nodes.h revision 8909bafa5d64e12eb53f3d37b984f53e7a632224
1/*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#ifndef ART_COMPILER_OPTIMIZING_NODES_H_
18#define ART_COMPILER_OPTIMIZING_NODES_H_
19
20#include "base/arena_containers.h"
21#include "base/arena_object.h"
22#include "dex/compiler_enums.h"
23#include "entrypoints/quick/quick_entrypoints_enum.h"
24#include "handle.h"
25#include "handle_scope.h"
26#include "invoke_type.h"
27#include "locations.h"
28#include "mirror/class.h"
29#include "offsets.h"
30#include "primitive.h"
31#include "utils/arena_bit_vector.h"
32#include "utils/growable_array.h"
33
34namespace art {
35
36class GraphChecker;
37class HBasicBlock;
38class HDoubleConstant;
39class HEnvironment;
40class HFloatConstant;
41class HGraphVisitor;
42class HInstruction;
43class HIntConstant;
44class HInvoke;
45class HLongConstant;
46class HNullConstant;
47class HPhi;
48class HSuspendCheck;
49class LiveInterval;
50class LocationSummary;
51class SlowPathCode;
52class SsaBuilder;
53
54static const int kDefaultNumberOfBlocks = 8;
55static const int kDefaultNumberOfSuccessors = 2;
56static const int kDefaultNumberOfPredecessors = 2;
57static const int kDefaultNumberOfDominatedBlocks = 1;
58static const int kDefaultNumberOfBackEdges = 1;
59
60static constexpr uint32_t kMaxIntShiftValue = 0x1f;
61static constexpr uint64_t kMaxLongShiftValue = 0x3f;
62
63enum IfCondition {
64  kCondEQ,
65  kCondNE,
66  kCondLT,
67  kCondLE,
68  kCondGT,
69  kCondGE,
70};
71
72class HInstructionList {
73 public:
74  HInstructionList() : first_instruction_(nullptr), last_instruction_(nullptr) {}
75
76  void AddInstruction(HInstruction* instruction);
77  void RemoveInstruction(HInstruction* instruction);
78
79  // Insert `instruction` before/after an existing instruction `cursor`.
80  void InsertInstructionBefore(HInstruction* instruction, HInstruction* cursor);
81  void InsertInstructionAfter(HInstruction* instruction, HInstruction* cursor);
82
83  // Return true if this list contains `instruction`.
84  bool Contains(HInstruction* instruction) const;
85
86  // Return true if `instruction1` is found before `instruction2` in
87  // this instruction list and false otherwise.  Abort if none
88  // of these instructions is found.
89  bool FoundBefore(const HInstruction* instruction1,
90                   const HInstruction* instruction2) const;
91
92  bool IsEmpty() const { return first_instruction_ == nullptr; }
93  void Clear() { first_instruction_ = last_instruction_ = nullptr; }
94
95  // Update the block of all instructions to be `block`.
96  void SetBlockOfInstructions(HBasicBlock* block) const;
97
98  void AddAfter(HInstruction* cursor, const HInstructionList& instruction_list);
99  void Add(const HInstructionList& instruction_list);
100
101  // Return the number of instructions in the list. This is an expensive operation.
102  size_t CountSize() const;
103
104 private:
105  HInstruction* first_instruction_;
106  HInstruction* last_instruction_;
107
108  friend class HBasicBlock;
109  friend class HGraph;
110  friend class HInstruction;
111  friend class HInstructionIterator;
112  friend class HBackwardInstructionIterator;
113
114  DISALLOW_COPY_AND_ASSIGN(HInstructionList);
115};
116
117// Control-flow graph of a method. Contains a list of basic blocks.
118class HGraph : public ArenaObject<kArenaAllocMisc> {
119 public:
120  HGraph(ArenaAllocator* arena,
121         const DexFile& dex_file,
122         uint32_t method_idx,
123         bool debuggable = false,
124         int start_instruction_id = 0)
125      : arena_(arena),
126        blocks_(arena, kDefaultNumberOfBlocks),
127        reverse_post_order_(arena, kDefaultNumberOfBlocks),
128        linear_order_(arena, kDefaultNumberOfBlocks),
129        entry_block_(nullptr),
130        exit_block_(nullptr),
131        maximum_number_of_out_vregs_(0),
132        number_of_vregs_(0),
133        number_of_in_vregs_(0),
134        temporaries_vreg_slots_(0),
135        has_bounds_checks_(false),
136        debuggable_(debuggable),
137        current_instruction_id_(start_instruction_id),
138        dex_file_(dex_file),
139        method_idx_(method_idx),
140        cached_null_constant_(nullptr),
141        cached_int_constants_(std::less<int32_t>(), arena->Adapter()),
142        cached_float_constants_(std::less<int32_t>(), arena->Adapter()),
143        cached_long_constants_(std::less<int64_t>(), arena->Adapter()),
144        cached_double_constants_(std::less<int64_t>(), arena->Adapter()) {}
145
146  ArenaAllocator* GetArena() const { return arena_; }
147  const GrowableArray<HBasicBlock*>& GetBlocks() const { return blocks_; }
148  HBasicBlock* GetBlock(size_t id) const { return blocks_.Get(id); }
149
150  HBasicBlock* GetEntryBlock() const { return entry_block_; }
151  HBasicBlock* GetExitBlock() const { return exit_block_; }
152
153  void SetEntryBlock(HBasicBlock* block) { entry_block_ = block; }
154  void SetExitBlock(HBasicBlock* block) { exit_block_ = block; }
155
156  void AddBlock(HBasicBlock* block);
157
158  // Try building the SSA form of this graph, with dominance computation and loop
159  // recognition. Returns whether it was successful in doing all these steps.
160  bool TryBuildingSsa() {
161    BuildDominatorTree();
162    // The SSA builder requires loops to all be natural. Specifically, the dead phi
163    // elimination phase checks the consistency of the graph when doing a post-order
164    // visit for eliminating dead phis: a dead phi can only have loop header phi
165    // users remaining when being visited.
166    if (!AnalyzeNaturalLoops()) return false;
167    TransformToSsa();
168    return true;
169  }
170
171  void BuildDominatorTree();
172  void TransformToSsa();
173  void SimplifyCFG();
174
175  // Analyze all natural loops in this graph. Returns false if one
176  // loop is not natural, that is the header does not dominate the
177  // back edge.
178  bool AnalyzeNaturalLoops() const;
179
180  // Inline this graph in `outer_graph`, replacing the given `invoke` instruction.
181  void InlineInto(HGraph* outer_graph, HInvoke* invoke);
182
183  // Removes `block` from the graph.
184  void DeleteDeadBlock(HBasicBlock* block);
185
186  void SplitCriticalEdge(HBasicBlock* block, HBasicBlock* successor);
187  void SimplifyLoop(HBasicBlock* header);
188
189  int32_t GetNextInstructionId() {
190    DCHECK_NE(current_instruction_id_, INT32_MAX);
191    return current_instruction_id_++;
192  }
193
194  int32_t GetCurrentInstructionId() const {
195    return current_instruction_id_;
196  }
197
198  void SetCurrentInstructionId(int32_t id) {
199    current_instruction_id_ = id;
200  }
201
202  uint16_t GetMaximumNumberOfOutVRegs() const {
203    return maximum_number_of_out_vregs_;
204  }
205
206  void SetMaximumNumberOfOutVRegs(uint16_t new_value) {
207    maximum_number_of_out_vregs_ = new_value;
208  }
209
210  void UpdateTemporariesVRegSlots(size_t slots) {
211    temporaries_vreg_slots_ = std::max(slots, temporaries_vreg_slots_);
212  }
213
214  size_t GetTemporariesVRegSlots() const {
215    return temporaries_vreg_slots_;
216  }
217
218  void SetNumberOfVRegs(uint16_t number_of_vregs) {
219    number_of_vregs_ = number_of_vregs;
220  }
221
222  uint16_t GetNumberOfVRegs() const {
223    return number_of_vregs_;
224  }
225
226  void SetNumberOfInVRegs(uint16_t value) {
227    number_of_in_vregs_ = value;
228  }
229
230  uint16_t GetNumberOfLocalVRegs() const {
231    return number_of_vregs_ - number_of_in_vregs_;
232  }
233
234  const GrowableArray<HBasicBlock*>& GetReversePostOrder() const {
235    return reverse_post_order_;
236  }
237
238  const GrowableArray<HBasicBlock*>& GetLinearOrder() const {
239    return linear_order_;
240  }
241
242  bool HasBoundsChecks() const {
243    return has_bounds_checks_;
244  }
245
246  void SetHasBoundsChecks(bool value) {
247    has_bounds_checks_ = value;
248  }
249
250  bool IsDebuggable() const { return debuggable_; }
251
252  // Returns a constant of the given type and value. If it does not exist
253  // already, it is created and inserted into the graph. This method is only for
254  // integral types.
255  HConstant* GetConstant(Primitive::Type type, int64_t value);
256  HNullConstant* GetNullConstant();
257  HIntConstant* GetIntConstant(int32_t value) {
258    return CreateConstant(value, &cached_int_constants_);
259  }
260  HLongConstant* GetLongConstant(int64_t value) {
261    return CreateConstant(value, &cached_long_constants_);
262  }
263  HFloatConstant* GetFloatConstant(float value) {
264    return CreateConstant(bit_cast<int32_t, float>(value), &cached_float_constants_);
265  }
266  HDoubleConstant* GetDoubleConstant(double value) {
267    return CreateConstant(bit_cast<int64_t, double>(value), &cached_double_constants_);
268  }
269
270  HBasicBlock* FindCommonDominator(HBasicBlock* first, HBasicBlock* second) const;
271
272  const DexFile& GetDexFile() const {
273    return dex_file_;
274  }
275
276  uint32_t GetMethodIdx() const {
277    return method_idx_;
278  }
279
280 private:
281  void VisitBlockForDominatorTree(HBasicBlock* block,
282                                  HBasicBlock* predecessor,
283                                  GrowableArray<size_t>* visits);
284  void FindBackEdges(ArenaBitVector* visited);
285  void VisitBlockForBackEdges(HBasicBlock* block,
286                              ArenaBitVector* visited,
287                              ArenaBitVector* visiting);
288  void RemoveInstructionsAsUsersFromDeadBlocks(const ArenaBitVector& visited) const;
289  void RemoveDeadBlocks(const ArenaBitVector& visited);
290
291  template <class InstructionType, typename ValueType>
292  InstructionType* CreateConstant(ValueType value,
293                                  ArenaSafeMap<ValueType, InstructionType*>* cache) {
294    // Try to find an existing constant of the given value.
295    InstructionType* constant = nullptr;
296    auto cached_constant = cache->find(value);
297    if (cached_constant != cache->end()) {
298      constant = cached_constant->second;
299    }
300
301    // If not found or previously deleted, create and cache a new instruction.
302    if (constant == nullptr || constant->GetBlock() == nullptr) {
303      constant = new (arena_) InstructionType(value);
304      cache->Overwrite(value, constant);
305      InsertConstant(constant);
306    }
307    return constant;
308  }
309
310  void InsertConstant(HConstant* instruction);
311
312  // Cache a float constant into the graph. This method should only be
313  // called by the SsaBuilder when creating "equivalent" instructions.
314  void CacheFloatConstant(HFloatConstant* constant);
315
316  // See CacheFloatConstant comment.
317  void CacheDoubleConstant(HDoubleConstant* constant);
318
319  ArenaAllocator* const arena_;
320
321  // List of blocks in insertion order.
322  GrowableArray<HBasicBlock*> blocks_;
323
324  // List of blocks to perform a reverse post order tree traversal.
325  GrowableArray<HBasicBlock*> reverse_post_order_;
326
327  // List of blocks to perform a linear order tree traversal.
328  GrowableArray<HBasicBlock*> linear_order_;
329
330  HBasicBlock* entry_block_;
331  HBasicBlock* exit_block_;
332
333  // The maximum number of virtual registers arguments passed to a HInvoke in this graph.
334  uint16_t maximum_number_of_out_vregs_;
335
336  // The number of virtual registers in this method. Contains the parameters.
337  uint16_t number_of_vregs_;
338
339  // The number of virtual registers used by parameters of this method.
340  uint16_t number_of_in_vregs_;
341
342  // Number of vreg size slots that the temporaries use (used in baseline compiler).
343  size_t temporaries_vreg_slots_;
344
345  // Has bounds checks. We can totally skip BCE if it's false.
346  bool has_bounds_checks_;
347
348  // Indicates whether the graph should be compiled in a way that
349  // ensures full debuggability. If false, we can apply more
350  // aggressive optimizations that may limit the level of debugging.
351  const bool debuggable_;
352
353  // The current id to assign to a newly added instruction. See HInstruction.id_.
354  int32_t current_instruction_id_;
355
356  // The dex file from which the method is from.
357  const DexFile& dex_file_;
358
359  // The method index in the dex file.
360  const uint32_t method_idx_;
361
362  // Cached constants.
363  HNullConstant* cached_null_constant_;
364  ArenaSafeMap<int32_t, HIntConstant*> cached_int_constants_;
365  ArenaSafeMap<int32_t, HFloatConstant*> cached_float_constants_;
366  ArenaSafeMap<int64_t, HLongConstant*> cached_long_constants_;
367  ArenaSafeMap<int64_t, HDoubleConstant*> cached_double_constants_;
368
369  friend class SsaBuilder;           // For caching constants.
370  friend class SsaLivenessAnalysis;  // For the linear order.
371  ART_FRIEND_TEST(GraphTest, IfSuccessorSimpleJoinBlock1);
372  DISALLOW_COPY_AND_ASSIGN(HGraph);
373};
374
375class HLoopInformation : public ArenaObject<kArenaAllocMisc> {
376 public:
377  HLoopInformation(HBasicBlock* header, HGraph* graph)
378      : header_(header),
379        suspend_check_(nullptr),
380        back_edges_(graph->GetArena(), kDefaultNumberOfBackEdges),
381        // Make bit vector growable, as the number of blocks may change.
382        blocks_(graph->GetArena(), graph->GetBlocks().Size(), true) {}
383
384  HBasicBlock* GetHeader() const {
385    return header_;
386  }
387
388  void SetHeader(HBasicBlock* block) {
389    header_ = block;
390  }
391
392  HSuspendCheck* GetSuspendCheck() const { return suspend_check_; }
393  void SetSuspendCheck(HSuspendCheck* check) { suspend_check_ = check; }
394  bool HasSuspendCheck() const { return suspend_check_ != nullptr; }
395
396  void AddBackEdge(HBasicBlock* back_edge) {
397    back_edges_.Add(back_edge);
398  }
399
400  void RemoveBackEdge(HBasicBlock* back_edge) {
401    back_edges_.Delete(back_edge);
402  }
403
404  bool IsBackEdge(const HBasicBlock& block) const {
405    for (size_t i = 0, e = back_edges_.Size(); i < e; ++i) {
406      if (back_edges_.Get(i) == &block) return true;
407    }
408    return false;
409  }
410
411  size_t NumberOfBackEdges() const {
412    return back_edges_.Size();
413  }
414
415  HBasicBlock* GetPreHeader() const;
416
417  const GrowableArray<HBasicBlock*>& GetBackEdges() const {
418    return back_edges_;
419  }
420
421  // Returns the lifetime position of the back edge that has the
422  // greatest lifetime position.
423  size_t GetLifetimeEnd() const;
424
425  void ReplaceBackEdge(HBasicBlock* existing, HBasicBlock* new_back_edge) {
426    for (size_t i = 0, e = back_edges_.Size(); i < e; ++i) {
427      if (back_edges_.Get(i) == existing) {
428        back_edges_.Put(i, new_back_edge);
429        return;
430      }
431    }
432    UNREACHABLE();
433  }
434
435  // Finds blocks that are part of this loop. Returns whether the loop is a natural loop,
436  // that is the header dominates the back edge.
437  bool Populate();
438
439  // Reanalyzes the loop by removing loop info from its blocks and re-running
440  // Populate(). If there are no back edges left, the loop info is completely
441  // removed as well as its SuspendCheck instruction. It must be run on nested
442  // inner loops first.
443  void Update();
444
445  // Returns whether this loop information contains `block`.
446  // Note that this loop information *must* be populated before entering this function.
447  bool Contains(const HBasicBlock& block) const;
448
449  // Returns whether this loop information is an inner loop of `other`.
450  // Note that `other` *must* be populated before entering this function.
451  bool IsIn(const HLoopInformation& other) const;
452
453  const ArenaBitVector& GetBlocks() const { return blocks_; }
454
455  void Add(HBasicBlock* block);
456  void Remove(HBasicBlock* block);
457
458 private:
459  // Internal recursive implementation of `Populate`.
460  void PopulateRecursive(HBasicBlock* block);
461
462  HBasicBlock* header_;
463  HSuspendCheck* suspend_check_;
464  GrowableArray<HBasicBlock*> back_edges_;
465  ArenaBitVector blocks_;
466
467  DISALLOW_COPY_AND_ASSIGN(HLoopInformation);
468};
469
470static constexpr size_t kNoLifetime = -1;
471static constexpr uint32_t kNoDexPc = -1;
472
473// A block in a method. Contains the list of instructions represented
474// as a double linked list. Each block knows its predecessors and
475// successors.
