be merged).
4996    DCHECK(rti.IsExact());
4997    loaded_class_rti_ = rti;
4998  }
4999
5000  const DexFile& GetDexFile() { return dex_file_; }
5001
5002  bool NeedsDexCacheOfDeclaringClass() const OVERRIDE { return !is_referrers_class_; }
5003
5004  static SideEffects SideEffectsForArchRuntimeCalls() {
5005    return SideEffects::CanTriggerGC();
5006  }
5007
5008  bool IsInDexCache() const { return is_in_dex_cache_; }
5009
5010  DECLARE_INSTRUCTION(LoadClass);
5011
5012 private:
5013  const uint16_t type_index_;
5014  const DexFile& dex_file_;
5015  const bool is_referrers_class_;
5016  // Whether this instruction must generate the initialization check.
5017  // Used for code generation.
5018  bool generate_clinit_check_;
5019  const bool needs_access_check_;
5020  const bool is_in_dex_cache_;
5021
5022  ReferenceTypeInfo loaded_class_rti_;
5023
5024  DISALLOW_COPY_AND_ASSIGN(HLoadClass);
5025};
5026
5027class HLoadString : public HExpression<1> {
5028 public:
5029  HLoadString(HCurrentMethod* current_method,
5030              uint32_t string_index,
5031              uint32_t dex_pc,
5032              bool is_in_dex_cache)
5033      : HExpression(Primitive::kPrimNot, SideEffectsForArchRuntimeCalls(), dex_pc),
5034        string_index_(string_index),
5035        is_in_dex_cache_(is_in_dex_cache) {
5036    SetRawInputAt(0, current_method);
5037  }
5038
5039  bool CanBeMoved() const OVERRIDE { return true; }
5040
5041  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
5042    return other->AsLoadString()->string_index_ == string_index_;
5043  }
5044
5045  size_t ComputeHashCode() const OVERRIDE { return string_index_; }
5046
5047  uint32_t GetStringIndex() const { return string_index_; }
5048
5049  // TODO: Can we deopt or debug when we resolve a string?
5050  bool NeedsEnvironment() const OVERRIDE { return false; }
5051  bool NeedsDexCacheOfDeclaringClass() const OVERRIDE { return true; }
5052  bool CanBeNull() const OVERRIDE { return false; }
5053  bool IsInDexCache() const { return is_in_dex_cache_; }
5054
5055  static SideEffects SideEffectsForArchRuntimeCalls() {
5056    return SideEffects::CanTriggerGC();
5057  }
5058
5059  DECLARE_INSTRUCTION(LoadString);
5060
5061 private:
5062  const uint32_t string_index_;
5063  const bool is_in_dex_cache_;
5064
5065  DISALLOW_COPY_AND_ASSIGN(HLoadString);
5066};
5067
5068/**
5069 * Performs an initialization check on its Class object input.
5070 */
5071class HClinitCheck : public HExpression<1> {
5072 public:
5073  HClinitCheck(HLoadClass* constant, uint32_t dex_pc)
5074      : HExpression(
5075            Primitive::kPrimNot,
5076            SideEffects::AllChanges(),  // Assume write/read on all fields/arrays.
5077            dex_pc) {
5078    SetRawInputAt(0, constant);
5079  }
5080
5081  bool CanBeMoved() const OVERRIDE { return true; }
5082  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
5083    return true;
5084  }
5085
5086  bool NeedsEnvironment() const OVERRIDE {
5087    // May call runtime to initialize the class.
