nodes.h revision 60328910cad396589474f8513391ba733d19390b
1/*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#ifndef ART_COMPILER_OPTIMIZING_NODES_H_
18#define ART_COMPILER_OPTIMIZING_NODES_H_
19
20#include <algorithm>
21#include <array>
22#include <type_traits>
23
24#include "base/arena_bit_vector.h"
25#include "base/arena_containers.h"
26#include "base/arena_object.h"
27#include "base/stl_util.h"
28#include "dex/compiler_enums.h"
29#include "entrypoints/quick/quick_entrypoints_enum.h"
30#include "handle.h"
31#include "handle_scope.h"
32#include "invoke_type.h"
33#include "locations.h"
34#include "method_reference.h"
35#include "mirror/class.h"
36#include "offsets.h"
37#include "primitive.h"
38#include "utils/array_ref.h"
39
40namespace art {
41
42class GraphChecker;
43class HBasicBlock;
44class HCurrentMethod;
45class HDoubleConstant;
46class HEnvironment;
47class HFloatConstant;
48class HGraphBuilder;
49class HGraphVisitor;
50class HInstruction;
51class HIntConstant;
52class HInvoke;
53class HLongConstant;
54class HNullConstant;
55class HPhi;
56class HSuspendCheck;
57class HTryBoundary;
58class LiveInterval;
59class LocationSummary;
60class SlowPathCode;
61class SsaBuilder;
62
63namespace mirror {
64class DexCache;
65}  // namespace mirror
66
67static const int kDefaultNumberOfBlocks = 8;
68static const int kDefaultNumberOfSuccessors = 2;
69static const int kDefaultNumberOfPredecessors = 2;
70static const int kDefaultNumberOfExceptionalPredecessors = 0;
71static const int kDefaultNumberOfDominatedBlocks = 1;
72static const int kDefaultNumberOfBackEdges = 1;
73
74// The maximum (meaningful) distance (31) that can be used in an integer shift/rotate operation.
75static constexpr int32_t kMaxIntShiftDistance = 0x1f;
76// The maximum (meaningful) distance (63) that can be used in a long shift/rotate operation.
77static constexpr int32_t kMaxLongShiftDistance = 0x3f;
78
79static constexpr uint32_t kUnknownFieldIndex = static_cast<uint32_t>(-1);
80static constexpr uint16_t kUnknownClassDefIndex = static_cast<uint16_t>(-1);
81
82static constexpr InvokeType kInvalidInvokeType = static_cast<InvokeType>(-1);
83
84static constexpr uint32_t kNoDexPc = -1;
85
86enum IfCondition {
87  // All types.
88  kCondEQ,  // ==
89  kCondNE,  // !=
90  // Signed integers and floating-point numbers.
91  kCondLT,  // <
92  kCondLE,  // <=
93  kCondGT,  // >
94  kCondGE,  // >=
95  // Unsigned integers.
96  kCondB,   // <
97  kCondBE,  // <=
98  kCondA,   // >
99  kCondAE,  // >=
100};
101
102enum GraphAnalysisResult {
103  kAnalysisSkipped,
104  kAnalysisInvalidBytecode,
105  kAnalysisFailThrowCatchLoop,
106  kAnalysisFailAmbiguousArrayOp,
107  kAnalysisSuccess,
108};
109
110class HInstructionList : public ValueObject {
111 public:
112  HInstructionList() : first_instruction_(nullptr), last_instruction_(nullptr) {}
113
114  void AddInstruction(HInstruction* instruction);
115  void RemoveInstruction(HInstruction* instruction);
116
117  // Insert `instruction` before/after an existing instruction `cursor`.
118  void InsertInstructionBefore(HInstruction* instruction, HInstruction* cursor);
119  void InsertInstructionAfter(HInstruction* instruction, HInstruction* cursor);
120
121  // Return true if this list contains `instruction`.
122  bool Contains(HInstruction* instruction) const;
123
124  // Return true if `instruction1` is found before `instruction2` in
125  // this instruction list and false otherwise.  Abort if none
126  // of these instructions is found.
127  bool FoundBefore(const HInstruction* instruction1,
128                   const HInstruction* instruction2) const;
129
130  bool IsEmpty() const { return first_instruction_ == nullptr; }
131  void Clear() { first_instruction_ = last_instruction_ = nullptr; }
132
133  // Update the block of all instructions to be `block`.
134  void SetBlockOfInstructions(HBasicBlock* block) const;
135
136  void AddAfter(HInstruction* cursor, const HInstructionList& instruction_list);
137  void AddBefore(HInstruction* cursor, const HInstructionList& instruction_list);
138  void Add(const HInstructionList& instruction_list);
139
140  // Return the number of instructions in the list. This is an expensive operation.
141  size_t CountSize() const;
142
143 private:
144  HInstruction* first_instruction_;
145  HInstruction* last_instruction_;
146
147  friend class HBasicBlock;
148  friend class HGraph;
149  friend class HInstruction;
150  friend class HInstructionIterator;
151  friend class HBackwardInstructionIterator;
152
153  DISALLOW_COPY_AND_ASSIGN(HInstructionList);
154};
155
156class ReferenceTypeInfo : ValueObject {
157 public:
158  typedef Handle<mirror::Class> TypeHandle;
159
160  static ReferenceTypeInfo Create(TypeHandle type_handle, bool is_exact);
161
162  static ReferenceTypeInfo CreateUnchecked(TypeHandle type_handle, bool is_exact) {
163    return ReferenceTypeInfo(type_handle, is_exact);
164  }
165
166  static ReferenceTypeInfo CreateInvalid() { return ReferenceTypeInfo(); }
167
168  static bool IsValidHandle(TypeHandle handle) {
169    return handle.GetReference() != nullptr;
170  }
171
172  bool IsValid() const SHARED_REQUIRES(Locks::mutator_lock_) {
173    return IsValidHandle(type_handle_);
174  }
175
176  bool IsExact() const { return is_exact_; }
177
178  bool IsObjectClass() const SHARED_REQUIRES(Locks::mutator_lock_) {
179    DCHECK(IsValid());
180    return GetTypeHandle()->IsObjectClass();
181  }
182
183  bool IsStringClass() const SHARED_REQUIRES(Locks::mutator_lock_) {
184    DCHECK(IsValid());
185    return GetTypeHandle()->IsStringClass();
186  }
187
188  bool IsObjectArray() const SHARED_REQUIRES(Locks::mutator_lock_) {
189    DCHECK(IsValid());
190    return IsArrayClass() && GetTypeHandle()->GetComponentType()->IsObjectClass();
191  }
192
193  bool IsInterface() const SHARED_REQUIRES(Locks::mutator_lock_) {
194    DCHECK(IsValid());
195    return GetTypeHandle()->IsInterface();
196  }
197
198  bool IsArrayClass() const SHARED_REQUIRES(Locks::mutator_lock_) {
199    DCHECK(IsValid());
200    return GetTypeHandle()->IsArrayClass();
201  }
202
203  bool IsPrimitiveArrayClass() const SHARED_REQUIRES(Locks::mutator_lock_) {
204    DCHECK(IsValid());
205    return GetTypeHandle()->IsPrimitiveArray();
206  }
207
208  bool IsNonPrimitiveArrayClass() const SHARED_REQUIRES(Locks::mutator_lock_) {
209    DCHECK(IsValid());
210    return GetTypeHandle()->IsArrayClass() && !GetTypeHandle()->IsPrimitiveArray();
211  }
212
213  bool CanArrayHold(ReferenceTypeInfo rti)  const SHARED_REQUIRES(Locks::mutator_lock_) {
214    DCHECK(IsValid());
215    if (!IsExact()) return false;
216    if (!IsArrayClass()) return false;
217    return GetTypeHandle()->GetComponentType()->IsAssignableFrom(rti.GetTypeHandle().Get());
218  }
219
220  bool CanArrayHoldValuesOf(ReferenceTypeInfo rti)  const SHARED_REQUIRES(Locks::mutator_lock_) {
221    DCHECK(IsValid());
222    if (!IsExact()) return false;
223    if (!IsArrayClass()) return false;
224    if (!rti.IsArrayClass()) return false;
225    return GetTypeHandle()->GetComponentType()->IsAssignableFrom(
226        rti.GetTypeHandle()->GetComponentType());
227  }
228
229  Handle<mirror::Class> GetTypeHandle() const { return type_handle_; }
230
231  bool IsSupertypeOf(ReferenceTypeInfo rti) const SHARED_REQUIRES(Locks::mutator_lock_) {
232    DCHECK(IsValid());
233    DCHECK(rti.IsValid());
234    return GetTypeHandle()->IsAssignableFrom(rti.GetTypeHandle().Get());
235  }
236
237  bool IsStrictSupertypeOf(ReferenceTypeInfo rti) const SHARED_REQUIRES(Locks::mutator_lock_) {
238    DCHECK(IsValid());
239    DCHECK(rti.IsValid());
240    return GetTypeHandle().Get() != rti.GetTypeHandle().Get() &&
241        GetTypeHandle()->IsAssignableFrom(rti.GetTypeHandle().Get());
242  }
243
244  // Returns true if the type information provide the same amount of details.
245  // Note that it does not mean that the instructions have the same actual type
246  // (because the type can be the result of a merge).
247  bool IsEqual(ReferenceTypeInfo rti) const SHARED_REQUIRES(Locks::mutator_lock_) {
248    if (!IsValid() && !rti.IsValid()) {
249      // Invalid types are equal.
250      return true;
251    }
252    if (!IsValid() || !rti.IsValid()) {
253      // One is valid, the other not.
254      return false;
255    }
256    return IsExact() == rti.IsExact()
257        && GetTypeHandle().Get() == rti.GetTypeHandle().Get();
258  }
259
260 private:
261  ReferenceTypeInfo() : type_handle_(TypeHandle()), is_exact_(false) {}
262  ReferenceTypeInfo(TypeHandle type_handle, bool is_exact)
263      : type_handle_(type_handle), is_exact_(is_exact) { }
264
265  // The class of the object.
266  TypeHandle type_handle_;
267  // Whether or not the type is exact or a superclass of the actual type.
268  // Whether or not we have any information about this type.
269  bool is_exact_;
270};
271
272std::ostream& operator<<(std::ostream& os, const ReferenceTypeInfo& rhs);
273
274// Control-flow graph of a method. Contains a list of basic blocks.
275class HGraph : public ArenaObject<kArenaAllocGraph> {
276 public:
277  HGraph(ArenaAllocator* arena,
278         const DexFile& dex_file,
279         uint32_t method_idx,
280         bool should_generate_constructor_barrier,
281         InstructionSet instruction_set,
282         InvokeType invoke_type = kInvalidInvokeType,
283         bool debuggable = false,
284         bool osr = false,
285         int start_instruction_id = 0)
286      : arena_(arena),
287        blocks_(arena->Adapter(kArenaAllocBlockList)),
288        reverse_post_order_(arena->Adapter(kArenaAllocReversePostOrder)),
289        linear_order_(arena->Adapter(kArenaAllocLinearOrder)),
290        entry_block_(nullptr),
291        exit_block_(nullptr),
292        maximum_number_of_out_vregs_(0),
293        number_of_vregs_(0),
294        number_of_in_vregs_(0),
295        temporaries_vreg_slots_(0),
296        has_bounds_checks_(false),
297        has_try_catch_(false),
298        has_irreducible_loops_(false),
299        debuggable_(debuggable),
300        current_instruction_id_(start_instruction_id),
301        dex_file_(dex_file),
302        method_idx_(method_idx),
303        invoke_type_(invoke_type),
304        in_ssa_form_(false),
305        should_generate_constructor_barrier_(should_generate_constructor_barrier),
306        instruction_set_(instruction_set),
307        cached_null_constant_(nullptr),
308        cached_int_constants_(std::less<int32_t>(), arena->Adapter(kArenaAllocConstantsMap)),
309        cached_float_constants_(std::less<int32_t>(), arena->Adapter(kArenaAllocConstantsMap)),
310        cached_long_constants_(std::less<int64_t>(), arena->Adapter(kArenaAllocConstantsMap)),
311        cached_double_constants_(std::less<int64_t>(), arena->Adapter(kArenaAllocConstantsMap)),
312        cached_current_method_(nullptr),
313        inexact_object_rti_(ReferenceTypeInfo::CreateInvalid()),
314        osr_(osr) {
315    blocks_.reserve(kDefaultNumberOfBlocks);
316  }
317
318  // Acquires and stores RTI of inexact Object to be used when creating HNullConstant.
319  void InitializeInexactObjectRTI(StackHandleScopeCollection* handles);
320
321  ArenaAllocator* GetArena() const { return arena_; }
322  const ArenaVector<HBasicBlock*>& GetBlocks() const { return blocks_; }
323
324  bool IsInSsaForm() const { return in_ssa_form_; }
325  void SetInSsaForm() { in_ssa_form_ = true; }
326
327  HBasicBlock* GetEntryBlock() const { return entry_block_; }
328  HBasicBlock* GetExitBlock() const { return exit_block_; }
329  bool HasExitBlock() const { return exit_block_ != nullptr; }
330
331  void SetEntryBlock(HBasicBlock* block) { entry_block_ = block; }
332  void SetExitBlock(HBasicBlock* block) { exit_block_ = block; }
333
334  void AddBlock(HBasicBlock* block);
335
336  void ComputeDominanceInformation();
337  void ClearDominanceInformation();
338  void ClearLoopInformation();
339  void FindBackEdges(ArenaBitVector* visited);
340  GraphAnalysisResult BuildDominatorTree();
341  void SimplifyCFG();
342  void SimplifyCatchBlocks();
343
344  // Analyze all natural loops in this graph. Returns a code specifying that it
345  // was successful or the reason for failure. The method will fail if a loop
346  // is a throw-catch loop, i.e. the header is a catch block.
347  GraphAnalysisResult AnalyzeLoops() const;
348
349  // Iterate over blocks to compute try block membership. Needs reverse post
350  // order and loop information.
351  void ComputeTryBlockInformation();
352
353  // Inline this graph in `outer_graph`, replacing the given `invoke` instruction.
354  // Returns the instruction to replace the invoke expression or null if the
355  // invoke is for a void method. Note that the caller is responsible for replacing
356  // and removing the invoke instruction.
357  HInstruction* InlineInto(HGraph* outer_graph, HInvoke* invoke);
358
359  // Update the loop and try membership of `block`, which was spawned from `reference`.
360  // In case `reference` is a back edge, `replace_if_back_edge` notifies whether `block`
361  // should be the new back edge.
362  void UpdateLoopAndTryInformationOfNewBlock(HBasicBlock* block,
363                                             HBasicBlock* reference,
364                                             bool replace_if_back_edge);
365
366  // Need to add a couple of blocks to test if the loop body is entered and
367  // put deoptimization instructions, etc.
368  void TransformLoopHeaderForBCE(HBasicBlock* header);
369
370  // Removes `block` from the graph. Assumes `block` has been disconnected from
371  // other blocks and has no instructions or phis.
372  void DeleteDeadEmptyBlock(HBasicBlock* block);
373
374  // Splits the edge between `block` and `successor` while preserving the
375  // indices in the predecessor/successor lists. If there are multiple edges
376  // between the blocks, the lowest indices are used.
377  // Returns the new block which is empty and has the same dex pc as `successor`.
378  HBasicBlock* SplitEdge(HBasicBlock* block, HBasicBlock* successor);
379
380  void SplitCriticalEdge(HBasicBlock* block, HBasicBlock* successor);
381  void SimplifyLoop(HBasicBlock* header);
382
383  int32_t GetNextInstructionId() {
384    DCHECK_NE(current_instruction_id_, INT32_MAX);
385    return current_instruction_id_++;
386  }
387
388  int32_t GetCurrentInstructionId() const {
389    return current_instruction_id_;
390  }
391
392  void SetCurrentInstructionId(int32_t id) {
393    DCHECK_GE(id, current_instruction_id_);
394    current_instruction_id_ = id;
395  }
396
397  uint16_t GetMaximumNumberOfOutVRegs() const {
398    return maximum_number_of_out_vregs_;
399  }
400
401  void SetMaximumNumberOfOutVRegs(uint16_t new_value) {
402    maximum_number_of_out_vregs_ = new_value;
403  }
404
405  void UpdateMaximumNumberOfOutVRegs(uint16_t other_value) {
406    maximum_number_of_out_vregs_ = std::max(maximum_number_of_out_vregs_, other_value);
407  }
408
409  void UpdateTemporariesVRegSlots(size_t slots) {
410    temporaries_vreg_slots_ = std::max(slots, temporaries_vreg_slots_);
411  }
412
413  size_t GetTemporariesVRegSlots() const {
414    DCHECK(!in_ssa_form_);
415    return temporaries_vreg_slots_;
416  }
417
418  void SetNumberOfVRegs(uint16_t number_of_vregs) {
419    number_of_vregs_ = number_of_vregs;
420  }
421
422  uint16_t GetNumberOfVRegs() const {
423    return number_of_vregs_;
424  }
425
426  void SetNumberOfInVRegs(uint16_t value) {
427    number_of_in_vregs_ = value;
428  }
429
430  uint16_t GetNumberOfLocalVRegs() const {
431    DCHECK(!in_ssa_form_);
432    return number_of_vregs_ - number_of_in_vregs_;
433  }
434
435  const ArenaVector<HBasicBlock*>& GetReversePostOrder() const {
436    return reverse_post_order_;
437  }
438
439  const ArenaVector<HBasicBlock*>& GetLinearOrder() const {
440    return linear_order_;
441  }
442
443  bool HasBoundsChecks() const {
444    return has_bounds_checks_;
445  }
446
447  void SetHasBoundsChecks(bool value) {
448    has_bounds_checks_ = value;
449  }
450
451  bool ShouldGenerateConstructorBarrier() const {
452    return should_generate_constructor_barrier_;
453  }
454
455  bool IsDebuggable() const { return debuggable_; }
456
457  // Returns a constant of the given type and value. If it does not exist
458  // already, it is created and inserted into the graph. This method is only for
459  // integral types.
460  HConstant* GetConstant(Primitive::Type type, int64_t value, uint32_t dex_pc = kNoDexPc);
461
462  // TODO: This is problematic for the consistency of reference type propagation
463  // because it can be created anytime after the pass and thus it will be left
464  // with an invalid type.
465  HNullConstant* GetNullConstant(uint32_t dex_pc = kNoDexPc);
466
467  HIntConstant* GetIntConstant(int32_t value, uint32_t dex_pc = kNoDexPc) {
468    return CreateConstant(value, &cached_int_constants_, dex_pc);
469  }
470  HLongConstant* GetLongConstant(int64_t value, uint32_t dex_pc = kNoDexPc) {
471    return CreateConstant(value, &cached_long_constants_, dex_pc);
472  }
473  HFloatConstant* GetFloatConstant(float value, uint32_t dex_pc = kNoDexPc) {
474    return CreateConstant(bit_cast<int32_t, float>(value), &cached_float_constants_, dex_pc);
475  }
476  HDoubleConstant* GetDoubleConstant(double value, uint32_t dex_pc = kNoDexPc) {
477    return CreateConstant(bit_cast<int64_t, double>(value), &cached_double_constants_, dex_pc);
478  }
479
480  HCurrentMethod* GetCurrentMethod();
481
482  const DexFile& GetDexFile() const {
483    return dex_file_;
484  }
485
486  uint32_t GetMethodIdx() const {
487    return method_idx_;
488  }
489
490  InvokeType GetInvokeType() const {
491    return invoke_type_;
492  }
493
494  InstructionSet GetInstructionSet() const {
495    return instruction_set_;
496  }
497
498  bool IsCompilingOsr() const { return osr_; }
499
500  bool HasTryCatch() const { return has_try_catch_; }
501  void SetHasTryCatch(bool value) { has_try_catch_ = value; }
502
503  bool HasIrreducibleLoops() const { return has_irreducible_loops_; }
504  void SetHasIrreducibleLoops(bool value) { has_irreducible_loops_ = value; }
505
506  ArtMethod* GetArtMethod() const { return art_method_; }
507  void SetArtMethod(ArtMethod* method) { art_method_ = method; }
508
509  // Returns an instruction with the opposite boolean value from 'cond'.
510  // The instruction has been inserted into the graph, either as a constant, or
511  // before cursor.
512  HInstruction* InsertOppositeCondition(HInstruction* cond, HInstruction* cursor);
513
514  ReferenceTypeInfo GetInexactObjectRti() const { return inexact_object_rti_; }
515
516 private:
517  void RemoveInstructionsAsUsersFromDeadBlocks(const ArenaBitVector& visited) const;
518  void RemoveDeadBlocks(const ArenaBitVector& visited);
519
520  template <class InstructionType, typename ValueType>
521  InstructionType* CreateConstant(ValueType value,
522                                  ArenaSafeMap<ValueType, InstructionType*>* cache,
523                                  uint32_t dex_pc = kNoDexPc) {
524    // Try to find an existing constant of the given value.
525    InstructionType* constant = nullptr;
526    auto cached_constant = cache->find(value);
527    if (cached_constant != cache->end()) {
528      constant = cached_constant->second;
529    }
530
531    // If not found or previously deleted, create and cache a new instruction.
532    // Don't bother reviving a previously deleted instruction, for simplicity.
533    if (constant == nullptr || constant->GetBlock() == nullptr) {
534      constant = new (arena_) InstructionType(value, dex_pc);
535      cache->Overwrite(value, constant);
536      InsertConstant(constant);
537    }
538    return constant;
539  }
540
541  void InsertConstant(HConstant* instruction);
542
543  // Cache a float constant into the graph. This method should only be
544  // called by the SsaBuilder when creating "equivalent" instructions.
545  void CacheFloatConstant(HFloatConstant* constant);
546
547  // See CacheFloatConstant comment.
548  void CacheDoubleConstant(HDoubleConstant* constant);
549
550  ArenaAllocator* const arena_;
551
552  // List of blocks in insertion order.
553  ArenaVector<HBasicBlock*> blocks_;
554
555  // List of blocks to perform a reverse post order tree traversal.
556  ArenaVector<HBasicBlock*> reverse_post_order_;
557
558  // List of blocks to perform a linear order tree traversal.
559  ArenaVector<HBasicBlock*> linear_order_;
560
561  HBasicBlock* entry_block_;
562  HBasicBlock* exit_block_;
563
564  // The maximum number of virtual registers arguments passed to a HInvoke in this graph.
565  uint16_t maximum_number_of_out_vregs_;
566
567  // The number of virtual registers in this method. Contains the parameters.
568  uint16_t number_of_vregs_;
569
570  // The number of virtual registers used by parameters of this method.
571  uint16_t number_of_in_vregs_;
572
573  // Number of vreg size slots that the temporaries use (used in baseline compiler).
574  size_t temporaries_vreg_slots_;
575
576  // Has bounds checks. We can totally skip BCE if it's false.
577  bool has_bounds_checks_;
578
579  // Flag whether there are any try/catch blocks in the graph. We will skip
580  // try/catch-related passes if false.
581  bool has_try_catch_;
582
583  // Flag whether there are any irreducible loops in the graph.
584  bool has_irreducible_loops_;
585
586  // Indicates whether the graph should be compiled in a way that
587  // ensures full debuggability. If false, we can apply more
588  // aggressive optimizations that may limit the level of debugging.
589  const bool debuggable_;
590
591  // The current id to assign to a newly added instruction. See HInstruction.id_.
592  int32_t current_instruction_id_;
593
594  // The dex file from which the method is from.
595  const DexFile& dex_file_;
596
597  // The method index in the dex file.
598  const uint32_t method_idx_;
599
600  // If inlined, this encodes how the callee is being invoked.
601  const InvokeType invoke_type_;
602
603  // Whether the graph has been transformed to SSA form. Only used
604  // in debug mode to ensure we are not using properties only valid
605  // for non-SSA form (like the number of temporaries).
606  bool in_ssa_form_;
607
608  const bool should_generate_constructor_barrier_;
609
610  const InstructionSet instruction_set_;
611
612  // Cached constants.
613  HNullConstant* cached_null_constant_;
614  ArenaSafeMap<int32_t, HIntConstant*> cached_int_constants_;
615  ArenaSafeMap<int32_t, HFloatConstant*> cached_float_constants_;
616  ArenaSafeMap<int64_t, HLongConstant*> cached_long_constants_;
617  ArenaSafeMap<int64_t, HDoubleConstant*> cached_double_constants_;
618
619  HCurrentMethod* cached_current_method_;
620
621  // The ArtMethod this graph is for. Note that for AOT, it may be null,
622  // for example for methods whose declaring class could not be resolved
623  // (such as when the superclass could not be found).
624  ArtMethod* art_method_;
625
626  // Keep the RTI of inexact Object to avoid having to pass stack handle
627  // collection pointer to passes which may create NullConstant.
628  ReferenceTypeInfo inexact_object_rti_;
629
630  // Whether we are compiling this graph for on stack replacement: this will
631  // make all loops seen as irreducible and emit special stack maps to mark
632  // compiled code entries which the interpreter can directly jump to.
633  const bool osr_;
634
635  friend class SsaBuilder;           // For caching constants.
636  friend class SsaLivenessAnalysis;  // For the linear order.
637  friend class HInliner;             // For the reverse post order.
638  ART_FRIEND_TEST(GraphTest, IfSuccessorSimpleJoinBlock1);
639  DISALLOW_COPY_AND_ASSIGN(HGraph);
640};
641
642class HLoopInformation : public ArenaObject<kArenaAllocLoopInfo> {
643 public:
644  HLoopInformation(HBasicBlock* header, HGraph* graph)
645      : header_(header),
646        suspend_check_(nullptr),
647        irreducible_(false),
648        back_edges_(graph->GetArena()->Adapter(kArenaAllocLoopInfoBackEdges)),
649        // Make bit vector growable, as the number of blocks may change.
650        blocks_(graph->GetArena(), graph->GetBlocks().size(), true, kArenaAllocLoopInfoBackEdges) {
651    back_edges_.reserve(kDefaultNumberOfBackEdges);
652  }
653
654  bool IsIrreducible() const { return irreducible_; }
655
656  void Dump(std::ostream& os);
657
658  HBasicBlock* GetHeader() const {
659    return header_;
660  }
661
662  void SetHeader(HBasicBlock* block) {
663    header_ = block;
664  }
665
666  HSuspendCheck* GetSuspendCheck() const { return suspend_check_; }
667  void SetSuspendCheck(HSuspendCheck* check) { suspend_check_ = check; }
668  bool HasSuspendCheck() const { return suspend_check_ != nullptr; }
669
670  void AddBackEdge(HBasicBlock* back_edge) {
671    back_edges_.push_back(back_edge);
672  }
673
674  void RemoveBackEdge(HBasicBlock* back_edge) {
675    RemoveElement(back_edges_, back_edge);
676  }
677
678  bool IsBackEdge(const HBasicBlock& block) const {
679    return ContainsElement(back_edges_, &block);
680  }
681
682  size_t NumberOfBackEdges() const {
683    return back_edges_.size();
684  }
685
686  HBasicBlock* GetPreHeader() const;
687
688  const ArenaVector<HBasicBlock*>& GetBackEdges() const {
689    return back_edges_;
690  }
691
692  // Returns the lifetime position of the back edge that has the
693  // greatest lifetime position.
694  size_t GetLifetimeEnd() const;
695
696  void ReplaceBackEdge(HBasicBlock* existing, HBasicBlock* new_back_edge) {
697    ReplaceElement(back_edges_, existing, new_back_edge);
698  }
699
700  // Finds blocks that are part of this loop.
701  void Populate();
702
703  // Returns whether this loop information contains `block`.
704  // Note that this loop information *must* be populated before entering this function.
705  bool Contains(const HBasicBlock& block) const;
706
707  // Returns whether this loop information is an inner loop of `other`.
708  // Note that `other` *must* be populated before entering this function.
709  bool IsIn(const HLoopInformation& other) const;
710
711  // Returns true if instruction is not defined within this loop.
712  bool IsDefinedOutOfTheLoop(HInstruction* instruction) const;
713
714  const ArenaBitVector& GetBlocks() const { return blocks_; }
715
716  void Add(HBasicBlock* block);
717  void Remove(HBasicBlock* block);
718
719  void ClearAllBlocks() {
720    blocks_.ClearAllBits();
721  }
722
723 private:
724  // Internal recursive implementation of `Populate`.
725  void PopulateRecursive(HBasicBlock* block);
726  void PopulateIrreducibleRecursive(HBasicBlock* block);
727
728  HBasicBlock* header_;
729  HSuspendCheck* suspend_check_;
730  bool irreducible_;
731  ArenaVector<HBasicBlock*> back_edges_;
732  ArenaBitVector blocks_;
733
734  DISALLOW_COPY_AND_ASSIGN(HLoopInformation);
735};
736
737// Stores try/catch information for basic blocks.
738// Note that HGraph is constructed so that catch blocks cannot simultaneously
739// be try blocks.
740class TryCatchInformation : public ArenaObject<kArenaAllocTryCatchInfo> {
741 public:
742  // Try block information constructor.
743  explicit TryCatchInformation(const HTryBoundary& try_entry)
744      : try_entry_(&try_entry),
745        catch_dex_file_(nullptr),
746        catch_type_index_(DexFile::kDexNoIndex16) {
747    DCHECK(try_entry_ != nullptr);
748  }
749
750  // Catch block information constructor.
751  TryCatchInformation(uint16_t catch_type_index, const DexFile& dex_file)
752      : try_entry_(nullptr),
753        catch_dex_file_(&dex_file),
754        catch_type_index_(catch_type_index) {}
755
756  bool IsTryBlock() const { return try_entry_ != nullptr; }
757
758  const HTryBoundary& GetTryEntry() const {
759    DCHECK(IsTryBlock());
760    return *try_entry_;
761  }
762
763  bool IsCatchBlock() const { return catch_dex_file_ != nullptr; }
764
765  bool IsCatchAllTypeIndex() const {
766    DCHECK(IsCatchBlock());
767    return catch_type_index_ == DexFile::kDexNoIndex16;
768  }
769
770  uint16_t GetCatchTypeIndex() const {
771    DCHECK(IsCatchBlock());
772    return catch_type_index_;
773  }
774
775  const DexFile& GetCatchDexFile() const {
776    DCHECK(IsCatchBlock());
777    return *catch_dex_file_;
778  }
779
780 private:
781  // One of possibly several TryBoundary instructions entering the block's try.
782  // Only set for try blocks.
783  const HTryBoundary* try_entry_;
784
785  // Exception type information. Only set for catch blocks.
786  const DexFile* catch_dex_file_;
787  const uint16_t catch_type_index_;
788};
789
790static constexpr size_t kNoLifetime = -1;
791static constexpr uint32_t kInvalidBlockId = static_cast<uint32_t>(-1);
792
793// A block in a method. Contains the list of instructions represented
794// as a double linked list. Each block knows its predecessors and
795// successors.
796
797class HBasicBlock : public ArenaObject<kArenaAllocBasicBlock> {
798 public:
799  HBasicBlock(HGraph* graph, uint32_t dex_pc = kNoDexPc)
800      : graph_(graph),
801        predecessors_(graph->GetArena()->Adapter(kArenaAllocPredecessors)),
802        successors_(graph->GetArena()->Adapter(kArenaAllocSuccessors)),
803        loop_information_(nullptr),
804        dominator_(nullptr),
805        dominated_blocks_(graph->GetArena()->Adapter(kArenaAllocDominated)),
806        block_id_(kInvalidBlockId),
807        dex_pc_(dex_pc),
808        lifetime_start_(kNoLifetime),
809        lifetime_end_(kNoLifetime),
810        try_catch_information_(nullptr) {
811    predecessors_.reserve(kDefaultNumberOfPredecessors);
812    successors_.reserve(kDefaultNumberOfSuccessors);
813    dominated_blocks_.reserve(kDefaultNumberOfDominatedBlocks);
814  }
815
816  const ArenaVector<HBasicBlock*>& GetPredecessors() const {
817    return predecessors_;
818  }
819
820  const ArenaVector<HBasicBlock*>& GetSuccessors() const {
821    return successors_;
822  }
823
824  ArrayRef<HBasicBlock* const> GetNormalSuccessors() const;
825  ArrayRef<HBasicBlock* const> GetExceptionalSuccessors() const;
826
827  bool HasSuccessor(const HBasicBlock* block, size_t start_from = 0u) {
828    return ContainsElement(successors_, block, start_from);
829  }
830
831  const ArenaVector<HBasicBlock*>& GetDominatedBlocks() const {
832    return dominated_blocks_;
833  }
834
835  bool IsEntryBlock() const {
836    return graph_->GetEntryBlock() == this;
837  }
838
839  bool IsExitBlock() const {
840    return graph_->GetExitBlock() == this;
841  }
842
843  bool IsSingleGoto() const;
844  bool IsSingleTryBoundary() const;
845
846  // Returns true if this block emits nothing but a jump.
847  bool IsSingleJump() const {
848    HLoopInformation* loop_info = GetLoopInformation();
849    return (IsSingleGoto() || IsSingleTryBoundary())
850           // Back edges generate a suspend check.
851           && (loop_info == nullptr || !loop_info->IsBackEdge(*this));
852  }
853
854  void AddBackEdge(HBasicBlock* back_edge) {
855    if (loop_information_ == nullptr) {
856      loop_information_ = new (graph_->GetArena()) HLoopInformation(this, graph_);
857    }
858    DCHECK_EQ(loop_information_->GetHeader(), this);
859    loop_information_->AddBackEdge(back_edge);
860  }
861
862  HGraph* GetGraph() const { return graph_; }
863  void SetGraph(HGraph* graph) { graph_ = graph; }
864
865  uint32_t GetBlockId() const { return block_id_; }
866  void SetBlockId(int id) { block_id_ = id; }
867  uint32_t GetDexPc() const { return dex_pc_; }
868
869  HBasicBlock* GetDominator() const { return dominator_; }
870  void SetDominator(HBasicBlock* dominator) { dominator_ = dominator; }
871  void AddDominatedBlock(HBasicBlock* block) { dominated_blocks_.push_back(block); }
872
873  void RemoveDominatedBlock(HBasicBlock* block) {
874    RemoveElement(dominated_blocks_, block);
875  }
876
877  void ReplaceDominatedBlock(HBasicBlock* existing, HBasicBlock* new_block) {
878    ReplaceElement(dominated_blocks_, existing, new_block);
879  }
880
881  void ClearDominanceInformation();
882
883  int NumberOfBackEdges() const {
884    return IsLoopHeader() ? loop_information_->NumberOfBackEdges() : 0;
885  }
886
887  HInstruction* GetFirstInstruction() const { return instructions_.first_instruction_; }
888  HInstruction* GetLastInstruction() const { return instructions_.last_instruction_; }
889  const HInstructionList& GetInstructions() const { return instructions_; }
890  HInstruction* GetFirstPhi() const { return phis_.first_instruction_; }
891  HInstruction* GetLastPhi() const { return phis_.last_instruction_; }
892  const HInstructionList& GetPhis() const { return phis_; }
893
894  HInstruction* GetFirstInstructionDisregardMoves() const;
895
896  void AddSuccessor(HBasicBlock* block) {
897    successors_.push_back(block);
898    block->predecessors_.push_back(this);
899  }
900
901  void ReplaceSuccessor(HBasicBlock* existing, HBasicBlock* new_block) {
902    size_t successor_index = GetSuccessorIndexOf(existing);
903    existing->RemovePredecessor(this);
904    new_block->predecessors_.push_back(this);
905    successors_[successor_index] = new_block;
906  }
907
908  void ReplacePredecessor(HBasicBlock* existing, HBasicBlock* new_block) {
909    size_t predecessor_index = GetPredecessorIndexOf(existing);
910    existing->RemoveSuccessor(this);
911    new_block->successors_.push_back(this);
912    predecessors_[predecessor_index] = new_block;
913  }
914
915  // Insert `this` between `predecessor` and `successor. This method
916  // preserves the indicies, and will update the first edge found between
917  // `predecessor` and `successor`.