476
477class HBasicBlock : public ArenaObject<kArenaAllocMisc> {
478 public:
479  explicit HBasicBlock(HGraph* graph, uint32_t dex_pc = kNoDexPc)
480      : graph_(graph),
481        predecessors_(graph->GetArena(), kDefaultNumberOfPredecessors),
482        successors_(graph->GetArena(), kDefaultNumberOfSuccessors),
483        loop_information_(nullptr),
484        dominator_(nullptr),
485        dominated_blocks_(graph->GetArena(), kDefaultNumberOfDominatedBlocks),
486        block_id_(-1),
487        dex_pc_(dex_pc),
488        lifetime_start_(kNoLifetime),
489        lifetime_end_(kNoLifetime),
490        is_catch_block_(false) {}
491
492  const GrowableArray<HBasicBlock*>& GetPredecessors() const {
493    return predecessors_;
494  }
495
496  const GrowableArray<HBasicBlock*>& GetSuccessors() const {
497    return successors_;
498  }
499
500  const GrowableArray<HBasicBlock*>& GetDominatedBlocks() const {
501    return dominated_blocks_;
502  }
503
504  bool IsEntryBlock() const {
505    return graph_->GetEntryBlock() == this;
506  }
507
508  bool IsExitBlock() const {
509    return graph_->GetExitBlock() == this;
510  }
511
512  bool IsSingleGoto() const;
513
514  void AddBackEdge(HBasicBlock* back_edge) {
515    if (loop_information_ == nullptr) {
516      loop_information_ = new (graph_->GetArena()) HLoopInformation(this, graph_);
517    }
518    DCHECK_EQ(loop_information_->GetHeader(), this);
519    loop_information_->AddBackEdge(back_edge);
520  }
521
522  HGraph* GetGraph() const { return graph_; }
523  void SetGraph(HGraph* graph) { graph_ = graph; }
524
525  int GetBlockId() const { return block_id_; }
526  void SetBlockId(int id) { block_id_ = id; }
527
528  HBasicBlock* GetDominator() const { return dominator_; }
529  void SetDominator(HBasicBlock* dominator) { dominator_ = dominator; }
530  void AddDominatedBlock(HBasicBlock* block) { dominated_blocks_.Add(block); }
531  void RemoveDominatedBlock(HBasicBlock* block) { dominated_blocks_.Delete(block); }
532  void ReplaceDominatedBlock(HBasicBlock* existing, HBasicBlock* new_block) {
533    for (size_t i = 0, e = dominated_blocks_.Size(); i < e; ++i) {
534      if (dominated_blocks_.Get(i) == existing) {
535        dominated_blocks_.Put(i, new_block);
536        return;
537      }
538    }
539    LOG(FATAL) << "Unreachable";
540    UNREACHABLE();
541  }
542
543  int NumberOfBackEdges() const {
544    return loop_information_ == nullptr
545        ? 0
546        : loop_information_->NumberOfBackEdges();
547  }
548
549  HInstruction* GetFirstInstruction() const { return instructions_.first_instruction_; }
550  HInstruction* GetLastInstruction() const { return instructions_.last_instruction_; }
551  const HInstructionList& GetInstructions() const { return instructions_; }
552  HInstruction* GetFirstPhi() const { return phis_.first_instruction_; }
553  HInstruction* GetLastPhi() const { return phis_.last_instruction_; }
554  const HInstructionList& GetPhis() const { return phis_; }
555
556  void AddSuccessor(HBasicBlock* block) {
557    successors_.Add(block);
558    block->predecessors_.Add(this);
559  }
560
561  void ReplaceSuccessor(HBasicBlock* existing, HBasicBlock* new_block) {
562    size_t successor_index = GetSuccessorIndexOf(existing);
563    DCHECK_NE(successor_index, static_cast<size_t>(-1));
564    existing->RemovePredecessor(this);
565    new_block->predecessors_.Add(this);
566    successors_.Put(successor_index, new_block);
567  }
568
569  void ReplacePredecessor(HBasicBlock* existing, HBasicBlock* new_block) {
570    size_t predecessor_index = GetPredecessorIndexOf(existing);
571    DCHECK_NE(predecessor_index, static_cast<size_t>(-1));
572    existing->RemoveSuccessor(this);
573    new_block->successors_.Add(this);
574    predecessors_.Put(predecessor_index, new_block);
575  }
576
577  void RemovePredecessor(HBasicBlock* block) {
578    predecessors_.Delete(block);
579  }
580
581  void RemoveSuccessor(HBasicBlock* block) {
582    successors_.Delete(block);
583  }
584
585  void ClearAllPredecessors() {
586    predecessors_.Reset();
587  }
588
589  void AddPredecessor(HBasicBlock* block) {
590    predecessors_.Add(block);
591    block->successors_.Add(this);
592  }
593
594  void SwapPredecessors() {
595    DCHECK_EQ(predecessors_.Size(), 2u);
596    HBasicBlock* temp = predecessors_.Get(0);
597    predecessors_.Put(0, predecessors_.Get(1));
598    predecessors_.Put(1, temp);
599  }
600
601  void SwapSuccessors() {
602    DCHECK_EQ(successors_.Size(), 2u);
603    HBasicBlock* temp = successors_.Get(0);
604    successors_.Put(0, successors_.Get(1));
605    successors_.Put(1, temp);
606  }
607
608  size_t GetPredecessorIndexOf(HBasicBlock* predecessor) {
609    for (size_t i = 0, e = predecessors_.Size(); i < e; ++i) {
610      if (predecessors_.Get(i) == predecessor) {
611        return i;
612      }
613    }
614    return -1;
615  }
616
617  size_t GetSuccessorIndexOf(HBasicBlock* successor) {
618    for (size_t i = 0, e = successors_.Size(); i < e; ++i) {
619      if (successors_.Get(i) == successor) {
620        return i;
621      }
622    }
623    return -1;
624  }
625
626  // Split the block into two blocks just after `cursor`. Returns the newly
627  // created block. Note that this method just updates raw block information,
628  // like predecessors, successors, dominators, and instruction list. It does not
629  // update the graph, reverse post order, loop information, nor make sure the
630  // blocks are consistent (for example ending with a control flow instruction).
631  HBasicBlock* SplitAfter(HInstruction* cursor);
632
633  // Merge `other` at the end of `this`. Successors and dominated blocks of
634  // `other` are changed to be successors and dominated blocks of `this`. Note
635  // that this method does not update the graph, reverse post order, loop
636  // information, nor make sure the blocks are consistent (for example ending
637  // with a control flow instruction).
638  void MergeWithInlined(HBasicBlock* other);
639
640  // Replace `this` with `other`. Predecessors, successors, and dominated blocks
641  // of `this` are moved to `other`.
642  // Note that this method does not update the graph, reverse post order, loop
643  // information, nor make sure the blocks are consistent (for example ending
644  // with a control flow instruction).
645  void ReplaceWith(HBasicBlock* other);
646
647  // Merge `other` at the end of `this`. This method updates loops, reverse post
648  // order, links to predecessors, successors, dominators and deletes the block
649  // from the graph. The two blocks must be successive, i.e. `this` the only
650  // predecessor of `other` and vice versa.
651  void MergeWith(HBasicBlock* other);
652
653  // Disconnects `this` from all its predecessors, successors and dominator,
654  // removes it from all loops it is included in and eventually from the graph.
655  // The block must not dominate any other block. Predecessors and successors
656  // are safely updated.
657  void DisconnectAndDelete();
658
659  void AddInstruction(HInstruction* instruction);
660  // Insert `instruction` before/after an existing instruction `cursor`.
661  void InsertInstructionBefore(HInstruction* instruction, HInstruction* cursor);
662  void InsertInstructionAfter(HInstruction* instruction, HInstruction* cursor);
663  // Replace instruction `initial` with `replacement` within this block.
664  void ReplaceAndRemoveInstructionWith(HInstruction* initial,
665                                       HInstruction* replacement);
666  void AddPhi(HPhi* phi);
667  void InsertPhiAfter(HPhi* instruction, HPhi* cursor);
668  // RemoveInstruction and RemovePhi delete a given instruction from the respective
669  // instruction list. With 'ensure_safety' set to true, it verifies that the
670  // instruction is not in use and removes it from the use lists of its inputs.
671  void RemoveInstruction(HInstruction* instruction, bool ensure_safety = true);
672  void RemovePhi(HPhi* phi, bool ensure_safety = true);
673  void RemoveInstructionOrPhi(HInstruction* instruction, bool ensure_safety = true);
674
675  bool IsLoopHeader() const {
676    return IsInLoop() && (loop_information_->GetHeader() == this);
677  }
678
679  bool IsLoopPreHeaderFirstPredecessor() const {
680    DCHECK(IsLoopHeader());
681    DCHECK(!GetPredecessors().IsEmpty());
682    return GetPredecessors().Get(0) == GetLoopInformation()->GetPreHeader();
683  }
684
685  HLoopInformation* GetLoopInformation() const {
686    return loop_information_;
687  }
688
689  // Set the loop_information_ on this block. Overrides the current
690  // loop_information if it is an outer loop of the passed loop information.
691  // Note that this method is called while creating the loop information.
692  void SetInLoop(HLoopInformation* info) {
693    if (IsLoopHeader()) {
694      // Nothing to do. This just means `info` is an outer loop.
695    } else if (!IsInLoop()) {
696      loop_information_ = info;
697    } else if (loop_information_->Contains(*info->GetHeader())) {
698      // Block is currently part of an outer loop. Make it part of this inner loop.
699      // Note that a non loop header having a loop information means this loop information
700      // has already been populated
701      loop_information_ = info;
702    } else {
703      // Block is part of an inner loop. Do not update the loop information.
704      // Note that we cannot do the check `info->Contains(loop_information_)->GetHeader()`
705      // at this point, because this method is being called while populating `info`.
706    }
707  }
708
709  // Raw update of the loop information.
710  void SetLoopInformation(HLoopInformation* info) {
711    loop_information_ = info;
712  }
713
714  bool IsInLoop() const { return loop_information_ != nullptr; }
715
716  // Returns whether this block dominates the blocked passed as parameter.
717  bool Dominates(HBasicBlock* block) const;
718
719  size_t GetLifetimeStart() const { return lifetime_start_; }
720  size_t GetLifetimeEnd() const { return lifetime_end_; }
721
722  void SetLifetimeStart(size_t start) { lifetime_start_ = start; }
723  void SetLifetimeEnd(size_t end) { lifetime_end_ = end; }
724
725  uint32_t GetDexPc() const { return dex_pc_; }
726
727  bool IsCatchBlock() const { return is_catch_block_; }
728  void SetIsCatchBlock() { is_catch_block_ = true; }
729
730  bool EndsWithControlFlowInstruction() const;
731  bool EndsWithIf() const;
732  bool HasSinglePhi() const;
733
734 private:
735  HGraph* graph_;
736  GrowableArray<HBasicBlock*> predecessors_;
737  GrowableArray<HBasicBlock*> successors_;
738  HInstructionList instructions_;
739  HInstructionList phis_;
740  HLoopInformation* loop_information_;
741  HBasicBlock* dominator_;
742  GrowableArray<HBasicBlock*> dominated_blocks_;
743  int block_id_;
744  // The dex program counter of the first instruction of this block.
745  const uint32_t dex_pc_;
746  size_t lifetime_start_;
747  size_t lifetime_end_;
748  bool is_catch_block_;
749
750  friend class HGraph;
751  friend class HInstruction;
752
753  DISALLOW_COPY_AND_ASSIGN(HBasicBlock);
754};
755
756// Iterates over the LoopInformation of all loops which contain 'block'
757// from the innermost to the outermost.
758class HLoopInformationOutwardIterator : public ValueObject {
759 public:
760  explicit HLoopInformationOutwardIterator(const HBasicBlock& block)
761      : current_(block.GetLoopInformation()) {}
762
763  bool Done() const { return current_ == nullptr; }
764
765  void Advance() {
766    DCHECK(!Done());
767    current_ = current_->GetPreHeader()->GetLoopInformation();
768  }
769
770  HLoopInformation* Current() const {
771    DCHECK(!Done());
772    return current_;
773  }
774
775 private:
776  HLoopInformation* current_;
777
778  DISALLOW_COPY_AND_ASSIGN(HLoopInformationOutwardIterator);
779};
780
781#define FOR_EACH_CONCRETE_INSTRUCTION(M)                                \
782  M(Add, BinaryOperation)                                               \
783  M(And, BinaryOperation)                                               \
784  M(ArrayGet, Instruction)                                              \
785  M(ArrayLength, Instruction)                                           \
786  M(ArraySet, Instruction)                                              \
787  M(BooleanNot, UnaryOperation)                                         \
788  M(BoundsCheck, Instruction)                                           \
789  M(BoundType, Instruction)                                             \
790  M(CheckCast, Instruction)                                             \
791  M(ClinitCheck, Instruction)                                           \
792  M(Compare, BinaryOperation)                                           \
793  M(Condition, BinaryOperation)                                         \
794  M(Deoptimize, Instruction)                                            \
795  M(Div, BinaryOperation)                                               \
796  M(DivZeroCheck, Instruction)                                          \
797  M(DoubleConstant, Constant)                                           \
798  M(Equal, Condition)                                                   \
799  M(Exit, Instruction)                                                  \
800  M(FloatConstant, Constant)                                            \
801  M(Goto, Instruction)                                                  \
802  M(GreaterThan, Condition)                                             \
803  M(GreaterThanOrEqual, Condition)                                      \
804  M(If, Instruction)                                                    \
805  M(InstanceFieldGet, Instruction)                                      \
806  M(InstanceFieldSet, Instruction)                                      \
807  M(InstanceOf, Instruction)                                            \
808  M(IntConstant, Constant)                                              \
809  M(InvokeInterface, Invoke)                                            \
810  M(InvokeStaticOrDirect, Invoke)                                       \
811  M(InvokeVirtual, Invoke)                                              \
812  M(LessThan, Condition)                                                \
813  M(LessThanOrEqual, Condition)                                         \
814  M(LoadClass, Instruction)                                             \
815  M(LoadException, Instruction)                                         \
816  M(LoadLocal, Instruction)                                             \
817  M(LoadString, Instruction)                                            \
818  M(Local, Instruction)                                                 \
819  M(LongConstant, Constant)                                             \
820  M(MemoryBarrier, Instruction)                                         \
821  M(MonitorOperation, Instruction)                                      \
822  M(Mul, BinaryOperation)                                               \
823  M(Neg, UnaryOperation)                                                \
824  M(NewArray, Instruction)                                              \
825  M(NewInstance, Instruction)                                           \
826  M(Not, UnaryOperation)                                                \
827  M(NotEqual, Condition)                                                \
828  M(NullConstant, Instruction)                                          \
829  M(NullCheck, Instruction)                                             \
830  M(Or, BinaryOperation)                                                \
831  M(ParallelMove, Instruction)                                          \
832  M(ParameterValue, Instruction)                                        \
833  M(Phi, Instruction)                                                   \
834  M(Rem, BinaryOperation)                                               \
835  M(Return, Instruction)                                                \
836  M(ReturnVoid, Instruction)                                            \
837  M(Shl, BinaryOperation)                                               \
838  M(Shr, BinaryOperation)                                               \
839  M(StaticFieldGet, Instruction)                                        \
840  M(StaticFieldSet, Instruction)                                        \
841  M(StoreLocal, Instruction)                                            \
842  M(Sub, BinaryOperation)                                               \
843  M(SuspendCheck, Instruction)                                          \
844  M(Temporary, Instruction)                                             \
845  M(Throw, Instruction)                                                 \
846  M(TypeConversion, Instruction)                                        \
847  M(UShr, BinaryOperation)                                              \
848  M(Xor, BinaryOperation)                                               \
849
850#define FOR_EACH_INSTRUCTION(M)                                         \
851  FOR_EACH_CONCRETE_INSTRUCTION(M)                                      \
852  M(Constant, Instruction)                                              \
853  M(UnaryOperation, Instruction)                                        \
854  M(BinaryOperation, Instruction)                                       \
855  M(Invoke, Instruction)
856
857#define FORWARD_DECLARATION(type, super) class H##type;
858FOR_EACH_INSTRUCTION(FORWARD_DECLARATION)
859#undef FORWARD_DECLARATION
860
861#define DECLARE_INSTRUCTION(type)                                       \
862  InstructionKind GetKind() const OVERRIDE { return k##type; }          \
863  const char* DebugName() const OVERRIDE { return #type; }              \
864  const H##type* As##type() const OVERRIDE { return this; }             \
865  H##type* As##type() OVERRIDE { return this; }                         \
866  bool InstructionTypeEquals(HInstruction* other) const OVERRIDE {      \
867    return other->Is##type();                                           \
868  }                                                                     \
869  void Accept(HGraphVisitor* visitor) OVERRIDE
870
871template <typename T> class HUseList;
872
873template <typename T>
874class HUseListNode : public ArenaObject<kArenaAllocMisc> {
875 public:
876  HUseListNode* GetPrevious() const { return prev_; }
877  HUseListNode* GetNext() const { return next_; }
878  T GetUser() const { return user_; }
879  size_t GetIndex() const { return index_; }
880  void SetIndex(size_t index) { index_ = index; }
881
882 private:
883  HUseListNode(T user, size_t index)
884      : user_(user), index_(index), prev_(nullptr), next_(nullptr) {}
885
886  T const user_;
887  size_t index_;
888  HUseListNode<T>* prev_;
889  HUseListNode<T>* next_;
890
891  friend class HUseList<T>;
892
893  DISALLOW_COPY_AND_ASSIGN(HUseListNode);
894};
895
896template <typename T>
897class HUseList : public ValueObject {
898 public:
899  HUseList() : first_(nullptr) {}
900
901  void Clear() {
902    first_ = nullptr;
903  }
904
905  // Adds a new entry at the beginning of the use list and returns
906  // the newly created node.
907  HUseListNode<T>* AddUse(T user, size_t index, ArenaAllocator* arena) {
908    HUseListNode<T>* new_node = new (arena) HUseListNode<T>(user, index);
909    if (IsEmpty()) {
910      first_ = new_node;
911    } else {
912      first_->prev_ = new_node;
913      new_node->next_ = first_;
914      first_ = new_node;
915    }
916    return new_node;
917  }
918
919  HUseListNode<T>* GetFirst() const {
920    return first_;
921  }
922
923  void Remove(HUseListNode<T>* node) {
924    DCHECK(node != nullptr);
925    DCHECK(Contains(node));
926
927    if (node->prev_ != nullptr) {
928      node->prev_->next_ = node->next_;
929    }
930    if (node->next_ != nullptr) {
931      node->next_->prev_ = node->prev_;
932    }
933    if (node == first_) {
934      first_ = node->next_;
935    }
936  }
937
938  bool Contains(const HUseListNode<T>* node) const {
939    if (node == nullptr) {
940      return false;
941    }
942    for (HUseListNode<T>* current = first_; current != nullptr; current = current->GetNext()) {
943      if (current == node) {
944        return true;
945      }
946    }
947    return false;
948  }
949
950  bool IsEmpty() const {
951    return first_ == nullptr;
952  }
953
954  bool HasOnlyOneUse() const {
955    return first_ != nullptr && first_->next_ == nullptr;
956  }
957
958  size_t SizeSlow() const {
959    size_t count = 0;
960    for (HUseListNode<T>* current = first_; current != nullptr; current = current->GetNext()) {
961      ++count;
962    }
963    return count;
964  }
965
966 private:
967  HUseListNode<T>* first_;
968};
969
970template<typename T>
971class HUseIterator : public ValueObject {
972 public:
973  explicit HUseIterator(const HUseList<T>& uses) : current_(uses.GetFirst()) {}
974
975  bool Done() const { return current_ == nullptr; }
976
977  void Advance() {
978    DCHECK(!Done());
979    current_ = current_->GetNext();
980  }
981
982  HUseListNode<T>* Current() const {
983    DCHECK(!Done());
984    return current_;
985  }
986
987 private:
988  HUseListNode<T>* current_;
989
990  friend class HValue;
991};
992
993// This class is used by HEnvironment and HInstruction classes to record the
994// instructions they use and pointers to the corresponding HUseListNodes kept
995// by the used instructions.
996template <typename T>
997class HUserRecord : public ValueObject {
998 public:
999  HUserRecord() : instruction_(nullptr), use_node_(nullptr) {}
1000  explicit HUserRecord(HInstruction* instruction) : instruction_(instruction), use_node_(nullptr) {}
1001
1002  HUserRecord(const HUserRecord<T>& old_record, HUseListNode<T>* use_node)
1003    : instruction_(old_record.instruction_), use_node_(use_node) {
1004    DCHECK(instruction_ != nullptr);
1005    DCHECK(use_node_ != nullptr);
1006    DCHECK(old_record.use_node_ == nullptr);
1007  }
1008
1009  HInstruction* GetInstruction() const { return instruction_; }
1010  HUseListNode<T>* GetUseNode() const { return use_node_; }
1011
1012 private:
1013  // Instruction used by the user.
1014  HInstruction* instruction_;
1015
1016  // Corresponding entry in the use list kept by 'instruction_'.
1017  HUseListNode<T>* use_node_;
1018};
1019
1020// TODO: Add better documentation to this class and maybe refactor with more suggestive names.
1021// - Has(All)SideEffects suggests that all the side effects are present but only ChangesSomething
1022//   flag is consider.
