nodes.h revision 5d7b7f81ed5455893f984752c00571ef27cc97c5
1/*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#ifndef ART_COMPILER_OPTIMIZING_NODES_H_
18#define ART_COMPILER_OPTIMIZING_NODES_H_
19
20#include "base/arena_containers.h"
21#include "base/arena_object.h"
22#include "dex/compiler_enums.h"
23#include "entrypoints/quick/quick_entrypoints_enum.h"
24#include "handle.h"
25#include "handle_scope.h"
26#include "invoke_type.h"
27#include "locations.h"
28#include "mirror/class.h"
29#include "offsets.h"
30#include "primitive.h"
31#include "utils/arena_bit_vector.h"
32#include "utils/growable_array.h"
33
34namespace art {
35
36class GraphChecker;
37class HBasicBlock;
38class HDoubleConstant;
39class HEnvironment;
40class HFloatConstant;
41class HGraphVisitor;
42class HInstruction;
43class HIntConstant;
44class HInvoke;
45class HLongConstant;
46class HNullConstant;
47class HPhi;
48class HSuspendCheck;
49class LiveInterval;
50class LocationSummary;
51class SsaBuilder;
52
53static const int kDefaultNumberOfBlocks = 8;
54static const int kDefaultNumberOfSuccessors = 2;
55static const int kDefaultNumberOfPredecessors = 2;
56static const int kDefaultNumberOfDominatedBlocks = 1;
57static const int kDefaultNumberOfBackEdges = 1;
58
59static constexpr uint32_t kMaxIntShiftValue = 0x1f;
60static constexpr uint64_t kMaxLongShiftValue = 0x3f;
61
62enum IfCondition {
63  kCondEQ,
64  kCondNE,
65  kCondLT,
66  kCondLE,
67  kCondGT,
68  kCondGE,
69};
70
71class HInstructionList {
72 public:
73  HInstructionList() : first_instruction_(nullptr), last_instruction_(nullptr) {}
74
75  void AddInstruction(HInstruction* instruction);
76  void RemoveInstruction(HInstruction* instruction);
77
78  // Insert `instruction` before/after an existing instruction `cursor`.
79  void InsertInstructionBefore(HInstruction* instruction, HInstruction* cursor);
80  void InsertInstructionAfter(HInstruction* instruction, HInstruction* cursor);
81
82  // Return true if this list contains `instruction`.
83  bool Contains(HInstruction* instruction) const;
84
85  // Return true if `instruction1` is found before `instruction2` in
86  // this instruction list and false otherwise.  Abort if none
87  // of these instructions is found.
88  bool FoundBefore(const HInstruction* instruction1,
89                   const HInstruction* instruction2) const;
90
91  bool IsEmpty() const { return first_instruction_ == nullptr; }
92  void Clear() { first_instruction_ = last_instruction_ = nullptr; }
93
94  // Update the block of all instructions to be `block`.
95  void SetBlockOfInstructions(HBasicBlock* block) const;
96
97  void AddAfter(HInstruction* cursor, const HInstructionList& instruction_list);
98  void Add(const HInstructionList& instruction_list);
99
100  // Return the number of instructions in the list. This is an expensive operation.
101  size_t CountSize() const;
102
103 private:
104  HInstruction* first_instruction_;
105  HInstruction* last_instruction_;
106
107  friend class HBasicBlock;
108  friend class HGraph;
109  friend class HInstruction;
110  friend class HInstructionIterator;
111  friend class HBackwardInstructionIterator;
112
113  DISALLOW_COPY_AND_ASSIGN(HInstructionList);
114};
115
116// Control-flow graph of a method. Contains a list of basic blocks.
117class HGraph : public ArenaObject<kArenaAllocMisc> {
118 public:
119  HGraph(ArenaAllocator* arena, bool debuggable = false, int start_instruction_id = 0)
120      : arena_(arena),
121        blocks_(arena, kDefaultNumberOfBlocks),
122        reverse_post_order_(arena, kDefaultNumberOfBlocks),
123        linear_order_(arena, kDefaultNumberOfBlocks),
124        entry_block_(nullptr),
125        exit_block_(nullptr),
126        maximum_number_of_out_vregs_(0),
127        number_of_vregs_(0),
128        number_of_in_vregs_(0),
129        temporaries_vreg_slots_(0),
130        has_bounds_checks_(false),
131        debuggable_(debuggable),
132        current_instruction_id_(start_instruction_id),
133        cached_null_constant_(nullptr),
134        cached_int_constants_(std::less<int32_t>(), arena->Adapter()),
135        cached_float_constants_(std::less<int32_t>(), arena->Adapter()),
136        cached_long_constants_(std::less<int64_t>(), arena->Adapter()),
137        cached_double_constants_(std::less<int64_t>(), arena->Adapter()) {}
138
139  ArenaAllocator* GetArena() const { return arena_; }
140  const GrowableArray<HBasicBlock*>& GetBlocks() const { return blocks_; }
141  HBasicBlock* GetBlock(size_t id) const { return blocks_.Get(id); }
142
143  HBasicBlock* GetEntryBlock() const { return entry_block_; }
144  HBasicBlock* GetExitBlock() const { return exit_block_; }
145
146  void SetEntryBlock(HBasicBlock* block) { entry_block_ = block; }
147  void SetExitBlock(HBasicBlock* block) { exit_block_ = block; }
148
149  void AddBlock(HBasicBlock* block);
150
151  // Try building the SSA form of this graph, with dominance computation and loop
152  // recognition. Returns whether it was successful in doing all these steps.
153  bool TryBuildingSsa() {
154    BuildDominatorTree();
155    // The SSA builder requires loops to all be natural. Specifically, the dead phi
156    // elimination phase checks the consistency of the graph when doing a post-order
157    // visit for eliminating dead phis: a dead phi can only have loop header phi
158    // users remaining when being visited.
159    if (!AnalyzeNaturalLoops()) return false;
160    TransformToSsa();
161    return true;
162  }
163
164  void BuildDominatorTree();
165  void TransformToSsa();
166  void SimplifyCFG();
167
168  // Analyze all natural loops in this graph. Returns false if one
169  // loop is not natural, that is the header does not dominate the
170  // back edge.
171  bool AnalyzeNaturalLoops() const;
172
173  // Inline this graph in `outer_graph`, replacing the given `invoke` instruction.
174  void InlineInto(HGraph* outer_graph, HInvoke* invoke);
175
176  // Removes `block` from the graph.
177  void DeleteDeadBlock(HBasicBlock* block);
178
179  void SplitCriticalEdge(HBasicBlock* block, HBasicBlock* successor);
180  void SimplifyLoop(HBasicBlock* header);
181
182  int32_t GetNextInstructionId() {
183    DCHECK_NE(current_instruction_id_, INT32_MAX);
184    return current_instruction_id_++;
185  }
186
187  int32_t GetCurrentInstructionId() const {
188    return current_instruction_id_;
189  }
190
191  void SetCurrentInstructionId(int32_t id) {
192    current_instruction_id_ = id;
193  }
194
195  uint16_t GetMaximumNumberOfOutVRegs() const {
196    return maximum_number_of_out_vregs_;
197  }
198
199  void SetMaximumNumberOfOutVRegs(uint16_t new_value) {
200    maximum_number_of_out_vregs_ = new_value;
201  }
202
203  void UpdateTemporariesVRegSlots(size_t slots) {
204    temporaries_vreg_slots_ = std::max(slots, temporaries_vreg_slots_);
205  }
206
207  size_t GetTemporariesVRegSlots() const {
208    return temporaries_vreg_slots_;
209  }
210
211  void SetNumberOfVRegs(uint16_t number_of_vregs) {
212    number_of_vregs_ = number_of_vregs;
213  }
214
215  uint16_t GetNumberOfVRegs() const {
216    return number_of_vregs_;
217  }
218
219  void SetNumberOfInVRegs(uint16_t value) {
220    number_of_in_vregs_ = value;
221  }
222
223  uint16_t GetNumberOfLocalVRegs() const {
224    return number_of_vregs_ - number_of_in_vregs_;
225  }
226
227  const GrowableArray<HBasicBlock*>& GetReversePostOrder() const {
228    return reverse_post_order_;
229  }
230
231  const GrowableArray<HBasicBlock*>& GetLinearOrder() const {
232    return linear_order_;
233  }
234
235  bool HasBoundsChecks() const {
236    return has_bounds_checks_;
237  }
238
239  void SetHasBoundsChecks(bool value) {
240    has_bounds_checks_ = value;
241  }
242
243  bool IsDebuggable() const { return debuggable_; }
244
245  // Returns a constant of the given type and value. If it does not exist
246  // already, it is created and inserted into the graph. This method is only for
247  // integral types.
248  HConstant* GetConstant(Primitive::Type type, int64_t value);
249  HNullConstant* GetNullConstant();
250  HIntConstant* GetIntConstant(int32_t value) {
251    return CreateConstant(value, &cached_int_constants_);
252  }
253  HLongConstant* GetLongConstant(int64_t value) {
254    return CreateConstant(value, &cached_long_constants_);
255  }
256  HFloatConstant* GetFloatConstant(float value) {
257    return CreateConstant(bit_cast<int32_t, float>(value), &cached_float_constants_);
258  }
259  HDoubleConstant* GetDoubleConstant(double value) {
260    return CreateConstant(bit_cast<int64_t, double>(value), &cached_double_constants_);
261  }
262
263  HBasicBlock* FindCommonDominator(HBasicBlock* first, HBasicBlock* second) const;
264
265 private:
266  void VisitBlockForDominatorTree(HBasicBlock* block,
267                                  HBasicBlock* predecessor,
268                                  GrowableArray<size_t>* visits);
269  void FindBackEdges(ArenaBitVector* visited);
270  void VisitBlockForBackEdges(HBasicBlock* block,
271                              ArenaBitVector* visited,
272                              ArenaBitVector* visiting);
273  void RemoveInstructionsAsUsersFromDeadBlocks(const ArenaBitVector& visited) const;
274  void RemoveDeadBlocks(const ArenaBitVector& visited);
275
276  template <class InstructionType, typename ValueType>
277  InstructionType* CreateConstant(ValueType value,
278                                  ArenaSafeMap<ValueType, InstructionType*>* cache) {
279    // Try to find an existing constant of the given value.
280    InstructionType* constant = nullptr;
281    auto cached_constant = cache->find(value);
282    if (cached_constant != cache->end()) {
283      constant = cached_constant->second;
284    }
285
286    // If not found or previously deleted, create and cache a new instruction.
287    if (constant == nullptr || constant->GetBlock() == nullptr) {
288      constant = new (arena_) InstructionType(value);
289      cache->Overwrite(value, constant);
290      InsertConstant(constant);
291    }
292    return constant;
293  }
294
295  void InsertConstant(HConstant* instruction);
296
297  // Cache a float constant into the graph. This method should only be
298  // called by the SsaBuilder when creating "equivalent" instructions.
299  void CacheFloatConstant(HFloatConstant* constant);
300
301  // See CacheFloatConstant comment.
302  void CacheDoubleConstant(HDoubleConstant* constant);
303
304  ArenaAllocator* const arena_;
305
306  // List of blocks in insertion order.
307  GrowableArray<HBasicBlock*> blocks_;
308
309  // List of blocks to perform a reverse post order tree traversal.
310  GrowableArray<HBasicBlock*> reverse_post_order_;
311
312  // List of blocks to perform a linear order tree traversal.
313  GrowableArray<HBasicBlock*> linear_order_;
314
315  HBasicBlock* entry_block_;
316  HBasicBlock* exit_block_;
317
318  // The maximum number of virtual registers arguments passed to a HInvoke in this graph.
319  uint16_t maximum_number_of_out_vregs_;
320
321  // The number of virtual registers in this method. Contains the parameters.
322  uint16_t number_of_vregs_;
323
324  // The number of virtual registers used by parameters of this method.
325  uint16_t number_of_in_vregs_;
326
327  // Number of vreg size slots that the temporaries use (used in baseline compiler).
328  size_t temporaries_vreg_slots_;
329
330  // Has bounds checks. We can totally skip BCE if it's false.
331  bool has_bounds_checks_;
332
333  // Indicates whether the graph should be compiled in a way that
334  // ensures full debuggability. If false, we can apply more
335  // aggressive optimizations that may limit the level of debugging.
336  const bool debuggable_;
337
338  // The current id to assign to a newly added instruction. See HInstruction.id_.
339  int32_t current_instruction_id_;
340
341  // Cached constants.
342  HNullConstant* cached_null_constant_;
343  ArenaSafeMap<int32_t, HIntConstant*> cached_int_constants_;
344  ArenaSafeMap<int32_t, HFloatConstant*> cached_float_constants_;
345  ArenaSafeMap<int64_t, HLongConstant*> cached_long_constants_;
346  ArenaSafeMap<int64_t, HDoubleConstant*> cached_double_constants_;
347
348  friend class SsaBuilder;           // For caching constants.
349  friend class SsaLivenessAnalysis;  // For the linear order.
350  ART_FRIEND_TEST(GraphTest, IfSuccessorSimpleJoinBlock1);
351  DISALLOW_COPY_AND_ASSIGN(HGraph);
352};
353
354class HLoopInformation : public ArenaObject<kArenaAllocMisc> {
355 public:
356  HLoopInformation(HBasicBlock* header, HGraph* graph)
357      : header_(header),
358        suspend_check_(nullptr),
359        back_edges_(graph->GetArena(), kDefaultNumberOfBackEdges),
360        // Make bit vector growable, as the number of blocks may change.
361        blocks_(graph->GetArena(), graph->GetBlocks().Size(), true) {}
362
363  HBasicBlock* GetHeader() const {
364    return header_;
365  }
366
367  void SetHeader(HBasicBlock* block) {
368    header_ = block;
369  }
370
371  HSuspendCheck* GetSuspendCheck() const { return suspend_check_; }
372  void SetSuspendCheck(HSuspendCheck* check) { suspend_check_ = check; }
373  bool HasSuspendCheck() const { return suspend_check_ != nullptr; }
374
375  void AddBackEdge(HBasicBlock* back_edge) {
376    back_edges_.Add(back_edge);
377  }
378
379  void RemoveBackEdge(HBasicBlock* back_edge) {
380    back_edges_.Delete(back_edge);
381  }
382
383  bool IsBackEdge(const HBasicBlock& block) const {
384    for (size_t i = 0, e = back_edges_.Size(); i < e; ++i) {
385      if (back_edges_.Get(i) == &block) return true;
386    }
387    return false;
388  }
389
390  size_t NumberOfBackEdges() const {
391    return back_edges_.Size();
392  }
393
394  HBasicBlock* GetPreHeader() const;
395
396  const GrowableArray<HBasicBlock*>& GetBackEdges() const {
397    return back_edges_;
398  }
399
400  HBasicBlock* GetSingleBackEdge() const {
401    DCHECK_EQ(back_edges_.Size(), 1u);
402    return back_edges_.Get(0);
403  }
404
405  void ClearBackEdges() {
406    back_edges_.Reset();
407  }
408
409  // Find blocks that are part of this loop. Returns whether the loop is a natural loop,
410  // that is the header dominates the back edge.
411  bool Populate();
412
413  // Returns whether this loop information contains `block`.
414  // Note that this loop information *must* be populated before entering this function.
415  bool Contains(const HBasicBlock& block) const;
416
417  // Returns whether this loop information is an inner loop of `other`.
418  // Note that `other` *must* be populated before entering this function.
419  bool IsIn(const HLoopInformation& other) const;
420
421  const ArenaBitVector& GetBlocks() const { return blocks_; }
422
423  void Add(HBasicBlock* block);
424  void Remove(HBasicBlock* block);
425
426 private:
427  // Internal recursive implementation of `Populate`.
428  void PopulateRecursive(HBasicBlock* block);
429
430  HBasicBlock* header_;
431  HSuspendCheck* suspend_check_;
432  GrowableArray<HBasicBlock*> back_edges_;
433  ArenaBitVector blocks_;
434
435  DISALLOW_COPY_AND_ASSIGN(HLoopInformation);
436};
437
438static constexpr size_t kNoLifetime = -1;
439static constexpr uint32_t kNoDexPc = -1;
440
441// A block in a method. Contains the list of instructions represented
442// as a double linked list. Each block knows its predecessors and
443// successors.