918  void InsertBetween(HBasicBlock* predecessor, HBasicBlock* successor) {
919    size_t predecessor_index = successor->GetPredecessorIndexOf(predecessor);
920    size_t successor_index = predecessor->GetSuccessorIndexOf(successor);
921    successor->predecessors_[predecessor_index] = this;
922    predecessor->successors_[successor_index] = this;
923    successors_.push_back(successor);
924    predecessors_.push_back(predecessor);
925  }
926
927  void RemovePredecessor(HBasicBlock* block) {
928    predecessors_.erase(predecessors_.begin() + GetPredecessorIndexOf(block));
929  }
930
931  void RemoveSuccessor(HBasicBlock* block) {
932    successors_.erase(successors_.begin() + GetSuccessorIndexOf(block));
933  }
934
935  void ClearAllPredecessors() {
936    predecessors_.clear();
937  }
938
939  void AddPredecessor(HBasicBlock* block) {
940    predecessors_.push_back(block);
941    block->successors_.push_back(this);
942  }
943
944  void SwapPredecessors() {
945    DCHECK_EQ(predecessors_.size(), 2u);
946    std::swap(predecessors_[0], predecessors_[1]);
947  }
948
949  void SwapSuccessors() {
950    DCHECK_EQ(successors_.size(), 2u);
951    std::swap(successors_[0], successors_[1]);
952  }
953
954  size_t GetPredecessorIndexOf(HBasicBlock* predecessor) const {
955    return IndexOfElement(predecessors_, predecessor);
956  }
957
958  size_t GetSuccessorIndexOf(HBasicBlock* successor) const {
959    return IndexOfElement(successors_, successor);
960  }
961
962  HBasicBlock* GetSinglePredecessor() const {
963    DCHECK_EQ(GetPredecessors().size(), 1u);
964    return GetPredecessors()[0];
965  }
966
967  HBasicBlock* GetSingleSuccessor() const {
968    DCHECK_EQ(GetSuccessors().size(), 1u);
969    return GetSuccessors()[0];
970  }
971
972  // Returns whether the first occurrence of `predecessor` in the list of
973  // predecessors is at index `idx`.
974  bool IsFirstIndexOfPredecessor(HBasicBlock* predecessor, size_t idx) const {
975    DCHECK_EQ(GetPredecessors()[idx], predecessor);
976    return GetPredecessorIndexOf(predecessor) == idx;
977  }
978
979  // Create a new block between this block and its predecessors. The new block
980  // is added to the graph, all predecessor edges are relinked to it and an edge
981  // is created to `this`. Returns the new empty block. Reverse post order or
982  // loop and try/catch information are not updated.
983  HBasicBlock* CreateImmediateDominator();
984
985  // Split the block into two blocks just before `cursor`. Returns the newly
986  // created, latter block. Note that this method will add the block to the
987  // graph, create a Goto at the end of the former block and will create an edge
988  // between the blocks. It will not, however, update the reverse post order or
989  // loop and try/catch information.
990  HBasicBlock* SplitBefore(HInstruction* cursor);
991
992  // Split the block into two blocks just before `cursor`. Returns the newly
993  // created block. Note that this method just updates raw block information,
994  // like predecessors, successors, dominators, and instruction list. It does not
995  // update the graph, reverse post order, loop information, nor make sure the
996  // blocks are consistent (for example ending with a control flow instruction).
997  HBasicBlock* SplitBeforeForInlining(HInstruction* cursor);
998
999  // Similar to `SplitBeforeForInlining` but does it after `cursor`.
1000  HBasicBlock* SplitAfterForInlining(HInstruction* cursor);
1001
1002  // Merge `other` at the end of `this`. Successors and dominated blocks of
1003  // `other` are changed to be successors and dominated blocks of `this`. Note
1004  // that this method does not update the graph, reverse post order, loop
1005  // information, nor make sure the blocks are consistent (for example ending
1006  // with a control flow instruction).
1007  void MergeWithInlined(HBasicBlock* other);
1008
1009  // Replace `this` with `other`. Predecessors, successors, and dominated blocks
1010  // of `this` are moved to `other`.
1011  // Note that this method does not update the graph, reverse post order, loop
1012  // information, nor make sure the blocks are consistent (for example ending
1013  // with a control flow instruction).
1014  void ReplaceWith(HBasicBlock* other);
1015
1016  // Merge `other` at the end of `this`. This method updates loops, reverse post
1017  // order, links to predecessors, successors, dominators and deletes the block
1018  // from the graph. The two blocks must be successive, i.e. `this` the only
1019  // predecessor of `other` and vice versa.
1020  void MergeWith(HBasicBlock* other);
1021
1022  // Disconnects `this` from all its predecessors, successors and dominator,
1023  // removes it from all loops it is included in and eventually from the graph.
1024  // The block must not dominate any other block. Predecessors and successors
1025  // are safely updated.
1026  void DisconnectAndDelete();
1027
1028  void AddInstruction(HInstruction* instruction);
1029  // Insert `instruction` before/after an existing instruction `cursor`.
1030  void InsertInstructionBefore(HInstruction* instruction, HInstruction* cursor);
1031  void InsertInstructionAfter(HInstruction* instruction, HInstruction* cursor);
1032  // Replace instruction `initial` with `replacement` within this block.
1033  void ReplaceAndRemoveInstructionWith(HInstruction* initial,
1034                                       HInstruction* replacement);
1035  void MoveInstructionBefore(HInstruction* insn, HInstruction* cursor);
1036  void AddPhi(HPhi* phi);
1037  void InsertPhiAfter(HPhi* instruction, HPhi* cursor);
1038  // RemoveInstruction and RemovePhi delete a given instruction from the respective
1039  // instruction list. With 'ensure_safety' set to true, it verifies that the
1040  // instruction is not in use and removes it from the use lists of its inputs.
1041  void RemoveInstruction(HInstruction* instruction, bool ensure_safety = true);
1042  void RemovePhi(HPhi* phi, bool ensure_safety = true);
1043  void RemoveInstructionOrPhi(HInstruction* instruction, bool ensure_safety = true);
1044
1045  bool IsLoopHeader() const {
1046    return IsInLoop() && (loop_information_->GetHeader() == this);
1047  }
1048
1049  bool IsLoopPreHeaderFirstPredecessor() const {
1050    DCHECK(IsLoopHeader());
1051    return GetPredecessors()[0] == GetLoopInformation()->GetPreHeader();
1052  }
1053
1054  bool IsFirstPredecessorBackEdge() const {
1055    DCHECK(IsLoopHeader());
1056    return GetLoopInformation()->IsBackEdge(*GetPredecessors()[0]);
1057  }
1058
1059  HLoopInformation* GetLoopInformation() const {
1060    return loop_information_;
1061  }
1062
1063  // Set the loop_information_ on this block. Overrides the current
1064  // loop_information if it is an outer loop of the passed loop information.
1065  // Note that this method is called while creating the loop information.
1066  void SetInLoop(HLoopInformation* info) {
1067    if (IsLoopHeader()) {
1068      // Nothing to do. This just means `info` is an outer loop.
1069    } else if (!IsInLoop()) {
1070      loop_information_ = info;
1071    } else if (loop_information_->Contains(*info->GetHeader())) {
1072      // Block is currently part of an outer loop. Make it part of this inner loop.
1073      // Note that a non loop header having a loop information means this loop information
1074      // has already been populated
1075      loop_information_ = info;
1076    } else {
1077      // Block is part of an inner loop. Do not update the loop information.
1078      // Note that we cannot do the check `info->Contains(loop_information_)->GetHeader()`
1079      // at this point, because this method is being called while populating `info`.
1080    }
1081  }
1082
1083  // Raw update of the loop information.
1084  void SetLoopInformation(HLoopInformation* info) {
1085    loop_information_ = info;
1086  }
1087
1088  bool IsInLoop() const { return loop_information_ != nullptr; }
1089
1090  TryCatchInformation* GetTryCatchInformation() const { return try_catch_information_; }
1091
1092  void SetTryCatchInformation(TryCatchInformation* try_catch_information) {
1093    try_catch_information_ = try_catch_information;
1094  }
1095
1096  bool IsTryBlock() const {
1097    return try_catch_information_ != nullptr && try_catch_information_->IsTryBlock();
1098  }
1099
1100  bool IsCatchBlock() const {
1101    return try_catch_information_ != nullptr && try_catch_information_->IsCatchBlock();
1102  }
1103
1104  // Returns the try entry that this block's successors should have. They will
1105  // be in the same try, unless the block ends in a try boundary. In that case,
1106  // the appropriate try entry will be returned.
1107  const HTryBoundary* ComputeTryEntryOfSuccessors() const;
1108
1109  bool HasThrowingInstructions() const;
1110
1111  // Returns whether this block dominates the blocked passed as parameter.
1112  bool Dominates(HBasicBlock* block) const;
1113
1114  size_t GetLifetimeStart() const { return lifetime_start_; }
1115  size_t GetLifetimeEnd() const { return lifetime_end_; }
1116
1117  void SetLifetimeStart(size_t start) { lifetime_start_ = start; }
1118  void SetLifetimeEnd(size_t end) { lifetime_end_ = end; }
1119
1120  bool EndsWithControlFlowInstruction() const;
1121  bool EndsWithIf() const;
1122  bool EndsWithTryBoundary() const;
1123  bool HasSinglePhi() const;
1124
1125 private:
1126  HGraph* graph_;
1127  ArenaVector<HBasicBlock*> predecessors_;
1128  ArenaVector<HBasicBlock*> successors_;
1129  HInstructionList instructions_;
1130  HInstructionList phis_;
1131  HLoopInformation* loop_information_;
1132  HBasicBlock* dominator_;
1133  ArenaVector<HBasicBlock*> dominated_blocks_;
1134  uint32_t block_id_;
1135  // The dex program counter of the first instruction of this block.
1136  const uint32_t dex_pc_;
1137  size_t lifetime_start_;
1138  size_t lifetime_end_;
1139  TryCatchInformation* try_catch_information_;
1140
1141  friend class HGraph;
1142  friend class HInstruction;
1143
1144  DISALLOW_COPY_AND_ASSIGN(HBasicBlock);
1145};
1146
1147// Iterates over the LoopInformation of all loops which contain 'block'
1148// from the innermost to the outermost.
1149class HLoopInformationOutwardIterator : public ValueObject {
1150 public:
1151  explicit HLoopInformationOutwardIterator(const HBasicBlock& block)
1152      : current_(block.GetLoopInformation()) {}
1153
1154  bool Done() const { return current_ == nullptr; }
1155
1156  void Advance() {
1157    DCHECK(!Done());
1158    current_ = current_->GetPreHeader()->GetLoopInformation();
1159  }
1160
1161  HLoopInformation* Current() const {
1162    DCHECK(!Done());
1163    return current_;
1164  }
1165
1166 private:
1167  HLoopInformation* current_;
1168
1169  DISALLOW_COPY_AND_ASSIGN(HLoopInformationOutwardIterator);
1170};
1171
1172#define FOR_EACH_CONCRETE_INSTRUCTION_COMMON(M)                         \
1173  M(Above, Condition)                                                   \
1174  M(AboveOrEqual, Condition)                                            \
1175  M(Add, BinaryOperation)                                               \
1176  M(And, BinaryOperation)                                               \
1177  M(ArrayGet, Instruction)                                              \
1178  M(ArrayLength, Instruction)                                           \
1179  M(ArraySet, Instruction)                                              \
1180  M(Below, Condition)                                                   \
1181  M(BelowOrEqual, Condition)                                            \
1182  M(BooleanNot, UnaryOperation)                                         \
1183  M(BoundsCheck, Instruction)                                           \
1184  M(BoundType, Instruction)                                             \
1185  M(CheckCast, Instruction)                                             \
1186  M(ClassTableGet, Instruction)                                         \
1187  M(ClearException, Instruction)                                        \
1188  M(ClinitCheck, Instruction)                                           \
1189  M(Compare, BinaryOperation)                                           \
1190  M(CurrentMethod, Instruction)                                         \
1191  M(Deoptimize, Instruction)                                            \
1192  M(Div, BinaryOperation)                                               \
1193  M(DivZeroCheck, Instruction)                                          \
1194  M(DoubleConstant, Constant)                                           \
1195  M(Equal, Condition)                                                   \
1196  M(Exit, Instruction)                                                  \
1197  M(FloatConstant, Constant)                                            \
1198  M(Goto, Instruction)                                                  \
1199  M(GreaterThan, Condition)                                             \
1200  M(GreaterThanOrEqual, Condition)                                      \
1201  M(If, Instruction)                                                    \
1202  M(InstanceFieldGet, Instruction)                                      \
1203  M(InstanceFieldSet, Instruction)                                      \
1204  M(InstanceOf, Instruction)                                            \
1205  M(IntConstant, Constant)                                              \
1206  M(InvokeUnresolved, Invoke)                                           \
1207  M(InvokeInterface, Invoke)                                            \
1208  M(InvokeStaticOrDirect, Invoke)                                       \
1209  M(InvokeVirtual, Invoke)                                              \
1210  M(LessThan, Condition)                                                \
1211  M(LessThanOrEqual, Condition)                                         \
1212  M(LoadClass, Instruction)                                             \
1213  M(LoadException, Instruction)                                         \
1214  M(LoadLocal, Instruction)                                             \
1215  M(LoadString, Instruction)                                            \
1216  M(Local, Instruction)                                                 \
1217  M(LongConstant, Constant)                                             \
1218  M(MemoryBarrier, Instruction)                                         \
1219  M(MonitorOperation, Instruction)                                      \
1220  M(Mul, BinaryOperation)                                               \
1221  M(NativeDebugInfo, Instruction)                                       \
1222  M(Neg, UnaryOperation)                                                \
1223  M(NewArray, Instruction)                                              \
1224  M(NewInstance, Instruction)                                           \
1225  M(Not, UnaryOperation)                                                \
1226  M(NotEqual, Condition)                                                \
1227  M(NullConstant, Instruction)                                          \
1228  M(NullCheck, Instruction)                                             \
1229  M(Or, BinaryOperation)                                                \
1230  M(PackedSwitch, Instruction)                                          \
1231  M(ParallelMove, Instruction)                                          \
1232  M(ParameterValue, Instruction)                                        \
1233  M(Phi, Instruction)                                                   \
1234  M(Rem, BinaryOperation)                                               \
1235  M(Return, Instruction)                                                \
1236  M(ReturnVoid, Instruction)                                            \
1237  M(Ror, BinaryOperation)                                               \
1238  M(Shl, BinaryOperation)                                               \
1239  M(Shr, BinaryOperation)                                               \
1240  M(StaticFieldGet, Instruction)                                        \
1241  M(StaticFieldSet, Instruction)                                        \
1242  M(UnresolvedInstanceFieldGet, Instruction)                            \
1243  M(UnresolvedInstanceFieldSet, Instruction)                            \
1244  M(UnresolvedStaticFieldGet, Instruction)                              \
1245  M(UnresolvedStaticFieldSet, Instruction)                              \
1246  M(Select, Instruction)                                                \
1247  M(StoreLocal, Instruction)                                            \
1248  M(Sub, BinaryOperation)                                               \
1249  M(SuspendCheck, Instruction)                                          \
1250  M(Throw, Instruction)                                                 \
1251  M(TryBoundary, Instruction)                                           \
1252  M(TypeConversion, Instruction)                                        \
1253  M(UShr, BinaryOperation)                                              \
1254  M(Xor, BinaryOperation)                                               \
1255
1256/*
1257 * Instructions, shared across several (not all) architectures.
1258 */
1259#if !defined(ART_ENABLE_CODEGEN_arm) && !defined(ART_ENABLE_CODEGEN_arm64)
1260#define FOR_EACH_CONCRETE_INSTRUCTION_SHARED(M)
1261#else
1262#define FOR_EACH_CONCRETE_INSTRUCTION_SHARED(M)                         \
1263  M(BitwiseNegatedRight, Instruction)                                   \
1264  M(MultiplyAccumulate, Instruction)
1265#endif
1266
1267#ifndef ART_ENABLE_CODEGEN_arm
1268#define FOR_EACH_CONCRETE_INSTRUCTION_ARM(M)
1269#else
1270#define FOR_EACH_CONCRETE_INSTRUCTION_ARM(M)                            \
1271  M(ArmDexCacheArraysBase, Instruction)
1272#endif
1273
1274#ifndef ART_ENABLE_CODEGEN_arm64
1275#define FOR_EACH_CONCRETE_INSTRUCTION_ARM64(M)
1276#else
1277#define FOR_EACH_CONCRETE_INSTRUCTION_ARM64(M)                          \
1278  M(Arm64DataProcWithShifterOp, Instruction)                            \
1279  M(Arm64IntermediateAddress, Instruction)
1280#endif
1281
1282#define FOR_EACH_CONCRETE_INSTRUCTION_MIPS(M)
1283
1284#define FOR_EACH_CONCRETE_INSTRUCTION_MIPS64(M)
1285
1286#ifndef ART_ENABLE_CODEGEN_x86
1287#define FOR_EACH_CONCRETE_INSTRUCTION_X86(M)
1288#else
1289#define FOR_EACH_CONCRETE_INSTRUCTION_X86(M)                            \
1290  M(X86ComputeBaseMethodAddress, Instruction)                           \
1291  M(X86LoadFromConstantTable, Instruction)                              \
1292  M(X86FPNeg, Instruction)                                              \
1293  M(X86PackedSwitch, Instruction)
1294#endif
1295
1296#define FOR_EACH_CONCRETE_INSTRUCTION_X86_64(M)
1297
1298#define FOR_EACH_CONCRETE_INSTRUCTION(M)                                \
1299  FOR_EACH_CONCRETE_INSTRUCTION_COMMON(M)                               \
1300  FOR_EACH_CONCRETE_INSTRUCTION_SHARED(M)                               \
1301  FOR_EACH_CONCRETE_INSTRUCTION_ARM(M)                                  \
1302  FOR_EACH_CONCRETE_INSTRUCTION_ARM64(M)                                \
1303  FOR_EACH_CONCRETE_INSTRUCTION_MIPS(M)                                 \
1304  FOR_EACH_CONCRETE_INSTRUCTION_MIPS64(M)                               \
1305  FOR_EACH_CONCRETE_INSTRUCTION_X86(M)                                  \
1306  FOR_EACH_CONCRETE_INSTRUCTION_X86_64(M)
1307
1308#define FOR_EACH_ABSTRACT_INSTRUCTION(M)                                \
1309  M(Condition, BinaryOperation)                                         \
1310  M(Constant, Instruction)                                              \
1311  M(UnaryOperation, Instruction)                                        \
1312  M(BinaryOperation, Instruction)                                       \
1313  M(Invoke, Instruction)
1314
1315#define FOR_EACH_INSTRUCTION(M)                                         \
1316  FOR_EACH_CONCRETE_INSTRUCTION(M)                                      \
1317  FOR_EACH_ABSTRACT_INSTRUCTION(M)
1318
1319#define FORWARD_DECLARATION(type, super) class H##type;
1320FOR_EACH_INSTRUCTION(FORWARD_DECLARATION)
1321#undef FORWARD_DECLARATION
1322
1323#define DECLARE_INSTRUCTION(type)                                       \
1324  InstructionKind GetKindInternal() const OVERRIDE { return k##type; }  \
1325  const char* DebugName() const OVERRIDE { return #type; }              \
1326  bool InstructionTypeEquals(HInstruction* other) const OVERRIDE {      \
1327    return other->Is##type();                                           \
1328  }                                                                     \
1329  void Accept(HGraphVisitor* visitor) OVERRIDE
1330
1331#define DECLARE_ABSTRACT_INSTRUCTION(type)                              \
1332  bool Is##type() const { return As##type() != nullptr; }               \
1333  const H##type* As##type() const { return this; }                      \
1334  H##type* As##type() { return this; }
1335
1336template <typename T> class HUseList;
1337
1338template <typename T>
1339class HUseListNode : public ArenaObject<kArenaAllocUseListNode> {
1340 public:
1341  HUseListNode* GetPrevious() const { return prev_; }
1342  HUseListNode* GetNext() const { return next_; }
1343  T GetUser() const { return user_; }
1344  size_t GetIndex() const { return index_; }
1345  void SetIndex(size_t index) { index_ = index; }
1346
1347 private:
1348  HUseListNode(T user, size_t index)
1349      : user_(user), index_(index), prev_(nullptr), next_(nullptr) {}
1350
1351  T const user_;
1352  size_t index_;
1353  HUseListNode<T>* prev_;
1354  HUseListNode<T>* next_;
1355
1356  friend class HUseList<T>;
1357
1358  DISALLOW_COPY_AND_ASSIGN(HUseListNode);
1359};
1360
1361template <typename T>
1362class HUseList : public ValueObject {
1363 public:
1364  HUseList() : first_(nullptr) {}
1365
1366  void Clear() {
1367    first_ = nullptr;
1368  }
1369
1370  // Adds a new entry at the beginning of the use list and returns
1371  // the newly created node.
1372  HUseListNode<T>* AddUse(T user, size_t index, ArenaAllocator* arena) {
1373    HUseListNode<T>* new_node = new (arena) HUseListNode<T>(user, index);
1374    if (IsEmpty()) {
1375      first_ = new_node;
1376    } else {
1377      first_->prev_ = new_node;
1378      new_node->next_ = first_;
1379      first_ = new_node;
1380    }
1381    return new_node;
1382  }
1383
1384  HUseListNode<T>* GetFirst() const {
1385    return first_;
1386  }
1387
1388  void Remove(HUseListNode<T>* node) {
1389    DCHECK(node != nullptr);
1390    DCHECK(Contains(node));
1391
1392    if (node->prev_ != nullptr) {
1393      node->prev_->next_ = node->next_;
1394    }
1395    if (node->next_ != nullptr) {
1396      node->next_->prev_ = node->prev_;
1397    }
1398    if (node == first_) {
1399      first_ = node->next_;
1400    }
1401  }
1402
1403  bool Contains(const HUseListNode<T>* node) const {
1404    if (node == nullptr) {
1405      return false;
1406    }
1407    for (HUseListNode<T>* current = first_; current != nullptr; current = current->GetNext()) {
1408      if (current == node) {
1409        return true;
1410      }
1411    }
1412    return false;
1413  }
1414
1415  bool IsEmpty() const {
1416    return first_ == nullptr;
1417  }
1418
1419  bool HasOnlyOneUse() const {
1420    return first_ != nullptr && first_->next_ == nullptr;
1421  }
1422
1423  size_t SizeSlow() const {
1424    size_t count = 0;
1425    for (HUseListNode<T>* current = first_; current != nullptr; current = current->GetNext()) {
1426      ++count;
1427    }
1428    return count;
1429  }
1430
1431 private:
1432  HUseListNode<T>* first_;
1433};
1434
1435template<typename T>
1436class HUseIterator : public ValueObject {
1437 public:
1438  explicit HUseIterator(const HUseList<T>& uses) : current_(uses.GetFirst()) {}
1439
1440  bool Done() const { return current_ == nullptr; }
1441
1442  void Advance() {
1443    DCHECK(!Done());
1444    current_ = current_->GetNext();
1445  }
1446
1447  HUseListNode<T>* Current() const {
1448    DCHECK(!Done());
1449    return current_;
1450  }
1451
1452 private:
1453  HUseListNode<T>* current_;
1454
1455  friend class HValue;
1456};
1457
1458// This class is used by HEnvironment and HInstruction classes to record the
1459// instructions they use and pointers to the corresponding HUseListNodes kept
1460// by the used instructions.
1461template <typename T>
1462class HUserRecord : public ValueObject {
1463 public:
1464  HUserRecord() : instruction_(nullptr), use_node_(nullptr) {}
1465  explicit HUserRecord(HInstruction* instruction) : instruction_(instruction), use_node_(nullptr) {}
1466
1467  HUserRecord(const HUserRecord<T>& old_record, HUseListNode<T>* use_node)
1468    : instruction_(old_record.instruction_), use_node_(use_node) {
1469    DCHECK(instruction_ != nullptr);
1470    DCHECK(use_node_ != nullptr);
1471    DCHECK(old_record.use_node_ == nullptr);
1472  }
1473
1474  HInstruction* GetInstruction() const { return instruction_; }
1475  HUseListNode<T>* GetUseNode() const { return use_node_; }
1476
1477 private:
1478  // Instruction used by the user.
1479  HInstruction* instruction_;
1480
1481  // Corresponding entry in the use list kept by 'instruction_'.
1482  HUseListNode<T>* use_node_;
1483};
1484
1485/**
1486 * Side-effects representation.
1487 *
1488 * For write/read dependences on fields/arrays, the dependence analysis uses
1489 * type disambiguation (e.g. a float field write cannot modify the value of an
1490 * integer field read) and the access type (e.g.  a reference array write cannot
1491 * modify the value of a reference field read [although it may modify the
1492 * reference fetch prior to reading the field, which is represented by its own
1493 * write/read dependence]). The analysis makes conservative points-to
1494 * assumptions on reference types (e.g. two same typed arrays are assumed to be
1495 * the same, and any reference read depends on any reference read without
1496 * further regard of its type).
1497 *
1498 * The internal representation uses 38-bit and is described in the table below.
1499 * The first line indicates the side effect, and for field/array accesses the
1500 * second line indicates the type of the access (in the order of the
1501 * Primitive::Type enum).
1502 * The two numbered lines below indicate the bit position in the bitfield (read
1503 * vertically).
1504 *
1505 *   |Depends on GC|ARRAY-R  |FIELD-R  |Can trigger GC|ARRAY-W  |FIELD-W  |
1506 *   +-------------+---------+---------+--------------+---------+---------+
1507 *   |             |DFJISCBZL|DFJISCBZL|              |DFJISCBZL|DFJISCBZL|
1508 *   |      3      |333333322|222222221|       1      |111111110|000000000|
1509 *   |      7      |654321098|765432109|       8      |765432109|876543210|
1510 *
1511 * Note that, to ease the implementation, 'changes' bits are least significant
1512 * bits, while 'dependency' bits are most significant bits.
1513 */
1514class SideEffects : public ValueObject {
1515 public:
1516  SideEffects() : flags_(0) {}
1517
1518  static SideEffects None() {
1519    return SideEffects(0);
1520  }
1521
1522  static SideEffects All() {
1523    return SideEffects(kAllChangeBits | kAllDependOnBits);
1524  }
1525
1526  static SideEffects AllChanges() {
1527    return SideEffects(kAllChangeBits);
1528  }
1529
1530  static SideEffects AllDependencies() {
1531    return SideEffects(kAllDependOnBits);
1532  }
1533
1534  static SideEffects AllExceptGCDependency() {
1535    return AllWritesAndReads().Union(SideEffects::CanTriggerGC());
1536  }
1537
1538  static SideEffects AllWritesAndReads() {
1539    return SideEffects(kAllWrites | kAllReads);
1540  }
1541
1542  static SideEffects AllWrites() {
1543    return SideEffects(kAllWrites);
1544  }
1545
1546  static SideEffects AllReads() {
1547    return SideEffects(kAllReads);
1548  }
1549
1550  static SideEffects FieldWriteOfType(Primitive::Type type, bool is_volatile) {
1551    return is_volatile
1552        ? AllWritesAndReads()
1553        : SideEffects(TypeFlagWithAlias(type, kFieldWriteOffset));
1554  }
1555
1556  static SideEffects ArrayWriteOfType(Primitive::Type type) {
1557    return SideEffects(TypeFlagWithAlias(type, kArrayWriteOffset));
1558  }
1559
1560  static SideEffects FieldReadOfType(Primitive::Type type, bool is_volatile) {
1561    return is_volatile
1562        ? AllWritesAndReads()
1563        : SideEffects(TypeFlagWithAlias(type, kFieldReadOffset));
1564  }
1565
1566  static SideEffects ArrayReadOfType(Primitive::Type type) {
1567    return SideEffects(TypeFlagWithAlias(type, kArrayReadOffset));
1568  }
1569
1570  static SideEffects CanTriggerGC() {
1571    return SideEffects(1ULL << kCanTriggerGCBit);
1572  }
1573
1574  static SideEffects DependsOnGC() {
1575    return SideEffects(1ULL << kDependsOnGCBit);
1576  }
1577
1578  // Combines the side-effects of this and the other.
1579  SideEffects Union(SideEffects other) const {
1580    return SideEffects(flags_ | other.flags_);
1581  }
1582
1583  SideEffects Exclusion(SideEffects other) const {
1584    return SideEffects(flags_ & ~other.flags_);
1585  }
1586
1587  void Add(SideEffects other) {
1588    flags_ |= other.flags_;
1589  }
1590
1591  bool Includes(SideEffects other) const {
1592    return (other.flags_ & flags_) == other.flags_;
1593  }
1594
1595  bool HasSideEffects() const {
1596    return (flags_ & kAllChangeBits);
1597  }
1598
1599  bool HasDependencies() const {
1600    return (flags_ & kAllDependOnBits);
1601  }
1602
1603  // Returns true if there are no side effects or dependencies.
1604  bool DoesNothing() const {
1605    return flags_ == 0;
1606  }
1607
1608  // Returns true if something is written.
1609  bool DoesAnyWrite() const {
1610    return (flags_ & kAllWrites);
1611  }
1612
1613  // Returns true if something is read.
1614  bool DoesAnyRead() const {
1615    return (flags_ & kAllReads);
1616  }
1617
1618  // Returns true if potentially everything is written and read
1619  // (every type and every kind of access).
1620  bool DoesAllReadWrite() const {
1621    return (flags_ & (kAllWrites | kAllReads)) == (kAllWrites | kAllReads);
1622  }
1623
1624  bool DoesAll() const {
1625    return flags_ == (kAllChangeBits | kAllDependOnBits);
1626  }
1627
1628  // Returns true if `this` may read something written by `other`.
1629  bool MayDependOn(SideEffects other) const {
1630    const uint64_t depends_on_flags = (flags_ & kAllDependOnBits) >> kChangeBits;
1631    return (other.flags_ & depends_on_flags);
1632  }
1633
1634  // Returns string representation of flags (for debugging only).
1635  // Format: |x|DFJISCBZL|DFJISCBZL|y|DFJISCBZL|DFJISCBZL|
1636  std::string ToString() const {
1637    std::string flags = "|";
1638    for (int s = kLastBit; s >= 0; s--) {
1639      bool current_bit_is_set = ((flags_ >> s) & 1) != 0;
1640      if ((s == kDependsOnGCBit) || (s == kCanTriggerGCBit)) {
1641        // This is a bit for the GC side effect.
1642        if (current_bit_is_set) {
1643          flags += "GC";
1644        }
1645        flags += "|";
1646      } else {
1647        // This is a bit for the array/field analysis.
1648        // The underscore character stands for the 'can trigger GC' bit.
1649        static const char *kDebug = "LZBCSIJFDLZBCSIJFD_LZBCSIJFDLZBCSIJFD";
1650        if (current_bit_is_set) {
1651          flags += kDebug[s];
1652        }
1653        if ((s == kFieldWriteOffset) || (s == kArrayWriteOffset) ||
1654            (s == kFieldReadOffset) || (s == kArrayReadOffset)) {
1655          flags += "|";
1656        }
1657      }
1658    }
1659    return flags;
1660  }
1661
1662  bool Equals(const SideEffects& other) const { return flags_ == other.flags_; }
1663
1664 private:
1665  static constexpr int kFieldArrayAnalysisBits = 9;
1666
1667  static constexpr int kFieldWriteOffset = 0;
1668  static constexpr int kArrayWriteOffset = kFieldWriteOffset + kFieldArrayAnalysisBits;
1669  static constexpr int kLastBitForWrites = kArrayWriteOffset + kFieldArrayAnalysisBits - 1;
1670  static constexpr int kCanTriggerGCBit = kLastBitForWrites + 1;
1671
1672  static constexpr int kChangeBits = kCanTriggerGCBit + 1;
1673
1674  static constexpr int kFieldReadOffset = kCanTriggerGCBit + 1;
1675  static constexpr int kArrayReadOffset = kFieldReadOffset + kFieldArrayAnalysisBits;
1676  static constexpr int kLastBitForReads = kArrayReadOffset + kFieldArrayAnalysisBits - 1;
1677  static constexpr int kDependsOnGCBit = kLastBitForReads + 1;
1678
1679  static constexpr int kLastBit = kDependsOnGCBit;
1680  static constexpr int kDependOnBits = kLastBit + 1 - kChangeBits;
1681
1682  // Aliases.
1683
1684  static_assert(kChangeBits == kDependOnBits,
1685                "the 'change' bits should match the 'depend on' bits.");
1686
1687  static constexpr uint64_t kAllChangeBits = ((1ULL << kChangeBits) - 1);
1688  static constexpr uint64_t kAllDependOnBits = ((1ULL << kDependOnBits) - 1) << kChangeBits;
1689  static constexpr uint64_t kAllWrites =
1690      ((1ULL << (kLastBitForWrites + 1 - kFieldWriteOffset)) - 1) << kFieldWriteOffset;
1691  static constexpr uint64_t kAllReads =
1692      ((1ULL << (kLastBitForReads + 1 - kFieldReadOffset)) - 1) << kFieldReadOffset;
1693
1694  // Work around the fact that HIR aliases I/F and J/D.
1695  // TODO: remove this interceptor once HIR types are clean
1696  static uint64_t TypeFlagWithAlias(Primitive::Type type, int offset) {
1697    switch (type) {
1698      case Primitive::kPrimInt:
1699      case Primitive::kPrimFloat:
1700        return TypeFlag(Primitive::kPrimInt, offset) |
1701               TypeFlag(Primitive::kPrimFloat, offset);
1702      case Primitive::kPrimLong:
1703      case Primitive::kPrimDouble:
1704        return TypeFlag(Primitive::kPrimLong, offset) |
1705               TypeFlag(Primitive::kPrimDouble, offset);
1706      default:
1707        return TypeFlag(type, offset);
1708    }
1709  }
1710
1711  // Translates type to bit flag.
1712  static uint64_t TypeFlag(Primitive::Type type, int offset) {
1713    CHECK_NE(type, Primitive::kPrimVoid);
1714    const uint64_t one = 1;
1715    const int shift = type;  // 0-based consecutive enum
1716    DCHECK_LE(kFieldWriteOffset, shift);
1717    DCHECK_LT(shift, kArrayWriteOffset);
1718    return one << (type + offset);
1719  }
1720
1721  // Private constructor on direct flags value.