5088    return true;
5089  }
5090
5091  bool CanThrow() const OVERRIDE { return true; }
5092
5093  HLoadClass* GetLoadClass() const { return InputAt(0)->AsLoadClass(); }
5094
5095  DECLARE_INSTRUCTION(ClinitCheck);
5096
5097 private:
5098  DISALLOW_COPY_AND_ASSIGN(HClinitCheck);
5099};
5100
5101class HStaticFieldGet : public HExpression<1> {
5102 public:
5103  HStaticFieldGet(HInstruction* cls,
5104                  Primitive::Type field_type,
5105                  MemberOffset field_offset,
5106                  bool is_volatile,
5107                  uint32_t field_idx,
5108                  uint16_t declaring_class_def_index,
5109                  const DexFile& dex_file,
5110                  Handle<mirror::DexCache> dex_cache,
5111                  uint32_t dex_pc)
5112      : HExpression(field_type,
5113                    SideEffects::FieldReadOfType(field_type, is_volatile),
5114                    dex_pc),
5115        field_info_(field_offset,
5116                    field_type,
5117                    is_volatile,
5118                    field_idx,
5119                    declaring_class_def_index,
5120                    dex_file,
5121                    dex_cache) {
5122    SetRawInputAt(0, cls);
5123  }
5124
5125
5126  bool CanBeMoved() const OVERRIDE { return !IsVolatile(); }
5127
5128  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
5129    HStaticFieldGet* other_get = other->AsStaticFieldGet();
5130    return GetFieldOffset().SizeValue() == other_get->GetFieldOffset().SizeValue();
5131  }
5132
5133  size_t ComputeHashCode() const OVERRIDE {
5134    return (HInstruction::ComputeHashCode() << 7) | GetFieldOffset().SizeValue();
5135  }
5136
5137  const FieldInfo& GetFieldInfo() const { return field_info_; }
5138  MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
5139  Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); }
5140  bool IsVolatile() const { return field_info_.IsVolatile(); }
5141
5142  DECLARE_INSTRUCTION(StaticFieldGet);
5143
5144 private:
5145  const FieldInfo field_info_;
5146
5147  DISALLOW_COPY_AND_ASSIGN(HStaticFieldGet);
5148};
5149
5150class HStaticFieldSet : public HTemplateInstruction<2> {
5151 public:
5152  HStaticFieldSet(HInstruction* cls,
5153                  HInstruction* value,
5154                  Primitive::Type field_type,
5155                  MemberOffset field_offset,
5156                  bool is_volatile,
5157                  uint32_t field_idx,
5158                  uint16_t declaring_class_def_index,
5159                  const DexFile& dex_file,
5160                  Handle<mirror::DexCache> dex_cache,
5161                  uint32_t dex_pc)
5162      : HTemplateInstruction(SideEffects::FieldWriteOfType(field_type, is_volatile),
5163                             dex_pc),
5164        field_info_(field_offset,
5165                    field_type,
5166                    is_volatile,
5167                    field_idx,
5168                    declaring_class_def_index,
5169                    dex_file,
5170                    dex_cache),
5171        value_can_be_null_(true) {
5172    SetRawInputAt(0, cls);
5173    SetRawInputAt(1, value);
5174  }
5175
5176  const FieldInfo& GetFieldInfo() const { return field_info_; }
5177  MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
5178  Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); }
5179  bool IsVolatile() const { return field_info_.IsVolatile(); }
5180
5181  HInstruction* GetValue() const { return InputAt(1); }
5182  bool GetValueCanBeNull() const { return value_can_be_null_; }
5183  void ClearValueCanBeNull() { value_can_be_null_ = false; }
5184
5185  DECLARE_INSTRUCTION(StaticFieldSet);
5186
5187 private:
5188  const FieldInfo field_info_;
5189  bool value_can_be_null_;
5190
5191  DISALLOW_COPY_AND_ASSIGN(HStaticFieldSet);
5192};
5193
5194class HUnresolvedInstanceFieldGet : public HExpression<1> {
5195 public:
5196  HUnresolvedInstanceFieldGet(HInstruction* obj,
5197                              Primitive::Type field_type,
5198                              uint32_t field_index,
5199                              uint32_t dex_pc)
5200      : HExpression(field_type, SideEffects::AllExceptGCDependency(), dex_pc),
5201        field_index_(field_index) {
5202    SetRawInputAt(0, obj);
5203  }
5204
5205  bool NeedsEnvironment() const OVERRIDE { return true; }
5206  bool CanThrow() const OVERRIDE { return true; }
5207
5208  Primitive::Type GetFieldType() const { return GetType(); }
5209  uint32_t GetFieldIndex() const { return field_index_; }
5210
5211  DECLARE_INSTRUCTION(UnresolvedInstanceFieldGet);
5212
5213 private:
5214  const uint32_t field_index_;
5215
5216  DISALLOW_COPY_AND_ASSIGN(HUnresolvedInstanceFieldGet);
5217};
5218
5219class HUnresolvedInstanceFieldSet : public HTemplateInstruction<2> {
5220 public:
5221  HUnresolvedInstanceFieldSet(HInstruction* obj,