444
445class HBasicBlock : public ArenaObject<kArenaAllocMisc> {
446 public:
447  explicit HBasicBlock(HGraph* graph, uint32_t dex_pc = kNoDexPc)
448      : graph_(graph),
449        predecessors_(graph->GetArena(), kDefaultNumberOfPredecessors),
450        successors_(graph->GetArena(), kDefaultNumberOfSuccessors),
451        loop_information_(nullptr),
452        dominator_(nullptr),
453        dominated_blocks_(graph->GetArena(), kDefaultNumberOfDominatedBlocks),
454        block_id_(-1),
455        dex_pc_(dex_pc),
456        lifetime_start_(kNoLifetime),
457        lifetime_end_(kNoLifetime),
458        is_catch_block_(false) {}
459
460  const GrowableArray<HBasicBlock*>& GetPredecessors() const {
461    return predecessors_;
462  }
463
464  const GrowableArray<HBasicBlock*>& GetSuccessors() const {
465    return successors_;
466  }
467
468  const GrowableArray<HBasicBlock*>& GetDominatedBlocks() const {
469    return dominated_blocks_;
470  }
471
472  bool IsEntryBlock() const {
473    return graph_->GetEntryBlock() == this;
474  }
475
476  bool IsExitBlock() const {
477    return graph_->GetExitBlock() == this;
478  }
479
480  bool IsSingleGoto() const;
481
482  void AddBackEdge(HBasicBlock* back_edge) {
483    if (loop_information_ == nullptr) {
484      loop_information_ = new (graph_->GetArena()) HLoopInformation(this, graph_);
485    }
486    DCHECK_EQ(loop_information_->GetHeader(), this);
487    loop_information_->AddBackEdge(back_edge);
488  }
489
490  HGraph* GetGraph() const { return graph_; }
491  void SetGraph(HGraph* graph) { graph_ = graph; }
492
493  int GetBlockId() const { return block_id_; }
494  void SetBlockId(int id) { block_id_ = id; }
495
496  HBasicBlock* GetDominator() const { return dominator_; }
497  void SetDominator(HBasicBlock* dominator) { dominator_ = dominator; }
498  void AddDominatedBlock(HBasicBlock* block) { dominated_blocks_.Add(block); }
499  void RemoveDominatedBlock(HBasicBlock* block) { dominated_blocks_.Delete(block); }
500  void ReplaceDominatedBlock(HBasicBlock* existing, HBasicBlock* new_block) {
501    for (size_t i = 0, e = dominated_blocks_.Size(); i < e; ++i) {
502      if (dominated_blocks_.Get(i) == existing) {
503        dominated_blocks_.Put(i, new_block);
504        return;
505      }
506    }
507    LOG(FATAL) << "Unreachable";
508    UNREACHABLE();
509  }
510
511  int NumberOfBackEdges() const {
512    return loop_information_ == nullptr
513        ? 0
514        : loop_information_->NumberOfBackEdges();
515  }
516
517  HInstruction* GetFirstInstruction() const { return instructions_.first_instruction_; }
518  HInstruction* GetLastInstruction() const { return instructions_.last_instruction_; }
519  const HInstructionList& GetInstructions() const { return instructions_; }
520  HInstruction* GetFirstPhi() const { return phis_.first_instruction_; }
521  HInstruction* GetLastPhi() const { return phis_.last_instruction_; }
522  const HInstructionList& GetPhis() const { return phis_; }
523
524  void AddSuccessor(HBasicBlock* block) {
525    successors_.Add(block);
526    block->predecessors_.Add(this);
527  }
528
529  void ReplaceSuccessor(HBasicBlock* existing, HBasicBlock* new_block) {
530    size_t successor_index = GetSuccessorIndexOf(existing);
531    DCHECK_NE(successor_index, static_cast<size_t>(-1));
532    existing->RemovePredecessor(this);
533    new_block->predecessors_.Add(this);
534    successors_.Put(successor_index, new_block);
535  }
536
537  void ReplacePredecessor(HBasicBlock* existing, HBasicBlock* new_block) {
538    size_t predecessor_index = GetPredecessorIndexOf(existing);
539    DCHECK_NE(predecessor_index, static_cast<size_t>(-1));
540    existing->RemoveSuccessor(this);
541    new_block->successors_.Add(this);
542    predecessors_.Put(predecessor_index, new_block);
543  }
544
545  void RemovePredecessor(HBasicBlock* block) {
546    predecessors_.Delete(block);
547  }
548
549  void RemoveSuccessor(HBasicBlock* block) {
550    successors_.Delete(block);
551  }
552
553  void ClearAllPredecessors() {
554    predecessors_.Reset();
555  }
556
557  void AddPredecessor(HBasicBlock* block) {
558    predecessors_.Add(block);
559    block->successors_.Add(this);
560  }
561
562  void SwapPredecessors() {
563    DCHECK_EQ(predecessors_.Size(), 2u);
564    HBasicBlock* temp = predecessors_.Get(0);
565    predecessors_.Put(0, predecessors_.Get(1));
566    predecessors_.Put(1, temp);
567  }
568
569  void SwapSuccessors() {
570    DCHECK_EQ(successors_.Size(), 2u);
571    HBasicBlock* temp = successors_.Get(0);
572    successors_.Put(0, successors_.Get(1));
573    successors_.Put(1, temp);
574  }
575
576  size_t GetPredecessorIndexOf(HBasicBlock* predecessor) {
577    for (size_t i = 0, e = predecessors_.Size(); i < e; ++i) {
578      if (predecessors_.Get(i) == predecessor) {
579        return i;
580      }
581    }
582    return -1;
583  }
584
585  size_t GetSuccessorIndexOf(HBasicBlock* successor) {
586    for (size_t i = 0, e = successors_.Size(); i < e; ++i) {
587      if (successors_.Get(i) == successor) {
588        return i;
589      }
590    }
591    return -1;
592  }
593
594  // Split the block into two blocks just after `cursor`. Returns the newly
595  // created block. Note that this method just updates raw block information,
596  // like predecessors, successors, dominators, and instruction list. It does not
597  // update the graph, reverse post order, loop information, nor make sure the
598  // blocks are consistent (for example ending with a control flow instruction).
599  HBasicBlock* SplitAfter(HInstruction* cursor);
600
601  // Merge `other` at the end of `this`. Successors and dominated blocks of
602  // `other` are changed to be successors and dominated blocks of `this`. Note
603  // that this method does not update the graph, reverse post order, loop
604  // information, nor make sure the blocks are consistent (for example ending
605  // with a control flow instruction).
606  void MergeWithInlined(HBasicBlock* other);
607
608  // Replace `this` with `other`. Predecessors, successors, and dominated blocks
609  // of `this` are moved to `other`.
610  // Note that this method does not update the graph, reverse post order, loop
611  // information, nor make sure the blocks are consistent (for example ending
612  // with a control flow instruction).
613  void ReplaceWith(HBasicBlock* other);
614
615  // Merge `other` at the end of `this`. This method updates loops, reverse post
616  // order, links to predecessors, successors, dominators and deletes the block
617  // from the graph. The two blocks must be successive, i.e. `this` the only
618  // predecessor of `other` and vice versa.
619  void MergeWith(HBasicBlock* other);
620
621  // Disconnects `this` from all its predecessors, successors and dominator,
622  // removes it from all loops it is included in and eventually from the graph.
623  // The block must not dominate any other block. Predecessors and successors
624  // are safely updated.
625  void DisconnectAndDelete();
626
627  void AddInstruction(HInstruction* instruction);
628  // Insert `instruction` before/after an existing instruction `cursor`.
629  void InsertInstructionBefore(HInstruction* instruction, HInstruction* cursor);
630  void InsertInstructionAfter(HInstruction* instruction, HInstruction* cursor);
631  // Replace instruction `initial` with `replacement` within this block.
632  void ReplaceAndRemoveInstructionWith(HInstruction* initial,
633                                       HInstruction* replacement);
634  void AddPhi(HPhi* phi);
635  void InsertPhiAfter(HPhi* instruction, HPhi* cursor);
636  // RemoveInstruction and RemovePhi delete a given instruction from the respective
637  // instruction list. With 'ensure_safety' set to true, it verifies that the
638  // instruction is not in use and removes it from the use lists of its inputs.
639  void RemoveInstruction(HInstruction* instruction, bool ensure_safety = true);
640  void RemovePhi(HPhi* phi, bool ensure_safety = true);
641  void RemoveInstructionOrPhi(HInstruction* instruction, bool ensure_safety = true);
642
643  bool IsLoopHeader() const {
644    return IsInLoop() && (loop_information_->GetHeader() == this);
645  }
646
647  bool IsLoopPreHeaderFirstPredecessor() const {
648    DCHECK(IsLoopHeader());
649    DCHECK(!GetPredecessors().IsEmpty());
650    return GetPredecessors().Get(0) == GetLoopInformation()->GetPreHeader();
651  }
652
653  HLoopInformation* GetLoopInformation() const {
654    return loop_information_;
655  }
656
657  // Set the loop_information_ on this block. Overrides the current
658  // loop_information if it is an outer loop of the passed loop information.
659  // Note that this method is called while creating the loop information.
660  void SetInLoop(HLoopInformation* info) {
661    if (IsLoopHeader()) {
662      // Nothing to do. This just means `info` is an outer loop.
663    } else if (!IsInLoop()) {
664      loop_information_ = info;
665    } else if (loop_information_->Contains(*info->GetHeader())) {
666      // Block is currently part of an outer loop. Make it part of this inner loop.
667      // Note that a non loop header having a loop information means this loop information
668      // has already been populated
669      loop_information_ = info;
670    } else {
671      // Block is part of an inner loop. Do not update the loop information.
672      // Note that we cannot do the check `info->Contains(loop_information_)->GetHeader()`
673      // at this point, because this method is being called while populating `info`.
674    }
675  }
676
677  // Raw update of the loop information.
678  void SetLoopInformation(HLoopInformation* info) {
679    loop_information_ = info;
680  }
681
682  // Checks if the loop information points to a valid loop. If the loop has been
683  // dismantled (does not have a back edge any more), loop information is
684  // removed or replaced with the information of the first valid outer loop.
685  void UpdateLoopInformation();
686
687  bool IsInLoop() const { return loop_information_ != nullptr; }
688
689  // Returns wheter this block dominates the blocked passed as parameter.
690  bool Dominates(HBasicBlock* block) const;
691
692  size_t GetLifetimeStart() const { return lifetime_start_; }
693  size_t GetLifetimeEnd() const { return lifetime_end_; }
694
695  void SetLifetimeStart(size_t start) { lifetime_start_ = start; }
696  void SetLifetimeEnd(size_t end) { lifetime_end_ = end; }
697
698  uint32_t GetDexPc() const { return dex_pc_; }
699
700  bool IsCatchBlock() const { return is_catch_block_; }
701  void SetIsCatchBlock() { is_catch_block_ = true; }
702
703  bool EndsWithControlFlowInstruction() const;
704  bool EndsWithIf() const;
705  bool HasSinglePhi() const;
706
707 private:
708  HGraph* graph_;
709  GrowableArray<HBasicBlock*> predecessors_;
710  GrowableArray<HBasicBlock*> successors_;
711  HInstructionList instructions_;
712  HInstructionList phis_;
713  HLoopInformation* loop_information_;
714  HBasicBlock* dominator_;
715  GrowableArray<HBasicBlock*> dominated_blocks_;
716  int block_id_;
717  // The dex program counter of the first instruction of this block.
718  const uint32_t dex_pc_;
719  size_t lifetime_start_;
720  size_t lifetime_end_;
721  bool is_catch_block_;
722
723  friend class HGraph;
724  friend class HInstruction;
725
726  DISALLOW_COPY_AND_ASSIGN(HBasicBlock);
727};
728
729// Iterates over the LoopInformation of all loops which contain 'block'
730// from the innermost to the outermost.
731class HLoopInformationOutwardIterator : public ValueObject {
732 public:
733  explicit HLoopInformationOutwardIterator(const HBasicBlock& block)
734      : current_(block.GetLoopInformation()) {}
735
736  bool Done() const { return current_ == nullptr; }
737
738  void Advance() {
739    DCHECK(!Done());
740    current_ = current_->GetPreHeader()->GetLoopInformation();
741  }
742
743  HLoopInformation* Current() const {
744    DCHECK(!Done());
745    return current_;
746  }
747
748 private:
749  HLoopInformation* current_;
750
751  DISALLOW_COPY_AND_ASSIGN(HLoopInformationOutwardIterator);
752};
753
754#define FOR_EACH_CONCRETE_INSTRUCTION(M)                                \
755  M(Add, BinaryOperation)                                               \
756  M(And, BinaryOperation)                                               \
757  M(ArrayGet, Instruction)                                              \
758  M(ArrayLength, Instruction)                                           \
759  M(ArraySet, Instruction)                                              \
760  M(BooleanNot, UnaryOperation)                                         \
761  M(BoundsCheck, Instruction)                                           \
762  M(BoundType, Instruction)                                             \
763  M(CheckCast, Instruction)                                             \
764  M(ClinitCheck, Instruction)                                           \
765  M(Compare, BinaryOperation)                                           \
766  M(Condition, BinaryOperation)                                         \
767  M(Deoptimize, Instruction)                                            \
768  M(Div, BinaryOperation)                                               \
769  M(DivZeroCheck, Instruction)                                          \
770  M(DoubleConstant, Constant)                                           \
771  M(Equal, Condition)                                                   \
772  M(Exit, Instruction)                                                  \
773  M(FloatConstant, Constant)                                            \
774  M(Goto, Instruction)                                                  \
775  M(GreaterThan, Condition)                                             \
776  M(GreaterThanOrEqual, Condition)                                      \
777  M(If, Instruction)                                                    \
778  M(InstanceFieldGet, Instruction)                                      \
779  M(InstanceFieldSet, Instruction)                                      \
780  M(InstanceOf, Instruction)                                            \
781  M(IntConstant, Constant)                                              \
782  M(InvokeInterface, Invoke)                                            \
783  M(InvokeStaticOrDirect, Invoke)                                       \
784  M(InvokeVirtual, Invoke)                                              \
785  M(LessThan, Condition)                                                \
786  M(LessThanOrEqual, Condition)                                         \
787  M(LoadClass, Instruction)                                             \
788  M(LoadException, Instruction)                                         \
789  M(LoadLocal, Instruction)                                             \
790  M(LoadString, Instruction)                                            \
791  M(Local, Instruction)                                                 \
792  M(LongConstant, Constant)                                             \
793  M(MemoryBarrier, Instruction)                                         \
794  M(MonitorOperation, Instruction)                                      \
795  M(Mul, BinaryOperation)                                               \
796  M(Neg, UnaryOperation)                                                \
797  M(NewArray, Instruction)                                              \
798  M(NewInstance, Instruction)                                           \
799  M(Not, UnaryOperation)                                                \
800  M(NotEqual, Condition)                                                \
801  M(NullConstant, Instruction)                                          \
802  M(NullCheck, Instruction)                                             \
803  M(Or, BinaryOperation)                                                \
804  M(ParallelMove, Instruction)                                          \
805  M(ParameterValue, Instruction)                                        \
806  M(Phi, Instruction)                                                   \
807  M(Rem, BinaryOperation)                                               \
808  M(Return, Instruction)                                                \
809  M(ReturnVoid, Instruction)                                            \
810  M(Shl, BinaryOperation)                                               \
811  M(Shr, BinaryOperation)                                               \
812  M(StaticFieldGet, Instruction)                                        \
813  M(StaticFieldSet, Instruction)                                        \
814  M(StoreLocal, Instruction)                                            \
815  M(Sub, BinaryOperation)                                               \
816  M(SuspendCheck, Instruction)                                          \
817  M(Temporary, Instruction)                                             \
818  M(Throw, Instruction)                                                 \
819  M(TypeConversion, Instruction)                                        \
820  M(UShr, BinaryOperation)                                              \
821  M(Xor, BinaryOperation)                                               \
822
823#define FOR_EACH_INSTRUCTION(M)                                         \
824  FOR_EACH_CONCRETE_INSTRUCTION(M)                                      \
825  M(Constant, Instruction)                                              \
826  M(UnaryOperation, Instruction)                                        \
827  M(BinaryOperation, Instruction)                                       \
828  M(Invoke, Instruction)
829
830#define FORWARD_DECLARATION(type, super) class H##type;
831FOR_EACH_INSTRUCTION(FORWARD_DECLARATION)
832#undef FORWARD_DECLARATION
833
834#define DECLARE_INSTRUCTION(type)                                       \
835  InstructionKind GetKind() const OVERRIDE { return k##type; }          \
836  const char* DebugName() const OVERRIDE { return #type; }              \
837  const H##type* As##type() const OVERRIDE { return this; }             \
838  H##type* As##type() OVERRIDE { return this; }                         \
839  bool InstructionTypeEquals(HInstruction* other) const OVERRIDE {      \
840    return other->Is##type();                                           \
841  }                                                                     \
842  void Accept(HGraphVisitor* visitor) OVERRIDE
843
844template <typename T> class HUseList;
845
846template <typename T>
847class HUseListNode : public ArenaObject<kArenaAllocMisc> {
848 public:
849  HUseListNode* GetPrevious() const { return prev_; }
850  HUseListNode* GetNext() const { return next_; }
851  T GetUser() const { return user_; }
852  size_t GetIndex() const { return index_; }
853  void SetIndex(size_t index) { index_ = index; }
854
855 private:
856  HUseListNode(T user, size_t index)
857      : user_(user), index_(index), prev_(nullptr), next_(nullptr) {}
858
859  T const user_;
860  size_t index_;
861  HUseListNode<T>* prev_;
862  HUseListNode<T>* next_;
863
864  friend class HUseList<T>;
865
866  DISALLOW_COPY_AND_ASSIGN(HUseListNode);
867};
868
869template <typename T>
870class HUseList : public ValueObject {
871 public:
872  HUseList() : first_(nullptr) {}
873
874  void Clear() {
875    first_ = nullptr;
876  }
877
878  // Adds a new entry at the beginning of the use list and returns
879  // the newly created node.
880  HUseListNode<T>* AddUse(T user, size_t index, ArenaAllocator* arena) {
881    HUseListNode<T>* new_node = new (arena) HUseListNode<T>(user, index);
882    if (IsEmpty()) {
883      first_ = new_node;
884    } else {
885      first_->prev_ = new_node;
886      new_node->next_ = first_;
887      first_ = new_node;
888    }
889    return new_node;
890  }
891
892  HUseListNode<T>* GetFirst() const {
893    return first_;
894  }
895
896  void Remove(HUseListNode<T>* node) {
897    DCHECK(node != nullptr);
898    DCHECK(Contains(node));
899
900    if (node->prev_ != nullptr) {
901      node->prev_->next_ = node->next_;
902    }
903    if (node->next_ != nullptr) {
904      node->next_->prev_ = node->prev_;
905    }
906    if (node == first_) {
907      first_ = node->next_;
908    }
909  }
910
911  bool Contains(const HUseListNode<T>* node) const {
912    if (node == nullptr) {
913      return false;
914    }
915    for (HUseListNode<T>* current = first_; current != nullptr; current = current->GetNext()) {
916      if (current == node) {
917        return true;
918      }
919    }
920    return false;
921  }
922
923  bool IsEmpty() const {
924    return first_ == nullptr;
925  }
926
927  bool HasOnlyOneUse() const {
928    return first_ != nullptr && first_->next_ == nullptr;
929  }
930
931 private:
932  HUseListNode<T>* first_;
933};
934
935template<typename T>
936class HUseIterator : public ValueObject {
937 public:
938  explicit HUseIterator(const HUseList<T>& uses) : current_(uses.GetFirst()) {}
939
940  bool Done() const { return current_ == nullptr; }
941
942  void Advance() {
943    DCHECK(!Done());
944    current_ = current_->GetNext();
945  }
946
947  HUseListNode<T>* Current() const {
948    DCHECK(!Done());
949    return current_;
950  }
951
952 private:
953  HUseListNode<T>* current_;
954
955  friend class HValue;
956};
957
958// This class is used by HEnvironment and HInstruction classes to record the
959// instructions they use and pointers to the corresponding HUseListNodes kept
960// by the used instructions.
961template <typename T>
962class HUserRecord : public ValueObject {
963 public:
964  HUserRecord() : instruction_(nullptr), use_node_(nullptr) {}
965  explicit HUserRecord(HInstruction* instruction) : instruction_(instruction), use_node_(nullptr) {}
966
967  HUserRecord(const HUserRecord<T>& old_record, HUseListNode<T>* use_node)
968    : instruction_(old_record.instruction_), use_node_(use_node) {
969    DCHECK(instruction_ != nullptr);
970    DCHECK(use_node_ != nullptr);
971    DCHECK(old_record.use_node_ == nullptr);
972  }
973
974  HInstruction* GetInstruction() const { return instruction_; }
975  HUseListNode<T>* GetUseNode() const { return use_node_; }
976
977 private:
978  // Instruction used by the user.
979  HInstruction* instruction_;
980
981  // Corresponding entry in the use list kept by 'instruction_'.
982  HUseListNode<T>* use_node_;
983};
984
985// TODO: Add better documentation to this class and maybe refactor with more suggestive names.