1722  explicit SideEffects(uint64_t flags) : flags_(flags) {}
1723
1724  uint64_t flags_;
1725};
1726
1727// A HEnvironment object contains the values of virtual registers at a given location.
1728class HEnvironment : public ArenaObject<kArenaAllocEnvironment> {
1729 public:
1730  HEnvironment(ArenaAllocator* arena,
1731               size_t number_of_vregs,
1732               const DexFile& dex_file,
1733               uint32_t method_idx,
1734               uint32_t dex_pc,
1735               InvokeType invoke_type,
1736               HInstruction* holder)
1737     : vregs_(number_of_vregs, arena->Adapter(kArenaAllocEnvironmentVRegs)),
1738       locations_(number_of_vregs, arena->Adapter(kArenaAllocEnvironmentLocations)),
1739       parent_(nullptr),
1740       dex_file_(dex_file),
1741       method_idx_(method_idx),
1742       dex_pc_(dex_pc),
1743       invoke_type_(invoke_type),
1744       holder_(holder) {
1745  }
1746
1747  HEnvironment(ArenaAllocator* arena, const HEnvironment& to_copy, HInstruction* holder)
1748      : HEnvironment(arena,
1749                     to_copy.Size(),
1750                     to_copy.GetDexFile(),
1751                     to_copy.GetMethodIdx(),
1752                     to_copy.GetDexPc(),
1753                     to_copy.GetInvokeType(),
1754                     holder) {}
1755
1756  void SetAndCopyParentChain(ArenaAllocator* allocator, HEnvironment* parent) {
1757    if (parent_ != nullptr) {
1758      parent_->SetAndCopyParentChain(allocator, parent);
1759    } else {
1760      parent_ = new (allocator) HEnvironment(allocator, *parent, holder_);
1761      parent_->CopyFrom(parent);
1762      if (parent->GetParent() != nullptr) {
1763        parent_->SetAndCopyParentChain(allocator, parent->GetParent());
1764      }
1765    }
1766  }
1767
1768  void CopyFrom(const ArenaVector<HInstruction*>& locals);
1769  void CopyFrom(HEnvironment* environment);
1770
1771  // Copy from `env`. If it's a loop phi for `loop_header`, copy the first
1772  // input to the loop phi instead. This is for inserting instructions that
1773  // require an environment (like HDeoptimization) in the loop pre-header.
1774  void CopyFromWithLoopPhiAdjustment(HEnvironment* env, HBasicBlock* loop_header);
1775
1776  void SetRawEnvAt(size_t index, HInstruction* instruction) {
1777    vregs_[index] = HUserRecord<HEnvironment*>(instruction);
1778  }
1779
1780  HInstruction* GetInstructionAt(size_t index) const {
1781    return vregs_[index].GetInstruction();
1782  }
1783
1784  void RemoveAsUserOfInput(size_t index) const;
1785
1786  size_t Size() const { return vregs_.size(); }
1787
1788  HEnvironment* GetParent() const { return parent_; }
1789
1790  void SetLocationAt(size_t index, Location location) {
1791    locations_[index] = location;
1792  }
1793
1794  Location GetLocationAt(size_t index) const {
1795    return locations_[index];
1796  }
1797
1798  uint32_t GetDexPc() const {
1799    return dex_pc_;
1800  }
1801
1802  uint32_t GetMethodIdx() const {
1803    return method_idx_;
1804  }
1805
1806  InvokeType GetInvokeType() const {
1807    return invoke_type_;
1808  }
1809
1810  const DexFile& GetDexFile() const {
1811    return dex_file_;
1812  }
1813
1814  HInstruction* GetHolder() const {
1815    return holder_;
1816  }
1817
1818
1819  bool IsFromInlinedInvoke() const {
1820    return GetParent() != nullptr;
1821  }
1822
1823 private:
1824  // Record instructions' use entries of this environment for constant-time removal.
1825  // It should only be called by HInstruction when a new environment use is added.
1826  void RecordEnvUse(HUseListNode<HEnvironment*>* env_use) {
1827    DCHECK(env_use->GetUser() == this);
1828    size_t index = env_use->GetIndex();
1829    vregs_[index] = HUserRecord<HEnvironment*>(vregs_[index], env_use);
1830  }
1831
1832  ArenaVector<HUserRecord<HEnvironment*>> vregs_;
1833  ArenaVector<Location> locations_;
1834  HEnvironment* parent_;
1835  const DexFile& dex_file_;
1836  const uint32_t method_idx_;
1837  const uint32_t dex_pc_;
1838  const InvokeType invoke_type_;
1839
1840  // The instruction that holds this environment.
1841  HInstruction* const holder_;
1842
1843  friend class HInstruction;
1844
1845  DISALLOW_COPY_AND_ASSIGN(HEnvironment);
1846};
1847
1848class HInstruction : public ArenaObject<kArenaAllocInstruction> {
1849 public:
1850  HInstruction(SideEffects side_effects, uint32_t dex_pc)
1851      : previous_(nullptr),
1852        next_(nullptr),
1853        block_(nullptr),
1854        dex_pc_(dex_pc),
1855        id_(-1),
1856        ssa_index_(-1),
1857        packed_fields_(0u),
1858        environment_(nullptr),
1859        locations_(nullptr),
1860        live_interval_(nullptr),
1861        lifetime_position_(kNoLifetime),
1862        side_effects_(side_effects),
1863        reference_type_handle_(ReferenceTypeInfo::CreateInvalid().GetTypeHandle()) {
1864    SetPackedFlag<kFlagReferenceTypeIsExact>(ReferenceTypeInfo::CreateInvalid().IsExact());
1865  }
1866
1867  virtual ~HInstruction() {}
1868
1869#define DECLARE_KIND(type, super) k##type,
1870  enum InstructionKind {
1871    FOR_EACH_INSTRUCTION(DECLARE_KIND)
1872  };
1873#undef DECLARE_KIND
1874
1875  HInstruction* GetNext() const { return next_; }
1876  HInstruction* GetPrevious() const { return previous_; }
1877
1878  HInstruction* GetNextDisregardingMoves() const;
1879  HInstruction* GetPreviousDisregardingMoves() const;
1880
1881  HBasicBlock* GetBlock() const { return block_; }
1882  ArenaAllocator* GetArena() const { return block_->GetGraph()->GetArena(); }
1883  void SetBlock(HBasicBlock* block) { block_ = block; }
1884  bool IsInBlock() const { return block_ != nullptr; }
1885  bool IsInLoop() const { return block_->IsInLoop(); }
1886  bool IsLoopHeaderPhi() const { return IsPhi() && block_->IsLoopHeader(); }
1887  bool IsIrreducibleLoopHeaderPhi() const {
1888    return IsLoopHeaderPhi() && GetBlock()->GetLoopInformation()->IsIrreducible();
1889  }
1890
1891  virtual size_t InputCount() const = 0;
1892  HInstruction* InputAt(size_t i) const { return InputRecordAt(i).GetInstruction(); }
1893
1894  virtual void Accept(HGraphVisitor* visitor) = 0;
1895  virtual const char* DebugName() const = 0;
1896
1897  virtual Primitive::Type GetType() const { return Primitive::kPrimVoid; }
1898  void SetRawInputAt(size_t index, HInstruction* input) {
1899    SetRawInputRecordAt(index, HUserRecord<HInstruction*>(input));
1900  }
1901
1902  virtual bool NeedsEnvironment() const { return false; }
1903
1904  uint32_t GetDexPc() const { return dex_pc_; }
1905
1906  virtual bool IsControlFlow() const { return false; }
1907
1908  virtual bool CanThrow() const { return false; }
1909  bool CanThrowIntoCatchBlock() const { return CanThrow() && block_->IsTryBlock(); }
1910
1911  bool HasSideEffects() const { return side_effects_.HasSideEffects(); }
1912  bool DoesAnyWrite() const { return side_effects_.DoesAnyWrite(); }
1913
1914  // Does not apply for all instructions, but having this at top level greatly
1915  // simplifies the null check elimination.
1916  // TODO: Consider merging can_be_null into ReferenceTypeInfo.
1917  virtual bool CanBeNull() const {
1918    DCHECK_EQ(GetType(), Primitive::kPrimNot) << "CanBeNull only applies to reference types";
1919    return true;
1920  }
1921
1922  virtual bool CanDoImplicitNullCheckOn(HInstruction* obj ATTRIBUTE_UNUSED) const {
1923    return false;
1924  }
1925
1926  virtual bool IsActualObject() const {
1927    return GetType() == Primitive::kPrimNot;
1928  }
1929
1930  void SetReferenceTypeInfo(ReferenceTypeInfo rti);
1931
1932  ReferenceTypeInfo GetReferenceTypeInfo() const {
1933    DCHECK_EQ(GetType(), Primitive::kPrimNot);
1934    return ReferenceTypeInfo::CreateUnchecked(reference_type_handle_,
1935                                              GetPackedFlag<kFlagReferenceTypeIsExact>());;
1936  }
1937
1938  void AddUseAt(HInstruction* user, size_t index) {
1939    DCHECK(user != nullptr);
1940    HUseListNode<HInstruction*>* use =
1941        uses_.AddUse(user, index, GetBlock()->GetGraph()->GetArena());
1942    user->SetRawInputRecordAt(index, HUserRecord<HInstruction*>(user->InputRecordAt(index), use));
1943  }
1944
1945  void AddEnvUseAt(HEnvironment* user, size_t index) {
1946    DCHECK(user != nullptr);
1947    HUseListNode<HEnvironment*>* env_use =
1948        env_uses_.AddUse(user, index, GetBlock()->GetGraph()->GetArena());
1949    user->RecordEnvUse(env_use);
1950  }
1951
1952  void RemoveAsUserOfInput(size_t input) {
1953    HUserRecord<HInstruction*> input_use = InputRecordAt(input);
1954    input_use.GetInstruction()->uses_.Remove(input_use.GetUseNode());
1955  }
1956
1957  const HUseList<HInstruction*>& GetUses() const { return uses_; }
1958  const HUseList<HEnvironment*>& GetEnvUses() const { return env_uses_; }
1959
1960  bool HasUses() const { return !uses_.IsEmpty() || !env_uses_.IsEmpty(); }
1961  bool HasEnvironmentUses() const { return !env_uses_.IsEmpty(); }
1962  bool HasNonEnvironmentUses() const { return !uses_.IsEmpty(); }
1963  bool HasOnlyOneNonEnvironmentUse() const {
1964    return !HasEnvironmentUses() && GetUses().HasOnlyOneUse();
1965  }
1966
1967  // Does this instruction strictly dominate `other_instruction`?
1968  // Returns false if this instruction and `other_instruction` are the same.
1969  // Aborts if this instruction and `other_instruction` are both phis.
1970  bool StrictlyDominates(HInstruction* other_instruction) const;
1971
1972  int GetId() const { return id_; }
1973  void SetId(int id) { id_ = id; }
1974
1975  int GetSsaIndex() const { return ssa_index_; }
1976  void SetSsaIndex(int ssa_index) { ssa_index_ = ssa_index; }
1977  bool HasSsaIndex() const { return ssa_index_ != -1; }
1978
1979  bool HasEnvironment() const { return environment_ != nullptr; }
1980  HEnvironment* GetEnvironment() const { return environment_; }
1981  // Set the `environment_` field. Raw because this method does not
1982  // update the uses lists.
1983  void SetRawEnvironment(HEnvironment* environment) {
1984    DCHECK(environment_ == nullptr);
1985    DCHECK_EQ(environment->GetHolder(), this);
1986    environment_ = environment;
1987  }
1988
1989  void RemoveEnvironment();
1990
1991  // Set the environment of this instruction, copying it from `environment`. While
1992  // copying, the uses lists are being updated.
1993  void CopyEnvironmentFrom(HEnvironment* environment) {
1994    DCHECK(environment_ == nullptr);
1995    ArenaAllocator* allocator = GetBlock()->GetGraph()->GetArena();
1996    environment_ = new (allocator) HEnvironment(allocator, *environment, this);
1997    environment_->CopyFrom(environment);
1998    if (environment->GetParent() != nullptr) {
1999      environment_->SetAndCopyParentChain(allocator, environment->GetParent());
2000    }
2001  }
2002
2003  void CopyEnvironmentFromWithLoopPhiAdjustment(HEnvironment* environment,
2004                                                HBasicBlock* block) {
2005    DCHECK(environment_ == nullptr);
2006    ArenaAllocator* allocator = GetBlock()->GetGraph()->GetArena();
2007    environment_ = new (allocator) HEnvironment(allocator, *environment, this);
2008    environment_->CopyFromWithLoopPhiAdjustment(environment, block);
2009    if (environment->GetParent() != nullptr) {
2010      environment_->SetAndCopyParentChain(allocator, environment->GetParent());
2011    }
2012  }
2013
2014  // Returns the number of entries in the environment. Typically, that is the
2015  // number of dex registers in a method. It could be more in case of inlining.
2016  size_t EnvironmentSize() const;
2017
2018  LocationSummary* GetLocations() const { return locations_; }
2019  void SetLocations(LocationSummary* locations) { locations_ = locations; }
2020
2021  void ReplaceWith(HInstruction* instruction);
2022  void ReplaceInput(HInstruction* replacement, size_t index);
2023
2024  // This is almost the same as doing `ReplaceWith()`. But in this helper, the
2025  // uses of this instruction by `other` are *not* updated.
2026  void ReplaceWithExceptInReplacementAtIndex(HInstruction* other, size_t use_index) {
2027    ReplaceWith(other);
2028    other->ReplaceInput(this, use_index);
2029  }
2030
2031  // Move `this` instruction before `cursor`.
2032  void MoveBefore(HInstruction* cursor);
2033
2034  // Move `this` before its first user and out of any loops. If there is no
2035  // out-of-loop user that dominates all other users, move the instruction
2036  // to the end of the out-of-loop common dominator of the user's blocks.
2037  //
2038  // This can be used only on non-throwing instructions with no side effects that
2039  // have at least one use but no environment uses.
2040  void MoveBeforeFirstUserAndOutOfLoops();
2041
2042#define INSTRUCTION_TYPE_CHECK(type, super)                                    \
2043  bool Is##type() const;                                                       \
2044  const H##type* As##type() const;                                             \
2045  H##type* As##type();
2046
2047  FOR_EACH_CONCRETE_INSTRUCTION(INSTRUCTION_TYPE_CHECK)
2048#undef INSTRUCTION_TYPE_CHECK
2049
2050#define INSTRUCTION_TYPE_CHECK(type, super)                                    \
2051  bool Is##type() const { return (As##type() != nullptr); }                    \
2052  virtual const H##type* As##type() const { return nullptr; }                  \
2053  virtual H##type* As##type() { return nullptr; }
2054  FOR_EACH_ABSTRACT_INSTRUCTION(INSTRUCTION_TYPE_CHECK)
2055#undef INSTRUCTION_TYPE_CHECK
2056
2057  // Returns whether the instruction can be moved within the graph.
2058  virtual bool CanBeMoved() const { return false; }
2059
2060  // Returns whether the two instructions are of the same kind.
2061  virtual bool InstructionTypeEquals(HInstruction* other ATTRIBUTE_UNUSED) const {
2062    return false;
2063  }
2064
2065  // Returns whether any data encoded in the two instructions is equal.
2066  // This method does not look at the inputs. Both instructions must be
2067  // of the same type, otherwise the method has undefined behavior.
2068  virtual bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const {
2069    return false;
2070  }
2071
2072  // Returns whether two instructions are equal, that is:
2073  // 1) They have the same type and contain the same data (InstructionDataEquals).
2074  // 2) Their inputs are identical.
2075  bool Equals(HInstruction* other) const;
2076
2077  // TODO: Remove this indirection when the [[pure]] attribute proposal (n3744)
2078  // is adopted and implemented by our C++ compiler(s). Fow now, we need to hide
2079  // the virtual function because the __attribute__((__pure__)) doesn't really
2080  // apply the strong requirement for virtual functions, preventing optimizations.
2081  InstructionKind GetKind() const PURE;
2082  virtual InstructionKind GetKindInternal() const = 0;
2083
2084  virtual size_t ComputeHashCode() const {
2085    size_t result = GetKind();
2086    for (size_t i = 0, e = InputCount(); i < e; ++i) {
2087      result = (result * 31) + InputAt(i)->GetId();
2088    }
2089    return result;
2090  }
2091
2092  SideEffects GetSideEffects() const { return side_effects_; }
2093  void SetSideEffects(SideEffects other) { side_effects_ = other; }
2094  void AddSideEffects(SideEffects other) { side_effects_.Add(other); }
2095
2096  size_t GetLifetimePosition() const { return lifetime_position_; }
2097  void SetLifetimePosition(size_t position) { lifetime_position_ = position; }
2098  LiveInterval* GetLiveInterval() const { return live_interval_; }
2099  void SetLiveInterval(LiveInterval* interval) { live_interval_ = interval; }
2100  bool HasLiveInterval() const { return live_interval_ != nullptr; }
2101
2102  bool IsSuspendCheckEntry() const { return IsSuspendCheck() && GetBlock()->IsEntryBlock(); }
2103
2104  // Returns whether the code generation of the instruction will require to have access
2105  // to the current method. Such instructions are:
2106  // (1): Instructions that require an environment, as calling the runtime requires
2107  //      to walk the stack and have the current method stored at a specific stack address.
2108  // (2): Object literals like classes and strings, that are loaded from the dex cache
2109  //      fields of the current method.
2110  bool NeedsCurrentMethod() const {
2111    return NeedsEnvironment() || IsLoadClass() || IsLoadString();
2112  }
2113
2114  // Returns whether the code generation of the instruction will require to have access
2115  // to the dex cache of the current method's declaring class via the current method.
2116  virtual bool NeedsDexCacheOfDeclaringClass() const { return false; }
2117
2118  // Does this instruction have any use in an environment before
2119  // control flow hits 'other'?
2120  bool HasAnyEnvironmentUseBefore(HInstruction* other);
2121
2122  // Remove all references to environment uses of this instruction.
2123  // The caller must ensure that this is safe to do.
2124  void RemoveEnvironmentUsers();
2125
2126  bool IsEmittedAtUseSite() const { return GetPackedFlag<kFlagEmittedAtUseSite>(); }
2127  void MarkEmittedAtUseSite() { SetPackedFlag<kFlagEmittedAtUseSite>(true); }
2128
2129 protected:
2130  // If set, the machine code for this instruction is assumed to be generated by
2131  // its users. Used by liveness analysis to compute use positions accordingly.
2132  static constexpr size_t kFlagEmittedAtUseSite = 0u;
2133  static constexpr size_t kFlagReferenceTypeIsExact = kFlagEmittedAtUseSite + 1;
2134  static constexpr size_t kNumberOfGenericPackedBits = kFlagReferenceTypeIsExact + 1;
2135  static constexpr size_t kMaxNumberOfPackedBits = sizeof(uint32_t) * kBitsPerByte;
2136
2137  virtual const HUserRecord<HInstruction*> InputRecordAt(size_t i) const = 0;
2138  virtual void SetRawInputRecordAt(size_t index, const HUserRecord<HInstruction*>& input) = 0;
2139
2140  uint32_t GetPackedFields() const {
2141    return packed_fields_;
2142  }
2143
2144  template <size_t flag>
2145  bool GetPackedFlag() const {
2146    return (packed_fields_ & (1u << flag)) != 0u;
2147  }
2148
2149  template <size_t flag>
2150  void SetPackedFlag(bool value = true) {
2151    packed_fields_ = (packed_fields_ & ~(1u << flag)) | ((value ? 1u : 0u) << flag);
2152  }
2153
2154  template <typename BitFieldType>
2155  typename BitFieldType::value_type GetPackedField() const {
2156    return BitFieldType::Decode(packed_fields_);
2157  }
2158
2159  template <typename BitFieldType>
2160  void SetPackedField(typename BitFieldType::value_type value) {
2161    DCHECK(IsUint<BitFieldType::size>(static_cast<uintptr_t>(value)));
2162    packed_fields_ = BitFieldType::Update(value, packed_fields_);
2163  }
2164
2165 private:
2166  void RemoveEnvironmentUser(HUseListNode<HEnvironment*>* use_node) { env_uses_.Remove(use_node); }
2167
2168  HInstruction* previous_;
2169  HInstruction* next_;
2170  HBasicBlock* block_;
2171  const uint32_t dex_pc_;
2172
2173  // An instruction gets an id when it is added to the graph.
2174  // It reflects creation order. A negative id means the instruction
2175  // has not been added to the graph.
2176  int id_;
2177
2178  // When doing liveness analysis, instructions that have uses get an SSA index.
2179  int ssa_index_;
2180
2181  // Packed fields.
2182  uint32_t packed_fields_;
2183
2184  // List of instructions that have this instruction as input.
2185  HUseList<HInstruction*> uses_;
2186
2187  // List of environments that contain this instruction.
2188  HUseList<HEnvironment*> env_uses_;
2189
2190  // The environment associated with this instruction. Not null if the instruction
2191  // might jump out of the method.
2192  HEnvironment* environment_;
2193
2194  // Set by the code generator.
2195  LocationSummary* locations_;
2196
2197  // Set by the liveness analysis.
2198  LiveInterval* live_interval_;
2199
2200  // Set by the liveness analysis, this is the position in a linear
2201  // order of blocks where this instruction's live interval start.
2202  size_t lifetime_position_;
2203
2204  SideEffects side_effects_;
2205
2206  // The reference handle part of the reference type info.
2207  // The IsExact() flag is stored in packed fields.
2208  // TODO: for primitive types this should be marked as invalid.
2209  ReferenceTypeInfo::TypeHandle reference_type_handle_;
2210
2211  friend class GraphChecker;
2212  friend class HBasicBlock;
2213  friend class HEnvironment;
2214  friend class HGraph;
2215  friend class HInstructionList;
2216
2217  DISALLOW_COPY_AND_ASSIGN(HInstruction);
2218};
2219std::ostream& operator<<(std::ostream& os, const HInstruction::InstructionKind& rhs);
2220
2221class HInputIterator : public ValueObject {
2222 public:
2223  explicit HInputIterator(HInstruction* instruction) : instruction_(instruction), index_(0) {}
2224
2225  bool Done() const { return index_ == instruction_->InputCount(); }
2226  HInstruction* Current() const { return instruction_->InputAt(index_); }
2227  void Advance() { index_++; }
2228
2229 private:
2230  HInstruction* instruction_;
2231  size_t index_;
2232
2233  DISALLOW_COPY_AND_ASSIGN(HInputIterator);
2234};
2235
2236class HInstructionIterator : public ValueObject {
2237 public:
2238  explicit HInstructionIterator(const HInstructionList& instructions)
2239      : instruction_(instructions.first_instruction_) {
2240    next_ = Done() ? nullptr : instruction_->GetNext();
2241  }
2242
2243  bool Done() const { return instruction_ == nullptr; }
2244  HInstruction* Current() const { return instruction_; }
2245  void Advance() {
2246    instruction_ = next_;
2247    next_ = Done() ? nullptr : instruction_->GetNext();
2248  }
2249
2250 private:
2251  HInstruction* instruction_;
2252  HInstruction* next_;
2253
2254  DISALLOW_COPY_AND_ASSIGN(HInstructionIterator);
2255};
2256
2257class HBackwardInstructionIterator : public ValueObject {
2258 public:
2259  explicit HBackwardInstructionIterator(const HInstructionList& instructions)
2260      : instruction_(instructions.last_instruction_) {
2261    next_ = Done() ? nullptr : instruction_->GetPrevious();
2262  }
2263
2264  bool Done() const { return instruction_ == nullptr; }
2265  HInstruction* Current() const { return instruction_; }
2266  void Advance() {
2267    instruction_ = next_;
2268    next_ = Done() ? nullptr : instruction_->GetPrevious();
2269  }
2270
2271 private:
2272  HInstruction* instruction_;
2273  HInstruction* next_;
2274
2275  DISALLOW_COPY_AND_ASSIGN(HBackwardInstructionIterator);
2276};
2277
2278template<size_t N>
2279class HTemplateInstruction: public HInstruction {
2280 public:
2281  HTemplateInstruction<N>(SideEffects side_effects, uint32_t dex_pc)
2282      : HInstruction(side_effects, dex_pc), inputs_() {}
2283  virtual ~HTemplateInstruction() {}
2284
2285  size_t InputCount() const OVERRIDE { return N; }
2286
2287 protected:
2288  const HUserRecord<HInstruction*> InputRecordAt(size_t i) const OVERRIDE {
2289    DCHECK_LT(i, N);
2290    return inputs_[i];
2291  }
2292
2293  void SetRawInputRecordAt(size_t i, const HUserRecord<HInstruction*>& input) OVERRIDE {
2294    DCHECK_LT(i, N);
2295    inputs_[i] = input;
2296  }
2297
2298 private:
2299  std::array<HUserRecord<HInstruction*>, N> inputs_;
2300
2301  friend class SsaBuilder;
2302};
2303
2304// HTemplateInstruction specialization for N=0.
2305template<>
2306class HTemplateInstruction<0>: public HInstruction {
2307 public:
2308  explicit HTemplateInstruction<0>(SideEffects side_effects, uint32_t dex_pc)
2309      : HInstruction(side_effects, dex_pc) {}
2310
2311  virtual ~HTemplateInstruction() {}
2312
2313  size_t InputCount() const OVERRIDE { return 0; }
2314
2315 protected:
2316  const HUserRecord<HInstruction*> InputRecordAt(size_t i ATTRIBUTE_UNUSED) const OVERRIDE {
2317    LOG(FATAL) << "Unreachable";
2318    UNREACHABLE();
2319  }
2320
2321  void SetRawInputRecordAt(size_t i ATTRIBUTE_UNUSED,
2322                           const HUserRecord<HInstruction*>& input ATTRIBUTE_UNUSED) OVERRIDE {
2323    LOG(FATAL) << "Unreachable";
2324    UNREACHABLE();
2325  }
2326
2327 private:
2328  friend class SsaBuilder;
2329};
2330
2331template<intptr_t N>
2332class HExpression : public HTemplateInstruction<N> {
2333 public:
2334  HExpression<N>(Primitive::Type type, SideEffects side_effects, uint32_t dex_pc)
2335      : HTemplateInstruction<N>(side_effects, dex_pc) {
2336    this->template SetPackedField<TypeField>(type);
2337  }
2338  virtual ~HExpression() {}
2339
2340  Primitive::Type GetType() const OVERRIDE {
2341    return TypeField::Decode(this->GetPackedFields());
2342  }
2343
2344 protected:
2345  static constexpr size_t kFieldType = HInstruction::kNumberOfGenericPackedBits;
2346  static constexpr size_t kFieldTypeSize =
2347      MinimumBitsToStore(static_cast<size_t>(Primitive::kPrimLast));
2348  static constexpr size_t kNumberOfExpressionPackedBits = kFieldType + kFieldTypeSize;
2349  static_assert(kNumberOfExpressionPackedBits <= HInstruction::kMaxNumberOfPackedBits,
2350                "Too many packed fields.");
2351  using TypeField = BitField<Primitive::Type, kFieldType, kFieldTypeSize>;
2352};
2353
2354// Represents dex's RETURN_VOID opcode. A HReturnVoid is a control flow
2355// instruction that branches to the exit block.
2356class HReturnVoid : public HTemplateInstruction<0> {
2357 public:
2358  explicit HReturnVoid(uint32_t dex_pc = kNoDexPc)
2359      : HTemplateInstruction(SideEffects::None(), dex_pc) {}
2360
2361  bool IsControlFlow() const OVERRIDE { return true; }
2362
2363  DECLARE_INSTRUCTION(ReturnVoid);
2364
2365 private:
2366  DISALLOW_COPY_AND_ASSIGN(HReturnVoid);
2367};
2368
2369// Represents dex's RETURN opcodes. A HReturn is a control flow
2370// instruction that branches to the exit block.
2371class HReturn : public HTemplateInstruction<1> {
2372 public:
2373  explicit HReturn(HInstruction* value, uint32_t dex_pc = kNoDexPc)
2374      : HTemplateInstruction(SideEffects::None(), dex_pc) {
2375    SetRawInputAt(0, value);
2376  }
2377
2378  bool IsControlFlow() const OVERRIDE { return true; }
2379
2380  DECLARE_INSTRUCTION(Return);
2381
2382 private:
2383  DISALLOW_COPY_AND_ASSIGN(HReturn);
2384};
2385
2386// The exit instruction is the only instruction of the exit block.
2387// Instructions aborting the method (HThrow and HReturn) must branch to the
2388// exit block.
2389class HExit : public HTemplateInstruction<0> {
2390 public:
2391  explicit HExit(uint32_t dex_pc = kNoDexPc) : HTemplateInstruction(SideEffects::None(), dex_pc) {}
2392
2393  bool IsControlFlow() const OVERRIDE { return true; }
2394
2395  DECLARE_INSTRUCTION(Exit);
2396
2397 private:
2398  DISALLOW_COPY_AND_ASSIGN(HExit);
2399};
2400
2401// Jumps from one block to another.
2402class HGoto : public HTemplateInstruction<0> {
2403 public:
2404  explicit HGoto(uint32_t dex_pc = kNoDexPc) : HTemplateInstruction(SideEffects::None(), dex_pc) {}
2405
2406  bool IsControlFlow() const OVERRIDE { return true; }
2407
2408  HBasicBlock* GetSuccessor() const {
2409    return GetBlock()->GetSingleSuccessor();
2410  }
2411
2412  DECLARE_INSTRUCTION(Goto);
2413
2414 private:
2415  DISALLOW_COPY_AND_ASSIGN(HGoto);
2416};
2417
2418class HConstant : public HExpression<0> {
2419 public:
2420  explicit HConstant(Primitive::Type type, uint32_t dex_pc = kNoDexPc)
2421      : HExpression(type, SideEffects::None(), dex_pc) {}
2422
2423  bool CanBeMoved() const OVERRIDE { return true; }
2424
2425  // Is this constant -1 in the arithmetic sense?
2426  virtual bool IsMinusOne() const { return false; }
2427  // Is this constant 0 in the arithmetic sense?
2428  virtual bool IsArithmeticZero() const { return false; }
2429  // Is this constant a 0-bit pattern?
2430  virtual bool IsZeroBitPattern() const { return false; }
2431  // Is this constant 1 in the arithmetic sense?
2432  virtual bool IsOne() const { return false; }
2433
2434  virtual uint64_t GetValueAsUint64() const = 0;
2435
2436  DECLARE_ABSTRACT_INSTRUCTION(Constant);
2437
2438 private:
2439  DISALLOW_COPY_AND_ASSIGN(HConstant);
2440};
2441
2442class HNullConstant : public HConstant {
2443 public:
2444  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
2445    return true;
2446  }
2447
2448  uint64_t GetValueAsUint64() const OVERRIDE { return 0; }
2449
2450  size_t ComputeHashCode() const OVERRIDE { return 0; }
2451
2452  // The null constant representation is a 0-bit pattern.
2453  virtual bool IsZeroBitPattern() const { return true; }
2454
2455  DECLARE_INSTRUCTION(NullConstant);
2456
2457 private:
2458  explicit HNullConstant(uint32_t dex_pc = kNoDexPc) : HConstant(Primitive::kPrimNot, dex_pc) {}
2459
2460  friend class HGraph;
2461  DISALLOW_COPY_AND_ASSIGN(HNullConstant);
2462};
2463
2464// Constants of the type int. Those can be from Dex instructions, or
2465// synthesized (for example with the if-eqz instruction).
2466class HIntConstant : public HConstant {
2467 public:
2468  int32_t GetValue() const { return value_; }
2469
2470  uint64_t GetValueAsUint64() const OVERRIDE {
2471    return static_cast<uint64_t>(static_cast<uint32_t>(value_));
2472  }
2473
2474  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2475    DCHECK(other->IsIntConstant()) << other->DebugName();
2476    return other->AsIntConstant()->value_ == value_;
2477  }
2478
2479  size_t ComputeHashCode() const OVERRIDE { return GetValue(); }
2480
2481  bool IsMinusOne() const OVERRIDE { return GetValue() == -1; }
2482  bool IsArithmeticZero() const OVERRIDE { return GetValue() == 0; }
2483  bool IsZeroBitPattern() const OVERRIDE { return GetValue() == 0; }
2484  bool IsOne() const OVERRIDE { return GetValue() == 1; }
2485
2486  // Integer constants are used to encode Boolean values as well,
2487  // where 1 means true and 0 means false.
2488  bool IsTrue() const { return GetValue() == 1; }
2489  bool IsFalse() const { return GetValue() == 0; }
2490
2491  DECLARE_INSTRUCTION(IntConstant);
2492
2493 private:
2494  explicit HIntConstant(int32_t value, uint32_t dex_pc = kNoDexPc)
2495      : HConstant(Primitive::kPrimInt, dex_pc), value_(value) {}
2496  explicit HIntConstant(bool value, uint32_t dex_pc = kNoDexPc)
2497      : HConstant(Primitive::kPrimInt, dex_pc), value_(value ? 1 : 0) {}
2498
2499  const int32_t value_;
2500
2501  friend class HGraph;
2502  ART_FRIEND_TEST(GraphTest, InsertInstructionBefore);
2503  ART_FRIEND_TYPED_TEST(ParallelMoveTest, ConstantLast);
2504  DISALLOW_COPY_AND_ASSIGN(HIntConstant);
2505};
2506
2507class HLongConstant : public HConstant {
2508 public:
2509  int64_t GetValue() const { return value_; }
2510
2511  uint64_t GetValueAsUint64() const OVERRIDE { return value_; }
2512
2513  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2514    DCHECK(other->IsLongConstant()) << other->DebugName();
2515    return other->AsLongConstant()->value_ == value_;
2516  }
2517
2518  size_t ComputeHashCode() const OVERRIDE { return static_cast<size_t>(GetValue()); }
2519
2520  bool IsMinusOne() const OVERRIDE { return GetValue() == -1; }
2521  bool IsArithmeticZero() const OVERRIDE { return GetValue() == 0; }
2522  bool IsZeroBitPattern() const OVERRIDE { return GetValue() == 0; }
2523  bool IsOne() const OVERRIDE { return GetValue() == 1; }
2524
2525  DECLARE_INSTRUCTION(LongConstant);
2526
2527 private:
2528  explicit HLongConstant(int64_t value, uint32_t dex_pc = kNoDexPc)
2529      : HConstant(Primitive::kPrimLong, dex_pc), value_(value) {}
2530
2531  const int64_t value_;
2532
2533  friend class HGraph;
2534  DISALLOW_COPY_AND_ASSIGN(HLongConstant);
2535};
2536
2537class HFloatConstant : public HConstant {
2538 public:
2539  float GetValue() const { return value_; }
2540
2541  uint64_t GetValueAsUint64() const OVERRIDE {
2542    return static_cast<uint64_t>(bit_cast<uint32_t, float>(value_));
2543  }
2544
2545  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2546    DCHECK(other->IsFloatConstant()) << other->DebugName();
2547    return other->AsFloatConstant()->GetValueAsUint64() == GetValueAsUint64();
2548  }
2549
2550  size_t ComputeHashCode() const OVERRIDE { return static_cast<size_t>(GetValue()); }
2551
2552  bool IsMinusOne() const OVERRIDE {
2553    return bit_cast<uint32_t, float>(value_) == bit_cast<uint32_t, float>((-1.0f));
2554  }
2555  bool IsArithmeticZero() const OVERRIDE {
2556    return std::fpclassify(value_) == FP_ZERO;
2557  }
2558  bool IsArithmeticPositiveZero() const {
2559    return IsArithmeticZero() && !std::signbit(value_);
2560  }
2561  bool IsArithmeticNegativeZero() const {
2562    return IsArithmeticZero() && std::signbit(value_);
2563  }
2564  bool IsZeroBitPattern() const OVERRIDE {
2565    return bit_cast<uint32_t, float>(value_) == bit_cast<uint32_t, float>(0.0f);
2566  }
2567  bool IsOne() const OVERRIDE {
2568    return bit_cast<uint32_t, float>(value_) == bit_cast<uint32_t, float>(1.0f);
2569  }
2570  bool IsNaN() const {
2571    return std::isnan(value_);
2572  }
2573
2574  DECLARE_INSTRUCTION(FloatConstant);
2575
2576 private:
2577  explicit HFloatConstant(float value, uint32_t dex_pc = kNoDexPc)
2578      : HConstant(Primitive::kPrimFloat, dex_pc), value_(value) {}
2579  explicit HFloatConstant(int32_t value, uint32_t dex_pc = kNoDexPc)
2580      : HConstant(Primitive::kPrimFloat, dex_pc), value_(bit_cast<float, int32_t>(value)) {}
2581
2582  const float value_;
2583
2584  // Only the SsaBuilder and HGraph can create floating-point constants.