5222                              HInstruction* value,
5223                              Primitive::Type field_type,
5224                              uint32_t field_index,
5225                              uint32_t dex_pc)
5226      : HTemplateInstruction(SideEffects::AllExceptGCDependency(), dex_pc),
5227        field_type_(field_type),
5228        field_index_(field_index) {
5229    DCHECK_EQ(field_type, value->GetType());
5230    SetRawInputAt(0, obj);
5231    SetRawInputAt(1, value);
5232  }
5233
5234  bool NeedsEnvironment() const OVERRIDE { return true; }
5235  bool CanThrow() const OVERRIDE { return true; }
5236
5237  Primitive::Type GetFieldType() const { return field_type_; }
5238  uint32_t GetFieldIndex() const { return field_index_; }
5239
5240  DECLARE_INSTRUCTION(UnresolvedInstanceFieldSet);
5241
5242 private:
5243  const Primitive::Type field_type_;
5244  const uint32_t field_index_;
5245
5246  DISALLOW_COPY_AND_ASSIGN(HUnresolvedInstanceFieldSet);
5247};
5248
5249class HUnresolvedStaticFieldGet : public HExpression<0> {
5250 public:
5251  HUnresolvedStaticFieldGet(Primitive::Type field_type,
5252                            uint32_t field_index,
5253                            uint32_t dex_pc)
5254      : HExpression(field_type, SideEffects::AllExceptGCDependency(), dex_pc),
5255        field_index_(field_index) {
5256  }
5257
5258  bool NeedsEnvironment() const OVERRIDE { return true; }
5259  bool CanThrow() const OVERRIDE { return true; }
5260
5261  Primitive::Type GetFieldType() const { return GetType(); }
5262  uint32_t GetFieldIndex() const { return field_index_; }
5263
5264  DECLARE_INSTRUCTION(UnresolvedStaticFieldGet);
5265
5266 private:
5267  const uint32_t field_index_;
5268
5269  DISALLOW_COPY_AND_ASSIGN(HUnresolvedStaticFieldGet);
5270};
5271
5272class HUnresolvedStaticFieldSet : public HTemplateInstruction<1> {
5273 public:
5274  HUnresolvedStaticFieldSet(HInstruction* value,
5275                            Primitive::Type field_type,
5276                            uint32_t field_index,
5277                            uint32_t dex_pc)
5278      : HTemplateInstruction(SideEffects::AllExceptGCDependency(), dex_pc),
5279        field_type_(field_type),
5280        field_index_(field_index) {
5281    DCHECK_EQ(field_type, value->GetType());
5282    SetRawInputAt(0, value);
5283  }
5284
5285  bool NeedsEnvironment() const OVERRIDE { return true; }
5286  bool CanThrow() const OVERRIDE { return true; }
5287
5288  Primitive::Type GetFieldType() const { return field_type_; }
5289  uint32_t GetFieldIndex() const { return field_index_; }
5290
5291  DECLARE_INSTRUCTION(UnresolvedStaticFieldSet);
5292
5293 private:
5294  const Primitive::Type field_type_;
5295  const uint32_t field_index_;
5296
5297  DISALLOW_COPY_AND_ASSIGN(HUnresolvedStaticFieldSet);
5298};
5299
5300// Implement the move-exception DEX instruction.
5301class HLoadException : public HExpression<0> {
5302 public:
5303  explicit HLoadException(uint32_t dex_pc = kNoDexPc)
5304      : HExpression(Primitive::kPrimNot, SideEffects::None(), dex_pc) {}
5305
5306  bool CanBeNull() const OVERRIDE { return false; }
5307
5308  DECLARE_INSTRUCTION(LoadException);
5309
5310 private:
5311  DISALLOW_COPY_AND_ASSIGN(HLoadException);
5312};
5313
5314// Implicit part of move-exception which clears thread-local exception storage.
5315// Must not be removed because the runtime expects the TLS to get cleared.
5316class HClearException : public HTemplateInstruction<0> {
5317 public:
5318  explicit HClearException(uint32_t dex_pc = kNoDexPc)
5319      : HTemplateInstruction(SideEffects::AllWrites(), dex_pc) {}
5320
5321  DECLARE_INSTRUCTION(ClearException);
5322
5323 private:
5324  DISALLOW_COPY_AND_ASSIGN(HClearException);
5325};
5326
5327class HThrow : public HTemplateInstruction<1> {
5328 public:
5329  HThrow(HInstruction* exception, uint32_t dex_pc)
5330      : HTemplateInstruction(SideEffects::CanTriggerGC(), dex_pc) {
5331    SetRawInputAt(0, exception);
5332  }
5333
5334  bool IsControlFlow() const OVERRIDE { return true; }
5335
5336  bool NeedsEnvironment() const OVERRIDE { return true; }
5337
5338  bool CanThrow() const OVERRIDE { return true; }
5339
5340
5341  DECLARE_INSTRUCTION(Throw);
5342
5343 private:
5344  DISALLOW_COPY_AND_ASSIGN(HThrow);
5345};
5346
5347/**
5348 * Implementation strategies for the code generator of a HInstanceOf
5349 * or `HCheckCast`.
5350 */
5351enum class TypeCheckKind {
5352  kUnresolvedCheck,       // Check against an unresolved type.
5353  kExactCheck,            // Can do a single class compare.
5354  kClassHierarchyCheck,   // Can just walk the super class chain.
5355  kAbstractClassCheck,    // Can just walk the super class chain, starting one up.
5356  kInterfaceCheck,        // No optimization yet when checking against an interface.
