nodes.h revision 8e1ef53e3d551f11bb424ae4f29cc1f5eabbe6bc
1/*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#ifndef ART_COMPILER_OPTIMIZING_NODES_H_
18#define ART_COMPILER_OPTIMIZING_NODES_H_
19
20#include <algorithm>
21#include <array>
22#include <type_traits>
23
24#include "base/arena_bit_vector.h"
25#include "base/arena_containers.h"
26#include "base/arena_object.h"
27#include "base/stl_util.h"
28#include "dex/compiler_enums.h"
29#include "entrypoints/quick/quick_entrypoints_enum.h"
30#include "handle.h"
31#include "handle_scope.h"
32#include "invoke_type.h"
33#include "locations.h"
34#include "method_reference.h"
35#include "mirror/class.h"
36#include "offsets.h"
37#include "primitive.h"
38#include "utils/array_ref.h"
39
40namespace art {
41
42class GraphChecker;
43class HBasicBlock;
44class HCurrentMethod;
45class HDoubleConstant;
46class HEnvironment;
47class HFakeString;
48class HFloatConstant;
49class HGraphBuilder;
50class HGraphVisitor;
51class HInstruction;
52class HIntConstant;
53class HInvoke;
54class HLongConstant;
55class HNullConstant;
56class HPhi;
57class HSuspendCheck;
58class HTryBoundary;
59class LiveInterval;
60class LocationSummary;
61class SlowPathCode;
62class SsaBuilder;
63
64namespace mirror {
65class DexCache;
66}  // namespace mirror
67
68static const int kDefaultNumberOfBlocks = 8;
69static const int kDefaultNumberOfSuccessors = 2;
70static const int kDefaultNumberOfPredecessors = 2;
71static const int kDefaultNumberOfExceptionalPredecessors = 0;
72static const int kDefaultNumberOfDominatedBlocks = 1;
73static const int kDefaultNumberOfBackEdges = 1;
74
75static constexpr uint32_t kMaxIntShiftValue = 0x1f;
76static constexpr uint64_t kMaxLongShiftValue = 0x3f;
77
78static constexpr uint32_t kUnknownFieldIndex = static_cast<uint32_t>(-1);
79static constexpr uint16_t kUnknownClassDefIndex = static_cast<uint16_t>(-1);
80
81static constexpr InvokeType kInvalidInvokeType = static_cast<InvokeType>(-1);
82
83static constexpr uint32_t kNoDexPc = -1;
84
85enum IfCondition {
86  // All types.
87  kCondEQ,  // ==
88  kCondNE,  // !=
89  // Signed integers and floating-point numbers.
90  kCondLT,  // <
91  kCondLE,  // <=
92  kCondGT,  // >
93  kCondGE,  // >=
94  // Unsigned integers.
95  kCondB,   // <
96  kCondBE,  // <=
97  kCondA,   // >
98  kCondAE,  // >=
99};
100
101class HInstructionList : public ValueObject {
102 public:
103  HInstructionList() : first_instruction_(nullptr), last_instruction_(nullptr) {}
104
105  void AddInstruction(HInstruction* instruction);
106  void RemoveInstruction(HInstruction* instruction);
107
108  // Insert `instruction` before/after an existing instruction `cursor`.
109  void InsertInstructionBefore(HInstruction* instruction, HInstruction* cursor);
110  void InsertInstructionAfter(HInstruction* instruction, HInstruction* cursor);
111
112  // Return true if this list contains `instruction`.
113  bool Contains(HInstruction* instruction) const;
114
115  // Return true if `instruction1` is found before `instruction2` in
116  // this instruction list and false otherwise.  Abort if none
117  // of these instructions is found.
118  bool FoundBefore(const HInstruction* instruction1,
119                   const HInstruction* instruction2) const;
120
121  bool IsEmpty() const { return first_instruction_ == nullptr; }
122  void Clear() { first_instruction_ = last_instruction_ = nullptr; }
123
124  // Update the block of all instructions to be `block`.
125  void SetBlockOfInstructions(HBasicBlock* block) const;
126
127  void AddAfter(HInstruction* cursor, const HInstructionList& instruction_list);
128  void Add(const HInstructionList& instruction_list);
129
130  // Return the number of instructions in the list. This is an expensive operation.
