nodes.h revision 641547a5f18ca2ea54469cceadcfef64f132e5e0
1/*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#ifndef ART_COMPILER_OPTIMIZING_NODES_H_
18#define ART_COMPILER_OPTIMIZING_NODES_H_
19
20#include "base/arena_containers.h"
21#include "base/arena_object.h"
22#include "dex/compiler_enums.h"
23#include "entrypoints/quick/quick_entrypoints_enum.h"
24#include "handle.h"
25#include "handle_scope.h"
26#include "invoke_type.h"
27#include "locations.h"
28#include "mirror/class.h"
29#include "offsets.h"
30#include "primitive.h"
31#include "utils/arena_bit_vector.h"
32#include "utils/growable_array.h"
33
34namespace art {
35
36class GraphChecker;
37class HBasicBlock;
38class HDoubleConstant;
39class HEnvironment;
40class HFloatConstant;
41class HGraphVisitor;
42class HInstruction;
43class HIntConstant;
44class HInvoke;
45class HLongConstant;
46class HNullConstant;
47class HPhi;
48class HSuspendCheck;
49class LiveInterval;
50class LocationSummary;
51class SsaBuilder;
52
53static const int kDefaultNumberOfBlocks = 8;
54static const int kDefaultNumberOfSuccessors = 2;
55static const int kDefaultNumberOfPredecessors = 2;
56static const int kDefaultNumberOfDominatedBlocks = 1;
57static const int kDefaultNumberOfBackEdges = 1;
58
59static constexpr uint32_t kMaxIntShiftValue = 0x1f;
60static constexpr uint64_t kMaxLongShiftValue = 0x3f;
61
62enum IfCondition {
63  kCondEQ,
64  kCondNE,
65  kCondLT,
66  kCondLE,
67  kCondGT,
68  kCondGE,
69};
70
71class HInstructionList {
72 public:
73  HInstructionList() : first_instruction_(nullptr), last_instruction_(nullptr) {}
74
75  void AddInstruction(HInstruction* instruction);
76  void RemoveInstruction(HInstruction* instruction);
77
78  // Return true if this list contains `instruction`.
79  bool Contains(HInstruction* instruction) const;
80
81  // Return true if `instruction1` is found before `instruction2` in
82  // this instruction list and false otherwise.  Abort if none
83  // of these instructions is found.
84  bool FoundBefore(const HInstruction* instruction1,
85                   const HInstruction* instruction2) const;
86
87  bool IsEmpty() const { return first_instruction_ == nullptr; }
88  void Clear() { first_instruction_ = last_instruction_ = nullptr; }
89
90  // Update the block of all instructions to be `block`.
91  void SetBlockOfInstructions(HBasicBlock* block) const;
92
93  void AddAfter(HInstruction* cursor, const HInstructionList& instruction_list);
94  void Add(const HInstructionList& instruction_list);
95
96 private:
97  HInstruction* first_instruction_;
98  HInstruction* last_instruction_;
99
100  friend class HBasicBlock;
101  friend class HGraph;
102  friend class HInstruction;
103  friend class HInstructionIterator;
104  friend class HBackwardInstructionIterator;
105
106  DISALLOW_COPY_AND_ASSIGN(HInstructionList);
107};
108
109// Control-flow graph of a method. Contains a list of basic blocks.
110class HGraph : public ArenaObject<kArenaAllocMisc> {
111 public:
112  HGraph(ArenaAllocator* arena, bool debuggable = false, int start_instruction_id = 0)
113      : arena_(arena),
114        blocks_(arena, kDefaultNumberOfBlocks),
115        reverse_post_order_(arena, kDefaultNumberOfBlocks),
116        linear_order_(arena, kDefaultNumberOfBlocks),
117        entry_block_(nullptr),
118        exit_block_(nullptr),
119        maximum_number_of_out_vregs_(0),
120        number_of_vregs_(0),
121        number_of_in_vregs_(0),
122        temporaries_vreg_slots_(0),
123        has_array_accesses_(false),
124        debuggable_(debuggable),
125        current_instruction_id_(start_instruction_id),
126        cached_null_constant_(nullptr),
127        cached_int_constants_(std::less<int32_t>(), arena->Adapter()),
128        cached_long_constants_(std::less<int64_t>(), arena->Adapter()) {}
129
130  ArenaAllocator* GetArena() const { return arena_; }
131  const GrowableArray<HBasicBlock*>& GetBlocks() const { return blocks_; }
132  HBasicBlock* GetBlock(size_t id) const { return blocks_.Get(id); }
133
134  HBasicBlock* GetEntryBlock() const { return entry_block_; }
135  HBasicBlock* GetExitBlock() const { return exit_block_; }
136
137  void SetEntryBlock(HBasicBlock* block) { entry_block_ = block; }
138  void SetExitBlock(HBasicBlock* block) { exit_block_ = block; }
139
140  void AddBlock(HBasicBlock* block);
141
142  // Try building the SSA form of this graph, with dominance computation and loop
143  // recognition. Returns whether it was successful in doing all these steps.
144  bool TryBuildingSsa() {
145    BuildDominatorTree();
146    // The SSA builder requires loops to all be natural. Specifically, the dead phi
147    // elimination phase checks the consistency of the graph when doing a post-order
148    // visit for eliminating dead phis: a dead phi can only have loop header phi
149    // users remaining when being visited.
150    if (!AnalyzeNaturalLoops()) return false;
151    TransformToSsa();
152    return true;
153  }
154
155  void BuildDominatorTree();
156  void TransformToSsa();
157  void SimplifyCFG();
158
159  // Analyze all natural loops in this graph. Returns false if one
160  // loop is not natural, that is the header does not dominate the
161  // back edge.
162  bool AnalyzeNaturalLoops() const;
163
164  // Inline this graph in `outer_graph`, replacing the given `invoke` instruction.
165  void InlineInto(HGraph* outer_graph, HInvoke* invoke);
166
167  void MergeEmptyBranches(HBasicBlock* start_block, HBasicBlock* end_block);
168
169  void SplitCriticalEdge(HBasicBlock* block, HBasicBlock* successor);
170  void SimplifyLoop(HBasicBlock* header);
171
172  int32_t GetNextInstructionId() {
173    DCHECK_NE(current_instruction_id_, INT32_MAX);
174    return current_instruction_id_++;
175  }
176
177  int32_t GetCurrentInstructionId() const {
178    return current_instruction_id_;
179  }
180
181  void SetCurrentInstructionId(int32_t id) {
182    current_instruction_id_ = id;
183  }
184
185  uint16_t GetMaximumNumberOfOutVRegs() const {
186    return maximum_number_of_out_vregs_;
187  }
188
189  void SetMaximumNumberOfOutVRegs(uint16_t new_value) {
190    maximum_number_of_out_vregs_ = new_value;
191  }
192
193  void UpdateTemporariesVRegSlots(size_t slots) {
194    temporaries_vreg_slots_ = std::max(slots, temporaries_vreg_slots_);
195  }
196
197  size_t GetTemporariesVRegSlots() const {
198    return temporaries_vreg_slots_;
199  }
200
201  void SetNumberOfVRegs(uint16_t number_of_vregs) {
202    number_of_vregs_ = number_of_vregs;
203  }
204
205  uint16_t GetNumberOfVRegs() const {
206    return number_of_vregs_;
207  }
208
209  void SetNumberOfInVRegs(uint16_t value) {
210    number_of_in_vregs_ = value;
211  }
212
213  uint16_t GetNumberOfLocalVRegs() const {
214    return number_of_vregs_ - number_of_in_vregs_;
215  }
216
217  const GrowableArray<HBasicBlock*>& GetReversePostOrder() const {
218    return reverse_post_order_;
219  }
220
221  const GrowableArray<HBasicBlock*>& GetLinearOrder() const {
222    return linear_order_;
223  }
224
225  bool HasArrayAccesses() const {
226    return has_array_accesses_;
227  }
228
229  void SetHasArrayAccesses(bool value) {
230    has_array_accesses_ = value;
231  }
232
233  bool IsDebuggable() const { return debuggable_; }
234
235  // Returns a constant of the given type and value. If it does not exist
236  // already, it is created and inserted into the graph. Only integral types
237  // are currently supported.
238  HConstant* GetConstant(Primitive::Type type, int64_t value);
239  HNullConstant* GetNullConstant();
240  HIntConstant* GetIntConstant(int32_t value) {
241    return CreateConstant(value, &cached_int_constants_);
242  }
243  HLongConstant* GetLongConstant(int64_t value) {
244    return CreateConstant(value, &cached_long_constants_);
245  }
246
247 private:
248  HBasicBlock* FindCommonDominator(HBasicBlock* first, HBasicBlock* second) const;
249  void VisitBlockForDominatorTree(HBasicBlock* block,
250                                  HBasicBlock* predecessor,
251                                  GrowableArray<size_t>* visits);
252  void FindBackEdges(ArenaBitVector* visited);
253  void VisitBlockForBackEdges(HBasicBlock* block,
254                              ArenaBitVector* visited,
255                              ArenaBitVector* visiting);
256  void RemoveInstructionsAsUsersFromDeadBlocks(const ArenaBitVector& visited) const;
257  void RemoveDeadBlocks(const ArenaBitVector& visited);
258
259  template <class InstType, typename ValueType>
260  InstType* CreateConstant(ValueType value, ArenaSafeMap<ValueType, InstType*>* cache);
261  void InsertConstant(HConstant* instruction);
262
263  ArenaAllocator* const arena_;
264
265  // List of blocks in insertion order.
266  GrowableArray<HBasicBlock*> blocks_;
267
268  // List of blocks to perform a reverse post order tree traversal.
269  GrowableArray<HBasicBlock*> reverse_post_order_;
270
271  // List of blocks to perform a linear order tree traversal.
272  GrowableArray<HBasicBlock*> linear_order_;
273
274  HBasicBlock* entry_block_;
275  HBasicBlock* exit_block_;
276
277  // The maximum number of virtual registers arguments passed to a HInvoke in this graph.
278  uint16_t maximum_number_of_out_vregs_;
279
280  // The number of virtual registers in this method. Contains the parameters.
281  uint16_t number_of_vregs_;
282
283  // The number of virtual registers used by parameters of this method.
284  uint16_t number_of_in_vregs_;
285
286  // Number of vreg size slots that the temporaries use (used in baseline compiler).
287  size_t temporaries_vreg_slots_;
288
289  // Has array accesses. We can totally skip BCE if it's false.
290  bool has_array_accesses_;
291
292  // Indicates whether the graph should be compiled in a way that
293  // ensures full debuggability. If false, we can apply more
294  // aggressive optimizations that may limit the level of debugging.
295  const bool debuggable_;
296
297  // The current id to assign to a newly added instruction. See HInstruction.id_.
298  int32_t current_instruction_id_;
299
300  // Cached common constants often needed by optimization passes.
301  HNullConstant* cached_null_constant_;
302  ArenaSafeMap<int32_t, HIntConstant*> cached_int_constants_;
303  ArenaSafeMap<int64_t, HLongConstant*> cached_long_constants_;
304
305  friend class SsaLivenessAnalysis;  // For the linear order.
306  ART_FRIEND_TEST(GraphTest, IfSuccessorSimpleJoinBlock1);
307  DISALLOW_COPY_AND_ASSIGN(HGraph);
308};
309
310class HLoopInformation : public ArenaObject<kArenaAllocMisc> {
311 public:
312  HLoopInformation(HBasicBlock* header, HGraph* graph)
313      : header_(header),
314        suspend_check_(nullptr),
315        back_edges_(graph->GetArena(), kDefaultNumberOfBackEdges),
316        // Make bit vector growable, as the number of blocks may change.
317        blocks_(graph->GetArena(), graph->GetBlocks().Size(), true) {}
318
319  HBasicBlock* GetHeader() const {
320    return header_;
321  }
322
323  void SetHeader(HBasicBlock* block) {
324    header_ = block;
325  }
326
327  HSuspendCheck* GetSuspendCheck() const { return suspend_check_; }
328  void SetSuspendCheck(HSuspendCheck* check) { suspend_check_ = check; }
329  bool HasSuspendCheck() const { return suspend_check_ != nullptr; }
330
331  void AddBackEdge(HBasicBlock* back_edge) {
332    back_edges_.Add(back_edge);
333  }
334
335  void RemoveBackEdge(HBasicBlock* back_edge) {
336    back_edges_.Delete(back_edge);
337  }
338
339  bool IsBackEdge(const HBasicBlock& block) const {
340    for (size_t i = 0, e = back_edges_.Size(); i < e; ++i) {
341      if (back_edges_.Get(i) == &block) return true;
342    }
343    return false;
344  }
345
346  size_t NumberOfBackEdges() const {
347    return back_edges_.Size();
348  }
349
350  HBasicBlock* GetPreHeader() const;
351
352  const GrowableArray<HBasicBlock*>& GetBackEdges() const {
353    return back_edges_;
354  }
355
356  void ClearBackEdges() {
357    back_edges_.Reset();
358  }
359
360  // Find blocks that are part of this loop. Returns whether the loop is a natural loop,
361  // that is the header dominates the back edge.
362  bool Populate();
363
364  // Returns whether this loop information contains `block`.
365  // Note that this loop information *must* be populated before entering this function.
366  bool Contains(const HBasicBlock& block) const;
367
368  // Returns whether this loop information is an inner loop of `other`.
369  // Note that `other` *must* be populated before entering this function.
370  bool IsIn(const HLoopInformation& other) const;
371
372  const ArenaBitVector& GetBlocks() const { return blocks_; }
373
374  void Add(HBasicBlock* block);
375  void Remove(HBasicBlock* block);
376
377 private:
378  // Internal recursive implementation of `Populate`.
379  void PopulateRecursive(HBasicBlock* block);
380
381  HBasicBlock* header_;
382  HSuspendCheck* suspend_check_;
383  GrowableArray<HBasicBlock*> back_edges_;
384  ArenaBitVector blocks_;
385
386  DISALLOW_COPY_AND_ASSIGN(HLoopInformation);
387};
388
389static constexpr size_t kNoLifetime = -1;
390static constexpr uint32_t kNoDexPc = -1;
391
392// A block in a method. Contains the list of instructions represented
393// as a double linked list. Each block knows its predecessors and
394// successors.
395
396class HBasicBlock : public ArenaObject<kArenaAllocMisc> {
397 public:
398  explicit HBasicBlock(HGraph* graph, uint32_t dex_pc = kNoDexPc)
399      : graph_(graph),
400        predecessors_(graph->GetArena(), kDefaultNumberOfPredecessors),
401        successors_(graph->GetArena(), kDefaultNumberOfSuccessors),
402        loop_information_(nullptr),
403        dominator_(nullptr),
404        dominated_blocks_(graph->GetArena(), kDefaultNumberOfDominatedBlocks),
405        block_id_(-1),
406        dex_pc_(dex_pc),
407        lifetime_start_(kNoLifetime),
408        lifetime_end_(kNoLifetime),
409        is_catch_block_(false) {}
410
411  const GrowableArray<HBasicBlock*>& GetPredecessors() const {
412    return predecessors_;
413  }
414
415  const GrowableArray<HBasicBlock*>& GetSuccessors() const {
416    return successors_;
417  }
418
419  const GrowableArray<HBasicBlock*>& GetDominatedBlocks() const {
420    return dominated_blocks_;
421  }
422
423  bool IsEntryBlock() const {
424    return graph_->GetEntryBlock() == this;
425  }
426
427  bool IsExitBlock() const {
428    return graph_->GetExitBlock() == this;
429  }
430
431  bool IsSingleGoto() const;
432
433  void AddBackEdge(HBasicBlock* back_edge) {
434    if (loop_information_ == nullptr) {
435      loop_information_ = new (graph_->GetArena()) HLoopInformation(this, graph_);
436    }
437    DCHECK_EQ(loop_information_->GetHeader(), this);
438    loop_information_->AddBackEdge(back_edge);
439  }
440
441  HGraph* GetGraph() const { return graph_; }
442  void SetGraph(HGraph* graph) { graph_ = graph; }
443
444  int GetBlockId() const { return block_id_; }
445  void SetBlockId(int id) { block_id_ = id; }
446
447  HBasicBlock* GetDominator() const { return dominator_; }
448  void SetDominator(HBasicBlock* dominator) { dominator_ = dominator; }
449  void AddDominatedBlock(HBasicBlock* block) { dominated_blocks_.Add(block); }
450  void ReplaceDominatedBlock(HBasicBlock* existing, HBasicBlock* new_block) {
451    for (size_t i = 0, e = dominated_blocks_.Size(); i < e; ++i) {
452      if (dominated_blocks_.Get(i) == existing) {
453        dominated_blocks_.Put(i, new_block);
454        return;
455      }
456    }
457    LOG(FATAL) << "Unreachable";
458    UNREACHABLE();
459  }
460
461  int NumberOfBackEdges() const {
462    return loop_information_ == nullptr
463        ? 0
464        : loop_information_->NumberOfBackEdges();
465  }
466
467  HInstruction* GetFirstInstruction() const { return instructions_.first_instruction_; }
468  HInstruction* GetLastInstruction() const { return instructions_.last_instruction_; }
469  const HInstructionList& GetInstructions() const { return instructions_; }
470  const HInstructionList& GetPhis() const { return phis_; }
471  HInstruction* GetFirstPhi() const { return phis_.first_instruction_; }
472
473  void AddSuccessor(HBasicBlock* block) {
474    successors_.Add(block);
475    block->predecessors_.Add(this);
476  }
477
478  void ReplaceSuccessor(HBasicBlock* existing, HBasicBlock* new_block) {
479    size_t successor_index = GetSuccessorIndexOf(existing);
480    DCHECK_NE(successor_index, static_cast<size_t>(-1));
481    existing->RemovePredecessor(this);
482    new_block->predecessors_.Add(this);
483    successors_.Put(successor_index, new_block);
484  }
485
486  void ReplacePredecessor(HBasicBlock* existing, HBasicBlock* new_block) {
487    size_t predecessor_index = GetPredecessorIndexOf(existing);
488    DCHECK_NE(predecessor_index, static_cast<size_t>(-1));
489    existing->RemoveSuccessor(this);
490    new_block->successors_.Add(this);
491    predecessors_.Put(predecessor_index, new_block);
492  }
493
494  void RemovePredecessor(HBasicBlock* block) {
495    predecessors_.Delete(block);
496  }
497
498  void RemoveSuccessor(HBasicBlock* block) {
499    successors_.Delete(block);
500  }
501
502  void ClearAllPredecessors() {
503    predecessors_.Reset();
504  }
505
506  void AddPredecessor(HBasicBlock* block) {
507    predecessors_.Add(block);
508    block->successors_.Add(this);
509  }
510
511  void SwapPredecessors() {
512    DCHECK_EQ(predecessors_.Size(), 2u);
513    HBasicBlock* temp = predecessors_.Get(0);
514    predecessors_.Put(0, predecessors_.Get(1));
515    predecessors_.Put(1, temp);
516  }
517
518  size_t GetPredecessorIndexOf(HBasicBlock* predecessor) {
519    for (size_t i = 0, e = predecessors_.Size(); i < e; ++i) {
520      if (predecessors_.Get(i) == predecessor) {
521        return i;
522      }
523    }
524    return -1;
525  }
526
527  size_t GetSuccessorIndexOf(HBasicBlock* successor) {
528    for (size_t i = 0, e = successors_.Size(); i < e; ++i) {
529      if (successors_.Get(i) == successor) {
530        return i;
531      }
532    }
533    return -1;
534  }
535
536  // Split the block into two blocks just after `cursor`. Returns the newly
537  // created block. Note that this method just updates raw block information,
538  // like predecessors, successors, dominators, and instruction list. It does not
539  // update the graph, reverse post order, loop information, nor make sure the
540  // blocks are consistent (for example ending with a control flow instruction).