5357  kArrayObjectCheck,      // Can just check if the array is not primitive.
5358  kArrayCheck             // No optimization yet when checking against a generic array.
5359};
5360
5361class HInstanceOf : public HExpression<2> {
5362 public:
5363  HInstanceOf(HInstruction* object,
5364              HLoadClass* constant,
5365              TypeCheckKind check_kind,
5366              uint32_t dex_pc)
5367      : HExpression(Primitive::kPrimBoolean,
5368                    SideEffectsForArchRuntimeCalls(check_kind),
5369                    dex_pc),
5370        check_kind_(check_kind),
5371        must_do_null_check_(true) {
5372    SetRawInputAt(0, object);
5373    SetRawInputAt(1, constant);
5374  }
5375
5376  bool CanBeMoved() const OVERRIDE { return true; }
5377
5378  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
5379    return true;
5380  }
5381
5382  bool NeedsEnvironment() const OVERRIDE {
5383    return false;
5384  }
5385
5386  bool IsExactCheck() const { return check_kind_ == TypeCheckKind::kExactCheck; }
5387
5388  TypeCheckKind GetTypeCheckKind() const { return check_kind_; }
5389
5390  // Used only in code generation.
5391  bool MustDoNullCheck() const { return must_do_null_check_; }
5392  void ClearMustDoNullCheck() { must_do_null_check_ = false; }
5393
5394  static SideEffects SideEffectsForArchRuntimeCalls(TypeCheckKind check_kind) {
5395    return (check_kind == TypeCheckKind::kExactCheck)
5396        ? SideEffects::None()
5397        // Mips currently does runtime calls for any other checks.
5398        : SideEffects::CanTriggerGC();
5399  }
5400
5401  DECLARE_INSTRUCTION(InstanceOf);
5402
5403 private:
5404  const TypeCheckKind check_kind_;
5405  bool must_do_null_check_;
5406
5407  DISALLOW_COPY_AND_ASSIGN(HInstanceOf);
5408};
5409
5410class HBoundType : public HExpression<1> {
5411 public:
5412  // Constructs an HBoundType with the given upper_bound.
5413  // Ensures that the upper_bound is valid.
5414  HBoundType(HInstruction* input,
5415             ReferenceTypeInfo upper_bound,
5416             bool upper_can_be_null,
5417             uint32_t dex_pc = kNoDexPc)
5418      : HExpression(Primitive::kPrimNot, SideEffects::None(), dex_pc),
5419        upper_bound_(upper_bound),
5420        upper_can_be_null_(upper_can_be_null),
5421        can_be_null_(upper_can_be_null) {
5422    DCHECK_EQ(input->GetType(), Primitive::kPrimNot);
5423    SetRawInputAt(0, input);
5424    SetReferenceTypeInfo(upper_bound_);
5425  }
5426
5427  // GetUpper* should only be used in reference type propagation.
5428  const ReferenceTypeInfo& GetUpperBound() const { return upper_bound_; }
5429  bool GetUpperCanBeNull() const { return upper_can_be_null_; }
5430
5431  void SetCanBeNull(bool can_be_null) {
5432    DCHECK(upper_can_be_null_ || !can_be_null);
5433    can_be_null_ = can_be_null;
5434  }
5435
5436  bool CanBeNull() const OVERRIDE { return can_be_null_; }
5437
5438  DECLARE_INSTRUCTION(BoundType);
5439
5440 private:
5441  // Encodes the most upper class that this instruction can have. In other words
5442  // it is always the case that GetUpperBound().IsSupertypeOf(GetReferenceType()).
5443  // It is used to bound the type in cases like:
5444  //   if (x instanceof ClassX) {
5445  //     // uper_bound_ will be ClassX
5446  //   }
5447  const ReferenceTypeInfo upper_bound_;
5448  // Represents the top constraint that can_be_null_ cannot exceed (i.e. if this
5449  // is false then can_be_null_ cannot be true).
5450  const bool upper_can_be_null_;
5451  bool can_be_null_;
5452
5453  DISALLOW_COPY_AND_ASSIGN(HBoundType);
5454};
5455
5456class HCheckCast : public HTemplateInstruction<2> {
5457 public:
5458  HCheckCast(HInstruction* object,
5459             HLoadClass* constant,
5460             TypeCheckKind check_kind,
5461             uint32_t dex_pc)
5462      : HTemplateInstruction(SideEffects::CanTriggerGC(), dex_pc),
5463        check_kind_(check_kind),
5464        must_do_null_check_(true) {
5465    SetRawInputAt(0, object);
5466    SetRawInputAt(1, constant);
5467  }
5468
5469  bool CanBeMoved() const OVERRIDE { return true; }
5470
5471  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
5472    return true;
5473  }
5474
5475  bool NeedsEnvironment() const OVERRIDE {
5476    // Instruction may throw a CheckCastError.