986// - Has(All)SideEffects suggests that all the side effects are present but only ChangesSomething
987//   flag is consider.
988// - DependsOn suggests that there is a real dependency between side effects but it only
989//   checks DependendsOnSomething flag.
990//
991// Represents the side effects an instruction may have.
992class SideEffects : public ValueObject {
993 public:
994  SideEffects() : flags_(0) {}
995
996  static SideEffects None() {
997    return SideEffects(0);
998  }
999
1000  static SideEffects All() {
1001    return SideEffects(ChangesSomething().flags_ | DependsOnSomething().flags_);
1002  }
1003
1004  static SideEffects ChangesSomething() {
1005    return SideEffects((1 << kFlagChangesCount) - 1);
1006  }
1007
1008  static SideEffects DependsOnSomething() {
1009    int count = kFlagDependsOnCount - kFlagChangesCount;
1010    return SideEffects(((1 << count) - 1) << kFlagChangesCount);
1011  }
1012
1013  SideEffects Union(SideEffects other) const {
1014    return SideEffects(flags_ | other.flags_);
1015  }
1016
1017  bool HasSideEffects() const {
1018    size_t all_bits_set = (1 << kFlagChangesCount) - 1;
1019    return (flags_ & all_bits_set) != 0;
1020  }
1021
1022  bool HasAllSideEffects() const {
1023    size_t all_bits_set = (1 << kFlagChangesCount) - 1;
1024    return all_bits_set == (flags_ & all_bits_set);
1025  }
1026
1027  bool DependsOn(SideEffects other) const {
1028    size_t depends_flags = other.ComputeDependsFlags();
1029    return (flags_ & depends_flags) != 0;
1030  }
1031
1032  bool HasDependencies() const {
1033    int count = kFlagDependsOnCount - kFlagChangesCount;
1034    size_t all_bits_set = (1 << count) - 1;
1035    return ((flags_ >> kFlagChangesCount) & all_bits_set) != 0;
1036  }
1037
1038 private:
1039  static constexpr int kFlagChangesSomething = 0;
1040  static constexpr int kFlagChangesCount = kFlagChangesSomething + 1;
1041
1042  static constexpr int kFlagDependsOnSomething = kFlagChangesCount;
1043  static constexpr int kFlagDependsOnCount = kFlagDependsOnSomething + 1;
1044
1045  explicit SideEffects(size_t flags) : flags_(flags) {}
1046
1047  size_t ComputeDependsFlags() const {
1048    return flags_ << kFlagChangesCount;
1049  }
1050
1051  size_t flags_;
1052};
1053
1054// A HEnvironment object contains the values of virtual registers at a given location.
1055class HEnvironment : public ArenaObject<kArenaAllocMisc> {
1056 public:
1057  HEnvironment(ArenaAllocator* arena, size_t number_of_vregs)
1058     : vregs_(arena, number_of_vregs) {
1059    vregs_.SetSize(number_of_vregs);
1060    for (size_t i = 0; i < number_of_vregs; i++) {
1061      vregs_.Put(i, HUserRecord<HEnvironment*>());
1062    }
1063  }
1064
1065  void CopyFrom(HEnvironment* env);
1066  // Copy from `env`. If it's a loop phi for `loop_header`, copy the first
1067  // input to the loop phi instead. This is for inserting instructions that
1068  // require an environment (like HDeoptimization) in the loop pre-header.
1069  void CopyFromWithLoopPhiAdjustment(HEnvironment* env, HBasicBlock* loop_header);
1070
1071  void SetRawEnvAt(size_t index, HInstruction* instruction) {
1072    vregs_.Put(index, HUserRecord<HEnvironment*>(instruction));
1073  }
1074
1075  HInstruction* GetInstructionAt(size_t index) const {
1076    return vregs_.Get(index).GetInstruction();
1077  }
1078
1079  void RemoveAsUserOfInput(size_t index) const;
1080
1081  size_t Size() const { return vregs_.Size(); }
1082
1083 private:
1084  // Record instructions' use entries of this environment for constant-time removal.
1085  // It should only be called by HInstruction when a new environment use is added.
1086  void RecordEnvUse(HUseListNode<HEnvironment*>* env_use) {
1087    DCHECK(env_use->GetUser() == this);
1088    size_t index = env_use->GetIndex();
1089    vregs_.Put(index, HUserRecord<HEnvironment*>(vregs_.Get(index), env_use));
1090  }
1091
1092  GrowableArray<HUserRecord<HEnvironment*> > vregs_;
1093
1094  friend class HInstruction;
1095
1096  DISALLOW_COPY_AND_ASSIGN(HEnvironment);
1097};
1098
1099class ReferenceTypeInfo : ValueObject {
1100 public:
1101  typedef Handle<mirror::Class> TypeHandle;
1102
1103  static ReferenceTypeInfo Create(TypeHandle type_handle, bool is_exact)
1104      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1105    if (type_handle->IsObjectClass()) {
1106      // Override the type handle to be consistent with the case when we get to
1107      // Top but don't have the Object class available. It avoids having to guess
1108      // what value the type_handle has when it's Top.
1109      return ReferenceTypeInfo(TypeHandle(), is_exact, true);
1110    } else {
1111      return ReferenceTypeInfo(type_handle, is_exact, false);
1112    }
1113  }
1114
1115  static ReferenceTypeInfo CreateTop(bool is_exact) {
1116    return ReferenceTypeInfo(TypeHandle(), is_exact, true);
1117  }
1118
1119  bool IsExact() const { return is_exact_; }
1120  bool IsTop() const { return is_top_; }
1121
1122  Handle<mirror::Class> GetTypeHandle() const { return type_handle_; }
1123
1124  bool IsSupertypeOf(ReferenceTypeInfo rti) const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1125    if (IsTop()) {
1126      // Top (equivalent for java.lang.Object) is supertype of anything.
1127      return true;
1128    }
1129    if (rti.IsTop()) {
1130      // If we get here `this` is not Top() so it can't be a supertype.
1131      return false;
1132    }
1133    return GetTypeHandle()->IsAssignableFrom(rti.GetTypeHandle().Get());
1134  }
1135
1136  // Returns true if the type information provide the same amount of details.
1137  // Note that it does not mean that the instructions have the same actual type
1138  // (e.g. tops are equal but they can be the result of a merge).
1139  bool IsEqual(ReferenceTypeInfo rti) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1140    if (IsExact() != rti.IsExact()) {
1141      return false;
1142    }
1143    if (IsTop() && rti.IsTop()) {
1144      // `Top` means java.lang.Object, so the types are equivalent.
1145      return true;
1146    }
1147    if (IsTop() || rti.IsTop()) {
1148      // If only one is top or object than they are not equivalent.
1149      // NB: We need this extra check because the type_handle of `Top` is invalid
1150      // and we cannot inspect its reference.
1151      return false;
1152    }
1153
1154    // Finally check the types.
1155    return GetTypeHandle().Get() == rti.GetTypeHandle().Get();
1156  }
1157
1158 private:
1159  ReferenceTypeInfo() : ReferenceTypeInfo(TypeHandle(), false, true) {}
1160  ReferenceTypeInfo(TypeHandle type_handle, bool is_exact, bool is_top)
1161      : type_handle_(type_handle), is_exact_(is_exact), is_top_(is_top) {}
1162
1163  // The class of the object.
1164  TypeHandle type_handle_;
1165  // Whether or not the type is exact or a superclass of the actual type.
1166  // Whether or not we have any information about this type.
1167  bool is_exact_;
1168  // A true value here means that the object type should be java.lang.Object.
1169  // We don't have access to the corresponding mirror object every time so this
1170  // flag acts as a substitute. When true, the TypeHandle refers to a null
1171  // pointer and should not be used.
1172  bool is_top_;
1173};
1174
1175std::ostream& operator<<(std::ostream& os, const ReferenceTypeInfo& rhs);
1176
1177class HInstruction : public ArenaObject<kArenaAllocMisc> {
1178 public:
1179  explicit HInstruction(SideEffects side_effects)
1180      : previous_(nullptr),
1181        next_(nullptr),
1182        block_(nullptr),
1183        id_(-1),
1184        ssa_index_(-1),
1185        environment_(nullptr),
1186        locations_(nullptr),
1187        live_interval_(nullptr),
1188        lifetime_position_(kNoLifetime),
1189        side_effects_(side_effects),
1190        reference_type_info_(ReferenceTypeInfo::CreateTop(/* is_exact */ false)) {}
1191
1192  virtual ~HInstruction() {}
1193
1194#define DECLARE_KIND(type, super) k##type,
1195  enum InstructionKind {
1196    FOR_EACH_INSTRUCTION(DECLARE_KIND)
1197  };
1198#undef DECLARE_KIND
1199
1200  HInstruction* GetNext() const { return next_; }
1201  HInstruction* GetPrevious() const { return previous_; }
1202
1203  HInstruction* GetNextDisregardingMoves() const;
1204  HInstruction* GetPreviousDisregardingMoves() const;
1205
1206  HBasicBlock* GetBlock() const { return block_; }
1207  void SetBlock(HBasicBlock* block) { block_ = block; }
1208  bool IsInBlock() const { return block_ != nullptr; }
1209  bool IsInLoop() const { return block_->IsInLoop(); }
1210  bool IsLoopHeaderPhi() { return IsPhi() && block_->IsLoopHeader(); }
1211
1212  virtual size_t InputCount() const = 0;
1213  HInstruction* InputAt(size_t i) const { return InputRecordAt(i).GetInstruction(); }
1214
1215  virtual void Accept(HGraphVisitor* visitor) = 0;
1216  virtual const char* DebugName() const = 0;
1217
1218  virtual Primitive::Type GetType() const { return Primitive::kPrimVoid; }
1219  void SetRawInputAt(size_t index, HInstruction* input) {
1220    SetRawInputRecordAt(index, HUserRecord<HInstruction*>(input));
1221  }
1222
1223  virtual bool NeedsEnvironment() const { return false; }
1224  virtual bool IsControlFlow() const { return false; }
1225  virtual bool CanThrow() const { return false; }
1226  bool HasSideEffects() const { return side_effects_.HasSideEffects(); }
1227
1228  // Does not apply for all instructions, but having this at top level greatly
1229  // simplifies the null check elimination.
1230  virtual bool CanBeNull() const {
1231    DCHECK_EQ(GetType(), Primitive::kPrimNot) << "CanBeNull only applies to reference types";
1232    return true;
1233  }
1234
1235  virtual bool CanDoImplicitNullCheckOn(HInstruction* obj) const {
1236    UNUSED(obj);
1237    return false;
1238  }
1239
1240  void SetReferenceTypeInfo(ReferenceTypeInfo reference_type_info) {
1241    DCHECK_EQ(GetType(), Primitive::kPrimNot);
1242    reference_type_info_ = reference_type_info;
1243  }
1244
1245  ReferenceTypeInfo GetReferenceTypeInfo() const {
1246    DCHECK_EQ(GetType(), Primitive::kPrimNot);
1247    return reference_type_info_;
1248  }
1249
1250  void AddUseAt(HInstruction* user, size_t index) {
1251    DCHECK(user != nullptr);
1252    HUseListNode<HInstruction*>* use =
1253        uses_.AddUse(user, index, GetBlock()->GetGraph()->GetArena());
1254    user->SetRawInputRecordAt(index, HUserRecord<HInstruction*>(user->InputRecordAt(index), use));
1255  }
1256
1257  void AddEnvUseAt(HEnvironment* user, size_t index) {
1258    DCHECK(user != nullptr);
1259    HUseListNode<HEnvironment*>* env_use =
1260        env_uses_.AddUse(user, index, GetBlock()->GetGraph()->GetArena());
1261    user->RecordEnvUse(env_use);
1262  }
1263
1264  void RemoveAsUserOfInput(size_t input) {
1265    HUserRecord<HInstruction*> input_use = InputRecordAt(input);
1266    input_use.GetInstruction()->uses_.Remove(input_use.GetUseNode());
1267  }
1268
1269  const HUseList<HInstruction*>& GetUses() const { return uses_; }
1270  const HUseList<HEnvironment*>& GetEnvUses() const { return env_uses_; }
1271
1272  bool HasUses() const { return !uses_.IsEmpty() || !env_uses_.IsEmpty(); }
1273  bool HasEnvironmentUses() const { return !env_uses_.IsEmpty(); }
1274  bool HasNonEnvironmentUses() const { return !uses_.IsEmpty(); }
1275  bool HasOnlyOneNonEnvironmentUse() const {
1276    return !HasEnvironmentUses() && GetUses().HasOnlyOneUse();
1277  }
1278
1279  // Does this instruction strictly dominate `other_instruction`?
1280  // Returns false if this instruction and `other_instruction` are the same.
1281  // Aborts if this instruction and `other_instruction` are both phis.
1282  bool StrictlyDominates(HInstruction* other_instruction) const;
1283
1284  int GetId() const { return id_; }
1285  void SetId(int id) { id_ = id; }
1286
1287  int GetSsaIndex() const { return ssa_index_; }
1288  void SetSsaIndex(int ssa_index) { ssa_index_ = ssa_index; }
1289  bool HasSsaIndex() const { return ssa_index_ != -1; }
1290
1291  bool HasEnvironment() const { return environment_ != nullptr; }
1292  HEnvironment* GetEnvironment() const { return environment_; }
1293  // Set the `environment_` field. Raw because this method does not
1294  // update the uses lists.
1295  void SetRawEnvironment(HEnvironment* environment) { environment_ = environment; }
1296
1297  // Set the environment of this instruction, copying it from `environment`. While
1298  // copying, the uses lists are being updated.
1299  void CopyEnvironmentFrom(HEnvironment* environment) {
1300    ArenaAllocator* allocator = GetBlock()->GetGraph()->GetArena();
1301    environment_ = new (allocator) HEnvironment(allocator, environment->Size());
1302    environment_->CopyFrom(environment);
1303  }
1304
1305  void CopyEnvironmentFromWithLoopPhiAdjustment(HEnvironment* environment,
1306                                                HBasicBlock* block) {
1307    ArenaAllocator* allocator = GetBlock()->GetGraph()->GetArena();
1308    environment_ = new (allocator) HEnvironment(allocator, environment->Size());
1309    environment_->CopyFromWithLoopPhiAdjustment(environment, block);
1310  }
1311
1312  // Returns the number of entries in the environment. Typically, that is the
1313  // number of dex registers in a method. It could be more in case of inlining.
1314  size_t EnvironmentSize() const;
1315
1316  LocationSummary* GetLocations() const { return locations_; }
1317  void SetLocations(LocationSummary* locations) { locations_ = locations; }
1318
1319  void ReplaceWith(HInstruction* instruction);
1320  void ReplaceInput(HInstruction* replacement, size_t index);
1321
1322  // This is almost the same as doing `ReplaceWith()`. But in this helper, the
1323  // uses of this instruction by `other` are *not* updated.
1324  void ReplaceWithExceptInReplacementAtIndex(HInstruction* other, size_t use_index) {
1325    ReplaceWith(other);
1326    other->ReplaceInput(this, use_index);
1327  }
1328
1329  // Move `this` instruction before `cursor`.
1330  void MoveBefore(HInstruction* cursor);
1331
1332#define INSTRUCTION_TYPE_CHECK(type, super)                                    \
1333  bool Is##type() const { return (As##type() != nullptr); }                    \
1334  virtual const H##type* As##type() const { return nullptr; }                  \
1335  virtual H##type* As##type() { return nullptr; }
1336
1337  FOR_EACH_INSTRUCTION(INSTRUCTION_TYPE_CHECK)
1338#undef INSTRUCTION_TYPE_CHECK
1339
1340  // Returns whether the instruction can be moved within the graph.
1341  virtual bool CanBeMoved() const { return false; }
1342
1343  // Returns whether the two instructions are of the same kind.
1344  virtual bool InstructionTypeEquals(HInstruction* other) const {
1345    UNUSED(other);
1346    return false;
1347  }
1348
1349  // Returns whether any data encoded in the two instructions is equal.
1350  // This method does not look at the inputs. Both instructions must be
1351  // of the same type, otherwise the method has undefined behavior.
1352  virtual bool InstructionDataEquals(HInstruction* other) const {
1353    UNUSED(other);
1354    return false;
1355  }
1356
1357  // Returns whether two instructions are equal, that is:
1358  // 1) They have the same type and contain the same data (InstructionDataEquals).
1359  // 2) Their inputs are identical.
1360  bool Equals(HInstruction* other) const;
1361
1362  virtual InstructionKind GetKind() const = 0;
1363
1364  virtual size_t ComputeHashCode() const {
1365    size_t result = GetKind();
1366    for (size_t i = 0, e = InputCount(); i < e; ++i) {
1367      result = (result * 31) + InputAt(i)->GetId();
1368    }
1369    return result;
1370  }
1371
1372  SideEffects GetSideEffects() const { return side_effects_; }
1373
1374  size_t GetLifetimePosition() const { return lifetime_position_; }
1375  void SetLifetimePosition(size_t position) { lifetime_position_ = position; }
1376  LiveInterval* GetLiveInterval() const { return live_interval_; }
1377  void SetLiveInterval(LiveInterval* interval) { live_interval_ = interval; }
1378  bool HasLiveInterval() const { return live_interval_ != nullptr; }
1379
1380  bool IsSuspendCheckEntry() const { return IsSuspendCheck() && GetBlock()->IsEntryBlock(); }
1381
1382  // Returns whether the code generation of the instruction will require to have access
1383  // to the current method. Such instructions are:
1384  // (1): Instructions that require an environment, as calling the runtime requires
1385  //      to walk the stack and have the current method stored at a specific stack address.
1386  // (2): Object literals like classes and strings, that are loaded from the dex cache
1387  //      fields of the current method.
1388  bool NeedsCurrentMethod() const {
1389    return NeedsEnvironment() || IsLoadClass() || IsLoadString();
1390  }
1391
1392  virtual bool NeedsDexCache() const { return false; }
1393
1394 protected:
1395  virtual const HUserRecord<HInstruction*> InputRecordAt(size_t i) const = 0;
1396  virtual void SetRawInputRecordAt(size_t index, const HUserRecord<HInstruction*>& input) = 0;
1397
1398 private:
1399  void RemoveEnvironmentUser(HUseListNode<HEnvironment*>* use_node) { env_uses_.Remove(use_node); }
1400
1401  HInstruction* previous_;
1402  HInstruction* next_;
1403  HBasicBlock* block_;
1404
1405  // An instruction gets an id when it is added to the graph.
1406  // It reflects creation order. A negative id means the instruction
1407  // has not been added to the graph.
1408  int id_;
1409
1410  // When doing liveness analysis, instructions that have uses get an SSA index.
1411  int ssa_index_;
1412
1413  // List of instructions that have this instruction as input.