541  HBasicBlock* SplitAfter(HInstruction* cursor);
542
543  // Merge `other` at the end of `this`. Successors and dominated blocks of
544  // `other` are changed to be successors and dominated blocks of `this`. Note
545  // that this method does not update the graph, reverse post order, loop
546  // information, nor make sure the blocks are consistent (for example ending
547  // with a control flow instruction).
548  void MergeWith(HBasicBlock* other);
549
550  // Replace `this` with `other`. Predecessors, successors, and dominated blocks
551  // of `this` are moved to `other`.
552  // Note that this method does not update the graph, reverse post order, loop
553  // information, nor make sure the blocks are consistent (for example ending
554  // with a control flow instruction).
555  void ReplaceWith(HBasicBlock* other);
556
557  // Disconnects `this` from all its predecessors, successors and the dominator.
558  // It assumes that `this` does not dominate any blocks.
559  // Note that this method does not update the graph, reverse post order, loop
560  // information, nor make sure the blocks are consistent (for example ending
561  // with a control flow instruction).
562  void DisconnectFromAll();
563
564  void AddInstruction(HInstruction* instruction);
565  void InsertInstructionBefore(HInstruction* instruction, HInstruction* cursor);
566  // Replace instruction `initial` with `replacement` within this block.
567  void ReplaceAndRemoveInstructionWith(HInstruction* initial,
568                                       HInstruction* replacement);
569  void AddPhi(HPhi* phi);
570  void InsertPhiAfter(HPhi* instruction, HPhi* cursor);
571  // RemoveInstruction and RemovePhi delete a given instruction from the respective
572  // instruction list. With 'ensure_safety' set to true, it verifies that the
573  // instruction is not in use and removes it from the use lists of its inputs.
574  void RemoveInstruction(HInstruction* instruction, bool ensure_safety = true);
575  void RemovePhi(HPhi* phi, bool ensure_safety = true);
576
577  bool IsLoopHeader() const {
578    return (loop_information_ != nullptr) && (loop_information_->GetHeader() == this);
579  }
580
581  bool IsLoopPreHeaderFirstPredecessor() const {
582    DCHECK(IsLoopHeader());
583    DCHECK(!GetPredecessors().IsEmpty());
584    return GetPredecessors().Get(0) == GetLoopInformation()->GetPreHeader();
585  }
586
587  HLoopInformation* GetLoopInformation() const {
588    return loop_information_;
589  }
590
591  // Set the loop_information_ on this block. Overrides the current
592  // loop_information if it is an outer loop of the passed loop information.
593  // Note that this method is called while creating the loop information.
594  void SetInLoop(HLoopInformation* info) {
595    if (IsLoopHeader()) {
596      // Nothing to do. This just means `info` is an outer loop.
597    } else if (loop_information_ == nullptr) {
598      loop_information_ = info;
599    } else if (loop_information_->Contains(*info->GetHeader())) {
600      // Block is currently part of an outer loop. Make it part of this inner loop.
601      // Note that a non loop header having a loop information means this loop information
602      // has already been populated
603      loop_information_ = info;
604    } else {
605      // Block is part of an inner loop. Do not update the loop information.
606      // Note that we cannot do the check `info->Contains(loop_information_)->GetHeader()`
607      // at this point, because this method is being called while populating `info`.
608    }
609  }
610
611  // Raw update of the loop information.
612  void SetLoopInformation(HLoopInformation* info) {
613    loop_information_ = info;
614  }
615
616  bool IsInLoop() const { return loop_information_ != nullptr; }
617
618  // Returns wheter this block dominates the blocked passed as parameter.
619  bool Dominates(HBasicBlock* block) const;
620
621  size_t GetLifetimeStart() const { return lifetime_start_; }
622  size_t GetLifetimeEnd() const { return lifetime_end_; }
623
624  void SetLifetimeStart(size_t start) { lifetime_start_ = start; }
625  void SetLifetimeEnd(size_t end) { lifetime_end_ = end; }
626
627  uint32_t GetDexPc() const { return dex_pc_; }
628
629  bool IsCatchBlock() const { return is_catch_block_; }
630  void SetIsCatchBlock() { is_catch_block_ = true; }
631
632  bool EndsWithControlFlowInstruction() const;
633  bool EndsWithIf() const;
634  bool HasSinglePhi() const;
635
636 private:
637  HGraph* graph_;
638  GrowableArray<HBasicBlock*> predecessors_;
639  GrowableArray<HBasicBlock*> successors_;
640  HInstructionList instructions_;
641  HInstructionList phis_;
642  HLoopInformation* loop_information_;
643  HBasicBlock* dominator_;
644  GrowableArray<HBasicBlock*> dominated_blocks_;
645  int block_id_;
646  // The dex program counter of the first instruction of this block.
647  const uint32_t dex_pc_;
648  size_t lifetime_start_;
649  size_t lifetime_end_;
650  bool is_catch_block_;
651
652  friend class HGraph;
653  friend class HInstruction;
654
655  DISALLOW_COPY_AND_ASSIGN(HBasicBlock);
656};
657
658// Iterates over the LoopInformation of all loops which contain 'block'
659// from the innermost to the outermost.
660class HLoopInformationOutwardIterator : public ValueObject {
661 public:
662  explicit HLoopInformationOutwardIterator(const HBasicBlock& block)
663      : current_(block.GetLoopInformation()) {}
664
665  bool Done() const { return current_ == nullptr; }
666
667  void Advance() {
668    DCHECK(!Done());
669    current_ = current_->GetHeader()->GetDominator()->GetLoopInformation();
670  }
671
672  HLoopInformation* Current() const {
673    DCHECK(!Done());
674    return current_;
675  }
676
677 private:
678  HLoopInformation* current_;
679
680  DISALLOW_COPY_AND_ASSIGN(HLoopInformationOutwardIterator);
681};
682
683#define FOR_EACH_CONCRETE_INSTRUCTION(M)                                \
684  M(Add, BinaryOperation)                                               \
685  M(And, BinaryOperation)                                               \
686  M(ArrayGet, Instruction)                                              \
687  M(ArrayLength, Instruction)                                           \
688  M(ArraySet, Instruction)                                              \
689  M(BooleanNot, UnaryOperation)                                         \
690  M(BoundsCheck, Instruction)                                           \
691  M(BoundType, Instruction)                                             \
692  M(CheckCast, Instruction)                                             \
693  M(ClinitCheck, Instruction)                                           \
694  M(Compare, BinaryOperation)                                           \
695  M(Condition, BinaryOperation)                                         \
696  M(Deoptimize, Instruction)                                            \
697  M(Div, BinaryOperation)                                               \
698  M(DivZeroCheck, Instruction)                                          \
699  M(DoubleConstant, Constant)                                           \
700  M(Equal, Condition)                                                   \
701  M(Exit, Instruction)                                                  \
702  M(FloatConstant, Constant)                                            \
703  M(Goto, Instruction)                                                  \
704  M(GreaterThan, Condition)                                             \
705  M(GreaterThanOrEqual, Condition)                                      \
706  M(If, Instruction)                                                    \
707  M(InstanceFieldGet, Instruction)                                      \
708  M(InstanceFieldSet, Instruction)                                      \
709  M(InstanceOf, Instruction)                                            \
710  M(IntConstant, Constant)                                              \
711  M(InvokeInterface, Invoke)                                            \
712  M(InvokeStaticOrDirect, Invoke)                                       \
713  M(InvokeVirtual, Invoke)                                              \
714  M(LessThan, Condition)                                                \
715  M(LessThanOrEqual, Condition)                                         \
716  M(LoadClass, Instruction)                                             \
717  M(LoadException, Instruction)                                         \
718  M(LoadLocal, Instruction)                                             \
719  M(LoadString, Instruction)                                            \
720  M(Local, Instruction)                                                 \
721  M(LongConstant, Constant)                                             \
722  M(MemoryBarrier, Instruction)                                         \
723  M(MonitorOperation, Instruction)                                      \
724  M(Mul, BinaryOperation)                                               \
725  M(Neg, UnaryOperation)                                                \
726  M(NewArray, Instruction)                                              \
727  M(NewInstance, Instruction)                                           \
728  M(Not, UnaryOperation)                                                \
729  M(NotEqual, Condition)                                                \
730  M(NullConstant, Instruction)                                          \
731  M(NullCheck, Instruction)                                             \
732  M(Or, BinaryOperation)                                                \
733  M(ParallelMove, Instruction)                                          \
734  M(ParameterValue, Instruction)                                        \
735  M(Phi, Instruction)                                                   \
736  M(Rem, BinaryOperation)                                               \
737  M(Return, Instruction)                                                \
738  M(ReturnVoid, Instruction)                                            \
739  M(Shl, BinaryOperation)                                               \
740  M(Shr, BinaryOperation)                                               \
741  M(StaticFieldGet, Instruction)                                        \
742  M(StaticFieldSet, Instruction)                                        \
743  M(StoreLocal, Instruction)                                            \
744  M(Sub, BinaryOperation)                                               \
745  M(SuspendCheck, Instruction)                                          \
746  M(Temporary, Instruction)                                             \
747  M(Throw, Instruction)                                                 \
748  M(TypeConversion, Instruction)                                        \
749  M(UShr, BinaryOperation)                                              \
750  M(Xor, BinaryOperation)                                               \
751
752#define FOR_EACH_INSTRUCTION(M)                                         \
753  FOR_EACH_CONCRETE_INSTRUCTION(M)                                      \
754  M(Constant, Instruction)                                              \
755  M(UnaryOperation, Instruction)                                        \
756  M(BinaryOperation, Instruction)                                       \
757  M(Invoke, Instruction)
758
759#define FORWARD_DECLARATION(type, super) class H##type;
760FOR_EACH_INSTRUCTION(FORWARD_DECLARATION)
761#undef FORWARD_DECLARATION
762
763#define DECLARE_INSTRUCTION(type)                                       \
764  InstructionKind GetKind() const OVERRIDE { return k##type; }          \
765  const char* DebugName() const OVERRIDE { return #type; }              \
766  const H##type* As##type() const OVERRIDE { return this; }             \
767  H##type* As##type() OVERRIDE { return this; }                         \
768  bool InstructionTypeEquals(HInstruction* other) const OVERRIDE {      \
769    return other->Is##type();                                           \
770  }                                                                     \
771  void Accept(HGraphVisitor* visitor) OVERRIDE
772
773template <typename T> class HUseList;
774
775template <typename T>
776class HUseListNode : public ArenaObject<kArenaAllocMisc> {
777 public:
778  HUseListNode* GetPrevious() const { return prev_; }
779  HUseListNode* GetNext() const { return next_; }
780  T GetUser() const { return user_; }
781  size_t GetIndex() const { return index_; }
782
783 private:
784  HUseListNode(T user, size_t index)
785      : user_(user), index_(index), prev_(nullptr), next_(nullptr) {}
786
787  T const user_;
788  const size_t index_;
789  HUseListNode<T>* prev_;
790  HUseListNode<T>* next_;
791
792  friend class HUseList<T>;
793
794  DISALLOW_COPY_AND_ASSIGN(HUseListNode);
795};
796
797template <typename T>
798class HUseList : public ValueObject {
799 public:
800  HUseList() : first_(nullptr) {}
801
802  void Clear() {
803    first_ = nullptr;
804  }
805
806  // Adds a new entry at the beginning of the use list and returns
807  // the newly created node.
808  HUseListNode<T>* AddUse(T user, size_t index, ArenaAllocator* arena) {
809    HUseListNode<T>* new_node = new (arena) HUseListNode<T>(user, index);
810    if (IsEmpty()) {
811      first_ = new_node;
812    } else {
813      first_->prev_ = new_node;
814      new_node->next_ = first_;
815      first_ = new_node;
816    }
817    return new_node;
818  }
819
820  HUseListNode<T>* GetFirst() const {
821    return first_;
822  }
823
824  void Remove(HUseListNode<T>* node) {
825    DCHECK(node != nullptr);
826    DCHECK(Contains(node));
827
828    if (node->prev_ != nullptr) {
829      node->prev_->next_ = node->next_;
830    }
831    if (node->next_ != nullptr) {
832      node->next_->prev_ = node->prev_;
833    }
834    if (node == first_) {
835      first_ = node->next_;
836    }
837  }
838
839  bool Contains(const HUseListNode<T>* node) const {
840    if (node == nullptr) {
841      return false;
842    }
843    for (HUseListNode<T>* current = first_; current != nullptr; current = current->GetNext()) {
844      if (current == node) {
845        return true;
846      }
847    }
848    return false;
849  }
850
851  bool IsEmpty() const {
852    return first_ == nullptr;
853  }
854
855  bool HasOnlyOneUse() const {
856    return first_ != nullptr && first_->next_ == nullptr;
857  }
858
859 private:
860  HUseListNode<T>* first_;
861};
862
863template<typename T>
864class HUseIterator : public ValueObject {
865 public:
866  explicit HUseIterator(const HUseList<T>& uses) : current_(uses.GetFirst()) {}
867
868  bool Done() const { return current_ == nullptr; }
869
870  void Advance() {
871    DCHECK(!Done());
872    current_ = current_->GetNext();
873  }
874
875  HUseListNode<T>* Current() const {
876    DCHECK(!Done());
877    return current_;
878  }
879
880 private:
881  HUseListNode<T>* current_;
882
883  friend class HValue;
884};
885
886// This class is used by HEnvironment and HInstruction classes to record the
887// instructions they use and pointers to the corresponding HUseListNodes kept
888// by the used instructions.
889template <typename T>
890class HUserRecord : public ValueObject {
891 public:
892  HUserRecord() : instruction_(nullptr), use_node_(nullptr) {}
893  explicit HUserRecord(HInstruction* instruction) : instruction_(instruction), use_node_(nullptr) {}
894
895  HUserRecord(const HUserRecord<T>& old_record, HUseListNode<T>* use_node)
896    : instruction_(old_record.instruction_), use_node_(use_node) {
897    DCHECK(instruction_ != nullptr);
898    DCHECK(use_node_ != nullptr);
899    DCHECK(old_record.use_node_ == nullptr);
900  }
901
902  HInstruction* GetInstruction() const { return instruction_; }
903  HUseListNode<T>* GetUseNode() const { return use_node_; }
904
905 private:
906  // Instruction used by the user.
907  HInstruction* instruction_;
908
909  // Corresponding entry in the use list kept by 'instruction_'.
910  HUseListNode<T>* use_node_;
911};
912
913// TODO: Add better documentation to this class and maybe refactor with more suggestive names.
914// - Has(All)SideEffects suggests that all the side effects are present but only ChangesSomething
915//   flag is consider.
916// - DependsOn suggests that there is a real dependency between side effects but it only
917//   checks DependendsOnSomething flag.
918//
919// Represents the side effects an instruction may have.