2585  friend class SsaBuilder;
2586  friend class HGraph;
2587  DISALLOW_COPY_AND_ASSIGN(HFloatConstant);
2588};
2589
2590class HDoubleConstant : public HConstant {
2591 public:
2592  double GetValue() const { return value_; }
2593
2594  uint64_t GetValueAsUint64() const OVERRIDE { return bit_cast<uint64_t, double>(value_); }
2595
2596  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2597    DCHECK(other->IsDoubleConstant()) << other->DebugName();
2598    return other->AsDoubleConstant()->GetValueAsUint64() == GetValueAsUint64();
2599  }
2600
2601  size_t ComputeHashCode() const OVERRIDE { return static_cast<size_t>(GetValue()); }
2602
2603  bool IsMinusOne() const OVERRIDE {
2604    return bit_cast<uint64_t, double>(value_) == bit_cast<uint64_t, double>((-1.0));
2605  }
2606  bool IsArithmeticZero() const OVERRIDE {
2607    return std::fpclassify(value_) == FP_ZERO;
2608  }
2609  bool IsArithmeticPositiveZero() const {
2610    return IsArithmeticZero() && !std::signbit(value_);
2611  }
2612  bool IsArithmeticNegativeZero() const {
2613    return IsArithmeticZero() && std::signbit(value_);
2614  }
2615  bool IsZeroBitPattern() const OVERRIDE {
2616    return bit_cast<uint64_t, double>(value_) == bit_cast<uint64_t, double>((0.0));
2617  }
2618  bool IsOne() const OVERRIDE {
2619    return bit_cast<uint64_t, double>(value_) == bit_cast<uint64_t, double>(1.0);
2620  }
2621  bool IsNaN() const {
2622    return std::isnan(value_);
2623  }
2624
2625  DECLARE_INSTRUCTION(DoubleConstant);
2626
2627 private:
2628  explicit HDoubleConstant(double value, uint32_t dex_pc = kNoDexPc)
2629      : HConstant(Primitive::kPrimDouble, dex_pc), value_(value) {}
2630  explicit HDoubleConstant(int64_t value, uint32_t dex_pc = kNoDexPc)
2631      : HConstant(Primitive::kPrimDouble, dex_pc), value_(bit_cast<double, int64_t>(value)) {}
2632
2633  const double value_;
2634
2635  // Only the SsaBuilder and HGraph can create floating-point constants.
2636  friend class SsaBuilder;
2637  friend class HGraph;
2638  DISALLOW_COPY_AND_ASSIGN(HDoubleConstant);
2639};
2640
2641// Conditional branch. A block ending with an HIf instruction must have
2642// two successors.
2643class HIf : public HTemplateInstruction<1> {
2644 public:
2645  explicit HIf(HInstruction* input, uint32_t dex_pc = kNoDexPc)
2646      : HTemplateInstruction(SideEffects::None(), dex_pc) {
2647    SetRawInputAt(0, input);
2648  }
2649
2650  bool IsControlFlow() const OVERRIDE { return true; }
2651
2652  HBasicBlock* IfTrueSuccessor() const {
2653    return GetBlock()->GetSuccessors()[0];
2654  }
2655
2656  HBasicBlock* IfFalseSuccessor() const {
2657    return GetBlock()->GetSuccessors()[1];
2658  }
2659
2660  DECLARE_INSTRUCTION(If);
2661
2662 private:
2663  DISALLOW_COPY_AND_ASSIGN(HIf);
2664};
2665
2666
2667// Abstract instruction which marks the beginning and/or end of a try block and
2668// links it to the respective exception handlers. Behaves the same as a Goto in
2669// non-exceptional control flow.
2670// Normal-flow successor is stored at index zero, exception handlers under
2671// higher indices in no particular order.
2672class HTryBoundary : public HTemplateInstruction<0> {
2673 public:
2674  enum class BoundaryKind {
2675    kEntry,
2676    kExit,
2677    kLast = kExit
2678  };
2679
2680  explicit HTryBoundary(BoundaryKind kind, uint32_t dex_pc = kNoDexPc)
2681      : HTemplateInstruction(SideEffects::None(), dex_pc) {
2682    SetPackedField<BoundaryKindField>(kind);
2683  }
2684
2685  bool IsControlFlow() const OVERRIDE { return true; }
2686
2687  // Returns the block's non-exceptional successor (index zero).
2688  HBasicBlock* GetNormalFlowSuccessor() const { return GetBlock()->GetSuccessors()[0]; }
2689
2690  ArrayRef<HBasicBlock* const> GetExceptionHandlers() const {
2691    return ArrayRef<HBasicBlock* const>(GetBlock()->GetSuccessors()).SubArray(1u);
2692  }
2693
2694  // Returns whether `handler` is among its exception handlers (non-zero index
2695  // successors).
2696  bool HasExceptionHandler(const HBasicBlock& handler) const {
2697    DCHECK(handler.IsCatchBlock());
2698    return GetBlock()->HasSuccessor(&handler, 1u /* Skip first successor. */);
2699  }
2700
2701  // If not present already, adds `handler` to its block's list of exception
2702  // handlers.
2703  void AddExceptionHandler(HBasicBlock* handler) {
2704    if (!HasExceptionHandler(*handler)) {
2705      GetBlock()->AddSuccessor(handler);
2706    }
2707  }
2708
2709  BoundaryKind GetBoundaryKind() const { return GetPackedField<BoundaryKindField>(); }
2710  bool IsEntry() const { return GetBoundaryKind() == BoundaryKind::kEntry; }
2711
2712  bool HasSameExceptionHandlersAs(const HTryBoundary& other) const;
2713
2714  DECLARE_INSTRUCTION(TryBoundary);
2715
2716 private:
2717  static constexpr size_t kFieldBoundaryKind = kNumberOfGenericPackedBits;
2718  static constexpr size_t kFieldBoundaryKindSize =
2719      MinimumBitsToStore(static_cast<size_t>(BoundaryKind::kLast));
2720  static constexpr size_t kNumberOfTryBoundaryPackedBits =
2721      kFieldBoundaryKind + kFieldBoundaryKindSize;
2722  static_assert(kNumberOfTryBoundaryPackedBits <= kMaxNumberOfPackedBits,
2723                "Too many packed fields.");
2724  using BoundaryKindField = BitField<BoundaryKind, kFieldBoundaryKind, kFieldBoundaryKindSize>;
2725
2726  DISALLOW_COPY_AND_ASSIGN(HTryBoundary);
2727};
2728
2729// Deoptimize to interpreter, upon checking a condition.
2730class HDeoptimize : public HTemplateInstruction<1> {
2731 public:
2732  // We set CanTriggerGC to prevent any intermediate address to be live
2733  // at the point of the `HDeoptimize`.
2734  HDeoptimize(HInstruction* cond, uint32_t dex_pc)
2735      : HTemplateInstruction(SideEffects::CanTriggerGC(), dex_pc) {
2736    SetRawInputAt(0, cond);
2737  }
2738
2739  bool CanBeMoved() const OVERRIDE { return true; }
2740  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
2741    return true;
2742  }
2743  bool NeedsEnvironment() const OVERRIDE { return true; }
2744  bool CanThrow() const OVERRIDE { return true; }
2745
2746  DECLARE_INSTRUCTION(Deoptimize);
2747
2748 private:
2749  DISALLOW_COPY_AND_ASSIGN(HDeoptimize);
2750};
2751
2752// Represents the ArtMethod that was passed as a first argument to
2753// the method. It is used by instructions that depend on it, like
2754// instructions that work with the dex cache.
2755class HCurrentMethod : public HExpression<0> {
2756 public:
2757  explicit HCurrentMethod(Primitive::Type type, uint32_t dex_pc = kNoDexPc)
2758      : HExpression(type, SideEffects::None(), dex_pc) {}
2759
2760  DECLARE_INSTRUCTION(CurrentMethod);
2761
2762 private:
2763  DISALLOW_COPY_AND_ASSIGN(HCurrentMethod);
2764};
2765
2766// Fetches an ArtMethod from the virtual table or the interface method table
2767// of a class.
2768class HClassTableGet : public HExpression<1> {
2769 public:
2770  enum class TableKind {
2771    kVTable,
2772    kIMTable,
2773    kLast = kIMTable
2774  };
2775  HClassTableGet(HInstruction* cls,
2776                 Primitive::Type type,
2777                 TableKind kind,
2778                 size_t index,
2779                 uint32_t dex_pc)
2780      : HExpression(type, SideEffects::None(), dex_pc),
2781        index_(index) {
2782    SetPackedField<TableKindField>(kind);
2783    SetRawInputAt(0, cls);
2784  }
2785
2786  bool CanBeMoved() const OVERRIDE { return true; }
2787  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2788    return other->AsClassTableGet()->GetIndex() == index_ &&
2789        other->AsClassTableGet()->GetPackedFields() == GetPackedFields();
2790  }
2791
2792  TableKind GetTableKind() const { return GetPackedField<TableKindField>(); }
2793  size_t GetIndex() const { return index_; }
2794
2795  DECLARE_INSTRUCTION(ClassTableGet);
2796
2797 private:
2798  static constexpr size_t kFieldTableKind = kNumberOfExpressionPackedBits;
2799  static constexpr size_t kFieldTableKindSize =
2800      MinimumBitsToStore(static_cast<size_t>(TableKind::kLast));
2801  static constexpr size_t kNumberOfClassTableGetPackedBits = kFieldTableKind + kFieldTableKindSize;
2802  static_assert(kNumberOfClassTableGetPackedBits <= kMaxNumberOfPackedBits,
2803                "Too many packed fields.");
2804  using TableKindField = BitField<TableKind, kFieldTableKind, kFieldTableKind>;
2805
2806  // The index of the ArtMethod in the table.
2807  const size_t index_;
2808
2809  DISALLOW_COPY_AND_ASSIGN(HClassTableGet);
2810};
2811
2812// PackedSwitch (jump table). A block ending with a PackedSwitch instruction will
2813// have one successor for each entry in the switch table, and the final successor
2814// will be the block containing the next Dex opcode.
2815class HPackedSwitch : public HTemplateInstruction<1> {
2816 public:
2817  HPackedSwitch(int32_t start_value,
2818                uint32_t num_entries,
2819                HInstruction* input,
2820                uint32_t dex_pc = kNoDexPc)
2821    : HTemplateInstruction(SideEffects::None(), dex_pc),
2822      start_value_(start_value),
2823      num_entries_(num_entries) {
2824    SetRawInputAt(0, input);
2825  }
2826
2827  bool IsControlFlow() const OVERRIDE { return true; }
2828
2829  int32_t GetStartValue() const { return start_value_; }
2830
2831  uint32_t GetNumEntries() const { return num_entries_; }
2832
2833  HBasicBlock* GetDefaultBlock() const {
2834    // Last entry is the default block.
2835    return GetBlock()->GetSuccessors()[num_entries_];
2836  }
2837  DECLARE_INSTRUCTION(PackedSwitch);
2838
2839 private:
2840  const int32_t start_value_;
2841  const uint32_t num_entries_;
2842
2843  DISALLOW_COPY_AND_ASSIGN(HPackedSwitch);
2844};
2845
2846class HUnaryOperation : public HExpression<1> {
2847 public:
2848  HUnaryOperation(Primitive::Type result_type, HInstruction* input, uint32_t dex_pc = kNoDexPc)
2849      : HExpression(result_type, SideEffects::None(), dex_pc) {
2850    SetRawInputAt(0, input);
2851  }
2852
2853  HInstruction* GetInput() const { return InputAt(0); }
2854  Primitive::Type GetResultType() const { return GetType(); }
2855
2856  bool CanBeMoved() const OVERRIDE { return true; }
2857  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
2858    return true;
2859  }
2860
2861  // Try to statically evaluate `this` and return a HConstant
2862  // containing the result of this evaluation.  If `this` cannot
2863  // be evaluated as a constant, return null.
2864  HConstant* TryStaticEvaluation() const;
2865
2866  // Apply this operation to `x`.
2867  virtual HConstant* Evaluate(HIntConstant* x) const = 0;
2868  virtual HConstant* Evaluate(HLongConstant* x) const = 0;
2869  virtual HConstant* Evaluate(HFloatConstant* x) const = 0;
2870  virtual HConstant* Evaluate(HDoubleConstant* x) const = 0;
2871
2872  DECLARE_ABSTRACT_INSTRUCTION(UnaryOperation);
2873
2874 private:
2875  DISALLOW_COPY_AND_ASSIGN(HUnaryOperation);
2876};
2877
2878class HBinaryOperation : public HExpression<2> {
2879 public:
2880  HBinaryOperation(Primitive::Type result_type,
2881                   HInstruction* left,
2882                   HInstruction* right,
2883                   SideEffects side_effects = SideEffects::None(),
2884                   uint32_t dex_pc = kNoDexPc)
2885      : HExpression(result_type, side_effects, dex_pc) {
2886    SetRawInputAt(0, left);
2887    SetRawInputAt(1, right);
2888  }
2889
2890  HInstruction* GetLeft() const { return InputAt(0); }
2891  HInstruction* GetRight() const { return InputAt(1); }
2892  Primitive::Type GetResultType() const { return GetType(); }
2893
2894  virtual bool IsCommutative() const { return false; }
2895
2896  // Put constant on the right.
2897  // Returns whether order is changed.
2898  bool OrderInputsWithConstantOnTheRight() {
2899    HInstruction* left = InputAt(0);
2900    HInstruction* right = InputAt(1);
2901    if (left->IsConstant() && !right->IsConstant()) {
2902      ReplaceInput(right, 0);
2903      ReplaceInput(left, 1);
2904      return true;
2905    }
2906    return false;
2907  }
2908
2909  // Order inputs by instruction id, but favor constant on the right side.
2910  // This helps GVN for commutative ops.
2911  void OrderInputs() {
2912    DCHECK(IsCommutative());
2913    HInstruction* left = InputAt(0);
2914    HInstruction* right = InputAt(1);
2915    if (left == right || (!left->IsConstant() && right->IsConstant())) {
2916      return;
2917    }
2918    if (OrderInputsWithConstantOnTheRight()) {
2919      return;
2920    }
2921    // Order according to instruction id.
2922    if (left->GetId() > right->GetId()) {
2923      ReplaceInput(right, 0);
2924      ReplaceInput(left, 1);
2925    }
2926  }
2927
2928  bool CanBeMoved() const OVERRIDE { return true; }
2929  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
2930    return true;
2931  }
2932
2933  // Try to statically evaluate `this` and return a HConstant
2934  // containing the result of this evaluation.  If `this` cannot
2935  // be evaluated as a constant, return null.
2936  HConstant* TryStaticEvaluation() const;
2937
2938  // Apply this operation to `x` and `y`.
2939  virtual HConstant* Evaluate(HNullConstant* x ATTRIBUTE_UNUSED,
2940                              HNullConstant* y ATTRIBUTE_UNUSED) const {
2941    LOG(FATAL) << DebugName() << " is not defined for the (null, null) case.";
2942    UNREACHABLE();
2943  }
2944  virtual HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const = 0;
2945  virtual HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const = 0;
2946  virtual HConstant* Evaluate(HLongConstant* x ATTRIBUTE_UNUSED,
2947                              HIntConstant* y ATTRIBUTE_UNUSED) const {
2948    LOG(FATAL) << DebugName() << " is not defined for the (long, int) case.";
2949    UNREACHABLE();
2950  }
2951  virtual HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const = 0;
2952  virtual HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const = 0;
2953
2954  // Returns an input that can legally be used as the right input and is
2955  // constant, or null.
2956  HConstant* GetConstantRight() const;
2957
2958  // If `GetConstantRight()` returns one of the input, this returns the other
2959  // one. Otherwise it returns null.
2960  HInstruction* GetLeastConstantLeft() const;
2961
2962  DECLARE_ABSTRACT_INSTRUCTION(BinaryOperation);
2963
2964 private:
2965  DISALLOW_COPY_AND_ASSIGN(HBinaryOperation);
2966};
2967
2968// The comparison bias applies for floating point operations and indicates how NaN
2969// comparisons are treated:
2970enum class ComparisonBias {
2971  kNoBias,  // bias is not applicable (i.e. for long operation)
2972  kGtBias,  // return 1 for NaN comparisons
2973  kLtBias,  // return -1 for NaN comparisons
2974  kLast = kLtBias
2975};
2976
2977std::ostream& operator<<(std::ostream& os, const ComparisonBias& rhs);
2978
2979class HCondition : public HBinaryOperation {
2980 public:
2981  HCondition(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2982      : HBinaryOperation(Primitive::kPrimBoolean, first, second, SideEffects::None(), dex_pc) {
2983    SetPackedField<ComparisonBiasField>(ComparisonBias::kNoBias);
2984  }
2985
2986  // For code generation purposes, returns whether this instruction is just before
2987  // `instruction`, and disregard moves in between.
2988  bool IsBeforeWhenDisregardMoves(HInstruction* instruction) const;
2989
2990  DECLARE_ABSTRACT_INSTRUCTION(Condition);
2991
2992  virtual IfCondition GetCondition() const = 0;
2993
2994  virtual IfCondition GetOppositeCondition() const = 0;
2995
2996  bool IsGtBias() const { return GetBias() == ComparisonBias::kGtBias; }
2997  bool IsLtBias() const { return GetBias() == ComparisonBias::kLtBias; }
2998
2999  ComparisonBias GetBias() const { return GetPackedField<ComparisonBiasField>(); }
3000  void SetBias(ComparisonBias bias) { SetPackedField<ComparisonBiasField>(bias); }
3001
3002  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
3003    return GetPackedFields() == other->AsCondition()->GetPackedFields();
3004  }
3005
3006  bool IsFPConditionTrueIfNaN() const {
3007    DCHECK(Primitive::IsFloatingPointType(InputAt(0)->GetType())) << InputAt(0)->GetType();
3008    IfCondition if_cond = GetCondition();
3009    if (if_cond == kCondNE) {
3010      return true;
3011    } else if (if_cond == kCondEQ) {
3012      return false;
3013    }
3014    return ((if_cond == kCondGT) || (if_cond == kCondGE)) && IsGtBias();
3015  }
3016
3017  bool IsFPConditionFalseIfNaN() const {
3018    DCHECK(Primitive::IsFloatingPointType(InputAt(0)->GetType())) << InputAt(0)->GetType();
3019    IfCondition if_cond = GetCondition();
3020    if (if_cond == kCondEQ) {
3021      return true;
3022    } else if (if_cond == kCondNE) {
3023      return false;
3024    }
3025    return ((if_cond == kCondLT) || (if_cond == kCondLE)) && IsGtBias();
3026  }
3027
3028 protected:
3029  // Needed if we merge a HCompare into a HCondition.
3030  static constexpr size_t kFieldComparisonBias = kNumberOfExpressionPackedBits;
3031  static constexpr size_t kFieldComparisonBiasSize =
3032      MinimumBitsToStore(static_cast<size_t>(ComparisonBias::kLast));
3033  static constexpr size_t kNumberOfConditionPackedBits =
3034      kFieldComparisonBias + kFieldComparisonBiasSize;
3035  static_assert(kNumberOfConditionPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields.");
3036  using ComparisonBiasField =
3037      BitField<ComparisonBias, kFieldComparisonBias, kFieldComparisonBiasSize>;
3038
3039  template <typename T>
3040  int32_t Compare(T x, T y) const { return x > y ? 1 : (x < y ? -1 : 0); }
3041
3042  template <typename T>
3043  int32_t CompareFP(T x, T y) const {
3044    DCHECK(Primitive::IsFloatingPointType(InputAt(0)->GetType())) << InputAt(0)->GetType();
3045    DCHECK_NE(GetBias(), ComparisonBias::kNoBias);
3046    // Handle the bias.
3047    return std::isunordered(x, y) ? (IsGtBias() ? 1 : -1) : Compare(x, y);
3048  }
3049
3050  // Return an integer constant containing the result of a condition evaluated at compile time.
3051  HIntConstant* MakeConstantCondition(bool value, uint32_t dex_pc) const {
3052    return GetBlock()->GetGraph()->GetIntConstant(value, dex_pc);
3053  }
3054
3055 private:
3056  DISALLOW_COPY_AND_ASSIGN(HCondition);
3057};
3058
3059// Instruction to check if two inputs are equal to each other.
3060class HEqual : public HCondition {
3061 public:
3062  HEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
3063      : HCondition(first, second, dex_pc) {}
3064
3065  bool IsCommutative() const OVERRIDE { return true; }
3066
3067  HConstant* Evaluate(HNullConstant* x ATTRIBUTE_UNUSED,
3068                      HNullConstant* y ATTRIBUTE_UNUSED) const OVERRIDE {
3069    return MakeConstantCondition(true, GetDexPc());
3070  }
3071  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3072    return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
3073  }
3074  // In the following Evaluate methods, a HCompare instruction has
3075  // been merged into this HEqual instruction; evaluate it as
3076  // `Compare(x, y) == 0`.
3077  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3078    return MakeConstantCondition(Compute(Compare(x->GetValue(), y->GetValue()), 0),
3079                                 GetDexPc());
3080  }
3081  HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const OVERRIDE {
3082    return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
3083  }
3084  HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const OVERRIDE {
3085    return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
3086  }
3087
3088  DECLARE_INSTRUCTION(Equal);
3089
3090  IfCondition GetCondition() const OVERRIDE {
3091    return kCondEQ;
3092  }
3093
3094  IfCondition GetOppositeCondition() const OVERRIDE {
3095    return kCondNE;
3096  }
3097
3098 private:
3099  template <typename T> bool Compute(T x, T y) const { return x == y; }
3100
3101  DISALLOW_COPY_AND_ASSIGN(HEqual);
3102};
3103
3104class HNotEqual : public HCondition {
3105 public:
3106  HNotEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
3107      : HCondition(first, second, dex_pc) {}
3108
3109  bool IsCommutative() const OVERRIDE { return true; }
3110
3111  HConstant* Evaluate(HNullConstant* x ATTRIBUTE_UNUSED,
3112                      HNullConstant* y ATTRIBUTE_UNUSED) const OVERRIDE {
3113    return MakeConstantCondition(false, GetDexPc());
3114  }
3115  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3116    return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
3117  }
3118  // In the following Evaluate methods, a HCompare instruction has
3119  // been merged into this HNotEqual instruction; evaluate it as
3120  // `Compare(x, y) != 0`.
3121  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3122    return MakeConstantCondition(Compute(Compare(x->GetValue(), y->GetValue()), 0), GetDexPc());
3123  }
3124  HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const OVERRIDE {
3125    return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
3126  }
3127  HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const OVERRIDE {
3128    return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
3129  }
3130
3131  DECLARE_INSTRUCTION(NotEqual);
3132
3133  IfCondition GetCondition() const OVERRIDE {
3134    return kCondNE;
3135  }
3136
3137  IfCondition GetOppositeCondition() const OVERRIDE {
3138    return kCondEQ;
3139  }
3140
3141 private:
3142  template <typename T> bool Compute(T x, T y) const { return x != y; }
3143
3144  DISALLOW_COPY_AND_ASSIGN(HNotEqual);
3145};
3146
3147class HLessThan : public HCondition {
3148 public:
3149  HLessThan(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
3150      : HCondition(first, second, dex_pc) {}
3151
3152  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3153    return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
3154  }
3155  // In the following Evaluate methods, a HCompare instruction has
3156  // been merged into this HLessThan instruction; evaluate it as
3157  // `Compare(x, y) < 0`.
3158  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3159    return MakeConstantCondition(Compute(Compare(x->GetValue(), y->GetValue()), 0), GetDexPc());
3160  }
3161  HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const OVERRIDE {
3162    return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
3163  }
3164  HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const OVERRIDE {
3165    return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
3166  }
3167
3168  DECLARE_INSTRUCTION(LessThan);
3169
3170  IfCondition GetCondition() const OVERRIDE {
3171    return kCondLT;
3172  }
3173
3174  IfCondition GetOppositeCondition() const OVERRIDE {
3175    return kCondGE;
3176  }
3177
3178 private:
3179  template <typename T> bool Compute(T x, T y) const { return x < y; }
3180
3181  DISALLOW_COPY_AND_ASSIGN(HLessThan);
3182};
3183
3184class HLessThanOrEqual : public HCondition {
3185 public:
3186  HLessThanOrEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
3187      : HCondition(first, second, dex_pc) {}
3188
3189  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3190    return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
3191  }
3192  // In the following Evaluate methods, a HCompare instruction has
3193  // been merged into this HLessThanOrEqual instruction; evaluate it as
3194  // `Compare(x, y) <= 0`.
3195  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3196    return MakeConstantCondition(Compute(Compare(x->GetValue(), y->GetValue()), 0), GetDexPc());
3197  }
3198  HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const OVERRIDE {
3199    return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
3200  }
3201  HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const OVERRIDE {
3202    return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
3203  }
3204
3205  DECLARE_INSTRUCTION(LessThanOrEqual);
3206
3207  IfCondition GetCondition() const OVERRIDE {
3208    return kCondLE;
3209  }
3210
3211  IfCondition GetOppositeCondition() const OVERRIDE {
3212    return kCondGT;
3213  }
3214
3215 private:
3216  template <typename T> bool Compute(T x, T y) const { return x <= y; }
3217
3218  DISALLOW_COPY_AND_ASSIGN(HLessThanOrEqual);
3219};
3220
3221class HGreaterThan : public HCondition {
3222 public:
3223  HGreaterThan(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
3224      : HCondition(first, second, dex_pc) {}
3225
3226  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3227    return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
3228  }
3229  // In the following Evaluate methods, a HCompare instruction has
3230  // been merged into this HGreaterThan instruction; evaluate it as
3231  // `Compare(x, y) > 0`.
3232  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3233    return MakeConstantCondition(Compute(Compare(x->GetValue(), y->GetValue()), 0), GetDexPc());
3234  }
3235  HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const OVERRIDE {
3236    return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
3237  }
3238  HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const OVERRIDE {
3239    return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
3240  }
3241
3242  DECLARE_INSTRUCTION(GreaterThan);
3243
3244  IfCondition GetCondition() const OVERRIDE {
3245    return kCondGT;
3246  }
3247
3248  IfCondition GetOppositeCondition() const OVERRIDE {
3249    return kCondLE;
3250  }
3251
3252 private:
3253  template <typename T> bool Compute(T x, T y) const { return x > y; }
3254
3255  DISALLOW_COPY_AND_ASSIGN(HGreaterThan);
3256};
3257
3258class HGreaterThanOrEqual : public HCondition {
3259 public:
3260  HGreaterThanOrEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
3261      : HCondition(first, second, dex_pc) {}
3262
3263  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3264    return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
3265  }
3266  // In the following Evaluate methods, a HCompare instruction has
3267  // been merged into this HGreaterThanOrEqual instruction; evaluate it as
3268  // `Compare(x, y) >= 0`.
3269  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3270    return MakeConstantCondition(Compute(Compare(x->GetValue(), y->GetValue()), 0), GetDexPc());
3271  }
3272  HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const OVERRIDE {
3273    return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
3274  }
3275  HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const OVERRIDE {
3276    return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
3277  }
3278
3279  DECLARE_INSTRUCTION(GreaterThanOrEqual);
3280
3281  IfCondition GetCondition() const OVERRIDE {
3282    return kCondGE;
3283  }
3284
3285  IfCondition GetOppositeCondition() const OVERRIDE {
3286    return kCondLT;
3287  }
3288
3289 private:
3290  template <typename T> bool Compute(T x, T y) const { return x >= y; }
3291
3292  DISALLOW_COPY_AND_ASSIGN(HGreaterThanOrEqual);
3293};
3294
3295class HBelow : public HCondition {
3296 public:
3297  HBelow(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
3298      : HCondition(first, second, dex_pc) {}
3299
3300  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3301    return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
3302  }
3303  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3304    return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
3305  }
3306  HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED,
3307                      HFloatConstant* y ATTRIBUTE_UNUSED) const OVERRIDE {
3308    LOG(FATAL) << DebugName() << " is not defined for float values";
3309    UNREACHABLE();
3310  }
3311  HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED,
3312                      HDoubleConstant* y ATTRIBUTE_UNUSED) const OVERRIDE {
3313    LOG(FATAL) << DebugName() << " is not defined for double values";
3314    UNREACHABLE();
3315  }
3316
3317  DECLARE_INSTRUCTION(Below);
3318
3319  IfCondition GetCondition() const OVERRIDE {
3320    return kCondB;
3321  }
3322
3323  IfCondition GetOppositeCondition() const OVERRIDE {
3324    return kCondAE;
3325  }
3326
3327 private:
3328  template <typename T> bool Compute(T x, T y) const {
3329    return MakeUnsigned(x) < MakeUnsigned(y);
3330  }
3331
3332  DISALLOW_COPY_AND_ASSIGN(HBelow);
3333};
3334
3335class HBelowOrEqual : public HCondition {
3336 public:
3337  HBelowOrEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
3338      : HCondition(first, second, dex_pc) {}
3339
3340  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3341    return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
3342  }
3343  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3344    return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
3345  }
3346  HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED,
3347                      HFloatConstant* y ATTRIBUTE_UNUSED) const OVERRIDE {
3348    LOG(FATAL) << DebugName() << " is not defined for float values";
3349    UNREACHABLE();
3350  }
3351  HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED,
3352                      HDoubleConstant* y ATTRIBUTE_UNUSED) const OVERRIDE {
3353    LOG(FATAL) << DebugName() << " is not defined for double values";
3354    UNREACHABLE();
3355  }
3356
3357  DECLARE_INSTRUCTION(BelowOrEqual);
3358
3359  IfCondition GetCondition() const OVERRIDE {
3360    return kCondBE;
3361  }
3362
3363  IfCondition GetOppositeCondition() const OVERRIDE {
3364    return kCondA;
3365  }
3366
3367 private:
3368  template <typename T> bool Compute(T x, T y) const {
3369    return MakeUnsigned(x) <= MakeUnsigned(y);
3370  }
3371
3372  DISALLOW_COPY_AND_ASSIGN(HBelowOrEqual);
3373};
3374
3375class HAbove : public HCondition {
3376 public:
3377  HAbove(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
3378      : HCondition(first, second, dex_pc) {}
3379
3380  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3381    return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
3382  }
3383  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3384    return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
3385  }
3386  HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED,
3387                      HFloatConstant* y ATTRIBUTE_UNUSED) const OVERRIDE {
3388    LOG(FATAL) << DebugName() << " is not defined for float values";
3389    UNREACHABLE();
3390  }
3391  HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED,
3392                      HDoubleConstant* y ATTRIBUTE_UNUSED) const OVERRIDE {
3393    LOG(FATAL) << DebugName() << " is not defined for double values";
3394    UNREACHABLE();
3395  }
3396
3397  DECLARE_INSTRUCTION(Above);
3398
3399  IfCondition GetCondition() const OVERRIDE {
3400    return kCondA;
3401  }
3402
3403  IfCondition GetOppositeCondition() const OVERRIDE {
3404    return kCondBE;
3405  }
3406
3407 private:
3408  template <typename T> bool Compute(T x, T y) const {
3409    return MakeUnsigned(x) > MakeUnsigned(y);
3410  }
3411
3412  DISALLOW_COPY_AND_ASSIGN(HAbove);
3413};
3414
3415class HAboveOrEqual : public HCondition {
3416 public:
3417  HAboveOrEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
3418      : HCondition(first, second, dex_pc) {}
3419
3420  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3421    return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
3422  }
3423  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3424    return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
3425  }
3426  HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED,
3427                      HFloatConstant* y ATTRIBUTE_UNUSED) const OVERRIDE {
3428    LOG(FATAL) << DebugName() << " is not defined for float values";
3429    UNREACHABLE();
3430  }
3431  HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED,
3432                      HDoubleConstant* y ATTRIBUTE_UNUSED) const OVERRIDE {
3433    LOG(FATAL) << DebugName() << " is not defined for double values";
3434    UNREACHABLE();
3435  }
3436
3437  DECLARE_INSTRUCTION(AboveOrEqual);
3438
3439  IfCondition GetCondition() const OVERRIDE {
3440    return kCondAE;
3441  }
3442
3443  IfCondition GetOppositeCondition() const OVERRIDE {
3444    return kCondB;
3445  }
3446
3447 private:
3448  template <typename T> bool Compute(T x, T y) const {
3449    return MakeUnsigned(x) >= MakeUnsigned(y);
3450  }
3451
3452  DISALLOW_COPY_AND_ASSIGN(HAboveOrEqual);
3453};
3454
3455// Instruction to check how two inputs compare to each other.
3456// Result is 0 if input0 == input1, 1 if input0 > input1, or -1 if input0 < input1.
3457class HCompare : public HBinaryOperation {
3458 public:
3459  // Note that `comparison_type` is the type of comparison performed
3460  // between the comparison's inputs, not the type of the instantiated
3461  // HCompare instruction (which is always Primitive::kPrimInt).
3462  HCompare(Primitive::Type comparison_type,
3463           HInstruction* first,
3464           HInstruction* second,
3465           ComparisonBias bias,
3466           uint32_t dex_pc)
3467      : HBinaryOperation(Primitive::kPrimInt,
3468                         first,
3469                         second,
3470                         SideEffectsForArchRuntimeCalls(comparison_type),
3471                         dex_pc) {
3472    SetPackedField<ComparisonBiasField>(bias);
3473    DCHECK_EQ(comparison_type, Primitive::PrimitiveKind(first->GetType()));
3474    DCHECK_EQ(comparison_type, Primitive::PrimitiveKind(second->GetType()));
3475  }
3476
3477  template <typename T>
3478  int32_t Compute(T x, T y) const { return x > y ? 1 : (x < y ? -1 : 0); }
3479
3480  template <typename T>
3481  int32_t ComputeFP(T x, T y) const {
3482    DCHECK(Primitive::IsFloatingPointType(InputAt(0)->GetType())) << InputAt(0)->GetType();
3483    DCHECK_NE(GetBias(), ComparisonBias::kNoBias);
3484    // Handle the bias.