1414  HUseList<HInstruction*> uses_;
1415
1416  // List of environments that contain this instruction.
1417  HUseList<HEnvironment*> env_uses_;
1418
1419  // The environment associated with this instruction. Not null if the instruction
1420  // might jump out of the method.
1421  HEnvironment* environment_;
1422
1423  // Set by the code generator.
1424  LocationSummary* locations_;
1425
1426  // Set by the liveness analysis.
1427  LiveInterval* live_interval_;
1428
1429  // Set by the liveness analysis, this is the position in a linear
1430  // order of blocks where this instruction's live interval start.
1431  size_t lifetime_position_;
1432
1433  const SideEffects side_effects_;
1434
1435  // TODO: for primitive types this should be marked as invalid.
1436  ReferenceTypeInfo reference_type_info_;
1437
1438  friend class GraphChecker;
1439  friend class HBasicBlock;
1440  friend class HEnvironment;
1441  friend class HGraph;
1442  friend class HInstructionList;
1443
1444  DISALLOW_COPY_AND_ASSIGN(HInstruction);
1445};
1446std::ostream& operator<<(std::ostream& os, const HInstruction::InstructionKind& rhs);
1447
1448class HInputIterator : public ValueObject {
1449 public:
1450  explicit HInputIterator(HInstruction* instruction) : instruction_(instruction), index_(0) {}
1451
1452  bool Done() const { return index_ == instruction_->InputCount(); }
1453  HInstruction* Current() const { return instruction_->InputAt(index_); }
1454  void Advance() { index_++; }
1455
1456 private:
1457  HInstruction* instruction_;
1458  size_t index_;
1459
1460  DISALLOW_COPY_AND_ASSIGN(HInputIterator);
1461};
1462
1463class HInstructionIterator : public ValueObject {
1464 public:
1465  explicit HInstructionIterator(const HInstructionList& instructions)
1466      : instruction_(instructions.first_instruction_) {
1467    next_ = Done() ? nullptr : instruction_->GetNext();
1468  }
1469
1470  bool Done() const { return instruction_ == nullptr; }
1471  HInstruction* Current() const { return instruction_; }
1472  void Advance() {
1473    instruction_ = next_;
1474    next_ = Done() ? nullptr : instruction_->GetNext();
1475  }
1476
1477 private:
1478  HInstruction* instruction_;
1479  HInstruction* next_;
1480
1481  DISALLOW_COPY_AND_ASSIGN(HInstructionIterator);
1482};
1483
1484class HBackwardInstructionIterator : public ValueObject {
1485 public:
1486  explicit HBackwardInstructionIterator(const HInstructionList& instructions)
1487      : instruction_(instructions.last_instruction_) {
1488    next_ = Done() ? nullptr : instruction_->GetPrevious();
1489  }
1490
1491  bool Done() const { return instruction_ == nullptr; }
1492  HInstruction* Current() const { return instruction_; }
1493  void Advance() {
1494    instruction_ = next_;
1495    next_ = Done() ? nullptr : instruction_->GetPrevious();
1496  }
1497
1498 private:
1499  HInstruction* instruction_;
1500  HInstruction* next_;
1501
1502  DISALLOW_COPY_AND_ASSIGN(HBackwardInstructionIterator);
1503};
1504
1505// An embedded container with N elements of type T.  Used (with partial
1506// specialization for N=0) because embedded arrays cannot have size 0.
1507template<typename T, intptr_t N>
1508class EmbeddedArray {
1509 public:
1510  EmbeddedArray() : elements_() {}
1511
1512  intptr_t GetLength() const { return N; }
1513
1514  const T& operator[](intptr_t i) const {
1515    DCHECK_LT(i, GetLength());
1516    return elements_[i];
1517  }
1518
1519  T& operator[](intptr_t i) {
1520    DCHECK_LT(i, GetLength());
1521    return elements_[i];
1522  }
1523
1524  const T& At(intptr_t i) const {
1525    return (*this)[i];
1526  }
1527
1528  void SetAt(intptr_t i, const T& val) {
1529    (*this)[i] = val;
1530  }
1531
1532 private:
1533  T elements_[N];
1534};
1535
1536template<typename T>
1537class EmbeddedArray<T, 0> {
1538 public:
1539  intptr_t length() const { return 0; }
1540  const T& operator[](intptr_t i) const {
1541    UNUSED(i);
1542    LOG(FATAL) << "Unreachable";
1543    UNREACHABLE();
1544  }
1545  T& operator[](intptr_t i) {
1546    UNUSED(i);
1547    LOG(FATAL) << "Unreachable";
1548    UNREACHABLE();
1549  }
1550};
1551
1552template<intptr_t N>
1553class HTemplateInstruction: public HInstruction {
1554 public:
1555  HTemplateInstruction<N>(SideEffects side_effects)
1556      : HInstruction(side_effects), inputs_() {}
1557  virtual ~HTemplateInstruction() {}
1558
1559  size_t InputCount() const OVERRIDE { return N; }
1560
1561 protected:
1562  const HUserRecord<HInstruction*> InputRecordAt(size_t i) const OVERRIDE { return inputs_[i]; }
1563
1564  void SetRawInputRecordAt(size_t i, const HUserRecord<HInstruction*>& input) OVERRIDE {
1565    inputs_[i] = input;
1566  }
1567
1568 private:
1569  EmbeddedArray<HUserRecord<HInstruction*>, N> inputs_;
1570
1571  friend class SsaBuilder;
1572};
1573
1574template<intptr_t N>
1575class HExpression : public HTemplateInstruction<N> {
1576 public:
1577  HExpression<N>(Primitive::Type type, SideEffects side_effects)
1578      : HTemplateInstruction<N>(side_effects), type_(type) {}
1579  virtual ~HExpression() {}
1580
1581  Primitive::Type GetType() const OVERRIDE { return type_; }
1582
1583 protected:
1584  Primitive::Type type_;
1585};
1586
1587// Represents dex's RETURN_VOID opcode. A HReturnVoid is a control flow
1588// instruction that branches to the exit block.
1589class HReturnVoid : public HTemplateInstruction<0> {
1590 public:
1591  HReturnVoid() : HTemplateInstruction(SideEffects::None()) {}
1592
1593  bool IsControlFlow() const OVERRIDE { return true; }
1594
1595  DECLARE_INSTRUCTION(ReturnVoid);
1596
1597 private:
1598  DISALLOW_COPY_AND_ASSIGN(HReturnVoid);
1599};
1600
1601// Represents dex's RETURN opcodes. A HReturn is a control flow
1602// instruction that branches to the exit block.
1603class HReturn : public HTemplateInstruction<1> {
1604 public:
1605  explicit HReturn(HInstruction* value) : HTemplateInstruction(SideEffects::None()) {
1606    SetRawInputAt(0, value);
1607  }
1608
1609  bool IsControlFlow() const OVERRIDE { return true; }
1610
1611  DECLARE_INSTRUCTION(Return);
1612
1613 private:
1614  DISALLOW_COPY_AND_ASSIGN(HReturn);
1615};
1616
1617// The exit instruction is the only instruction of the exit block.
1618// Instructions aborting the method (HThrow and HReturn) must branch to the
1619// exit block.
1620class HExit : public HTemplateInstruction<0> {
1621 public:
1622  HExit() : HTemplateInstruction(SideEffects::None()) {}
1623
1624  bool IsControlFlow() const OVERRIDE { return true; }
1625
1626  DECLARE_INSTRUCTION(Exit);
1627
1628 private:
1629  DISALLOW_COPY_AND_ASSIGN(HExit);
1630};
1631
1632// Jumps from one block to another.
1633class HGoto : public HTemplateInstruction<0> {
1634 public:
1635  HGoto() : HTemplateInstruction(SideEffects::None()) {}
1636
1637  bool IsControlFlow() const OVERRIDE { return true; }
1638
1639  HBasicBlock* GetSuccessor() const {
1640    return GetBlock()->GetSuccessors().Get(0);
1641  }
1642
1643  DECLARE_INSTRUCTION(Goto);
1644
1645 private:
1646  DISALLOW_COPY_AND_ASSIGN(HGoto);
1647};
1648
1649
1650// Conditional branch. A block ending with an HIf instruction must have
1651// two successors.
1652class HIf : public HTemplateInstruction<1> {
1653 public:
1654  explicit HIf(HInstruction* input) : HTemplateInstruction(SideEffects::None()) {
1655    SetRawInputAt(0, input);
1656  }
1657
1658  bool IsControlFlow() const OVERRIDE { return true; }
1659
1660  HBasicBlock* IfTrueSuccessor() const {
1661    return GetBlock()->GetSuccessors().Get(0);
1662  }
1663
1664  HBasicBlock* IfFalseSuccessor() const {
1665    return GetBlock()->GetSuccessors().Get(1);
1666  }
1667
1668  DECLARE_INSTRUCTION(If);
1669
1670 private:
1671  DISALLOW_COPY_AND_ASSIGN(HIf);
1672};
1673
1674// Deoptimize to interpreter, upon checking a condition.
1675class HDeoptimize : public HTemplateInstruction<1> {
1676 public:
1677  HDeoptimize(HInstruction* cond, uint32_t dex_pc)
1678      : HTemplateInstruction(SideEffects::None()),
1679        dex_pc_(dex_pc) {
1680    SetRawInputAt(0, cond);
1681  }
1682
1683  bool NeedsEnvironment() const OVERRIDE { return true; }
1684  bool CanThrow() const OVERRIDE { return true; }
1685  uint32_t GetDexPc() const { return dex_pc_; }
1686
1687  DECLARE_INSTRUCTION(Deoptimize);
1688
1689 private:
1690  uint32_t dex_pc_;
1691
1692  DISALLOW_COPY_AND_ASSIGN(HDeoptimize);
1693};
1694
1695class HUnaryOperation : public HExpression<1> {
1696 public:
1697  HUnaryOperation(Primitive::Type result_type, HInstruction* input)
1698      : HExpression(result_type, SideEffects::None()) {
1699    SetRawInputAt(0, input);
1700  }
1701
1702  HInstruction* GetInput() const { return InputAt(0); }
1703  Primitive::Type GetResultType() const { return GetType(); }
1704
1705  bool CanBeMoved() const OVERRIDE { return true; }
1706  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
1707    UNUSED(other);
1708    return true;
1709  }
1710
1711  // Try to statically evaluate `operation` and return a HConstant
1712  // containing the result of this evaluation.  If `operation` cannot
1713  // be evaluated as a constant, return null.
1714  HConstant* TryStaticEvaluation() const;
1715
1716  // Apply this operation to `x`.
1717  virtual int32_t Evaluate(int32_t x) const = 0;
1718  virtual int64_t Evaluate(int64_t x) const = 0;
1719
1720  DECLARE_INSTRUCTION(UnaryOperation);
1721
1722 private:
1723  DISALLOW_COPY_AND_ASSIGN(HUnaryOperation);
1724};
1725
1726class HBinaryOperation : public HExpression<2> {
1727 public:
1728  HBinaryOperation(Primitive::Type result_type,
1729                   HInstruction* left,
1730                   HInstruction* right) : HExpression(result_type, SideEffects::None()) {
1731    SetRawInputAt(0, left);
1732    SetRawInputAt(1, right);
1733  }
1734
1735  HInstruction* GetLeft() const { return InputAt(0); }
1736  HInstruction* GetRight() const { return InputAt(1); }
1737  Primitive::Type GetResultType() const { return GetType(); }
1738
1739  virtual bool IsCommutative() const { return false; }
1740
1741  // Put constant on the right.
1742  // Returns whether order is changed.
1743  bool OrderInputsWithConstantOnTheRight() {
1744    HInstruction* left = InputAt(0);
1745    HInstruction* right = InputAt(1);
1746    if (left->IsConstant() && !right->IsConstant()) {
1747      ReplaceInput(right, 0);
1748      ReplaceInput(left, 1);
1749      return true;
1750    }
1751    return false;
1752  }
1753
1754  // Order inputs by instruction id, but favor constant on the right side.
1755  // This helps GVN for commutative ops.
1756  void OrderInputs() {
1757    DCHECK(IsCommutative());
1758    HInstruction* left = InputAt(0);
1759    HInstruction* right = InputAt(1);
1760    if (left == right || (!left->IsConstant() && right->IsConstant())) {
1761      return;
1762    }
1763    if (OrderInputsWithConstantOnTheRight()) {
1764      return;
1765    }
1766    // Order according to instruction id.
1767    if (left->GetId() > right->GetId()) {
1768      ReplaceInput(right, 0);
1769      ReplaceInput(left, 1);
1770    }
1771  }
1772
1773  bool CanBeMoved() const OVERRIDE { return true; }
1774  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
1775    UNUSED(other);
1776    return true;
1777  }
1778
1779  // Try to statically evaluate `operation` and return a HConstant
1780  // containing the result of this evaluation.  If `operation` cannot
1781  // be evaluated as a constant, return null.
1782  HConstant* TryStaticEvaluation() const;
1783
1784  // Apply this operation to `x` and `y`.
1785  virtual int32_t Evaluate(int32_t x, int32_t y) const = 0;
1786  virtual int64_t Evaluate(int64_t x, int64_t y) const = 0;
1787
1788  // Returns an input that can legally be used as the right input and is
1789  // constant, or null.
1790  HConstant* GetConstantRight() const;
1791
1792  // If `GetConstantRight()` returns one of the input, this returns the other
1793  // one. Otherwise it returns null.
1794  HInstruction* GetLeastConstantLeft() const;
1795
1796  DECLARE_INSTRUCTION(BinaryOperation);
1797
1798 private:
1799  DISALLOW_COPY_AND_ASSIGN(HBinaryOperation);
1800};
1801
1802class HCondition : public HBinaryOperation {
1803 public:
1804  HCondition(HInstruction* first, HInstruction* second)
1805      : HBinaryOperation(Primitive::kPrimBoolean, first, second),
1806        needs_materialization_(true) {}
1807
1808  bool NeedsMaterialization() const { return needs_materialization_; }
1809  void ClearNeedsMaterialization() { needs_materialization_ = false; }
1810
1811  // For code generation purposes, returns whether this instruction is just before
1812  // `instruction`, and disregard moves in between.
1813  bool IsBeforeWhenDisregardMoves(HInstruction* instruction) const;
1814
1815  DECLARE_INSTRUCTION(Condition);
1816
1817  virtual IfCondition GetCondition() const = 0;
1818
1819 private:
1820  // For register allocation purposes, returns whether this instruction needs to be
1821  // materialized (that is, not just be in the processor flags).
1822  bool needs_materialization_;
1823
1824  DISALLOW_COPY_AND_ASSIGN(HCondition);
1825};
1826
1827// Instruction to check if two inputs are equal to each other.
1828class HEqual : public HCondition {
1829 public:
1830  HEqual(HInstruction* first, HInstruction* second)
1831      : HCondition(first, second) {}
1832
1833  bool IsCommutative() const OVERRIDE { return true; }
1834
1835  int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE {
1836    return x == y ? 1 : 0;
1837  }
1838  int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE {
1839    return x == y ? 1 : 0;
1840  }
1841
1842  DECLARE_INSTRUCTION(Equal);
1843
1844  IfCondition GetCondition() const OVERRIDE {
1845    return kCondEQ;
1846  }
1847
1848 private:
1849  DISALLOW_COPY_AND_ASSIGN(HEqual);
1850};
1851
1852class HNotEqual : public HCondition {
1853 public:
1854  HNotEqual(HInstruction* first, HInstruction* second)
1855      : HCondition(first, second) {}
1856
1857  bool IsCommutative() const OVERRIDE { return true; }
1858
1859  int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE {
1860    return x != y ? 1 : 0;
1861  }
1862  int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE {
1863    return x != y ? 1 : 0;
1864  }
1865
1866  DECLARE_INSTRUCTION(NotEqual);
1867
1868  IfCondition GetCondition() const OVERRIDE {
1869    return kCondNE;
1870  }
1871
1872 private:
1873  DISALLOW_COPY_AND_ASSIGN(HNotEqual);
1874};
1875
1876class HLessThan : public HCondition {
1877 public:
1878  HLessThan(HInstruction* first, HInstruction* second)
1879      : HCondition(first, second) {}
1880
1881  int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE {
1882    return x < y ? 1 : 0;
1883  }
1884  int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE {
1885    return x < y ? 1 : 0;
1886  }
1887
1888  DECLARE_INSTRUCTION(LessThan);
1889
1890  IfCondition GetCondition() const OVERRIDE {
1891    return kCondLT;
1892  }
1893
1894 private:
1895  DISALLOW_COPY_AND_ASSIGN(HLessThan);
1896};
1897
1898class HLessThanOrEqual : public HCondition {
1899 public:
1900  HLessThanOrEqual(HInstruction* first, HInstruction* second)
1901      : HCondition(first, second) {}
1902
1903  int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE {
1904    return x <= y ? 1 : 0;
1905  }
1906  int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE {
1907    return x <= y ? 1 : 0;
1908  }
1909
1910  DECLARE_INSTRUCTION(LessThanOrEqual);
1911
1912  IfCondition GetCondition() const OVERRIDE {
1913    return kCondLE;
1914  }
1915
1916 private:
1917  DISALLOW_COPY_AND_ASSIGN(HLessThanOrEqual);
1918};
1919
1920class HGreaterThan : public HCondition {
1921 public:
1922  HGreaterThan(HInstruction* first, HInstruction* second)
1923      : HCondition(first, second) {}
1924
1925  int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE {
1926    return x > y ? 1 : 0;
1927  }
1928  int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE {
1929    return x > y ? 1 : 0;
1930  }
1931
1932  DECLARE_INSTRUCTION(GreaterThan);
1933
1934  IfCondition GetCondition() const OVERRIDE {
1935    return kCondGT;
1936  }
1937
1938 private:
1939  DISALLOW_COPY_AND_ASSIGN(HGreaterThan);
1940};
1941
1942class HGreaterThanOrEqual : public HCondition {
1943 public:
1944  HGreaterThanOrEqual(HInstruction* first, HInstruction* second)
1945      : HCondition(first, second) {}
1946
1947  int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE {
1948    return x >= y ? 1 : 0;
1949  }
1950  int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE {
1951    return x >= y ? 1 : 0;
1952  }
1953
1954  DECLARE_INSTRUCTION(GreaterThanOrEqual);
1955
1956  IfCondition GetCondition() const OVERRIDE {
1957    return kCondGE;
1958  }
1959
1960 private:
1961  DISALLOW_COPY_AND_ASSIGN(HGreaterThanOrEqual);
1962};
1963
1964
1965// Instruction to check how two inputs compare to each other.
1966// Result is 0 if input0 == input1, 1 if input0 > input1, or -1 if input0 < input1.