920class SideEffects : public ValueObject {
921 public:
922  SideEffects() : flags_(0) {}
923
924  static SideEffects None() {
925    return SideEffects(0);
926  }
927
928  static SideEffects All() {
929    return SideEffects(ChangesSomething().flags_ | DependsOnSomething().flags_);
930  }
931
932  static SideEffects ChangesSomething() {
933    return SideEffects((1 << kFlagChangesCount) - 1);
934  }
935
936  static SideEffects DependsOnSomething() {
937    int count = kFlagDependsOnCount - kFlagChangesCount;
938    return SideEffects(((1 << count) - 1) << kFlagChangesCount);
939  }
940
941  SideEffects Union(SideEffects other) const {
942    return SideEffects(flags_ | other.flags_);
943  }
944
945  bool HasSideEffects() const {
946    size_t all_bits_set = (1 << kFlagChangesCount) - 1;
947    return (flags_ & all_bits_set) != 0;
948  }
949
950  bool HasAllSideEffects() const {
951    size_t all_bits_set = (1 << kFlagChangesCount) - 1;
952    return all_bits_set == (flags_ & all_bits_set);
953  }
954
955  bool DependsOn(SideEffects other) const {
956    size_t depends_flags = other.ComputeDependsFlags();
957    return (flags_ & depends_flags) != 0;
958  }
959
960  bool HasDependencies() const {
961    int count = kFlagDependsOnCount - kFlagChangesCount;
962    size_t all_bits_set = (1 << count) - 1;
963    return ((flags_ >> kFlagChangesCount) & all_bits_set) != 0;
964  }
965
966 private:
967  static constexpr int kFlagChangesSomething = 0;
968  static constexpr int kFlagChangesCount = kFlagChangesSomething + 1;
969
970  static constexpr int kFlagDependsOnSomething = kFlagChangesCount;
971  static constexpr int kFlagDependsOnCount = kFlagDependsOnSomething + 1;
972
973  explicit SideEffects(size_t flags) : flags_(flags) {}
974
975  size_t ComputeDependsFlags() const {
976    return flags_ << kFlagChangesCount;
977  }
978
979  size_t flags_;
980};
981
982// A HEnvironment object contains the values of virtual registers at a given location.
983class HEnvironment : public ArenaObject<kArenaAllocMisc> {
984 public:
985  HEnvironment(ArenaAllocator* arena, size_t number_of_vregs)
986     : vregs_(arena, number_of_vregs) {
987    vregs_.SetSize(number_of_vregs);
988    for (size_t i = 0; i < number_of_vregs; i++) {
989      vregs_.Put(i, HUserRecord<HEnvironment*>());
990    }
991  }
992
993  void CopyFrom(HEnvironment* env);
994
995  void SetRawEnvAt(size_t index, HInstruction* instruction) {
996    vregs_.Put(index, HUserRecord<HEnvironment*>(instruction));
997  }
998
999  HInstruction* GetInstructionAt(size_t index) const {
1000    return vregs_.Get(index).GetInstruction();
1001  }
1002
1003  void RemoveAsUserOfInput(size_t index) const;
1004
1005  size_t Size() const { return vregs_.Size(); }
1006
1007 private:
1008  // Record instructions' use entries of this environment for constant-time removal.
1009  // It should only be called by HInstruction when a new environment use is added.
1010  void RecordEnvUse(HUseListNode<HEnvironment*>* env_use) {
1011    DCHECK(env_use->GetUser() == this);
1012    size_t index = env_use->GetIndex();
1013    vregs_.Put(index, HUserRecord<HEnvironment*>(vregs_.Get(index), env_use));
1014  }
1015
1016  GrowableArray<HUserRecord<HEnvironment*> > vregs_;
1017
1018  friend HInstruction;
1019
1020  DISALLOW_COPY_AND_ASSIGN(HEnvironment);
1021};
1022
1023class ReferenceTypeInfo : ValueObject {
1024 public:
1025  typedef Handle<mirror::Class> TypeHandle;
1026
1027  static ReferenceTypeInfo Create(TypeHandle type_handle, bool is_exact)
1028      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1029    if (type_handle->IsObjectClass()) {
1030      // Override the type handle to be consistent with the case when we get to
1031      // Top but don't have the Object class available. It avoids having to guess
1032      // what value the type_handle has when it's Top.
1033      return ReferenceTypeInfo(TypeHandle(), is_exact, true);
1034    } else {
1035      return ReferenceTypeInfo(type_handle, is_exact, false);
1036    }
1037  }
1038
1039  static ReferenceTypeInfo CreateTop(bool is_exact) {
1040    return ReferenceTypeInfo(TypeHandle(), is_exact, true);
1041  }
1042
1043  bool IsExact() const { return is_exact_; }
1044  bool IsTop() const { return is_top_; }
1045
1046  Handle<mirror::Class> GetTypeHandle() const { return type_handle_; }
1047
1048  bool IsSupertypeOf(ReferenceTypeInfo rti) const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1049    if (IsTop()) {
1050      // Top (equivalent for java.lang.Object) is supertype of anything.
1051      return true;
1052    }
1053    if (rti.IsTop()) {
1054      // If we get here `this` is not Top() so it can't be a supertype.
1055      return false;
1056    }
1057    return GetTypeHandle()->IsAssignableFrom(rti.GetTypeHandle().Get());
1058  }
1059
1060  // Returns true if the type information provide the same amount of details.
1061  // Note that it does not mean that the instructions have the same actual type
1062  // (e.g. tops are equal but they can be the result of a merge).
1063  bool IsEqual(ReferenceTypeInfo rti) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1064    if (IsExact() != rti.IsExact()) {
1065      return false;
1066    }
1067    if (IsTop() && rti.IsTop()) {
1068      // `Top` means java.lang.Object, so the types are equivalent.
1069      return true;
1070    }
1071    if (IsTop() || rti.IsTop()) {
1072      // If only one is top or object than they are not equivalent.
1073      // NB: We need this extra check because the type_handle of `Top` is invalid
1074      // and we cannot inspect its reference.
1075      return false;
1076    }
1077
1078    // Finally check the types.
1079    return GetTypeHandle().Get() == rti.GetTypeHandle().Get();
1080  }
1081
1082 private:
1083  ReferenceTypeInfo() : ReferenceTypeInfo(TypeHandle(), false, true) {}
1084  ReferenceTypeInfo(TypeHandle type_handle, bool is_exact, bool is_top)
1085      : type_handle_(type_handle), is_exact_(is_exact), is_top_(is_top) {}
1086
1087  // The class of the object.
1088  TypeHandle type_handle_;
1089  // Whether or not the type is exact or a superclass of the actual type.
1090  // Whether or not we have any information about this type.
1091  bool is_exact_;
1092  // A true value here means that the object type should be java.lang.Object.
1093  // We don't have access to the corresponding mirror object every time so this
1094  // flag acts as a substitute. When true, the TypeHandle refers to a null
1095  // pointer and should not be used.
1096  bool is_top_;
1097};
1098
1099std::ostream& operator<<(std::ostream& os, const ReferenceTypeInfo& rhs);
1100
1101class HInstruction : public ArenaObject<kArenaAllocMisc> {
1102 public:
1103  explicit HInstruction(SideEffects side_effects)
1104      : previous_(nullptr),
1105        next_(nullptr),
1106        block_(nullptr),
1107        id_(-1),
1108        ssa_index_(-1),
1109        environment_(nullptr),
1110        locations_(nullptr),
1111        live_interval_(nullptr),
1112        lifetime_position_(kNoLifetime),
1113        side_effects_(side_effects),
1114        reference_type_info_(ReferenceTypeInfo::CreateTop(/* is_exact */ false)) {}
1115
1116  virtual ~HInstruction() {}
1117
1118#define DECLARE_KIND(type, super) k##type,
1119  enum InstructionKind {
1120    FOR_EACH_INSTRUCTION(DECLARE_KIND)
1121  };
1122#undef DECLARE_KIND
1123
1124  HInstruction* GetNext() const { return next_; }
1125  HInstruction* GetPrevious() const { return previous_; }
1126
1127  HInstruction* GetNextDisregardingMoves() const;
1128  HInstruction* GetPreviousDisregardingMoves() const;
1129
1130  HBasicBlock* GetBlock() const { return block_; }
1131  void SetBlock(HBasicBlock* block) { block_ = block; }
1132  bool IsInBlock() const { return block_ != nullptr; }
1133  bool IsInLoop() const { return block_->IsInLoop(); }
1134  bool IsLoopHeaderPhi() { return IsPhi() && block_->IsLoopHeader(); }
1135
1136  virtual size_t InputCount() const = 0;
1137  HInstruction* InputAt(size_t i) const { return InputRecordAt(i).GetInstruction(); }
1138
1139  virtual void Accept(HGraphVisitor* visitor) = 0;
1140  virtual const char* DebugName() const = 0;
1141
1142  virtual Primitive::Type GetType() const { return Primitive::kPrimVoid; }
1143  void SetRawInputAt(size_t index, HInstruction* input) {
1144    SetRawInputRecordAt(index, HUserRecord<HInstruction*>(input));
1145  }
1146
1147  virtual bool NeedsEnvironment() const { return false; }
1148  virtual bool IsControlFlow() const { return false; }
1149  virtual bool CanThrow() const { return false; }
1150  bool HasSideEffects() const { return side_effects_.HasSideEffects(); }
1151
1152  virtual bool ActAsNullConstant() const { return false; }
1153
1154  // Does not apply for all instructions, but having this at top level greatly
1155  // simplifies the null check elimination.
1156  virtual bool CanBeNull() const {
1157    DCHECK_EQ(GetType(), Primitive::kPrimNot) << "CanBeNull only applies to reference types";
1158    return true;
1159  }
1160
1161  virtual bool CanDoImplicitNullCheckOn(HInstruction* obj) const {
1162    UNUSED(obj);
1163    return false;
1164  }
1165
1166  void SetReferenceTypeInfo(ReferenceTypeInfo reference_type_info) {
1167    DCHECK_EQ(GetType(), Primitive::kPrimNot);
1168    reference_type_info_ = reference_type_info;
1169  }
1170
1171  ReferenceTypeInfo GetReferenceTypeInfo() const {
1172    DCHECK_EQ(GetType(), Primitive::kPrimNot);
1173    return reference_type_info_;
1174  }
1175
1176  void AddUseAt(HInstruction* user, size_t index) {
1177    DCHECK(user != nullptr);
1178    HUseListNode<HInstruction*>* use =
1179        uses_.AddUse(user, index, GetBlock()->GetGraph()->GetArena());
1180    user->SetRawInputRecordAt(index, HUserRecord<HInstruction*>(user->InputRecordAt(index), use));
1181  }
1182
1183  void AddEnvUseAt(HEnvironment* user, size_t index) {
1184    DCHECK(user != nullptr);
1185    HUseListNode<HEnvironment*>* env_use =
1186        env_uses_.AddUse(user, index, GetBlock()->GetGraph()->GetArena());
1187    user->RecordEnvUse(env_use);
1188  }
1189
1190  void RemoveAsUserOfInput(size_t input) {
1191    HUserRecord<HInstruction*> input_use = InputRecordAt(input);
1192    input_use.GetInstruction()->uses_.Remove(input_use.GetUseNode());
1193  }
1194
1195  const HUseList<HInstruction*>& GetUses() const { return uses_; }
1196  const HUseList<HEnvironment*>& GetEnvUses() const { return env_uses_; }
1197
1198  bool HasUses() const { return !uses_.IsEmpty() || !env_uses_.IsEmpty(); }
1199  bool HasEnvironmentUses() const { return !env_uses_.IsEmpty(); }
1200  bool HasNonEnvironmentUses() const { return !uses_.IsEmpty(); }
1201  bool HasOnlyOneNonEnvironmentUse() const {
1202    return !HasEnvironmentUses() && GetUses().HasOnlyOneUse();
1203  }
1204
1205  // Does this instruction strictly dominate `other_instruction`?
1206  // Returns false if this instruction and `other_instruction` are the same.
1207  // Aborts if this instruction and `other_instruction` are both phis.
1208  bool StrictlyDominates(HInstruction* other_instruction) const;
1209
1210  int GetId() const { return id_; }
1211  void SetId(int id) { id_ = id; }
1212
1213  int GetSsaIndex() const { return ssa_index_; }
1214  void SetSsaIndex(int ssa_index) { ssa_index_ = ssa_index; }
1215  bool HasSsaIndex() const { return ssa_index_ != -1; }
1216
1217  bool HasEnvironment() const { return environment_ != nullptr; }
1218  HEnvironment* GetEnvironment() const { return environment_; }
1219  // Set the `environment_` field. Raw because this method does not
1220  // update the uses lists.
1221  void SetRawEnvironment(HEnvironment* environment) { environment_ = environment; }
1222
1223  // Set the environment of this instruction, copying it from `environment`. While
1224  // copying, the uses lists are being updated.
1225  void CopyEnvironmentFrom(HEnvironment* environment) {
1226    ArenaAllocator* allocator = GetBlock()->GetGraph()->GetArena();
1227    environment_ = new (allocator) HEnvironment(allocator, environment->Size());
1228    environment_->CopyFrom(environment);
1229  }
1230
1231  // Returns the number of entries in the environment. Typically, that is the
1232  // number of dex registers in a method. It could be more in case of inlining.
1233  size_t EnvironmentSize() const;
1234
1235  LocationSummary* GetLocations() const { return locations_; }
1236  void SetLocations(LocationSummary* locations) { locations_ = locations; }
1237
1238  void ReplaceWith(HInstruction* instruction);
1239  void ReplaceInput(HInstruction* replacement, size_t index);
1240
1241  // This is almost the same as doing `ReplaceWith()`. But in this helper, the
1242  // uses of this instruction by `other` are *not* updated.
1243  void ReplaceWithExceptInReplacementAtIndex(HInstruction* other, size_t use_index) {
1244    ReplaceWith(other);
1245    other->ReplaceInput(this, use_index);
1246  }
1247
1248  // Move `this` instruction before `cursor`.
1249  void MoveBefore(HInstruction* cursor);
1250
1251#define INSTRUCTION_TYPE_CHECK(type, super)                                    \
1252  bool Is##type() const { return (As##type() != nullptr); }                    \
1253  virtual const H##type* As##type() const { return nullptr; }                  \
1254  virtual H##type* As##type() { return nullptr; }
1255
1256  FOR_EACH_INSTRUCTION(INSTRUCTION_TYPE_CHECK)
1257#undef INSTRUCTION_TYPE_CHECK
1258
1259  // Returns whether the instruction can be moved within the graph.
1260  virtual bool CanBeMoved() const { return false; }
1261
1262  // Returns whether the two instructions are of the same kind.
1263  virtual bool InstructionTypeEquals(HInstruction* other) const {
1264    UNUSED(other);
1265    return false;
1266  }
1267
1268  // Returns whether any data encoded in the two instructions is equal.
1269  // This method does not look at the inputs. Both instructions must be
1270  // of the same type, otherwise the method has undefined behavior.
1271  virtual bool InstructionDataEquals(HInstruction* other) const {
1272    UNUSED(other);
1273    return false;
1274  }
1275
1276  // Returns whether two instructions are equal, that is:
1277  // 1) They have the same type and contain the same data (InstructionDataEquals).
1278  // 2) Their inputs are identical.
1279  bool Equals(HInstruction* other) const;
1280
1281  virtual InstructionKind GetKind() const = 0;
1282
1283  virtual size_t ComputeHashCode() const {
1284    size_t result = GetKind();
1285    for (size_t i = 0, e = InputCount(); i < e; ++i) {
1286      result = (result * 31) + InputAt(i)->GetId();
1287    }
1288    return result;
1289  }
1290
1291  SideEffects GetSideEffects() const { return side_effects_; }
1292
1293  size_t GetLifetimePosition() const { return lifetime_position_; }
1294  void SetLifetimePosition(size_t position) { lifetime_position_ = position; }
1295  LiveInterval* GetLiveInterval() const { return live_interval_; }
1296  void SetLiveInterval(LiveInterval* interval) { live_interval_ = interval; }
1297  bool HasLiveInterval() const { return live_interval_ != nullptr; }
1298
1299  bool IsSuspendCheckEntry() const { return IsSuspendCheck() && GetBlock()->IsEntryBlock(); }
1300
1301  // Returns whether the code generation of the instruction will require to have access
1302  // to the current method. Such instructions are:
1303  // (1): Instructions that require an environment, as calling the runtime requires
1304  //      to walk the stack and have the current method stored at a specific stack address.
1305  // (2): Object literals like classes and strings, that are loaded from the dex cache
1306  //      fields of the current method.
1307  bool NeedsCurrentMethod() const {
1308    return NeedsEnvironment() || IsLoadClass() || IsLoadString();
1309  }
1310
1311  virtual bool NeedsDexCache() const { return false; }
1312
1313 protected:
1314  virtual const HUserRecord<HInstruction*> InputRecordAt(size_t i) const = 0;
1315  virtual void SetRawInputRecordAt(size_t index, const HUserRecord<HInstruction*>& input) = 0;
1316
1317 private:
1318  void RemoveEnvironmentUser(HUseListNode<HEnvironment*>* use_node) { env_uses_.Remove(use_node); }
1319
1320  HInstruction* previous_;
1321  HInstruction* next_;
1322  HBasicBlock* block_;
1323
1324  // An instruction gets an id when it is added to the graph.
1325  // It reflects creation order. A negative id means the instruction
1326  // has not been added to the graph.
1327  int id_;
1328
1329  // When doing liveness analysis, instructions that have uses get an SSA index.
1330  int ssa_index_;
1331
1332  // List of instructions that have this instruction as input.
1333  HUseList<HInstruction*> uses_;
1334
1335  // List of environments that contain this instruction.
1336  HUseList<HEnvironment*> env_uses_;
1337
1338  // The environment associated with this instruction. Not null if the instruction
1339  // might jump out of the method.
1340  HEnvironment* environment_;
1341
1342  // Set by the code generator.
1343  LocationSummary* locations_;
1344
1345  // Set by the liveness analysis.
1346  LiveInterval* live_interval_;
1347
1348  // Set by the liveness analysis, this is the position in a linear
1349  // order of blocks where this instruction's live interval start.
1350  size_t lifetime_position_;
1351
1352  const SideEffects side_effects_;
1353
1354  // TODO: for primitive types this should be marked as invalid.