5477    return true;
5478  }
5479
5480  bool CanThrow() const OVERRIDE { return true; }
5481
5482  bool MustDoNullCheck() const { return must_do_null_check_; }
5483  void ClearMustDoNullCheck() { must_do_null_check_ = false; }
5484  TypeCheckKind GetTypeCheckKind() const { return check_kind_; }
5485
5486  bool IsExactCheck() const { return check_kind_ == TypeCheckKind::kExactCheck; }
5487
5488  DECLARE_INSTRUCTION(CheckCast);
5489
5490 private:
5491  const TypeCheckKind check_kind_;
5492  bool must_do_null_check_;
5493
5494  DISALLOW_COPY_AND_ASSIGN(HCheckCast);
5495};
5496
5497class HMemoryBarrier : public HTemplateInstruction<0> {
5498 public:
5499  explicit HMemoryBarrier(MemBarrierKind barrier_kind, uint32_t dex_pc = kNoDexPc)
5500      : HTemplateInstruction(
5501            SideEffects::AllWritesAndReads(), dex_pc),  // Assume write/read on all fields/arrays.
5502        barrier_kind_(barrier_kind) {}
5503
5504  MemBarrierKind GetBarrierKind() { return barrier_kind_; }
5505
5506  DECLARE_INSTRUCTION(MemoryBarrier);
5507
5508 private:
5509  const MemBarrierKind barrier_kind_;
5510
5511  DISALLOW_COPY_AND_ASSIGN(HMemoryBarrier);
5512};
5513
5514class HMonitorOperation : public HTemplateInstruction<1> {
5515 public:
5516  enum OperationKind {
5517    kEnter,
5518    kExit,
5519  };
5520
5521  HMonitorOperation(HInstruction* object, OperationKind kind, uint32_t dex_pc)
5522    : HTemplateInstruction(
5523          SideEffects::AllExceptGCDependency(), dex_pc),  // Assume write/read on all fields/arrays.
5524      kind_(kind) {
5525    SetRawInputAt(0, object);
5526  }
5527
5528  // Instruction may throw a Java exception, so we need an environment.
5529  bool NeedsEnvironment() const OVERRIDE { return CanThrow(); }
5530
5531  bool CanThrow() const OVERRIDE {
5532    // Verifier guarantees that monitor-exit cannot throw.
5533    // This is important because it allows the HGraphBuilder to remove
5534    // a dead throw-catch loop generated for `synchronized` blocks/methods.
5535    return IsEnter();
5536  }
5537
5538
5539  bool IsEnter() const { return kind_ == kEnter; }
5540
5541  DECLARE_INSTRUCTION(MonitorOperation);
5542
5543 private:
5544  const OperationKind kind_;
5545
5546 private:
5547  DISALLOW_COPY_AND_ASSIGN(HMonitorOperation);
5548};
5549
5550/**
5551 * A HInstruction used as a marker for the replacement of new + <init>
5552 * of a String to a call to a StringFactory. Only baseline will see
5553 * the node at code generation, where it will be be treated as null.
5554 * When compiling non-baseline, `HFakeString` instructions are being removed
5555 * in the instruction simplifier.
5556 */
5557class HFakeString : public HTemplateInstruction<0> {
5558 public:
5559  explicit HFakeString(uint32_t dex_pc = kNoDexPc)
5560      : HTemplateInstruction(SideEffects::None(), dex_pc) {}
5561
5562  Primitive::Type GetType() const OVERRIDE { return Primitive::kPrimNot; }
5563
5564  DECLARE_INSTRUCTION(FakeString);
5565
5566 private:
5567  DISALLOW_COPY_AND_ASSIGN(HFakeString);
5568};
5569
5570class MoveOperands : public ArenaObject<kArenaAllocMoveOperands> {
5571 public:
5572  MoveOperands(Location source,
5573               Location destination,
5574               Primitive::Type type,
5575               HInstruction* instruction)
5576      : source_(source), destination_(destination), type_(type), instruction_(instruction) {}
5577
5578  Location GetSource() const { return source_; }
5579  Location GetDestination() const { return destination_; }
5580
5581  void SetSource(Location value) { source_ = value; }
5582  void SetDestination(Location value) { destination_ = value; }
5583
5584  // The parallel move resolver marks moves as "in-progress" by clearing the
5585  // destination (but not the source).
5586  Location MarkPending() {
5587    DCHECK(!IsPending());
5588    Location dest = destination_;
5589    destination_ = Location::NoLocation();
5590    return dest;
5591  }
5592
5593  void ClearPending(Location dest) {
5594    DCHECK(IsPending());
5595    destination_ = dest;
5596  }
5597
5598  bool IsPending() const {
5599    DCHECK(!source_.IsInvalid() || destination_.IsInvalid());
5600    return destination_.IsInvalid() && !source_.IsInvalid();
5601  }
5602
5603  // True if this blocks a move from the given location.