1967class HCompare : public HBinaryOperation {
1968 public:
1969  // The bias applies for floating point operations and indicates how NaN
1970  // comparisons are treated:
1971  enum Bias {
1972    kNoBias,  // bias is not applicable (i.e. for long operation)
1973    kGtBias,  // return 1 for NaN comparisons
1974    kLtBias,  // return -1 for NaN comparisons
1975  };
1976
1977  HCompare(Primitive::Type type, HInstruction* first, HInstruction* second, Bias bias)
1978      : HBinaryOperation(Primitive::kPrimInt, first, second), bias_(bias) {
1979    DCHECK_EQ(type, first->GetType());
1980    DCHECK_EQ(type, second->GetType());
1981  }
1982
1983  int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE {
1984    return
1985      x == y ? 0 :
1986      x > y ? 1 :
1987      -1;
1988  }
1989
1990  int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE {
1991    return
1992      x == y ? 0 :
1993      x > y ? 1 :
1994      -1;
1995  }
1996
1997  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
1998    return bias_ == other->AsCompare()->bias_;
1999  }
2000
2001  bool IsGtBias() { return bias_ == kGtBias; }
2002
2003  DECLARE_INSTRUCTION(Compare);
2004
2005 private:
2006  const Bias bias_;
2007
2008  DISALLOW_COPY_AND_ASSIGN(HCompare);
2009};
2010
2011// A local in the graph. Corresponds to a Dex register.
2012class HLocal : public HTemplateInstruction<0> {
2013 public:
2014  explicit HLocal(uint16_t reg_number)
2015      : HTemplateInstruction(SideEffects::None()), reg_number_(reg_number) {}
2016
2017  DECLARE_INSTRUCTION(Local);
2018
2019  uint16_t GetRegNumber() const { return reg_number_; }
2020
2021 private:
2022  // The Dex register number.
2023  const uint16_t reg_number_;
2024
2025  DISALLOW_COPY_AND_ASSIGN(HLocal);
2026};
2027
2028// Load a given local. The local is an input of this instruction.
2029class HLoadLocal : public HExpression<1> {
2030 public:
2031  HLoadLocal(HLocal* local, Primitive::Type type)
2032      : HExpression(type, SideEffects::None()) {
2033    SetRawInputAt(0, local);
2034  }
2035
2036  HLocal* GetLocal() const { return reinterpret_cast<HLocal*>(InputAt(0)); }
2037
2038  DECLARE_INSTRUCTION(LoadLocal);
2039
2040 private:
2041  DISALLOW_COPY_AND_ASSIGN(HLoadLocal);
2042};
2043
2044// Store a value in a given local. This instruction has two inputs: the value
2045// and the local.
2046class HStoreLocal : public HTemplateInstruction<2> {
2047 public:
2048  HStoreLocal(HLocal* local, HInstruction* value) : HTemplateInstruction(SideEffects::None()) {
2049    SetRawInputAt(0, local);
2050    SetRawInputAt(1, value);
2051  }
2052
2053  HLocal* GetLocal() const { return reinterpret_cast<HLocal*>(InputAt(0)); }
2054
2055  DECLARE_INSTRUCTION(StoreLocal);
2056
2057 private:
2058  DISALLOW_COPY_AND_ASSIGN(HStoreLocal);
2059};
2060
2061class HConstant : public HExpression<0> {
2062 public:
2063  explicit HConstant(Primitive::Type type) : HExpression(type, SideEffects::None()) {}
2064
2065  bool CanBeMoved() const OVERRIDE { return true; }
2066
2067  virtual bool IsMinusOne() const { return false; }
2068  virtual bool IsZero() const { return false; }
2069  virtual bool IsOne() const { return false; }
2070
2071  DECLARE_INSTRUCTION(Constant);
2072
2073 private:
2074  DISALLOW_COPY_AND_ASSIGN(HConstant);
2075};
2076
2077class HFloatConstant : public HConstant {
2078 public:
2079  float GetValue() const { return value_; }
2080
2081  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2082    return bit_cast<uint32_t, float>(other->AsFloatConstant()->value_) ==
2083        bit_cast<uint32_t, float>(value_);
2084  }
2085
2086  size_t ComputeHashCode() const OVERRIDE { return static_cast<size_t>(GetValue()); }
2087
2088  bool IsMinusOne() const OVERRIDE {
2089    return bit_cast<uint32_t, float>(AsFloatConstant()->GetValue()) ==
2090        bit_cast<uint32_t, float>((-1.0f));
2091  }
2092  bool IsZero() const OVERRIDE {
2093    return AsFloatConstant()->GetValue() == 0.0f;
2094  }
2095  bool IsOne() const OVERRIDE {
2096    return bit_cast<uint32_t, float>(AsFloatConstant()->GetValue()) ==
2097        bit_cast<uint32_t, float>(1.0f);
2098  }
2099
2100  DECLARE_INSTRUCTION(FloatConstant);
2101
2102 private:
2103  explicit HFloatConstant(float value) : HConstant(Primitive::kPrimFloat), value_(value) {}
2104  explicit HFloatConstant(int32_t value)
2105      : HConstant(Primitive::kPrimFloat), value_(bit_cast<float, int32_t>(value)) {}
2106
2107  const float value_;
2108
2109  // Only the SsaBuilder and HGraph can create floating-point constants.
2110  friend class SsaBuilder;
2111  friend class HGraph;
2112  DISALLOW_COPY_AND_ASSIGN(HFloatConstant);
2113};
2114
2115class HDoubleConstant : public HConstant {
2116 public:
2117  double GetValue() const { return value_; }
2118
2119  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2120    return bit_cast<uint64_t, double>(other->AsDoubleConstant()->value_) ==
2121        bit_cast<uint64_t, double>(value_);
2122  }
2123
2124  size_t ComputeHashCode() const OVERRIDE { return static_cast<size_t>(GetValue()); }
2125
2126  bool IsMinusOne() const OVERRIDE {
2127    return bit_cast<uint64_t, double>(AsDoubleConstant()->GetValue()) ==
2128        bit_cast<uint64_t, double>((-1.0));
2129  }
2130  bool IsZero() const OVERRIDE {
2131    return AsDoubleConstant()->GetValue() == 0.0;
2132  }
2133  bool IsOne() const OVERRIDE {
2134    return bit_cast<uint64_t, double>(AsDoubleConstant()->GetValue()) ==
2135        bit_cast<uint64_t, double>(1.0);
2136  }
2137
2138  DECLARE_INSTRUCTION(DoubleConstant);
2139
2140 private:
2141  explicit HDoubleConstant(double value) : HConstant(Primitive::kPrimDouble), value_(value) {}
2142  explicit HDoubleConstant(int64_t value)
2143      : HConstant(Primitive::kPrimDouble), value_(bit_cast<double, int64_t>(value)) {}
2144
2145  const double value_;
2146
2147  // Only the SsaBuilder and HGraph can create floating-point constants.
2148  friend class SsaBuilder;
2149  friend class HGraph;
2150  DISALLOW_COPY_AND_ASSIGN(HDoubleConstant);
2151};
2152
2153class HNullConstant : public HConstant {
2154 public:
2155  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
2156    return true;
2157  }
2158
2159  size_t ComputeHashCode() const OVERRIDE { return 0; }
2160
2161  DECLARE_INSTRUCTION(NullConstant);
2162
2163 private:
2164  HNullConstant() : HConstant(Primitive::kPrimNot) {}
2165
2166  friend class HGraph;
2167  DISALLOW_COPY_AND_ASSIGN(HNullConstant);
2168};
2169
2170// Constants of the type int. Those can be from Dex instructions, or
2171// synthesized (for example with the if-eqz instruction).
2172class HIntConstant : public HConstant {
2173 public:
2174  int32_t GetValue() const { return value_; }
2175
2176  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2177    return other->AsIntConstant()->value_ == value_;
2178  }
2179
2180  size_t ComputeHashCode() const OVERRIDE { return GetValue(); }
2181
2182  bool IsMinusOne() const OVERRIDE { return GetValue() == -1; }
2183  bool IsZero() const OVERRIDE { return GetValue() == 0; }
2184  bool IsOne() const OVERRIDE { return GetValue() == 1; }
2185
2186  DECLARE_INSTRUCTION(IntConstant);
2187
2188 private:
2189  explicit HIntConstant(int32_t value) : HConstant(Primitive::kPrimInt), value_(value) {}
2190
2191  const int32_t value_;
2192
2193  friend class HGraph;
2194  ART_FRIEND_TEST(GraphTest, InsertInstructionBefore);
2195  ART_FRIEND_TYPED_TEST(ParallelMoveTest, ConstantLast);
2196  DISALLOW_COPY_AND_ASSIGN(HIntConstant);
2197};
2198
2199class HLongConstant : public HConstant {
2200 public:
2201  int64_t GetValue() const { return value_; }
2202
2203  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2204    return other->AsLongConstant()->value_ == value_;
2205  }
2206
2207  size_t ComputeHashCode() const OVERRIDE { return static_cast<size_t>(GetValue()); }
2208
2209  bool IsMinusOne() const OVERRIDE { return GetValue() == -1; }
2210  bool IsZero() const OVERRIDE { return GetValue() == 0; }
2211  bool IsOne() const OVERRIDE { return GetValue() == 1; }
2212
2213  DECLARE_INSTRUCTION(LongConstant);
2214
2215 private:
2216  explicit HLongConstant(int64_t value) : HConstant(Primitive::kPrimLong), value_(value) {}
2217
2218  const int64_t value_;
2219
2220  friend class HGraph;
2221  DISALLOW_COPY_AND_ASSIGN(HLongConstant);
2222};
2223
2224enum class Intrinsics {
2225#define OPTIMIZING_INTRINSICS(Name, IsStatic) k ## Name,
2226#include "intrinsics_list.h"
2227  kNone,
2228  INTRINSICS_LIST(OPTIMIZING_INTRINSICS)
2229#undef INTRINSICS_LIST
2230#undef OPTIMIZING_INTRINSICS
2231};
2232std::ostream& operator<<(std::ostream& os, const Intrinsics& intrinsic);
2233
2234class HInvoke : public HInstruction {
2235 public:
2236  size_t InputCount() const OVERRIDE { return inputs_.Size(); }
2237
2238  // Runtime needs to walk the stack, so Dex -> Dex calls need to
2239  // know their environment.
2240  bool NeedsEnvironment() const OVERRIDE { return true; }
2241
2242  void SetArgumentAt(size_t index, HInstruction* argument) {
2243    SetRawInputAt(index, argument);
2244  }
2245
2246  // Return the number of arguments.  This number can be lower than
2247  // the number of inputs returned by InputCount(), as some invoke
2248  // instructions (e.g. HInvokeStaticOrDirect) can have non-argument
2249  // inputs at the end of their list of inputs.
2250  uint32_t GetNumberOfArguments() const { return number_of_arguments_; }
2251
2252  Primitive::Type GetType() const OVERRIDE { return return_type_; }
2253
2254  uint32_t GetDexPc() const { return dex_pc_; }
2255
2256  uint32_t GetDexMethodIndex() const { return dex_method_index_; }
2257
2258  Intrinsics GetIntrinsic() const {
2259    return intrinsic_;
2260  }
2261
2262  void SetIntrinsic(Intrinsics intrinsic) {
2263    intrinsic_ = intrinsic;
2264  }
2265
2266  DECLARE_INSTRUCTION(Invoke);
2267
2268 protected:
2269  HInvoke(ArenaAllocator* arena,
2270          uint32_t number_of_arguments,
2271          uint32_t number_of_other_inputs,
2272          Primitive::Type return_type,
2273          uint32_t dex_pc,
2274          uint32_t dex_method_index)
2275    : HInstruction(SideEffects::All()),
2276      number_of_arguments_(number_of_arguments),
2277      inputs_(arena, number_of_arguments),
2278      return_type_(return_type),
2279      dex_pc_(dex_pc),
2280      dex_method_index_(dex_method_index),
2281      intrinsic_(Intrinsics::kNone) {
2282    uint32_t number_of_inputs = number_of_arguments + number_of_other_inputs;
2283    inputs_.SetSize(number_of_inputs);
2284  }
2285
2286  const HUserRecord<HInstruction*> InputRecordAt(size_t i) const OVERRIDE { return inputs_.Get(i); }
2287  void SetRawInputRecordAt(size_t index, const HUserRecord<HInstruction*>& input) OVERRIDE {
2288    inputs_.Put(index, input);
2289  }
2290
2291  uint32_t number_of_arguments_;
2292  GrowableArray<HUserRecord<HInstruction*> > inputs_;
2293  const Primitive::Type return_type_;
2294  const uint32_t dex_pc_;
2295  const uint32_t dex_method_index_;
2296  Intrinsics intrinsic_;
2297
2298 private:
2299  DISALLOW_COPY_AND_ASSIGN(HInvoke);
2300};
2301
2302class HInvokeStaticOrDirect : public HInvoke {
2303 public:
2304  // Requirements of this method call regarding the class
2305  // initialization (clinit) check of its declaring class.
2306  enum class ClinitCheckRequirement {
2307    kNone,      // Class already initialized.
2308    kExplicit,  // Static call having explicit clinit check as last input.
2309    kImplicit,  // Static call implicitly requiring a clinit check.
2310  };
2311
2312  HInvokeStaticOrDirect(ArenaAllocator* arena,
2313                        uint32_t number_of_arguments,
2314                        Primitive::Type return_type,
2315                        uint32_t dex_pc,
2316                        uint32_t dex_method_index,
2317                        bool is_recursive,
2318                        int32_t string_init_offset,
2319                        InvokeType original_invoke_type,
2320                        InvokeType invoke_type,
2321                        ClinitCheckRequirement clinit_check_requirement)
2322      : HInvoke(arena,
2323                number_of_arguments,
2324                clinit_check_requirement == ClinitCheckRequirement::kExplicit ? 1u : 0u,
2325                return_type,
2326                dex_pc,
2327                dex_method_index),
2328        original_invoke_type_(original_invoke_type),
2329        invoke_type_(invoke_type),
2330        is_recursive_(is_recursive),
2331        clinit_check_requirement_(clinit_check_requirement),
2332        string_init_offset_(string_init_offset) {}
2333
2334  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
2335    UNUSED(obj);
2336    // We access the method via the dex cache so we can't do an implicit null check.
2337    // TODO: for intrinsics we can generate implicit null checks.
2338    return false;
2339  }
2340
2341  InvokeType GetOriginalInvokeType() const { return original_invoke_type_; }
2342  InvokeType GetInvokeType() const { return invoke_type_; }
2343  bool IsRecursive() const { return is_recursive_; }
2344  bool NeedsDexCache() const OVERRIDE { return !IsRecursive(); }
2345  bool IsStringInit() const { return string_init_offset_ != 0; }
2346  int32_t GetStringInitOffset() const { return string_init_offset_; }
2347
2348  // Is this instruction a call to a static method?
2349  bool IsStatic() const {
2350    return GetInvokeType() == kStatic;
2351  }
2352
2353  // Remove the art::HLoadClass instruction set as last input by
2354  // art::PrepareForRegisterAllocation::VisitClinitCheck in lieu of
2355  // the initial art::HClinitCheck instruction (only relevant for
2356  // static calls with explicit clinit check).
2357  void RemoveLoadClassAsLastInput() {
2358    DCHECK(IsStaticWithExplicitClinitCheck());
2359    size_t last_input_index = InputCount() - 1;
2360    HInstruction* last_input = InputAt(last_input_index);
2361    DCHECK(last_input != nullptr);
2362    DCHECK(last_input->IsLoadClass()) << last_input->DebugName();
2363    RemoveAsUserOfInput(last_input_index);
2364    inputs_.DeleteAt(last_input_index);
2365    clinit_check_requirement_ = ClinitCheckRequirement::kImplicit;
2366    DCHECK(IsStaticWithImplicitClinitCheck());
2367  }
2368
2369  // Is this a call to a static method whose declaring class has an
2370  // explicit intialization check in the graph?
2371  bool IsStaticWithExplicitClinitCheck() const {
2372    return IsStatic() && (clinit_check_requirement_ == ClinitCheckRequirement::kExplicit);
2373  }
2374
2375  // Is this a call to a static method whose declaring class has an
2376  // implicit intialization check requirement?
2377  bool IsStaticWithImplicitClinitCheck() const {
2378    return IsStatic() && (clinit_check_requirement_ == ClinitCheckRequirement::kImplicit);
2379  }
2380
2381  DECLARE_INSTRUCTION(InvokeStaticOrDirect);
2382
2383 protected:
2384  const HUserRecord<HInstruction*> InputRecordAt(size_t i) const OVERRIDE {
2385    const HUserRecord<HInstruction*> input_record = HInvoke::InputRecordAt(i);
2386    if (kIsDebugBuild && IsStaticWithExplicitClinitCheck() && (i == InputCount() - 1)) {
2387      HInstruction* input = input_record.GetInstruction();
2388      // `input` is the last input of a static invoke marked as having
2389      // an explicit clinit check. It must either be:
2390      // - an art::HClinitCheck instruction, set by art::HGraphBuilder; or
2391      // - an art::HLoadClass instruction, set by art::PrepareForRegisterAllocation.
2392      DCHECK(input != nullptr);
2393      DCHECK(input->IsClinitCheck() || input->IsLoadClass()) << input->DebugName();
2394    }
2395    return input_record;
2396  }
2397
2398 private:
2399  const InvokeType original_invoke_type_;
2400  const InvokeType invoke_type_;
2401  const bool is_recursive_;
2402  ClinitCheckRequirement clinit_check_requirement_;
2403  // Thread entrypoint offset for string init method if this is a string init invoke.
2404  // Note that there are multiple string init methods, each having its own offset.
2405  int32_t string_init_offset_;
2406
2407  DISALLOW_COPY_AND_ASSIGN(HInvokeStaticOrDirect);
2408};
2409
2410class HInvokeVirtual : public HInvoke {
2411 public:
2412  HInvokeVirtual(ArenaAllocator* arena,
2413                 uint32_t number_of_arguments,
2414                 Primitive::Type return_type,
2415                 uint32_t dex_pc,
2416                 uint32_t dex_method_index,
2417                 uint32_t vtable_index)
2418      : HInvoke(arena, number_of_arguments, 0u, return_type, dex_pc, dex_method_index),
2419        vtable_index_(vtable_index) {}
2420
2421  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
2422    // TODO: Add implicit null checks in intrinsics.