131  size_t CountSize() const;
132
133 private:
134  HInstruction* first_instruction_;
135  HInstruction* last_instruction_;
136
137  friend class HBasicBlock;
138  friend class HGraph;
139  friend class HInstruction;
140  friend class HInstructionIterator;
141  friend class HBackwardInstructionIterator;
142
143  DISALLOW_COPY_AND_ASSIGN(HInstructionList);
144};
145
146// Control-flow graph of a method. Contains a list of basic blocks.
147class HGraph : public ArenaObject<kArenaAllocGraph> {
148 public:
149  HGraph(ArenaAllocator* arena,
150         const DexFile& dex_file,
151         uint32_t method_idx,
152         bool should_generate_constructor_barrier,
153         InstructionSet instruction_set,
154         InvokeType invoke_type = kInvalidInvokeType,
155         bool debuggable = false,
156         int start_instruction_id = 0)
157      : arena_(arena),
158        blocks_(arena->Adapter(kArenaAllocBlockList)),
159        reverse_post_order_(arena->Adapter(kArenaAllocReversePostOrder)),
160        linear_order_(arena->Adapter(kArenaAllocLinearOrder)),
161        entry_block_(nullptr),
162        exit_block_(nullptr),
163        maximum_number_of_out_vregs_(0),
164        number_of_vregs_(0),
165        number_of_in_vregs_(0),
166        temporaries_vreg_slots_(0),
167        has_bounds_checks_(false),
168        has_try_catch_(false),
169        debuggable_(debuggable),
170        current_instruction_id_(start_instruction_id),
171        dex_file_(dex_file),
172        method_idx_(method_idx),
173        invoke_type_(invoke_type),
174        in_ssa_form_(false),
175        should_generate_constructor_barrier_(should_generate_constructor_barrier),
176        instruction_set_(instruction_set),
177        cached_null_constant_(nullptr),
178        cached_int_constants_(std::less<int32_t>(), arena->Adapter(kArenaAllocConstantsMap)),
179        cached_float_constants_(std::less<int32_t>(), arena->Adapter(kArenaAllocConstantsMap)),
180        cached_long_constants_(std::less<int64_t>(), arena->Adapter(kArenaAllocConstantsMap)),
181        cached_double_constants_(std::less<int64_t>(), arena->Adapter(kArenaAllocConstantsMap)),
182        cached_current_method_(nullptr) {
183    blocks_.reserve(kDefaultNumberOfBlocks);
184  }
185
186  ArenaAllocator* GetArena() const { return arena_; }
187  const ArenaVector<HBasicBlock*>& GetBlocks() const { return blocks_; }
188
189  bool IsInSsaForm() const { return in_ssa_form_; }
190
191  HBasicBlock* GetEntryBlock() const { return entry_block_; }
192  HBasicBlock* GetExitBlock() const { return exit_block_; }
193  bool HasExitBlock() const { return exit_block_ != nullptr; }
194
195  void SetEntryBlock(HBasicBlock* block) { entry_block_ = block; }
196  void SetExitBlock(HBasicBlock* block) { exit_block_ = block; }
197
198  void AddBlock(HBasicBlock* block);
199
200  // Try building the SSA form of this graph, with dominance computation and loop
201  // recognition. Returns whether it was successful in doing all these steps.
202  bool TryBuildingSsa() {
203    BuildDominatorTree();
204    // The SSA builder requires loops to all be natural. Specifically, the dead phi
205    // elimination phase checks the consistency of the graph when doing a post-order
206    // visit for eliminating dead phis: a dead phi can only have loop header phi
207    // users remaining when being visited.
208    if (!AnalyzeNaturalLoops()) return false;
209    // Precompute per-block try membership before entering the SSA builder,
210    // which needs the information to build catch block phis from values of
211    // locals at throwing instructions inside try blocks.
212    ComputeTryBlockInformation();
213    TransformToSsa();
214    in_ssa_form_ = true;
215    return true;
216  }
217
218  void ComputeDominanceInformation();
219  void ClearDominanceInformation();
220
221  void BuildDominatorTree();
222  void TransformToSsa();
223  void SimplifyCFG();
224  void SimplifyCatchBlocks();
225
226  // Analyze all natural loops in this graph. Returns false if one
227  // loop is not natural, that is the header does not dominate the
228  // back edge.
229  bool AnalyzeNaturalLoops() const;
230
231  // Iterate over blocks to compute try block membership. Needs reverse post
232  // order and loop information.