3485    return std::isunordered(x, y) ? (IsGtBias() ? 1 : -1) : Compute(x, y);
3486  }
3487
3488  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3489    // Note that there is no "cmp-int" Dex instruction so we shouldn't
3490    // reach this code path when processing a freshly built HIR
3491    // graph. However HCompare integer instructions can be synthesized
3492    // by the instruction simplifier to implement IntegerCompare and
3493    // IntegerSignum intrinsics, so we have to handle this case.
3494    return MakeConstantComparison(Compute(x->GetValue(), y->GetValue()), GetDexPc());
3495  }
3496  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3497    return MakeConstantComparison(Compute(x->GetValue(), y->GetValue()), GetDexPc());
3498  }
3499  HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const OVERRIDE {
3500    return MakeConstantComparison(ComputeFP(x->GetValue(), y->GetValue()), GetDexPc());
3501  }
3502  HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const OVERRIDE {
3503    return MakeConstantComparison(ComputeFP(x->GetValue(), y->GetValue()), GetDexPc());
3504  }
3505
3506  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
3507    return GetPackedFields() == other->AsCompare()->GetPackedFields();
3508  }
3509
3510  ComparisonBias GetBias() const { return GetPackedField<ComparisonBiasField>(); }
3511
3512  // Does this compare instruction have a "gt bias" (vs an "lt bias")?
3513  // Only meaningful for floating-point comparisons.
3514  bool IsGtBias() const {
3515    DCHECK(Primitive::IsFloatingPointType(InputAt(0)->GetType())) << InputAt(0)->GetType();
3516    return GetBias() == ComparisonBias::kGtBias;
3517  }
3518
3519  static SideEffects SideEffectsForArchRuntimeCalls(Primitive::Type type ATTRIBUTE_UNUSED) {
3520    // Comparisons do not require a runtime call in any back end.
3521    return SideEffects::None();
3522  }
3523
3524  DECLARE_INSTRUCTION(Compare);
3525
3526 protected:
3527  static constexpr size_t kFieldComparisonBias = kNumberOfExpressionPackedBits;
3528  static constexpr size_t kFieldComparisonBiasSize =
3529      MinimumBitsToStore(static_cast<size_t>(ComparisonBias::kLast));
3530  static constexpr size_t kNumberOfComparePackedBits =
3531      kFieldComparisonBias + kFieldComparisonBiasSize;
3532  static_assert(kNumberOfComparePackedBits <= kMaxNumberOfPackedBits, "Too many packed fields.");
3533  using ComparisonBiasField =
3534      BitField<ComparisonBias, kFieldComparisonBias, kFieldComparisonBiasSize>;
3535
3536  // Return an integer constant containing the result of a comparison evaluated at compile time.
3537  HIntConstant* MakeConstantComparison(int32_t value, uint32_t dex_pc) const {
3538    DCHECK(value == -1 || value == 0 || value == 1) << value;
3539    return GetBlock()->GetGraph()->GetIntConstant(value, dex_pc);
3540  }
3541
3542 private:
3543  DISALLOW_COPY_AND_ASSIGN(HCompare);
3544};
3545
3546// A local in the graph. Corresponds to a Dex register.
3547class HLocal : public HTemplateInstruction<0> {
3548 public:
3549  explicit HLocal(uint16_t reg_number)
3550      : HTemplateInstruction(SideEffects::None(), kNoDexPc), reg_number_(reg_number) {}
3551
3552  DECLARE_INSTRUCTION(Local);
3553
3554  uint16_t GetRegNumber() const { return reg_number_; }
3555
3556 private:
3557  // The Dex register number.
3558  const uint16_t reg_number_;
3559
3560  DISALLOW_COPY_AND_ASSIGN(HLocal);
3561};
3562
3563// Load a given local. The local is an input of this instruction.
3564class HLoadLocal : public HExpression<1> {
3565 public:
3566  HLoadLocal(HLocal* local, Primitive::Type type, uint32_t dex_pc = kNoDexPc)
3567      : HExpression(type, SideEffects::None(), dex_pc) {
3568    SetRawInputAt(0, local);
3569  }
3570
3571  HLocal* GetLocal() const { return reinterpret_cast<HLocal*>(InputAt(0)); }
3572
3573  DECLARE_INSTRUCTION(LoadLocal);
3574
3575 private:
3576  DISALLOW_COPY_AND_ASSIGN(HLoadLocal);
3577};
3578
3579// Store a value in a given local. This instruction has two inputs: the value
3580// and the local.
3581class HStoreLocal : public HTemplateInstruction<2> {
3582 public:
3583  HStoreLocal(HLocal* local, HInstruction* value, uint32_t dex_pc = kNoDexPc)
3584      : HTemplateInstruction(SideEffects::None(), dex_pc) {
3585    SetRawInputAt(0, local);
3586    SetRawInputAt(1, value);
3587  }
3588
3589  HLocal* GetLocal() const { return reinterpret_cast<HLocal*>(InputAt(0)); }
3590
3591  DECLARE_INSTRUCTION(StoreLocal);
3592
3593 private:
3594  DISALLOW_COPY_AND_ASSIGN(HStoreLocal);
3595};
3596
3597class HNewInstance : public HExpression<2> {
3598 public:
3599  HNewInstance(HInstruction* cls,
3600               HCurrentMethod* current_method,
3601               uint32_t dex_pc,
3602               uint16_t type_index,
3603               const DexFile& dex_file,
3604               bool can_throw,
3605               bool finalizable,
3606               QuickEntrypointEnum entrypoint)
3607      : HExpression(Primitive::kPrimNot, SideEffects::CanTriggerGC(), dex_pc),
3608        type_index_(type_index),
3609        dex_file_(dex_file),
3610        entrypoint_(entrypoint) {
3611    SetPackedFlag<kFlagCanThrow>(can_throw);
3612    SetPackedFlag<kFlagFinalizable>(finalizable);
3613    SetRawInputAt(0, cls);
3614    SetRawInputAt(1, current_method);
3615  }
3616
3617  uint16_t GetTypeIndex() const { return type_index_; }
3618  const DexFile& GetDexFile() const { return dex_file_; }
3619
3620  // Calls runtime so needs an environment.
3621  bool NeedsEnvironment() const OVERRIDE { return true; }
3622
3623  // It may throw when called on type that's not instantiable/accessible.
3624  // It can throw OOME.
3625  // TODO: distinguish between the two cases so we can for example allow allocation elimination.
3626  bool CanThrow() const OVERRIDE { return GetPackedFlag<kFlagCanThrow>() || true; }
3627
3628  bool IsFinalizable() const { return GetPackedFlag<kFlagFinalizable>(); }
3629
3630  bool CanBeNull() const OVERRIDE { return false; }
3631
3632  QuickEntrypointEnum GetEntrypoint() const { return entrypoint_; }
3633
3634  void SetEntrypoint(QuickEntrypointEnum entrypoint) {
3635    entrypoint_ = entrypoint;
3636  }
3637
3638  bool IsStringAlloc() const;
3639
3640  DECLARE_INSTRUCTION(NewInstance);
3641
3642 private:
3643  static constexpr size_t kFlagCanThrow = kNumberOfExpressionPackedBits;
3644  static constexpr size_t kFlagFinalizable = kFlagCanThrow + 1;
3645  static constexpr size_t kNumberOfNewInstancePackedBits = kFlagFinalizable + 1;
3646  static_assert(kNumberOfNewInstancePackedBits <= kMaxNumberOfPackedBits,
3647                "Too many packed fields.");
3648
3649  const uint16_t type_index_;
3650  const DexFile& dex_file_;
3651  QuickEntrypointEnum entrypoint_;
3652
3653  DISALLOW_COPY_AND_ASSIGN(HNewInstance);
3654};
3655
3656enum class Intrinsics {
3657#define OPTIMIZING_INTRINSICS(Name, IsStatic, NeedsEnvironmentOrCache, SideEffects, Exceptions) \
3658  k ## Name,
3659#include "intrinsics_list.h"
3660  kNone,
3661  INTRINSICS_LIST(OPTIMIZING_INTRINSICS)
3662#undef INTRINSICS_LIST
3663#undef OPTIMIZING_INTRINSICS
3664};
3665std::ostream& operator<<(std::ostream& os, const Intrinsics& intrinsic);
3666
3667enum IntrinsicNeedsEnvironmentOrCache {
3668  kNoEnvironmentOrCache,        // Intrinsic does not require an environment or dex cache.
3669  kNeedsEnvironmentOrCache      // Intrinsic requires an environment or requires a dex cache.
3670};
3671
3672enum IntrinsicSideEffects {
3673  kNoSideEffects,     // Intrinsic does not have any heap memory side effects.
3674  kReadSideEffects,   // Intrinsic may read heap memory.
3675  kWriteSideEffects,  // Intrinsic may write heap memory.
3676  kAllSideEffects     // Intrinsic may read or write heap memory, or trigger GC.
3677};
3678
3679enum IntrinsicExceptions {
3680  kNoThrow,  // Intrinsic does not throw any exceptions.
3681  kCanThrow  // Intrinsic may throw exceptions.
3682};
3683
3684class HInvoke : public HInstruction {
3685 public:
3686  size_t InputCount() const OVERRIDE { return inputs_.size(); }
3687
3688  bool NeedsEnvironment() const OVERRIDE;
3689
3690  void SetArgumentAt(size_t index, HInstruction* argument) {
3691    SetRawInputAt(index, argument);
3692  }
3693
3694  // Return the number of arguments.  This number can be lower than
3695  // the number of inputs returned by InputCount(), as some invoke
3696  // instructions (e.g. HInvokeStaticOrDirect) can have non-argument
3697  // inputs at the end of their list of inputs.
3698  uint32_t GetNumberOfArguments() const { return number_of_arguments_; }
3699
3700  Primitive::Type GetType() const OVERRIDE { return GetPackedField<ReturnTypeField>(); }
3701
3702  uint32_t GetDexMethodIndex() const { return dex_method_index_; }
3703  const DexFile& GetDexFile() const { return GetEnvironment()->GetDexFile(); }
3704
3705  InvokeType GetOriginalInvokeType() const {
3706    return GetPackedField<OriginalInvokeTypeField>();
3707  }
3708
3709  Intrinsics GetIntrinsic() const {
3710    return intrinsic_;
3711  }
3712
3713  void SetIntrinsic(Intrinsics intrinsic,
3714                    IntrinsicNeedsEnvironmentOrCache needs_env_or_cache,
3715                    IntrinsicSideEffects side_effects,
3716                    IntrinsicExceptions exceptions);
3717
3718  bool IsFromInlinedInvoke() const {
3719    return GetEnvironment()->IsFromInlinedInvoke();
3720  }
3721
3722  bool CanThrow() const OVERRIDE { return GetPackedFlag<kFlagCanThrow>(); }
3723
3724  bool CanBeMoved() const OVERRIDE { return IsIntrinsic(); }
3725
3726  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
3727    return intrinsic_ != Intrinsics::kNone && intrinsic_ == other->AsInvoke()->intrinsic_;
3728  }
3729
3730  uint32_t* GetIntrinsicOptimizations() {
3731    return &intrinsic_optimizations_;
3732  }
3733
3734  const uint32_t* GetIntrinsicOptimizations() const {
3735    return &intrinsic_optimizations_;
3736  }
3737
3738  bool IsIntrinsic() const { return intrinsic_ != Intrinsics::kNone; }
3739
3740  DECLARE_ABSTRACT_INSTRUCTION(Invoke);
3741
3742 protected:
3743  static constexpr size_t kFieldOriginalInvokeType = kNumberOfGenericPackedBits;
3744  static constexpr size_t kFieldOriginalInvokeTypeSize =
3745      MinimumBitsToStore(static_cast<size_t>(kMaxInvokeType));
3746  static constexpr size_t kFieldReturnType =
3747      kFieldOriginalInvokeType + kFieldOriginalInvokeTypeSize;
3748  static constexpr size_t kFieldReturnTypeSize =
3749      MinimumBitsToStore(static_cast<size_t>(Primitive::kPrimLast));
3750  static constexpr size_t kFlagCanThrow = kFieldReturnType + kFieldReturnTypeSize;
3751  static constexpr size_t kNumberOfInvokePackedBits = kFlagCanThrow + 1;
3752  static_assert(kNumberOfInvokePackedBits <= kMaxNumberOfPackedBits, "Too many packed fields.");
3753  using OriginalInvokeTypeField =
3754      BitField<InvokeType, kFieldOriginalInvokeType, kFieldOriginalInvokeTypeSize>;
3755  using ReturnTypeField = BitField<Primitive::Type, kFieldReturnType, kFieldReturnTypeSize>;
3756
3757  HInvoke(ArenaAllocator* arena,
3758          uint32_t number_of_arguments,
3759          uint32_t number_of_other_inputs,
3760          Primitive::Type return_type,
3761          uint32_t dex_pc,
3762          uint32_t dex_method_index,
3763          InvokeType original_invoke_type)
3764    : HInstruction(
3765          SideEffects::AllExceptGCDependency(), dex_pc),  // Assume write/read on all fields/arrays.
3766      number_of_arguments_(number_of_arguments),
3767      inputs_(number_of_arguments + number_of_other_inputs,
3768              arena->Adapter(kArenaAllocInvokeInputs)),
3769      dex_method_index_(dex_method_index),
3770      intrinsic_(Intrinsics::kNone),
3771      intrinsic_optimizations_(0) {
3772    SetPackedField<ReturnTypeField>(return_type);
3773    SetPackedField<OriginalInvokeTypeField>(original_invoke_type);
3774    SetPackedFlag<kFlagCanThrow>(true);
3775  }
3776
3777  const HUserRecord<HInstruction*> InputRecordAt(size_t index) const OVERRIDE {
3778    return inputs_[index];
3779  }
3780
3781  void SetRawInputRecordAt(size_t index, const HUserRecord<HInstruction*>& input) OVERRIDE {
3782    inputs_[index] = input;
3783  }
3784
3785  void SetCanThrow(bool can_throw) { SetPackedFlag<kFlagCanThrow>(can_throw); }
3786
3787  uint32_t number_of_arguments_;
3788  ArenaVector<HUserRecord<HInstruction*>> inputs_;
3789  const uint32_t dex_method_index_;
3790  Intrinsics intrinsic_;
3791
3792  // A magic word holding optimizations for intrinsics. See intrinsics.h.
3793  uint32_t intrinsic_optimizations_;
3794
3795 private:
3796  DISALLOW_COPY_AND_ASSIGN(HInvoke);
3797};
3798
3799class HInvokeUnresolved : public HInvoke {
3800 public:
3801  HInvokeUnresolved(ArenaAllocator* arena,
3802                    uint32_t number_of_arguments,
3803                    Primitive::Type return_type,
3804                    uint32_t dex_pc,
3805                    uint32_t dex_method_index,
3806                    InvokeType invoke_type)
3807      : HInvoke(arena,
3808                number_of_arguments,
3809                0u /* number_of_other_inputs */,
3810                return_type,
3811                dex_pc,
3812                dex_method_index,
3813                invoke_type) {
3814  }
3815
3816  DECLARE_INSTRUCTION(InvokeUnresolved);
3817
3818 private:
3819  DISALLOW_COPY_AND_ASSIGN(HInvokeUnresolved);
3820};
3821
3822class HInvokeStaticOrDirect : public HInvoke {
3823 public:
3824  // Requirements of this method call regarding the class
3825  // initialization (clinit) check of its declaring class.
3826  enum class ClinitCheckRequirement {
3827    kNone,      // Class already initialized.
3828    kExplicit,  // Static call having explicit clinit check as last input.
3829    kImplicit,  // Static call implicitly requiring a clinit check.
3830    kLast = kImplicit
3831  };
3832
3833  // Determines how to load the target ArtMethod*.
3834  enum class MethodLoadKind {
3835    // Use a String init ArtMethod* loaded from Thread entrypoints.
3836    kStringInit,
3837
3838    // Use the method's own ArtMethod* loaded by the register allocator.
3839    kRecursive,
3840
3841    // Use ArtMethod* at a known address, embed the direct address in the code.
3842    // Used for app->boot calls with non-relocatable image and for JIT-compiled calls.
3843    kDirectAddress,
3844
3845    // Use ArtMethod* at an address that will be known at link time, embed the direct
3846    // address in the code. If the image is relocatable, emit .patch_oat entry.
3847    // Used for app->boot calls with relocatable image and boot->boot calls, whether
3848    // the image relocatable or not.
3849    kDirectAddressWithFixup,
3850
3851    // Load from resolved methods array in the dex cache using a PC-relative load.
3852    // Used when we need to use the dex cache, for example for invoke-static that
3853    // may cause class initialization (the entry may point to a resolution method),
3854    // and we know that we can access the dex cache arrays using a PC-relative load.
3855    kDexCachePcRelative,
3856
3857    // Use ArtMethod* from the resolved methods of the compiled method's own ArtMethod*.
3858    // Used for JIT when we need to use the dex cache. This is also the last-resort-kind
3859    // used when other kinds are unavailable (say, dex cache arrays are not PC-relative)
3860    // or unimplemented or impractical (i.e. slow) on a particular architecture.
3861    kDexCacheViaMethod,
3862  };
3863
3864  // Determines the location of the code pointer.
3865  enum class CodePtrLocation {
3866    // Recursive call, use local PC-relative call instruction.
3867    kCallSelf,
3868
3869    // Use PC-relative call instruction patched at link time.
3870    // Used for calls within an oat file, boot->boot or app->app.
3871    kCallPCRelative,
3872
3873    // Call to a known target address, embed the direct address in code.
3874    // Used for app->boot call with non-relocatable image and for JIT-compiled calls.
3875    kCallDirect,
3876
3877    // Call to a target address that will be known at link time, embed the direct
3878    // address in code. If the image is relocatable, emit .patch_oat entry.
3879    // Used for app->boot calls with relocatable image and boot->boot calls, whether
3880    // the image relocatable or not.
3881    kCallDirectWithFixup,
3882
3883    // Use code pointer from the ArtMethod*.
3884    // Used when we don't know the target code. This is also the last-resort-kind used when
3885    // other kinds are unimplemented or impractical (i.e. slow) on a particular architecture.
3886    kCallArtMethod,
3887  };
3888
3889  struct DispatchInfo {
3890    MethodLoadKind method_load_kind;
3891    CodePtrLocation code_ptr_location;
3892    // The method load data holds
3893    //   - thread entrypoint offset for kStringInit method if this is a string init invoke.
3894    //     Note that there are multiple string init methods, each having its own offset.
3895    //   - the method address for kDirectAddress
3896    //   - the dex cache arrays offset for kDexCachePcRel.
3897    uint64_t method_load_data;
3898    uint64_t direct_code_ptr;
3899  };
3900
3901  HInvokeStaticOrDirect(ArenaAllocator* arena,
3902                        uint32_t number_of_arguments,
3903                        Primitive::Type return_type,
3904                        uint32_t dex_pc,
3905                        uint32_t method_index,
3906                        MethodReference target_method,
3907                        DispatchInfo dispatch_info,
3908                        InvokeType original_invoke_type,
3909                        InvokeType optimized_invoke_type,
3910                        ClinitCheckRequirement clinit_check_requirement)
3911      : HInvoke(arena,
3912                number_of_arguments,
3913                // There is potentially one extra argument for the HCurrentMethod node, and
3914                // potentially one other if the clinit check is explicit, and potentially
3915                // one other if the method is a string factory.
3916                (NeedsCurrentMethodInput(dispatch_info.method_load_kind) ? 1u : 0u) +
3917                    (clinit_check_requirement == ClinitCheckRequirement::kExplicit ? 1u : 0u) +
3918                    (dispatch_info.method_load_kind == MethodLoadKind::kStringInit ? 1u : 0u),
3919                return_type,
3920                dex_pc,
3921                method_index,
3922                original_invoke_type),
3923        target_method_(target_method),
3924        dispatch_info_(dispatch_info) {
3925    SetPackedField<OptimizedInvokeTypeField>(optimized_invoke_type);
3926    SetPackedField<ClinitCheckRequirementField>(clinit_check_requirement);
3927  }
3928
3929  void SetDispatchInfo(const DispatchInfo& dispatch_info) {
3930    bool had_current_method_input = HasCurrentMethodInput();
3931    bool needs_current_method_input = NeedsCurrentMethodInput(dispatch_info.method_load_kind);
3932
3933    // Using the current method is the default and once we find a better
3934    // method load kind, we should not go back to using the current method.
3935    DCHECK(had_current_method_input || !needs_current_method_input);
3936
3937    if (had_current_method_input && !needs_current_method_input) {
3938      DCHECK_EQ(InputAt(GetSpecialInputIndex()), GetBlock()->GetGraph()->GetCurrentMethod());
3939      RemoveInputAt(GetSpecialInputIndex());
3940    }
3941    dispatch_info_ = dispatch_info;
3942  }
3943
3944  void AddSpecialInput(HInstruction* input) {
3945    // We allow only one special input.
3946    DCHECK(!IsStringInit() && !HasCurrentMethodInput());
3947    DCHECK(InputCount() == GetSpecialInputIndex() ||
3948           (InputCount() == GetSpecialInputIndex() + 1 && IsStaticWithExplicitClinitCheck()));
3949    InsertInputAt(GetSpecialInputIndex(), input);
3950  }
3951
3952  bool CanDoImplicitNullCheckOn(HInstruction* obj ATTRIBUTE_UNUSED) const OVERRIDE {
3953    // We access the method via the dex cache so we can't do an implicit null check.
3954    // TODO: for intrinsics we can generate implicit null checks.
3955    return false;
3956  }
3957
3958  bool CanBeNull() const OVERRIDE {
3959    return GetPackedField<ReturnTypeField>() == Primitive::kPrimNot && !IsStringInit();
3960  }
3961
3962  // Get the index of the special input, if any.
3963  //
3964  // If the invoke HasCurrentMethodInput(), the "special input" is the current
3965  // method pointer; otherwise there may be one platform-specific special input,
3966  // such as PC-relative addressing base.
3967  uint32_t GetSpecialInputIndex() const { return GetNumberOfArguments(); }
3968  bool HasSpecialInput() const { return GetNumberOfArguments() != InputCount(); }
3969
3970  InvokeType GetOptimizedInvokeType() const {
3971    return GetPackedField<OptimizedInvokeTypeField>();
3972  }
3973
3974  void SetOptimizedInvokeType(InvokeType invoke_type) {
3975    SetPackedField<OptimizedInvokeTypeField>(invoke_type);
3976  }
3977
3978  MethodLoadKind GetMethodLoadKind() const { return dispatch_info_.method_load_kind; }
3979  CodePtrLocation GetCodePtrLocation() const { return dispatch_info_.code_ptr_location; }
3980  bool IsRecursive() const { return GetMethodLoadKind() == MethodLoadKind::kRecursive; }
3981  bool NeedsDexCacheOfDeclaringClass() const OVERRIDE;
3982  bool IsStringInit() const { return GetMethodLoadKind() == MethodLoadKind::kStringInit; }
3983  bool HasMethodAddress() const { return GetMethodLoadKind() == MethodLoadKind::kDirectAddress; }
3984  bool HasPcRelativeDexCache() const {
3985    return GetMethodLoadKind() == MethodLoadKind::kDexCachePcRelative;
3986  }
3987  bool HasCurrentMethodInput() const {
3988    // This function can be called only after the invoke has been fully initialized by the builder.
3989    if (NeedsCurrentMethodInput(GetMethodLoadKind())) {
3990      DCHECK(InputAt(GetSpecialInputIndex())->IsCurrentMethod());
3991      return true;
3992    } else {
3993      DCHECK(InputCount() == GetSpecialInputIndex() ||
3994             !InputAt(GetSpecialInputIndex())->IsCurrentMethod());
3995      return false;
3996    }
3997  }
3998  bool HasDirectCodePtr() const { return GetCodePtrLocation() == CodePtrLocation::kCallDirect; }
3999  MethodReference GetTargetMethod() const { return target_method_; }
4000  void SetTargetMethod(MethodReference method) { target_method_ = method; }
4001
4002  int32_t GetStringInitOffset() const {
4003    DCHECK(IsStringInit());
4004    return dispatch_info_.method_load_data;
4005  }
4006
4007  uint64_t GetMethodAddress() const {
4008    DCHECK(HasMethodAddress());
4009    return dispatch_info_.method_load_data;
4010  }
4011
4012  uint32_t GetDexCacheArrayOffset() const {
4013    DCHECK(HasPcRelativeDexCache());
4014    return dispatch_info_.method_load_data;
4015  }
4016
4017  uint64_t GetDirectCodePtr() const {
4018    DCHECK(HasDirectCodePtr());
4019    return dispatch_info_.direct_code_ptr;
4020  }
4021
4022  ClinitCheckRequirement GetClinitCheckRequirement() const {
4023    return GetPackedField<ClinitCheckRequirementField>();
4024  }
4025
4026  // Is this instruction a call to a static method?
4027  bool IsStatic() const {
4028    return GetOriginalInvokeType() == kStatic;
4029  }
4030
4031  // Remove the HClinitCheck or the replacement HLoadClass (set as last input by
4032  // PrepareForRegisterAllocation::VisitClinitCheck() in lieu of the initial HClinitCheck)
4033  // instruction; only relevant for static calls with explicit clinit check.
4034  void RemoveExplicitClinitCheck(ClinitCheckRequirement new_requirement) {
4035    DCHECK(IsStaticWithExplicitClinitCheck());
4036    size_t last_input_index = InputCount() - 1;
4037    HInstruction* last_input = InputAt(last_input_index);
4038    DCHECK(last_input != nullptr);
4039    DCHECK(last_input->IsLoadClass() || last_input->IsClinitCheck()) << last_input->DebugName();
4040    RemoveAsUserOfInput(last_input_index);
4041    inputs_.pop_back();
4042    SetPackedField<ClinitCheckRequirementField>(new_requirement);
4043    DCHECK(!IsStaticWithExplicitClinitCheck());
4044  }
4045
4046  HInstruction* GetAndRemoveThisArgumentOfStringInit() {
4047    DCHECK(IsStringInit());
4048    size_t index = InputCount() - 1;
4049    HInstruction* input = InputAt(index);
4050    RemoveAsUserOfInput(index);
4051    inputs_.pop_back();
4052    return input;
4053  }
4054
4055  // Is this a call to a static method whose declaring class has an
4056  // explicit initialization check in the graph?
4057  bool IsStaticWithExplicitClinitCheck() const {
4058    return IsStatic() && (GetClinitCheckRequirement() == ClinitCheckRequirement::kExplicit);
4059  }
4060
4061  // Is this a call to a static method whose declaring class has an
4062  // implicit intialization check requirement?
4063  bool IsStaticWithImplicitClinitCheck() const {
4064    return IsStatic() && (GetClinitCheckRequirement() == ClinitCheckRequirement::kImplicit);
4065  }
4066
4067  // Does this method load kind need the current method as an input?
4068  static bool NeedsCurrentMethodInput(MethodLoadKind kind) {
4069    return kind == MethodLoadKind::kRecursive || kind == MethodLoadKind::kDexCacheViaMethod;
4070  }
4071
4072  DECLARE_INSTRUCTION(InvokeStaticOrDirect);
4073
4074 protected:
4075  const HUserRecord<HInstruction*> InputRecordAt(size_t i) const OVERRIDE {
4076    const HUserRecord<HInstruction*> input_record = HInvoke::InputRecordAt(i);
4077    if (kIsDebugBuild && IsStaticWithExplicitClinitCheck() && (i == InputCount() - 1)) {
4078      HInstruction* input = input_record.GetInstruction();
4079      // `input` is the last input of a static invoke marked as having
4080      // an explicit clinit check. It must either be:
4081      // - an art::HClinitCheck instruction, set by art::HGraphBuilder; or
4082      // - an art::HLoadClass instruction, set by art::PrepareForRegisterAllocation.
4083      DCHECK(input != nullptr);
4084      DCHECK(input->IsClinitCheck() || input->IsLoadClass()) << input->DebugName();
4085    }
4086    return input_record;
4087  }
4088
4089  void InsertInputAt(size_t index, HInstruction* input);
4090  void RemoveInputAt(size_t index);
4091
4092 private:
4093  static constexpr size_t kFieldOptimizedInvokeType = kNumberOfInvokePackedBits;
4094  static constexpr size_t kFieldOptimizedInvokeTypeSize =
4095      MinimumBitsToStore(static_cast<size_t>(kMaxInvokeType));
4096  static constexpr size_t kFieldClinitCheckRequirement =
4097      kFieldOptimizedInvokeType + kFieldOptimizedInvokeTypeSize;
4098  static constexpr size_t kFieldClinitCheckRequirementSize =
4099      MinimumBitsToStore(static_cast<size_t>(ClinitCheckRequirement::kLast));
4100  static constexpr size_t kNumberOfInvokeStaticOrDirectPackedBits =
4101      kFieldClinitCheckRequirement + kFieldClinitCheckRequirementSize;
4102  static_assert(kNumberOfInvokeStaticOrDirectPackedBits <= kMaxNumberOfPackedBits,
4103                "Too many packed fields.");
4104  using OptimizedInvokeTypeField =
4105      BitField<InvokeType, kFieldOptimizedInvokeType, kFieldOptimizedInvokeTypeSize>;
4106  using ClinitCheckRequirementField = BitField<ClinitCheckRequirement,
4107                                               kFieldClinitCheckRequirement,
4108                                               kFieldClinitCheckRequirementSize>;
4109
4110  // The target method may refer to different dex file or method index than the original
4111  // invoke. This happens for sharpened calls and for calls where a method was redeclared
4112  // in derived class to increase visibility.
4113  MethodReference target_method_;
4114  DispatchInfo dispatch_info_;
4115
4116  DISALLOW_COPY_AND_ASSIGN(HInvokeStaticOrDirect);
4117};
4118std::ostream& operator<<(std::ostream& os, HInvokeStaticOrDirect::MethodLoadKind rhs);
4119std::ostream& operator<<(std::ostream& os, HInvokeStaticOrDirect::ClinitCheckRequirement rhs);
4120
4121class HInvokeVirtual : public HInvoke {
4122 public:
4123  HInvokeVirtual(ArenaAllocator* arena,
4124                 uint32_t number_of_arguments,
4125                 Primitive::Type return_type,
4126                 uint32_t dex_pc,
4127                 uint32_t dex_method_index,
4128                 uint32_t vtable_index)
4129      : HInvoke(arena, number_of_arguments, 0u, return_type, dex_pc, dex_method_index, kVirtual),
4130        vtable_index_(vtable_index) {}
4131
4132  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
4133    // TODO: Add implicit null checks in intrinsics.
4134    return (obj == InputAt(0)) && !GetLocations()->Intrinsified();
4135  }
4136
4137  uint32_t GetVTableIndex() const { return vtable_index_; }
4138
4139  DECLARE_INSTRUCTION(InvokeVirtual);
4140
4141 private:
4142  const uint32_t vtable_index_;
4143
4144  DISALLOW_COPY_AND_ASSIGN(HInvokeVirtual);
4145};
4146
4147class HInvokeInterface : public HInvoke {
4148 public:
4149  HInvokeInterface(ArenaAllocator* arena,
4150                   uint32_t number_of_arguments,
4151                   Primitive::Type return_type,
4152                   uint32_t dex_pc,
4153                   uint32_t dex_method_index,
4154                   uint32_t imt_index)
4155      : HInvoke(arena, number_of_arguments, 0u, return_type, dex_pc, dex_method_index, kInterface),
4156        imt_index_(imt_index) {}
4157
4158  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
4159    // TODO: Add implicit null checks in intrinsics.
4160    return (obj == InputAt(0)) && !GetLocations()->Intrinsified();
4161  }
4162
4163  uint32_t GetImtIndex() const { return imt_index_; }
4164  uint32_t GetDexMethodIndex() const { return dex_method_index_; }
4165
4166  DECLARE_INSTRUCTION(InvokeInterface);
4167
4168 private:
4169  const uint32_t imt_index_;
4170
4171  DISALLOW_COPY_AND_ASSIGN(HInvokeInterface);
4172};
4173
4174class HNeg : public HUnaryOperation {
4175 public:
4176  HNeg(Primitive::Type result_type, HInstruction* input, uint32_t dex_pc = kNoDexPc)
4177      : HUnaryOperation(result_type, input, dex_pc) {
4178    DCHECK_EQ(result_type, Primitive::PrimitiveKind(input->GetType()));
4179  }
4180
4181  template <typename T> T Compute(T x) const { return -x; }
4182
4183  HConstant* Evaluate(HIntConstant* x) const OVERRIDE {
4184    return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue()), GetDexPc());
4185  }
4186  HConstant* Evaluate(HLongConstant* x) const OVERRIDE {
4187    return GetBlock()->GetGraph()->GetLongConstant(Compute(x->GetValue()), GetDexPc());
4188  }
4189  HConstant* Evaluate(HFloatConstant* x) const OVERRIDE {
4190    return GetBlock()->GetGraph()->GetFloatConstant(Compute(x->GetValue()), GetDexPc());
4191  }
4192  HConstant* Evaluate(HDoubleConstant* x) const OVERRIDE {
4193    return GetBlock()->GetGraph()->GetDoubleConstant(Compute(x->GetValue()), GetDexPc());
4194  }
4195
4196  DECLARE_INSTRUCTION(Neg);
4197
4198 private:
4199  DISALLOW_COPY_AND_ASSIGN(HNeg);
4200};
4201
4202class HNewArray : public HExpression<2> {
4203 public:
4204  HNewArray(HInstruction* length,
4205            HCurrentMethod* current_method,
4206            uint32_t dex_pc,
4207            uint16_t type_index,
4208            const DexFile& dex_file,
4209            QuickEntrypointEnum entrypoint)
4210      : HExpression(Primitive::kPrimNot, SideEffects::CanTriggerGC(), dex_pc),
4211        type_index_(type_index),
4212        dex_file_(dex_file),
4213        entrypoint_(entrypoint) {
4214    SetRawInputAt(0, length);
4215    SetRawInputAt(1, current_method);
4216  }
4217
4218  uint16_t GetTypeIndex() const { return type_index_; }
4219  const DexFile& GetDexFile() const { return dex_file_; }
4220
4221  // Calls runtime so needs an environment.
4222  bool NeedsEnvironment() const OVERRIDE { return true; }
4223
4224  // May throw NegativeArraySizeException, OutOfMemoryError, etc.