2423    return (obj == InputAt(0)) && !GetLocations()->Intrinsified();
2424  }
2425
2426  uint32_t GetVTableIndex() const { return vtable_index_; }
2427
2428  DECLARE_INSTRUCTION(InvokeVirtual);
2429
2430 private:
2431  const uint32_t vtable_index_;
2432
2433  DISALLOW_COPY_AND_ASSIGN(HInvokeVirtual);
2434};
2435
2436class HInvokeInterface : public HInvoke {
2437 public:
2438  HInvokeInterface(ArenaAllocator* arena,
2439                   uint32_t number_of_arguments,
2440                   Primitive::Type return_type,
2441                   uint32_t dex_pc,
2442                   uint32_t dex_method_index,
2443                   uint32_t imt_index)
2444      : HInvoke(arena, number_of_arguments, 0u, return_type, dex_pc, dex_method_index),
2445        imt_index_(imt_index) {}
2446
2447  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
2448    // TODO: Add implicit null checks in intrinsics.
2449    return (obj == InputAt(0)) && !GetLocations()->Intrinsified();
2450  }
2451
2452  uint32_t GetImtIndex() const { return imt_index_; }
2453  uint32_t GetDexMethodIndex() const { return dex_method_index_; }
2454
2455  DECLARE_INSTRUCTION(InvokeInterface);
2456
2457 private:
2458  const uint32_t imt_index_;
2459
2460  DISALLOW_COPY_AND_ASSIGN(HInvokeInterface);
2461};
2462
2463class HNewInstance : public HExpression<0> {
2464 public:
2465  HNewInstance(uint32_t dex_pc, uint16_t type_index, QuickEntrypointEnum entrypoint)
2466      : HExpression(Primitive::kPrimNot, SideEffects::None()),
2467        dex_pc_(dex_pc),
2468        type_index_(type_index),
2469        entrypoint_(entrypoint) {}
2470
2471  uint32_t GetDexPc() const { return dex_pc_; }
2472  uint16_t GetTypeIndex() const { return type_index_; }
2473
2474  // Calls runtime so needs an environment.
2475  bool NeedsEnvironment() const OVERRIDE { return true; }
2476  // It may throw when called on:
2477  //   - interfaces
2478  //   - abstract/innaccessible/unknown classes
2479  // TODO: optimize when possible.
2480  bool CanThrow() const OVERRIDE { return true; }
2481
2482  bool CanBeNull() const OVERRIDE { return false; }
2483
2484  QuickEntrypointEnum GetEntrypoint() const { return entrypoint_; }
2485
2486  DECLARE_INSTRUCTION(NewInstance);
2487
2488 private:
2489  const uint32_t dex_pc_;
2490  const uint16_t type_index_;
2491  const QuickEntrypointEnum entrypoint_;
2492
2493  DISALLOW_COPY_AND_ASSIGN(HNewInstance);
2494};
2495
2496class HNeg : public HUnaryOperation {
2497 public:
2498  explicit HNeg(Primitive::Type result_type, HInstruction* input)
2499      : HUnaryOperation(result_type, input) {}
2500
2501  int32_t Evaluate(int32_t x) const OVERRIDE { return -x; }
2502  int64_t Evaluate(int64_t x) const OVERRIDE { return -x; }
2503
2504  DECLARE_INSTRUCTION(Neg);
2505
2506 private:
2507  DISALLOW_COPY_AND_ASSIGN(HNeg);
2508};
2509
2510class HNewArray : public HExpression<1> {
2511 public:
2512  HNewArray(HInstruction* length,
2513            uint32_t dex_pc,
2514            uint16_t type_index,
2515            QuickEntrypointEnum entrypoint)
2516      : HExpression(Primitive::kPrimNot, SideEffects::None()),
2517        dex_pc_(dex_pc),
2518        type_index_(type_index),
2519        entrypoint_(entrypoint) {
2520    SetRawInputAt(0, length);
2521  }
2522
2523  uint32_t GetDexPc() const { return dex_pc_; }
2524  uint16_t GetTypeIndex() const { return type_index_; }
2525
2526  // Calls runtime so needs an environment.
2527  bool NeedsEnvironment() const OVERRIDE { return true; }
2528
2529  // May throw NegativeArraySizeException, OutOfMemoryError, etc.
2530  bool CanThrow() const OVERRIDE { return true; }
2531
2532  bool CanBeNull() const OVERRIDE { return false; }
2533
2534  QuickEntrypointEnum GetEntrypoint() const { return entrypoint_; }
2535
2536  DECLARE_INSTRUCTION(NewArray);
2537
2538 private:
2539  const uint32_t dex_pc_;
2540  const uint16_t type_index_;
2541  const QuickEntrypointEnum entrypoint_;
2542
2543  DISALLOW_COPY_AND_ASSIGN(HNewArray);
2544};
2545
2546class HAdd : public HBinaryOperation {
2547 public:
2548  HAdd(Primitive::Type result_type, HInstruction* left, HInstruction* right)
2549      : HBinaryOperation(result_type, left, right) {}
2550
2551  bool IsCommutative() const OVERRIDE { return true; }
2552
2553  int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE {
2554    return x + y;
2555  }
2556  int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE {
2557    return x + y;
2558  }
2559
2560  DECLARE_INSTRUCTION(Add);
2561
2562 private:
2563  DISALLOW_COPY_AND_ASSIGN(HAdd);
2564};
2565
2566class HSub : public HBinaryOperation {
2567 public:
2568  HSub(Primitive::Type result_type, HInstruction* left, HInstruction* right)
2569      : HBinaryOperation(result_type, left, right) {}
2570
2571  int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE {
2572    return x - y;
2573  }
2574  int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE {
2575    return x - y;
2576  }
2577
2578  DECLARE_INSTRUCTION(Sub);
2579
2580 private:
2581  DISALLOW_COPY_AND_ASSIGN(HSub);
2582};
2583
2584class HMul : public HBinaryOperation {
2585 public:
2586  HMul(Primitive::Type result_type, HInstruction* left, HInstruction* right)
2587      : HBinaryOperation(result_type, left, right) {}
2588
2589  bool IsCommutative() const OVERRIDE { return true; }
2590
2591  int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE { return x * y; }
2592  int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE { return x * y; }
2593
2594  DECLARE_INSTRUCTION(Mul);
2595
2596 private:
2597  DISALLOW_COPY_AND_ASSIGN(HMul);
2598};
2599
2600class HDiv : public HBinaryOperation {
2601 public:
2602  HDiv(Primitive::Type result_type, HInstruction* left, HInstruction* right, uint32_t dex_pc)
2603      : HBinaryOperation(result_type, left, right), dex_pc_(dex_pc) {}
2604
2605  int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE {
2606    // Our graph structure ensures we never have 0 for `y` during constant folding.
2607    DCHECK_NE(y, 0);
2608    // Special case -1 to avoid getting a SIGFPE on x86(_64).
2609    return (y == -1) ? -x : x / y;
2610  }
2611
2612  int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE {
2613    DCHECK_NE(y, 0);
2614    // Special case -1 to avoid getting a SIGFPE on x86(_64).
2615    return (y == -1) ? -x : x / y;
2616  }
2617
2618  uint32_t GetDexPc() const { return dex_pc_; }
2619
2620  DECLARE_INSTRUCTION(Div);
2621
2622 private:
2623  const uint32_t dex_pc_;
2624
2625  DISALLOW_COPY_AND_ASSIGN(HDiv);
2626};
2627
2628class HRem : public HBinaryOperation {
2629 public:
2630  HRem(Primitive::Type result_type, HInstruction* left, HInstruction* right, uint32_t dex_pc)
2631      : HBinaryOperation(result_type, left, right), dex_pc_(dex_pc) {}
2632
2633  int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE {
2634    DCHECK_NE(y, 0);
2635    // Special case -1 to avoid getting a SIGFPE on x86(_64).
2636    return (y == -1) ? 0 : x % y;
2637  }
2638
2639  int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE {
2640    DCHECK_NE(y, 0);
2641    // Special case -1 to avoid getting a SIGFPE on x86(_64).
2642    return (y == -1) ? 0 : x % y;
2643  }
2644
2645  uint32_t GetDexPc() const { return dex_pc_; }
2646
2647  DECLARE_INSTRUCTION(Rem);
2648
2649 private:
2650  const uint32_t dex_pc_;
2651
2652  DISALLOW_COPY_AND_ASSIGN(HRem);
2653};
2654
2655class HDivZeroCheck : public HExpression<1> {
2656 public:
2657  HDivZeroCheck(HInstruction* value, uint32_t dex_pc)
2658      : HExpression(value->GetType(), SideEffects::None()), dex_pc_(dex_pc) {
2659    SetRawInputAt(0, value);
2660  }
2661
2662  bool CanBeMoved() const OVERRIDE { return true; }
2663
2664  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2665    UNUSED(other);
2666    return true;
2667  }
2668
2669  bool NeedsEnvironment() const OVERRIDE { return true; }
2670  bool CanThrow() const OVERRIDE { return true; }
2671
2672  uint32_t GetDexPc() const { return dex_pc_; }
2673
2674  DECLARE_INSTRUCTION(DivZeroCheck);
2675
2676 private:
2677  const uint32_t dex_pc_;
2678
2679  DISALLOW_COPY_AND_ASSIGN(HDivZeroCheck);
2680};
2681
2682class HShl : public HBinaryOperation {
2683 public:
2684  HShl(Primitive::Type result_type, HInstruction* left, HInstruction* right)
2685      : HBinaryOperation(result_type, left, right) {}
2686
2687  int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE { return x << (y & kMaxIntShiftValue); }
2688  int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE { return x << (y & kMaxLongShiftValue); }
2689
2690  DECLARE_INSTRUCTION(Shl);
2691
2692 private:
2693  DISALLOW_COPY_AND_ASSIGN(HShl);
2694};
2695
2696class HShr : public HBinaryOperation {
2697 public:
2698  HShr(Primitive::Type result_type, HInstruction* left, HInstruction* right)
2699      : HBinaryOperation(result_type, left, right) {}
2700
2701  int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE { return x >> (y & kMaxIntShiftValue); }
2702  int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE { return x >> (y & kMaxLongShiftValue); }
2703
2704  DECLARE_INSTRUCTION(Shr);
2705
2706 private:
2707  DISALLOW_COPY_AND_ASSIGN(HShr);
2708};
2709
2710class HUShr : public HBinaryOperation {
2711 public:
2712  HUShr(Primitive::Type result_type, HInstruction* left, HInstruction* right)
2713      : HBinaryOperation(result_type, left, right) {}
2714
2715  int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE {
2716    uint32_t ux = static_cast<uint32_t>(x);
2717    uint32_t uy = static_cast<uint32_t>(y) & kMaxIntShiftValue;
2718    return static_cast<int32_t>(ux >> uy);
2719  }
2720
2721  int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE {
2722    uint64_t ux = static_cast<uint64_t>(x);
2723    uint64_t uy = static_cast<uint64_t>(y) & kMaxLongShiftValue;
2724    return static_cast<int64_t>(ux >> uy);
2725  }
2726
2727  DECLARE_INSTRUCTION(UShr);
2728
2729 private:
2730  DISALLOW_COPY_AND_ASSIGN(HUShr);
2731};
2732
2733class HAnd : public HBinaryOperation {
2734 public:
2735  HAnd(Primitive::Type result_type, HInstruction* left, HInstruction* right)
2736      : HBinaryOperation(result_type, left, right) {}
2737
2738  bool IsCommutative() const OVERRIDE { return true; }
2739
2740  int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE { return x & y; }
2741  int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE { return x & y; }
2742
2743  DECLARE_INSTRUCTION(And);
2744
2745 private:
2746  DISALLOW_COPY_AND_ASSIGN(HAnd);
2747};
2748
2749class HOr : public HBinaryOperation {
2750 public:
2751  HOr(Primitive::Type result_type, HInstruction* left, HInstruction* right)
2752      : HBinaryOperation(result_type, left, right) {}
2753
2754  bool IsCommutative() const OVERRIDE { return true; }
2755
2756  int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE { return x | y; }
2757  int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE { return x | y; }
2758
2759  DECLARE_INSTRUCTION(Or);
2760
2761 private:
2762  DISALLOW_COPY_AND_ASSIGN(HOr);
2763};
2764
2765class HXor : public HBinaryOperation {
2766 public:
2767  HXor(Primitive::Type result_type, HInstruction* left, HInstruction* right)
2768      : HBinaryOperation(result_type, left, right) {}
2769
2770  bool IsCommutative() const OVERRIDE { return true; }
2771
2772  int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE { return x ^ y; }
2773  int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE { return x ^ y; }
2774
2775  DECLARE_INSTRUCTION(Xor);
2776
2777 private:
2778  DISALLOW_COPY_AND_ASSIGN(HXor);
2779};
2780
2781// The value of a parameter in this method. Its location depends on
2782// the calling convention.
2783class HParameterValue : public HExpression<0> {
2784 public:
2785  HParameterValue(uint8_t index, Primitive::Type parameter_type, bool is_this = false)
2786      : HExpression(parameter_type, SideEffects::None()), index_(index), is_this_(is_this) {}
2787
2788  uint8_t GetIndex() const { return index_; }
2789
2790  bool CanBeNull() const OVERRIDE { return !is_this_; }
2791
2792  DECLARE_INSTRUCTION(ParameterValue);
2793
2794 private:
2795  // The index of this parameter in the parameters list. Must be less
2796  // than HGraph::number_of_in_vregs_.
2797  const uint8_t index_;
2798
2799  // Whether or not the parameter value corresponds to 'this' argument.
2800  const bool is_this_;
2801
2802  DISALLOW_COPY_AND_ASSIGN(HParameterValue);
2803};
2804
2805class HNot : public HUnaryOperation {
2806 public:
2807  explicit HNot(Primitive::Type result_type, HInstruction* input)
2808      : HUnaryOperation(result_type, input) {}
2809
2810  bool CanBeMoved() const OVERRIDE { return true; }
2811  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2812    UNUSED(other);
2813    return true;
2814  }
2815
2816  int32_t Evaluate(int32_t x) const OVERRIDE { return ~x; }
2817  int64_t Evaluate(int64_t x) const OVERRIDE { return ~x; }
2818
2819  DECLARE_INSTRUCTION(Not);
2820
2821 private:
2822  DISALLOW_COPY_AND_ASSIGN(HNot);
2823};
2824
2825class HBooleanNot : public HUnaryOperation {
2826 public:
2827  explicit HBooleanNot(HInstruction* input)
2828      : HUnaryOperation(Primitive::Type::kPrimBoolean, input) {}
2829
2830  bool CanBeMoved() const OVERRIDE { return true; }
2831  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2832    UNUSED(other);
2833    return true;
2834  }
2835
2836  int32_t Evaluate(int32_t x) const OVERRIDE {
2837    DCHECK(IsUint<1>(x));
2838    return !x;
2839  }
2840
2841  int64_t Evaluate(int64_t x ATTRIBUTE_UNUSED) const OVERRIDE {
2842    LOG(FATAL) << DebugName() << " cannot be used with 64-bit values";
2843    UNREACHABLE();
2844  }
2845
2846  DECLARE_INSTRUCTION(BooleanNot);
2847
2848 private:
2849  DISALLOW_COPY_AND_ASSIGN(HBooleanNot);
2850};
2851
2852class HTypeConversion : public HExpression<1> {
2853 public:
2854  // Instantiate a type conversion of `input` to `result_type`.
2855  HTypeConversion(Primitive::Type result_type, HInstruction* input, uint32_t dex_pc)
2856      : HExpression(result_type, SideEffects::None()), dex_pc_(dex_pc) {
2857    SetRawInputAt(0, input);
2858    DCHECK_NE(input->GetType(), result_type);
2859  }
2860
2861  HInstruction* GetInput() const { return InputAt(0); }
2862  Primitive::Type GetInputType() const { return GetInput()->GetType(); }
2863  Primitive::Type GetResultType() const { return GetType(); }
2864
2865  // Required by the x86 and ARM code generators when producing calls
2866  // to the runtime.
2867  uint32_t GetDexPc() const { return dex_pc_; }
2868
2869  bool CanBeMoved() const OVERRIDE { return true; }
2870  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE { return true; }
2871
2872  DECLARE_INSTRUCTION(TypeConversion);
2873
2874 private:
2875  const uint32_t dex_pc_;
2876
2877  DISALLOW_COPY_AND_ASSIGN(HTypeConversion);
2878};
2879
2880static constexpr uint32_t kNoRegNumber = -1;
2881
2882class HPhi : public HInstruction {
2883 public:
2884  HPhi(ArenaAllocator* arena, uint32_t reg_number, size_t number_of_inputs, Primitive::Type type)
2885      : HInstruction(SideEffects::None()),
2886        inputs_(arena, number_of_inputs),
2887        reg_number_(reg_number),
2888        type_(type),
2889        is_live_(false),
2890        can_be_null_(true) {
2891    inputs_.SetSize(number_of_inputs);
2892  }
2893
2894  // Returns a type equivalent to the given `type`, but that a `HPhi` can hold.
2895  static Primitive::Type ToPhiType(Primitive::Type type) {
2896    switch (type) {
2897      case Primitive::kPrimBoolean:
2898      case Primitive::kPrimByte:
2899      case Primitive::kPrimShort:
2900      case Primitive::kPrimChar:
2901        return Primitive::kPrimInt;
2902      default:
2903        return type;
2904    }
2905  }
2906
2907  size_t InputCount() const OVERRIDE { return inputs_.Size(); }
2908
2909  void AddInput(HInstruction* input);
2910  void RemoveInputAt(size_t index);
2911
2912  Primitive::Type GetType() const OVERRIDE { return type_; }
2913  void SetType(Primitive::Type type) { type_ = type; }
2914
2915  bool CanBeNull() const OVERRIDE { return can_be_null_; }
2916  void SetCanBeNull(bool can_be_null) { can_be_null_ = can_be_null; }
2917
2918  uint32_t GetRegNumber() const { return reg_number_; }
2919
2920  void SetDead() { is_live_ = false; }
2921  void SetLive() { is_live_ = true; }
2922  bool IsDead() const { return !is_live_; }
2923  bool IsLive() const { return is_live_; }
2924
2925  // Returns the next equivalent phi (starting from the current one) or null if there is none.
2926  // An equivalent phi is a phi having the same dex register and type.
2927  // It assumes that phis with the same dex register are adjacent.