1355  ReferenceTypeInfo reference_type_info_;
1356
1357  friend class GraphChecker;
1358  friend class HBasicBlock;
1359  friend class HEnvironment;
1360  friend class HGraph;
1361  friend class HInstructionList;
1362
1363  DISALLOW_COPY_AND_ASSIGN(HInstruction);
1364};
1365std::ostream& operator<<(std::ostream& os, const HInstruction::InstructionKind& rhs);
1366
1367class HInputIterator : public ValueObject {
1368 public:
1369  explicit HInputIterator(HInstruction* instruction) : instruction_(instruction), index_(0) {}
1370
1371  bool Done() const { return index_ == instruction_->InputCount(); }
1372  HInstruction* Current() const { return instruction_->InputAt(index_); }
1373  void Advance() { index_++; }
1374
1375 private:
1376  HInstruction* instruction_;
1377  size_t index_;
1378
1379  DISALLOW_COPY_AND_ASSIGN(HInputIterator);
1380};
1381
1382class HInstructionIterator : public ValueObject {
1383 public:
1384  explicit HInstructionIterator(const HInstructionList& instructions)
1385      : instruction_(instructions.first_instruction_) {
1386    next_ = Done() ? nullptr : instruction_->GetNext();
1387  }
1388
1389  bool Done() const { return instruction_ == nullptr; }
1390  HInstruction* Current() const { return instruction_; }
1391  void Advance() {
1392    instruction_ = next_;
1393    next_ = Done() ? nullptr : instruction_->GetNext();
1394  }
1395
1396 private:
1397  HInstruction* instruction_;
1398  HInstruction* next_;
1399
1400  DISALLOW_COPY_AND_ASSIGN(HInstructionIterator);
1401};
1402
1403class HBackwardInstructionIterator : public ValueObject {
1404 public:
1405  explicit HBackwardInstructionIterator(const HInstructionList& instructions)
1406      : instruction_(instructions.last_instruction_) {
1407    next_ = Done() ? nullptr : instruction_->GetPrevious();
1408  }
1409
1410  bool Done() const { return instruction_ == nullptr; }
1411  HInstruction* Current() const { return instruction_; }
1412  void Advance() {
1413    instruction_ = next_;
1414    next_ = Done() ? nullptr : instruction_->GetPrevious();
1415  }
1416
1417 private:
1418  HInstruction* instruction_;
1419  HInstruction* next_;
1420
1421  DISALLOW_COPY_AND_ASSIGN(HBackwardInstructionIterator);
1422};
1423
1424// An embedded container with N elements of type T.  Used (with partial
1425// specialization for N=0) because embedded arrays cannot have size 0.
1426template<typename T, intptr_t N>
1427class EmbeddedArray {
1428 public:
1429  EmbeddedArray() : elements_() {}
1430
1431  intptr_t GetLength() const { return N; }
1432
1433  const T& operator[](intptr_t i) const {
1434    DCHECK_LT(i, GetLength());
1435    return elements_[i];
1436  }
1437
1438  T& operator[](intptr_t i) {
1439    DCHECK_LT(i, GetLength());
1440    return elements_[i];
1441  }
1442
1443  const T& At(intptr_t i) const {
1444    return (*this)[i];
1445  }
1446
1447  void SetAt(intptr_t i, const T& val) {
1448    (*this)[i] = val;
1449  }
1450
1451 private:
1452  T elements_[N];
1453};
1454
1455template<typename T>
1456class EmbeddedArray<T, 0> {
1457 public:
1458  intptr_t length() const { return 0; }
1459  const T& operator[](intptr_t i) const {
1460    UNUSED(i);
1461    LOG(FATAL) << "Unreachable";
1462    UNREACHABLE();
1463  }
1464  T& operator[](intptr_t i) {
1465    UNUSED(i);
1466    LOG(FATAL) << "Unreachable";
1467    UNREACHABLE();
1468  }
1469};
1470
1471template<intptr_t N>
1472class HTemplateInstruction: public HInstruction {
1473 public:
1474  HTemplateInstruction<N>(SideEffects side_effects)
1475      : HInstruction(side_effects), inputs_() {}
1476  virtual ~HTemplateInstruction() {}
1477
1478  size_t InputCount() const OVERRIDE { return N; }
1479
1480 protected:
1481  const HUserRecord<HInstruction*> InputRecordAt(size_t i) const OVERRIDE { return inputs_[i]; }
1482
1483  void SetRawInputRecordAt(size_t i, const HUserRecord<HInstruction*>& input) OVERRIDE {
1484    inputs_[i] = input;
1485  }
1486
1487 private:
1488  EmbeddedArray<HUserRecord<HInstruction*>, N> inputs_;
1489
1490  friend class SsaBuilder;
1491};
1492
1493template<intptr_t N>
1494class HExpression : public HTemplateInstruction<N> {
1495 public:
1496  HExpression<N>(Primitive::Type type, SideEffects side_effects)
1497      : HTemplateInstruction<N>(side_effects), type_(type) {}
1498  virtual ~HExpression() {}
1499
1500  Primitive::Type GetType() const OVERRIDE { return type_; }
1501
1502 protected:
1503  Primitive::Type type_;
1504};
1505
1506// Represents dex's RETURN_VOID opcode. A HReturnVoid is a control flow
1507// instruction that branches to the exit block.
1508class HReturnVoid : public HTemplateInstruction<0> {
1509 public:
1510  HReturnVoid() : HTemplateInstruction(SideEffects::None()) {}
1511
1512  bool IsControlFlow() const OVERRIDE { return true; }
1513
1514  DECLARE_INSTRUCTION(ReturnVoid);
1515
1516 private:
1517  DISALLOW_COPY_AND_ASSIGN(HReturnVoid);
1518};
1519
1520// Represents dex's RETURN opcodes. A HReturn is a control flow
1521// instruction that branches to the exit block.
1522class HReturn : public HTemplateInstruction<1> {
1523 public:
1524  explicit HReturn(HInstruction* value) : HTemplateInstruction(SideEffects::None()) {
1525    SetRawInputAt(0, value);
1526  }
1527
1528  bool IsControlFlow() const OVERRIDE { return true; }
1529
1530  DECLARE_INSTRUCTION(Return);
1531
1532 private:
1533  DISALLOW_COPY_AND_ASSIGN(HReturn);
1534};
1535
1536// The exit instruction is the only instruction of the exit block.
1537// Instructions aborting the method (HThrow and HReturn) must branch to the
1538// exit block.
1539class HExit : public HTemplateInstruction<0> {
1540 public:
1541  HExit() : HTemplateInstruction(SideEffects::None()) {}
1542
1543  bool IsControlFlow() const OVERRIDE { return true; }
1544
1545  DECLARE_INSTRUCTION(Exit);
1546
1547 private:
1548  DISALLOW_COPY_AND_ASSIGN(HExit);
1549};
1550
1551// Jumps from one block to another.
1552class HGoto : public HTemplateInstruction<0> {
1553 public:
1554  HGoto() : HTemplateInstruction(SideEffects::None()) {}
1555
1556  bool IsControlFlow() const OVERRIDE { return true; }
1557
1558  HBasicBlock* GetSuccessor() const {
1559    return GetBlock()->GetSuccessors().Get(0);
1560  }
1561
1562  DECLARE_INSTRUCTION(Goto);
1563
1564 private:
1565  DISALLOW_COPY_AND_ASSIGN(HGoto);
1566};
1567
1568
1569// Conditional branch. A block ending with an HIf instruction must have
1570// two successors.
1571class HIf : public HTemplateInstruction<1> {
1572 public:
1573  explicit HIf(HInstruction* input) : HTemplateInstruction(SideEffects::None()) {
1574    SetRawInputAt(0, input);
1575  }
1576
1577  bool IsControlFlow() const OVERRIDE { return true; }
1578
1579  HBasicBlock* IfTrueSuccessor() const {
1580    return GetBlock()->GetSuccessors().Get(0);
1581  }
1582
1583  HBasicBlock* IfFalseSuccessor() const {
1584    return GetBlock()->GetSuccessors().Get(1);
1585  }
1586
1587  DECLARE_INSTRUCTION(If);
1588
1589 private:
1590  DISALLOW_COPY_AND_ASSIGN(HIf);
1591};
1592
1593// Deoptimize to interpreter, upon checking a condition.
1594class HDeoptimize : public HTemplateInstruction<1> {
1595 public:
1596  HDeoptimize(HInstruction* cond, uint32_t dex_pc)
1597      : HTemplateInstruction(SideEffects::None()),
1598        dex_pc_(dex_pc) {
1599    SetRawInputAt(0, cond);
1600  }
1601
1602  bool NeedsEnvironment() const OVERRIDE { return true; }
1603  bool CanThrow() const OVERRIDE { return true; }
1604  uint32_t GetDexPc() const { return dex_pc_; }
1605
1606  DECLARE_INSTRUCTION(Deoptimize);
1607
1608 private:
1609  uint32_t dex_pc_;
1610
1611  DISALLOW_COPY_AND_ASSIGN(HDeoptimize);
1612};
1613
1614class HUnaryOperation : public HExpression<1> {
1615 public:
1616  HUnaryOperation(Primitive::Type result_type, HInstruction* input)
1617      : HExpression(result_type, SideEffects::None()) {
1618    SetRawInputAt(0, input);
1619  }
1620
1621  HInstruction* GetInput() const { return InputAt(0); }
1622  Primitive::Type GetResultType() const { return GetType(); }
1623
1624  bool CanBeMoved() const OVERRIDE { return true; }
1625  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
1626    UNUSED(other);
1627    return true;
1628  }
1629
1630  // Try to statically evaluate `operation` and return a HConstant
1631  // containing the result of this evaluation.  If `operation` cannot
1632  // be evaluated as a constant, return nullptr.
1633  HConstant* TryStaticEvaluation() const;
1634
1635  // Apply this operation to `x`.
1636  virtual int32_t Evaluate(int32_t x) const = 0;
1637  virtual int64_t Evaluate(int64_t x) const = 0;
1638
1639  DECLARE_INSTRUCTION(UnaryOperation);
1640
1641 private:
1642  DISALLOW_COPY_AND_ASSIGN(HUnaryOperation);
1643};
1644
1645class HBinaryOperation : public HExpression<2> {
1646 public:
1647  HBinaryOperation(Primitive::Type result_type,
1648                   HInstruction* left,
1649                   HInstruction* right) : HExpression(result_type, SideEffects::None()) {
1650    SetRawInputAt(0, left);
1651    SetRawInputAt(1, right);
1652  }
1653
1654  HInstruction* GetLeft() const { return InputAt(0); }
1655  HInstruction* GetRight() const { return InputAt(1); }
1656  Primitive::Type GetResultType() const { return GetType(); }
1657
1658  virtual bool IsCommutative() const { return false; }
1659
1660  // Put constant on the right.
1661  // Returns whether order is changed.
1662  bool OrderInputsWithConstantOnTheRight() {
1663    HInstruction* left = InputAt(0);
1664    HInstruction* right = InputAt(1);
1665    if (left->IsConstant() && !right->IsConstant()) {
1666      ReplaceInput(right, 0);
1667      ReplaceInput(left, 1);
1668      return true;
1669    }
1670    return false;
1671  }
1672
1673  // Order inputs by instruction id, but favor constant on the right side.
1674  // This helps GVN for commutative ops.
1675  void OrderInputs() {
1676    DCHECK(IsCommutative());
1677    HInstruction* left = InputAt(0);
1678    HInstruction* right = InputAt(1);
1679    if (left == right || (!left->IsConstant() && right->IsConstant())) {
1680      return;
1681    }
1682    if (OrderInputsWithConstantOnTheRight()) {
1683      return;
1684    }
1685    // Order according to instruction id.
1686    if (left->GetId() > right->GetId()) {
1687      ReplaceInput(right, 0);
1688      ReplaceInput(left, 1);
1689    }
1690  }
1691
1692  bool CanBeMoved() const OVERRIDE { return true; }
1693  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
1694    UNUSED(other);
1695    return true;
1696  }
1697
1698  // Try to statically evaluate `operation` and return a HConstant
1699  // containing the result of this evaluation.  If `operation` cannot
1700  // be evaluated as a constant, return nullptr.
1701  HConstant* TryStaticEvaluation() const;
1702
1703  // Apply this operation to `x` and `y`.
1704  virtual int32_t Evaluate(int32_t x, int32_t y) const = 0;
1705  virtual int64_t Evaluate(int64_t x, int64_t y) const = 0;
1706
1707  // Returns an input that can legally be used as the right input and is
1708  // constant, or nullptr.
1709  HConstant* GetConstantRight() const;
1710
1711  // If `GetConstantRight()` returns one of the input, this returns the other
1712  // one. Otherwise it returns nullptr.
1713  HInstruction* GetLeastConstantLeft() const;
1714
1715  DECLARE_INSTRUCTION(BinaryOperation);
1716
1717 private:
1718  DISALLOW_COPY_AND_ASSIGN(HBinaryOperation);
1719};
1720
1721class HCondition : public HBinaryOperation {
1722 public:
1723  HCondition(HInstruction* first, HInstruction* second)
1724      : HBinaryOperation(Primitive::kPrimBoolean, first, second),
1725        needs_materialization_(true) {}
1726
1727  bool NeedsMaterialization() const { return needs_materialization_; }
1728  void ClearNeedsMaterialization() { needs_materialization_ = false; }
1729
1730  // For code generation purposes, returns whether this instruction is just before
1731  // `instruction`, and disregard moves in between.
1732  bool IsBeforeWhenDisregardMoves(HInstruction* instruction) const;
1733
1734  DECLARE_INSTRUCTION(Condition);
1735
1736  virtual IfCondition GetCondition() const = 0;
1737
1738 private:
1739  // For register allocation purposes, returns whether this instruction needs to be
1740  // materialized (that is, not just be in the processor flags).
1741  bool needs_materialization_;
1742
1743  DISALLOW_COPY_AND_ASSIGN(HCondition);
1744};
1745
1746// Instruction to check if two inputs are equal to each other.
1747class HEqual : public HCondition {
1748 public:
1749  HEqual(HInstruction* first, HInstruction* second)
1750      : HCondition(first, second) {}
1751
1752  bool IsCommutative() const OVERRIDE { return true; }
1753
1754  int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE {
1755    return x == y ? 1 : 0;
1756  }
1757  int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE {
1758    return x == y ? 1 : 0;
1759  }
1760
1761  DECLARE_INSTRUCTION(Equal);
1762
1763  IfCondition GetCondition() const OVERRIDE {
1764    return kCondEQ;
1765  }
1766
1767 private:
1768  DISALLOW_COPY_AND_ASSIGN(HEqual);
1769};
1770
1771class HNotEqual : public HCondition {
1772 public:
1773  HNotEqual(HInstruction* first, HInstruction* second)
1774      : HCondition(first, second) {}
1775
1776  bool IsCommutative() const OVERRIDE { return true; }
1777
1778  int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE {
1779    return x != y ? 1 : 0;
1780  }
1781  int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE {
1782    return x != y ? 1 : 0;
1783  }
1784
1785  DECLARE_INSTRUCTION(NotEqual);
1786
1787  IfCondition GetCondition() const OVERRIDE {
1788    return kCondNE;
1789  }
1790
1791 private:
1792  DISALLOW_COPY_AND_ASSIGN(HNotEqual);
1793};
1794
1795class HLessThan : public HCondition {
1796 public:
1797  HLessThan(HInstruction* first, HInstruction* second)
1798      : HCondition(first, second) {}
1799
1800  int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE {
1801    return x < y ? 1 : 0;
1802  }
1803  int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE {
1804    return x < y ? 1 : 0;
1805  }
1806
1807  DECLARE_INSTRUCTION(LessThan);
1808
1809  IfCondition GetCondition() const OVERRIDE {
1810    return kCondLT;
1811  }
1812
1813 private:
1814  DISALLOW_COPY_AND_ASSIGN(HLessThan);
1815};
1816
1817class HLessThanOrEqual : public HCondition {
1818 public:
1819  HLessThanOrEqual(HInstruction* first, HInstruction* second)
1820      : HCondition(first, second) {}
1821
1822  int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE {
1823    return x <= y ? 1 : 0;
1824  }
1825  int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE {
1826    return x <= y ? 1 : 0;
1827  }
1828
1829  DECLARE_INSTRUCTION(LessThanOrEqual);
1830
1831  IfCondition GetCondition() const OVERRIDE {
1832    return kCondLE;
1833  }
1834
1835 private:
1836  DISALLOW_COPY_AND_ASSIGN(HLessThanOrEqual);
1837};
1838
1839class HGreaterThan : public HCondition {
1840 public:
1841  HGreaterThan(HInstruction* first, HInstruction* second)
1842      : HCondition(first, second) {}
1843
1844  int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE {
1845    return x > y ? 1 : 0;
1846  }
1847  int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE {
1848    return x > y ? 1 : 0;
1849  }
1850
1851  DECLARE_INSTRUCTION(GreaterThan);
1852
1853  IfCondition GetCondition() const OVERRIDE {
1854    return kCondGT;
1855  }
1856
1857 private:
1858  DISALLOW_COPY_AND_ASSIGN(HGreaterThan);
1859};
1860
1861class HGreaterThanOrEqual : public HCondition {
1862 public:
1863  HGreaterThanOrEqual(HInstruction* first, HInstruction* second)
1864      : HCondition(first, second) {}
1865
1866  int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE {
1867    return x >= y ? 1 : 0;
1868  }
1869  int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE {
1870    return x >= y ? 1 : 0;
1871  }
1872
1873  DECLARE_INSTRUCTION(GreaterThanOrEqual);
1874
1875  IfCondition GetCondition() const OVERRIDE {
1876    return kCondGE;
1877  }
1878
1879 private:
1880  DISALLOW_COPY_AND_ASSIGN(HGreaterThanOrEqual);
1881};
1882
1883
1884// Instruction to check how two inputs compare to each other.