1023// - DependsOn suggests that there is a real dependency between side effects but it only
1024//   checks DependendsOnSomething flag.
1025//
1026// Represents the side effects an instruction may have.
1027class SideEffects : public ValueObject {
1028 public:
1029  SideEffects() : flags_(0) {}
1030
1031  static SideEffects None() {
1032    return SideEffects(0);
1033  }
1034
1035  static SideEffects All() {
1036    return SideEffects(ChangesSomething().flags_ | DependsOnSomething().flags_);
1037  }
1038
1039  static SideEffects ChangesSomething() {
1040    return SideEffects((1 << kFlagChangesCount) - 1);
1041  }
1042
1043  static SideEffects DependsOnSomething() {
1044    int count = kFlagDependsOnCount - kFlagChangesCount;
1045    return SideEffects(((1 << count) - 1) << kFlagChangesCount);
1046  }
1047
1048  SideEffects Union(SideEffects other) const {
1049    return SideEffects(flags_ | other.flags_);
1050  }
1051
1052  bool HasSideEffects() const {
1053    size_t all_bits_set = (1 << kFlagChangesCount) - 1;
1054    return (flags_ & all_bits_set) != 0;
1055  }
1056
1057  bool HasAllSideEffects() const {
1058    size_t all_bits_set = (1 << kFlagChangesCount) - 1;
1059    return all_bits_set == (flags_ & all_bits_set);
1060  }
1061
1062  bool DependsOn(SideEffects other) const {
1063    size_t depends_flags = other.ComputeDependsFlags();
1064    return (flags_ & depends_flags) != 0;
1065  }
1066
1067  bool HasDependencies() const {
1068    int count = kFlagDependsOnCount - kFlagChangesCount;
1069    size_t all_bits_set = (1 << count) - 1;
1070    return ((flags_ >> kFlagChangesCount) & all_bits_set) != 0;
1071  }
1072
1073 private:
1074  static constexpr int kFlagChangesSomething = 0;
1075  static constexpr int kFlagChangesCount = kFlagChangesSomething + 1;
1076
1077  static constexpr int kFlagDependsOnSomething = kFlagChangesCount;
1078  static constexpr int kFlagDependsOnCount = kFlagDependsOnSomething + 1;
1079
1080  explicit SideEffects(size_t flags) : flags_(flags) {}
1081
1082  size_t ComputeDependsFlags() const {
1083    return flags_ << kFlagChangesCount;
1084  }
1085
1086  size_t flags_;
1087};
1088
1089// A HEnvironment object contains the values of virtual registers at a given location.
1090class HEnvironment : public ArenaObject<kArenaAllocMisc> {
1091 public:
1092  HEnvironment(ArenaAllocator* arena,
1093               size_t number_of_vregs,
1094               const DexFile& dex_file,
1095               uint32_t method_idx,
1096               uint32_t dex_pc)
1097     : vregs_(arena, number_of_vregs),
1098       locations_(arena, number_of_vregs),
1099       parent_(nullptr),
1100       dex_file_(dex_file),
1101       method_idx_(method_idx),
1102       dex_pc_(dex_pc) {
1103    vregs_.SetSize(number_of_vregs);
1104    for (size_t i = 0; i < number_of_vregs; i++) {
1105      vregs_.Put(i, HUserRecord<HEnvironment*>());
1106    }
1107
1108    locations_.SetSize(number_of_vregs);
1109    for (size_t i = 0; i < number_of_vregs; ++i) {
1110      locations_.Put(i, Location());
1111    }
1112  }
1113
1114  void SetAndCopyParentChain(ArenaAllocator* allocator, HEnvironment* parent) {
1115    parent_ = new (allocator) HEnvironment(allocator,
1116                                           parent->Size(),
1117                                           parent->GetDexFile(),
1118                                           parent->GetMethodIdx(),
1119                                           parent->GetDexPc());
1120    if (parent->GetParent() != nullptr) {
1121      parent_->SetAndCopyParentChain(allocator, parent->GetParent());
1122    }
1123    parent_->CopyFrom(parent);
1124  }
1125
1126  void CopyFrom(const GrowableArray<HInstruction*>& locals);
1127  void CopyFrom(HEnvironment* environment);
1128
1129  // Copy from `env`. If it's a loop phi for `loop_header`, copy the first
1130  // input to the loop phi instead. This is for inserting instructions that
1131  // require an environment (like HDeoptimization) in the loop pre-header.
1132  void CopyFromWithLoopPhiAdjustment(HEnvironment* env, HBasicBlock* loop_header);
1133
1134  void SetRawEnvAt(size_t index, HInstruction* instruction) {
1135    vregs_.Put(index, HUserRecord<HEnvironment*>(instruction));
1136  }
1137
1138  HInstruction* GetInstructionAt(size_t index) const {
1139    return vregs_.Get(index).GetInstruction();
1140  }
1141
1142  void RemoveAsUserOfInput(size_t index) const;
1143
1144  size_t Size() const { return vregs_.Size(); }
1145
1146  HEnvironment* GetParent() const { return parent_; }
1147
1148  void SetLocationAt(size_t index, Location location) {
1149    locations_.Put(index, location);
1150  }
1151
1152  Location GetLocationAt(size_t index) const {
1153    return locations_.Get(index);
1154  }
1155
1156  uint32_t GetDexPc() const {
1157    return dex_pc_;
1158  }
1159
1160  uint32_t GetMethodIdx() const {
1161    return method_idx_;
1162  }
1163
1164  const DexFile& GetDexFile() const {
1165    return dex_file_;
1166  }
1167
1168 private:
1169  // Record instructions' use entries of this environment for constant-time removal.
1170  // It should only be called by HInstruction when a new environment use is added.
1171  void RecordEnvUse(HUseListNode<HEnvironment*>* env_use) {
1172    DCHECK(env_use->GetUser() == this);
1173    size_t index = env_use->GetIndex();
1174    vregs_.Put(index, HUserRecord<HEnvironment*>(vregs_.Get(index), env_use));
1175  }
1176
1177  GrowableArray<HUserRecord<HEnvironment*> > vregs_;
1178  GrowableArray<Location> locations_;
1179  HEnvironment* parent_;
1180  const DexFile& dex_file_;
1181  const uint32_t method_idx_;
1182  const uint32_t dex_pc_;
1183
1184  friend class HInstruction;
1185
1186  DISALLOW_COPY_AND_ASSIGN(HEnvironment);
1187};
1188
1189class ReferenceTypeInfo : ValueObject {
1190 public:
1191  typedef Handle<mirror::Class> TypeHandle;
1192
1193  static ReferenceTypeInfo Create(TypeHandle type_handle, bool is_exact)
1194      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1195    if (type_handle->IsObjectClass()) {
1196      // Override the type handle to be consistent with the case when we get to
1197      // Top but don't have the Object class available. It avoids having to guess
1198      // what value the type_handle has when it's Top.
1199      return ReferenceTypeInfo(TypeHandle(), is_exact, true);
1200    } else {
1201      return ReferenceTypeInfo(type_handle, is_exact, false);
1202    }
1203  }
1204
1205  static ReferenceTypeInfo CreateTop(bool is_exact) {
1206    return ReferenceTypeInfo(TypeHandle(), is_exact, true);
1207  }
1208
1209  bool IsExact() const { return is_exact_; }
1210  bool IsTop() const { return is_top_; }
1211
1212  Handle<mirror::Class> GetTypeHandle() const { return type_handle_; }
1213
1214  bool IsSupertypeOf(ReferenceTypeInfo rti) const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1215    if (IsTop()) {
1216      // Top (equivalent for java.lang.Object) is supertype of anything.
1217      return true;
1218    }
1219    if (rti.IsTop()) {
1220      // If we get here `this` is not Top() so it can't be a supertype.
1221      return false;
1222    }
1223    return GetTypeHandle()->IsAssignableFrom(rti.GetTypeHandle().Get());
1224  }
1225
1226  // Returns true if the type information provide the same amount of details.
1227  // Note that it does not mean that the instructions have the same actual type
1228  // (e.g. tops are equal but they can be the result of a merge).
1229  bool IsEqual(ReferenceTypeInfo rti) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1230    if (IsExact() != rti.IsExact()) {
1231      return false;
1232    }
1233    if (IsTop() && rti.IsTop()) {
1234      // `Top` means java.lang.Object, so the types are equivalent.
1235      return true;
1236    }
1237    if (IsTop() || rti.IsTop()) {
1238      // If only one is top or object than they are not equivalent.
1239      // NB: We need this extra check because the type_handle of `Top` is invalid
1240      // and we cannot inspect its reference.
1241      return false;
1242    }
1243
1244    // Finally check the types.
1245    return GetTypeHandle().Get() == rti.GetTypeHandle().Get();
1246  }
1247
1248 private:
1249  ReferenceTypeInfo() : ReferenceTypeInfo(TypeHandle(), false, true) {}
1250  ReferenceTypeInfo(TypeHandle type_handle, bool is_exact, bool is_top)
1251      : type_handle_(type_handle), is_exact_(is_exact), is_top_(is_top) {}
1252
1253  // The class of the object.
1254  TypeHandle type_handle_;
1255  // Whether or not the type is exact or a superclass of the actual type.
1256  // Whether or not we have any information about this type.
1257  bool is_exact_;
1258  // A true value here means that the object type should be java.lang.Object.
1259  // We don't have access to the corresponding mirror object every time so this
1260  // flag acts as a substitute. When true, the TypeHandle refers to a null
1261  // pointer and should not be used.
1262  bool is_top_;
1263};
1264
1265std::ostream& operator<<(std::ostream& os, const ReferenceTypeInfo& rhs);
1266
1267class HInstruction : public ArenaObject<kArenaAllocMisc> {
1268 public:
1269  explicit HInstruction(SideEffects side_effects)
1270      : previous_(nullptr),
1271        next_(nullptr),
1272        block_(nullptr),
1273        id_(-1),
1274        ssa_index_(-1),
1275        environment_(nullptr),
1276        locations_(nullptr),
1277        live_interval_(nullptr),
1278        lifetime_position_(kNoLifetime),
1279        side_effects_(side_effects),
1280        reference_type_info_(ReferenceTypeInfo::CreateTop(/* is_exact */ false)) {}
1281
1282  virtual ~HInstruction() {}
1283
1284#define DECLARE_KIND(type, super) k##type,
1285  enum InstructionKind {
1286    FOR_EACH_INSTRUCTION(DECLARE_KIND)
1287  };
1288#undef DECLARE_KIND
1289
1290  HInstruction* GetNext() const { return next_; }
1291  HInstruction* GetPrevious() const { return previous_; }
1292
1293  HInstruction* GetNextDisregardingMoves() const;
1294  HInstruction* GetPreviousDisregardingMoves() const;
1295
1296  HBasicBlock* GetBlock() const { return block_; }
1297  void SetBlock(HBasicBlock* block) { block_ = block; }
1298  bool IsInBlock() const { return block_ != nullptr; }
1299  bool IsInLoop() const { return block_->IsInLoop(); }
1300  bool IsLoopHeaderPhi() { return IsPhi() && block_->IsLoopHeader(); }
1301
1302  virtual size_t InputCount() const = 0;
1303  HInstruction* InputAt(size_t i) const { return InputRecordAt(i).GetInstruction(); }
1304
1305  virtual void Accept(HGraphVisitor* visitor) = 0;
1306  virtual const char* DebugName() const = 0;
1307
1308  virtual Primitive::Type GetType() const { return Primitive::kPrimVoid; }
1309  void SetRawInputAt(size_t index, HInstruction* input) {
1310    SetRawInputRecordAt(index, HUserRecord<HInstruction*>(input));
1311  }
1312
1313  virtual bool NeedsEnvironment() const { return false; }
1314  virtual uint32_t GetDexPc() const {
1315    LOG(FATAL) << "GetDexPc() cannot be called on an instruction that"
1316                  " does not need an environment";
1317    UNREACHABLE();
1318  }
1319  virtual bool IsControlFlow() const { return false; }
1320  virtual bool CanThrow() const { return false; }
1321  bool HasSideEffects() const { return side_effects_.HasSideEffects(); }
1322
1323  // Does not apply for all instructions, but having this at top level greatly
1324  // simplifies the null check elimination.
1325  virtual bool CanBeNull() const {
1326    DCHECK_EQ(GetType(), Primitive::kPrimNot) << "CanBeNull only applies to reference types";
1327    return true;
1328  }
1329
1330  virtual bool CanDoImplicitNullCheckOn(HInstruction* obj) const {
1331    UNUSED(obj);
1332    return false;
1333  }
1334
1335  void SetReferenceTypeInfo(ReferenceTypeInfo reference_type_info) {
1336    DCHECK_EQ(GetType(), Primitive::kPrimNot);
1337    reference_type_info_ = reference_type_info;
1338  }
1339
1340  ReferenceTypeInfo GetReferenceTypeInfo() const {
1341    DCHECK_EQ(GetType(), Primitive::kPrimNot);
1342    return reference_type_info_;
1343  }
1344
1345  void AddUseAt(HInstruction* user, size_t index) {
1346    DCHECK(user != nullptr);
1347    HUseListNode<HInstruction*>* use =
1348        uses_.AddUse(user, index, GetBlock()->GetGraph()->GetArena());
1349    user->SetRawInputRecordAt(index, HUserRecord<HInstruction*>(user->InputRecordAt(index), use));
1350  }
1351
1352  void AddEnvUseAt(HEnvironment* user, size_t index) {
1353    DCHECK(user != nullptr);
1354    HUseListNode<HEnvironment*>* env_use =
1355        env_uses_.AddUse(user, index, GetBlock()->GetGraph()->GetArena());
1356    user->RecordEnvUse(env_use);
1357  }
1358
1359  void RemoveAsUserOfInput(size_t input) {
1360    HUserRecord<HInstruction*> input_use = InputRecordAt(input);
1361    input_use.GetInstruction()->uses_.Remove(input_use.GetUseNode());
1362  }
1363
1364  const HUseList<HInstruction*>& GetUses() const { return uses_; }
1365  const HUseList<HEnvironment*>& GetEnvUses() const { return env_uses_; }
1366
1367  bool HasUses() const { return !uses_.IsEmpty() || !env_uses_.IsEmpty(); }
1368  bool HasEnvironmentUses() const { return !env_uses_.IsEmpty(); }
1369  bool HasNonEnvironmentUses() const { return !uses_.IsEmpty(); }
1370  bool HasOnlyOneNonEnvironmentUse() const {
1371    return !HasEnvironmentUses() && GetUses().HasOnlyOneUse();
1372  }
1373
1374  // Does this instruction strictly dominate `other_instruction`?
1375  // Returns false if this instruction and `other_instruction` are the same.
1376  // Aborts if this instruction and `other_instruction` are both phis.
1377  bool StrictlyDominates(HInstruction* other_instruction) const;
1378
1379  int GetId() const { return id_; }
1380  void SetId(int id) { id_ = id; }
1381
1382  int GetSsaIndex() const { return ssa_index_; }
1383  void SetSsaIndex(int ssa_index) { ssa_index_ = ssa_index; }
1384  bool HasSsaIndex() const { return ssa_index_ != -1; }
1385
1386  bool HasEnvironment() const { return environment_ != nullptr; }
1387  HEnvironment* GetEnvironment() const { return environment_; }
1388  // Set the `environment_` field. Raw because this method does not
1389  // update the uses lists.
1390  void SetRawEnvironment(HEnvironment* environment) { environment_ = environment; }
1391
1392  // Set the environment of this instruction, copying it from `environment`. While
1393  // copying, the uses lists are being updated.
1394  void CopyEnvironmentFrom(HEnvironment* environment) {
1395    ArenaAllocator* allocator = GetBlock()->GetGraph()->GetArena();
1396    environment_ = new (allocator) HEnvironment(
1397        allocator,
1398        environment->Size(),
1399        environment->GetDexFile(),
1400        environment->GetMethodIdx(),
1401        environment->GetDexPc());
1402    environment_->CopyFrom(environment);
1403    if (environment->GetParent() != nullptr) {
1404      environment_->SetAndCopyParentChain(allocator, environment->GetParent());
1405    }
1406  }
1407
1408  void CopyEnvironmentFromWithLoopPhiAdjustment(HEnvironment* environment,
1409                                                HBasicBlock* block) {
1410    ArenaAllocator* allocator = GetBlock()->GetGraph()->GetArena();
1411    environment_ = new (allocator) HEnvironment(
1412        allocator,
1413        environment->Size(),
1414        environment->GetDexFile(),
1415        environment->GetMethodIdx(),
1416        environment->GetDexPc());
1417    if (environment->GetParent() != nullptr) {
1418      environment_->SetAndCopyParentChain(allocator, environment->GetParent());
1419    }
1420    environment_->CopyFromWithLoopPhiAdjustment(environment, block);
1421  }
1422
1423  // Returns the number of entries in the environment. Typically, that is the
1424  // number of dex registers in a method. It could be more in case of inlining.
1425  size_t EnvironmentSize() const;
1426
1427  LocationSummary* GetLocations() const { return locations_; }
1428  void SetLocations(LocationSummary* locations) { locations_ = locations; }
1429
1430  void ReplaceWith(HInstruction* instruction);
1431  void ReplaceInput(HInstruction* replacement, size_t index);
1432
1433  // This is almost the same as doing `ReplaceWith()`. But in this helper, the
1434  // uses of this instruction by `other` are *not* updated.
1435  void ReplaceWithExceptInReplacementAtIndex(HInstruction* other, size_t use_index) {
1436    ReplaceWith(other);
1437    other->ReplaceInput(this, use_index);
1438  }
1439
1440  // Move `this` instruction before `cursor`.
1441  void MoveBefore(HInstruction* cursor);
1442
1443#define INSTRUCTION_TYPE_CHECK(type, super)                                    \
1444  bool Is##type() const { return (As##type() != nullptr); }                    \
1445  virtual const H##type* As##type() const { return nullptr; }                  \
1446  virtual H##type* As##type() { return nullptr; }
1447
1448  FOR_EACH_INSTRUCTION(INSTRUCTION_TYPE_CHECK)
1449#undef INSTRUCTION_TYPE_CHECK
1450
1451  // Returns whether the instruction can be moved within the graph.
1452  virtual bool CanBeMoved() const { return false; }
1453
1454  // Returns whether the two instructions are of the same kind.
1455  virtual bool InstructionTypeEquals(HInstruction* other) const {
1456    UNUSED(other);
1457    return false;
1458  }
1459
1460  // Returns whether any data encoded in the two instructions is equal.
1461  // This method does not look at the inputs. Both instructions must be
1462  // of the same type, otherwise the method has undefined behavior.
1463  virtual bool InstructionDataEquals(HInstruction* other) const {
1464    UNUSED(other);
1465    return false;
1466  }
1467
1468  // Returns whether two instructions are equal, that is:
1469  // 1) They have the same type and contain the same data (InstructionDataEquals).
1470  // 2) Their inputs are identical.