5604  bool Blocks(Location loc) const {
5605    return !IsEliminated() && source_.OverlapsWith(loc);
5606  }
5607
5608  // A move is redundant if it's been eliminated, if its source and
5609  // destination are the same, or if its destination is unneeded.
5610  bool IsRedundant() const {
5611    return IsEliminated() || destination_.IsInvalid() || source_.Equals(destination_);
5612  }
5613
5614  // We clear both operands to indicate move that's been eliminated.
5615  void Eliminate() {
5616    source_ = destination_ = Location::NoLocation();
5617  }
5618
5619  bool IsEliminated() const {
5620    DCHECK(!source_.IsInvalid() || destination_.IsInvalid());
5621    return source_.IsInvalid();
5622  }
5623
5624  Primitive::Type GetType() const { return type_; }
5625
5626  bool Is64BitMove() const {
5627    return Primitive::Is64BitType(type_);
5628  }
5629
5630  HInstruction* GetInstruction() const { return instruction_; }
5631
5632 private:
5633  Location source_;
5634  Location destination_;
5635  // The type this move is for.
5636  Primitive::Type type_;
5637  // The instruction this move is assocatied with. Null when this move is
5638  // for moving an input in the expected locations of user (including a phi user).
5639  // This is only used in debug mode, to ensure we do not connect interval siblings
5640  // in the same parallel move.
5641  HInstruction* instruction_;
5642};
5643
5644static constexpr size_t kDefaultNumberOfMoves = 4;
5645
5646class HParallelMove : public HTemplateInstruction<0> {
5647 public:
5648  explicit HParallelMove(ArenaAllocator* arena, uint32_t dex_pc = kNoDexPc)
5649      : HTemplateInstruction(SideEffects::None(), dex_pc),
5650        moves_(arena->Adapter(kArenaAllocMoveOperands)) {
5651    moves_.reserve(kDefaultNumberOfMoves);
5652  }
5653
5654  void AddMove(Location source,
5655               Location destination,
5656               Primitive::Type type,
5657               HInstruction* instruction) {
5658    DCHECK(source.IsValid());
5659    DCHECK(destination.IsValid());
5660    if (kIsDebugBuild) {
5661      if (instruction != nullptr) {
5662        for (const MoveOperands& move : moves_) {
5663          if (move.GetInstruction() == instruction) {
5664            // Special case the situation where the move is for the spill slot
5665            // of the instruction.
5666            if ((GetPrevious() == instruction)
5667                || ((GetPrevious() == nullptr)
5668                    && instruction->IsPhi()
5669                    && instruction->GetBlock() == GetBlock())) {
5670              DCHECK_NE(destination.GetKind(), move.GetDestination().GetKind())
5671                  << "Doing parallel moves for the same instruction.";
5672            } else {
5673              DCHECK(false) << "Doing parallel moves for the same instruction.";
5674            }
5675          }
5676        }
5677      }
5678      for (const MoveOperands& move : moves_) {
5679        DCHECK(!destination.OverlapsWith(move.GetDestination()))
5680            << "Overlapped destination for two moves in a parallel move: "
5681            << move.GetSource() << " ==> " << move.GetDestination() << " and "
5682            << source << " ==> " << destination;
5683      }
5684    }
5685    moves_.emplace_back(source, destination, type, instruction);
5686  }
5687
5688  MoveOperands* MoveOperandsAt(size_t index) {
5689    return &moves_[index];
5690  }
5691
5692  size_t NumMoves() const { return moves_.size(); }
5693
5694  DECLARE_INSTRUCTION(ParallelMove);
5695
5696 private:
5697  ArenaVector<MoveOperands> moves_;
5698
5699  DISALLOW_COPY_AND_ASSIGN(HParallelMove);
5700};
5701
5702}  // namespace art
5703
5704#ifdef ART_ENABLE_CODEGEN_arm
5705#include "nodes_arm.h"
5706#endif
5707#ifdef ART_ENABLE_CODEGEN_arm64
5708#include "nodes_arm64.h"
5709#endif
5710#ifdef ART_ENABLE_CODEGEN_x86
5711#include "nodes_x86.h"
5712#endif
5713
5714namespace art {
5715
5716class HGraphVisitor : public ValueObject {
5717 public:
5718  explicit HGraphVisitor(HGraph* graph) : graph_(graph) {}
5719  virtual ~HGraphVisitor() {}
5720
5721  virtual void VisitInstruction(HInstruction* instruction ATTRIBUTE_UNUSED) {}
5722  virtual void VisitBasicBlock(HBasicBlock* block);
5723
5724  // Visit the graph following basic block insertion order.