1885// Result is 0 if input0 == input1, 1 if input0 > input1, or -1 if input0 < input1.
1886class HCompare : public HBinaryOperation {
1887 public:
1888  // The bias applies for floating point operations and indicates how NaN
1889  // comparisons are treated:
1890  enum Bias {
1891    kNoBias,  // bias is not applicable (i.e. for long operation)
1892    kGtBias,  // return 1 for NaN comparisons
1893    kLtBias,  // return -1 for NaN comparisons
1894  };
1895
1896  HCompare(Primitive::Type type, HInstruction* first, HInstruction* second, Bias bias)
1897      : HBinaryOperation(Primitive::kPrimInt, first, second), bias_(bias) {
1898    DCHECK_EQ(type, first->GetType());
1899    DCHECK_EQ(type, second->GetType());
1900  }
1901
1902  int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE {
1903    return
1904      x == y ? 0 :
1905      x > y ? 1 :
1906      -1;
1907  }
1908
1909  int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE {
1910    return
1911      x == y ? 0 :
1912      x > y ? 1 :
1913      -1;
1914  }
1915
1916  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
1917    return bias_ == other->AsCompare()->bias_;
1918  }
1919
1920  bool IsGtBias() { return bias_ == kGtBias; }
1921
1922  DECLARE_INSTRUCTION(Compare);
1923
1924 private:
1925  const Bias bias_;
1926
1927  DISALLOW_COPY_AND_ASSIGN(HCompare);
1928};
1929
1930// A local in the graph. Corresponds to a Dex register.
1931class HLocal : public HTemplateInstruction<0> {
1932 public:
1933  explicit HLocal(uint16_t reg_number)
1934      : HTemplateInstruction(SideEffects::None()), reg_number_(reg_number) {}
1935
1936  DECLARE_INSTRUCTION(Local);
1937
1938  uint16_t GetRegNumber() const { return reg_number_; }
1939
1940 private:
1941  // The Dex register number.
1942  const uint16_t reg_number_;
1943
1944  DISALLOW_COPY_AND_ASSIGN(HLocal);
1945};
1946
1947// Load a given local. The local is an input of this instruction.
1948class HLoadLocal : public HExpression<1> {
1949 public:
1950  HLoadLocal(HLocal* local, Primitive::Type type)
1951      : HExpression(type, SideEffects::None()) {
1952    SetRawInputAt(0, local);
1953  }
1954
1955  HLocal* GetLocal() const { return reinterpret_cast<HLocal*>(InputAt(0)); }
1956
1957  DECLARE_INSTRUCTION(LoadLocal);
1958
1959 private:
1960  DISALLOW_COPY_AND_ASSIGN(HLoadLocal);
1961};
1962
1963// Store a value in a given local. This instruction has two inputs: the value
1964// and the local.
1965class HStoreLocal : public HTemplateInstruction<2> {
1966 public:
1967  HStoreLocal(HLocal* local, HInstruction* value) : HTemplateInstruction(SideEffects::None()) {
1968    SetRawInputAt(0, local);
1969    SetRawInputAt(1, value);
1970  }
1971
1972  HLocal* GetLocal() const { return reinterpret_cast<HLocal*>(InputAt(0)); }
1973
1974  DECLARE_INSTRUCTION(StoreLocal);
1975
1976 private:
1977  DISALLOW_COPY_AND_ASSIGN(HStoreLocal);
1978};
1979
1980class HConstant : public HExpression<0> {
1981 public:
1982  explicit HConstant(Primitive::Type type) : HExpression(type, SideEffects::None()) {}
1983
1984  bool CanBeMoved() const OVERRIDE { return true; }
1985
1986  virtual bool IsMinusOne() const { return false; }
1987  virtual bool IsZero() const { return false; }
1988  virtual bool IsOne() const { return false; }
1989
1990  DECLARE_INSTRUCTION(Constant);
1991
1992 private:
1993  DISALLOW_COPY_AND_ASSIGN(HConstant);
1994};
1995
1996class HFloatConstant : public HConstant {
1997 public:
1998  float GetValue() const { return value_; }
1999
2000  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2001    return bit_cast<uint32_t, float>(other->AsFloatConstant()->value_) ==
2002        bit_cast<uint32_t, float>(value_);
2003  }
2004
2005  size_t ComputeHashCode() const OVERRIDE { return static_cast<size_t>(GetValue()); }
2006
2007  bool IsMinusOne() const OVERRIDE {
2008    return bit_cast<uint32_t, float>(AsFloatConstant()->GetValue()) ==
2009        bit_cast<uint32_t, float>((-1.0f));
2010  }
2011  bool IsZero() const OVERRIDE {
2012    return AsFloatConstant()->GetValue() == 0.0f;
2013  }
2014  bool IsOne() const OVERRIDE {
2015    return bit_cast<uint32_t, float>(AsFloatConstant()->GetValue()) ==
2016        bit_cast<uint32_t, float>(1.0f);
2017  }
2018
2019  DECLARE_INSTRUCTION(FloatConstant);
2020
2021 private:
2022  explicit HFloatConstant(float value) : HConstant(Primitive::kPrimFloat), value_(value) {}
2023
2024  const float value_;
2025
2026  // Only the SsaBuilder can currently create floating-point constants. If we
2027  // ever need to create them later in the pipeline, we will have to handle them
2028  // the same way as integral constants.
2029  friend class SsaBuilder;
2030  DISALLOW_COPY_AND_ASSIGN(HFloatConstant);
2031};
2032
2033class HDoubleConstant : public HConstant {
2034 public:
2035  double GetValue() const { return value_; }
2036
2037  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2038    return bit_cast<uint64_t, double>(other->AsDoubleConstant()->value_) ==
2039        bit_cast<uint64_t, double>(value_);
2040  }
2041
2042  size_t ComputeHashCode() const OVERRIDE { return static_cast<size_t>(GetValue()); }
2043
2044  bool IsMinusOne() const OVERRIDE {
2045    return bit_cast<uint64_t, double>(AsDoubleConstant()->GetValue()) ==
2046        bit_cast<uint64_t, double>((-1.0));
2047  }
2048  bool IsZero() const OVERRIDE {
2049    return AsDoubleConstant()->GetValue() == 0.0;
2050  }
2051  bool IsOne() const OVERRIDE {
2052    return bit_cast<uint64_t, double>(AsDoubleConstant()->GetValue()) ==
2053        bit_cast<uint64_t, double>(1.0);
2054  }
2055
2056  DECLARE_INSTRUCTION(DoubleConstant);
2057
2058 private:
2059  explicit HDoubleConstant(double value) : HConstant(Primitive::kPrimDouble), value_(value) {}
2060
2061  const double value_;
2062
2063  // Only the SsaBuilder can currently create floating-point constants. If we
2064  // ever need to create them later in the pipeline, we will have to handle them
2065  // the same way as integral constants.
2066  friend class SsaBuilder;
2067  DISALLOW_COPY_AND_ASSIGN(HDoubleConstant);
2068};
2069
2070class HNullConstant : public HConstant {
2071 public:
2072  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
2073    return true;
2074  }
2075
2076  size_t ComputeHashCode() const OVERRIDE { return 0; }
2077
2078  bool ActAsNullConstant() const OVERRIDE { return true; }
2079
2080  DECLARE_INSTRUCTION(NullConstant);
2081
2082 private:
2083  HNullConstant() : HConstant(Primitive::kPrimNot) {}
2084
2085  friend class HGraph;
2086  DISALLOW_COPY_AND_ASSIGN(HNullConstant);
2087};
2088
2089// Constants of the type int. Those can be from Dex instructions, or
2090// synthesized (for example with the if-eqz instruction).
2091class HIntConstant : public HConstant {
2092 public:
2093  int32_t GetValue() const { return value_; }
2094
2095  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2096    return other->AsIntConstant()->value_ == value_;
2097  }
2098
2099  size_t ComputeHashCode() const OVERRIDE { return GetValue(); }
2100
2101  // TODO: Null is represented by the `0` constant. In most cases we replace it
2102  // with a HNullConstant but we don't do it when comparing (a != null). This
2103  // method is an workaround until we fix the above.
2104  bool ActAsNullConstant() const OVERRIDE { return value_ == 0; }
2105
2106  bool IsMinusOne() const OVERRIDE { return GetValue() == -1; }
2107  bool IsZero() const OVERRIDE { return GetValue() == 0; }
2108  bool IsOne() const OVERRIDE { return GetValue() == 1; }
2109
2110  DECLARE_INSTRUCTION(IntConstant);
2111
2112 private:
2113  explicit HIntConstant(int32_t value) : HConstant(Primitive::kPrimInt), value_(value) {}
2114
2115  const int32_t value_;
2116
2117  friend class HGraph;
2118  ART_FRIEND_TEST(GraphTest, InsertInstructionBefore);
2119  ART_FRIEND_TYPED_TEST(ParallelMoveTest, ConstantLast);
2120  DISALLOW_COPY_AND_ASSIGN(HIntConstant);
2121};
2122
2123class HLongConstant : public HConstant {
2124 public:
2125  int64_t GetValue() const { return value_; }
2126
2127  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2128    return other->AsLongConstant()->value_ == value_;
2129  }
2130
2131  size_t ComputeHashCode() const OVERRIDE { return static_cast<size_t>(GetValue()); }
2132
2133  bool IsMinusOne() const OVERRIDE { return GetValue() == -1; }
2134  bool IsZero() const OVERRIDE { return GetValue() == 0; }
2135  bool IsOne() const OVERRIDE { return GetValue() == 1; }
2136
2137  DECLARE_INSTRUCTION(LongConstant);
2138
2139 private:
2140  explicit HLongConstant(int64_t value) : HConstant(Primitive::kPrimLong), value_(value) {}
2141
2142  const int64_t value_;
2143
2144  friend class HGraph;
2145  DISALLOW_COPY_AND_ASSIGN(HLongConstant);
2146};
2147
2148enum class Intrinsics {
2149#define OPTIMIZING_INTRINSICS(Name, IsStatic) k ## Name,
2150#include "intrinsics_list.h"
2151  kNone,
2152  INTRINSICS_LIST(OPTIMIZING_INTRINSICS)
2153#undef INTRINSICS_LIST
2154#undef OPTIMIZING_INTRINSICS
2155};
2156std::ostream& operator<<(std::ostream& os, const Intrinsics& intrinsic);
2157
2158class HInvoke : public HInstruction {
2159 public:
2160  size_t InputCount() const OVERRIDE { return inputs_.Size(); }
2161
2162  // Runtime needs to walk the stack, so Dex -> Dex calls need to
2163  // know their environment.
2164  bool NeedsEnvironment() const OVERRIDE { return true; }
2165
2166  void SetArgumentAt(size_t index, HInstruction* argument) {
2167    SetRawInputAt(index, argument);
2168  }
2169
2170  Primitive::Type GetType() const OVERRIDE { return return_type_; }
2171
2172  uint32_t GetDexPc() const { return dex_pc_; }
2173
2174  uint32_t GetDexMethodIndex() const { return dex_method_index_; }
2175
2176  Intrinsics GetIntrinsic() const {
2177    return intrinsic_;
2178  }
2179
2180  void SetIntrinsic(Intrinsics intrinsic) {
2181    intrinsic_ = intrinsic;
2182  }
2183
2184  DECLARE_INSTRUCTION(Invoke);
2185
2186 protected:
2187  HInvoke(ArenaAllocator* arena,
2188          uint32_t number_of_arguments,
2189          Primitive::Type return_type,
2190          uint32_t dex_pc,
2191          uint32_t dex_method_index)
2192    : HInstruction(SideEffects::All()),
2193      inputs_(arena, number_of_arguments),
2194      return_type_(return_type),
2195      dex_pc_(dex_pc),
2196      dex_method_index_(dex_method_index),
2197      intrinsic_(Intrinsics::kNone) {
2198    inputs_.SetSize(number_of_arguments);
2199  }
2200
2201  const HUserRecord<HInstruction*> InputRecordAt(size_t i) const OVERRIDE { return inputs_.Get(i); }
2202  void SetRawInputRecordAt(size_t index, const HUserRecord<HInstruction*>& input) OVERRIDE {
2203    inputs_.Put(index, input);
2204  }
2205
2206  GrowableArray<HUserRecord<HInstruction*> > inputs_;
2207  const Primitive::Type return_type_;
2208  const uint32_t dex_pc_;
2209  const uint32_t dex_method_index_;
2210  Intrinsics intrinsic_;
2211
2212 private:
2213  DISALLOW_COPY_AND_ASSIGN(HInvoke);
2214};
2215
2216class HInvokeStaticOrDirect : public HInvoke {
2217 public:
2218  HInvokeStaticOrDirect(ArenaAllocator* arena,
2219                        uint32_t number_of_arguments,
2220                        Primitive::Type return_type,
2221                        uint32_t dex_pc,
2222                        uint32_t dex_method_index,
2223                        bool is_recursive,
2224                        InvokeType original_invoke_type,
2225                        InvokeType invoke_type)
2226      : HInvoke(arena, number_of_arguments, return_type, dex_pc, dex_method_index),
2227        original_invoke_type_(original_invoke_type),
2228        invoke_type_(invoke_type),
2229        is_recursive_(is_recursive) {}
2230
2231  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
2232    UNUSED(obj);
2233    // We access the method via the dex cache so we can't do an implicit null check.
2234    // TODO: for intrinsics we can generate implicit null checks.
2235    return false;
2236  }
2237
2238  InvokeType GetOriginalInvokeType() const { return original_invoke_type_; }
2239  InvokeType GetInvokeType() const { return invoke_type_; }
2240  bool IsRecursive() const { return is_recursive_; }
2241  bool NeedsDexCache() const OVERRIDE { return !IsRecursive(); }
2242
2243  DECLARE_INSTRUCTION(InvokeStaticOrDirect);
2244
2245 private:
2246  const InvokeType original_invoke_type_;
2247  const InvokeType invoke_type_;
2248  const bool is_recursive_;
2249
2250  DISALLOW_COPY_AND_ASSIGN(HInvokeStaticOrDirect);
2251};
2252
2253class HInvokeVirtual : public HInvoke {
2254 public:
2255  HInvokeVirtual(ArenaAllocator* arena,
2256                 uint32_t number_of_arguments,
2257                 Primitive::Type return_type,
2258                 uint32_t dex_pc,
2259                 uint32_t dex_method_index,
2260                 uint32_t vtable_index)
2261      : HInvoke(arena, number_of_arguments, return_type, dex_pc, dex_method_index),
2262        vtable_index_(vtable_index) {}
2263
2264  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
2265    // TODO: Add implicit null checks in intrinsics.
2266    return (obj == InputAt(0)) && !GetLocations()->Intrinsified();
2267  }
2268
2269  uint32_t GetVTableIndex() const { return vtable_index_; }
2270
2271  DECLARE_INSTRUCTION(InvokeVirtual);
2272
2273 private:
2274  const uint32_t vtable_index_;
2275
2276  DISALLOW_COPY_AND_ASSIGN(HInvokeVirtual);
2277};
2278
2279class HInvokeInterface : public HInvoke {
2280 public:
2281  HInvokeInterface(ArenaAllocator* arena,
2282                   uint32_t number_of_arguments,
2283                   Primitive::Type return_type,
2284                   uint32_t dex_pc,
2285                   uint32_t dex_method_index,
2286                   uint32_t imt_index)
2287      : HInvoke(arena, number_of_arguments, return_type, dex_pc, dex_method_index),
2288        imt_index_(imt_index) {}
2289
2290  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
2291    // TODO: Add implicit null checks in intrinsics.
2292    return (obj == InputAt(0)) && !GetLocations()->Intrinsified();
2293  }
2294
2295  uint32_t GetImtIndex() const { return imt_index_; }
2296  uint32_t GetDexMethodIndex() const { return dex_method_index_; }
2297
2298  DECLARE_INSTRUCTION(InvokeInterface);
2299
2300 private:
2301  const uint32_t imt_index_;
2302
2303  DISALLOW_COPY_AND_ASSIGN(HInvokeInterface);
2304};
2305
2306class HNewInstance : public HExpression<0> {
2307 public:
2308  HNewInstance(uint32_t dex_pc, uint16_t type_index, QuickEntrypointEnum entrypoint)
2309      : HExpression(Primitive::kPrimNot, SideEffects::None()),
2310        dex_pc_(dex_pc),
2311        type_index_(type_index),
2312        entrypoint_(entrypoint) {}
2313
2314  uint32_t GetDexPc() const { return dex_pc_; }
2315  uint16_t GetTypeIndex() const { return type_index_; }
2316
2317  // Calls runtime so needs an environment.
2318  bool NeedsEnvironment() const OVERRIDE { return true; }
2319  // It may throw when called on:
2320  //   - interfaces
2321  //   - abstract/innaccessible/unknown classes
2322  // TODO: optimize when possible.