1471  bool Equals(HInstruction* other) const;
1472
1473  virtual InstructionKind GetKind() const = 0;
1474
1475  virtual size_t ComputeHashCode() const {
1476    size_t result = GetKind();
1477    for (size_t i = 0, e = InputCount(); i < e; ++i) {
1478      result = (result * 31) + InputAt(i)->GetId();
1479    }
1480    return result;
1481  }
1482
1483  SideEffects GetSideEffects() const { return side_effects_; }
1484
1485  size_t GetLifetimePosition() const { return lifetime_position_; }
1486  void SetLifetimePosition(size_t position) { lifetime_position_ = position; }
1487  LiveInterval* GetLiveInterval() const { return live_interval_; }
1488  void SetLiveInterval(LiveInterval* interval) { live_interval_ = interval; }
1489  bool HasLiveInterval() const { return live_interval_ != nullptr; }
1490
1491  bool IsSuspendCheckEntry() const { return IsSuspendCheck() && GetBlock()->IsEntryBlock(); }
1492
1493  // Returns whether the code generation of the instruction will require to have access
1494  // to the current method. Such instructions are:
1495  // (1): Instructions that require an environment, as calling the runtime requires
1496  //      to walk the stack and have the current method stored at a specific stack address.
1497  // (2): Object literals like classes and strings, that are loaded from the dex cache
1498  //      fields of the current method.
1499  bool NeedsCurrentMethod() const {
1500    return NeedsEnvironment() || IsLoadClass() || IsLoadString();
1501  }
1502
1503  virtual bool NeedsDexCache() const { return false; }
1504
1505 protected:
1506  virtual const HUserRecord<HInstruction*> InputRecordAt(size_t i) const = 0;
1507  virtual void SetRawInputRecordAt(size_t index, const HUserRecord<HInstruction*>& input) = 0;
1508
1509 private:
1510  void RemoveEnvironmentUser(HUseListNode<HEnvironment*>* use_node) { env_uses_.Remove(use_node); }
1511
1512  HInstruction* previous_;
1513  HInstruction* next_;
1514  HBasicBlock* block_;
1515
1516  // An instruction gets an id when it is added to the graph.
1517  // It reflects creation order. A negative id means the instruction
1518  // has not been added to the graph.
1519  int id_;
1520
1521  // When doing liveness analysis, instructions that have uses get an SSA index.
1522  int ssa_index_;
1523
1524  // List of instructions that have this instruction as input.
1525  HUseList<HInstruction*> uses_;
1526
1527  // List of environments that contain this instruction.
1528  HUseList<HEnvironment*> env_uses_;
1529
1530  // The environment associated with this instruction. Not null if the instruction
1531  // might jump out of the method.
1532  HEnvironment* environment_;
1533
1534  // Set by the code generator.
1535  LocationSummary* locations_;
1536
1537  // Set by the liveness analysis.
1538  LiveInterval* live_interval_;
1539
1540  // Set by the liveness analysis, this is the position in a linear
1541  // order of blocks where this instruction's live interval start.
1542  size_t lifetime_position_;
1543
1544  const SideEffects side_effects_;
1545
1546  // TODO: for primitive types this should be marked as invalid.
1547  ReferenceTypeInfo reference_type_info_;
1548
1549  friend class GraphChecker;
1550  friend class HBasicBlock;
1551  friend class HEnvironment;
1552  friend class HGraph;
1553  friend class HInstructionList;
1554
1555  DISALLOW_COPY_AND_ASSIGN(HInstruction);
1556};
1557std::ostream& operator<<(std::ostream& os, const HInstruction::InstructionKind& rhs);
1558
1559class HInputIterator : public ValueObject {
1560 public:
1561  explicit HInputIterator(HInstruction* instruction) : instruction_(instruction), index_(0) {}
1562
1563  bool Done() const { return index_ == instruction_->InputCount(); }
1564  HInstruction* Current() const { return instruction_->InputAt(index_); }
1565  void Advance() { index_++; }
1566
1567 private:
1568  HInstruction* instruction_;
1569  size_t index_;
1570
1571  DISALLOW_COPY_AND_ASSIGN(HInputIterator);
1572};
1573
1574class HInstructionIterator : public ValueObject {
1575 public:
1576  explicit HInstructionIterator(const HInstructionList& instructions)
1577      : instruction_(instructions.first_instruction_) {
1578    next_ = Done() ? nullptr : instruction_->GetNext();
1579  }
1580
1581  bool Done() const { return instruction_ == nullptr; }
1582  HInstruction* Current() const { return instruction_; }
1583  void Advance() {
1584    instruction_ = next_;
1585    next_ = Done() ? nullptr : instruction_->GetNext();
1586  }
1587
1588 private:
1589  HInstruction* instruction_;
1590  HInstruction* next_;
1591
1592  DISALLOW_COPY_AND_ASSIGN(HInstructionIterator);
1593};
1594
1595class HBackwardInstructionIterator : public ValueObject {
1596 public:
1597  explicit HBackwardInstructionIterator(const HInstructionList& instructions)
1598      : instruction_(instructions.last_instruction_) {
1599    next_ = Done() ? nullptr : instruction_->GetPrevious();
1600  }
1601
1602  bool Done() const { return instruction_ == nullptr; }
1603  HInstruction* Current() const { return instruction_; }
1604  void Advance() {
1605    instruction_ = next_;
1606    next_ = Done() ? nullptr : instruction_->GetPrevious();
1607  }
1608
1609 private:
1610  HInstruction* instruction_;
1611  HInstruction* next_;
1612
1613  DISALLOW_COPY_AND_ASSIGN(HBackwardInstructionIterator);
1614};
1615
1616// An embedded container with N elements of type T.  Used (with partial
1617// specialization for N=0) because embedded arrays cannot have size 0.
1618template<typename T, intptr_t N>
1619class EmbeddedArray {
1620 public:
1621  EmbeddedArray() : elements_() {}
1622
1623  intptr_t GetLength() const { return N; }
1624
1625  const T& operator[](intptr_t i) const {
1626    DCHECK_LT(i, GetLength());
1627    return elements_[i];
1628  }
1629
1630  T& operator[](intptr_t i) {
1631    DCHECK_LT(i, GetLength());
1632    return elements_[i];
1633  }
1634
1635  const T& At(intptr_t i) const {
1636    return (*this)[i];
1637  }
1638
1639  void SetAt(intptr_t i, const T& val) {
1640    (*this)[i] = val;
1641  }
1642
1643 private:
1644  T elements_[N];
1645};
1646
1647template<typename T>
1648class EmbeddedArray<T, 0> {
1649 public:
1650  intptr_t length() const { return 0; }
1651  const T& operator[](intptr_t i) const {
1652    UNUSED(i);
1653    LOG(FATAL) << "Unreachable";
1654    UNREACHABLE();
1655  }
1656  T& operator[](intptr_t i) {
1657    UNUSED(i);
1658    LOG(FATAL) << "Unreachable";
1659    UNREACHABLE();
1660  }
1661};
1662
1663template<intptr_t N>
1664class HTemplateInstruction: public HInstruction {
1665 public:
1666  HTemplateInstruction<N>(SideEffects side_effects)
1667      : HInstruction(side_effects), inputs_() {}
1668  virtual ~HTemplateInstruction() {}
1669
1670  size_t InputCount() const OVERRIDE { return N; }
1671
1672 protected:
1673  const HUserRecord<HInstruction*> InputRecordAt(size_t i) const OVERRIDE { return inputs_[i]; }
1674
1675  void SetRawInputRecordAt(size_t i, const HUserRecord<HInstruction*>& input) OVERRIDE {
1676    inputs_[i] = input;
1677  }
1678
1679 private:
1680  EmbeddedArray<HUserRecord<HInstruction*>, N> inputs_;
1681
1682  friend class SsaBuilder;
1683};
1684
1685template<intptr_t N>
1686class HExpression : public HTemplateInstruction<N> {
1687 public:
1688  HExpression<N>(Primitive::Type type, SideEffects side_effects)
1689      : HTemplateInstruction<N>(side_effects), type_(type) {}
1690  virtual ~HExpression() {}
1691
1692  Primitive::Type GetType() const OVERRIDE { return type_; }
1693
1694 protected:
1695  Primitive::Type type_;
1696};
1697
1698// Represents dex's RETURN_VOID opcode. A HReturnVoid is a control flow
1699// instruction that branches to the exit block.
1700class HReturnVoid : public HTemplateInstruction<0> {
1701 public:
1702  HReturnVoid() : HTemplateInstruction(SideEffects::None()) {}
1703
1704  bool IsControlFlow() const OVERRIDE { return true; }
1705
1706  DECLARE_INSTRUCTION(ReturnVoid);
1707
1708 private:
1709  DISALLOW_COPY_AND_ASSIGN(HReturnVoid);
1710};
1711
1712// Represents dex's RETURN opcodes. A HReturn is a control flow
1713// instruction that branches to the exit block.
1714class HReturn : public HTemplateInstruction<1> {
1715 public:
1716  explicit HReturn(HInstruction* value) : HTemplateInstruction(SideEffects::None()) {
1717    SetRawInputAt(0, value);
1718  }
1719
1720  bool IsControlFlow() const OVERRIDE { return true; }
1721
1722  DECLARE_INSTRUCTION(Return);
1723
1724 private:
1725  DISALLOW_COPY_AND_ASSIGN(HReturn);
1726};
1727
1728// The exit instruction is the only instruction of the exit block.
1729// Instructions aborting the method (HThrow and HReturn) must branch to the
1730// exit block.
1731class HExit : public HTemplateInstruction<0> {
1732 public:
1733  HExit() : HTemplateInstruction(SideEffects::None()) {}
1734
1735  bool IsControlFlow() const OVERRIDE { return true; }
1736
1737  DECLARE_INSTRUCTION(Exit);
1738
1739 private:
1740  DISALLOW_COPY_AND_ASSIGN(HExit);
1741};
1742
1743// Jumps from one block to another.
1744class HGoto : public HTemplateInstruction<0> {
1745 public:
1746  HGoto() : HTemplateInstruction(SideEffects::None()) {}
1747
1748  bool IsControlFlow() const OVERRIDE { return true; }
1749
1750  HBasicBlock* GetSuccessor() const {
1751    return GetBlock()->GetSuccessors().Get(0);
1752  }
1753
1754  DECLARE_INSTRUCTION(Goto);
1755
1756 private:
1757  DISALLOW_COPY_AND_ASSIGN(HGoto);
1758};
1759
1760
1761// Conditional branch. A block ending with an HIf instruction must have
1762// two successors.
1763class HIf : public HTemplateInstruction<1> {
1764 public:
1765  explicit HIf(HInstruction* input) : HTemplateInstruction(SideEffects::None()) {
1766    SetRawInputAt(0, input);
1767  }
1768
1769  bool IsControlFlow() const OVERRIDE { return true; }
1770
1771  HBasicBlock* IfTrueSuccessor() const {
1772    return GetBlock()->GetSuccessors().Get(0);
1773  }
1774
1775  HBasicBlock* IfFalseSuccessor() const {
1776    return GetBlock()->GetSuccessors().Get(1);
1777  }
1778
1779  DECLARE_INSTRUCTION(If);
1780
1781 private:
1782  DISALLOW_COPY_AND_ASSIGN(HIf);
1783};
1784
1785// Deoptimize to interpreter, upon checking a condition.
1786class HDeoptimize : public HTemplateInstruction<1> {
1787 public:
1788  HDeoptimize(HInstruction* cond, uint32_t dex_pc)
1789      : HTemplateInstruction(SideEffects::None()),
1790        dex_pc_(dex_pc) {
1791    SetRawInputAt(0, cond);
1792  }
1793
1794  bool NeedsEnvironment() const OVERRIDE { return true; }
1795  bool CanThrow() const OVERRIDE { return true; }
1796  uint32_t GetDexPc() const OVERRIDE { return dex_pc_; }
1797
1798  DECLARE_INSTRUCTION(Deoptimize);
1799
1800 private:
1801  uint32_t dex_pc_;
1802
1803  DISALLOW_COPY_AND_ASSIGN(HDeoptimize);
1804};
1805
1806class HUnaryOperation : public HExpression<1> {
1807 public:
1808  HUnaryOperation(Primitive::Type result_type, HInstruction* input)
1809      : HExpression(result_type, SideEffects::None()) {
1810    SetRawInputAt(0, input);
1811  }
1812
1813  HInstruction* GetInput() const { return InputAt(0); }
1814  Primitive::Type GetResultType() const { return GetType(); }
1815
1816  bool CanBeMoved() const OVERRIDE { return true; }
1817  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
1818    UNUSED(other);
1819    return true;
1820  }
1821
1822  // Try to statically evaluate `operation` and return a HConstant
1823  // containing the result of this evaluation.  If `operation` cannot
1824  // be evaluated as a constant, return null.
1825  HConstant* TryStaticEvaluation() const;
1826
1827  // Apply this operation to `x`.
1828  virtual int32_t Evaluate(int32_t x) const = 0;
1829  virtual int64_t Evaluate(int64_t x) const = 0;
1830
1831  DECLARE_INSTRUCTION(UnaryOperation);
1832
1833 private:
1834  DISALLOW_COPY_AND_ASSIGN(HUnaryOperation);
1835};
1836
1837class HBinaryOperation : public HExpression<2> {
1838 public:
1839  HBinaryOperation(Primitive::Type result_type,
1840                   HInstruction* left,
1841                   HInstruction* right) : HExpression(result_type, SideEffects::None()) {
1842    SetRawInputAt(0, left);
1843    SetRawInputAt(1, right);
1844  }
1845
1846  HInstruction* GetLeft() const { return InputAt(0); }
1847  HInstruction* GetRight() const { return InputAt(1); }
1848  Primitive::Type GetResultType() const { return GetType(); }
1849
1850  virtual bool IsCommutative() const { return false; }
1851
1852  // Put constant on the right.
1853  // Returns whether order is changed.
1854  bool OrderInputsWithConstantOnTheRight() {
1855    HInstruction* left = InputAt(0);
1856    HInstruction* right = InputAt(1);
1857    if (left->IsConstant() && !right->IsConstant()) {
1858      ReplaceInput(right, 0);
1859      ReplaceInput(left, 1);
1860      return true;
1861    }
1862    return false;
1863  }
1864
1865  // Order inputs by instruction id, but favor constant on the right side.
1866  // This helps GVN for commutative ops.
1867  void OrderInputs() {
1868    DCHECK(IsCommutative());
1869    HInstruction* left = InputAt(0);
1870    HInstruction* right = InputAt(1);
1871    if (left == right || (!left->IsConstant() && right->IsConstant())) {
1872      return;
1873    }
1874    if (OrderInputsWithConstantOnTheRight()) {
1875      return;
1876    }
1877    // Order according to instruction id.
1878    if (left->GetId() > right->GetId()) {
1879      ReplaceInput(right, 0);
1880      ReplaceInput(left, 1);
1881    }
1882  }
1883
1884  bool CanBeMoved() const OVERRIDE { return true; }
1885  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
1886    UNUSED(other);
1887    return true;
1888  }
1889
1890  // Try to statically evaluate `operation` and return a HConstant
1891  // containing the result of this evaluation.  If `operation` cannot
1892  // be evaluated as a constant, return null.
1893  HConstant* TryStaticEvaluation() const;
1894
1895  // Apply this operation to `x` and `y`.
1896  virtual int32_t Evaluate(int32_t x, int32_t y) const = 0;
1897  virtual int64_t Evaluate(int64_t x, int64_t y) const = 0;
1898
1899  // Returns an input that can legally be used as the right input and is
1900  // constant, or null.
1901  HConstant* GetConstantRight() const;
1902
1903  // If `GetConstantRight()` returns one of the input, this returns the other
1904  // one. Otherwise it returns null.
1905  HInstruction* GetLeastConstantLeft() const;
1906
1907  DECLARE_INSTRUCTION(BinaryOperation);
1908
1909 private:
1910  DISALLOW_COPY_AND_ASSIGN(HBinaryOperation);
1911};
1912
1913class HCondition : public HBinaryOperation {
1914 public:
1915  HCondition(HInstruction* first, HInstruction* second)
1916      : HBinaryOperation(Primitive::kPrimBoolean, first, second),
1917        needs_materialization_(true) {}
1918
1919  bool NeedsMaterialization() const { return needs_materialization_; }
1920  void ClearNeedsMaterialization() { needs_materialization_ = false; }
1921
1922  // For code generation purposes, returns whether this instruction is just before
1923  // `instruction`, and disregard moves in between.
1924  bool IsBeforeWhenDisregardMoves(HInstruction* instruction) const;
1925
1926  DECLARE_INSTRUCTION(Condition);
1927
1928  virtual IfCondition GetCondition() const = 0;
1929
1930 private:
1931  // For register allocation purposes, returns whether this instruction needs to be
1932  // materialized (that is, not just be in the processor flags).
1933  bool needs_materialization_;
1934
1935  DISALLOW_COPY_AND_ASSIGN(HCondition);
1936};
1937
1938// Instruction to check if two inputs are equal to each other.
1939class HEqual : public HCondition {
1940 public:
1941  HEqual(HInstruction* first, HInstruction* second)
1942      : HCondition(first, second) {}
1943
1944  bool IsCommutative() const OVERRIDE { return true; }
1945
1946  int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE {
1947    return x == y ? 1 : 0;
1948  }
1949  int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE {
1950    return x == y ? 1 : 0;
1951  }
1952
1953  DECLARE_INSTRUCTION(Equal);
1954
1955  IfCondition GetCondition() const OVERRIDE {
1956    return kCondEQ;
1957  }
1958
1959 private:
1960  DISALLOW_COPY_AND_ASSIGN(HEqual);
1961};
1962
1963class HNotEqual : public HCondition {
1964 public:
1965  HNotEqual(HInstruction* first, HInstruction* second)
1966      : HCondition(first, second) {}
1967
1968  bool IsCommutative() const OVERRIDE { return true; }
1969
1970  int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE {
1971    return x != y ? 1 : 0;
1972  }
1973  int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE {
1974    return x != y ? 1 : 0;
1975  }
1976
1977  DECLARE_INSTRUCTION(NotEqual);
1978
1979  IfCondition GetCondition() const OVERRIDE {
1980    return kCondNE;
1981  }
1982
1983 private:
1984  DISALLOW_COPY_AND_ASSIGN(HNotEqual);
1985};
1986
1987class HLessThan : public HCondition {
1988 public:
1989  HLessThan(HInstruction* first, HInstruction* second)
1990      : HCondition(first, second) {}
1991
1992  int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE {
1993    return x < y ? 1 : 0;
1994  }
1995  int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE {
1996    return x < y ? 1 : 0;
1997  }
1998
1999  DECLARE_INSTRUCTION(LessThan);
2000
2001  IfCondition GetCondition() const OVERRIDE {
2002    return kCondLT;
2003  }
2004
2005 private:
2006  DISALLOW_COPY_AND_ASSIGN(HLessThan);
2007};
2008
2009class HLessThanOrEqual : public HCondition {
2010 public:
2011  HLessThanOrEqual(HInstruction* first, HInstruction* second)
2012      : HCondition(first, second) {}
2013
2014  int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE {
2015    return x <= y ? 1 : 0;
2016  }
2017  int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE {
2018    return x <= y ? 1 : 0;
2019  }
2020
2021  DECLARE_INSTRUCTION(LessThanOrEqual);
2022
2023  IfCondition GetCondition() const OVERRIDE {
2024    return kCondLE;
2025  }
2026
2027 private:
2028  DISALLOW_COPY_AND_ASSIGN(HLessThanOrEqual);
2029};
2030
2031class HGreaterThan : public HCondition {
2032 public:
2033  HGreaterThan(HInstruction* first, HInstruction* second)
2034      : HCondition(first, second) {}
2035
2036  int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE {
2037    return x > y ? 1 : 0;
2038  }
2039  int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE {
2040    return x > y ? 1 : 0;
2041  }
2042
2043  DECLARE_INSTRUCTION(GreaterThan);
2044
2045  IfCondition GetCondition() const OVERRIDE {
2046    return kCondGT;
2047  }
2048
2049 private:
2050  DISALLOW_COPY_AND_ASSIGN(HGreaterThan);
2051};
2052
2053class HGreaterThanOrEqual : public HCondition {
2054 public:
2055  HGreaterThanOrEqual(HInstruction* first, HInstruction* second)
2056      : HCondition(first, second) {}
2057
2058  int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE {
2059    return x >= y ? 1 : 0;
2060  }
2061  int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE {
2062    return x >= y ? 1 : 0;
2063  }
2064
2065  DECLARE_INSTRUCTION(GreaterThanOrEqual);
2066
2067  IfCondition GetCondition() const OVERRIDE {
2068    return kCondGE;
2069  }
2070
2071 private:
2072  DISALLOW_COPY_AND_ASSIGN(HGreaterThanOrEqual);
2073};
2074
2075
2076// Instruction to check how two inputs compare to each other.