4225  bool CanThrow() const OVERRIDE { return true; }
4226
4227  bool CanBeNull() const OVERRIDE { return false; }
4228
4229  QuickEntrypointEnum GetEntrypoint() const { return entrypoint_; }
4230
4231  DECLARE_INSTRUCTION(NewArray);
4232
4233 private:
4234  const uint16_t type_index_;
4235  const DexFile& dex_file_;
4236  const QuickEntrypointEnum entrypoint_;
4237
4238  DISALLOW_COPY_AND_ASSIGN(HNewArray);
4239};
4240
4241class HAdd : public HBinaryOperation {
4242 public:
4243  HAdd(Primitive::Type result_type,
4244       HInstruction* left,
4245       HInstruction* right,
4246       uint32_t dex_pc = kNoDexPc)
4247      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
4248
4249  bool IsCommutative() const OVERRIDE { return true; }
4250
4251  template <typename T> T Compute(T x, T y) const { return x + y; }
4252
4253  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
4254    return GetBlock()->GetGraph()->GetIntConstant(
4255        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4256  }
4257  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
4258    return GetBlock()->GetGraph()->GetLongConstant(
4259        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4260  }
4261  HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const OVERRIDE {
4262    return GetBlock()->GetGraph()->GetFloatConstant(
4263        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4264  }
4265  HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const OVERRIDE {
4266    return GetBlock()->GetGraph()->GetDoubleConstant(
4267        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4268  }
4269
4270  DECLARE_INSTRUCTION(Add);
4271
4272 private:
4273  DISALLOW_COPY_AND_ASSIGN(HAdd);
4274};
4275
4276class HSub : public HBinaryOperation {
4277 public:
4278  HSub(Primitive::Type result_type,
4279       HInstruction* left,
4280       HInstruction* right,
4281       uint32_t dex_pc = kNoDexPc)
4282      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
4283
4284  template <typename T> T Compute(T x, T y) const { return x - y; }
4285
4286  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
4287    return GetBlock()->GetGraph()->GetIntConstant(
4288        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4289  }
4290  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
4291    return GetBlock()->GetGraph()->GetLongConstant(
4292        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4293  }
4294  HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const OVERRIDE {
4295    return GetBlock()->GetGraph()->GetFloatConstant(
4296        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4297  }
4298  HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const OVERRIDE {
4299    return GetBlock()->GetGraph()->GetDoubleConstant(
4300        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4301  }
4302
4303  DECLARE_INSTRUCTION(Sub);
4304
4305 private:
4306  DISALLOW_COPY_AND_ASSIGN(HSub);
4307};
4308
4309class HMul : public HBinaryOperation {
4310 public:
4311  HMul(Primitive::Type result_type,
4312       HInstruction* left,
4313       HInstruction* right,
4314       uint32_t dex_pc = kNoDexPc)
4315      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
4316
4317  bool IsCommutative() const OVERRIDE { return true; }
4318
4319  template <typename T> T Compute(T x, T y) const { return x * y; }
4320
4321  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
4322    return GetBlock()->GetGraph()->GetIntConstant(
4323        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4324  }
4325  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
4326    return GetBlock()->GetGraph()->GetLongConstant(
4327        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4328  }
4329  HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const OVERRIDE {
4330    return GetBlock()->GetGraph()->GetFloatConstant(
4331        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4332  }
4333  HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const OVERRIDE {
4334    return GetBlock()->GetGraph()->GetDoubleConstant(
4335        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4336  }
4337
4338  DECLARE_INSTRUCTION(Mul);
4339
4340 private:
4341  DISALLOW_COPY_AND_ASSIGN(HMul);
4342};
4343
4344class HDiv : public HBinaryOperation {
4345 public:
4346  HDiv(Primitive::Type result_type,
4347       HInstruction* left,
4348       HInstruction* right,
4349       uint32_t dex_pc)
4350      : HBinaryOperation(result_type, left, right, SideEffectsForArchRuntimeCalls(), dex_pc) {}
4351
4352  template <typename T>
4353  T ComputeIntegral(T x, T y) const {
4354    DCHECK(!Primitive::IsFloatingPointType(GetType())) << GetType();
4355    // Our graph structure ensures we never have 0 for `y` during
4356    // constant folding.
4357    DCHECK_NE(y, 0);
4358    // Special case -1 to avoid getting a SIGFPE on x86(_64).
4359    return (y == -1) ? -x : x / y;
4360  }
4361
4362  template <typename T>
4363  T ComputeFP(T x, T y) const {
4364    DCHECK(Primitive::IsFloatingPointType(GetType())) << GetType();
4365    return x / y;
4366  }
4367
4368  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
4369    return GetBlock()->GetGraph()->GetIntConstant(
4370        ComputeIntegral(x->GetValue(), y->GetValue()), GetDexPc());
4371  }
4372  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
4373    return GetBlock()->GetGraph()->GetLongConstant(
4374        ComputeIntegral(x->GetValue(), y->GetValue()), GetDexPc());
4375  }
4376  HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const OVERRIDE {
4377    return GetBlock()->GetGraph()->GetFloatConstant(
4378        ComputeFP(x->GetValue(), y->GetValue()), GetDexPc());
4379  }
4380  HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const OVERRIDE {
4381    return GetBlock()->GetGraph()->GetDoubleConstant(
4382        ComputeFP(x->GetValue(), y->GetValue()), GetDexPc());
4383  }
4384
4385  static SideEffects SideEffectsForArchRuntimeCalls() {
4386    // The generated code can use a runtime call.
4387    return SideEffects::CanTriggerGC();
4388  }
4389
4390  DECLARE_INSTRUCTION(Div);
4391
4392 private:
4393  DISALLOW_COPY_AND_ASSIGN(HDiv);
4394};
4395
4396class HRem : public HBinaryOperation {
4397 public:
4398  HRem(Primitive::Type result_type,
4399       HInstruction* left,
4400       HInstruction* right,
4401       uint32_t dex_pc)
4402      : HBinaryOperation(result_type, left, right, SideEffectsForArchRuntimeCalls(), dex_pc) {}
4403
4404  template <typename T>
4405  T ComputeIntegral(T x, T y) const {
4406    DCHECK(!Primitive::IsFloatingPointType(GetType())) << GetType();
4407    // Our graph structure ensures we never have 0 for `y` during
4408    // constant folding.
4409    DCHECK_NE(y, 0);
4410    // Special case -1 to avoid getting a SIGFPE on x86(_64).
4411    return (y == -1) ? 0 : x % y;
4412  }
4413
4414  template <typename T>
4415  T ComputeFP(T x, T y) const {
4416    DCHECK(Primitive::IsFloatingPointType(GetType())) << GetType();
4417    return std::fmod(x, y);
4418  }
4419
4420  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
4421    return GetBlock()->GetGraph()->GetIntConstant(
4422        ComputeIntegral(x->GetValue(), y->GetValue()), GetDexPc());
4423  }
4424  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
4425    return GetBlock()->GetGraph()->GetLongConstant(
4426        ComputeIntegral(x->GetValue(), y->GetValue()), GetDexPc());
4427  }
4428  HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const OVERRIDE {
4429    return GetBlock()->GetGraph()->GetFloatConstant(
4430        ComputeFP(x->GetValue(), y->GetValue()), GetDexPc());
4431  }
4432  HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const OVERRIDE {
4433    return GetBlock()->GetGraph()->GetDoubleConstant(
4434        ComputeFP(x->GetValue(), y->GetValue()), GetDexPc());
4435  }
4436
4437  static SideEffects SideEffectsForArchRuntimeCalls() {
4438    return SideEffects::CanTriggerGC();
4439  }
4440
4441  DECLARE_INSTRUCTION(Rem);
4442
4443 private:
4444  DISALLOW_COPY_AND_ASSIGN(HRem);
4445};
4446
4447class HDivZeroCheck : public HExpression<1> {
4448 public:
4449  // `HDivZeroCheck` can trigger GC, as it may call the `ArithmeticException`
4450  // constructor.
4451  HDivZeroCheck(HInstruction* value, uint32_t dex_pc)
4452      : HExpression(value->GetType(), SideEffects::CanTriggerGC(), dex_pc) {
4453    SetRawInputAt(0, value);
4454  }
4455
4456  Primitive::Type GetType() const OVERRIDE { return InputAt(0)->GetType(); }
4457
4458  bool CanBeMoved() const OVERRIDE { return true; }
4459
4460  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
4461    return true;
4462  }
4463
4464  bool NeedsEnvironment() const OVERRIDE { return true; }
4465  bool CanThrow() const OVERRIDE { return true; }
4466
4467  DECLARE_INSTRUCTION(DivZeroCheck);
4468
4469 private:
4470  DISALLOW_COPY_AND_ASSIGN(HDivZeroCheck);
4471};
4472
4473class HShl : public HBinaryOperation {
4474 public:
4475  HShl(Primitive::Type result_type,
4476       HInstruction* value,
4477       HInstruction* distance,
4478       uint32_t dex_pc = kNoDexPc)
4479      : HBinaryOperation(result_type, value, distance, SideEffects::None(), dex_pc) {
4480    DCHECK_EQ(result_type, Primitive::PrimitiveKind(value->GetType()));
4481    DCHECK_EQ(Primitive::kPrimInt, Primitive::PrimitiveKind(distance->GetType()));
4482  }
4483
4484  template <typename T>
4485  T Compute(T value, int32_t distance, int32_t max_shift_distance) const {
4486    return value << (distance & max_shift_distance);
4487  }
4488
4489  HConstant* Evaluate(HIntConstant* value, HIntConstant* distance) const OVERRIDE {
4490    return GetBlock()->GetGraph()->GetIntConstant(
4491        Compute(value->GetValue(), distance->GetValue(), kMaxIntShiftDistance), GetDexPc());
4492  }
4493  HConstant* Evaluate(HLongConstant* value, HIntConstant* distance) const OVERRIDE {
4494    return GetBlock()->GetGraph()->GetLongConstant(
4495        Compute(value->GetValue(), distance->GetValue(), kMaxLongShiftDistance), GetDexPc());
4496  }
4497  HConstant* Evaluate(HLongConstant* value ATTRIBUTE_UNUSED,
4498                      HLongConstant* distance ATTRIBUTE_UNUSED) const OVERRIDE {
4499    LOG(FATAL) << DebugName() << " is not defined for the (long, long) case.";
4500    UNREACHABLE();
4501  }
4502  HConstant* Evaluate(HFloatConstant* value ATTRIBUTE_UNUSED,
4503                      HFloatConstant* distance ATTRIBUTE_UNUSED) const OVERRIDE {
4504    LOG(FATAL) << DebugName() << " is not defined for float values";
4505    UNREACHABLE();
4506  }
4507  HConstant* Evaluate(HDoubleConstant* value ATTRIBUTE_UNUSED,
4508                      HDoubleConstant* distance ATTRIBUTE_UNUSED) const OVERRIDE {
4509    LOG(FATAL) << DebugName() << " is not defined for double values";
4510    UNREACHABLE();
4511  }
4512
4513  DECLARE_INSTRUCTION(Shl);
4514
4515 private:
4516  DISALLOW_COPY_AND_ASSIGN(HShl);
4517};
4518
4519class HShr : public HBinaryOperation {
4520 public:
4521  HShr(Primitive::Type result_type,
4522       HInstruction* value,
4523       HInstruction* distance,
4524       uint32_t dex_pc = kNoDexPc)
4525      : HBinaryOperation(result_type, value, distance, SideEffects::None(), dex_pc) {
4526    DCHECK_EQ(result_type, Primitive::PrimitiveKind(value->GetType()));
4527    DCHECK_EQ(Primitive::kPrimInt, Primitive::PrimitiveKind(distance->GetType()));
4528  }
4529
4530  template <typename T>
4531  T Compute(T value, int32_t distance, int32_t max_shift_distance) const {
4532    return value >> (distance & max_shift_distance);
4533  }
4534
4535  HConstant* Evaluate(HIntConstant* value, HIntConstant* distance) const OVERRIDE {
4536    return GetBlock()->GetGraph()->GetIntConstant(
4537        Compute(value->GetValue(), distance->GetValue(), kMaxIntShiftDistance), GetDexPc());
4538  }
4539  HConstant* Evaluate(HLongConstant* value, HIntConstant* distance) const OVERRIDE {
4540    return GetBlock()->GetGraph()->GetLongConstant(
4541        Compute(value->GetValue(), distance->GetValue(), kMaxLongShiftDistance), GetDexPc());
4542  }
4543  HConstant* Evaluate(HLongConstant* value ATTRIBUTE_UNUSED,
4544                      HLongConstant* distance ATTRIBUTE_UNUSED) const OVERRIDE {
4545    LOG(FATAL) << DebugName() << " is not defined for the (long, long) case.";
4546    UNREACHABLE();
4547  }
4548  HConstant* Evaluate(HFloatConstant* value ATTRIBUTE_UNUSED,
4549                      HFloatConstant* distance ATTRIBUTE_UNUSED) const OVERRIDE {
4550    LOG(FATAL) << DebugName() << " is not defined for float values";
4551    UNREACHABLE();
4552  }
4553  HConstant* Evaluate(HDoubleConstant* value ATTRIBUTE_UNUSED,
4554                      HDoubleConstant* distance ATTRIBUTE_UNUSED) const OVERRIDE {
4555    LOG(FATAL) << DebugName() << " is not defined for double values";
4556    UNREACHABLE();
4557  }
4558
4559  DECLARE_INSTRUCTION(Shr);
4560
4561 private:
4562  DISALLOW_COPY_AND_ASSIGN(HShr);
4563};
4564
4565class HUShr : public HBinaryOperation {
4566 public:
4567  HUShr(Primitive::Type result_type,
4568        HInstruction* value,
4569        HInstruction* distance,
4570        uint32_t dex_pc = kNoDexPc)
4571      : HBinaryOperation(result_type, value, distance, SideEffects::None(), dex_pc) {
4572    DCHECK_EQ(result_type, Primitive::PrimitiveKind(value->GetType()));
4573    DCHECK_EQ(Primitive::kPrimInt, Primitive::PrimitiveKind(distance->GetType()));
4574  }
4575
4576  template <typename T>
4577  T Compute(T value, int32_t distance, int32_t max_shift_distance) const {
4578    typedef typename std::make_unsigned<T>::type V;
4579    V ux = static_cast<V>(value);
4580    return static_cast<T>(ux >> (distance & max_shift_distance));
4581  }
4582
4583  HConstant* Evaluate(HIntConstant* value, HIntConstant* distance) const OVERRIDE {
4584    return GetBlock()->GetGraph()->GetIntConstant(
4585        Compute(value->GetValue(), distance->GetValue(), kMaxIntShiftDistance), GetDexPc());
4586  }
4587  HConstant* Evaluate(HLongConstant* value, HIntConstant* distance) const OVERRIDE {
4588    return GetBlock()->GetGraph()->GetLongConstant(
4589        Compute(value->GetValue(), distance->GetValue(), kMaxLongShiftDistance), GetDexPc());
4590  }
4591  HConstant* Evaluate(HLongConstant* value ATTRIBUTE_UNUSED,
4592                      HLongConstant* distance ATTRIBUTE_UNUSED) const OVERRIDE {
4593    LOG(FATAL) << DebugName() << " is not defined for the (long, long) case.";
4594    UNREACHABLE();
4595  }
4596  HConstant* Evaluate(HFloatConstant* value ATTRIBUTE_UNUSED,
4597                      HFloatConstant* distance ATTRIBUTE_UNUSED) const OVERRIDE {
4598    LOG(FATAL) << DebugName() << " is not defined for float values";
4599    UNREACHABLE();
4600  }
4601  HConstant* Evaluate(HDoubleConstant* value ATTRIBUTE_UNUSED,
4602                      HDoubleConstant* distance ATTRIBUTE_UNUSED) const OVERRIDE {
4603    LOG(FATAL) << DebugName() << " is not defined for double values";
4604    UNREACHABLE();
4605  }
4606
4607  DECLARE_INSTRUCTION(UShr);
4608
4609 private:
4610  DISALLOW_COPY_AND_ASSIGN(HUShr);
4611};
4612
4613class HAnd : public HBinaryOperation {
4614 public:
4615  HAnd(Primitive::Type result_type,
4616       HInstruction* left,
4617       HInstruction* right,
4618       uint32_t dex_pc = kNoDexPc)
4619      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
4620
4621  bool IsCommutative() const OVERRIDE { return true; }
4622
4623  template <typename T> T Compute(T x, T y) const { return x & y; }
4624
4625  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
4626    return GetBlock()->GetGraph()->GetIntConstant(
4627        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4628  }
4629  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
4630    return GetBlock()->GetGraph()->GetLongConstant(
4631        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4632  }
4633  HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED,
4634                      HFloatConstant* y ATTRIBUTE_UNUSED) const OVERRIDE {
4635    LOG(FATAL) << DebugName() << " is not defined for float values";
4636    UNREACHABLE();
4637  }
4638  HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED,
4639                      HDoubleConstant* y ATTRIBUTE_UNUSED) const OVERRIDE {
4640    LOG(FATAL) << DebugName() << " is not defined for double values";
4641    UNREACHABLE();
4642  }
4643
4644  DECLARE_INSTRUCTION(And);
4645
4646 private:
4647  DISALLOW_COPY_AND_ASSIGN(HAnd);
4648};
4649
4650class HOr : public HBinaryOperation {
4651 public:
4652  HOr(Primitive::Type result_type,
4653      HInstruction* left,
4654      HInstruction* right,
4655      uint32_t dex_pc = kNoDexPc)
4656      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
4657
4658  bool IsCommutative() const OVERRIDE { return true; }
4659
4660  template <typename T> T Compute(T x, T y) const { return x | y; }
4661
4662  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
4663    return GetBlock()->GetGraph()->GetIntConstant(
4664        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4665  }
4666  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
4667    return GetBlock()->GetGraph()->GetLongConstant(
4668        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4669  }
4670  HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED,
4671                      HFloatConstant* y ATTRIBUTE_UNUSED) const OVERRIDE {
4672    LOG(FATAL) << DebugName() << " is not defined for float values";
4673    UNREACHABLE();
4674  }
4675  HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED,
4676                      HDoubleConstant* y ATTRIBUTE_UNUSED) const OVERRIDE {
4677    LOG(FATAL) << DebugName() << " is not defined for double values";
4678    UNREACHABLE();
4679  }
4680
4681  DECLARE_INSTRUCTION(Or);
4682
4683 private:
4684  DISALLOW_COPY_AND_ASSIGN(HOr);
4685};
4686
4687class HXor : public HBinaryOperation {
4688 public:
4689  HXor(Primitive::Type result_type,
4690       HInstruction* left,
4691       HInstruction* right,
4692       uint32_t dex_pc = kNoDexPc)
4693      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
4694
4695  bool IsCommutative() const OVERRIDE { return true; }
4696
4697  template <typename T> T Compute(T x, T y) const { return x ^ y; }
4698
4699  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
4700    return GetBlock()->GetGraph()->GetIntConstant(
4701        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4702  }
4703  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
4704    return GetBlock()->GetGraph()->GetLongConstant(
4705        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4706  }
4707  HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED,
4708                      HFloatConstant* y ATTRIBUTE_UNUSED) const OVERRIDE {
4709    LOG(FATAL) << DebugName() << " is not defined for float values";
4710    UNREACHABLE();
4711  }
4712  HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED,
4713                      HDoubleConstant* y ATTRIBUTE_UNUSED) const OVERRIDE {
4714    LOG(FATAL) << DebugName() << " is not defined for double values";
4715    UNREACHABLE();
4716  }
4717
4718  DECLARE_INSTRUCTION(Xor);
4719
4720 private:
4721  DISALLOW_COPY_AND_ASSIGN(HXor);
4722};
4723
4724class HRor : public HBinaryOperation {
4725 public:
4726  HRor(Primitive::Type result_type, HInstruction* value, HInstruction* distance)
4727    : HBinaryOperation(result_type, value, distance) {
4728    DCHECK_EQ(result_type, Primitive::PrimitiveKind(value->GetType()));
4729    DCHECK_EQ(Primitive::kPrimInt, Primitive::PrimitiveKind(distance->GetType()));
4730  }
4731
4732  template <typename T>
4733  T Compute(T value, int32_t distance, int32_t max_shift_value) const {
4734    typedef typename std::make_unsigned<T>::type V;
4735    V ux = static_cast<V>(value);
4736    if ((distance & max_shift_value) == 0) {
4737      return static_cast<T>(ux);
4738    } else {
4739      const V reg_bits = sizeof(T) * 8;
4740      return static_cast<T>(ux >> (distance & max_shift_value)) |
4741                           (value << (reg_bits - (distance & max_shift_value)));
4742    }
4743  }
4744
4745  HConstant* Evaluate(HIntConstant* value, HIntConstant* distance) const OVERRIDE {
4746    return GetBlock()->GetGraph()->GetIntConstant(
4747        Compute(value->GetValue(), distance->GetValue(), kMaxIntShiftDistance), GetDexPc());
4748  }
4749  HConstant* Evaluate(HLongConstant* value, HIntConstant* distance) const OVERRIDE {
4750    return GetBlock()->GetGraph()->GetLongConstant(
4751        Compute(value->GetValue(), distance->GetValue(), kMaxLongShiftDistance), GetDexPc());
4752  }
4753  HConstant* Evaluate(HLongConstant* value ATTRIBUTE_UNUSED,
4754                      HLongConstant* distance ATTRIBUTE_UNUSED) const OVERRIDE {
4755    LOG(FATAL) << DebugName() << " is not defined for the (long, long) case.";
4756    UNREACHABLE();
4757  }
4758  HConstant* Evaluate(HFloatConstant* value ATTRIBUTE_UNUSED,
4759                      HFloatConstant* distance ATTRIBUTE_UNUSED) const OVERRIDE {
4760    LOG(FATAL) << DebugName() << " is not defined for float values";
4761    UNREACHABLE();
4762  }
4763  HConstant* Evaluate(HDoubleConstant* value ATTRIBUTE_UNUSED,
4764                      HDoubleConstant* distance ATTRIBUTE_UNUSED) const OVERRIDE {
4765    LOG(FATAL) << DebugName() << " is not defined for double values";
4766    UNREACHABLE();
4767  }
4768
4769  DECLARE_INSTRUCTION(Ror);
4770
4771 private:
4772  DISALLOW_COPY_AND_ASSIGN(HRor);
4773};
4774
4775// The value of a parameter in this method. Its location depends on
4776// the calling convention.
4777class HParameterValue : public HExpression<0> {
4778 public:
4779  HParameterValue(const DexFile& dex_file,
4780                  uint16_t type_index,
4781                  uint8_t index,
4782                  Primitive::Type parameter_type,
4783                  bool is_this = false)
4784      : HExpression(parameter_type, SideEffects::None(), kNoDexPc),
4785        dex_file_(dex_file),
4786        type_index_(type_index),
4787        index_(index) {
4788    SetPackedFlag<kFlagIsThis>(is_this);
4789    SetPackedFlag<kFlagCanBeNull>(!is_this);
4790  }
4791
4792  const DexFile& GetDexFile() const { return dex_file_; }
4793  uint16_t GetTypeIndex() const { return type_index_; }
4794  uint8_t GetIndex() const { return index_; }
4795  bool IsThis() const { return GetPackedFlag<kFlagIsThis>(); }
4796
4797  bool CanBeNull() const OVERRIDE { return GetPackedFlag<kFlagCanBeNull>(); }
4798  void SetCanBeNull(bool can_be_null) { SetPackedFlag<kFlagCanBeNull>(can_be_null); }
4799
4800  DECLARE_INSTRUCTION(ParameterValue);
4801
4802 private:
4803  // Whether or not the parameter value corresponds to 'this' argument.
4804  static constexpr size_t kFlagIsThis = kNumberOfExpressionPackedBits;
4805  static constexpr size_t kFlagCanBeNull = kFlagIsThis + 1;
4806  static constexpr size_t kNumberOfParameterValuePackedBits = kFlagCanBeNull + 1;
4807  static_assert(kNumberOfParameterValuePackedBits <= kMaxNumberOfPackedBits,
4808                "Too many packed fields.");
4809
4810  const DexFile& dex_file_;
4811  const uint16_t type_index_;
4812  // The index of this parameter in the parameters list. Must be less
4813  // than HGraph::number_of_in_vregs_.
4814  const uint8_t index_;
4815
4816  DISALLOW_COPY_AND_ASSIGN(HParameterValue);
4817};
4818
4819class HNot : public HUnaryOperation {
4820 public:
4821  HNot(Primitive::Type result_type, HInstruction* input, uint32_t dex_pc = kNoDexPc)
4822      : HUnaryOperation(result_type, input, dex_pc) {}
4823
4824  bool CanBeMoved() const OVERRIDE { return true; }
4825  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
4826    return true;
4827  }
4828
4829  template <typename T> T Compute(T x) const { return ~x; }
4830
4831  HConstant* Evaluate(HIntConstant* x) const OVERRIDE {
4832    return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue()), GetDexPc());
4833  }
4834  HConstant* Evaluate(HLongConstant* x) const OVERRIDE {
4835    return GetBlock()->GetGraph()->GetLongConstant(Compute(x->GetValue()), GetDexPc());
4836  }
4837  HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED) const OVERRIDE {
4838    LOG(FATAL) << DebugName() << " is not defined for float values";
4839    UNREACHABLE();
4840  }
4841  HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED) const OVERRIDE {
4842    LOG(FATAL) << DebugName() << " is not defined for double values";
4843    UNREACHABLE();
4844  }
4845
4846  DECLARE_INSTRUCTION(Not);
4847
4848 private:
4849  DISALLOW_COPY_AND_ASSIGN(HNot);
4850};
4851
4852class HBooleanNot : public HUnaryOperation {
4853 public:
4854  explicit HBooleanNot(HInstruction* input, uint32_t dex_pc = kNoDexPc)
4855      : HUnaryOperation(Primitive::Type::kPrimBoolean, input, dex_pc) {}
4856
4857  bool CanBeMoved() const OVERRIDE { return true; }
4858  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
4859    return true;
4860  }
4861
4862  template <typename T> bool Compute(T x) const {
4863    DCHECK(IsUint<1>(x)) << x;
4864    return !x;
4865  }
4866
4867  HConstant* Evaluate(HIntConstant* x) const OVERRIDE {
4868    return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue()), GetDexPc());
4869  }
4870  HConstant* Evaluate(HLongConstant* x ATTRIBUTE_UNUSED) const OVERRIDE {
4871    LOG(FATAL) << DebugName() << " is not defined for long values";
4872    UNREACHABLE();
4873  }
4874  HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED) const OVERRIDE {
4875    LOG(FATAL) << DebugName() << " is not defined for float values";
4876    UNREACHABLE();
4877  }
4878  HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED) const OVERRIDE {
4879    LOG(FATAL) << DebugName() << " is not defined for double values";
4880    UNREACHABLE();
4881  }
4882
4883  DECLARE_INSTRUCTION(BooleanNot);
4884
4885 private:
4886  DISALLOW_COPY_AND_ASSIGN(HBooleanNot);
4887};
4888
4889class HTypeConversion : public HExpression<1> {
4890 public:
4891  // Instantiate a type conversion of `input` to `result_type`.
4892  HTypeConversion(Primitive::Type result_type, HInstruction* input, uint32_t dex_pc)
4893      : HExpression(result_type,
4894                    SideEffectsForArchRuntimeCalls(input->GetType(), result_type),
4895                    dex_pc) {
4896    SetRawInputAt(0, input);
4897    DCHECK_NE(input->GetType(), result_type);
4898    // Invariant: We should never generate a conversion to a Boolean value.
4899    DCHECK_NE(Primitive::kPrimBoolean, result_type);
4900  }
4901
4902  HInstruction* GetInput() const { return InputAt(0); }
4903  Primitive::Type GetInputType() const { return GetInput()->GetType(); }
4904  Primitive::Type GetResultType() const { return GetType(); }
4905
4906  bool CanBeMoved() const OVERRIDE { return true; }
4907  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE { return true; }
4908
4909  // Try to statically evaluate the conversion and return a HConstant
4910  // containing the result.  If the input cannot be converted, return nullptr.
4911  HConstant* TryStaticEvaluation() const;
4912
4913  static SideEffects SideEffectsForArchRuntimeCalls(Primitive::Type input_type,
4914                                                    Primitive::Type result_type) {
4915    // Some architectures may not require the 'GC' side effects, but at this point
4916    // in the compilation process we do not know what architecture we will
4917    // generate code for, so we must be conservative.
4918    if ((Primitive::IsFloatingPointType(input_type) && Primitive::IsIntegralType(result_type))
4919        || (input_type == Primitive::kPrimLong && Primitive::IsFloatingPointType(result_type))) {
4920      return SideEffects::CanTriggerGC();
4921    }
4922    return SideEffects::None();
4923  }
4924
4925  DECLARE_INSTRUCTION(TypeConversion);
4926
4927 private:
4928  DISALLOW_COPY_AND_ASSIGN(HTypeConversion);
4929};
4930
4931static constexpr uint32_t kNoRegNumber = -1;
4932
4933class HPhi : public HInstruction {
4934 public:
4935  HPhi(ArenaAllocator* arena,
4936       uint32_t reg_number,
4937       size_t number_of_inputs,
4938       Primitive::Type type,
4939       uint32_t dex_pc = kNoDexPc)
4940      : HInstruction(SideEffects::None(), dex_pc),
4941        inputs_(number_of_inputs, arena->Adapter(kArenaAllocPhiInputs)),
4942        reg_number_(reg_number) {
4943    SetPackedField<TypeField>(ToPhiType(type));
4944    DCHECK_NE(GetType(), Primitive::kPrimVoid);
4945    // Phis are constructed live and marked dead if conflicting or unused.
4946    // Individual steps of SsaBuilder should assume that if a phi has been
4947    // marked dead, it can be ignored and will be removed by SsaPhiElimination.
4948    SetPackedFlag<kFlagIsLive>(true);
4949    SetPackedFlag<kFlagCanBeNull>(true);
4950  }
4951
4952  // Returns a type equivalent to the given `type`, but that a `HPhi` can hold.
4953  static Primitive::Type ToPhiType(Primitive::Type type) {
4954    switch (type) {
4955      case Primitive::kPrimBoolean:
4956      case Primitive::kPrimByte:
4957      case Primitive::kPrimShort:
4958      case Primitive::kPrimChar:
4959        return Primitive::kPrimInt;
4960      default:
4961        return type;
4962    }
4963  }
4964
4965  bool IsCatchPhi() const { return GetBlock()->IsCatchBlock(); }
4966
4967  size_t InputCount() const OVERRIDE { return inputs_.size(); }
4968
4969  void AddInput(HInstruction* input);
4970  void RemoveInputAt(size_t index);
4971
4972  Primitive::Type GetType() const OVERRIDE { return GetPackedField<TypeField>(); }
4973  void SetType(Primitive::Type new_type) {
4974    // Make sure that only valid type changes occur. The following are allowed:
4975    //  (1) int  -> float/ref (primitive type propagation),
4976    //  (2) long -> double (primitive type propagation).
4977    DCHECK(GetType() == new_type ||
4978           (GetType() == Primitive::kPrimInt && new_type == Primitive::kPrimFloat) ||
4979           (GetType() == Primitive::kPrimInt && new_type == Primitive::kPrimNot) ||
4980           (GetType() == Primitive::kPrimLong && new_type == Primitive::kPrimDouble));
4981    SetPackedField<TypeField>(new_type);
4982  }
4983
4984  bool CanBeNull() const OVERRIDE { return GetPackedFlag<kFlagCanBeNull>(); }
4985  void SetCanBeNull(bool can_be_null) { SetPackedFlag<kFlagCanBeNull>(can_be_null); }
4986
4987  uint32_t GetRegNumber() const { return reg_number_; }
4988
4989  void SetDead() { SetPackedFlag<kFlagIsLive>(false); }
4990  void SetLive() { SetPackedFlag<kFlagIsLive>(true); }
4991  bool IsDead() const { return !IsLive(); }
4992  bool IsLive() const { return GetPackedFlag<kFlagIsLive>(); }
4993
4994  bool IsVRegEquivalentOf(HInstruction* other) const {
4995    return other != nullptr
4996        && other->IsPhi()
4997        && other->AsPhi()->GetBlock() == GetBlock()
4998        && other->AsPhi()->GetRegNumber() == GetRegNumber();
4999  }
5000
5001  // Returns the next equivalent phi (starting from the current one) or null if there is none.
5002  // An equivalent phi is a phi having the same dex register and type.
5003  // It assumes that phis with the same dex register are adjacent.
5004  HPhi* GetNextEquivalentPhiWithSameType() {
5005    HInstruction* next = GetNext();
5006    while (next != nullptr && next->AsPhi()->GetRegNumber() == reg_number_) {
5007      if (next->GetType() == GetType()) {
5008        return next->AsPhi();
5009      }
5010      next = next->GetNext();
5011    }
5012    return nullptr;
5013  }
5014
5015  DECLARE_INSTRUCTION(Phi);
5016
5017 protected:
5018  const HUserRecord<HInstruction*> InputRecordAt(size_t index) const OVERRIDE {
5019    return inputs_[index];
5020  }
5021
5022  void SetRawInputRecordAt(size_t index, const HUserRecord<HInstruction*>& input) OVERRIDE {
5023    inputs_[index] = input;
5024  }
5025
5026 private:
5027  static constexpr size_t kFieldType = HInstruction::kNumberOfGenericPackedBits;
5028  static constexpr size_t kFieldTypeSize =
5029      MinimumBitsToStore(static_cast<size_t>(Primitive::kPrimLast));
5030  static constexpr size_t kFlagIsLive = kFieldType + kFieldTypeSize;
5031  static constexpr size_t kFlagCanBeNull = kFlagIsLive + 1;
5032  static constexpr size_t kNumberOfPhiPackedBits = kFlagCanBeNull + 1;
5033  static_assert(kNumberOfPhiPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields.");
5034  using TypeField = BitField<Primitive::Type, kFieldType, kFieldTypeSize>;
5035
5036  ArenaVector<HUserRecord<HInstruction*> > inputs_;
5037  const uint32_t reg_number_;
5038
5039  DISALLOW_COPY_AND_ASSIGN(HPhi);
5040};
5041
5042class HNullCheck : public HExpression<1> {
5043 public:
5044  // `HNullCheck` can trigger GC, as it may call the `NullPointerException`
5045  // constructor.