2323  bool CanThrow() const OVERRIDE { return true; }
2324
2325  bool CanBeNull() const OVERRIDE { return false; }
2326
2327  QuickEntrypointEnum GetEntrypoint() const { return entrypoint_; }
2328
2329  DECLARE_INSTRUCTION(NewInstance);
2330
2331 private:
2332  const uint32_t dex_pc_;
2333  const uint16_t type_index_;
2334  const QuickEntrypointEnum entrypoint_;
2335
2336  DISALLOW_COPY_AND_ASSIGN(HNewInstance);
2337};
2338
2339class HNeg : public HUnaryOperation {
2340 public:
2341  explicit HNeg(Primitive::Type result_type, HInstruction* input)
2342      : HUnaryOperation(result_type, input) {}
2343
2344  int32_t Evaluate(int32_t x) const OVERRIDE { return -x; }
2345  int64_t Evaluate(int64_t x) const OVERRIDE { return -x; }
2346
2347  DECLARE_INSTRUCTION(Neg);
2348
2349 private:
2350  DISALLOW_COPY_AND_ASSIGN(HNeg);
2351};
2352
2353class HNewArray : public HExpression<1> {
2354 public:
2355  HNewArray(HInstruction* length,
2356            uint32_t dex_pc,
2357            uint16_t type_index,
2358            QuickEntrypointEnum entrypoint)
2359      : HExpression(Primitive::kPrimNot, SideEffects::None()),
2360        dex_pc_(dex_pc),
2361        type_index_(type_index),
2362        entrypoint_(entrypoint) {
2363    SetRawInputAt(0, length);
2364  }
2365
2366  uint32_t GetDexPc() const { return dex_pc_; }
2367  uint16_t GetTypeIndex() const { return type_index_; }
2368
2369  // Calls runtime so needs an environment.
2370  bool NeedsEnvironment() const OVERRIDE { return true; }
2371
2372  // May throw NegativeArraySizeException, OutOfMemoryError, etc.
2373  bool CanThrow() const OVERRIDE { return true; }
2374
2375  bool CanBeNull() const OVERRIDE { return false; }
2376
2377  QuickEntrypointEnum GetEntrypoint() const { return entrypoint_; }
2378
2379  DECLARE_INSTRUCTION(NewArray);
2380
2381 private:
2382  const uint32_t dex_pc_;
2383  const uint16_t type_index_;
2384  const QuickEntrypointEnum entrypoint_;
2385
2386  DISALLOW_COPY_AND_ASSIGN(HNewArray);
2387};
2388
2389class HAdd : public HBinaryOperation {
2390 public:
2391  HAdd(Primitive::Type result_type, HInstruction* left, HInstruction* right)
2392      : HBinaryOperation(result_type, left, right) {}
2393
2394  bool IsCommutative() const OVERRIDE { return true; }
2395
2396  int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE {
2397    return x + y;
2398  }
2399  int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE {
2400    return x + y;
2401  }
2402
2403  DECLARE_INSTRUCTION(Add);
2404
2405 private:
2406  DISALLOW_COPY_AND_ASSIGN(HAdd);
2407};
2408
2409class HSub : public HBinaryOperation {
2410 public:
2411  HSub(Primitive::Type result_type, HInstruction* left, HInstruction* right)
2412      : HBinaryOperation(result_type, left, right) {}
2413
2414  int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE {
2415    return x - y;
2416  }
2417  int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE {
2418    return x - y;
2419  }
2420
2421  DECLARE_INSTRUCTION(Sub);
2422
2423 private:
2424  DISALLOW_COPY_AND_ASSIGN(HSub);
2425};
2426
2427class HMul : public HBinaryOperation {
2428 public:
2429  HMul(Primitive::Type result_type, HInstruction* left, HInstruction* right)
2430      : HBinaryOperation(result_type, left, right) {}
2431
2432  bool IsCommutative() const OVERRIDE { return true; }
2433
2434  int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE { return x * y; }
2435  int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE { return x * y; }
2436
2437  DECLARE_INSTRUCTION(Mul);
2438
2439 private:
2440  DISALLOW_COPY_AND_ASSIGN(HMul);
2441};
2442
2443class HDiv : public HBinaryOperation {
2444 public:
2445  HDiv(Primitive::Type result_type, HInstruction* left, HInstruction* right, uint32_t dex_pc)
2446      : HBinaryOperation(result_type, left, right), dex_pc_(dex_pc) {}
2447
2448  int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE {
2449    // Our graph structure ensures we never have 0 for `y` during constant folding.
2450    DCHECK_NE(y, 0);
2451    // Special case -1 to avoid getting a SIGFPE on x86(_64).
2452    return (y == -1) ? -x : x / y;
2453  }
2454
2455  int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE {
2456    DCHECK_NE(y, 0);
2457    // Special case -1 to avoid getting a SIGFPE on x86(_64).
2458    return (y == -1) ? -x : x / y;
2459  }
2460
2461  uint32_t GetDexPc() const { return dex_pc_; }
2462
2463  DECLARE_INSTRUCTION(Div);
2464
2465 private:
2466  const uint32_t dex_pc_;
2467
2468  DISALLOW_COPY_AND_ASSIGN(HDiv);
2469};
2470
2471class HRem : public HBinaryOperation {
2472 public:
2473  HRem(Primitive::Type result_type, HInstruction* left, HInstruction* right, uint32_t dex_pc)
2474      : HBinaryOperation(result_type, left, right), dex_pc_(dex_pc) {}
2475
2476  int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE {
2477    DCHECK_NE(y, 0);
2478    // Special case -1 to avoid getting a SIGFPE on x86(_64).
2479    return (y == -1) ? 0 : x % y;
2480  }
2481
2482  int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE {
2483    DCHECK_NE(y, 0);
2484    // Special case -1 to avoid getting a SIGFPE on x86(_64).
2485    return (y == -1) ? 0 : x % y;
2486  }
2487
2488  uint32_t GetDexPc() const { return dex_pc_; }
2489
2490  DECLARE_INSTRUCTION(Rem);
2491
2492 private:
2493  const uint32_t dex_pc_;
2494
2495  DISALLOW_COPY_AND_ASSIGN(HRem);
2496};
2497
2498class HDivZeroCheck : public HExpression<1> {
2499 public:
2500  HDivZeroCheck(HInstruction* value, uint32_t dex_pc)
2501      : HExpression(value->GetType(), SideEffects::None()), dex_pc_(dex_pc) {
2502    SetRawInputAt(0, value);
2503  }
2504
2505  bool CanBeMoved() const OVERRIDE { return true; }
2506
2507  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2508    UNUSED(other);
2509    return true;
2510  }
2511
2512  bool NeedsEnvironment() const OVERRIDE { return true; }
2513  bool CanThrow() const OVERRIDE { return true; }
2514
2515  uint32_t GetDexPc() const { return dex_pc_; }
2516
2517  DECLARE_INSTRUCTION(DivZeroCheck);
2518
2519 private:
2520  const uint32_t dex_pc_;
2521
2522  DISALLOW_COPY_AND_ASSIGN(HDivZeroCheck);
2523};
2524
2525class HShl : public HBinaryOperation {
2526 public:
2527  HShl(Primitive::Type result_type, HInstruction* left, HInstruction* right)
2528      : HBinaryOperation(result_type, left, right) {}
2529
2530  int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE { return x << (y & kMaxIntShiftValue); }
2531  int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE { return x << (y & kMaxLongShiftValue); }
2532
2533  DECLARE_INSTRUCTION(Shl);
2534
2535 private:
2536  DISALLOW_COPY_AND_ASSIGN(HShl);
2537};
2538
2539class HShr : public HBinaryOperation {
2540 public:
2541  HShr(Primitive::Type result_type, HInstruction* left, HInstruction* right)
2542      : HBinaryOperation(result_type, left, right) {}
2543
2544  int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE { return x >> (y & kMaxIntShiftValue); }
2545  int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE { return x >> (y & kMaxLongShiftValue); }
2546
2547  DECLARE_INSTRUCTION(Shr);
2548
2549 private:
2550  DISALLOW_COPY_AND_ASSIGN(HShr);
2551};
2552
2553class HUShr : public HBinaryOperation {
2554 public:
2555  HUShr(Primitive::Type result_type, HInstruction* left, HInstruction* right)
2556      : HBinaryOperation(result_type, left, right) {}
2557
2558  int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE {
2559    uint32_t ux = static_cast<uint32_t>(x);
2560    uint32_t uy = static_cast<uint32_t>(y) & kMaxIntShiftValue;
2561    return static_cast<int32_t>(ux >> uy);
2562  }
2563
2564  int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE {
2565    uint64_t ux = static_cast<uint64_t>(x);
2566    uint64_t uy = static_cast<uint64_t>(y) & kMaxLongShiftValue;
2567    return static_cast<int64_t>(ux >> uy);
2568  }
2569
2570  DECLARE_INSTRUCTION(UShr);
2571
2572 private:
2573  DISALLOW_COPY_AND_ASSIGN(HUShr);
2574};
2575
2576class HAnd : public HBinaryOperation {
2577 public:
2578  HAnd(Primitive::Type result_type, HInstruction* left, HInstruction* right)
2579      : HBinaryOperation(result_type, left, right) {}
2580
2581  bool IsCommutative() const OVERRIDE { return true; }
2582
2583  int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE { return x & y; }
2584  int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE { return x & y; }
2585
2586  DECLARE_INSTRUCTION(And);
2587
2588 private:
2589  DISALLOW_COPY_AND_ASSIGN(HAnd);
2590};
2591
2592class HOr : public HBinaryOperation {
2593 public:
2594  HOr(Primitive::Type result_type, HInstruction* left, HInstruction* right)
2595      : HBinaryOperation(result_type, left, right) {}
2596
2597  bool IsCommutative() const OVERRIDE { return true; }
2598
2599  int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE { return x | y; }
2600  int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE { return x | y; }
2601
2602  DECLARE_INSTRUCTION(Or);
2603
2604 private:
2605  DISALLOW_COPY_AND_ASSIGN(HOr);
2606};
2607
2608class HXor : public HBinaryOperation {
2609 public:
2610  HXor(Primitive::Type result_type, HInstruction* left, HInstruction* right)
2611      : HBinaryOperation(result_type, left, right) {}
2612
2613  bool IsCommutative() const OVERRIDE { return true; }
2614
2615  int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE { return x ^ y; }
2616  int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE { return x ^ y; }
2617
2618  DECLARE_INSTRUCTION(Xor);
2619
2620 private:
2621  DISALLOW_COPY_AND_ASSIGN(HXor);
2622};
2623
2624// The value of a parameter in this method. Its location depends on
2625// the calling convention.
2626class HParameterValue : public HExpression<0> {
2627 public:
2628  HParameterValue(uint8_t index, Primitive::Type parameter_type, bool is_this = false)
2629      : HExpression(parameter_type, SideEffects::None()), index_(index), is_this_(is_this) {}
2630
2631  uint8_t GetIndex() const { return index_; }
2632
2633  bool CanBeNull() const OVERRIDE { return !is_this_; }
2634
2635  DECLARE_INSTRUCTION(ParameterValue);
2636
2637 private:
2638  // The index of this parameter in the parameters list. Must be less
2639  // than HGraph::number_of_in_vregs_.
2640  const uint8_t index_;
2641
2642  // Whether or not the parameter value corresponds to 'this' argument.
2643  const bool is_this_;
2644
2645  DISALLOW_COPY_AND_ASSIGN(HParameterValue);
2646};
2647
2648class HNot : public HUnaryOperation {
2649 public:
2650  explicit HNot(Primitive::Type result_type, HInstruction* input)
2651      : HUnaryOperation(result_type, input) {}
2652
2653  bool CanBeMoved() const OVERRIDE { return true; }
2654  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2655    UNUSED(other);
2656    return true;
2657  }
2658
2659  int32_t Evaluate(int32_t x) const OVERRIDE { return ~x; }
2660  int64_t Evaluate(int64_t x) const OVERRIDE { return ~x; }
2661
2662  DECLARE_INSTRUCTION(Not);
2663
2664 private:
2665  DISALLOW_COPY_AND_ASSIGN(HNot);
2666};
2667
2668class HBooleanNot : public HUnaryOperation {
2669 public:
2670  explicit HBooleanNot(HInstruction* input)
2671      : HUnaryOperation(Primitive::Type::kPrimBoolean, input) {}
2672
2673  bool CanBeMoved() const OVERRIDE { return true; }
2674  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2675    UNUSED(other);
2676    return true;
2677  }
2678
2679  int32_t Evaluate(int32_t x) const OVERRIDE {
2680    DCHECK(IsUint<1>(x));
2681    return !x;
2682  }
2683
2684  int64_t Evaluate(int64_t x ATTRIBUTE_UNUSED) const OVERRIDE {
2685    LOG(FATAL) << DebugName() << " cannot be used with 64-bit values";
2686    UNREACHABLE();
2687  }
2688
2689  DECLARE_INSTRUCTION(BooleanNot);
2690
2691 private:
2692  DISALLOW_COPY_AND_ASSIGN(HBooleanNot);
2693};
2694
2695class HTypeConversion : public HExpression<1> {
2696 public:
2697  // Instantiate a type conversion of `input` to `result_type`.
2698  HTypeConversion(Primitive::Type result_type, HInstruction* input, uint32_t dex_pc)
2699      : HExpression(result_type, SideEffects::None()), dex_pc_(dex_pc) {
2700    SetRawInputAt(0, input);
2701    DCHECK_NE(input->GetType(), result_type);
2702  }
2703
2704  HInstruction* GetInput() const { return InputAt(0); }
2705  Primitive::Type GetInputType() const { return GetInput()->GetType(); }
2706  Primitive::Type GetResultType() const { return GetType(); }
2707
2708  // Required by the x86 and ARM code generators when producing calls
2709  // to the runtime.
2710  uint32_t GetDexPc() const { return dex_pc_; }
2711
2712  bool CanBeMoved() const OVERRIDE { return true; }
2713  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE { return true; }
2714
2715  DECLARE_INSTRUCTION(TypeConversion);
2716
2717 private:
2718  const uint32_t dex_pc_;
2719
2720  DISALLOW_COPY_AND_ASSIGN(HTypeConversion);
2721};
2722
2723static constexpr uint32_t kNoRegNumber = -1;
2724
2725class HPhi : public HInstruction {
2726 public:
2727  HPhi(ArenaAllocator* arena, uint32_t reg_number, size_t number_of_inputs, Primitive::Type type)
2728      : HInstruction(SideEffects::None()),
2729        inputs_(arena, number_of_inputs),
2730        reg_number_(reg_number),
2731        type_(type),
2732        is_live_(false),
2733        can_be_null_(true) {
2734    inputs_.SetSize(number_of_inputs);
2735  }
2736
2737  // Returns a type equivalent to the given `type`, but that a `HPhi` can hold.
2738  static Primitive::Type ToPhiType(Primitive::Type type) {
2739    switch (type) {
2740      case Primitive::kPrimBoolean:
2741      case Primitive::kPrimByte:
2742      case Primitive::kPrimShort:
2743      case Primitive::kPrimChar:
2744        return Primitive::kPrimInt;
2745      default:
2746        return type;
2747    }
2748  }
2749
2750  size_t InputCount() const OVERRIDE { return inputs_.Size(); }
2751
2752  void AddInput(HInstruction* input);
2753
2754  Primitive::Type GetType() const OVERRIDE { return type_; }
2755  void SetType(Primitive::Type type) { type_ = type; }
2756
2757  bool CanBeNull() const OVERRIDE { return can_be_null_; }
2758  void SetCanBeNull(bool can_be_null) { can_be_null_ = can_be_null; }
2759
2760  uint32_t GetRegNumber() const { return reg_number_; }
2761
2762  void SetDead() { is_live_ = false; }
2763  void SetLive() { is_live_ = true; }
2764  bool IsDead() const { return !is_live_; }
2765  bool IsLive() const { return is_live_; }
2766
2767  // Returns the next equivalent phi (starting from the current one) or null if there is none.
2768  // An equivalent phi is a phi having the same dex register and type.
2769  // It assumes that phis with the same dex register are adjacent.