2077// Result is 0 if input0 == input1, 1 if input0 > input1, or -1 if input0 < input1.
2078class HCompare : public HBinaryOperation {
2079 public:
2080  // The bias applies for floating point operations and indicates how NaN
2081  // comparisons are treated:
2082  enum Bias {
2083    kNoBias,  // bias is not applicable (i.e. for long operation)
2084    kGtBias,  // return 1 for NaN comparisons
2085    kLtBias,  // return -1 for NaN comparisons
2086  };
2087
2088  HCompare(Primitive::Type type, HInstruction* first, HInstruction* second, Bias bias)
2089      : HBinaryOperation(Primitive::kPrimInt, first, second), bias_(bias) {
2090    DCHECK_EQ(type, first->GetType());
2091    DCHECK_EQ(type, second->GetType());
2092  }
2093
2094  int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE {
2095    return
2096      x == y ? 0 :
2097      x > y ? 1 :
2098      -1;
2099  }
2100
2101  int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE {
2102    return
2103      x == y ? 0 :
2104      x > y ? 1 :
2105      -1;
2106  }
2107
2108  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2109    return bias_ == other->AsCompare()->bias_;
2110  }
2111
2112  bool IsGtBias() { return bias_ == kGtBias; }
2113
2114  DECLARE_INSTRUCTION(Compare);
2115
2116 private:
2117  const Bias bias_;
2118
2119  DISALLOW_COPY_AND_ASSIGN(HCompare);
2120};
2121
2122// A local in the graph. Corresponds to a Dex register.
2123class HLocal : public HTemplateInstruction<0> {
2124 public:
2125  explicit HLocal(uint16_t reg_number)
2126      : HTemplateInstruction(SideEffects::None()), reg_number_(reg_number) {}
2127
2128  DECLARE_INSTRUCTION(Local);
2129
2130  uint16_t GetRegNumber() const { return reg_number_; }
2131
2132 private:
2133  // The Dex register number.
2134  const uint16_t reg_number_;
2135
2136  DISALLOW_COPY_AND_ASSIGN(HLocal);
2137};
2138
2139// Load a given local. The local is an input of this instruction.
2140class HLoadLocal : public HExpression<1> {
2141 public:
2142  HLoadLocal(HLocal* local, Primitive::Type type)
2143      : HExpression(type, SideEffects::None()) {
2144    SetRawInputAt(0, local);
2145  }
2146
2147  HLocal* GetLocal() const { return reinterpret_cast<HLocal*>(InputAt(0)); }
2148
2149  DECLARE_INSTRUCTION(LoadLocal);
2150
2151 private:
2152  DISALLOW_COPY_AND_ASSIGN(HLoadLocal);
2153};
2154
2155// Store a value in a given local. This instruction has two inputs: the value
2156// and the local.
2157class HStoreLocal : public HTemplateInstruction<2> {
2158 public:
2159  HStoreLocal(HLocal* local, HInstruction* value) : HTemplateInstruction(SideEffects::None()) {
2160    SetRawInputAt(0, local);
2161    SetRawInputAt(1, value);
2162  }
2163
2164  HLocal* GetLocal() const { return reinterpret_cast<HLocal*>(InputAt(0)); }
2165
2166  DECLARE_INSTRUCTION(StoreLocal);
2167
2168 private:
2169  DISALLOW_COPY_AND_ASSIGN(HStoreLocal);
2170};
2171
2172class HConstant : public HExpression<0> {
2173 public:
2174  explicit HConstant(Primitive::Type type) : HExpression(type, SideEffects::None()) {}
2175
2176  bool CanBeMoved() const OVERRIDE { return true; }
2177
2178  virtual bool IsMinusOne() const { return false; }
2179  virtual bool IsZero() const { return false; }
2180  virtual bool IsOne() const { return false; }
2181
2182  DECLARE_INSTRUCTION(Constant);
2183
2184 private:
2185  DISALLOW_COPY_AND_ASSIGN(HConstant);
2186};
2187
2188class HFloatConstant : public HConstant {
2189 public:
2190  float GetValue() const { return value_; }
2191
2192  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2193    return bit_cast<uint32_t, float>(other->AsFloatConstant()->value_) ==
2194        bit_cast<uint32_t, float>(value_);
2195  }
2196
2197  size_t ComputeHashCode() const OVERRIDE { return static_cast<size_t>(GetValue()); }
2198
2199  bool IsMinusOne() const OVERRIDE {
2200    return bit_cast<uint32_t, float>(value_) == bit_cast<uint32_t, float>((-1.0f));
2201  }
2202  bool IsZero() const OVERRIDE {
2203    return value_ == 0.0f;
2204  }
2205  bool IsOne() const OVERRIDE {
2206    return bit_cast<uint32_t, float>(value_) == bit_cast<uint32_t, float>(1.0f);
2207  }
2208  bool IsNaN() const {
2209    return std::isnan(value_);
2210  }
2211
2212  DECLARE_INSTRUCTION(FloatConstant);
2213
2214 private:
2215  explicit HFloatConstant(float value) : HConstant(Primitive::kPrimFloat), value_(value) {}
2216  explicit HFloatConstant(int32_t value)
2217      : HConstant(Primitive::kPrimFloat), value_(bit_cast<float, int32_t>(value)) {}
2218
2219  const float value_;
2220
2221  // Only the SsaBuilder and HGraph can create floating-point constants.
2222  friend class SsaBuilder;
2223  friend class HGraph;
2224  DISALLOW_COPY_AND_ASSIGN(HFloatConstant);
2225};
2226
2227class HDoubleConstant : public HConstant {
2228 public:
2229  double GetValue() const { return value_; }
2230
2231  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2232    return bit_cast<uint64_t, double>(other->AsDoubleConstant()->value_) ==
2233        bit_cast<uint64_t, double>(value_);
2234  }
2235
2236  size_t ComputeHashCode() const OVERRIDE { return static_cast<size_t>(GetValue()); }
2237
2238  bool IsMinusOne() const OVERRIDE {
2239    return bit_cast<uint64_t, double>(value_) == bit_cast<uint64_t, double>((-1.0));
2240  }
2241  bool IsZero() const OVERRIDE {
2242    return value_ == 0.0;
2243  }
2244  bool IsOne() const OVERRIDE {
2245    return bit_cast<uint64_t, double>(value_) == bit_cast<uint64_t, double>(1.0);
2246  }
2247  bool IsNaN() const {
2248    return std::isnan(value_);
2249  }
2250
2251  DECLARE_INSTRUCTION(DoubleConstant);
2252
2253 private:
2254  explicit HDoubleConstant(double value) : HConstant(Primitive::kPrimDouble), value_(value) {}
2255  explicit HDoubleConstant(int64_t value)
2256      : HConstant(Primitive::kPrimDouble), value_(bit_cast<double, int64_t>(value)) {}
2257
2258  const double value_;
2259
2260  // Only the SsaBuilder and HGraph can create floating-point constants.
2261  friend class SsaBuilder;
2262  friend class HGraph;
2263  DISALLOW_COPY_AND_ASSIGN(HDoubleConstant);
2264};
2265
2266class HNullConstant : public HConstant {
2267 public:
2268  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
2269    return true;
2270  }
2271
2272  size_t ComputeHashCode() const OVERRIDE { return 0; }
2273
2274  DECLARE_INSTRUCTION(NullConstant);
2275
2276 private:
2277  HNullConstant() : HConstant(Primitive::kPrimNot) {}
2278
2279  friend class HGraph;
2280  DISALLOW_COPY_AND_ASSIGN(HNullConstant);
2281};
2282
2283// Constants of the type int. Those can be from Dex instructions, or
2284// synthesized (for example with the if-eqz instruction).
2285class HIntConstant : public HConstant {
2286 public:
2287  int32_t GetValue() const { return value_; }
2288
2289  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2290    return other->AsIntConstant()->value_ == value_;
2291  }
2292
2293  size_t ComputeHashCode() const OVERRIDE { return GetValue(); }
2294
2295  bool IsMinusOne() const OVERRIDE { return GetValue() == -1; }
2296  bool IsZero() const OVERRIDE { return GetValue() == 0; }
2297  bool IsOne() const OVERRIDE { return GetValue() == 1; }
2298
2299  DECLARE_INSTRUCTION(IntConstant);
2300
2301 private:
2302  explicit HIntConstant(int32_t value) : HConstant(Primitive::kPrimInt), value_(value) {}
2303
2304  const int32_t value_;
2305
2306  friend class HGraph;
2307  ART_FRIEND_TEST(GraphTest, InsertInstructionBefore);
2308  ART_FRIEND_TYPED_TEST(ParallelMoveTest, ConstantLast);
2309  DISALLOW_COPY_AND_ASSIGN(HIntConstant);
2310};
2311
2312class HLongConstant : public HConstant {
2313 public:
2314  int64_t GetValue() const { return value_; }
2315
2316  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2317    return other->AsLongConstant()->value_ == value_;
2318  }
2319
2320  size_t ComputeHashCode() const OVERRIDE { return static_cast<size_t>(GetValue()); }
2321
2322  bool IsMinusOne() const OVERRIDE { return GetValue() == -1; }
2323  bool IsZero() const OVERRIDE { return GetValue() == 0; }
2324  bool IsOne() const OVERRIDE { return GetValue() == 1; }
2325
2326  DECLARE_INSTRUCTION(LongConstant);
2327
2328 private:
2329  explicit HLongConstant(int64_t value) : HConstant(Primitive::kPrimLong), value_(value) {}
2330
2331  const int64_t value_;
2332
2333  friend class HGraph;
2334  DISALLOW_COPY_AND_ASSIGN(HLongConstant);
2335};
2336
2337enum class Intrinsics {
2338#define OPTIMIZING_INTRINSICS(Name, IsStatic) k ## Name,
2339#include "intrinsics_list.h"
2340  kNone,
2341  INTRINSICS_LIST(OPTIMIZING_INTRINSICS)
2342#undef INTRINSICS_LIST
2343#undef OPTIMIZING_INTRINSICS
2344};
2345std::ostream& operator<<(std::ostream& os, const Intrinsics& intrinsic);
2346
2347class HInvoke : public HInstruction {
2348 public:
2349  size_t InputCount() const OVERRIDE { return inputs_.Size(); }
2350
2351  // Runtime needs to walk the stack, so Dex -> Dex calls need to
2352  // know their environment.
2353  bool NeedsEnvironment() const OVERRIDE { return true; }
2354
2355  void SetArgumentAt(size_t index, HInstruction* argument) {
2356    SetRawInputAt(index, argument);
2357  }
2358
2359  // Return the number of arguments.  This number can be lower than
2360  // the number of inputs returned by InputCount(), as some invoke
2361  // instructions (e.g. HInvokeStaticOrDirect) can have non-argument
2362  // inputs at the end of their list of inputs.
2363  uint32_t GetNumberOfArguments() const { return number_of_arguments_; }
2364
2365  Primitive::Type GetType() const OVERRIDE { return return_type_; }
2366
2367  uint32_t GetDexPc() const OVERRIDE { return dex_pc_; }
2368
2369  uint32_t GetDexMethodIndex() const { return dex_method_index_; }
2370
2371  Intrinsics GetIntrinsic() const {
2372    return intrinsic_;
2373  }
2374
2375  void SetIntrinsic(Intrinsics intrinsic) {
2376    intrinsic_ = intrinsic;
2377  }
2378
2379  DECLARE_INSTRUCTION(Invoke);
2380
2381 protected:
2382  HInvoke(ArenaAllocator* arena,
2383          uint32_t number_of_arguments,
2384          uint32_t number_of_other_inputs,
2385          Primitive::Type return_type,
2386          uint32_t dex_pc,
2387          uint32_t dex_method_index)
2388    : HInstruction(SideEffects::All()),
2389      number_of_arguments_(number_of_arguments),
2390      inputs_(arena, number_of_arguments),
2391      return_type_(return_type),
2392      dex_pc_(dex_pc),
2393      dex_method_index_(dex_method_index),
2394      intrinsic_(Intrinsics::kNone) {
2395    uint32_t number_of_inputs = number_of_arguments + number_of_other_inputs;
2396    inputs_.SetSize(number_of_inputs);
2397  }
2398
2399  const HUserRecord<HInstruction*> InputRecordAt(size_t i) const OVERRIDE { return inputs_.Get(i); }
2400  void SetRawInputRecordAt(size_t index, const HUserRecord<HInstruction*>& input) OVERRIDE {
2401    inputs_.Put(index, input);
2402  }
2403
2404  uint32_t number_of_arguments_;
2405  GrowableArray<HUserRecord<HInstruction*> > inputs_;
2406  const Primitive::Type return_type_;
2407  const uint32_t dex_pc_;
2408  const uint32_t dex_method_index_;
2409  Intrinsics intrinsic_;
2410
2411 private:
2412  DISALLOW_COPY_AND_ASSIGN(HInvoke);
2413};
2414
2415class HInvokeStaticOrDirect : public HInvoke {
2416 public:
2417  // Requirements of this method call regarding the class
2418  // initialization (clinit) check of its declaring class.
2419  enum class ClinitCheckRequirement {
2420    kNone,      // Class already initialized.
2421    kExplicit,  // Static call having explicit clinit check as last input.
2422    kImplicit,  // Static call implicitly requiring a clinit check.
2423  };
2424
2425  HInvokeStaticOrDirect(ArenaAllocator* arena,
2426                        uint32_t number_of_arguments,
2427                        Primitive::Type return_type,
2428                        uint32_t dex_pc,
2429                        uint32_t dex_method_index,
2430                        bool is_recursive,
2431                        int32_t string_init_offset,
2432                        InvokeType original_invoke_type,
2433                        InvokeType invoke_type,
2434                        ClinitCheckRequirement clinit_check_requirement)
2435      : HInvoke(arena,
2436                number_of_arguments,
2437                clinit_check_requirement == ClinitCheckRequirement::kExplicit ? 1u : 0u,
2438                return_type,
2439                dex_pc,
2440                dex_method_index),
2441        original_invoke_type_(original_invoke_type),
2442        invoke_type_(invoke_type),
2443        is_recursive_(is_recursive),
2444        clinit_check_requirement_(clinit_check_requirement),
2445        string_init_offset_(string_init_offset) {}
2446
2447  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
2448    UNUSED(obj);
2449    // We access the method via the dex cache so we can't do an implicit null check.
2450    // TODO: for intrinsics we can generate implicit null checks.
2451    return false;
2452  }
2453
2454  InvokeType GetOriginalInvokeType() const { return original_invoke_type_; }
2455  InvokeType GetInvokeType() const { return invoke_type_; }
2456  bool IsRecursive() const { return is_recursive_; }
2457  bool NeedsDexCache() const OVERRIDE { return !IsRecursive(); }
2458  bool IsStringInit() const { return string_init_offset_ != 0; }
2459  int32_t GetStringInitOffset() const { return string_init_offset_; }
2460
2461  // Is this instruction a call to a static method?
2462  bool IsStatic() const {
2463    return GetInvokeType() == kStatic;
2464  }
2465
2466  // Remove the art::HLoadClass instruction set as last input by
2467  // art::PrepareForRegisterAllocation::VisitClinitCheck in lieu of
2468  // the initial art::HClinitCheck instruction (only relevant for
2469  // static calls with explicit clinit check).
2470  void RemoveLoadClassAsLastInput() {
2471    DCHECK(IsStaticWithExplicitClinitCheck());
2472    size_t last_input_index = InputCount() - 1;
2473    HInstruction* last_input = InputAt(last_input_index);
2474    DCHECK(last_input != nullptr);
2475    DCHECK(last_input->IsLoadClass()) << last_input->DebugName();
2476    RemoveAsUserOfInput(last_input_index);
2477    inputs_.DeleteAt(last_input_index);
2478    clinit_check_requirement_ = ClinitCheckRequirement::kImplicit;
2479    DCHECK(IsStaticWithImplicitClinitCheck());
2480  }
2481
2482  // Is this a call to a static method whose declaring class has an
2483  // explicit intialization check in the graph?
2484  bool IsStaticWithExplicitClinitCheck() const {
2485    return IsStatic() && (clinit_check_requirement_ == ClinitCheckRequirement::kExplicit);
2486  }
2487
2488  // Is this a call to a static method whose declaring class has an
2489  // implicit intialization check requirement?
2490  bool IsStaticWithImplicitClinitCheck() const {
2491    return IsStatic() && (clinit_check_requirement_ == ClinitCheckRequirement::kImplicit);
2492  }
2493
2494  DECLARE_INSTRUCTION(InvokeStaticOrDirect);
2495
2496 protected:
2497  const HUserRecord<HInstruction*> InputRecordAt(size_t i) const OVERRIDE {
2498    const HUserRecord<HInstruction*> input_record = HInvoke::InputRecordAt(i);
2499    if (kIsDebugBuild && IsStaticWithExplicitClinitCheck() && (i == InputCount() - 1)) {
2500      HInstruction* input = input_record.GetInstruction();
2501      // `input` is the last input of a static invoke marked as having
2502      // an explicit clinit check. It must either be:
2503      // - an art::HClinitCheck instruction, set by art::HGraphBuilder; or
2504      // - an art::HLoadClass instruction, set by art::PrepareForRegisterAllocation.
2505      DCHECK(input != nullptr);
2506      DCHECK(input->IsClinitCheck() || input->IsLoadClass()) << input->DebugName();
2507    }
2508    return input_record;
2509  }
2510
2511 private:
2512  const InvokeType original_invoke_type_;
2513  const InvokeType invoke_type_;
2514  const bool is_recursive_;
2515  ClinitCheckRequirement clinit_check_requirement_;
2516  // Thread entrypoint offset for string init method if this is a string init invoke.
2517  // Note that there are multiple string init methods, each having its own offset.