5046  HNullCheck(HInstruction* value, uint32_t dex_pc)
5047      : HExpression(value->GetType(), SideEffects::CanTriggerGC(), dex_pc) {
5048    SetRawInputAt(0, value);
5049  }
5050
5051  bool CanBeMoved() const OVERRIDE { return true; }
5052  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
5053    return true;
5054  }
5055
5056  bool NeedsEnvironment() const OVERRIDE { return true; }
5057
5058  bool CanThrow() const OVERRIDE { return true; }
5059
5060  bool CanBeNull() const OVERRIDE { return false; }
5061
5062
5063  DECLARE_INSTRUCTION(NullCheck);
5064
5065 private:
5066  DISALLOW_COPY_AND_ASSIGN(HNullCheck);
5067};
5068
5069class FieldInfo : public ValueObject {
5070 public:
5071  FieldInfo(MemberOffset field_offset,
5072            Primitive::Type field_type,
5073            bool is_volatile,
5074            uint32_t index,
5075            uint16_t declaring_class_def_index,
5076            const DexFile& dex_file,
5077            Handle<mirror::DexCache> dex_cache)
5078      : field_offset_(field_offset),
5079        field_type_(field_type),
5080        is_volatile_(is_volatile),
5081        index_(index),
5082        declaring_class_def_index_(declaring_class_def_index),
5083        dex_file_(dex_file),
5084        dex_cache_(dex_cache) {}
5085
5086  MemberOffset GetFieldOffset() const { return field_offset_; }
5087  Primitive::Type GetFieldType() const { return field_type_; }
5088  uint32_t GetFieldIndex() const { return index_; }
5089  uint16_t GetDeclaringClassDefIndex() const { return declaring_class_def_index_;}
5090  const DexFile& GetDexFile() const { return dex_file_; }
5091  bool IsVolatile() const { return is_volatile_; }
5092  Handle<mirror::DexCache> GetDexCache() const { return dex_cache_; }
5093
5094 private:
5095  const MemberOffset field_offset_;
5096  const Primitive::Type field_type_;
5097  const bool is_volatile_;
5098  const uint32_t index_;
5099  const uint16_t declaring_class_def_index_;
5100  const DexFile& dex_file_;
5101  const Handle<mirror::DexCache> dex_cache_;
5102};
5103
5104class HInstanceFieldGet : public HExpression<1> {
5105 public:
5106  HInstanceFieldGet(HInstruction* value,
5107                    Primitive::Type field_type,
5108                    MemberOffset field_offset,
5109                    bool is_volatile,
5110                    uint32_t field_idx,
5111                    uint16_t declaring_class_def_index,
5112                    const DexFile& dex_file,
5113                    Handle<mirror::DexCache> dex_cache,
5114                    uint32_t dex_pc)
5115      : HExpression(field_type,
5116                    SideEffects::FieldReadOfType(field_type, is_volatile),
5117                    dex_pc),
5118        field_info_(field_offset,
5119                    field_type,
5120                    is_volatile,
5121                    field_idx,
5122                    declaring_class_def_index,
5123                    dex_file,
5124                    dex_cache) {
5125    SetRawInputAt(0, value);
5126  }
5127
5128  bool CanBeMoved() const OVERRIDE { return !IsVolatile(); }
5129
5130  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
5131    HInstanceFieldGet* other_get = other->AsInstanceFieldGet();
5132    return GetFieldOffset().SizeValue() == other_get->GetFieldOffset().SizeValue();
5133  }
5134
5135  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
5136    return (obj == InputAt(0)) && GetFieldOffset().Uint32Value() < kPageSize;
5137  }
5138
5139  size_t ComputeHashCode() const OVERRIDE {
5140    return (HInstruction::ComputeHashCode() << 7) | GetFieldOffset().SizeValue();
5141  }
5142
5143  const FieldInfo& GetFieldInfo() const { return field_info_; }
5144  MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
5145  Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); }
5146  bool IsVolatile() const { return field_info_.IsVolatile(); }
5147
5148  DECLARE_INSTRUCTION(InstanceFieldGet);
5149
5150 private:
5151  const FieldInfo field_info_;
5152
5153  DISALLOW_COPY_AND_ASSIGN(HInstanceFieldGet);
5154};
5155
5156class HInstanceFieldSet : public HTemplateInstruction<2> {
5157 public:
5158  HInstanceFieldSet(HInstruction* object,
5159                    HInstruction* value,
5160                    Primitive::Type field_type,
5161                    MemberOffset field_offset,
5162                    bool is_volatile,
5163                    uint32_t field_idx,
5164                    uint16_t declaring_class_def_index,
5165                    const DexFile& dex_file,
5166                    Handle<mirror::DexCache> dex_cache,
5167                    uint32_t dex_pc)
5168      : HTemplateInstruction(SideEffects::FieldWriteOfType(field_type, is_volatile),
5169                             dex_pc),
5170        field_info_(field_offset,
5171                    field_type,
5172                    is_volatile,
5173                    field_idx,
5174                    declaring_class_def_index,
5175                    dex_file,
5176                    dex_cache) {
5177    SetPackedFlag<kFlagValueCanBeNull>(true);
5178    SetRawInputAt(0, object);
5179    SetRawInputAt(1, value);
5180  }
5181
5182  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
5183    return (obj == InputAt(0)) && GetFieldOffset().Uint32Value() < kPageSize;
5184  }
5185
5186  const FieldInfo& GetFieldInfo() const { return field_info_; }
5187  MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
5188  Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); }
5189  bool IsVolatile() const { return field_info_.IsVolatile(); }
5190  HInstruction* GetValue() const { return InputAt(1); }
5191  bool GetValueCanBeNull() const { return GetPackedFlag<kFlagValueCanBeNull>(); }
5192  void ClearValueCanBeNull() { SetPackedFlag<kFlagValueCanBeNull>(false); }
5193
5194  DECLARE_INSTRUCTION(InstanceFieldSet);
5195
5196 private:
5197  static constexpr size_t kFlagValueCanBeNull = kNumberOfGenericPackedBits;
5198  static constexpr size_t kNumberOfInstanceFieldSetPackedBits = kFlagValueCanBeNull + 1;
5199  static_assert(kNumberOfInstanceFieldSetPackedBits <= kMaxNumberOfPackedBits,
5200                "Too many packed fields.");
5201
5202  const FieldInfo field_info_;
5203
5204  DISALLOW_COPY_AND_ASSIGN(HInstanceFieldSet);
5205};
5206
5207class HArrayGet : public HExpression<2> {
5208 public:
5209  HArrayGet(HInstruction* array,
5210            HInstruction* index,
5211            Primitive::Type type,
5212            uint32_t dex_pc,
5213            SideEffects additional_side_effects = SideEffects::None())
5214      : HExpression(type,
5215                    SideEffects::ArrayReadOfType(type).Union(additional_side_effects),
5216                    dex_pc) {
5217    SetRawInputAt(0, array);
5218    SetRawInputAt(1, index);
5219  }
5220
5221  bool CanBeMoved() const OVERRIDE { return true; }
5222  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
5223    return true;
5224  }
5225  bool CanDoImplicitNullCheckOn(HInstruction* obj ATTRIBUTE_UNUSED) const OVERRIDE {
5226    // TODO: We can be smarter here.
5227    // Currently, the array access is always preceded by an ArrayLength or a NullCheck
5228    // which generates the implicit null check. There are cases when these can be removed
5229    // to produce better code. If we ever add optimizations to do so we should allow an
5230    // implicit check here (as long as the address falls in the first page).
5231    return false;
5232  }
5233
5234  bool IsEquivalentOf(HArrayGet* other) const {
5235    bool result = (GetDexPc() == other->GetDexPc());
5236    if (kIsDebugBuild && result) {
5237      DCHECK_EQ(GetBlock(), other->GetBlock());
5238      DCHECK_EQ(GetArray(), other->GetArray());
5239      DCHECK_EQ(GetIndex(), other->GetIndex());
5240      if (Primitive::IsIntOrLongType(GetType())) {
5241        DCHECK(Primitive::IsFloatingPointType(other->GetType())) << other->GetType();
5242      } else {
5243        DCHECK(Primitive::IsFloatingPointType(GetType())) << GetType();
5244        DCHECK(Primitive::IsIntOrLongType(other->GetType())) << other->GetType();
5245      }
5246    }
5247    return result;
5248  }
5249
5250  HInstruction* GetArray() const { return InputAt(0); }
5251  HInstruction* GetIndex() const { return InputAt(1); }
5252
5253  DECLARE_INSTRUCTION(ArrayGet);
5254
5255 private:
5256  DISALLOW_COPY_AND_ASSIGN(HArrayGet);
5257};
5258
5259class HArraySet : public HTemplateInstruction<3> {
5260 public:
5261  HArraySet(HInstruction* array,
5262            HInstruction* index,
5263            HInstruction* value,
5264            Primitive::Type expected_component_type,
5265            uint32_t dex_pc,
5266            SideEffects additional_side_effects = SideEffects::None())
5267      : HTemplateInstruction(
5268            SideEffects::ArrayWriteOfType(expected_component_type).Union(
5269                SideEffectsForArchRuntimeCalls(value->GetType())).Union(
5270                    additional_side_effects),
5271            dex_pc) {
5272    SetPackedField<ExpectedComponentTypeField>(expected_component_type);
5273    SetPackedFlag<kFlagNeedsTypeCheck>(value->GetType() == Primitive::kPrimNot);
5274    SetPackedFlag<kFlagValueCanBeNull>(true);
5275    SetPackedFlag<kFlagStaticTypeOfArrayIsObjectArray>(false);
5276    SetRawInputAt(0, array);
5277    SetRawInputAt(1, index);
5278    SetRawInputAt(2, value);
5279  }
5280
5281  bool NeedsEnvironment() const OVERRIDE {
5282    // We call a runtime method to throw ArrayStoreException.
5283    return NeedsTypeCheck();
5284  }
5285
5286  // Can throw ArrayStoreException.
5287  bool CanThrow() const OVERRIDE { return NeedsTypeCheck(); }
5288
5289  bool CanDoImplicitNullCheckOn(HInstruction* obj ATTRIBUTE_UNUSED) const OVERRIDE {
5290    // TODO: Same as for ArrayGet.
5291    return false;
5292  }
5293
5294  void ClearNeedsTypeCheck() {
5295    SetPackedFlag<kFlagNeedsTypeCheck>(false);
5296  }
5297
5298  void ClearValueCanBeNull() {
5299    SetPackedFlag<kFlagValueCanBeNull>(false);
5300  }
5301
5302  void SetStaticTypeOfArrayIsObjectArray() {
5303    SetPackedFlag<kFlagStaticTypeOfArrayIsObjectArray>(true);
5304  }
5305
5306  bool GetValueCanBeNull() const { return GetPackedFlag<kFlagValueCanBeNull>(); }
5307  bool NeedsTypeCheck() const { return GetPackedFlag<kFlagNeedsTypeCheck>(); }
5308  bool StaticTypeOfArrayIsObjectArray() const {
5309    return GetPackedFlag<kFlagStaticTypeOfArrayIsObjectArray>();
5310  }
5311
5312  HInstruction* GetArray() const { return InputAt(0); }
5313  HInstruction* GetIndex() const { return InputAt(1); }
5314  HInstruction* GetValue() const { return InputAt(2); }
5315
5316  Primitive::Type GetComponentType() const {
5317    // The Dex format does not type floating point index operations. Since the
5318    // `expected_component_type_` is set during building and can therefore not
5319    // be correct, we also check what is the value type. If it is a floating
5320    // point type, we must use that type.
5321    Primitive::Type value_type = GetValue()->GetType();
5322    return ((value_type == Primitive::kPrimFloat) || (value_type == Primitive::kPrimDouble))
5323        ? value_type
5324        : GetRawExpectedComponentType();
5325  }
5326
5327  Primitive::Type GetRawExpectedComponentType() const {
5328    return GetPackedField<ExpectedComponentTypeField>();
5329  }
5330
5331  static SideEffects SideEffectsForArchRuntimeCalls(Primitive::Type value_type) {
5332    return (value_type == Primitive::kPrimNot) ? SideEffects::CanTriggerGC() : SideEffects::None();
5333  }
5334
5335  DECLARE_INSTRUCTION(ArraySet);
5336
5337 private:
5338  static constexpr size_t kFieldExpectedComponentType = kNumberOfGenericPackedBits;
5339  static constexpr size_t kFieldExpectedComponentTypeSize =
5340      MinimumBitsToStore(static_cast<size_t>(Primitive::kPrimLast));
5341  static constexpr size_t kFlagNeedsTypeCheck =
5342      kFieldExpectedComponentType + kFieldExpectedComponentTypeSize;
5343  static constexpr size_t kFlagValueCanBeNull = kFlagNeedsTypeCheck + 1;
5344  // Cached information for the reference_type_info_ so that codegen
5345  // does not need to inspect the static type.
5346  static constexpr size_t kFlagStaticTypeOfArrayIsObjectArray = kFlagValueCanBeNull + 1;
5347  static constexpr size_t kNumberOfArraySetPackedBits =
5348      kFlagStaticTypeOfArrayIsObjectArray + 1;
5349  static_assert(kNumberOfArraySetPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields.");
5350  using ExpectedComponentTypeField =
5351      BitField<Primitive::Type, kFieldExpectedComponentType, kFieldExpectedComponentTypeSize>;
5352
5353  DISALLOW_COPY_AND_ASSIGN(HArraySet);
5354};
5355
5356class HArrayLength : public HExpression<1> {
5357 public:
5358  HArrayLength(HInstruction* array, uint32_t dex_pc)
5359      : HExpression(Primitive::kPrimInt, SideEffects::None(), dex_pc) {
5360    // Note that arrays do not change length, so the instruction does not
5361    // depend on any write.
5362    SetRawInputAt(0, array);
5363  }
5364
5365  bool CanBeMoved() const OVERRIDE { return true; }
5366  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
5367    return true;
5368  }
5369  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
5370    return obj == InputAt(0);
5371  }
5372
5373  DECLARE_INSTRUCTION(ArrayLength);
5374
5375 private:
5376  DISALLOW_COPY_AND_ASSIGN(HArrayLength);
5377};
5378
5379class HBoundsCheck : public HExpression<2> {
5380 public:
5381  // `HBoundsCheck` can trigger GC, as it may call the `IndexOutOfBoundsException`
5382  // constructor.
5383  HBoundsCheck(HInstruction* index, HInstruction* length, uint32_t dex_pc)
5384      : HExpression(index->GetType(), SideEffects::CanTriggerGC(), dex_pc) {
5385    DCHECK(index->GetType() == Primitive::kPrimInt);
5386    SetRawInputAt(0, index);
5387    SetRawInputAt(1, length);
5388  }
5389
5390  bool CanBeMoved() const OVERRIDE { return true; }
5391  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
5392    return true;
5393  }
5394
5395  bool NeedsEnvironment() const OVERRIDE { return true; }
5396
5397  bool CanThrow() const OVERRIDE { return true; }
5398
5399  HInstruction* GetIndex() const { return InputAt(0); }
5400
5401  DECLARE_INSTRUCTION(BoundsCheck);
5402
5403 private:
5404  DISALLOW_COPY_AND_ASSIGN(HBoundsCheck);
5405};
5406
5407class HSuspendCheck : public HTemplateInstruction<0> {
5408 public:
5409  explicit HSuspendCheck(uint32_t dex_pc = kNoDexPc)
5410      : HTemplateInstruction(SideEffects::CanTriggerGC(), dex_pc), slow_path_(nullptr) {}
5411
5412  bool NeedsEnvironment() const OVERRIDE {
5413    return true;
5414  }
5415
5416  void SetSlowPath(SlowPathCode* slow_path) { slow_path_ = slow_path; }
5417  SlowPathCode* GetSlowPath() const { return slow_path_; }
5418
5419  DECLARE_INSTRUCTION(SuspendCheck);
5420
5421 private:
5422  // Only used for code generation, in order to share the same slow path between back edges
5423  // of a same loop.
5424  SlowPathCode* slow_path_;
5425
5426  DISALLOW_COPY_AND_ASSIGN(HSuspendCheck);
5427};
5428
5429// Pseudo-instruction which provides the native debugger with mapping information.
5430// It ensures that we can generate line number and local variables at this point.
5431class HNativeDebugInfo : public HTemplateInstruction<0> {
5432 public:
5433  explicit HNativeDebugInfo(uint32_t dex_pc)
5434      : HTemplateInstruction<0>(SideEffects::None(), dex_pc) {}
5435
5436  bool NeedsEnvironment() const OVERRIDE {
5437    return true;
5438  }
5439
5440  DECLARE_INSTRUCTION(NativeDebugInfo);
5441
5442 private:
5443  DISALLOW_COPY_AND_ASSIGN(HNativeDebugInfo);
5444};
5445
5446/**
5447 * Instruction to load a Class object.
5448 */
5449class HLoadClass : public HExpression<1> {
5450 public:
5451  HLoadClass(HCurrentMethod* current_method,
5452             uint16_t type_index,
5453             const DexFile& dex_file,
5454             bool is_referrers_class,
5455             uint32_t dex_pc,
5456             bool needs_access_check,
5457             bool is_in_dex_cache)
5458      : HExpression(Primitive::kPrimNot, SideEffectsForArchRuntimeCalls(), dex_pc),
5459        type_index_(type_index),
5460        dex_file_(dex_file),
5461        loaded_class_rti_(ReferenceTypeInfo::CreateInvalid()) {
5462    // Referrers class should not need access check. We never inline unverified
5463    // methods so we can't possibly end up in this situation.
5464    DCHECK(!is_referrers_class || !needs_access_check);
5465
5466    SetPackedFlag<kFlagIsReferrersClass>(is_referrers_class);
5467    SetPackedFlag<kFlagNeedsAccessCheck>(needs_access_check);
5468    SetPackedFlag<kFlagIsInDexCache>(is_in_dex_cache);
5469    SetPackedFlag<kFlagGenerateClInitCheck>(false);
5470    SetRawInputAt(0, current_method);
5471  }
5472
5473  bool CanBeMoved() const OVERRIDE { return true; }
5474
5475  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
5476    // Note that we don't need to test for generate_clinit_check_.
5477    // Whether or not we need to generate the clinit check is processed in
5478    // prepare_for_register_allocator based on existing HInvokes and HClinitChecks.
5479    return other->AsLoadClass()->type_index_ == type_index_ &&
5480        other->AsLoadClass()->GetPackedFields() == GetPackedFields();
5481  }
5482
5483  size_t ComputeHashCode() const OVERRIDE { return type_index_; }
5484
5485  uint16_t GetTypeIndex() const { return type_index_; }
5486  bool CanBeNull() const OVERRIDE { return false; }
5487
5488  bool NeedsEnvironment() const OVERRIDE {
5489    return CanCallRuntime();
5490  }
5491
5492  void SetMustGenerateClinitCheck(bool generate_clinit_check) {
5493    // The entrypoint the code generator is going to call does not do
5494    // clinit of the class.
5495    DCHECK(!NeedsAccessCheck());
5496    SetPackedFlag<kFlagGenerateClInitCheck>(generate_clinit_check);
5497  }
5498
5499  bool CanCallRuntime() const {
5500    return MustGenerateClinitCheck() ||
5501           (!IsReferrersClass() && !IsInDexCache()) ||
5502           NeedsAccessCheck();
5503  }
5504
5505
5506  bool CanThrow() const OVERRIDE {
5507    return CanCallRuntime();
5508  }
5509
5510  ReferenceTypeInfo GetLoadedClassRTI() {
5511    return loaded_class_rti_;
5512  }
5513
5514  void SetLoadedClassRTI(ReferenceTypeInfo rti) {
5515    // Make sure we only set exact types (the loaded class should never be merged).
5516    DCHECK(rti.IsExact());
5517    loaded_class_rti_ = rti;
5518  }
5519
5520  const DexFile& GetDexFile() { return dex_file_; }
5521
5522  bool NeedsDexCacheOfDeclaringClass() const OVERRIDE { return !IsReferrersClass(); }
5523
5524  static SideEffects SideEffectsForArchRuntimeCalls() {
5525    return SideEffects::CanTriggerGC();
5526  }
5527
5528  bool IsReferrersClass() const { return GetPackedFlag<kFlagIsReferrersClass>(); }
5529  bool NeedsAccessCheck() const { return GetPackedFlag<kFlagNeedsAccessCheck>(); }
5530  bool IsInDexCache() const { return GetPackedFlag<kFlagIsInDexCache>(); }
5531  bool MustGenerateClinitCheck() const { return GetPackedFlag<kFlagGenerateClInitCheck>(); }
5532
5533  DECLARE_INSTRUCTION(LoadClass);
5534
5535 private:
5536  static constexpr size_t kFlagIsReferrersClass    = kNumberOfExpressionPackedBits;
5537  static constexpr size_t kFlagNeedsAccessCheck    = kFlagIsReferrersClass + 1;
5538  static constexpr size_t kFlagIsInDexCache        = kFlagNeedsAccessCheck + 1;
5539  // Whether this instruction must generate the initialization check.
5540  // Used for code generation.
5541  static constexpr size_t kFlagGenerateClInitCheck = kFlagIsInDexCache + 1;
5542  static constexpr size_t kNumberOfLoadClassPackedBits = kFlagGenerateClInitCheck + 1;
5543  static_assert(kNumberOfLoadClassPackedBits < kMaxNumberOfPackedBits, "Too many packed fields.");
5544
5545  const uint16_t type_index_;
5546  const DexFile& dex_file_;
5547
5548  ReferenceTypeInfo loaded_class_rti_;
5549
5550  DISALLOW_COPY_AND_ASSIGN(HLoadClass);
5551};
5552
5553class HLoadString : public HExpression<1> {
5554 public:
5555  // Determines how to load the String.
5556  enum class LoadKind {
5557    // Use boot image String* address that will be known at link time.
5558    // Used for boot image strings referenced by boot image code in non-PIC mode.
5559    kBootImageLinkTimeAddress,
5560
5561    // Use PC-relative boot image String* address that will be known at link time.
5562    // Used for boot image strings referenced by boot image code in PIC mode.
5563    kBootImageLinkTimePcRelative,
5564
5565    // Use a known boot image String* address, embedded in the code by the codegen.
5566    // Used for boot image strings referenced by apps in AOT- and JIT-compiled code.
5567    // Note: codegen needs to emit a linker patch if indicated by compiler options'
5568    // GetIncludePatchInformation().
5569    kBootImageAddress,
5570
5571    // Load from the resolved strings array at an absolute address.
5572    // Used for strings outside the boot image referenced by JIT-compiled code.
5573    kDexCacheAddress,
5574
5575    // Load from resolved strings array in the dex cache using a PC-relative load.
5576    // Used for strings outside boot image when we know that we can access
5577    // the dex cache arrays using a PC-relative load.
5578    kDexCachePcRelative,
5579
5580    // Load from resolved strings array accessed through the class loaded from
5581    // the compiled method's own ArtMethod*. This is the default access type when
5582    // all other types are unavailable.
5583    kDexCacheViaMethod,
5584
5585    kLast = kDexCacheViaMethod
5586  };
5587
5588  HLoadString(HCurrentMethod* current_method,
5589              uint32_t string_index,
5590              const DexFile& dex_file,
5591              uint32_t dex_pc)
5592      : HExpression(Primitive::kPrimNot, SideEffectsForArchRuntimeCalls(), dex_pc),
5593        string_index_(string_index) {
5594    SetPackedFlag<kFlagIsInDexCache>(false);
5595    SetPackedField<LoadKindField>(LoadKind::kDexCacheViaMethod);
5596    load_data_.ref.dex_file = &dex_file;
5597    SetRawInputAt(0, current_method);
5598  }
5599
5600  void SetLoadKindWithAddress(LoadKind load_kind, uint64_t address) {
5601    DCHECK(HasAddress(load_kind));
5602    load_data_.address = address;
5603    SetLoadKindInternal(load_kind);
5604  }
5605
5606  void SetLoadKindWithStringReference(LoadKind load_kind,
5607                                      const DexFile& dex_file,
5608                                      uint32_t string_index) {
5609    DCHECK(HasStringReference(load_kind));
5610    load_data_.ref.dex_file = &dex_file;
5611    string_index_ = string_index;
5612    SetLoadKindInternal(load_kind);
5613  }
5614
5615  void SetLoadKindWithDexCacheReference(LoadKind load_kind,
5616                                        const DexFile& dex_file,
5617                                        uint32_t element_index) {
5618    DCHECK(HasDexCacheReference(load_kind));
5619    load_data_.ref.dex_file = &dex_file;
5620    load_data_.ref.dex_cache_element_index = element_index;
5621    SetLoadKindInternal(load_kind);
5622  }
5623
5624  LoadKind GetLoadKind() const {
5625    return GetPackedField<LoadKindField>();
5626  }
5627
5628  const DexFile& GetDexFile() const;
5629
5630  uint32_t GetStringIndex() const {
5631    DCHECK(HasStringReference(GetLoadKind()) || /* For slow paths. */ !IsInDexCache());
5632    return string_index_;
5633  }
5634
5635  uint32_t GetDexCacheElementOffset() const;
5636
5637  uint64_t GetAddress() const {
5638    DCHECK(HasAddress(GetLoadKind()));
5639    return load_data_.address;
5640  }
5641
5642  bool CanBeMoved() const OVERRIDE { return true; }
5643
5644  bool InstructionDataEquals(HInstruction* other) const OVERRIDE;
5645
5646  size_t ComputeHashCode() const OVERRIDE { return string_index_; }
5647
5648  // Will call the runtime if we need to load the string through
5649  // the dex cache and the string is not guaranteed to be there yet.
5650  bool NeedsEnvironment() const OVERRIDE {
5651    LoadKind load_kind = GetLoadKind();
5652    if (load_kind == LoadKind::kBootImageLinkTimeAddress ||
5653        load_kind == LoadKind::kBootImageLinkTimePcRelative ||
5654        load_kind == LoadKind::kBootImageAddress) {
5655      return false;
5656    }
5657    return !IsInDexCache();
5658  }
5659
5660  bool NeedsDexCacheOfDeclaringClass() const OVERRIDE {
5661    return GetLoadKind() == LoadKind::kDexCacheViaMethod;
5662  }
5663
5664  bool CanBeNull() const OVERRIDE { return false; }
5665  bool CanThrow() const OVERRIDE { return NeedsEnvironment(); }
5666
5667  static SideEffects SideEffectsForArchRuntimeCalls() {
5668    return SideEffects::CanTriggerGC();
5669  }
5670
5671  bool IsInDexCache() const { return GetPackedFlag<kFlagIsInDexCache>(); }
5672
5673  void MarkInDexCache() {
5674    SetPackedFlag<kFlagIsInDexCache>(true);
5675    DCHECK(!NeedsEnvironment());
5676    RemoveEnvironment();
5677  }
5678
5679  size_t InputCount() const OVERRIDE {
5680    return (InputAt(0) != nullptr) ? 1u : 0u;
5681  }
5682
5683  void AddSpecialInput(HInstruction* special_input);
5684
5685  DECLARE_INSTRUCTION(LoadString);
5686
5687 private:
5688  static constexpr size_t kFlagIsInDexCache = kNumberOfExpressionPackedBits;
5689  static constexpr size_t kFieldLoadKind = kFlagIsInDexCache + 1;
5690  static constexpr size_t kFieldLoadKindSize =
5691      MinimumBitsToStore(static_cast<size_t>(LoadKind::kLast));
5692  static constexpr size_t kNumberOfLoadStringPackedBits = kFieldLoadKind + kFieldLoadKindSize;
5693  static_assert(kNumberOfLoadStringPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields.");
5694  using LoadKindField = BitField<LoadKind, kFieldLoadKind, kFieldLoadKindSize>;
5695
5696  static bool HasStringReference(LoadKind load_kind) {
5697    return load_kind == LoadKind::kBootImageLinkTimeAddress ||
5698        load_kind == LoadKind::kBootImageLinkTimePcRelative ||
5699        load_kind == LoadKind::kDexCacheViaMethod;
5700  }
5701
5702  static bool HasAddress(LoadKind load_kind) {
5703    return load_kind == LoadKind::kBootImageAddress || load_kind == LoadKind::kDexCacheAddress;
5704  }
5705
5706  static bool HasDexCacheReference(LoadKind load_kind) {
5707    return load_kind == LoadKind::kDexCachePcRelative;
5708  }
5709
5710  void SetLoadKindInternal(LoadKind load_kind);
5711
5712  // String index serves also as the hash code and it's also needed for slow-paths,
5713  // so it must not be overwritten with other load data.
5714  uint32_t string_index_;
5715
5716  union {
5717    struct {
5718      const DexFile* dex_file;            // For string reference and dex cache reference.
5719      uint32_t dex_cache_element_index;   // Only for dex cache reference.
5720    } ref;
5721    uint64_t address;  // Up to 64-bit, needed for kDexCacheAddress on 64-bit targets.
5722  } load_data_;
5723
5724  DISALLOW_COPY_AND_ASSIGN(HLoadString);
5725};
5726std::ostream& operator<<(std::ostream& os, HLoadString::LoadKind rhs);
5727
5728// Note: defined outside class to see operator<<(., HLoadString::LoadKind).
5729inline const DexFile& HLoadString::GetDexFile() const {
5730  DCHECK(HasStringReference(GetLoadKind()) || HasDexCacheReference(GetLoadKind()))
5731      << GetLoadKind();
5732  return *load_data_.ref.dex_file;
5733}
5734
5735// Note: defined outside class to see operator<<(., HLoadString::LoadKind).
5736inline uint32_t HLoadString::GetDexCacheElementOffset() const {
5737  DCHECK(HasDexCacheReference(GetLoadKind())) << GetLoadKind();
5738  return load_data_.ref.dex_cache_element_index;
5739}
5740
5741// Note: defined outside class to see operator<<(., HLoadString::LoadKind).
5742inline void HLoadString::AddSpecialInput(HInstruction* special_input) {
5743  // The special input is used for PC-relative loads on some architectures.
5744  DCHECK(GetLoadKind() == LoadKind::kBootImageLinkTimePcRelative ||
5745         GetLoadKind() == LoadKind::kDexCachePcRelative) << GetLoadKind();
5746  DCHECK(InputAt(0) == nullptr);
5747  SetRawInputAt(0u, special_input);
5748  special_input->AddUseAt(this, 0);
5749}
5750
5751/**
5752 * Performs an initialization check on its Class object input.
5753 */
5754class HClinitCheck : public HExpression<1> {
5755 public:
5756  HClinitCheck(HLoadClass* constant, uint32_t dex_pc)
5757      : HExpression(
5758            Primitive::kPrimNot,
5759            SideEffects::AllChanges(),  // Assume write/read on all fields/arrays.
5760            dex_pc) {
5761    SetRawInputAt(0, constant);
5762  }
5763
5764  bool CanBeMoved() const OVERRIDE { return true; }
5765  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
5766    return true;
5767  }
5768
5769  bool NeedsEnvironment() const OVERRIDE {
5770    // May call runtime to initialize the class.
5771    return true;
5772  }
5773
5774  bool CanThrow() const OVERRIDE { return true; }
5775
5776  HLoadClass* GetLoadClass() const { return InputAt(0)->AsLoadClass(); }
5777
5778  DECLARE_INSTRUCTION(ClinitCheck);
5779
5780 private:
5781  DISALLOW_COPY_AND_ASSIGN(HClinitCheck);
5782};
5783
5784class HStaticFieldGet : public HExpression<1> {
5785 public:
5786  HStaticFieldGet(HInstruction* cls,
5787                  Primitive::Type field_type,
5788                  MemberOffset field_offset,
5789                  bool is_volatile,
5790                  uint32_t field_idx,
5791                  uint16_t declaring_class_def_index,
5792                  const DexFile& dex_file,
5793                  Handle<mirror::DexCache> dex_cache,
5794                  uint32_t dex_pc)
5795      : HExpression(field_type,
5796                    SideEffects::FieldReadOfType(field_type, is_volatile),
5797                    dex_pc),
5798        field_info_(field_offset,
5799                    field_type,
5800                    is_volatile,
5801                    field_idx,
5802                    declaring_class_def_index,
5803                    dex_file,
5804                    dex_cache) {
5805    SetRawInputAt(0, cls);
5806  }
5807
5808
5809  bool CanBeMoved() const OVERRIDE { return !IsVolatile(); }
5810
5811  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
5812    HStaticFieldGet* other_get = other->AsStaticFieldGet();
5813    return GetFieldOffset().SizeValue() == other_get->GetFieldOffset().SizeValue();
5814  }
5815
5816  size_t ComputeHashCode() const OVERRIDE {
5817    return (HInstruction::ComputeHashCode() << 7) | GetFieldOffset().SizeValue();
5818  }
5819
5820  const FieldInfo& GetFieldInfo() const { return field_info_; }
5821  MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
5822  Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); }
5823  bool IsVolatile() const { return field_info_.IsVolatile(); }
5824
5825  DECLARE_INSTRUCTION(StaticFieldGet);
5826
5827 private:
5828  const FieldInfo field_info_;
5829
5830  DISALLOW_COPY_AND_ASSIGN(HStaticFieldGet);
5831};
5832
5833class HStaticFieldSet : public HTemplateInstruction<2> {
5834 public:
5835  HStaticFieldSet(HInstruction* cls,
5836                  HInstruction* value,
5837                  Primitive::Type field_type,
5838                  MemberOffset field_offset,
5839                  bool is_volatile,
5840                  uint32_t field_idx,
5841                  uint16_t declaring_class_def_index,
5842                  const DexFile& dex_file,
5843                  Handle<mirror::DexCache> dex_cache,
5844                  uint32_t dex_pc)
5845      : HTemplateInstruction(SideEffects::FieldWriteOfType(field_type, is_volatile),
5846                             dex_pc),
5847        field_info_(field_offset,
5848                    field_type,
5849                    is_volatile,
5850                    field_idx,
5851                    declaring_class_def_index,
5852                    dex_file,
5853                    dex_cache) {
5854    SetPackedFlag<kFlagValueCanBeNull>(true);
5855    SetRawInputAt(0, cls);
5856    SetRawInputAt(1, value);
5857  }
5858
5859  const FieldInfo& GetFieldInfo() const { return field_info_; }
5860  MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
5861  Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); }
5862  bool IsVolatile() const { return field_info_.IsVolatile(); }
5863
5864  HInstruction* GetValue() const { return InputAt(1); }
5865  bool GetValueCanBeNull() const { return GetPackedFlag<kFlagValueCanBeNull>(); }
5866  void ClearValueCanBeNull() { SetPackedFlag<kFlagValueCanBeNull>(false); }
5867
5868  DECLARE_INSTRUCTION(StaticFieldSet);
5869
5870 private:
5871  static constexpr size_t kFlagValueCanBeNull = kNumberOfGenericPackedBits;
5872  static constexpr size_t kNumberOfStaticFieldSetPackedBits = kFlagValueCanBeNull + 1;
5873  static_assert(kNumberOfStaticFieldSetPackedBits <= kMaxNumberOfPackedBits,
5874                "Too many packed fields.");
5875
5876  const FieldInfo field_info_;
5877
5878  DISALLOW_COPY_AND_ASSIGN(HStaticFieldSet);
5879};
5880
5881class HUnresolvedInstanceFieldGet : public HExpression<1> {
5882 public:
5883  HUnresolvedInstanceFieldGet(HInstruction* obj,
5884                              Primitive::Type field_type,
5885                              uint32_t field_index,
5886                              uint32_t dex_pc)
5887      : HExpression(field_type, SideEffects::AllExceptGCDependency(), dex_pc),
5888        field_index_(field_index) {
5889    SetRawInputAt(0, obj);
5890  }
5891
5892  bool NeedsEnvironment() const OVERRIDE { return true; }
5893  bool CanThrow() const OVERRIDE { return true; }
5894
5895  Primitive::Type GetFieldType() const { return GetType(); }
5896  uint32_t GetFieldIndex() const { return field_index_; }
5897
5898  DECLARE_INSTRUCTION(UnresolvedInstanceFieldGet);
5899
5900 private:
5901  const uint32_t field_index_;
5902
5903  DISALLOW_COPY_AND_ASSIGN(HUnresolvedInstanceFieldGet);
5904};
5905
5906class HUnresolvedInstanceFieldSet : public HTemplateInstruction<2> {
5907 public:
5908  HUnresolvedInstanceFieldSet(HInstruction* obj,
5909                              HInstruction* value,
5910                              Primitive::Type field_type,
5911                              uint32_t field_index,
5912                              uint32_t dex_pc)
5913      : HTemplateInstruction(SideEffects::AllExceptGCDependency(), dex_pc),
5914        field_index_(field_index) {
5915    SetPackedField<FieldTypeField>(field_type);
5916    DCHECK_EQ(field_type, value->GetType());
5917    SetRawInputAt(0, obj);
5918    SetRawInputAt(1, value);
5919  }
5920
5921  bool NeedsEnvironment() const OVERRIDE { return true; }
5922  bool CanThrow() const OVERRIDE { return true; }
5923
5924  Primitive::Type GetFieldType() const { return GetPackedField<FieldTypeField>(); }
5925  uint32_t GetFieldIndex() const { return field_index_; }
5926
5927  DECLARE_INSTRUCTION(UnresolvedInstanceFieldSet);
5928
5929 private:
5930  static constexpr size_t kFieldFieldType = HInstruction::kNumberOfGenericPackedBits;
5931  static constexpr size_t kFieldFieldTypeSize =
5932      MinimumBitsToStore(static_cast<size_t>(Primitive::kPrimLast));
5933  static constexpr size_t kNumberOfUnresolvedStaticFieldSetPackedBits =
5934      kFieldFieldType + kFieldFieldTypeSize;
5935  static_assert(kNumberOfUnresolvedStaticFieldSetPackedBits <= HInstruction::kMaxNumberOfPackedBits,
5936                "Too many packed fields.");
5937  using FieldTypeField = BitField<Primitive::Type, kFieldFieldType, kFieldFieldTypeSize>;
5938
5939  const uint32_t field_index_;
5940
5941  DISALLOW_COPY_AND_ASSIGN(HUnresolvedInstanceFieldSet);
5942};
5943
5944class HUnresolvedStaticFieldGet : public HExpression<0> {
5945 public:
5946  HUnresolvedStaticFieldGet(Primitive::Type field_type,
5947                            uint32_t field_index,
5948                            uint32_t dex_pc)
5949      : HExpression(field_type, SideEffects::AllExceptGCDependency(), dex_pc),
5950        field_index_(field_index) {
5951  }
5952
5953  bool NeedsEnvironment() const OVERRIDE { return true; }
5954  bool CanThrow() const OVERRIDE { return true; }
5955
5956  Primitive::Type GetFieldType() const { return GetType(); }
5957  uint32_t GetFieldIndex() const { return field_index_; }
5958
5959  DECLARE_INSTRUCTION(UnresolvedStaticFieldGet);
5960
5961 private:
5962  const uint32_t field_index_;
5963
5964  DISALLOW_COPY_AND_ASSIGN(HUnresolvedStaticFieldGet);
5965};
5966
5967class HUnresolvedStaticFieldSet : public HTemplateInstruction<1> {
5968 public:
5969  HUnresolvedStaticFieldSet(HInstruction* value,
5970                            Primitive::Type field_type,
5971                            uint32_t field_index,
5972                            uint32_t dex_pc)
5973      : HTemplateInstruction(SideEffects::AllExceptGCDependency(), dex_pc),
5974        field_index_(field_index) {
5975    SetPackedField<FieldTypeField>(field_type);
5976    DCHECK_EQ(field_type, value->GetType());
5977    SetRawInputAt(0, value);
5978  }
5979
5980  bool NeedsEnvironment() const OVERRIDE { return true; }
5981  bool CanThrow() const OVERRIDE { return true; }
5982
5983  Primitive::Type GetFieldType() const { return GetPackedField<FieldTypeField>(); }
5984  uint32_t GetFieldIndex() const { return field_index_; }
5985
5986  DECLARE_INSTRUCTION(UnresolvedStaticFieldSet);
5987
5988 private:
5989  static constexpr size_t kFieldFieldType = HInstruction::kNumberOfGenericPackedBits;
5990  static constexpr size_t kFieldFieldTypeSize =
5991      MinimumBitsToStore(static_cast<size_t>(Primitive::kPrimLast));
5992  static constexpr size_t kNumberOfUnresolvedStaticFieldSetPackedBits =
5993      kFieldFieldType + kFieldFieldTypeSize;
5994  static_assert(kNumberOfUnresolvedStaticFieldSetPackedBits <= HInstruction::kMaxNumberOfPackedBits,
5995                "Too many packed fields.");
5996  using FieldTypeField = BitField<Primitive::Type, kFieldFieldType, kFieldFieldTypeSize>;
5997
5998  const uint32_t field_index_;
5999
6000  DISALLOW_COPY_AND_ASSIGN(HUnresolvedStaticFieldSet);
6001};
6002
6003// Implement the move-exception DEX instruction.