233  void ComputeTryBlockInformation();
234
235  // Inline this graph in `outer_graph`, replacing the given `invoke` instruction.
236  // Returns the instruction used to replace the invoke expression or null if the
237  // invoke is for a void method.
238  HInstruction* InlineInto(HGraph* outer_graph, HInvoke* invoke);
239
240  // Need to add a couple of blocks to test if the loop body is entered and
241  // put deoptimization instructions, etc.
242  void TransformLoopHeaderForBCE(HBasicBlock* header);
243
244  // Removes `block` from the graph. Assumes `block` has been disconnected from
245  // other blocks and has no instructions or phis.
246  void DeleteDeadEmptyBlock(HBasicBlock* block);
247
248  // Splits the edge between `block` and `successor` while preserving the
249  // indices in the predecessor/successor lists. If there are multiple edges
250  // between the blocks, the lowest indices are used.
251  // Returns the new block which is empty and has the same dex pc as `successor`.
252  HBasicBlock* SplitEdge(HBasicBlock* block, HBasicBlock* successor);
253
254  void SplitCriticalEdge(HBasicBlock* block, HBasicBlock* successor);
255  void SimplifyLoop(HBasicBlock* header);
256
257  int32_t GetNextInstructionId() {
258    DCHECK_NE(current_instruction_id_, INT32_MAX);
259    return current_instruction_id_++;
260  }
261
262  int32_t GetCurrentInstructionId() const {
263    return current_instruction_id_;
264  }
265
266  void SetCurrentInstructionId(int32_t id) {
267    current_instruction_id_ = id;
268  }
269
270  uint16_t GetMaximumNumberOfOutVRegs() const {
271    return maximum_number_of_out_vregs_;
272  }
273
274  void SetMaximumNumberOfOutVRegs(uint16_t new_value) {
275    maximum_number_of_out_vregs_ = new_value;
276  }
277
278  void UpdateMaximumNumberOfOutVRegs(uint16_t other_value) {
279    maximum_number_of_out_vregs_ = std::max(maximum_number_of_out_vregs_, other_value);
280  }
281
282  void UpdateTemporariesVRegSlots(size_t slots) {
283    temporaries_vreg_slots_ = std::max(slots, temporaries_vreg_slots_);
284  }
285
286  size_t GetTemporariesVRegSlots() const {
287    DCHECK(!in_ssa_form_);
288    return temporaries_vreg_slots_;
289  }
290
291  void SetNumberOfVRegs(uint16_t number_of_vregs) {
292    number_of_vregs_ = number_of_vregs;
293  }
294
295  uint16_t GetNumberOfVRegs() const {
296    return number_of_vregs_;
297  }
298
299  void SetNumberOfInVRegs(uint16_t value) {
300    number_of_in_vregs_ = value;
301  }
302
303  uint16_t GetNumberOfLocalVRegs() const {
304    DCHECK(!in_ssa_form_);
305    return number_of_vregs_ - number_of_in_vregs_;
306  }
307
308  const ArenaVector<HBasicBlock*>& GetReversePostOrder() const {
309    return reverse_post_order_;
310  }
311
312  const ArenaVector<HBasicBlock*>& GetLinearOrder() const {
313    return linear_order_;
314  }
315
316  bool HasBoundsChecks() const {
317    return has_bounds_checks_;
318  }
319
320  void SetHasBoundsChecks(bool value) {
321    has_bounds_checks_ = value;
322  }
323
324  bool ShouldGenerateConstructorBarrier() const {
325    return should_generate_constructor_barrier_;
326  }
327
328  bool IsDebuggable() const { return debuggable_; }
329
330  // Returns a constant of the given type and value. If it does not exist
331  // already, it is created and inserted into the graph. This method is only for
332  // integral types.
333  HConstant* GetConstant(Primitive::Type type, int64_t value, uint32_t dex_pc = kNoDexPc);
334
335  // TODO: This is problematic for the consistency of reference type propagation
336  // because it can be created anytime after the pass and thus it will be left
337  // with an invalid type.