2518  int32_t string_init_offset_;
2519
2520  DISALLOW_COPY_AND_ASSIGN(HInvokeStaticOrDirect);
2521};
2522
2523class HInvokeVirtual : public HInvoke {
2524 public:
2525  HInvokeVirtual(ArenaAllocator* arena,
2526                 uint32_t number_of_arguments,
2527                 Primitive::Type return_type,
2528                 uint32_t dex_pc,
2529                 uint32_t dex_method_index,
2530                 uint32_t vtable_index)
2531      : HInvoke(arena, number_of_arguments, 0u, return_type, dex_pc, dex_method_index),
2532        vtable_index_(vtable_index) {}
2533
2534  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
2535    // TODO: Add implicit null checks in intrinsics.
2536    return (obj == InputAt(0)) && !GetLocations()->Intrinsified();
2537  }
2538
2539  uint32_t GetVTableIndex() const { return vtable_index_; }
2540
2541  DECLARE_INSTRUCTION(InvokeVirtual);
2542
2543 private:
2544  const uint32_t vtable_index_;
2545
2546  DISALLOW_COPY_AND_ASSIGN(HInvokeVirtual);
2547};
2548
2549class HInvokeInterface : public HInvoke {
2550 public:
2551  HInvokeInterface(ArenaAllocator* arena,
2552                   uint32_t number_of_arguments,
2553                   Primitive::Type return_type,
2554                   uint32_t dex_pc,
2555                   uint32_t dex_method_index,
2556                   uint32_t imt_index)
2557      : HInvoke(arena, number_of_arguments, 0u, return_type, dex_pc, dex_method_index),
2558        imt_index_(imt_index) {}
2559
2560  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
2561    // TODO: Add implicit null checks in intrinsics.
2562    return (obj == InputAt(0)) && !GetLocations()->Intrinsified();
2563  }
2564
2565  uint32_t GetImtIndex() const { return imt_index_; }
2566  uint32_t GetDexMethodIndex() const { return dex_method_index_; }
2567
2568  DECLARE_INSTRUCTION(InvokeInterface);
2569
2570 private:
2571  const uint32_t imt_index_;
2572
2573  DISALLOW_COPY_AND_ASSIGN(HInvokeInterface);
2574};
2575
2576class HNewInstance : public HExpression<0> {
2577 public:
2578  HNewInstance(uint32_t dex_pc, uint16_t type_index, QuickEntrypointEnum entrypoint)
2579      : HExpression(Primitive::kPrimNot, SideEffects::None()),
2580        dex_pc_(dex_pc),
2581        type_index_(type_index),
2582        entrypoint_(entrypoint) {}
2583
2584  uint32_t GetDexPc() const OVERRIDE { return dex_pc_; }
2585  uint16_t GetTypeIndex() const { return type_index_; }
2586
2587  // Calls runtime so needs an environment.
2588  bool NeedsEnvironment() const OVERRIDE { return true; }
2589  // It may throw when called on:
2590  //   - interfaces
2591  //   - abstract/innaccessible/unknown classes
2592  // TODO: optimize when possible.
2593  bool CanThrow() const OVERRIDE { return true; }
2594
2595  bool CanBeNull() const OVERRIDE { return false; }
2596
2597  QuickEntrypointEnum GetEntrypoint() const { return entrypoint_; }
2598
2599  DECLARE_INSTRUCTION(NewInstance);
2600
2601 private:
2602  const uint32_t dex_pc_;
2603  const uint16_t type_index_;
2604  const QuickEntrypointEnum entrypoint_;
2605
2606  DISALLOW_COPY_AND_ASSIGN(HNewInstance);
2607};
2608
2609class HNeg : public HUnaryOperation {
2610 public:
2611  explicit HNeg(Primitive::Type result_type, HInstruction* input)
2612      : HUnaryOperation(result_type, input) {}
2613
2614  int32_t Evaluate(int32_t x) const OVERRIDE { return -x; }
2615  int64_t Evaluate(int64_t x) const OVERRIDE { return -x; }
2616
2617  DECLARE_INSTRUCTION(Neg);
2618
2619 private:
2620  DISALLOW_COPY_AND_ASSIGN(HNeg);
2621};
2622
2623class HNewArray : public HExpression<1> {
2624 public:
2625  HNewArray(HInstruction* length,
2626            uint32_t dex_pc,
2627            uint16_t type_index,
2628            QuickEntrypointEnum entrypoint)
2629      : HExpression(Primitive::kPrimNot, SideEffects::None()),
2630        dex_pc_(dex_pc),
2631        type_index_(type_index),
2632        entrypoint_(entrypoint) {
2633    SetRawInputAt(0, length);
2634  }
2635
2636  uint32_t GetDexPc() const OVERRIDE { return dex_pc_; }
2637  uint16_t GetTypeIndex() const { return type_index_; }
2638
2639  // Calls runtime so needs an environment.
2640  bool NeedsEnvironment() const OVERRIDE { return true; }
2641
2642  // May throw NegativeArraySizeException, OutOfMemoryError, etc.
2643  bool CanThrow() const OVERRIDE { return true; }
2644
2645  bool CanBeNull() const OVERRIDE { return false; }
2646
2647  QuickEntrypointEnum GetEntrypoint() const { return entrypoint_; }
2648
2649  DECLARE_INSTRUCTION(NewArray);
2650
2651 private:
2652  const uint32_t dex_pc_;
2653  const uint16_t type_index_;
2654  const QuickEntrypointEnum entrypoint_;
2655
2656  DISALLOW_COPY_AND_ASSIGN(HNewArray);
2657};
2658
2659class HAdd : public HBinaryOperation {
2660 public:
2661  HAdd(Primitive::Type result_type, HInstruction* left, HInstruction* right)
2662      : HBinaryOperation(result_type, left, right) {}
2663
2664  bool IsCommutative() const OVERRIDE { return true; }
2665
2666  int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE {
2667    return x + y;
2668  }
2669  int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE {
2670    return x + y;
2671  }
2672
2673  DECLARE_INSTRUCTION(Add);
2674
2675 private:
2676  DISALLOW_COPY_AND_ASSIGN(HAdd);
2677};
2678
2679class HSub : public HBinaryOperation {
2680 public:
2681  HSub(Primitive::Type result_type, HInstruction* left, HInstruction* right)
2682      : HBinaryOperation(result_type, left, right) {}
2683
2684  int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE {
2685    return x - y;
2686  }
2687  int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE {
2688    return x - y;
2689  }
2690
2691  DECLARE_INSTRUCTION(Sub);
2692
2693 private:
2694  DISALLOW_COPY_AND_ASSIGN(HSub);
2695};
2696
2697class HMul : public HBinaryOperation {
2698 public:
2699  HMul(Primitive::Type result_type, HInstruction* left, HInstruction* right)
2700      : HBinaryOperation(result_type, left, right) {}
2701
2702  bool IsCommutative() const OVERRIDE { return true; }
2703
2704  int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE { return x * y; }
2705  int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE { return x * y; }
2706
2707  DECLARE_INSTRUCTION(Mul);
2708
2709 private:
2710  DISALLOW_COPY_AND_ASSIGN(HMul);
2711};
2712
2713class HDiv : public HBinaryOperation {
2714 public:
2715  HDiv(Primitive::Type result_type, HInstruction* left, HInstruction* right, uint32_t dex_pc)
2716      : HBinaryOperation(result_type, left, right), dex_pc_(dex_pc) {}
2717
2718  int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE {
2719    // Our graph structure ensures we never have 0 for `y` during constant folding.
2720    DCHECK_NE(y, 0);
2721    // Special case -1 to avoid getting a SIGFPE on x86(_64).
2722    return (y == -1) ? -x : x / y;
2723  }
2724
2725  int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE {
2726    DCHECK_NE(y, 0);
2727    // Special case -1 to avoid getting a SIGFPE on x86(_64).
2728    return (y == -1) ? -x : x / y;
2729  }
2730
2731  uint32_t GetDexPc() const OVERRIDE { return dex_pc_; }
2732
2733  DECLARE_INSTRUCTION(Div);
2734
2735 private:
2736  const uint32_t dex_pc_;
2737
2738  DISALLOW_COPY_AND_ASSIGN(HDiv);
2739};
2740
2741class HRem : public HBinaryOperation {
2742 public:
2743  HRem(Primitive::Type result_type, HInstruction* left, HInstruction* right, uint32_t dex_pc)
2744      : HBinaryOperation(result_type, left, right), dex_pc_(dex_pc) {}
2745
2746  int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE {
2747    DCHECK_NE(y, 0);
2748    // Special case -1 to avoid getting a SIGFPE on x86(_64).
2749    return (y == -1) ? 0 : x % y;
2750  }
2751
2752  int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE {
2753    DCHECK_NE(y, 0);
2754    // Special case -1 to avoid getting a SIGFPE on x86(_64).
2755    return (y == -1) ? 0 : x % y;
2756  }
2757
2758  uint32_t GetDexPc() const OVERRIDE { return dex_pc_; }
2759
2760  DECLARE_INSTRUCTION(Rem);
2761
2762 private:
2763  const uint32_t dex_pc_;
2764
2765  DISALLOW_COPY_AND_ASSIGN(HRem);
2766};
2767
2768class HDivZeroCheck : public HExpression<1> {
2769 public:
2770  HDivZeroCheck(HInstruction* value, uint32_t dex_pc)
2771      : HExpression(value->GetType(), SideEffects::None()), dex_pc_(dex_pc) {
2772    SetRawInputAt(0, value);
2773  }
2774
2775  bool CanBeMoved() const OVERRIDE { return true; }
2776
2777  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2778    UNUSED(other);
2779    return true;
2780  }
2781
2782  bool NeedsEnvironment() const OVERRIDE { return true; }
2783  bool CanThrow() const OVERRIDE { return true; }
2784
2785  uint32_t GetDexPc() const OVERRIDE { return dex_pc_; }
2786
2787  DECLARE_INSTRUCTION(DivZeroCheck);
2788
2789 private:
2790  const uint32_t dex_pc_;
2791
2792  DISALLOW_COPY_AND_ASSIGN(HDivZeroCheck);
2793};
2794
2795class HShl : public HBinaryOperation {
2796 public:
2797  HShl(Primitive::Type result_type, HInstruction* left, HInstruction* right)
2798      : HBinaryOperation(result_type, left, right) {}
2799
2800  int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE { return x << (y & kMaxIntShiftValue); }
2801  int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE { return x << (y & kMaxLongShiftValue); }
2802
2803  DECLARE_INSTRUCTION(Shl);
2804
2805 private:
2806  DISALLOW_COPY_AND_ASSIGN(HShl);
2807};
2808
2809class HShr : public HBinaryOperation {
2810 public:
2811  HShr(Primitive::Type result_type, HInstruction* left, HInstruction* right)
2812      : HBinaryOperation(result_type, left, right) {}
2813
2814  int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE { return x >> (y & kMaxIntShiftValue); }
2815  int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE { return x >> (y & kMaxLongShiftValue); }
2816
2817  DECLARE_INSTRUCTION(Shr);
2818
2819 private:
2820  DISALLOW_COPY_AND_ASSIGN(HShr);
2821};
2822
2823class HUShr : public HBinaryOperation {
2824 public:
2825  HUShr(Primitive::Type result_type, HInstruction* left, HInstruction* right)
2826      : HBinaryOperation(result_type, left, right) {}
2827
2828  int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE {
2829    uint32_t ux = static_cast<uint32_t>(x);
2830    uint32_t uy = static_cast<uint32_t>(y) & kMaxIntShiftValue;
2831    return static_cast<int32_t>(ux >> uy);
2832  }
2833
2834  int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE {
2835    uint64_t ux = static_cast<uint64_t>(x);
2836    uint64_t uy = static_cast<uint64_t>(y) & kMaxLongShiftValue;
2837    return static_cast<int64_t>(ux >> uy);
2838  }
2839
2840  DECLARE_INSTRUCTION(UShr);
2841
2842 private:
2843  DISALLOW_COPY_AND_ASSIGN(HUShr);
2844};
2845
2846class HAnd : public HBinaryOperation {
2847 public:
2848  HAnd(Primitive::Type result_type, HInstruction* left, HInstruction* right)
2849      : HBinaryOperation(result_type, left, right) {}
2850
2851  bool IsCommutative() const OVERRIDE { return true; }
2852
2853  int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE { return x & y; }
2854  int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE { return x & y; }
2855
2856  DECLARE_INSTRUCTION(And);
2857
2858 private:
2859  DISALLOW_COPY_AND_ASSIGN(HAnd);
2860};
2861
2862class HOr : public HBinaryOperation {
2863 public:
2864  HOr(Primitive::Type result_type, HInstruction* left, HInstruction* right)
2865      : HBinaryOperation(result_type, left, right) {}
2866
2867  bool IsCommutative() const OVERRIDE { return true; }
2868
2869  int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE { return x | y; }
2870  int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE { return x | y; }
2871
2872  DECLARE_INSTRUCTION(Or);
2873
2874 private:
2875  DISALLOW_COPY_AND_ASSIGN(HOr);
2876};
2877
2878class HXor : public HBinaryOperation {
2879 public:
2880  HXor(Primitive::Type result_type, HInstruction* left, HInstruction* right)
2881      : HBinaryOperation(result_type, left, right) {}
2882
2883  bool IsCommutative() const OVERRIDE { return true; }
2884
2885  int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE { return x ^ y; }
2886  int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE { return x ^ y; }
2887
2888  DECLARE_INSTRUCTION(Xor);
2889
2890 private:
2891  DISALLOW_COPY_AND_ASSIGN(HXor);
2892};
2893
2894// The value of a parameter in this method. Its location depends on
2895// the calling convention.
2896class HParameterValue : public HExpression<0> {
2897 public:
2898  HParameterValue(uint8_t index, Primitive::Type parameter_type, bool is_this = false)
2899      : HExpression(parameter_type, SideEffects::None()), index_(index), is_this_(is_this) {}
2900
2901  uint8_t GetIndex() const { return index_; }
2902
2903  bool CanBeNull() const OVERRIDE { return !is_this_; }
2904
2905  DECLARE_INSTRUCTION(ParameterValue);
2906
2907 private:
2908  // The index of this parameter in the parameters list. Must be less
2909  // than HGraph::number_of_in_vregs_.
2910  const uint8_t index_;
2911
2912  // Whether or not the parameter value corresponds to 'this' argument.
2913  const bool is_this_;
2914
2915  DISALLOW_COPY_AND_ASSIGN(HParameterValue);
2916};
2917
2918class HNot : public HUnaryOperation {
2919 public:
2920  explicit HNot(Primitive::Type result_type, HInstruction* input)
2921      : HUnaryOperation(result_type, input) {}
2922
2923  bool CanBeMoved() const OVERRIDE { return true; }
2924  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2925    UNUSED(other);
2926    return true;
2927  }
2928
2929  int32_t Evaluate(int32_t x) const OVERRIDE { return ~x; }
2930  int64_t Evaluate(int64_t x) const OVERRIDE { return ~x; }
2931
2932  DECLARE_INSTRUCTION(Not);
2933
2934 private:
2935  DISALLOW_COPY_AND_ASSIGN(HNot);
2936};
2937
2938class HBooleanNot : public HUnaryOperation {
2939 public:
2940  explicit HBooleanNot(HInstruction* input)
2941      : HUnaryOperation(Primitive::Type::kPrimBoolean, input) {}
2942
2943  bool CanBeMoved() const OVERRIDE { return true; }
2944  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2945    UNUSED(other);
2946    return true;
2947  }
2948
2949  int32_t Evaluate(int32_t x) const OVERRIDE {
2950    DCHECK(IsUint<1>(x));
2951    return !x;
2952  }
2953
2954  int64_t Evaluate(int64_t x ATTRIBUTE_UNUSED) const OVERRIDE {
2955    LOG(FATAL) << DebugName() << " cannot be used with 64-bit values";
2956    UNREACHABLE();
2957  }
2958
2959  DECLARE_INSTRUCTION(BooleanNot);
2960
2961 private:
2962  DISALLOW_COPY_AND_ASSIGN(HBooleanNot);
2963};
2964
2965class HTypeConversion : public HExpression<1> {
2966 public:
2967  // Instantiate a type conversion of `input` to `result_type`.
2968  HTypeConversion(Primitive::Type result_type, HInstruction* input, uint32_t dex_pc)
2969      : HExpression(result_type, SideEffects::None()), dex_pc_(dex_pc) {
2970    SetRawInputAt(0, input);
2971    DCHECK_NE(input->GetType(), result_type);
2972  }
2973
2974  HInstruction* GetInput() const { return InputAt(0); }
2975  Primitive::Type GetInputType() const { return GetInput()->GetType(); }
2976  Primitive::Type GetResultType() const { return GetType(); }
2977
2978  // Required by the x86 and ARM code generators when producing calls
2979  // to the runtime.
2980  uint32_t GetDexPc() const OVERRIDE { return dex_pc_; }
2981
2982  bool CanBeMoved() const OVERRIDE { return true; }
2983  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE { return true; }
2984
2985  // Try to statically evaluate the conversion and return a HConstant
2986  // containing the result.  If the input cannot be converted, return nullptr.
2987  HConstant* TryStaticEvaluation() const;
2988
2989  DECLARE_INSTRUCTION(TypeConversion);
2990
2991 private:
2992  const uint32_t dex_pc_;
2993
2994  DISALLOW_COPY_AND_ASSIGN(HTypeConversion);
2995};
2996
2997static constexpr uint32_t kNoRegNumber = -1;
2998
2999class HPhi : public HInstruction {
3000 public:
3001  HPhi(ArenaAllocator* arena, uint32_t reg_number, size_t number_of_inputs, Primitive::Type type)
3002      : HInstruction(SideEffects::None()),
3003        inputs_(arena, number_of_inputs),
3004        reg_number_(reg_number),
3005        type_(type),
3006        is_live_(false),
3007        can_be_null_(true) {
3008    inputs_.SetSize(number_of_inputs);
3009  }
3010
3011  // Returns a type equivalent to the given `type`, but that a `HPhi` can hold.
3012  static Primitive::Type ToPhiType(Primitive::Type type) {
3013    switch (type) {
3014      case Primitive::kPrimBoolean:
3015      case Primitive::kPrimByte:
3016      case Primitive::kPrimShort:
3017      case Primitive::kPrimChar:
3018        return Primitive::kPrimInt;
3019      default:
3020        return type;
3021    }
3022  }
3023
3024  size_t InputCount() const OVERRIDE { return inputs_.Size(); }
3025
3026  void AddInput(HInstruction* input);
3027  void RemoveInputAt(size_t index);
3028
3029  Primitive::Type GetType() const OVERRIDE { return type_; }
3030  void SetType(Primitive::Type type) { type_ = type; }
3031
3032  bool CanBeNull() const OVERRIDE { return can_be_null_; }
3033  void SetCanBeNull(bool can_be_null) { can_be_null_ = can_be_null; }
3034
3035  uint32_t GetRegNumber() const { return reg_number_; }
3036
3037  void SetDead() { is_live_ = false; }
3038  void SetLive() { is_live_ = true; }
3039  bool IsDead() const { return !is_live_; }
3040  bool IsLive() const { return is_live_; }
3041
3042  // Returns the next equivalent phi (starting from the current one) or null if there is none.
3043  // An equivalent phi is a phi having the same dex register and type.
3044  // It assumes that phis with the same dex register are adjacent.