2770  HPhi* GetNextEquivalentPhiWithSameType() {
2771    HInstruction* next = GetNext();
2772    while (next != nullptr && next->AsPhi()->GetRegNumber() == reg_number_) {
2773      if (next->GetType() == GetType()) {
2774        return next->AsPhi();
2775      }
2776      next = next->GetNext();
2777    }
2778    return nullptr;
2779  }
2780
2781  DECLARE_INSTRUCTION(Phi);
2782
2783 protected:
2784  const HUserRecord<HInstruction*> InputRecordAt(size_t i) const OVERRIDE { return inputs_.Get(i); }
2785
2786  void SetRawInputRecordAt(size_t index, const HUserRecord<HInstruction*>& input) OVERRIDE {
2787    inputs_.Put(index, input);
2788  }
2789
2790 private:
2791  GrowableArray<HUserRecord<HInstruction*> > inputs_;
2792  const uint32_t reg_number_;
2793  Primitive::Type type_;
2794  bool is_live_;
2795  bool can_be_null_;
2796
2797  DISALLOW_COPY_AND_ASSIGN(HPhi);
2798};
2799
2800class HNullCheck : public HExpression<1> {
2801 public:
2802  HNullCheck(HInstruction* value, uint32_t dex_pc)
2803      : HExpression(value->GetType(), SideEffects::None()), dex_pc_(dex_pc) {
2804    SetRawInputAt(0, value);
2805  }
2806
2807  bool CanBeMoved() const OVERRIDE { return true; }
2808  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2809    UNUSED(other);
2810    return true;
2811  }
2812
2813  bool NeedsEnvironment() const OVERRIDE { return true; }
2814
2815  bool CanThrow() const OVERRIDE { return true; }
2816
2817  bool CanBeNull() const OVERRIDE { return false; }
2818
2819  uint32_t GetDexPc() const { return dex_pc_; }
2820
2821  DECLARE_INSTRUCTION(NullCheck);
2822
2823 private:
2824  const uint32_t dex_pc_;
2825
2826  DISALLOW_COPY_AND_ASSIGN(HNullCheck);
2827};
2828
2829class FieldInfo : public ValueObject {
2830 public:
2831  FieldInfo(MemberOffset field_offset, Primitive::Type field_type, bool is_volatile)
2832      : field_offset_(field_offset), field_type_(field_type), is_volatile_(is_volatile) {}
2833
2834  MemberOffset GetFieldOffset() const { return field_offset_; }
2835  Primitive::Type GetFieldType() const { return field_type_; }
2836  bool IsVolatile() const { return is_volatile_; }
2837
2838 private:
2839  const MemberOffset field_offset_;
2840  const Primitive::Type field_type_;
2841  const bool is_volatile_;
2842};
2843
2844class HInstanceFieldGet : public HExpression<1> {
2845 public:
2846  HInstanceFieldGet(HInstruction* value,
2847                    Primitive::Type field_type,
2848                    MemberOffset field_offset,
2849                    bool is_volatile)
2850      : HExpression(field_type, SideEffects::DependsOnSomething()),
2851        field_info_(field_offset, field_type, is_volatile) {
2852    SetRawInputAt(0, value);
2853  }
2854
2855  bool CanBeMoved() const OVERRIDE { return !IsVolatile(); }
2856
2857  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2858    HInstanceFieldGet* other_get = other->AsInstanceFieldGet();
2859    return GetFieldOffset().SizeValue() == other_get->GetFieldOffset().SizeValue();
2860  }
2861
2862  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
2863    return (obj == InputAt(0)) && GetFieldOffset().Uint32Value() < kPageSize;
2864  }
2865
2866  size_t ComputeHashCode() const OVERRIDE {
2867    return (HInstruction::ComputeHashCode() << 7) | GetFieldOffset().SizeValue();
2868  }
2869
2870  const FieldInfo& GetFieldInfo() const { return field_info_; }
2871  MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
2872  Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); }
2873  bool IsVolatile() const { return field_info_.IsVolatile(); }
2874
2875  DECLARE_INSTRUCTION(InstanceFieldGet);
2876
2877 private:
2878  const FieldInfo field_info_;
2879
2880  DISALLOW_COPY_AND_ASSIGN(HInstanceFieldGet);
2881};
2882
2883class HInstanceFieldSet : public HTemplateInstruction<2> {
2884 public:
2885  HInstanceFieldSet(HInstruction* object,
2886                    HInstruction* value,
2887                    Primitive::Type field_type,
2888                    MemberOffset field_offset,
2889                    bool is_volatile)
2890      : HTemplateInstruction(SideEffects::ChangesSomething()),
2891        field_info_(field_offset, field_type, is_volatile) {
2892    SetRawInputAt(0, object);
2893    SetRawInputAt(1, value);
2894  }
2895
2896  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
2897    return (obj == InputAt(0)) && GetFieldOffset().Uint32Value() < kPageSize;
2898  }
2899
2900  const FieldInfo& GetFieldInfo() const { return field_info_; }
2901  MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
2902  Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); }
2903  bool IsVolatile() const { return field_info_.IsVolatile(); }
2904  HInstruction* GetValue() const { return InputAt(1); }
2905
2906  DECLARE_INSTRUCTION(InstanceFieldSet);
2907
2908 private:
2909  const FieldInfo field_info_;
2910
2911  DISALLOW_COPY_AND_ASSIGN(HInstanceFieldSet);
2912};
2913
2914class HArrayGet : public HExpression<2> {
2915 public:
2916  HArrayGet(HInstruction* array, HInstruction* index, Primitive::Type type)
2917      : HExpression(type, SideEffects::DependsOnSomething()) {
2918    SetRawInputAt(0, array);
2919    SetRawInputAt(1, index);
2920  }
2921
2922  bool CanBeMoved() const OVERRIDE { return true; }
2923  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2924    UNUSED(other);
2925    return true;
2926  }
2927  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
2928    UNUSED(obj);
2929    // TODO: We can be smarter here.
2930    // Currently, the array access is always preceded by an ArrayLength or a NullCheck
2931    // which generates the implicit null check. There are cases when these can be removed
2932    // to produce better code. If we ever add optimizations to do so we should allow an
2933    // implicit check here (as long as the address falls in the first page).
2934    return false;
2935  }
2936
2937  void SetType(Primitive::Type type) { type_ = type; }
2938
2939  HInstruction* GetArray() const { return InputAt(0); }
2940  HInstruction* GetIndex() const { return InputAt(1); }
2941
2942  DECLARE_INSTRUCTION(ArrayGet);
2943
2944 private:
2945  DISALLOW_COPY_AND_ASSIGN(HArrayGet);
2946};
2947
2948class HArraySet : public HTemplateInstruction<3> {
2949 public:
2950  HArraySet(HInstruction* array,
2951            HInstruction* index,
2952            HInstruction* value,
2953            Primitive::Type expected_component_type,
2954            uint32_t dex_pc)
2955      : HTemplateInstruction(SideEffects::ChangesSomething()),
2956        dex_pc_(dex_pc),
2957        expected_component_type_(expected_component_type),
2958        needs_type_check_(value->GetType() == Primitive::kPrimNot) {
2959    SetRawInputAt(0, array);
2960    SetRawInputAt(1, index);
2961    SetRawInputAt(2, value);
2962  }
2963
2964  bool NeedsEnvironment() const OVERRIDE {
2965    // We currently always call a runtime method to catch array store
2966    // exceptions.
2967    return needs_type_check_;
2968  }
2969
2970  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
2971    UNUSED(obj);
2972    // TODO: Same as for ArrayGet.
2973    return false;
2974  }
2975
2976  void ClearNeedsTypeCheck() {
2977    needs_type_check_ = false;
2978  }
2979
2980  bool NeedsTypeCheck() const { return needs_type_check_; }
2981
2982  uint32_t GetDexPc() const { return dex_pc_; }
2983
2984  HInstruction* GetArray() const { return InputAt(0); }
2985  HInstruction* GetIndex() const { return InputAt(1); }
2986  HInstruction* GetValue() const { return InputAt(2); }
2987
2988  Primitive::Type GetComponentType() const {
2989    // The Dex format does not type floating point index operations. Since the
2990    // `expected_component_type_` is set during building and can therefore not
2991    // be correct, we also check what is the value type. If it is a floating
2992    // point type, we must use that type.
2993    Primitive::Type value_type = GetValue()->GetType();
2994    return ((value_type == Primitive::kPrimFloat) || (value_type == Primitive::kPrimDouble))
2995        ? value_type
2996        : expected_component_type_;
2997  }
2998
2999  DECLARE_INSTRUCTION(ArraySet);
3000
3001 private:
3002  const uint32_t dex_pc_;
3003  const Primitive::Type expected_component_type_;
3004  bool needs_type_check_;
3005
3006  DISALLOW_COPY_AND_ASSIGN(HArraySet);
3007};
3008
3009class HArrayLength : public HExpression<1> {
3010 public:
3011  explicit HArrayLength(HInstruction* array)
3012      : HExpression(Primitive::kPrimInt, SideEffects::None()) {
3013    // Note that arrays do not change length, so the instruction does not
3014    // depend on any write.
3015    SetRawInputAt(0, array);
3016  }
3017
3018  bool CanBeMoved() const OVERRIDE { return true; }
3019  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
3020    UNUSED(other);
3021    return true;
3022  }
3023  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
3024    return obj == InputAt(0);
3025  }
3026
3027  DECLARE_INSTRUCTION(ArrayLength);
3028
3029 private:
3030  DISALLOW_COPY_AND_ASSIGN(HArrayLength);
3031};
3032
3033class HBoundsCheck : public HExpression<2> {
3034 public:
3035  HBoundsCheck(HInstruction* index, HInstruction* length, uint32_t dex_pc)
3036      : HExpression(index->GetType(), SideEffects::None()), dex_pc_(dex_pc) {
3037    DCHECK(index->GetType() == Primitive::kPrimInt);
3038    SetRawInputAt(0, index);
3039    SetRawInputAt(1, length);
3040  }
3041
3042  bool CanBeMoved() const OVERRIDE { return true; }
3043  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
3044    UNUSED(other);
3045    return true;
3046  }
3047
3048  bool NeedsEnvironment() const OVERRIDE { return true; }
3049
3050  bool CanThrow() const OVERRIDE { return true; }
3051
3052  uint32_t GetDexPc() const { return dex_pc_; }
3053
3054  DECLARE_INSTRUCTION(BoundsCheck);
3055
3056 private:
3057  const uint32_t dex_pc_;
3058
3059  DISALLOW_COPY_AND_ASSIGN(HBoundsCheck);
3060};
3061
3062/**
3063 * Some DEX instructions are folded into multiple HInstructions that need
3064 * to stay live until the last HInstruction. This class
3065 * is used as a marker for the baseline compiler to ensure its preceding
3066 * HInstruction stays live. `index` represents the stack location index of the
3067 * instruction (the actual offset is computed as index * vreg_size).
3068 */
3069class HTemporary : public HTemplateInstruction<0> {
3070 public:
3071  explicit HTemporary(size_t index) : HTemplateInstruction(SideEffects::None()), index_(index) {}
3072
3073  size_t GetIndex() const { return index_; }
3074
3075  Primitive::Type GetType() const OVERRIDE {
3076    // The previous instruction is the one that will be stored in the temporary location.
3077    DCHECK(GetPrevious() != nullptr);
3078    return GetPrevious()->GetType();
3079  }
3080
3081  DECLARE_INSTRUCTION(Temporary);
3082
3083 private:
3084  const size_t index_;
3085
3086  DISALLOW_COPY_AND_ASSIGN(HTemporary);
3087};
3088
3089class HSuspendCheck : public HTemplateInstruction<0> {
3090 public:
3091  explicit HSuspendCheck(uint32_t dex_pc)
3092      : HTemplateInstruction(SideEffects::None()), dex_pc_(dex_pc) {}
3093
3094  bool NeedsEnvironment() const OVERRIDE {
3095    return true;
3096  }
3097
3098  uint32_t GetDexPc() const { return dex_pc_; }
3099
3100  DECLARE_INSTRUCTION(SuspendCheck);
3101
3102 private:
3103  const uint32_t dex_pc_;
3104
3105  DISALLOW_COPY_AND_ASSIGN(HSuspendCheck);
3106};
3107
3108/**
3109 * Instruction to load a Class object.
3110 */
3111class HLoadClass : public HExpression<0> {
3112 public:
3113  HLoadClass(uint16_t type_index,
3114             bool is_referrers_class,
3115             uint32_t dex_pc)
3116      : HExpression(Primitive::kPrimNot, SideEffects::None()),
3117        type_index_(type_index),
3118        is_referrers_class_(is_referrers_class),
3119        dex_pc_(dex_pc),
3120        generate_clinit_check_(false),
3121        loaded_class_rti_(ReferenceTypeInfo::CreateTop(/* is_exact */ false)) {}
3122
3123  bool CanBeMoved() const OVERRIDE { return true; }
3124
3125  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
3126    return other->AsLoadClass()->type_index_ == type_index_;
3127  }
3128
3129  size_t ComputeHashCode() const OVERRIDE { return type_index_; }
3130
3131  uint32_t GetDexPc() const { return dex_pc_; }
3132  uint16_t GetTypeIndex() const { return type_index_; }
3133  bool IsReferrersClass() const { return is_referrers_class_; }
3134
3135  bool NeedsEnvironment() const OVERRIDE {
3136    // Will call runtime and load the class if the class is not loaded yet.
3137    // TODO: finer grain decision.
3138    return !is_referrers_class_;
3139  }
3140
3141  bool MustGenerateClinitCheck() const {
3142    return generate_clinit_check_;
3143  }
3144
3145  void SetMustGenerateClinitCheck() {
3146    generate_clinit_check_ = true;
3147  }
3148
3149  bool CanCallRuntime() const {
3150    return MustGenerateClinitCheck() || !is_referrers_class_;
3151  }
3152
3153  bool CanThrow() const OVERRIDE {
3154    // May call runtime and and therefore can throw.
3155    // TODO: finer grain decision.
3156    return !is_referrers_class_;
3157  }
3158
3159  ReferenceTypeInfo GetLoadedClassRTI() {
3160    return loaded_class_rti_;
3161  }
3162
3163  void SetLoadedClassRTI(ReferenceTypeInfo rti) {
3164    // Make sure we only set exact types (the loaded class should never be merged).
3165    DCHECK(rti.IsExact());
3166    loaded_class_rti_ = rti;
3167  }
3168
3169  bool IsResolved() {
3170    return loaded_class_rti_.IsExact();
3171  }
3172
3173  bool NeedsDexCache() const OVERRIDE { return !is_referrers_class_; }
3174
3175  DECLARE_INSTRUCTION(LoadClass);
3176
3177 private:
3178  const uint16_t type_index_;
3179  const bool is_referrers_class_;
3180  const uint32_t dex_pc_;
3181  // Whether this instruction must generate the initialization check.
3182  // Used for code generation.
3183  bool generate_clinit_check_;
3184
3185  ReferenceTypeInfo loaded_class_rti_;
3186
3187  DISALLOW_COPY_AND_ASSIGN(HLoadClass);
3188};
3189
3190class HLoadString : public HExpression<0> {
3191 public:
3192  HLoadString(uint32_t string_index, uint32_t dex_pc)
3193      : HExpression(Primitive::kPrimNot, SideEffects::None()),
3194        string_index_(string_index),
3195        dex_pc_(dex_pc) {}
3196
3197  bool CanBeMoved() const OVERRIDE { return true; }
3198
3199  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
3200    return other->AsLoadString()->string_index_ == string_index_;
3201  }
3202
3203  size_t ComputeHashCode() const OVERRIDE { return string_index_; }
3204
3205  uint32_t GetDexPc() const { return dex_pc_; }
3206  uint32_t GetStringIndex() const { return string_index_; }
3207
3208  // TODO: Can we deopt or debug when we resolve a string?
3209  bool NeedsEnvironment() const OVERRIDE { return false; }
3210  bool NeedsDexCache() const OVERRIDE { return true; }
3211
3212  DECLARE_INSTRUCTION(LoadString);
3213
3214 private:
3215  const uint32_t string_index_;
3216  const uint32_t dex_pc_;
3217
3218  DISALLOW_COPY_AND_ASSIGN(HLoadString);
3219};
3220
3221// TODO: Pass this check to HInvokeStaticOrDirect nodes.
3222/**
3223 * Performs an initialization check on its Class object input.
3224 */
3225class HClinitCheck : public HExpression<1> {
3226 public:
3227  explicit HClinitCheck(HLoadClass* constant, uint32_t dex_pc)
3228      : HExpression(Primitive::kPrimNot, SideEffects::ChangesSomething()),
3229        dex_pc_(dex_pc) {
3230    SetRawInputAt(0, constant);
3231  }
3232
3233  bool CanBeMoved() const OVERRIDE { return true; }
3234  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
3235    UNUSED(other);
3236    return true;
3237  }
3238
3239  bool NeedsEnvironment() const OVERRIDE {
3240    // May call runtime to initialize the class.
3241    return true;
3242  }
3243
3244  uint32_t GetDexPc() const { return dex_pc_; }
3245
3246  HLoadClass* GetLoadClass() const { return InputAt(0)->AsLoadClass(); }
3247
3248  DECLARE_INSTRUCTION(ClinitCheck);
3249
3250 private:
3251  const uint32_t dex_pc_;
3252
3253  DISALLOW_COPY_AND_ASSIGN(HClinitCheck);
3254};
3255
3256class HStaticFieldGet : public HExpression<1> {
3257 public:
3258  HStaticFieldGet(HInstruction* cls,
3259                  Primitive::Type field_type,
3260                  MemberOffset field_offset,
3261                  bool is_volatile)
3262      : HExpression(field_type, SideEffects::DependsOnSomething()),
3263        field_info_(field_offset, field_type, is_volatile) {
3264    SetRawInputAt(0, cls);
3265  }
3266
3267
3268  bool CanBeMoved() const OVERRIDE { return !IsVolatile(); }
3269
3270  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
3271    HStaticFieldGet* other_get = other->AsStaticFieldGet();
3272    return GetFieldOffset().SizeValue() == other_get->GetFieldOffset().SizeValue();
3273  }
3274
3275  size_t ComputeHashCode() const OVERRIDE {
3276    return (HInstruction::ComputeHashCode() << 7) | GetFieldOffset().SizeValue();
3277  }
3278
3279  const FieldInfo& GetFieldInfo() const { return field_info_; }
3280  MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
3281  Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); }
3282  bool IsVolatile() const { return field_info_.IsVolatile(); }
3283
3284  DECLARE_INSTRUCTION(StaticFieldGet);
3285
3286 private:
3287  const FieldInfo field_info_;
3288
3289  DISALLOW_COPY_AND_ASSIGN(HStaticFieldGet);
3290};
3291
3292class HStaticFieldSet : public HTemplateInstruction<2> {
3293 public:
3294  HStaticFieldSet(HInstruction* cls,
3295                  HInstruction* value,
3296                  Primitive::Type field_type,
3297                  MemberOffset field_offset,
3298                  bool is_volatile)
3299      : HTemplateInstruction(SideEffects::ChangesSomething()),
3300        field_info_(field_offset, field_type, is_volatile) {
3301    SetRawInputAt(0, cls);
3302    SetRawInputAt(1, value);
3303  }
3304
3305  const FieldInfo& GetFieldInfo() const { return field_info_; }
3306  MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
3307  Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); }
3308  bool IsVolatile() const { return field_info_.IsVolatile(); }
3309
3310  HInstruction* GetValue() const { return InputAt(1); }
3311
3312  DECLARE_INSTRUCTION(StaticFieldSet);
3313
3314 private:
3315  const FieldInfo field_info_;
3316
3317  DISALLOW_COPY_AND_ASSIGN(HStaticFieldSet);
3318};
3319
3320// Implement the move-exception DEX instruction.