5725  void VisitInsertionOrder();
5726
5727  // Visit the graph following dominator tree reverse post-order.
5728  void VisitReversePostOrder();
5729
5730  HGraph* GetGraph() const { return graph_; }
5731
5732  // Visit functions for instruction classes.
5733#define DECLARE_VISIT_INSTRUCTION(name, super)                                        \
5734  virtual void Visit##name(H##name* instr) { VisitInstruction(instr); }
5735
5736  FOR_EACH_INSTRUCTION(DECLARE_VISIT_INSTRUCTION)
5737
5738#undef DECLARE_VISIT_INSTRUCTION
5739
5740 private:
5741  HGraph* const graph_;
5742
5743  DISALLOW_COPY_AND_ASSIGN(HGraphVisitor);
5744};
5745
5746class HGraphDelegateVisitor : public HGraphVisitor {
5747 public:
5748  explicit HGraphDelegateVisitor(HGraph* graph) : HGraphVisitor(graph) {}
5749  virtual ~HGraphDelegateVisitor() {}
5750
5751  // Visit functions that delegate to to super class.
5752#define DECLARE_VISIT_INSTRUCTION(name, super)                                        \
5753  void Visit##name(H##name* instr) OVERRIDE { Visit##super(instr); }
5754
5755  FOR_EACH_INSTRUCTION(DECLARE_VISIT_INSTRUCTION)
5756
5757#undef DECLARE_VISIT_INSTRUCTION
5758
5759 private:
5760  DISALLOW_COPY_AND_ASSIGN(HGraphDelegateVisitor);
5761};
5762
5763class HInsertionOrderIterator : public ValueObject {
5764 public:
5765  explicit HInsertionOrderIterator(const HGraph& graph) : graph_(graph), index_(0) {}
5766
5767  bool Done() const { return index_ == graph_.GetBlocks().size(); }
5768  HBasicBlock* Current() const { return graph_.GetBlocks()[index_]; }
5769  void Advance() { ++index_; }
5770
5771 private:
5772  const HGraph& graph_;
5773  size_t index_;
5774
5775  DISALLOW_COPY_AND_ASSIGN(HInsertionOrderIterator);
5776};
5777
5778class HReversePostOrderIterator : public ValueObject {
5779 public:
5780  explicit HReversePostOrderIterator(const HGraph& graph) : graph_(graph), index_(0) {
5781    // Check that reverse post order of the graph has been built.
5782    DCHECK(!graph.GetReversePostOrder().empty());
5783  }
5784
5785  bool Done() const { return index_ == graph_.GetReversePostOrder().size(); }
5786  HBasicBlock* Current() const { return graph_.GetReversePostOrder()[index_]; }
5787  void Advance() { ++index_; }
5788
5789 private:
5790  const HGraph& graph_;
5791  size_t index_;
5792
5793  DISALLOW_COPY_AND_ASSIGN(HReversePostOrderIterator);
5794};
5795
5796class HPostOrderIterator : public ValueObject {
5797 public:
5798  explicit HPostOrderIterator(const HGraph& graph)
5799      : graph_(graph), index_(graph_.GetReversePostOrder().size()) {
5800    // Check that reverse post order of the graph has been built.
5801    DCHECK(!graph.GetReversePostOrder().empty());
5802  }
5803
5804  bool Done() const { return index_ == 0; }
5805  HBasicBlock* Current() const { return graph_.GetReversePostOrder()[index_ - 1u]; }
5806  void Advance() { --index_; }
5807
5808 private:
5809  const HGraph& graph_;
5810  size_t index_;
5811
5812  DISALLOW_COPY_AND_ASSIGN(HPostOrderIterator);
5813};
5814
5815class HLinearPostOrderIterator : public ValueObject {
5816 public:
5817  explicit HLinearPostOrderIterator(const HGraph& graph)
5818      : order_(graph.GetLinearOrder()), index_(graph.GetLinearOrder().size()) {}
5819
5820  bool Done() const { return index_ == 0; }
5821
5822  HBasicBlock* Current() const { return order_[index_ - 1u]; }
5823
5824  void Advance() {
5825    --index_;
5826    DCHECK_GE(index_, 0U);
5827  }
5828
5829 private:
5830  const ArenaVector<HBasicBlock*>& order_;
5831  size_t index_;
5832
5833  DISALLOW_COPY_AND_ASSIGN(HLinearPostOrderIterator);
5834};
5835
5836class HLinearOrderIterator : public ValueObject {
5837 public:
5838  explicit HLinearOrderIterator(const HGraph& graph)
5839      : order_(graph.GetLinearOrder()), index_(0) {}
5840
5841  bool Done() const { return index_ == order_.size(); }
5842  HBasicBlock* Current() const { return order_[index_]; }
5843  void Advance() { ++index_; }
5844
5845 private:
5846  const ArenaVector<HBasicBlock*>& order_;
5847  size_t index_;
5848
5849  DISALLOW_COPY_AND_ASSIGN(HLinearOrderIterator);
5850};
5851
5852// Iterator over the blocks that art part of the loop. Includes blocks part
5853// of an inner loop. The order in which the blocks are iterated is on their
5854// block id.