3045  HPhi* GetNextEquivalentPhiWithSameType() {
3046    HInstruction* next = GetNext();
3047    while (next != nullptr && next->AsPhi()->GetRegNumber() == reg_number_) {
3048      if (next->GetType() == GetType()) {
3049        return next->AsPhi();
3050      }
3051      next = next->GetNext();
3052    }
3053    return nullptr;
3054  }
3055
3056  DECLARE_INSTRUCTION(Phi);
3057
3058 protected:
3059  const HUserRecord<HInstruction*> InputRecordAt(size_t i) const OVERRIDE { return inputs_.Get(i); }
3060
3061  void SetRawInputRecordAt(size_t index, const HUserRecord<HInstruction*>& input) OVERRIDE {
3062    inputs_.Put(index, input);
3063  }
3064
3065 private:
3066  GrowableArray<HUserRecord<HInstruction*> > inputs_;
3067  const uint32_t reg_number_;
3068  Primitive::Type type_;
3069  bool is_live_;
3070  bool can_be_null_;
3071
3072  DISALLOW_COPY_AND_ASSIGN(HPhi);
3073};
3074
3075class HNullCheck : public HExpression<1> {
3076 public:
3077  HNullCheck(HInstruction* value, uint32_t dex_pc)
3078      : HExpression(value->GetType(), SideEffects::None()), dex_pc_(dex_pc) {
3079    SetRawInputAt(0, value);
3080  }
3081
3082  bool CanBeMoved() const OVERRIDE { return true; }
3083  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
3084    UNUSED(other);
3085    return true;
3086  }
3087
3088  bool NeedsEnvironment() const OVERRIDE { return true; }
3089
3090  bool CanThrow() const OVERRIDE { return true; }
3091
3092  bool CanBeNull() const OVERRIDE { return false; }
3093
3094  uint32_t GetDexPc() const OVERRIDE { return dex_pc_; }
3095
3096  DECLARE_INSTRUCTION(NullCheck);
3097
3098 private:
3099  const uint32_t dex_pc_;
3100
3101  DISALLOW_COPY_AND_ASSIGN(HNullCheck);
3102};
3103
3104class FieldInfo : public ValueObject {
3105 public:
3106  FieldInfo(MemberOffset field_offset, Primitive::Type field_type, bool is_volatile)
3107      : field_offset_(field_offset), field_type_(field_type), is_volatile_(is_volatile) {}
3108
3109  MemberOffset GetFieldOffset() const { return field_offset_; }
3110  Primitive::Type GetFieldType() const { return field_type_; }
3111  bool IsVolatile() const { return is_volatile_; }
3112
3113 private:
3114  const MemberOffset field_offset_;
3115  const Primitive::Type field_type_;
3116  const bool is_volatile_;
3117};
3118
3119class HInstanceFieldGet : public HExpression<1> {
3120 public:
3121  HInstanceFieldGet(HInstruction* value,
3122                    Primitive::Type field_type,
3123                    MemberOffset field_offset,
3124                    bool is_volatile)
3125      : HExpression(field_type, SideEffects::DependsOnSomething()),
3126        field_info_(field_offset, field_type, is_volatile) {
3127    SetRawInputAt(0, value);
3128  }
3129
3130  bool CanBeMoved() const OVERRIDE { return !IsVolatile(); }
3131
3132  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
3133    HInstanceFieldGet* other_get = other->AsInstanceFieldGet();
3134    return GetFieldOffset().SizeValue() == other_get->GetFieldOffset().SizeValue();
3135  }
3136
3137  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
3138    return (obj == InputAt(0)) && GetFieldOffset().Uint32Value() < kPageSize;
3139  }
3140
3141  size_t ComputeHashCode() const OVERRIDE {
3142    return (HInstruction::ComputeHashCode() << 7) | GetFieldOffset().SizeValue();
3143  }
3144
3145  const FieldInfo& GetFieldInfo() const { return field_info_; }
3146  MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
3147  Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); }
3148  bool IsVolatile() const { return field_info_.IsVolatile(); }
3149
3150  DECLARE_INSTRUCTION(InstanceFieldGet);
3151
3152 private:
3153  const FieldInfo field_info_;
3154
3155  DISALLOW_COPY_AND_ASSIGN(HInstanceFieldGet);
3156};
3157
3158class HInstanceFieldSet : public HTemplateInstruction<2> {
3159 public:
3160  HInstanceFieldSet(HInstruction* object,
3161                    HInstruction* value,
3162                    Primitive::Type field_type,
3163                    MemberOffset field_offset,
3164                    bool is_volatile)
3165      : HTemplateInstruction(SideEffects::ChangesSomething()),
3166        field_info_(field_offset, field_type, is_volatile) {
3167    SetRawInputAt(0, object);
3168    SetRawInputAt(1, value);
3169  }
3170
3171  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
3172    return (obj == InputAt(0)) && GetFieldOffset().Uint32Value() < kPageSize;
3173  }
3174
3175  const FieldInfo& GetFieldInfo() const { return field_info_; }
3176  MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
3177  Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); }
3178  bool IsVolatile() const { return field_info_.IsVolatile(); }
3179  HInstruction* GetValue() const { return InputAt(1); }
3180
3181  DECLARE_INSTRUCTION(InstanceFieldSet);
3182
3183 private:
3184  const FieldInfo field_info_;
3185
3186  DISALLOW_COPY_AND_ASSIGN(HInstanceFieldSet);
3187};
3188
3189class HArrayGet : public HExpression<2> {
3190 public:
3191  HArrayGet(HInstruction* array, HInstruction* index, Primitive::Type type)
3192      : HExpression(type, SideEffects::DependsOnSomething()) {
3193    SetRawInputAt(0, array);
3194    SetRawInputAt(1, index);
3195  }
3196
3197  bool CanBeMoved() const OVERRIDE { return true; }
3198  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
3199    UNUSED(other);
3200    return true;
3201  }
3202  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
3203    UNUSED(obj);
3204    // TODO: We can be smarter here.
3205    // Currently, the array access is always preceded by an ArrayLength or a NullCheck
3206    // which generates the implicit null check. There are cases when these can be removed
3207    // to produce better code. If we ever add optimizations to do so we should allow an
3208    // implicit check here (as long as the address falls in the first page).
3209    return false;
3210  }
3211
3212  void SetType(Primitive::Type type) { type_ = type; }
3213
3214  HInstruction* GetArray() const { return InputAt(0); }
3215  HInstruction* GetIndex() const { return InputAt(1); }
3216
3217  DECLARE_INSTRUCTION(ArrayGet);
3218
3219 private:
3220  DISALLOW_COPY_AND_ASSIGN(HArrayGet);
3221};
3222
3223class HArraySet : public HTemplateInstruction<3> {
3224 public:
3225  HArraySet(HInstruction* array,
3226            HInstruction* index,
3227            HInstruction* value,
3228            Primitive::Type expected_component_type,
3229            uint32_t dex_pc)
3230      : HTemplateInstruction(SideEffects::ChangesSomething()),
3231        dex_pc_(dex_pc),
3232        expected_component_type_(expected_component_type),
3233        needs_type_check_(value->GetType() == Primitive::kPrimNot) {
3234    SetRawInputAt(0, array);
3235    SetRawInputAt(1, index);
3236    SetRawInputAt(2, value);
3237  }
3238
3239  bool NeedsEnvironment() const OVERRIDE {
3240    // We currently always call a runtime method to catch array store
3241    // exceptions.
3242    return needs_type_check_;
3243  }
3244
3245  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
3246    UNUSED(obj);
3247    // TODO: Same as for ArrayGet.
3248    return false;
3249  }
3250
3251  void ClearNeedsTypeCheck() {
3252    needs_type_check_ = false;
3253  }
3254
3255  bool NeedsTypeCheck() const { return needs_type_check_; }
3256
3257  uint32_t GetDexPc() const OVERRIDE { return dex_pc_; }
3258
3259  HInstruction* GetArray() const { return InputAt(0); }
3260  HInstruction* GetIndex() const { return InputAt(1); }
3261  HInstruction* GetValue() const { return InputAt(2); }
3262
3263  Primitive::Type GetComponentType() const {
3264    // The Dex format does not type floating point index operations. Since the
3265    // `expected_component_type_` is set during building and can therefore not
3266    // be correct, we also check what is the value type. If it is a floating
3267    // point type, we must use that type.
3268    Primitive::Type value_type = GetValue()->GetType();
3269    return ((value_type == Primitive::kPrimFloat) || (value_type == Primitive::kPrimDouble))
3270        ? value_type
3271        : expected_component_type_;
3272  }
3273
3274  DECLARE_INSTRUCTION(ArraySet);
3275
3276 private:
3277  const uint32_t dex_pc_;
3278  const Primitive::Type expected_component_type_;
3279  bool needs_type_check_;
3280
3281  DISALLOW_COPY_AND_ASSIGN(HArraySet);
3282};
3283
3284class HArrayLength : public HExpression<1> {
3285 public:
3286  explicit HArrayLength(HInstruction* array)
3287      : HExpression(Primitive::kPrimInt, SideEffects::None()) {
3288    // Note that arrays do not change length, so the instruction does not
3289    // depend on any write.
3290    SetRawInputAt(0, array);
3291  }
3292
3293  bool CanBeMoved() const OVERRIDE { return true; }
3294  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
3295    UNUSED(other);
3296    return true;
3297  }
3298  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
3299    return obj == InputAt(0);
3300  }
3301
3302  DECLARE_INSTRUCTION(ArrayLength);
3303
3304 private:
3305  DISALLOW_COPY_AND_ASSIGN(HArrayLength);
3306};
3307
3308class HBoundsCheck : public HExpression<2> {
3309 public:
3310  HBoundsCheck(HInstruction* index, HInstruction* length, uint32_t dex_pc)
3311      : HExpression(index->GetType(), SideEffects::None()), dex_pc_(dex_pc) {
3312    DCHECK(index->GetType() == Primitive::kPrimInt);
3313    SetRawInputAt(0, index);
3314    SetRawInputAt(1, length);
3315  }
3316
3317  bool CanBeMoved() const OVERRIDE { return true; }
3318  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
3319    UNUSED(other);
3320    return true;
3321  }
3322
3323  bool NeedsEnvironment() const OVERRIDE { return true; }
3324
3325  bool CanThrow() const OVERRIDE { return true; }
3326
3327  uint32_t GetDexPc() const OVERRIDE { return dex_pc_; }
3328
3329  DECLARE_INSTRUCTION(BoundsCheck);
3330
3331 private:
3332  const uint32_t dex_pc_;
3333
3334  DISALLOW_COPY_AND_ASSIGN(HBoundsCheck);
3335};
3336
3337/**
3338 * Some DEX instructions are folded into multiple HInstructions that need
3339 * to stay live until the last HInstruction. This class
3340 * is used as a marker for the baseline compiler to ensure its preceding
3341 * HInstruction stays live. `index` represents the stack location index of the
3342 * instruction (the actual offset is computed as index * vreg_size).
3343 */
3344class HTemporary : public HTemplateInstruction<0> {
3345 public:
3346  explicit HTemporary(size_t index) : HTemplateInstruction(SideEffects::None()), index_(index) {}
3347
3348  size_t GetIndex() const { return index_; }
3349
3350  Primitive::Type GetType() const OVERRIDE {
3351    // The previous instruction is the one that will be stored in the temporary location.
3352    DCHECK(GetPrevious() != nullptr);
3353    return GetPrevious()->GetType();
3354  }
3355
3356  DECLARE_INSTRUCTION(Temporary);
3357
3358 private:
3359  const size_t index_;
3360
3361  DISALLOW_COPY_AND_ASSIGN(HTemporary);
3362};
3363
3364class HSuspendCheck : public HTemplateInstruction<0> {
3365 public:
3366  explicit HSuspendCheck(uint32_t dex_pc)
3367      : HTemplateInstruction(SideEffects::None()), dex_pc_(dex_pc), slow_path_(nullptr) {}
3368
3369  bool NeedsEnvironment() const OVERRIDE {
3370    return true;
3371  }
3372
3373  uint32_t GetDexPc() const OVERRIDE { return dex_pc_; }
3374  void SetSlowPath(SlowPathCode* slow_path) { slow_path_ = slow_path; }
3375  SlowPathCode* GetSlowPath() const { return slow_path_; }
3376
3377  DECLARE_INSTRUCTION(SuspendCheck);
3378
3379 private:
3380  const uint32_t dex_pc_;
3381
3382  // Only used for code generation, in order to share the same slow path between back edges
3383  // of a same loop.
3384  SlowPathCode* slow_path_;
3385
3386  DISALLOW_COPY_AND_ASSIGN(HSuspendCheck);
3387};
3388
3389/**
3390 * Instruction to load a Class object.
3391 */
3392class HLoadClass : public HExpression<0> {
3393 public:
3394  HLoadClass(uint16_t type_index,
3395             bool is_referrers_class,
3396             uint32_t dex_pc)
3397      : HExpression(Primitive::kPrimNot, SideEffects::None()),
3398        type_index_(type_index),
3399        is_referrers_class_(is_referrers_class),
3400        dex_pc_(dex_pc),
3401        generate_clinit_check_(false),
3402        loaded_class_rti_(ReferenceTypeInfo::CreateTop(/* is_exact */ false)) {}
3403
3404  bool CanBeMoved() const OVERRIDE { return true; }
3405
3406  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
3407    return other->AsLoadClass()->type_index_ == type_index_;
3408  }
3409
3410  size_t ComputeHashCode() const OVERRIDE { return type_index_; }
3411
3412  uint32_t GetDexPc() const OVERRIDE { return dex_pc_; }
3413  uint16_t GetTypeIndex() const { return type_index_; }
3414  bool IsReferrersClass() const { return is_referrers_class_; }
3415
3416  bool NeedsEnvironment() const OVERRIDE {
3417    // Will call runtime and load the class if the class is not loaded yet.
3418    // TODO: finer grain decision.
3419    return !is_referrers_class_;
3420  }
3421
3422  bool MustGenerateClinitCheck() const {
3423    return generate_clinit_check_;
3424  }
3425
3426  void SetMustGenerateClinitCheck() {
3427    generate_clinit_check_ = true;
3428  }
3429
3430  bool CanCallRuntime() const {
3431    return MustGenerateClinitCheck() || !is_referrers_class_;
3432  }
3433
3434  bool CanThrow() const OVERRIDE {
3435    // May call runtime and and therefore can throw.
3436    // TODO: finer grain decision.
3437    return !is_referrers_class_;
3438  }
3439
3440  ReferenceTypeInfo GetLoadedClassRTI() {
3441    return loaded_class_rti_;
3442  }
3443
3444  void SetLoadedClassRTI(ReferenceTypeInfo rti) {
3445    // Make sure we only set exact types (the loaded class should never be merged).
3446    DCHECK(rti.IsExact());
3447    loaded_class_rti_ = rti;
3448  }
3449
3450  bool IsResolved() {
3451    return loaded_class_rti_.IsExact();
3452  }
3453
3454  bool NeedsDexCache() const OVERRIDE { return !is_referrers_class_; }
3455
3456  DECLARE_INSTRUCTION(LoadClass);
3457
3458 private:
3459  const uint16_t type_index_;
3460  const bool is_referrers_class_;
3461  const uint32_t dex_pc_;
3462  // Whether this instruction must generate the initialization check.
3463  // Used for code generation.
3464  bool generate_clinit_check_;
3465
3466  ReferenceTypeInfo loaded_class_rti_;
3467
3468  DISALLOW_COPY_AND_ASSIGN(HLoadClass);
3469};
3470
3471class HLoadString : public HExpression<0> {
3472 public:
3473  HLoadString(uint32_t string_index, uint32_t dex_pc)
3474      : HExpression(Primitive::kPrimNot, SideEffects::None()),
3475        string_index_(string_index),
3476        dex_pc_(dex_pc) {}
3477
3478  bool CanBeMoved() const OVERRIDE { return true; }
3479
3480  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
3481    return other->AsLoadString()->string_index_ == string_index_;
3482  }
3483
3484  size_t ComputeHashCode() const OVERRIDE { return string_index_; }
3485
3486  uint32_t GetDexPc() const OVERRIDE { return dex_pc_; }
3487  uint32_t GetStringIndex() const { return string_index_; }
3488
3489  // TODO: Can we deopt or debug when we resolve a string?
3490  bool NeedsEnvironment() const OVERRIDE { return false; }
3491  bool NeedsDexCache() const OVERRIDE { return true; }
3492
3493  DECLARE_INSTRUCTION(LoadString);
3494
3495 private:
3496  const uint32_t string_index_;
3497  const uint32_t dex_pc_;
3498
3499  DISALLOW_COPY_AND_ASSIGN(HLoadString);
3500};
3501
3502/**
3503 * Performs an initialization check on its Class object input.
3504 */
3505class HClinitCheck : public HExpression<1> {
3506 public:
3507  explicit HClinitCheck(HLoadClass* constant, uint32_t dex_pc)
3508      : HExpression(Primitive::kPrimNot, SideEffects::ChangesSomething()),
3509        dex_pc_(dex_pc) {
3510    SetRawInputAt(0, constant);
3511  }
3512
3513  bool CanBeMoved() const OVERRIDE { return true; }
3514  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
3515    UNUSED(other);
3516    return true;
3517  }
3518
3519  bool NeedsEnvironment() const OVERRIDE {
3520    // May call runtime to initialize the class.
3521    return true;
3522  }
3523
3524  uint32_t GetDexPc() const OVERRIDE { return dex_pc_; }
3525
3526  HLoadClass* GetLoadClass() const { return InputAt(0)->AsLoadClass(); }
3527
3528  DECLARE_INSTRUCTION(ClinitCheck);
3529
3530 private:
3531  const uint32_t dex_pc_;
3532
3533  DISALLOW_COPY_AND_ASSIGN(HClinitCheck);
3534};
3535
3536class HStaticFieldGet : public HExpression<1> {
3537 public:
3538  HStaticFieldGet(HInstruction* cls,
3539                  Primitive::Type field_type,
3540                  MemberOffset field_offset,
3541                  bool is_volatile)
3542      : HExpression(field_type, SideEffects::DependsOnSomething()),
3543        field_info_(field_offset, field_type, is_volatile) {
3544    SetRawInputAt(0, cls);
3545  }
3546
3547
3548  bool CanBeMoved() const OVERRIDE { return !IsVolatile(); }
3549
3550  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
3551    HStaticFieldGet* other_get = other->AsStaticFieldGet();
3552    return GetFieldOffset().SizeValue() == other_get->GetFieldOffset().SizeValue();
3553  }
3554
3555  size_t ComputeHashCode() const OVERRIDE {
3556    return (HInstruction::ComputeHashCode() << 7) | GetFieldOffset().SizeValue();
3557  }
3558
3559  const FieldInfo& GetFieldInfo() const { return field_info_; }
3560  MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
3561  Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); }
3562  bool IsVolatile() const { return field_info_.IsVolatile(); }
3563
3564  DECLARE_INSTRUCTION(StaticFieldGet);
3565
3566 private:
3567  const FieldInfo field_info_;
3568
3569  DISALLOW_COPY_AND_ASSIGN(HStaticFieldGet);
3570};
3571
3572class HStaticFieldSet : public HTemplateInstruction<2> {
3573 public:
3574  HStaticFieldSet(HInstruction* cls,
3575                  HInstruction* value,
3576                  Primitive::Type field_type,
3577                  MemberOffset field_offset,
3578                  bool is_volatile)
3579      : HTemplateInstruction(SideEffects::ChangesSomething()),
3580        field_info_(field_offset, field_type, is_volatile) {
3581    SetRawInputAt(0, cls);
3582    SetRawInputAt(1, value);
3583  }
3584
3585  const FieldInfo& GetFieldInfo() const { return field_info_; }
3586  MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
3587  Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); }
3588  bool IsVolatile() const { return field_info_.IsVolatile(); }
3589
3590  HInstruction* GetValue() const { return InputAt(1); }
3591
3592  DECLARE_INSTRUCTION(StaticFieldSet);
3593
3594 private:
3595  const FieldInfo field_info_;
3596
3597  DISALLOW_COPY_AND_ASSIGN(HStaticFieldSet);
3598};
3599
3600// Implement the move-exception DEX instruction.