2928  HPhi* GetNextEquivalentPhiWithSameType() {
2929    HInstruction* next = GetNext();
2930    while (next != nullptr && next->AsPhi()->GetRegNumber() == reg_number_) {
2931      if (next->GetType() == GetType()) {
2932        return next->AsPhi();
2933      }
2934      next = next->GetNext();
2935    }
2936    return nullptr;
2937  }
2938
2939  DECLARE_INSTRUCTION(Phi);
2940
2941 protected:
2942  const HUserRecord<HInstruction*> InputRecordAt(size_t i) const OVERRIDE { return inputs_.Get(i); }
2943
2944  void SetRawInputRecordAt(size_t index, const HUserRecord<HInstruction*>& input) OVERRIDE {
2945    inputs_.Put(index, input);
2946  }
2947
2948 private:
2949  GrowableArray<HUserRecord<HInstruction*> > inputs_;
2950  const uint32_t reg_number_;
2951  Primitive::Type type_;
2952  bool is_live_;
2953  bool can_be_null_;
2954
2955  DISALLOW_COPY_AND_ASSIGN(HPhi);
2956};
2957
2958class HNullCheck : public HExpression<1> {
2959 public:
2960  HNullCheck(HInstruction* value, uint32_t dex_pc)
2961      : HExpression(value->GetType(), SideEffects::None()), dex_pc_(dex_pc) {
2962    SetRawInputAt(0, value);
2963  }
2964
2965  bool CanBeMoved() const OVERRIDE { return true; }
2966  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2967    UNUSED(other);
2968    return true;
2969  }
2970
2971  bool NeedsEnvironment() const OVERRIDE { return true; }
2972
2973  bool CanThrow() const OVERRIDE { return true; }
2974
2975  bool CanBeNull() const OVERRIDE { return false; }
2976
2977  uint32_t GetDexPc() const { return dex_pc_; }
2978
2979  DECLARE_INSTRUCTION(NullCheck);
2980
2981 private:
2982  const uint32_t dex_pc_;
2983
2984  DISALLOW_COPY_AND_ASSIGN(HNullCheck);
2985};
2986
2987class FieldInfo : public ValueObject {
2988 public:
2989  FieldInfo(MemberOffset field_offset, Primitive::Type field_type, bool is_volatile)
2990      : field_offset_(field_offset), field_type_(field_type), is_volatile_(is_volatile) {}
2991
2992  MemberOffset GetFieldOffset() const { return field_offset_; }
2993  Primitive::Type GetFieldType() const { return field_type_; }
2994  bool IsVolatile() const { return is_volatile_; }
2995
2996 private:
2997  const MemberOffset field_offset_;
2998  const Primitive::Type field_type_;
2999  const bool is_volatile_;
3000};
3001
3002class HInstanceFieldGet : public HExpression<1> {
3003 public:
3004  HInstanceFieldGet(HInstruction* value,
3005                    Primitive::Type field_type,
3006                    MemberOffset field_offset,
3007                    bool is_volatile)
3008      : HExpression(field_type, SideEffects::DependsOnSomething()),
3009        field_info_(field_offset, field_type, is_volatile) {
3010    SetRawInputAt(0, value);
3011  }
3012
3013  bool CanBeMoved() const OVERRIDE { return !IsVolatile(); }
3014
3015  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
3016    HInstanceFieldGet* other_get = other->AsInstanceFieldGet();
3017    return GetFieldOffset().SizeValue() == other_get->GetFieldOffset().SizeValue();
3018  }
3019
3020  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
3021    return (obj == InputAt(0)) && GetFieldOffset().Uint32Value() < kPageSize;
3022  }
3023
3024  size_t ComputeHashCode() const OVERRIDE {
3025    return (HInstruction::ComputeHashCode() << 7) | GetFieldOffset().SizeValue();
3026  }
3027
3028  const FieldInfo& GetFieldInfo() const { return field_info_; }
3029  MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
3030  Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); }
3031  bool IsVolatile() const { return field_info_.IsVolatile(); }
3032
3033  DECLARE_INSTRUCTION(InstanceFieldGet);
3034
3035 private:
3036  const FieldInfo field_info_;
3037
3038  DISALLOW_COPY_AND_ASSIGN(HInstanceFieldGet);
3039};
3040
3041class HInstanceFieldSet : public HTemplateInstruction<2> {
3042 public:
3043  HInstanceFieldSet(HInstruction* object,
3044                    HInstruction* value,
3045                    Primitive::Type field_type,
3046                    MemberOffset field_offset,
3047                    bool is_volatile)
3048      : HTemplateInstruction(SideEffects::ChangesSomething()),
3049        field_info_(field_offset, field_type, is_volatile) {
3050    SetRawInputAt(0, object);
3051    SetRawInputAt(1, value);
3052  }
3053
3054  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
3055    return (obj == InputAt(0)) && GetFieldOffset().Uint32Value() < kPageSize;
3056  }
3057
3058  const FieldInfo& GetFieldInfo() const { return field_info_; }
3059  MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
3060  Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); }
3061  bool IsVolatile() const { return field_info_.IsVolatile(); }
3062  HInstruction* GetValue() const { return InputAt(1); }
3063
3064  DECLARE_INSTRUCTION(InstanceFieldSet);
3065
3066 private:
3067  const FieldInfo field_info_;
3068
3069  DISALLOW_COPY_AND_ASSIGN(HInstanceFieldSet);
3070};
3071
3072class HArrayGet : public HExpression<2> {
3073 public:
3074  HArrayGet(HInstruction* array, HInstruction* index, Primitive::Type type)
3075      : HExpression(type, SideEffects::DependsOnSomething()) {
3076    SetRawInputAt(0, array);
3077    SetRawInputAt(1, index);
3078  }
3079
3080  bool CanBeMoved() const OVERRIDE { return true; }
3081  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
3082    UNUSED(other);
3083    return true;
3084  }
3085  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
3086    UNUSED(obj);
3087    // TODO: We can be smarter here.
3088    // Currently, the array access is always preceded by an ArrayLength or a NullCheck
3089    // which generates the implicit null check. There are cases when these can be removed
3090    // to produce better code. If we ever add optimizations to do so we should allow an
3091    // implicit check here (as long as the address falls in the first page).
3092    return false;
3093  }
3094
3095  void SetType(Primitive::Type type) { type_ = type; }
3096
3097  HInstruction* GetArray() const { return InputAt(0); }
3098  HInstruction* GetIndex() const { return InputAt(1); }
3099
3100  DECLARE_INSTRUCTION(ArrayGet);
3101
3102 private:
3103  DISALLOW_COPY_AND_ASSIGN(HArrayGet);
3104};
3105
3106class HArraySet : public HTemplateInstruction<3> {
3107 public:
3108  HArraySet(HInstruction* array,
3109            HInstruction* index,
3110            HInstruction* value,
3111            Primitive::Type expected_component_type,
3112            uint32_t dex_pc)
3113      : HTemplateInstruction(SideEffects::ChangesSomething()),
3114        dex_pc_(dex_pc),
3115        expected_component_type_(expected_component_type),
3116        needs_type_check_(value->GetType() == Primitive::kPrimNot) {
3117    SetRawInputAt(0, array);
3118    SetRawInputAt(1, index);
3119    SetRawInputAt(2, value);
3120  }
3121
3122  bool NeedsEnvironment() const OVERRIDE {
3123    // We currently always call a runtime method to catch array store
3124    // exceptions.
3125    return needs_type_check_;
3126  }
3127
3128  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
3129    UNUSED(obj);
3130    // TODO: Same as for ArrayGet.
3131    return false;
3132  }
3133
3134  void ClearNeedsTypeCheck() {
3135    needs_type_check_ = false;
3136  }
3137
3138  bool NeedsTypeCheck() const { return needs_type_check_; }
3139
3140  uint32_t GetDexPc() const { return dex_pc_; }
3141
3142  HInstruction* GetArray() const { return InputAt(0); }
3143  HInstruction* GetIndex() const { return InputAt(1); }
3144  HInstruction* GetValue() const { return InputAt(2); }
3145
3146  Primitive::Type GetComponentType() const {
3147    // The Dex format does not type floating point index operations. Since the
3148    // `expected_component_type_` is set during building and can therefore not
3149    // be correct, we also check what is the value type. If it is a floating
3150    // point type, we must use that type.
3151    Primitive::Type value_type = GetValue()->GetType();
3152    return ((value_type == Primitive::kPrimFloat) || (value_type == Primitive::kPrimDouble))
3153        ? value_type
3154        : expected_component_type_;
3155  }
3156
3157  DECLARE_INSTRUCTION(ArraySet);
3158
3159 private:
3160  const uint32_t dex_pc_;
3161  const Primitive::Type expected_component_type_;
3162  bool needs_type_check_;
3163
3164  DISALLOW_COPY_AND_ASSIGN(HArraySet);
3165};
3166
3167class HArrayLength : public HExpression<1> {
3168 public:
3169  explicit HArrayLength(HInstruction* array)
3170      : HExpression(Primitive::kPrimInt, SideEffects::None()) {
3171    // Note that arrays do not change length, so the instruction does not
3172    // depend on any write.
3173    SetRawInputAt(0, array);
3174  }
3175
3176  bool CanBeMoved() const OVERRIDE { return true; }
3177  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
3178    UNUSED(other);
3179    return true;
3180  }
3181  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
3182    return obj == InputAt(0);
3183  }
3184
3185  DECLARE_INSTRUCTION(ArrayLength);
3186
3187 private:
3188  DISALLOW_COPY_AND_ASSIGN(HArrayLength);
3189};
3190
3191class HBoundsCheck : public HExpression<2> {
3192 public:
3193  HBoundsCheck(HInstruction* index, HInstruction* length, uint32_t dex_pc)
3194      : HExpression(index->GetType(), SideEffects::None()), dex_pc_(dex_pc) {
3195    DCHECK(index->GetType() == Primitive::kPrimInt);
3196    SetRawInputAt(0, index);
3197    SetRawInputAt(1, length);
3198  }
3199
3200  bool CanBeMoved() const OVERRIDE { return true; }
3201  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
3202    UNUSED(other);
3203    return true;
3204  }
3205
3206  bool NeedsEnvironment() const OVERRIDE { return true; }
3207
3208  bool CanThrow() const OVERRIDE { return true; }
3209
3210  uint32_t GetDexPc() const { return dex_pc_; }
3211
3212  DECLARE_INSTRUCTION(BoundsCheck);
3213
3214 private:
3215  const uint32_t dex_pc_;
3216
3217  DISALLOW_COPY_AND_ASSIGN(HBoundsCheck);
3218};
3219
3220/**
3221 * Some DEX instructions are folded into multiple HInstructions that need
3222 * to stay live until the last HInstruction. This class
3223 * is used as a marker for the baseline compiler to ensure its preceding
3224 * HInstruction stays live. `index` represents the stack location index of the
3225 * instruction (the actual offset is computed as index * vreg_size).
3226 */
3227class HTemporary : public HTemplateInstruction<0> {
3228 public:
3229  explicit HTemporary(size_t index) : HTemplateInstruction(SideEffects::None()), index_(index) {}
3230
3231  size_t GetIndex() const { return index_; }
3232
3233  Primitive::Type GetType() const OVERRIDE {
3234    // The previous instruction is the one that will be stored in the temporary location.
3235    DCHECK(GetPrevious() != nullptr);
3236    return GetPrevious()->GetType();
3237  }
3238
3239  DECLARE_INSTRUCTION(Temporary);
3240
3241 private:
3242  const size_t index_;
3243
3244  DISALLOW_COPY_AND_ASSIGN(HTemporary);
3245};
3246
3247class HSuspendCheck : public HTemplateInstruction<0> {
3248 public:
3249  explicit HSuspendCheck(uint32_t dex_pc)
3250      : HTemplateInstruction(SideEffects::None()), dex_pc_(dex_pc) {}
3251
3252  bool NeedsEnvironment() const OVERRIDE {
3253    return true;
3254  }
3255
3256  uint32_t GetDexPc() const { return dex_pc_; }
3257
3258  DECLARE_INSTRUCTION(SuspendCheck);
3259
3260 private:
3261  const uint32_t dex_pc_;
3262
3263  DISALLOW_COPY_AND_ASSIGN(HSuspendCheck);
3264};
3265
3266/**
3267 * Instruction to load a Class object.
3268 */
3269class HLoadClass : public HExpression<0> {
3270 public:
3271  HLoadClass(uint16_t type_index,
3272             bool is_referrers_class,
3273             uint32_t dex_pc)
3274      : HExpression(Primitive::kPrimNot, SideEffects::None()),
3275        type_index_(type_index),
3276        is_referrers_class_(is_referrers_class),
3277        dex_pc_(dex_pc),
3278        generate_clinit_check_(false),
3279        loaded_class_rti_(ReferenceTypeInfo::CreateTop(/* is_exact */ false)) {}
3280
3281  bool CanBeMoved() const OVERRIDE { return true; }
3282
3283  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
3284    return other->AsLoadClass()->type_index_ == type_index_;
3285  }
3286
3287  size_t ComputeHashCode() const OVERRIDE { return type_index_; }
3288
3289  uint32_t GetDexPc() const { return dex_pc_; }
3290  uint16_t GetTypeIndex() const { return type_index_; }
3291  bool IsReferrersClass() const { return is_referrers_class_; }
3292
3293  bool NeedsEnvironment() const OVERRIDE {
3294    // Will call runtime and load the class if the class is not loaded yet.
3295    // TODO: finer grain decision.
3296    return !is_referrers_class_;
3297  }
3298
3299  bool MustGenerateClinitCheck() const {
3300    return generate_clinit_check_;
3301  }
3302
3303  void SetMustGenerateClinitCheck() {
3304    generate_clinit_check_ = true;
3305  }
3306
3307  bool CanCallRuntime() const {
3308    return MustGenerateClinitCheck() || !is_referrers_class_;
3309  }
3310
3311  bool CanThrow() const OVERRIDE {
3312    // May call runtime and and therefore can throw.
3313    // TODO: finer grain decision.
3314    return !is_referrers_class_;
3315  }
3316
3317  ReferenceTypeInfo GetLoadedClassRTI() {
3318    return loaded_class_rti_;
3319  }
3320
3321  void SetLoadedClassRTI(ReferenceTypeInfo rti) {
3322    // Make sure we only set exact types (the loaded class should never be merged).
3323    DCHECK(rti.IsExact());
3324    loaded_class_rti_ = rti;
3325  }
3326
3327  bool IsResolved() {
3328    return loaded_class_rti_.IsExact();
3329  }
3330
3331  bool NeedsDexCache() const OVERRIDE { return !is_referrers_class_; }
3332
3333  DECLARE_INSTRUCTION(LoadClass);
3334
3335 private:
3336  const uint16_t type_index_;
3337  const bool is_referrers_class_;
3338  const uint32_t dex_pc_;
3339  // Whether this instruction must generate the initialization check.
3340  // Used for code generation.
3341  bool generate_clinit_check_;
3342
3343  ReferenceTypeInfo loaded_class_rti_;
3344
3345  DISALLOW_COPY_AND_ASSIGN(HLoadClass);
3346};
3347
3348class HLoadString : public HExpression<0> {
3349 public:
3350  HLoadString(uint32_t string_index, uint32_t dex_pc)
3351      : HExpression(Primitive::kPrimNot, SideEffects::None()),
3352        string_index_(string_index),
3353        dex_pc_(dex_pc) {}
3354
3355  bool CanBeMoved() const OVERRIDE { return true; }
3356
3357  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
3358    return other->AsLoadString()->string_index_ == string_index_;
3359  }
3360
3361  size_t ComputeHashCode() const OVERRIDE { return string_index_; }
3362
3363  uint32_t GetDexPc() const { return dex_pc_; }
3364  uint32_t GetStringIndex() const { return string_index_; }
3365
3366  // TODO: Can we deopt or debug when we resolve a string?
3367  bool NeedsEnvironment() const OVERRIDE { return false; }
3368  bool NeedsDexCache() const OVERRIDE { return true; }
3369
3370  DECLARE_INSTRUCTION(LoadString);
3371
3372 private:
3373  const uint32_t string_index_;
3374  const uint32_t dex_pc_;
3375
3376  DISALLOW_COPY_AND_ASSIGN(HLoadString);
3377};
3378
3379/**
3380 * Performs an initialization check on its Class object input.
3381 */
3382class HClinitCheck : public HExpression<1> {
3383 public:
3384  explicit HClinitCheck(HLoadClass* constant, uint32_t dex_pc)
3385      : HExpression(Primitive::kPrimNot, SideEffects::ChangesSomething()),
3386        dex_pc_(dex_pc) {
3387    SetRawInputAt(0, constant);
3388  }
3389
3390  bool CanBeMoved() const OVERRIDE { return true; }
3391  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
3392    UNUSED(other);
3393    return true;
3394  }
3395
3396  bool NeedsEnvironment() const OVERRIDE {
3397    // May call runtime to initialize the class.
3398    return true;
3399  }
3400
3401  uint32_t GetDexPc() const { return dex_pc_; }
3402
3403  HLoadClass* GetLoadClass() const { return InputAt(0)->AsLoadClass(); }
3404
3405  DECLARE_INSTRUCTION(ClinitCheck);
3406
3407 private:
3408  const uint32_t dex_pc_;
3409
3410  DISALLOW_COPY_AND_ASSIGN(HClinitCheck);
3411};
3412
3413class HStaticFieldGet : public HExpression<1> {
3414 public:
3415  HStaticFieldGet(HInstruction* cls,
3416                  Primitive::Type field_type,
3417                  MemberOffset field_offset,
3418                  bool is_volatile)
3419      : HExpression(field_type, SideEffects::DependsOnSomething()),
3420        field_info_(field_offset, field_type, is_volatile) {
3421    SetRawInputAt(0, cls);
3422  }
3423
3424
3425  bool CanBeMoved() const OVERRIDE { return !IsVolatile(); }
3426
3427  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
3428    HStaticFieldGet* other_get = other->AsStaticFieldGet();
3429    return GetFieldOffset().SizeValue() == other_get->GetFieldOffset().SizeValue();
3430  }
3431
3432  size_t ComputeHashCode() const OVERRIDE {
3433    return (HInstruction::ComputeHashCode() << 7) | GetFieldOffset().SizeValue();
3434  }
3435
3436  const FieldInfo& GetFieldInfo() const { return field_info_; }
3437  MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
3438  Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); }
3439  bool IsVolatile() const { return field_info_.IsVolatile(); }
3440
3441  DECLARE_INSTRUCTION(StaticFieldGet);
3442
3443 private:
3444  const FieldInfo field_info_;
3445
3446  DISALLOW_COPY_AND_ASSIGN(HStaticFieldGet);
3447};
3448
3449class HStaticFieldSet : public HTemplateInstruction<2> {
3450 public:
3451  HStaticFieldSet(HInstruction* cls,
3452                  HInstruction* value,
3453                  Primitive::Type field_type,
3454                  MemberOffset field_offset,
3455                  bool is_volatile)
3456      : HTemplateInstruction(SideEffects::ChangesSomething()),
3457        field_info_(field_offset, field_type, is_volatile) {
3458    SetRawInputAt(0, cls);
3459    SetRawInputAt(1, value);
3460  }
3461
3462  const FieldInfo& GetFieldInfo() const { return field_info_; }
3463  MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
3464  Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); }
3465  bool IsVolatile() const { return field_info_.IsVolatile(); }
3466
3467  HInstruction* GetValue() const { return InputAt(1); }
3468
3469  DECLARE_INSTRUCTION(StaticFieldSet);
3470
3471 private:
3472  const FieldInfo field_info_;
3473
3474  DISALLOW_COPY_AND_ASSIGN(HStaticFieldSet);
3475};
3476
3477// Implement the move-exception DEX instruction.