5855class HBlocksInLoopIterator : public ValueObject {
5856 public:
5857  explicit HBlocksInLoopIterator(const HLoopInformation& info)
5858      : blocks_in_loop_(info.GetBlocks()),
5859        blocks_(info.GetHeader()->GetGraph()->GetBlocks()),
5860        index_(0) {
5861    if (!blocks_in_loop_.IsBitSet(index_)) {
5862      Advance();
5863    }
5864  }
5865
5866  bool Done() const { return index_ == blocks_.size(); }
5867  HBasicBlock* Current() const { return blocks_[index_]; }
5868  void Advance() {
5869    ++index_;
5870    for (size_t e = blocks_.size(); index_ < e; ++index_) {
5871      if (blocks_in_loop_.IsBitSet(index_)) {
5872        break;
5873      }
5874    }
5875  }
5876
5877 private:
5878  const BitVector& blocks_in_loop_;
5879  const ArenaVector<HBasicBlock*>& blocks_;
5880  size_t index_;
5881
5882  DISALLOW_COPY_AND_ASSIGN(HBlocksInLoopIterator);
5883};
5884
5885// Iterator over the blocks that art part of the loop. Includes blocks part
5886// of an inner loop. The order in which the blocks are iterated is reverse
5887// post order.
5888class HBlocksInLoopReversePostOrderIterator : public ValueObject {
5889 public:
5890  explicit HBlocksInLoopReversePostOrderIterator(const HLoopInformation& info)
5891      : blocks_in_loop_(info.GetBlocks()),
5892        blocks_(info.GetHeader()->GetGraph()->GetReversePostOrder()),
5893        index_(0) {
5894    if (!blocks_in_loop_.IsBitSet(blocks_[index_]->GetBlockId())) {
5895      Advance();
5896    }
5897  }
5898
5899  bool Done() const { return index_ == blocks_.size(); }
5900  HBasicBlock* Current() const { return blocks_[index_]; }
5901  void Advance() {
5902    ++index_;
5903    for (size_t e = blocks_.size(); index_ < e; ++index_) {
5904      if (blocks_in_loop_.IsBitSet(blocks_[index_]->GetBlockId())) {
5905        break;
5906      }
5907    }
5908  }
5909
5910 private:
5911  const BitVector& blocks_in_loop_;
5912  const ArenaVector<HBasicBlock*>& blocks_;
5913  size_t index_;
5914
5915  DISALLOW_COPY_AND_ASSIGN(HBlocksInLoopReversePostOrderIterator);
5916};
5917
5918inline int64_t Int64FromConstant(HConstant* constant) {
5919  DCHECK(constant->IsIntConstant() || constant->IsLongConstant());
5920  return constant->IsIntConstant() ? constant->AsIntConstant()->GetValue()
5921                                   : constant->AsLongConstant()->GetValue();
5922}
5923
5924inline bool IsSameDexFile(const DexFile& lhs, const DexFile& rhs) {
5925  // For the purposes of the compiler, the dex files must actually be the same object
5926  // if we want to safely treat them as the same. This is especially important for JIT
5927  // as custom class loaders can open the same underlying file (or memory) multiple
5928  // times and provide different class resolution but no two class loaders should ever
5929  // use the same DexFile object - doing so is an unsupported hack that can lead to
5930  // all sorts of weird failures.
5931  return &lhs == &rhs;
5932}
5933
5934#define INSTRUCTION_TYPE_CHECK(type, super)                                    \
5935  inline bool HInstruction::Is##type() const { return GetKind() == k##type; }  \
5936  inline const H##type* HInstruction::As##type() const {                       \
5937    return Is##type() ? down_cast<const H##type*>(this) : nullptr;             \
5938  }                                                                            \
5939  inline H##type* HInstruction::As##type() {                                   \
5940    return Is##type() ? static_cast<H##type*>(this) : nullptr;                 \
5941  }
5942
5943  FOR_EACH_CONCRETE_INSTRUCTION(INSTRUCTION_TYPE_CHECK)
5944#undef INSTRUCTION_TYPE_CHECK
5945
5946}  // namespace art
5947
5948#endif  // ART_COMPILER_OPTIMIZING_NODES_H_
5949