3321class HLoadException : public HExpression<0> {
3322 public:
3323  HLoadException() : HExpression(Primitive::kPrimNot, SideEffects::None()) {}
3324
3325  DECLARE_INSTRUCTION(LoadException);
3326
3327 private:
3328  DISALLOW_COPY_AND_ASSIGN(HLoadException);
3329};
3330
3331class HThrow : public HTemplateInstruction<1> {
3332 public:
3333  HThrow(HInstruction* exception, uint32_t dex_pc)
3334      : HTemplateInstruction(SideEffects::None()), dex_pc_(dex_pc) {
3335    SetRawInputAt(0, exception);
3336  }
3337
3338  bool IsControlFlow() const OVERRIDE { return true; }
3339
3340  bool NeedsEnvironment() const OVERRIDE { return true; }
3341
3342  bool CanThrow() const OVERRIDE { return true; }
3343
3344  uint32_t GetDexPc() const { return dex_pc_; }
3345
3346  DECLARE_INSTRUCTION(Throw);
3347
3348 private:
3349  const uint32_t dex_pc_;
3350
3351  DISALLOW_COPY_AND_ASSIGN(HThrow);
3352};
3353
3354class HInstanceOf : public HExpression<2> {
3355 public:
3356  HInstanceOf(HInstruction* object,
3357              HLoadClass* constant,
3358              bool class_is_final,
3359              uint32_t dex_pc)
3360      : HExpression(Primitive::kPrimBoolean, SideEffects::None()),
3361        class_is_final_(class_is_final),
3362        dex_pc_(dex_pc) {
3363    SetRawInputAt(0, object);
3364    SetRawInputAt(1, constant);
3365  }
3366
3367  bool CanBeMoved() const OVERRIDE { return true; }
3368
3369  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
3370    return true;
3371  }
3372
3373  bool NeedsEnvironment() const OVERRIDE {
3374    return false;
3375  }
3376
3377  uint32_t GetDexPc() const { return dex_pc_; }
3378
3379  bool IsClassFinal() const { return class_is_final_; }
3380
3381  DECLARE_INSTRUCTION(InstanceOf);
3382
3383 private:
3384  const bool class_is_final_;
3385  const uint32_t dex_pc_;
3386
3387  DISALLOW_COPY_AND_ASSIGN(HInstanceOf);
3388};
3389
3390class HBoundType : public HExpression<1> {
3391 public:
3392  HBoundType(HInstruction* input, ReferenceTypeInfo bound_type)
3393      : HExpression(Primitive::kPrimNot, SideEffects::None()),
3394        bound_type_(bound_type) {
3395    DCHECK_EQ(input->GetType(), Primitive::kPrimNot);
3396    SetRawInputAt(0, input);
3397  }
3398
3399  const ReferenceTypeInfo& GetBoundType() const { return bound_type_; }
3400
3401  bool CanBeNull() const OVERRIDE {
3402    // `null instanceof ClassX` always return false so we can't be null.
3403    return false;
3404  }
3405
3406  DECLARE_INSTRUCTION(BoundType);
3407
3408 private:
3409  // Encodes the most upper class that this instruction can have. In other words
3410  // it is always the case that GetBoundType().IsSupertypeOf(GetReferenceType()).
3411  // It is used to bound the type in cases like `if (x instanceof ClassX) {}`
3412  const ReferenceTypeInfo bound_type_;
3413
3414  DISALLOW_COPY_AND_ASSIGN(HBoundType);
3415};
3416
3417class HCheckCast : public HTemplateInstruction<2> {
3418 public:
3419  HCheckCast(HInstruction* object,
3420             HLoadClass* constant,
3421             bool class_is_final,
3422             uint32_t dex_pc)
3423      : HTemplateInstruction(SideEffects::None()),
3424        class_is_final_(class_is_final),
3425        dex_pc_(dex_pc) {
3426    SetRawInputAt(0, object);
3427    SetRawInputAt(1, constant);
3428  }
3429
3430  bool CanBeMoved() const OVERRIDE { return true; }
3431
3432  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
3433    return true;
3434  }
3435
3436  bool NeedsEnvironment() const OVERRIDE {
3437    // Instruction may throw a CheckCastError.
3438    return true;
3439  }
3440
3441  bool CanThrow() const OVERRIDE { return true; }
3442
3443  uint32_t GetDexPc() const { return dex_pc_; }
3444
3445  bool IsClassFinal() const { return class_is_final_; }
3446
3447  DECLARE_INSTRUCTION(CheckCast);
3448
3449 private:
3450  const bool class_is_final_;
3451  const uint32_t dex_pc_;
3452
3453  DISALLOW_COPY_AND_ASSIGN(HCheckCast);
3454};
3455
3456class HMemoryBarrier : public HTemplateInstruction<0> {
3457 public:
3458  explicit HMemoryBarrier(MemBarrierKind barrier_kind)
3459      : HTemplateInstruction(SideEffects::None()),
3460        barrier_kind_(barrier_kind) {}
3461
3462  MemBarrierKind GetBarrierKind() { return barrier_kind_; }
3463
3464  DECLARE_INSTRUCTION(MemoryBarrier);
3465
3466 private:
3467  const MemBarrierKind barrier_kind_;
3468
3469  DISALLOW_COPY_AND_ASSIGN(HMemoryBarrier);
3470};
3471
3472class HMonitorOperation : public HTemplateInstruction<1> {
3473 public:
3474  enum OperationKind {
3475    kEnter,
3476    kExit,
3477  };
3478
3479  HMonitorOperation(HInstruction* object, OperationKind kind, uint32_t dex_pc)
3480    : HTemplateInstruction(SideEffects::None()), kind_(kind), dex_pc_(dex_pc) {
3481    SetRawInputAt(0, object);
3482  }
3483
3484  // Instruction may throw a Java exception, so we need an environment.
3485  bool NeedsEnvironment() const OVERRIDE { return true; }
3486  bool CanThrow() const OVERRIDE { return true; }
3487
3488  uint32_t GetDexPc() const { return dex_pc_; }
3489
3490  bool IsEnter() const { return kind_ == kEnter; }
3491
3492  DECLARE_INSTRUCTION(MonitorOperation);
3493
3494 private:
3495  const OperationKind kind_;
3496  const uint32_t dex_pc_;
3497
3498 private:
3499  DISALLOW_COPY_AND_ASSIGN(HMonitorOperation);
3500};
3501
3502class MoveOperands : public ArenaObject<kArenaAllocMisc> {
3503 public:
3504  MoveOperands(Location source,
3505               Location destination,
3506               Primitive::Type type,
3507               HInstruction* instruction)
3508      : source_(source), destination_(destination), type_(type), instruction_(instruction) {}
3509
3510  Location GetSource() const { return source_; }
3511  Location GetDestination() const { return destination_; }
3512
3513  void SetSource(Location value) { source_ = value; }
3514  void SetDestination(Location value) { destination_ = value; }
3515
3516  // The parallel move resolver marks moves as "in-progress" by clearing the
3517  // destination (but not the source).
3518  Location MarkPending() {
3519    DCHECK(!IsPending());
3520    Location dest = destination_;
3521    destination_ = Location::NoLocation();
3522    return dest;
3523  }
3524
3525  void ClearPending(Location dest) {
3526    DCHECK(IsPending());
3527    destination_ = dest;
3528  }
3529
3530  bool IsPending() const {
3531    DCHECK(!source_.IsInvalid() || destination_.IsInvalid());
3532    return destination_.IsInvalid() && !source_.IsInvalid();
3533  }
3534
3535  // True if this blocks a move from the given location.
3536  bool Blocks(Location loc) const {
3537    return !IsEliminated() && source_.OverlapsWith(loc);
3538  }
3539
3540  // A move is redundant if it's been eliminated, if its source and
3541  // destination are the same, or if its destination is unneeded.
3542  bool IsRedundant() const {
3543    return IsEliminated() || destination_.IsInvalid() || source_.Equals(destination_);
3544  }
3545
3546  // We clear both operands to indicate move that's been eliminated.
3547  void Eliminate() {
3548    source_ = destination_ = Location::NoLocation();
3549  }
3550
3551  bool IsEliminated() const {
3552    DCHECK(!source_.IsInvalid() || destination_.IsInvalid());
3553    return source_.IsInvalid();
3554  }
3555
3556  bool Is64BitMove() const {
3557    return Primitive::Is64BitType(type_);
3558  }
3559
3560  HInstruction* GetInstruction() const { return instruction_; }
3561
3562 private:
3563  Location source_;
3564  Location destination_;
3565  // The type this move is for.
3566  Primitive::Type type_;
3567  // The instruction this move is assocatied with. Null when this move is
3568  // for moving an input in the expected locations of user (including a phi user).
3569  // This is only used in debug mode, to ensure we do not connect interval siblings
3570  // in the same parallel move.
3571  HInstruction* instruction_;
3572};
3573
3574static constexpr size_t kDefaultNumberOfMoves = 4;
3575
3576class HParallelMove : public HTemplateInstruction<0> {
3577 public:
3578  explicit HParallelMove(ArenaAllocator* arena)
3579      : HTemplateInstruction(SideEffects::None()), moves_(arena, kDefaultNumberOfMoves) {}
3580
3581  void AddMove(Location source,
3582               Location destination,
3583               Primitive::Type type,
3584               HInstruction* instruction) {
3585    DCHECK(source.IsValid());
3586    DCHECK(destination.IsValid());
3587    if (kIsDebugBuild) {
3588      if (instruction != nullptr) {
3589        for (size_t i = 0, e = moves_.Size(); i < e; ++i) {
3590          if (moves_.Get(i).GetInstruction() == instruction) {
3591            // Special case the situation where the move is for the spill slot
3592            // of the instruction.
3593            if ((GetPrevious() == instruction)
3594                || ((GetPrevious() == nullptr)
3595                    && instruction->IsPhi()
3596                    && instruction->GetBlock() == GetBlock())) {
3597              DCHECK_NE(destination.GetKind(), moves_.Get(i).GetDestination().GetKind())
3598                  << "Doing parallel moves for the same instruction.";
3599            } else {
3600              DCHECK(false) << "Doing parallel moves for the same instruction.";
3601            }
3602          }
3603        }
3604      }
3605      for (size_t i = 0, e = moves_.Size(); i < e; ++i) {
3606        DCHECK(!destination.OverlapsWith(moves_.Get(i).GetDestination()))
3607            << "Overlapped destination for two moves in a parallel move.";
3608      }
3609    }
3610    moves_.Add(MoveOperands(source, destination, type, instruction));
3611  }
3612
3613  MoveOperands* MoveOperandsAt(size_t index) const {
3614    return moves_.GetRawStorage() + index;
3615  }
3616
3617  size_t NumMoves() const { return moves_.Size(); }
3618
3619  DECLARE_INSTRUCTION(ParallelMove);
3620
3621 private:
3622  GrowableArray<MoveOperands> moves_;
3623
3624  DISALLOW_COPY_AND_ASSIGN(HParallelMove);
3625};
3626
3627class HGraphVisitor : public ValueObject {
3628 public:
3629  explicit HGraphVisitor(HGraph* graph) : graph_(graph) {}
3630  virtual ~HGraphVisitor() {}
3631
3632  virtual void VisitInstruction(HInstruction* instruction) { UNUSED(instruction); }
3633  virtual void VisitBasicBlock(HBasicBlock* block);
3634
3635  // Visit the graph following basic block insertion order.
3636  void VisitInsertionOrder();
3637
3638  // Visit the graph following dominator tree reverse post-order.
3639  void VisitReversePostOrder();
3640
3641  HGraph* GetGraph() const { return graph_; }
3642
3643  // Visit functions for instruction classes.
3644#define DECLARE_VISIT_INSTRUCTION(name, super)                                        \
3645  virtual void Visit##name(H##name* instr) { VisitInstruction(instr); }
3646
3647  FOR_EACH_INSTRUCTION(DECLARE_VISIT_INSTRUCTION)
3648
3649#undef DECLARE_VISIT_INSTRUCTION
3650
3651 private:
3652  HGraph* const graph_;
3653
3654  DISALLOW_COPY_AND_ASSIGN(HGraphVisitor);
3655};
3656
3657class HGraphDelegateVisitor : public HGraphVisitor {
3658 public:
3659  explicit HGraphDelegateVisitor(HGraph* graph) : HGraphVisitor(graph) {}
3660  virtual ~HGraphDelegateVisitor() {}
3661
3662  // Visit functions that delegate to to super class.
3663#define DECLARE_VISIT_INSTRUCTION(name, super)                                        \
3664  void Visit##name(H##name* instr) OVERRIDE { Visit##super(instr); }
3665
3666  FOR_EACH_INSTRUCTION(DECLARE_VISIT_INSTRUCTION)
3667
3668#undef DECLARE_VISIT_INSTRUCTION
3669
3670 private:
3671  DISALLOW_COPY_AND_ASSIGN(HGraphDelegateVisitor);
3672};
3673
3674class HInsertionOrderIterator : public ValueObject {
3675 public:
3676  explicit HInsertionOrderIterator(const HGraph& graph) : graph_(graph), index_(0) {}
3677
3678  bool Done() const { return index_ == graph_.GetBlocks().Size(); }
3679  HBasicBlock* Current() const { return graph_.GetBlocks().Get(index_); }
3680  void Advance() { ++index_; }
3681
3682 private:
3683  const HGraph& graph_;
3684  size_t index_;
3685
3686  DISALLOW_COPY_AND_ASSIGN(HInsertionOrderIterator);
3687};
3688
3689class HReversePostOrderIterator : public ValueObject {
3690 public:
3691  explicit HReversePostOrderIterator(const HGraph& graph) : graph_(graph), index_(0) {
3692    // Check that reverse post order of the graph has been built.
3693    DCHECK(!graph.GetReversePostOrder().IsEmpty());
3694  }
3695
3696  bool Done() const { return index_ == graph_.GetReversePostOrder().Size(); }
3697  HBasicBlock* Current() const { return graph_.GetReversePostOrder().Get(index_); }
3698  void Advance() { ++index_; }
3699
3700 private:
3701  const HGraph& graph_;
3702  size_t index_;
3703
3704  DISALLOW_COPY_AND_ASSIGN(HReversePostOrderIterator);
3705};
3706
3707class HPostOrderIterator : public ValueObject {
3708 public:
3709  explicit HPostOrderIterator(const HGraph& graph)
3710      : graph_(graph), index_(graph_.GetReversePostOrder().Size()) {
3711    // Check that reverse post order of the graph has been built.
3712    DCHECK(!graph.GetReversePostOrder().IsEmpty());
3713  }
3714
3715  bool Done() const { return index_ == 0; }
3716  HBasicBlock* Current() const { return graph_.GetReversePostOrder().Get(index_ - 1); }
3717  void Advance() { --index_; }
3718
3719 private:
3720  const HGraph& graph_;
3721  size_t index_;
3722
3723  DISALLOW_COPY_AND_ASSIGN(HPostOrderIterator);
3724};
3725
3726class HLinearPostOrderIterator : public ValueObject {
3727 public:
3728  explicit HLinearPostOrderIterator(const HGraph& graph)
3729      : order_(graph.GetLinearOrder()), index_(graph.GetLinearOrder().Size()) {}
3730
3731  bool Done() const { return index_ == 0; }
3732
3733  HBasicBlock* Current() const { return order_.Get(index_ -1); }
3734
3735  void Advance() {
3736    --index_;
3737    DCHECK_GE(index_, 0U);
3738  }
3739
3740 private:
3741  const GrowableArray<HBasicBlock*>& order_;
3742  size_t index_;
3743
3744  DISALLOW_COPY_AND_ASSIGN(HLinearPostOrderIterator);
3745};
3746
3747class HLinearOrderIterator : public ValueObject {
3748 public:
3749  explicit HLinearOrderIterator(const HGraph& graph)
3750      : order_(graph.GetLinearOrder()), index_(0) {}
3751
3752  bool Done() const { return index_ == order_.Size(); }
3753  HBasicBlock* Current() const { return order_.Get(index_); }
3754  void Advance() { ++index_; }
3755
3756 private:
3757  const GrowableArray<HBasicBlock*>& order_;
3758  size_t index_;
3759
3760  DISALLOW_COPY_AND_ASSIGN(HLinearOrderIterator);
3761};
3762
3763// Iterator over the blocks that art part of the loop. Includes blocks part
3764// of an inner loop. The order in which the blocks are iterated is on their
3765// block id.
3766class HBlocksInLoopIterator : public ValueObject {
3767 public:
3768  explicit HBlocksInLoopIterator(const HLoopInformation& info)
3769      : blocks_in_loop_(info.GetBlocks()),
3770        blocks_(info.GetHeader()->GetGraph()->GetBlocks()),
3771        index_(0) {
3772    if (!blocks_in_loop_.IsBitSet(index_)) {
3773      Advance();
3774    }
3775  }
3776
3777  bool Done() const { return index_ == blocks_.Size(); }
3778  HBasicBlock* Current() const { return blocks_.Get(index_); }
3779  void Advance() {
3780    ++index_;
3781    for (size_t e = blocks_.Size(); index_ < e; ++index_) {
3782      if (blocks_in_loop_.IsBitSet(index_)) {
3783        break;
3784      }
3785    }
3786  }
3787
3788 private:
3789  const BitVector& blocks_in_loop_;
3790  const GrowableArray<HBasicBlock*>& blocks_;
3791  size_t index_;
3792
3793  DISALLOW_COPY_AND_ASSIGN(HBlocksInLoopIterator);
3794};
3795
3796inline int64_t Int64FromConstant(HConstant* constant) {
3797  DCHECK(constant->IsIntConstant() || constant->IsLongConstant());
3798  return constant->IsIntConstant() ? constant->AsIntConstant()->GetValue()
3799                                   : constant->AsLongConstant()->GetValue();
3800}
3801
3802}  // namespace art
3803
3804#endif  // ART_COMPILER_OPTIMIZING_NODES_H_
3805