6004class HLoadException : public HExpression<0> {
6005 public:
6006  explicit HLoadException(uint32_t dex_pc = kNoDexPc)
6007      : HExpression(Primitive::kPrimNot, SideEffects::None(), dex_pc) {}
6008
6009  bool CanBeNull() const OVERRIDE { return false; }
6010
6011  DECLARE_INSTRUCTION(LoadException);
6012
6013 private:
6014  DISALLOW_COPY_AND_ASSIGN(HLoadException);
6015};
6016
6017// Implicit part of move-exception which clears thread-local exception storage.
6018// Must not be removed because the runtime expects the TLS to get cleared.
6019class HClearException : public HTemplateInstruction<0> {
6020 public:
6021  explicit HClearException(uint32_t dex_pc = kNoDexPc)
6022      : HTemplateInstruction(SideEffects::AllWrites(), dex_pc) {}
6023
6024  DECLARE_INSTRUCTION(ClearException);
6025
6026 private:
6027  DISALLOW_COPY_AND_ASSIGN(HClearException);
6028};
6029
6030class HThrow : public HTemplateInstruction<1> {
6031 public:
6032  HThrow(HInstruction* exception, uint32_t dex_pc)
6033      : HTemplateInstruction(SideEffects::CanTriggerGC(), dex_pc) {
6034    SetRawInputAt(0, exception);
6035  }
6036
6037  bool IsControlFlow() const OVERRIDE { return true; }
6038
6039  bool NeedsEnvironment() const OVERRIDE { return true; }
6040
6041  bool CanThrow() const OVERRIDE { return true; }
6042
6043
6044  DECLARE_INSTRUCTION(Throw);
6045
6046 private:
6047  DISALLOW_COPY_AND_ASSIGN(HThrow);
6048};
6049
6050/**
6051 * Implementation strategies for the code generator of a HInstanceOf
6052 * or `HCheckCast`.
6053 */
6054enum class TypeCheckKind {
6055  kUnresolvedCheck,       // Check against an unresolved type.
6056  kExactCheck,            // Can do a single class compare.
6057  kClassHierarchyCheck,   // Can just walk the super class chain.
6058  kAbstractClassCheck,    // Can just walk the super class chain, starting one up.
6059  kInterfaceCheck,        // No optimization yet when checking against an interface.
6060  kArrayObjectCheck,      // Can just check if the array is not primitive.
6061  kArrayCheck,            // No optimization yet when checking against a generic array.
6062  kLast = kArrayCheck
6063};
6064
6065std::ostream& operator<<(std::ostream& os, TypeCheckKind rhs);
6066
6067class HInstanceOf : public HExpression<2> {
6068 public:
6069  HInstanceOf(HInstruction* object,
6070              HLoadClass* constant,
6071              TypeCheckKind check_kind,
6072              uint32_t dex_pc)
6073      : HExpression(Primitive::kPrimBoolean,
6074                    SideEffectsForArchRuntimeCalls(check_kind),
6075                    dex_pc) {
6076    SetPackedField<TypeCheckKindField>(check_kind);
6077    SetPackedFlag<kFlagMustDoNullCheck>(true);
6078    SetRawInputAt(0, object);
6079    SetRawInputAt(1, constant);
6080  }
6081
6082  bool CanBeMoved() const OVERRIDE { return true; }
6083
6084  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
6085    return true;
6086  }
6087
6088  bool NeedsEnvironment() const OVERRIDE {
6089    return CanCallRuntime(GetTypeCheckKind());
6090  }
6091
6092  // Used only in code generation.
6093  bool MustDoNullCheck() const { return GetPackedFlag<kFlagMustDoNullCheck>(); }
6094  void ClearMustDoNullCheck() { SetPackedFlag<kFlagMustDoNullCheck>(false); }
6095  TypeCheckKind GetTypeCheckKind() const { return GetPackedField<TypeCheckKindField>(); }
6096  bool IsExactCheck() const { return GetTypeCheckKind() == TypeCheckKind::kExactCheck; }
6097
6098  static bool CanCallRuntime(TypeCheckKind check_kind) {
6099    // Mips currently does runtime calls for any other checks.
6100    return check_kind != TypeCheckKind::kExactCheck;
6101  }
6102
6103  static SideEffects SideEffectsForArchRuntimeCalls(TypeCheckKind check_kind) {
6104    return CanCallRuntime(check_kind) ? SideEffects::CanTriggerGC() : SideEffects::None();
6105  }
6106
6107  DECLARE_INSTRUCTION(InstanceOf);
6108
6109 private:
6110  static constexpr size_t kFieldTypeCheckKind = kNumberOfExpressionPackedBits;
6111  static constexpr size_t kFieldTypeCheckKindSize =
6112      MinimumBitsToStore(static_cast<size_t>(TypeCheckKind::kLast));
6113  static constexpr size_t kFlagMustDoNullCheck = kFieldTypeCheckKind + kFieldTypeCheckKindSize;
6114  static constexpr size_t kNumberOfInstanceOfPackedBits = kFlagMustDoNullCheck + 1;
6115  static_assert(kNumberOfInstanceOfPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields.");
6116  using TypeCheckKindField = BitField<TypeCheckKind, kFieldTypeCheckKind, kFieldTypeCheckKindSize>;
6117
6118  DISALLOW_COPY_AND_ASSIGN(HInstanceOf);
6119};
6120
6121class HBoundType : public HExpression<1> {
6122 public:
6123  HBoundType(HInstruction* input, uint32_t dex_pc = kNoDexPc)
6124      : HExpression(Primitive::kPrimNot, SideEffects::None(), dex_pc),
6125        upper_bound_(ReferenceTypeInfo::CreateInvalid()) {
6126    SetPackedFlag<kFlagUpperCanBeNull>(true);
6127    SetPackedFlag<kFlagCanBeNull>(true);
6128    DCHECK_EQ(input->GetType(), Primitive::kPrimNot);
6129    SetRawInputAt(0, input);
6130  }
6131
6132  // {Get,Set}Upper* should only be used in reference type propagation.
6133  const ReferenceTypeInfo& GetUpperBound() const { return upper_bound_; }
6134  bool GetUpperCanBeNull() const { return GetPackedFlag<kFlagUpperCanBeNull>(); }
6135  void SetUpperBound(const ReferenceTypeInfo& upper_bound, bool can_be_null);
6136
6137  void SetCanBeNull(bool can_be_null) {
6138    DCHECK(GetUpperCanBeNull() || !can_be_null);
6139    SetPackedFlag<kFlagCanBeNull>(can_be_null);
6140  }
6141
6142  bool CanBeNull() const OVERRIDE { return GetPackedFlag<kFlagCanBeNull>(); }
6143
6144  DECLARE_INSTRUCTION(BoundType);
6145
6146 private:
6147  // Represents the top constraint that can_be_null_ cannot exceed (i.e. if this
6148  // is false then CanBeNull() cannot be true).
6149  static constexpr size_t kFlagUpperCanBeNull = kNumberOfExpressionPackedBits;
6150  static constexpr size_t kFlagCanBeNull = kFlagUpperCanBeNull + 1;
6151  static constexpr size_t kNumberOfBoundTypePackedBits = kFlagCanBeNull + 1;
6152  static_assert(kNumberOfBoundTypePackedBits <= kMaxNumberOfPackedBits, "Too many packed fields.");
6153
6154  // Encodes the most upper class that this instruction can have. In other words
6155  // it is always the case that GetUpperBound().IsSupertypeOf(GetReferenceType()).
6156  // It is used to bound the type in cases like:
6157  //   if (x instanceof ClassX) {
6158  //     // uper_bound_ will be ClassX
6159  //   }
6160  ReferenceTypeInfo upper_bound_;
6161
6162  DISALLOW_COPY_AND_ASSIGN(HBoundType);
6163};
6164
6165class HCheckCast : public HTemplateInstruction<2> {
6166 public:
6167  HCheckCast(HInstruction* object,
6168             HLoadClass* constant,
6169             TypeCheckKind check_kind,
6170             uint32_t dex_pc)
6171      : HTemplateInstruction(SideEffects::CanTriggerGC(), dex_pc) {
6172    SetPackedField<TypeCheckKindField>(check_kind);
6173    SetPackedFlag<kFlagMustDoNullCheck>(true);
6174    SetRawInputAt(0, object);
6175    SetRawInputAt(1, constant);
6176  }
6177
6178  bool CanBeMoved() const OVERRIDE { return true; }
6179
6180  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
6181    return true;
6182  }
6183
6184  bool NeedsEnvironment() const OVERRIDE {
6185    // Instruction may throw a CheckCastError.
6186    return true;
6187  }
6188
6189  bool CanThrow() const OVERRIDE { return true; }
6190
6191  bool MustDoNullCheck() const { return GetPackedFlag<kFlagMustDoNullCheck>(); }
6192  void ClearMustDoNullCheck() { SetPackedFlag<kFlagMustDoNullCheck>(false); }
6193  TypeCheckKind GetTypeCheckKind() const { return GetPackedField<TypeCheckKindField>(); }
6194  bool IsExactCheck() const { return GetTypeCheckKind() == TypeCheckKind::kExactCheck; }
6195
6196  DECLARE_INSTRUCTION(CheckCast);
6197
6198 private:
6199  static constexpr size_t kFieldTypeCheckKind = kNumberOfGenericPackedBits;
6200  static constexpr size_t kFieldTypeCheckKindSize =
6201      MinimumBitsToStore(static_cast<size_t>(TypeCheckKind::kLast));
6202  static constexpr size_t kFlagMustDoNullCheck = kFieldTypeCheckKind + kFieldTypeCheckKindSize;
6203  static constexpr size_t kNumberOfCheckCastPackedBits = kFlagMustDoNullCheck + 1;
6204  static_assert(kNumberOfCheckCastPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields.");
6205  using TypeCheckKindField = BitField<TypeCheckKind, kFieldTypeCheckKind, kFieldTypeCheckKindSize>;
6206
6207  DISALLOW_COPY_AND_ASSIGN(HCheckCast);
6208};
6209
6210class HMemoryBarrier : public HTemplateInstruction<0> {
6211 public:
6212  explicit HMemoryBarrier(MemBarrierKind barrier_kind, uint32_t dex_pc = kNoDexPc)
6213      : HTemplateInstruction(
6214            SideEffects::AllWritesAndReads(), dex_pc) {  // Assume write/read on all fields/arrays.
6215    SetPackedField<BarrierKindField>(barrier_kind);
6216  }
6217
6218  MemBarrierKind GetBarrierKind() { return GetPackedField<BarrierKindField>(); }
6219
6220  DECLARE_INSTRUCTION(MemoryBarrier);
6221
6222 private:
6223  static constexpr size_t kFieldBarrierKind = HInstruction::kNumberOfGenericPackedBits;
6224  static constexpr size_t kFieldBarrierKindSize =
6225      MinimumBitsToStore(static_cast<size_t>(kLastBarrierKind));
6226  static constexpr size_t kNumberOfMemoryBarrierPackedBits =
6227      kFieldBarrierKind + kFieldBarrierKindSize;
6228  static_assert(kNumberOfMemoryBarrierPackedBits <= kMaxNumberOfPackedBits,
6229                "Too many packed fields.");
6230  using BarrierKindField = BitField<MemBarrierKind, kFieldBarrierKind, kFieldBarrierKindSize>;
6231
6232  DISALLOW_COPY_AND_ASSIGN(HMemoryBarrier);
6233};
6234
6235class HMonitorOperation : public HTemplateInstruction<1> {
6236 public:
6237  enum class OperationKind {
6238    kEnter,
6239    kExit,
6240    kLast = kExit
6241  };
6242
6243  HMonitorOperation(HInstruction* object, OperationKind kind, uint32_t dex_pc)
6244    : HTemplateInstruction(
6245          SideEffects::AllExceptGCDependency(),  // Assume write/read on all fields/arrays.
6246          dex_pc) {
6247    SetPackedField<OperationKindField>(kind);
6248    SetRawInputAt(0, object);
6249  }
6250
6251  // Instruction may go into runtime, so we need an environment.
6252  bool NeedsEnvironment() const OVERRIDE { return true; }
6253
6254  bool CanThrow() const OVERRIDE {
6255    // Verifier guarantees that monitor-exit cannot throw.
6256    // This is important because it allows the HGraphBuilder to remove
6257    // a dead throw-catch loop generated for `synchronized` blocks/methods.
6258    return IsEnter();
6259  }
6260
6261  OperationKind GetOperationKind() const { return GetPackedField<OperationKindField>(); }
6262  bool IsEnter() const { return GetOperationKind() == OperationKind::kEnter; }
6263
6264  DECLARE_INSTRUCTION(MonitorOperation);
6265
6266 private:
6267  static constexpr size_t kFieldOperationKind = HInstruction::kNumberOfGenericPackedBits;
6268  static constexpr size_t kFieldOperationKindSize =
6269      MinimumBitsToStore(static_cast<size_t>(OperationKind::kLast));
6270  static constexpr size_t kNumberOfMonitorOperationPackedBits =
6271      kFieldOperationKind + kFieldOperationKindSize;
6272  static_assert(kNumberOfMonitorOperationPackedBits <= HInstruction::kMaxNumberOfPackedBits,
6273                "Too many packed fields.");
6274  using OperationKindField = BitField<OperationKind, kFieldOperationKind, kFieldOperationKindSize>;
6275
6276 private:
6277  DISALLOW_COPY_AND_ASSIGN(HMonitorOperation);
6278};
6279
6280class HSelect : public HExpression<3> {
6281 public:
6282  HSelect(HInstruction* condition,
6283          HInstruction* true_value,
6284          HInstruction* false_value,
6285          uint32_t dex_pc)
6286      : HExpression(HPhi::ToPhiType(true_value->GetType()), SideEffects::None(), dex_pc) {
6287    DCHECK_EQ(HPhi::ToPhiType(true_value->GetType()), HPhi::ToPhiType(false_value->GetType()));
6288
6289    // First input must be `true_value` or `false_value` to allow codegens to
6290    // use the SameAsFirstInput allocation policy. We make it `false_value`, so
6291    // that architectures which implement HSelect as a conditional move also
6292    // will not need to invert the condition.
6293    SetRawInputAt(0, false_value);
6294    SetRawInputAt(1, true_value);
6295    SetRawInputAt(2, condition);
6296  }
6297
6298  HInstruction* GetFalseValue() const { return InputAt(0); }
6299  HInstruction* GetTrueValue() const { return InputAt(1); }
6300  HInstruction* GetCondition() const { return InputAt(2); }
6301
6302  bool CanBeMoved() const OVERRIDE { return true; }
6303  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE { return true; }
6304
6305  bool CanBeNull() const OVERRIDE {
6306    return GetTrueValue()->CanBeNull() || GetFalseValue()->CanBeNull();
6307  }
6308
6309  DECLARE_INSTRUCTION(Select);
6310
6311 private:
6312  DISALLOW_COPY_AND_ASSIGN(HSelect);
6313};
6314
6315class MoveOperands : public ArenaObject<kArenaAllocMoveOperands> {
6316 public:
6317  MoveOperands(Location source,
6318               Location destination,
6319               Primitive::Type type,
6320               HInstruction* instruction)
6321      : source_(source), destination_(destination), type_(type), instruction_(instruction) {}
6322
6323  Location GetSource() const { return source_; }
6324  Location GetDestination() const { return destination_; }
6325
6326  void SetSource(Location value) { source_ = value; }
6327  void SetDestination(Location value) { destination_ = value; }
6328
6329  // The parallel move resolver marks moves as "in-progress" by clearing the
6330  // destination (but not the source).
6331  Location MarkPending() {
6332    DCHECK(!IsPending());
6333    Location dest = destination_;
6334    destination_ = Location::NoLocation();
6335    return dest;
6336  }
6337
6338  void ClearPending(Location dest) {
6339    DCHECK(IsPending());
6340    destination_ = dest;
6341  }
6342
6343  bool IsPending() const {
6344    DCHECK(source_.IsValid() || destination_.IsInvalid());
6345    return destination_.IsInvalid() && source_.IsValid();
6346  }
6347
6348  // True if this blocks a move from the given location.
6349  bool Blocks(Location loc) const {
6350    return !IsEliminated() && source_.OverlapsWith(loc);
6351  }
6352
6353  // A move is redundant if it's been eliminated, if its source and
6354  // destination are the same, or if its destination is unneeded.
6355  bool IsRedundant() const {
6356    return IsEliminated() || destination_.IsInvalid() || source_.Equals(destination_);
6357  }
6358
6359  // We clear both operands to indicate move that's been eliminated.
6360  void Eliminate() {
6361    source_ = destination_ = Location::NoLocation();
6362  }
6363
6364  bool IsEliminated() const {
6365    DCHECK(!source_.IsInvalid() || destination_.IsInvalid());
6366    return source_.IsInvalid();
6367  }
6368
6369  Primitive::Type GetType() const { return type_; }
6370
6371  bool Is64BitMove() const {
6372    return Primitive::Is64BitType(type_);
6373  }
6374
6375  HInstruction* GetInstruction() const { return instruction_; }
6376
6377 private:
6378  Location source_;
6379  Location destination_;
6380  // The type this move is for.
6381  Primitive::Type type_;
6382  // The instruction this move is assocatied with. Null when this move is
6383  // for moving an input in the expected locations of user (including a phi user).
6384  // This is only used in debug mode, to ensure we do not connect interval siblings
6385  // in the same parallel move.
6386  HInstruction* instruction_;
6387};
6388
6389std::ostream& operator<<(std::ostream& os, const MoveOperands& rhs);
6390
6391static constexpr size_t kDefaultNumberOfMoves = 4;
6392
6393class HParallelMove : public HTemplateInstruction<0> {
6394 public:
6395  explicit HParallelMove(ArenaAllocator* arena, uint32_t dex_pc = kNoDexPc)
6396      : HTemplateInstruction(SideEffects::None(), dex_pc),
6397        moves_(arena->Adapter(kArenaAllocMoveOperands)) {
6398    moves_.reserve(kDefaultNumberOfMoves);
6399  }
6400
6401  void AddMove(Location source,
6402               Location destination,
6403               Primitive::Type type,
6404               HInstruction* instruction) {
6405    DCHECK(source.IsValid());
6406    DCHECK(destination.IsValid());
6407    if (kIsDebugBuild) {
6408      if (instruction != nullptr) {
6409        for (const MoveOperands& move : moves_) {
6410          if (move.GetInstruction() == instruction) {
6411            // Special case the situation where the move is for the spill slot
6412            // of the instruction.
6413            if ((GetPrevious() == instruction)
6414                || ((GetPrevious() == nullptr)
6415                    && instruction->IsPhi()
6416                    && instruction->GetBlock() == GetBlock())) {
6417              DCHECK_NE(destination.GetKind(), move.GetDestination().GetKind())
6418                  << "Doing parallel moves for the same instruction.";
6419            } else {
6420              DCHECK(false) << "Doing parallel moves for the same instruction.";
6421            }
6422          }
6423        }
6424      }
6425      for (const MoveOperands& move : moves_) {
6426        DCHECK(!destination.OverlapsWith(move.GetDestination()))
6427            << "Overlapped destination for two moves in a parallel move: "
6428            << move.GetSource() << " ==> " << move.GetDestination() << " and "
6429            << source << " ==> " << destination;
6430      }
6431    }
6432    moves_.emplace_back(source, destination, type, instruction);
6433  }
6434
6435  MoveOperands* MoveOperandsAt(size_t index) {
6436    return &moves_[index];
6437  }
6438
6439  size_t NumMoves() const { return moves_.size(); }
6440
6441  DECLARE_INSTRUCTION(ParallelMove);
6442
6443 private:
6444  ArenaVector<MoveOperands> moves_;
6445
6446  DISALLOW_COPY_AND_ASSIGN(HParallelMove);
6447};
6448
6449}  // namespace art
6450
6451#if defined(ART_ENABLE_CODEGEN_arm) || defined(ART_ENABLE_CODEGEN_arm64)
6452#include "nodes_shared.h"
6453#endif
6454#ifdef ART_ENABLE_CODEGEN_arm
6455#include "nodes_arm.h"
6456#endif
6457#ifdef ART_ENABLE_CODEGEN_arm64
6458#include "nodes_arm64.h"
6459#endif
6460#ifdef ART_ENABLE_CODEGEN_x86
6461#include "nodes_x86.h"
6462#endif
6463
6464namespace art {
6465
6466class HGraphVisitor : public ValueObject {
6467 public:
6468  explicit HGraphVisitor(HGraph* graph) : graph_(graph) {}
6469  virtual ~HGraphVisitor() {}
6470
6471  virtual void VisitInstruction(HInstruction* instruction ATTRIBUTE_UNUSED) {}
6472  virtual void VisitBasicBlock(HBasicBlock* block);
6473
6474  // Visit the graph following basic block insertion order.
6475  void VisitInsertionOrder();
6476
6477  // Visit the graph following dominator tree reverse post-order.
6478  void VisitReversePostOrder();
6479
6480  HGraph* GetGraph() const { return graph_; }
6481
6482  // Visit functions for instruction classes.
6483#define DECLARE_VISIT_INSTRUCTION(name, super)                                        \
6484  virtual void Visit##name(H##name* instr) { VisitInstruction(instr); }
6485
6486  FOR_EACH_INSTRUCTION(DECLARE_VISIT_INSTRUCTION)
6487
6488#undef DECLARE_VISIT_INSTRUCTION
6489
6490 private:
6491  HGraph* const graph_;
6492
6493  DISALLOW_COPY_AND_ASSIGN(HGraphVisitor);
6494};
6495
6496class HGraphDelegateVisitor : public HGraphVisitor {
6497 public:
6498  explicit HGraphDelegateVisitor(HGraph* graph) : HGraphVisitor(graph) {}
6499  virtual ~HGraphDelegateVisitor() {}
6500
6501  // Visit functions that delegate to to super class.
6502#define DECLARE_VISIT_INSTRUCTION(name, super)                                        \
6503  void Visit##name(H##name* instr) OVERRIDE { Visit##super(instr); }
6504
6505  FOR_EACH_INSTRUCTION(DECLARE_VISIT_INSTRUCTION)
6506
6507#undef DECLARE_VISIT_INSTRUCTION
6508
6509 private:
6510  DISALLOW_COPY_AND_ASSIGN(HGraphDelegateVisitor);
6511};
6512
6513class HInsertionOrderIterator : public ValueObject {
6514 public:
6515  explicit HInsertionOrderIterator(const HGraph& graph) : graph_(graph), index_(0) {}
6516
6517  bool Done() const { return index_ == graph_.GetBlocks().size(); }
6518  HBasicBlock* Current() const { return graph_.GetBlocks()[index_]; }
6519  void Advance() { ++index_; }
6520
6521 private:
6522  const HGraph& graph_;
6523  size_t index_;
6524
6525  DISALLOW_COPY_AND_ASSIGN(HInsertionOrderIterator);
6526};
6527
6528class HReversePostOrderIterator : public ValueObject {
6529 public:
6530  explicit HReversePostOrderIterator(const HGraph& graph) : graph_(graph), index_(0) {
6531    // Check that reverse post order of the graph has been built.
6532    DCHECK(!graph.GetReversePostOrder().empty());
6533  }
6534
6535  bool Done() const { return index_ == graph_.GetReversePostOrder().size(); }
6536  HBasicBlock* Current() const { return graph_.GetReversePostOrder()[index_]; }
6537  void Advance() { ++index_; }
6538
6539 private:
6540  const HGraph& graph_;
6541  size_t index_;
6542
6543  DISALLOW_COPY_AND_ASSIGN(HReversePostOrderIterator);
6544};
6545
6546class HPostOrderIterator : public ValueObject {
6547 public:
6548  explicit HPostOrderIterator(const HGraph& graph)
6549      : graph_(graph), index_(graph_.GetReversePostOrder().size()) {
6550    // Check that reverse post order of the graph has been built.
6551    DCHECK(!graph.GetReversePostOrder().empty());
6552  }
6553
6554  bool Done() const { return index_ == 0; }
6555  HBasicBlock* Current() const { return graph_.GetReversePostOrder()[index_ - 1u]; }
6556  void Advance() { --index_; }
6557
6558 private:
6559  const HGraph& graph_;
6560  size_t index_;
6561
6562  DISALLOW_COPY_AND_ASSIGN(HPostOrderIterator);
6563};
6564
6565class HLinearPostOrderIterator : public ValueObject {
6566 public:
6567  explicit HLinearPostOrderIterator(const HGraph& graph)
6568      : order_(graph.GetLinearOrder()), index_(graph.GetLinearOrder().size()) {}
6569
6570  bool Done() const { return index_ == 0; }
6571
6572  HBasicBlock* Current() const { return order_[index_ - 1u]; }
6573
6574  void Advance() {
6575    --index_;
6576    DCHECK_GE(index_, 0U);
6577  }
6578
6579 private:
6580  const ArenaVector<HBasicBlock*>& order_;
6581  size_t index_;
6582
6583  DISALLOW_COPY_AND_ASSIGN(HLinearPostOrderIterator);
6584};
6585
6586class HLinearOrderIterator : public ValueObject {
6587 public:
6588  explicit HLinearOrderIterator(const HGraph& graph)
6589      : order_(graph.GetLinearOrder()), index_(0) {}
6590
6591  bool Done() const { return index_ == order_.size(); }
6592  HBasicBlock* Current() const { return order_[index_]; }
6593  void Advance() { ++index_; }
6594
6595 private:
6596  const ArenaVector<HBasicBlock*>& order_;
6597  size_t index_;
6598
6599  DISALLOW_COPY_AND_ASSIGN(HLinearOrderIterator);
6600};
6601
6602// Iterator over the blocks that art part of the loop. Includes blocks part
6603// of an inner loop. The order in which the blocks are iterated is on their
6604// block id.
6605class HBlocksInLoopIterator : public ValueObject {
6606 public:
6607  explicit HBlocksInLoopIterator(const HLoopInformation& info)
6608      : blocks_in_loop_(info.GetBlocks()),
6609        blocks_(info.GetHeader()->GetGraph()->GetBlocks()),
6610        index_(0) {
6611    if (!blocks_in_loop_.IsBitSet(index_)) {
6612      Advance();
6613    }
6614  }
6615
6616  bool Done() const { return index_ == blocks_.size(); }
6617  HBasicBlock* Current() const { return blocks_[index_]; }
6618  void Advance() {
6619    ++index_;
6620    for (size_t e = blocks_.size(); index_ < e; ++index_) {
6621      if (blocks_in_loop_.IsBitSet(index_)) {
6622        break;
6623      }
6624    }
6625  }
6626
6627 private:
6628  const BitVector& blocks_in_loop_;
6629  const ArenaVector<HBasicBlock*>& blocks_;
6630  size_t index_;
6631
6632  DISALLOW_COPY_AND_ASSIGN(HBlocksInLoopIterator);
6633};
6634
6635// Iterator over the blocks that art part of the loop. Includes blocks part
6636// of an inner loop. The order in which the blocks are iterated is reverse
6637// post order.
6638class HBlocksInLoopReversePostOrderIterator : public ValueObject {
6639 public:
6640  explicit HBlocksInLoopReversePostOrderIterator(const HLoopInformation& info)
6641      : blocks_in_loop_(info.GetBlocks()),
6642        blocks_(info.GetHeader()->GetGraph()->GetReversePostOrder()),
6643        index_(0) {
6644    if (!blocks_in_loop_.IsBitSet(blocks_[index_]->GetBlockId())) {
6645      Advance();
6646    }
6647  }
6648
6649  bool Done() const { return index_ == blocks_.size(); }
6650  HBasicBlock* Current() const { return blocks_[index_]; }
6651  void Advance() {
6652    ++index_;
6653    for (size_t e = blocks_.size(); index_ < e; ++index_) {
6654      if (blocks_in_loop_.IsBitSet(blocks_[index_]->GetBlockId())) {
6655        break;
6656      }
6657    }
6658  }
6659
6660 private:
6661  const BitVector& blocks_in_loop_;
6662  const ArenaVector<HBasicBlock*>& blocks_;
6663  size_t index_;
6664
6665  DISALLOW_COPY_AND_ASSIGN(HBlocksInLoopReversePostOrderIterator);
6666};
6667
6668inline int64_t Int64FromConstant(HConstant* constant) {
6669  if (constant->IsIntConstant()) {
6670    return constant->AsIntConstant()->GetValue();
6671  } else if (constant->IsLongConstant()) {
6672    return constant->AsLongConstant()->GetValue();
6673  } else {
6674    DCHECK(constant->IsNullConstant()) << constant->DebugName();
6675    return 0;
6676  }
6677}
6678
6679inline bool IsSameDexFile(const DexFile& lhs, const DexFile& rhs) {
6680  // For the purposes of the compiler, the dex files must actually be the same object
6681  // if we want to safely treat them as the same. This is especially important for JIT
6682  // as custom class loaders can open the same underlying file (or memory) multiple
6683  // times and provide different class resolution but no two class loaders should ever
6684  // use the same DexFile object - doing so is an unsupported hack that can lead to
6685  // all sorts of weird failures.
6686  return &lhs == &rhs;
6687}
6688
6689#define INSTRUCTION_TYPE_CHECK(type, super)                                    \
6690  inline bool HInstruction::Is##type() const { return GetKind() == k##type; }  \
6691  inline const H##type* HInstruction::As##type() const {                       \
6692    return Is##type() ? down_cast<const H##type*>(this) : nullptr;             \
6693  }                                                                            \
6694  inline H##type* HInstruction::As##type() {                                   \
6695    return Is##type() ? static_cast<H##type*>(this) : nullptr;                 \
6696  }
6697
6698  FOR_EACH_CONCRETE_INSTRUCTION(INSTRUCTION_TYPE_CHECK)
6699#undef INSTRUCTION_TYPE_CHECK
6700
6701// Create space in `blocks` for adding `number_of_new_blocks` entries
6702// starting at location `at`. Blocks after `at` are moved accordingly.
6703inline void MakeRoomFor(ArenaVector<HBasicBlock*>* blocks,
6704                        size_t number_of_new_blocks,
6705                        size_t after) {
6706  DCHECK_LT(after, blocks->size());
6707  size_t old_size = blocks->size();
6708  size_t new_size = old_size + number_of_new_blocks;
6709  blocks->resize(new_size);
6710  std::copy_backward(blocks->begin() + after + 1u, blocks->begin() + old_size, blocks->end());
6711}
6712
6713}  // namespace art
6714
6715#endif  // ART_COMPILER_OPTIMIZING_NODES_H_
6716