3478class HLoadException : public HExpression<0> {
3479 public:
3480  HLoadException() : HExpression(Primitive::kPrimNot, SideEffects::None()) {}
3481
3482  DECLARE_INSTRUCTION(LoadException);
3483
3484 private:
3485  DISALLOW_COPY_AND_ASSIGN(HLoadException);
3486};
3487
3488class HThrow : public HTemplateInstruction<1> {
3489 public:
3490  HThrow(HInstruction* exception, uint32_t dex_pc)
3491      : HTemplateInstruction(SideEffects::None()), dex_pc_(dex_pc) {
3492    SetRawInputAt(0, exception);
3493  }
3494
3495  bool IsControlFlow() const OVERRIDE { return true; }
3496
3497  bool NeedsEnvironment() const OVERRIDE { return true; }
3498
3499  bool CanThrow() const OVERRIDE { return true; }
3500
3501  uint32_t GetDexPc() const { return dex_pc_; }
3502
3503  DECLARE_INSTRUCTION(Throw);
3504
3505 private:
3506  const uint32_t dex_pc_;
3507
3508  DISALLOW_COPY_AND_ASSIGN(HThrow);
3509};
3510
3511class HInstanceOf : public HExpression<2> {
3512 public:
3513  HInstanceOf(HInstruction* object,
3514              HLoadClass* constant,
3515              bool class_is_final,
3516              uint32_t dex_pc)
3517      : HExpression(Primitive::kPrimBoolean, SideEffects::None()),
3518        class_is_final_(class_is_final),
3519        must_do_null_check_(true),
3520        dex_pc_(dex_pc) {
3521    SetRawInputAt(0, object);
3522    SetRawInputAt(1, constant);
3523  }
3524
3525  bool CanBeMoved() const OVERRIDE { return true; }
3526
3527  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
3528    return true;
3529  }
3530
3531  bool NeedsEnvironment() const OVERRIDE {
3532    return false;
3533  }
3534
3535  uint32_t GetDexPc() const { return dex_pc_; }
3536
3537  bool IsClassFinal() const { return class_is_final_; }
3538
3539  // Used only in code generation.
3540  bool MustDoNullCheck() const { return must_do_null_check_; }
3541  void ClearMustDoNullCheck() { must_do_null_check_ = false; }
3542
3543  DECLARE_INSTRUCTION(InstanceOf);
3544
3545 private:
3546  const bool class_is_final_;
3547  bool must_do_null_check_;
3548  const uint32_t dex_pc_;
3549
3550  DISALLOW_COPY_AND_ASSIGN(HInstanceOf);
3551};
3552
3553class HBoundType : public HExpression<1> {
3554 public:
3555  HBoundType(HInstruction* input, ReferenceTypeInfo bound_type)
3556      : HExpression(Primitive::kPrimNot, SideEffects::None()),
3557        bound_type_(bound_type) {
3558    DCHECK_EQ(input->GetType(), Primitive::kPrimNot);
3559    SetRawInputAt(0, input);
3560  }
3561
3562  const ReferenceTypeInfo& GetBoundType() const { return bound_type_; }
3563
3564  bool CanBeNull() const OVERRIDE {
3565    // `null instanceof ClassX` always return false so we can't be null.
3566    return false;
3567  }
3568
3569  DECLARE_INSTRUCTION(BoundType);
3570
3571 private:
3572  // Encodes the most upper class that this instruction can have. In other words
3573  // it is always the case that GetBoundType().IsSupertypeOf(GetReferenceType()).
3574  // It is used to bound the type in cases like `if (x instanceof ClassX) {}`
3575  const ReferenceTypeInfo bound_type_;
3576
3577  DISALLOW_COPY_AND_ASSIGN(HBoundType);
3578};
3579
3580class HCheckCast : public HTemplateInstruction<2> {
3581 public:
3582  HCheckCast(HInstruction* object,
3583             HLoadClass* constant,
3584             bool class_is_final,
3585             uint32_t dex_pc)
3586      : HTemplateInstruction(SideEffects::None()),
3587        class_is_final_(class_is_final),
3588        must_do_null_check_(true),
3589        dex_pc_(dex_pc) {
3590    SetRawInputAt(0, object);
3591    SetRawInputAt(1, constant);
3592  }
3593
3594  bool CanBeMoved() const OVERRIDE { return true; }
3595
3596  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
3597    return true;
3598  }
3599
3600  bool NeedsEnvironment() const OVERRIDE {
3601    // Instruction may throw a CheckCastError.
3602    return true;
3603  }
3604
3605  bool CanThrow() const OVERRIDE { return true; }
3606
3607  bool MustDoNullCheck() const { return must_do_null_check_; }
3608  void ClearMustDoNullCheck() { must_do_null_check_ = false; }
3609
3610  uint32_t GetDexPc() const { return dex_pc_; }
3611
3612  bool IsClassFinal() const { return class_is_final_; }
3613
3614  DECLARE_INSTRUCTION(CheckCast);
3615
3616 private:
3617  const bool class_is_final_;
3618  bool must_do_null_check_;
3619  const uint32_t dex_pc_;
3620
3621  DISALLOW_COPY_AND_ASSIGN(HCheckCast);
3622};
3623
3624class HMemoryBarrier : public HTemplateInstruction<0> {
3625 public:
3626  explicit HMemoryBarrier(MemBarrierKind barrier_kind)
3627      : HTemplateInstruction(SideEffects::None()),
3628        barrier_kind_(barrier_kind) {}
3629
3630  MemBarrierKind GetBarrierKind() { return barrier_kind_; }
3631
3632  DECLARE_INSTRUCTION(MemoryBarrier);
3633
3634 private:
3635  const MemBarrierKind barrier_kind_;
3636
3637  DISALLOW_COPY_AND_ASSIGN(HMemoryBarrier);
3638};
3639
3640class HMonitorOperation : public HTemplateInstruction<1> {
3641 public:
3642  enum OperationKind {
3643    kEnter,
3644    kExit,
3645  };
3646
3647  HMonitorOperation(HInstruction* object, OperationKind kind, uint32_t dex_pc)
3648    : HTemplateInstruction(SideEffects::None()), kind_(kind), dex_pc_(dex_pc) {
3649    SetRawInputAt(0, object);
3650  }
3651
3652  // Instruction may throw a Java exception, so we need an environment.
3653  bool NeedsEnvironment() const OVERRIDE { return true; }
3654  bool CanThrow() const OVERRIDE { return true; }
3655
3656  uint32_t GetDexPc() const { return dex_pc_; }
3657
3658  bool IsEnter() const { return kind_ == kEnter; }
3659
3660  DECLARE_INSTRUCTION(MonitorOperation);
3661
3662 private:
3663  const OperationKind kind_;
3664  const uint32_t dex_pc_;
3665
3666 private:
3667  DISALLOW_COPY_AND_ASSIGN(HMonitorOperation);
3668};
3669
3670class MoveOperands : public ArenaObject<kArenaAllocMisc> {
3671 public:
3672  MoveOperands(Location source,
3673               Location destination,
3674               Primitive::Type type,
3675               HInstruction* instruction)
3676      : source_(source), destination_(destination), type_(type), instruction_(instruction) {}
3677
3678  Location GetSource() const { return source_; }
3679  Location GetDestination() const { return destination_; }
3680
3681  void SetSource(Location value) { source_ = value; }
3682  void SetDestination(Location value) { destination_ = value; }
3683
3684  // The parallel move resolver marks moves as "in-progress" by clearing the
3685  // destination (but not the source).
3686  Location MarkPending() {
3687    DCHECK(!IsPending());
3688    Location dest = destination_;
3689    destination_ = Location::NoLocation();
3690    return dest;
3691  }
3692
3693  void ClearPending(Location dest) {
3694    DCHECK(IsPending());
3695    destination_ = dest;
3696  }
3697
3698  bool IsPending() const {
3699    DCHECK(!source_.IsInvalid() || destination_.IsInvalid());
3700    return destination_.IsInvalid() && !source_.IsInvalid();
3701  }
3702
3703  // True if this blocks a move from the given location.
3704  bool Blocks(Location loc) const {
3705    return !IsEliminated() && source_.OverlapsWith(loc);
3706  }
3707
3708  // A move is redundant if it's been eliminated, if its source and
3709  // destination are the same, or if its destination is unneeded.
3710  bool IsRedundant() const {
3711    return IsEliminated() || destination_.IsInvalid() || source_.Equals(destination_);
3712  }
3713
3714  // We clear both operands to indicate move that's been eliminated.
3715  void Eliminate() {
3716    source_ = destination_ = Location::NoLocation();
3717  }
3718
3719  bool IsEliminated() const {
3720    DCHECK(!source_.IsInvalid() || destination_.IsInvalid());
3721    return source_.IsInvalid();
3722  }
3723
3724  bool Is64BitMove() const {
3725    return Primitive::Is64BitType(type_);
3726  }
3727
3728  HInstruction* GetInstruction() const { return instruction_; }
3729
3730 private:
3731  Location source_;
3732  Location destination_;
3733  // The type this move is for.
3734  Primitive::Type type_;
3735  // The instruction this move is assocatied with. Null when this move is
3736  // for moving an input in the expected locations of user (including a phi user).
3737  // This is only used in debug mode, to ensure we do not connect interval siblings
3738  // in the same parallel move.
3739  HInstruction* instruction_;
3740};
3741
3742static constexpr size_t kDefaultNumberOfMoves = 4;
3743
3744class HParallelMove : public HTemplateInstruction<0> {
3745 public:
3746  explicit HParallelMove(ArenaAllocator* arena)
3747      : HTemplateInstruction(SideEffects::None()), moves_(arena, kDefaultNumberOfMoves) {}
3748
3749  void AddMove(Location source,
3750               Location destination,
3751               Primitive::Type type,
3752               HInstruction* instruction) {
3753    DCHECK(source.IsValid());
3754    DCHECK(destination.IsValid());
3755    if (kIsDebugBuild) {
3756      if (instruction != nullptr) {
3757        for (size_t i = 0, e = moves_.Size(); i < e; ++i) {
3758          if (moves_.Get(i).GetInstruction() == instruction) {
3759            // Special case the situation where the move is for the spill slot
3760            // of the instruction.
3761            if ((GetPrevious() == instruction)
3762                || ((GetPrevious() == nullptr)
3763                    && instruction->IsPhi()
3764                    && instruction->GetBlock() == GetBlock())) {
3765              DCHECK_NE(destination.GetKind(), moves_.Get(i).GetDestination().GetKind())
3766                  << "Doing parallel moves for the same instruction.";
3767            } else {
3768              DCHECK(false) << "Doing parallel moves for the same instruction.";
3769            }
3770          }
3771        }
3772      }
3773      for (size_t i = 0, e = moves_.Size(); i < e; ++i) {
3774        DCHECK(!destination.OverlapsWith(moves_.Get(i).GetDestination()))
3775            << "Overlapped destination for two moves in a parallel move.";
3776      }
3777    }
3778    moves_.Add(MoveOperands(source, destination, type, instruction));
3779  }
3780
3781  MoveOperands* MoveOperandsAt(size_t index) const {
3782    return moves_.GetRawStorage() + index;
3783  }
3784
3785  size_t NumMoves() const { return moves_.Size(); }
3786
3787  DECLARE_INSTRUCTION(ParallelMove);
3788
3789 private:
3790  GrowableArray<MoveOperands> moves_;
3791
3792  DISALLOW_COPY_AND_ASSIGN(HParallelMove);
3793};
3794
3795class HGraphVisitor : public ValueObject {
3796 public:
3797  explicit HGraphVisitor(HGraph* graph) : graph_(graph) {}
3798  virtual ~HGraphVisitor() {}
3799
3800  virtual void VisitInstruction(HInstruction* instruction) { UNUSED(instruction); }
3801  virtual void VisitBasicBlock(HBasicBlock* block);
3802
3803  // Visit the graph following basic block insertion order.
3804  void VisitInsertionOrder();
3805
3806  // Visit the graph following dominator tree reverse post-order.
3807  void VisitReversePostOrder();
3808
3809  HGraph* GetGraph() const { return graph_; }
3810
3811  // Visit functions for instruction classes.
3812#define DECLARE_VISIT_INSTRUCTION(name, super)                                        \
3813  virtual void Visit##name(H##name* instr) { VisitInstruction(instr); }
3814
3815  FOR_EACH_INSTRUCTION(DECLARE_VISIT_INSTRUCTION)
3816
3817#undef DECLARE_VISIT_INSTRUCTION
3818
3819 private:
3820  HGraph* const graph_;
3821
3822  DISALLOW_COPY_AND_ASSIGN(HGraphVisitor);
3823};
3824
3825class HGraphDelegateVisitor : public HGraphVisitor {
3826 public:
3827  explicit HGraphDelegateVisitor(HGraph* graph) : HGraphVisitor(graph) {}
3828  virtual ~HGraphDelegateVisitor() {}
3829
3830  // Visit functions that delegate to to super class.
3831#define DECLARE_VISIT_INSTRUCTION(name, super)                                        \
3832  void Visit##name(H##name* instr) OVERRIDE { Visit##super(instr); }
3833
3834  FOR_EACH_INSTRUCTION(DECLARE_VISIT_INSTRUCTION)
3835
3836#undef DECLARE_VISIT_INSTRUCTION
3837
3838 private:
3839  DISALLOW_COPY_AND_ASSIGN(HGraphDelegateVisitor);
3840};
3841
3842class HInsertionOrderIterator : public ValueObject {
3843 public:
3844  explicit HInsertionOrderIterator(const HGraph& graph) : graph_(graph), index_(0) {}
3845
3846  bool Done() const { return index_ == graph_.GetBlocks().Size(); }
3847  HBasicBlock* Current() const { return graph_.GetBlocks().Get(index_); }
3848  void Advance() { ++index_; }
3849
3850 private:
3851  const HGraph& graph_;
3852  size_t index_;
3853
3854  DISALLOW_COPY_AND_ASSIGN(HInsertionOrderIterator);
3855};
3856
3857class HReversePostOrderIterator : public ValueObject {
3858 public:
3859  explicit HReversePostOrderIterator(const HGraph& graph) : graph_(graph), index_(0) {
3860    // Check that reverse post order of the graph has been built.
3861    DCHECK(!graph.GetReversePostOrder().IsEmpty());
3862  }
3863
3864  bool Done() const { return index_ == graph_.GetReversePostOrder().Size(); }
3865  HBasicBlock* Current() const { return graph_.GetReversePostOrder().Get(index_); }
3866  void Advance() { ++index_; }
3867
3868 private:
3869  const HGraph& graph_;
3870  size_t index_;
3871
3872  DISALLOW_COPY_AND_ASSIGN(HReversePostOrderIterator);
3873};
3874
3875class HPostOrderIterator : public ValueObject {
3876 public:
3877  explicit HPostOrderIterator(const HGraph& graph)
3878      : graph_(graph), index_(graph_.GetReversePostOrder().Size()) {
3879    // Check that reverse post order of the graph has been built.
3880    DCHECK(!graph.GetReversePostOrder().IsEmpty());
3881  }
3882
3883  bool Done() const { return index_ == 0; }
3884  HBasicBlock* Current() const { return graph_.GetReversePostOrder().Get(index_ - 1); }
3885  void Advance() { --index_; }
3886
3887 private:
3888  const HGraph& graph_;
3889  size_t index_;
3890
3891  DISALLOW_COPY_AND_ASSIGN(HPostOrderIterator);
3892};
3893
3894class HLinearPostOrderIterator : public ValueObject {
3895 public:
3896  explicit HLinearPostOrderIterator(const HGraph& graph)
3897      : order_(graph.GetLinearOrder()), index_(graph.GetLinearOrder().Size()) {}
3898
3899  bool Done() const { return index_ == 0; }
3900
3901  HBasicBlock* Current() const { return order_.Get(index_ -1); }
3902
3903  void Advance() {
3904    --index_;
3905    DCHECK_GE(index_, 0U);
3906  }
3907
3908 private:
3909  const GrowableArray<HBasicBlock*>& order_;
3910  size_t index_;
3911
3912  DISALLOW_COPY_AND_ASSIGN(HLinearPostOrderIterator);
3913};
3914
3915class HLinearOrderIterator : public ValueObject {
3916 public:
3917  explicit HLinearOrderIterator(const HGraph& graph)
3918      : order_(graph.GetLinearOrder()), index_(0) {}
3919
3920  bool Done() const { return index_ == order_.Size(); }
3921  HBasicBlock* Current() const { return order_.Get(index_); }
3922  void Advance() { ++index_; }
3923
3924 private:
3925  const GrowableArray<HBasicBlock*>& order_;
3926  size_t index_;
3927
3928  DISALLOW_COPY_AND_ASSIGN(HLinearOrderIterator);
3929};
3930
3931// Iterator over the blocks that art part of the loop. Includes blocks part
3932// of an inner loop. The order in which the blocks are iterated is on their
3933// block id.
3934class HBlocksInLoopIterator : public ValueObject {
3935 public:
3936  explicit HBlocksInLoopIterator(const HLoopInformation& info)
3937      : blocks_in_loop_(info.GetBlocks()),
3938        blocks_(info.GetHeader()->GetGraph()->GetBlocks()),
3939        index_(0) {
3940    if (!blocks_in_loop_.IsBitSet(index_)) {
3941      Advance();
3942    }
3943  }
3944
3945  bool Done() const { return index_ == blocks_.Size(); }
3946  HBasicBlock* Current() const { return blocks_.Get(index_); }
3947  void Advance() {
3948    ++index_;
3949    for (size_t e = blocks_.Size(); index_ < e; ++index_) {
3950      if (blocks_in_loop_.IsBitSet(index_)) {
3951        break;
3952      }
3953    }
3954  }
3955
3956 private:
3957  const BitVector& blocks_in_loop_;
3958  const GrowableArray<HBasicBlock*>& blocks_;
3959  size_t index_;
3960
3961  DISALLOW_COPY_AND_ASSIGN(HBlocksInLoopIterator);
3962};
3963
3964inline int64_t Int64FromConstant(HConstant* constant) {
3965  DCHECK(constant->IsIntConstant() || constant->IsLongConstant());
3966  return constant->IsIntConstant() ? constant->AsIntConstant()->GetValue()
3967                                   : constant->AsLongConstant()->GetValue();
3968}
3969
3970}  // namespace art
3971
3972#endif  // ART_COMPILER_OPTIMIZING_NODES_H_
3973