338  HNullConstant* GetNullConstant(uint32_t dex_pc = kNoDexPc);
339
340  HIntConstant* GetIntConstant(int32_t value, uint32_t dex_pc = kNoDexPc) {
341    return CreateConstant(value, &cached_int_constants_, dex_pc);
342  }
343  HLongConstant* GetLongConstant(int64_t value, uint32_t dex_pc = kNoDexPc) {
344    return CreateConstant(value, &cached_long_constants_, dex_pc);
345  }
346  HFloatConstant* GetFloatConstant(float value, uint32_t dex_pc = kNoDexPc) {
347    return CreateConstant(bit_cast<int32_t, float>(value), &cached_float_constants_, dex_pc);
348  }
349  HDoubleConstant* GetDoubleConstant(double value, uint32_t dex_pc = kNoDexPc) {
350    return CreateConstant(bit_cast<int64_t, double>(value), &cached_double_constants_, dex_pc);
351  }
352
353  HCurrentMethod* GetCurrentMethod();
354
355  const DexFile& GetDexFile() const {
356    return dex_file_;
357  }
358
359  uint32_t GetMethodIdx() const {
360    return method_idx_;
361  }
362
363  InvokeType GetInvokeType() const {
364    return invoke_type_;
365  }
366
367  InstructionSet GetInstructionSet() const {
368    return instruction_set_;
369  }
370
371  bool HasTryCatch() const { return has_try_catch_; }
372  void SetHasTryCatch(bool value) { has_try_catch_ = value; }
373
374  // Returns an instruction with the opposite boolean value from 'cond'.
375  // The instruction has been inserted into the graph, either as a constant, or
376  // before cursor.
377  HInstruction* InsertOppositeCondition(HInstruction* cond, HInstruction* cursor);
378
379 private:
380  void FindBackEdges(ArenaBitVector* visited);
381  void RemoveInstructionsAsUsersFromDeadBlocks(const ArenaBitVector& visited) const;
382  void RemoveDeadBlocks(const ArenaBitVector& visited);
383
384  template <class InstructionType, typename ValueType>
385  InstructionType* CreateConstant(ValueType value,
386                                  ArenaSafeMap<ValueType, InstructionType*>* cache,
387                                  uint32_t dex_pc = kNoDexPc) {
388    // Try to find an existing constant of the given value.
389    InstructionType* constant = nullptr;
390    auto cached_constant = cache->find(value);
391    if (cached_constant != cache->end()) {
392      constant = cached_constant->second;
393    }
394
395    // If not found or previously deleted, create and cache a new instruction.
396    // Don't bother reviving a previously deleted instruction, for simplicity.
397    if (constant == nullptr || constant->GetBlock() == nullptr) {
398      constant = new (arena_) InstructionType(value, dex_pc);
399      cache->Overwrite(value, constant);
400      InsertConstant(constant);
401    }
402    return constant;
403  }
404
405  void InsertConstant(HConstant* instruction);
406
407  // Cache a float constant into the graph. This method should only be
408  // called by the SsaBuilder when creating "equivalent" instructions.
409  void CacheFloatConstant(HFloatConstant* constant);
410
411  // See CacheFloatConstant comment.
412  void CacheDoubleConstant(HDoubleConstant* constant);
413
414  ArenaAllocator* const arena_;
415
416  // List of blocks in insertion order.
417  ArenaVector<HBasicBlock*> blocks_;
418
419  // List of blocks to perform a reverse post order tree traversal.
420  ArenaVector<HBasicBlock*> reverse_post_order_;
421
422  // List of blocks to perform a linear order tree traversal.
423  ArenaVector<HBasicBlock*> linear_order_;
424
425  HBasicBlock* entry_block_;
426  HBasicBlock* exit_block_;
427
428  // The maximum number of virtual registers arguments passed to a HInvoke in this graph.
429  uint16_t maximum_number_of_out_vregs_;
430
431  // The number of virtual registers in this method. Contains the parameters.
432  uint16_t number_of_vregs_;
433
434  // The number of virtual registers used by parameters of this method.
435  uint16_t number_of_in_vregs_;
436
437  // Number of vreg size slots that the temporaries use (used in baseline compiler).
438  size_t temporaries_vreg_slots_;
439
440  // Has bounds checks. We can totally skip BCE if it's false.
441  bool has_bounds_checks_;
442
443  // Flag whether there are any try/catch blocks in the graph. We will skip
444  // try/catch-related passes if false.
445  bool has_try_catch_;
446
447  // Indicates whether the graph should be compiled in a way that
448  // ensures full debuggability. If false, we can apply more
449  // aggressive optimizations that may limit the level of debugging.
450  const bool debuggable_;
451
452  // The current id to assign to a newly added instruction. See HInstruction.id_.
453  int32_t current_instruction_id_;
454
455  // The dex file from which the method is from.