3601class HLoadException : public HExpression<0> {
3602 public:
3603  HLoadException() : HExpression(Primitive::kPrimNot, SideEffects::None()) {}
3604
3605  DECLARE_INSTRUCTION(LoadException);
3606
3607 private:
3608  DISALLOW_COPY_AND_ASSIGN(HLoadException);
3609};
3610
3611class HThrow : public HTemplateInstruction<1> {
3612 public:
3613  HThrow(HInstruction* exception, uint32_t dex_pc)
3614      : HTemplateInstruction(SideEffects::None()), dex_pc_(dex_pc) {
3615    SetRawInputAt(0, exception);
3616  }
3617
3618  bool IsControlFlow() const OVERRIDE { return true; }
3619
3620  bool NeedsEnvironment() const OVERRIDE { return true; }
3621
3622  bool CanThrow() const OVERRIDE { return true; }
3623
3624  uint32_t GetDexPc() const OVERRIDE { return dex_pc_; }
3625
3626  DECLARE_INSTRUCTION(Throw);
3627
3628 private:
3629  const uint32_t dex_pc_;
3630
3631  DISALLOW_COPY_AND_ASSIGN(HThrow);
3632};
3633
3634class HInstanceOf : public HExpression<2> {
3635 public:
3636  HInstanceOf(HInstruction* object,
3637              HLoadClass* constant,
3638              bool class_is_final,
3639              uint32_t dex_pc)
3640      : HExpression(Primitive::kPrimBoolean, SideEffects::None()),
3641        class_is_final_(class_is_final),
3642        must_do_null_check_(true),
3643        dex_pc_(dex_pc) {
3644    SetRawInputAt(0, object);
3645    SetRawInputAt(1, constant);
3646  }
3647
3648  bool CanBeMoved() const OVERRIDE { return true; }
3649
3650  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
3651    return true;
3652  }
3653
3654  bool NeedsEnvironment() const OVERRIDE {
3655    return false;
3656  }
3657
3658  uint32_t GetDexPc() const OVERRIDE { return dex_pc_; }
3659
3660  bool IsClassFinal() const { return class_is_final_; }
3661
3662  // Used only in code generation.
3663  bool MustDoNullCheck() const { return must_do_null_check_; }
3664  void ClearMustDoNullCheck() { must_do_null_check_ = false; }
3665
3666  DECLARE_INSTRUCTION(InstanceOf);
3667
3668 private:
3669  const bool class_is_final_;
3670  bool must_do_null_check_;
3671  const uint32_t dex_pc_;
3672
3673  DISALLOW_COPY_AND_ASSIGN(HInstanceOf);
3674};
3675
3676class HBoundType : public HExpression<1> {
3677 public:
3678  HBoundType(HInstruction* input, ReferenceTypeInfo bound_type)
3679      : HExpression(Primitive::kPrimNot, SideEffects::None()),
3680        bound_type_(bound_type) {
3681    DCHECK_EQ(input->GetType(), Primitive::kPrimNot);
3682    SetRawInputAt(0, input);
3683  }
3684
3685  const ReferenceTypeInfo& GetBoundType() const { return bound_type_; }
3686
3687  bool CanBeNull() const OVERRIDE {
3688    // `null instanceof ClassX` always return false so we can't be null.
3689    return false;
3690  }
3691
3692  DECLARE_INSTRUCTION(BoundType);
3693
3694 private:
3695  // Encodes the most upper class that this instruction can have. In other words
3696  // it is always the case that GetBoundType().IsSupertypeOf(GetReferenceType()).
3697  // It is used to bound the type in cases like `if (x instanceof ClassX) {}`
3698  const ReferenceTypeInfo bound_type_;
3699
3700  DISALLOW_COPY_AND_ASSIGN(HBoundType);
3701};
3702
3703class HCheckCast : public HTemplateInstruction<2> {
3704 public:
3705  HCheckCast(HInstruction* object,
3706             HLoadClass* constant,
3707             bool class_is_final,
3708             uint32_t dex_pc)
3709      : HTemplateInstruction(SideEffects::None()),
3710        class_is_final_(class_is_final),
3711        must_do_null_check_(true),
3712        dex_pc_(dex_pc) {
3713    SetRawInputAt(0, object);
3714    SetRawInputAt(1, constant);
3715  }
3716
3717  bool CanBeMoved() const OVERRIDE { return true; }
3718
3719  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
3720    return true;
3721  }
3722
3723  bool NeedsEnvironment() const OVERRIDE {
3724    // Instruction may throw a CheckCastError.
3725    return true;
3726  }
3727
3728  bool CanThrow() const OVERRIDE { return true; }
3729
3730  bool MustDoNullCheck() const { return must_do_null_check_; }
3731  void ClearMustDoNullCheck() { must_do_null_check_ = false; }
3732
3733  uint32_t GetDexPc() const OVERRIDE { return dex_pc_; }
3734
3735  bool IsClassFinal() const { return class_is_final_; }
3736
3737  DECLARE_INSTRUCTION(CheckCast);
3738
3739 private:
3740  const bool class_is_final_;
3741  bool must_do_null_check_;
3742  const uint32_t dex_pc_;
3743
3744  DISALLOW_COPY_AND_ASSIGN(HCheckCast);
3745};
3746
3747class HMemoryBarrier : public HTemplateInstruction<0> {
3748 public:
3749  explicit HMemoryBarrier(MemBarrierKind barrier_kind)
3750      : HTemplateInstruction(SideEffects::None()),
3751        barrier_kind_(barrier_kind) {}
3752
3753  MemBarrierKind GetBarrierKind() { return barrier_kind_; }
3754
3755  DECLARE_INSTRUCTION(MemoryBarrier);
3756
3757 private:
3758  const MemBarrierKind barrier_kind_;
3759
3760  DISALLOW_COPY_AND_ASSIGN(HMemoryBarrier);
3761};
3762
3763class HMonitorOperation : public HTemplateInstruction<1> {
3764 public:
3765  enum OperationKind {
3766    kEnter,
3767    kExit,
3768  };
3769
3770  HMonitorOperation(HInstruction* object, OperationKind kind, uint32_t dex_pc)
3771    : HTemplateInstruction(SideEffects::None()), kind_(kind), dex_pc_(dex_pc) {
3772    SetRawInputAt(0, object);
3773  }
3774
3775  // Instruction may throw a Java exception, so we need an environment.
3776  bool NeedsEnvironment() const OVERRIDE { return true; }
3777  bool CanThrow() const OVERRIDE { return true; }
3778
3779  uint32_t GetDexPc() const OVERRIDE { return dex_pc_; }
3780
3781  bool IsEnter() const { return kind_ == kEnter; }
3782
3783  DECLARE_INSTRUCTION(MonitorOperation);
3784
3785 private:
3786  const OperationKind kind_;
3787  const uint32_t dex_pc_;
3788
3789 private:
3790  DISALLOW_COPY_AND_ASSIGN(HMonitorOperation);
3791};
3792
3793class MoveOperands : public ArenaObject<kArenaAllocMisc> {
3794 public:
3795  MoveOperands(Location source,
3796               Location destination,
3797               Primitive::Type type,
3798               HInstruction* instruction)
3799      : source_(source), destination_(destination), type_(type), instruction_(instruction) {}
3800
3801  Location GetSource() const { return source_; }
3802  Location GetDestination() const { return destination_; }
3803
3804  void SetSource(Location value) { source_ = value; }
3805  void SetDestination(Location value) { destination_ = value; }
3806
3807  // The parallel move resolver marks moves as "in-progress" by clearing the
3808  // destination (but not the source).
3809  Location MarkPending() {
3810    DCHECK(!IsPending());
3811    Location dest = destination_;
3812    destination_ = Location::NoLocation();
3813    return dest;
3814  }
3815
3816  void ClearPending(Location dest) {
3817    DCHECK(IsPending());
3818    destination_ = dest;
3819  }
3820
3821  bool IsPending() const {
3822    DCHECK(!source_.IsInvalid() || destination_.IsInvalid());
3823    return destination_.IsInvalid() && !source_.IsInvalid();
3824  }
3825
3826  // True if this blocks a move from the given location.
3827  bool Blocks(Location loc) const {
3828    return !IsEliminated() && source_.OverlapsWith(loc);
3829  }
3830
3831  // A move is redundant if it's been eliminated, if its source and
3832  // destination are the same, or if its destination is unneeded.
3833  bool IsRedundant() const {
3834    return IsEliminated() || destination_.IsInvalid() || source_.Equals(destination_);
3835  }
3836
3837  // We clear both operands to indicate move that's been eliminated.
3838  void Eliminate() {
3839    source_ = destination_ = Location::NoLocation();
3840  }
3841
3842  bool IsEliminated() const {
3843    DCHECK(!source_.IsInvalid() || destination_.IsInvalid());
3844    return source_.IsInvalid();
3845  }
3846
3847  bool Is64BitMove() const {
3848    return Primitive::Is64BitType(type_);
3849  }
3850
3851  HInstruction* GetInstruction() const { return instruction_; }
3852
3853 private:
3854  Location source_;
3855  Location destination_;
3856  // The type this move is for.
3857  Primitive::Type type_;
3858  // The instruction this move is assocatied with. Null when this move is
3859  // for moving an input in the expected locations of user (including a phi user).
3860  // This is only used in debug mode, to ensure we do not connect interval siblings
3861  // in the same parallel move.
3862  HInstruction* instruction_;
3863};
3864
3865static constexpr size_t kDefaultNumberOfMoves = 4;
3866
3867class HParallelMove : public HTemplateInstruction<0> {
3868 public:
3869  explicit HParallelMove(ArenaAllocator* arena)
3870      : HTemplateInstruction(SideEffects::None()), moves_(arena, kDefaultNumberOfMoves) {}
3871
3872  void AddMove(Location source,
3873               Location destination,
3874               Primitive::Type type,
3875               HInstruction* instruction) {
3876    DCHECK(source.IsValid());
3877    DCHECK(destination.IsValid());
3878    if (kIsDebugBuild) {
3879      if (instruction != nullptr) {
3880        for (size_t i = 0, e = moves_.Size(); i < e; ++i) {
3881          if (moves_.Get(i).GetInstruction() == instruction) {
3882            // Special case the situation where the move is for the spill slot
3883            // of the instruction.
3884            if ((GetPrevious() == instruction)
3885                || ((GetPrevious() == nullptr)
3886                    && instruction->IsPhi()
3887                    && instruction->GetBlock() == GetBlock())) {
3888              DCHECK_NE(destination.GetKind(), moves_.Get(i).GetDestination().GetKind())
3889                  << "Doing parallel moves for the same instruction.";
3890            } else {
3891              DCHECK(false) << "Doing parallel moves for the same instruction.";
3892            }
3893          }
3894        }
3895      }
3896      for (size_t i = 0, e = moves_.Size(); i < e; ++i) {
3897        DCHECK(!destination.OverlapsWith(moves_.Get(i).GetDestination()))
3898            << "Overlapped destination for two moves in a parallel move: "
3899            << moves_.Get(i).GetSource() << " ==> " << moves_.Get(i).GetDestination() << " and "
3900            << source << " ==> " << destination;
3901      }
3902    }
3903    moves_.Add(MoveOperands(source, destination, type, instruction));
3904  }
3905
3906  MoveOperands* MoveOperandsAt(size_t index) const {
3907    return moves_.GetRawStorage() + index;
3908  }
3909
3910  size_t NumMoves() const { return moves_.Size(); }
3911
3912  DECLARE_INSTRUCTION(ParallelMove);
3913
3914 private:
3915  GrowableArray<MoveOperands> moves_;
3916
3917  DISALLOW_COPY_AND_ASSIGN(HParallelMove);
3918};
3919
3920class HGraphVisitor : public ValueObject {
3921 public:
3922  explicit HGraphVisitor(HGraph* graph) : graph_(graph) {}
3923  virtual ~HGraphVisitor() {}
3924
3925  virtual void VisitInstruction(HInstruction* instruction) { UNUSED(instruction); }
3926  virtual void VisitBasicBlock(HBasicBlock* block);
3927
3928  // Visit the graph following basic block insertion order.
3929  void VisitInsertionOrder();
3930
3931  // Visit the graph following dominator tree reverse post-order.
3932  void VisitReversePostOrder();
3933
3934  HGraph* GetGraph() const { return graph_; }
3935
3936  // Visit functions for instruction classes.
3937#define DECLARE_VISIT_INSTRUCTION(name, super)                                        \
3938  virtual void Visit##name(H##name* instr) { VisitInstruction(instr); }
3939
3940  FOR_EACH_INSTRUCTION(DECLARE_VISIT_INSTRUCTION)
3941
3942#undef DECLARE_VISIT_INSTRUCTION
3943
3944 private:
3945  HGraph* const graph_;
3946
3947  DISALLOW_COPY_AND_ASSIGN(HGraphVisitor);
3948};
3949
3950class HGraphDelegateVisitor : public HGraphVisitor {
3951 public:
3952  explicit HGraphDelegateVisitor(HGraph* graph) : HGraphVisitor(graph) {}
3953  virtual ~HGraphDelegateVisitor() {}
3954
3955  // Visit functions that delegate to to super class.
3956#define DECLARE_VISIT_INSTRUCTION(name, super)                                        \
3957  void Visit##name(H##name* instr) OVERRIDE { Visit##super(instr); }
3958
3959  FOR_EACH_INSTRUCTION(DECLARE_VISIT_INSTRUCTION)
3960
3961#undef DECLARE_VISIT_INSTRUCTION
3962
3963 private:
3964  DISALLOW_COPY_AND_ASSIGN(HGraphDelegateVisitor);
3965};
3966
3967class HInsertionOrderIterator : public ValueObject {
3968 public:
3969  explicit HInsertionOrderIterator(const HGraph& graph) : graph_(graph), index_(0) {}
3970
3971  bool Done() const { return index_ == graph_.GetBlocks().Size(); }
3972  HBasicBlock* Current() const { return graph_.GetBlocks().Get(index_); }
3973  void Advance() { ++index_; }
3974
3975 private:
3976  const HGraph& graph_;
3977  size_t index_;
3978
3979  DISALLOW_COPY_AND_ASSIGN(HInsertionOrderIterator);
3980};
3981
3982class HReversePostOrderIterator : public ValueObject {
3983 public:
3984  explicit HReversePostOrderIterator(const HGraph& graph) : graph_(graph), index_(0) {
3985    // Check that reverse post order of the graph has been built.
3986    DCHECK(!graph.GetReversePostOrder().IsEmpty());
3987  }
3988
3989  bool Done() const { return index_ == graph_.GetReversePostOrder().Size(); }
3990  HBasicBlock* Current() const { return graph_.GetReversePostOrder().Get(index_); }
3991  void Advance() { ++index_; }
3992
3993 private:
3994  const HGraph& graph_;
3995  size_t index_;
3996
3997  DISALLOW_COPY_AND_ASSIGN(HReversePostOrderIterator);
3998};
3999
4000class HPostOrderIterator : public ValueObject {
4001 public:
4002  explicit HPostOrderIterator(const HGraph& graph)
4003      : graph_(graph), index_(graph_.GetReversePostOrder().Size()) {
4004    // Check that reverse post order of the graph has been built.
4005    DCHECK(!graph.GetReversePostOrder().IsEmpty());
4006  }
4007
4008  bool Done() const { return index_ == 0; }
4009  HBasicBlock* Current() const { return graph_.GetReversePostOrder().Get(index_ - 1); }
4010  void Advance() { --index_; }
4011
4012 private:
4013  const HGraph& graph_;
4014  size_t index_;
4015
4016  DISALLOW_COPY_AND_ASSIGN(HPostOrderIterator);
4017};
4018
4019class HLinearPostOrderIterator : public ValueObject {
4020 public:
4021  explicit HLinearPostOrderIterator(const HGraph& graph)
4022      : order_(graph.GetLinearOrder()), index_(graph.GetLinearOrder().Size()) {}
4023
4024  bool Done() const { return index_ == 0; }
4025
4026  HBasicBlock* Current() const { return order_.Get(index_ -1); }
4027
4028  void Advance() {
4029    --index_;
4030    DCHECK_GE(index_, 0U);
4031  }
4032
4033 private:
4034  const GrowableArray<HBasicBlock*>& order_;
4035  size_t index_;
4036
4037  DISALLOW_COPY_AND_ASSIGN(HLinearPostOrderIterator);
4038};
4039
4040class HLinearOrderIterator : public ValueObject {
4041 public:
4042  explicit HLinearOrderIterator(const HGraph& graph)
4043      : order_(graph.GetLinearOrder()), index_(0) {}
4044
4045  bool Done() const { return index_ == order_.Size(); }
4046  HBasicBlock* Current() const { return order_.Get(index_); }
4047  void Advance() { ++index_; }
4048
4049 private:
4050  const GrowableArray<HBasicBlock*>& order_;
4051  size_t index_;
4052
4053  DISALLOW_COPY_AND_ASSIGN(HLinearOrderIterator);
4054};
4055
4056// Iterator over the blocks that art part of the loop. Includes blocks part
4057// of an inner loop. The order in which the blocks are iterated is on their
4058// block id.
4059class HBlocksInLoopIterator : public ValueObject {
4060 public:
4061  explicit HBlocksInLoopIterator(const HLoopInformation& info)
4062      : blocks_in_loop_(info.GetBlocks()),
4063        blocks_(info.GetHeader()->GetGraph()->GetBlocks()),
4064        index_(0) {
4065    if (!blocks_in_loop_.IsBitSet(index_)) {
4066      Advance();
4067    }
4068  }
4069
4070  bool Done() const { return index_ == blocks_.Size(); }
4071  HBasicBlock* Current() const { return blocks_.Get(index_); }
4072  void Advance() {
4073    ++index_;
4074    for (size_t e = blocks_.Size(); index_ < e; ++index_) {
4075      if (blocks_in_loop_.IsBitSet(index_)) {
4076        break;
4077      }
4078    }
4079  }
4080
4081 private:
4082  const BitVector& blocks_in_loop_;
4083  const GrowableArray<HBasicBlock*>& blocks_;
4084  size_t index_;
4085
4086  DISALLOW_COPY_AND_ASSIGN(HBlocksInLoopIterator);
4087};
4088
4089inline int64_t Int64FromConstant(HConstant* constant) {
4090  DCHECK(constant->IsIntConstant() || constant->IsLongConstant());
4091  return constant->IsIntConstant() ? constant->AsIntConstant()->GetValue()
4092                                   : constant->AsLongConstant()->GetValue();
4093}
4094
4095}  // namespace art
4096
4097#endif  // ART_COMPILER_OPTIMIZING_NODES_H_
4098