456  const DexFile& dex_file_;
457
458  // The method index in the dex file.
459  const uint32_t method_idx_;
460
461  // If inlined, this encodes how the callee is being invoked.
462  const InvokeType invoke_type_;
463
464  // Whether the graph has been transformed to SSA form. Only used
465  // in debug mode to ensure we are not using properties only valid
466  // for non-SSA form (like the number of temporaries).
467  bool in_ssa_form_;
468
469  const bool should_generate_constructor_barrier_;
470
471  const InstructionSet instruction_set_;
472
473  // Cached constants.
474  HNullConstant* cached_null_constant_;
475  ArenaSafeMap<int32_t, HIntConstant*> cached_int_constants_;
476  ArenaSafeMap<int32_t, HFloatConstant*> cached_float_constants_;
477  ArenaSafeMap<int64_t, HLongConstant*> cached_long_constants_;
478  ArenaSafeMap<int64_t, HDoubleConstant*> cached_double_constants_;
479
480  HCurrentMethod* cached_current_method_;
481
482  friend class SsaBuilder;           // For caching constants.
483  friend class SsaLivenessAnalysis;  // For the linear order.
484  ART_FRIEND_TEST(GraphTest, IfSuccessorSimpleJoinBlock1);
485  DISALLOW_COPY_AND_ASSIGN(HGraph);
486};
487
488class HLoopInformation : public ArenaObject<kArenaAllocLoopInfo> {
489 public:
490  HLoopInformation(HBasicBlock* header, HGraph* graph)
491      : header_(header),
492        suspend_check_(nullptr),
493        back_edges_(graph->GetArena()->Adapter(kArenaAllocLoopInfoBackEdges)),
494        // Make bit vector growable, as the number of blocks may change.
495        blocks_(graph->GetArena(), graph->GetBlocks().size(), true) {
496    back_edges_.reserve(kDefaultNumberOfBackEdges);
497  }
498
499  HBasicBlock* GetHeader() const {
500    return header_;
501  }
502
503  void SetHeader(HBasicBlock* block) {
504    header_ = block;
505  }
506
507  HSuspendCheck* GetSuspendCheck() const { return suspend_check_; }
508  void SetSuspendCheck(HSuspendCheck* check) { suspend_check_ = check; }
509  bool HasSuspendCheck() const { return suspend_check_ != nullptr; }
510
511  void AddBackEdge(HBasicBlock* back_edge) {
512    back_edges_.push_back(back_edge);
513  }
514
515  void RemoveBackEdge(HBasicBlock* back_edge) {
516    RemoveElement(back_edges_, back_edge);
517  }
518
519  bool IsBackEdge(const HBasicBlock& block) const {
520    return ContainsElement(back_edges_, &block);
521  }
522
523  size_t NumberOfBackEdges() const {
524    return back_edges_.size();
525  }
526
527  HBasicBlock* GetPreHeader() const;
528
529  const ArenaVector<HBasicBlock*>& GetBackEdges() const {
530    return back_edges_;
531  }
532
533  // Returns the lifetime position of the back edge that has the
534  // greatest lifetime position.
535  size_t GetLifetimeEnd() const;
536
537  void ReplaceBackEdge(HBasicBlock* existing, HBasicBlock* new_back_edge) {
538    ReplaceElement(back_edges_, existing, new_back_edge);
539  }
540
541  // Finds blocks that are part of this loop. Returns whether the loop is a natural loop,
542  // that is the header dominates the back edge.
543  bool Populate();
544
545  // Reanalyzes the loop by removing loop info from its blocks and re-running
546  // Populate(). If there are no back edges left, the loop info is completely
547  // removed as well as its SuspendCheck instruction. It must be run on nested
548  // inner loops first.
549  void Update();
550
551  // Returns whether this loop information contains `block`.
552  // Note that this loop information *must* be populated before entering this function.
553  bool Contains(const HBasicBlock& block) const;
554
555  // Returns whether this loop information is an inner loop of `other`.
556  // Note that `other` *must* be populated before entering this function.
557  bool IsIn(const HLoopInformation& other) const;
558
559  // Returns true if instruction is not defined within this loop or any loop nested inside
560  // this loop. If must_dominate is set, only definitions that actually dominate the loop
561  // header can be invariant. Otherwise, any definition outside the loop, including
562  // definitions that appear after the loop, is invariant.
563  bool IsLoopInvariant(HInstruction* instruction, bool must_dominate) const;
564
565  const ArenaBitVector& GetBlocks() const { return blocks_; }
566
567  void Add(HBasicBlock* block);
568  void Remove(HBasicBlock* block);
569
570 private:
571  // Internal recursive implementation of `Populate`.
572  void PopulateRecursive(HBasicBlock* block);
573
574  HBasicBlock* header_;
575  HSuspendCheck* suspend_check_;
576  ArenaVector<HBasicBlock*> back_edges_;
577  ArenaBitVector blocks_;
578
579  DISALLOW_COPY_AND_ASSIGN(HLoopInformation);
580};
581
582// Stores try/catch information for basic blocks.
583// Note that HGraph is constructed so that catch blocks cannot simultaneously
584// be try blocks.
585class TryCatchInformation : public ArenaObject<kArenaAllocTryCatchInfo> {
586 public:
587  // Try block information constructor.
588  explicit TryCatchInformation(const HTryBoundary& try_entry)
589      : try_entry_(&try_entry),
590        catch_dex_file_(nullptr),
591        catch_type_index_(DexFile::kDexNoIndex16) {
592    DCHECK(try_entry_ != nullptr);
593  }
594
595  // Catch block information constructor.
596  TryCatchInformation(uint16_t catch_type_index, const DexFile& dex_file)
597      : try_entry_(nullptr),
598        catch_dex_file_(&dex_file),
599        catch_type_index_(catch_type_index) {}
600
601  bool IsTryBlock() const { return try_entry_ != nullptr; }
602
603  const HTryBoundary& GetTryEntry() const {
604    DCHECK(IsTryBlock());
605    return *try_entry_;
606  }
607
608  bool IsCatchBlock() const { return catch_dex_file_ != nullptr; }
609
610  bool IsCatchAllTypeIndex() const {
611    DCHECK(IsCatchBlock());
612    return catch_type_index_ == DexFile::kDexNoIndex16;
613  }
614
615  uint16_t GetCatchTypeIndex() const {
616    DCHECK(IsCatchBlock());
617    return catch_type_index_;
618  }
619
620  const DexFile& GetCatchDexFile() const {
621    DCHECK(IsCatchBlock());
622    return *catch_dex_file_;
623  }
624
625 private:
626  // One of possibly several TryBoundary instructions entering the block's try.
627  // Only set for try blocks.
628  const HTryBoundary* try_entry_;
629
630  // Exception type information. Only set for catch blocks.
631  const DexFile* catch_dex_file_;
632  const uint16_t catch_type_index_;
633};
634
635static constexpr size_t kNoLifetime = -1;
636static constexpr uint32_t kInvalidBlockId = static_cast<uint32_t>(-1);
637
638// A block in a method. Contains the list of instructions represented
639// as a double linked list. Each block knows its predecessors and
640// successors.
641
642class HBasicBlock : public ArenaObject<kArenaAllocBasicBlock> {
643 public:
644  HBasicBlock(HGraph* graph, uint32_t dex_pc = kNoDexPc)
645      : graph_(graph),
646        predecessors_(graph->GetArena()->Adapter(kArenaAllocPredecessors)),
647        successors_(graph->GetArena()->Adapter(kArenaAllocSuccessors)),
648        loop_information_(nullptr),
649        dominator_(nullptr),
650        dominated_blocks_(graph->GetArena()->Adapter(kArenaAllocDominated)),
651        block_id_(kInvalidBlockId),
652        dex_pc_(dex_pc),
653        lifetime_start_(kNoLifetime),
654        lifetime_end_(kNoLifetime),
655        try_catch_information_(nullptr) {
656    predecessors_.reserve(kDefaultNumberOfPredecessors);
657    successors_.reserve(kDefaultNumberOfSuccessors);
658    dominated_blocks_.reserve(kDefaultNumberOfDominatedBlocks);
659  }
660
661  const ArenaVector<HBasicBlock*>& GetPredecessors() const {
662    return predecessors_;
663  }
664
665  const ArenaVector<HBasicBlock*>& GetSuccessors() const {
666    return successors_;
667  }
668
669  ArrayRef<HBasicBlock* const> GetNormalSuccessors() const;
670  ArrayRef<HBasicBlock* const> GetExceptionalSuccessors() const;
671
672  bool HasSuccessor(const HBasicBlock* block, size_t start_from = 0u) {
673    return ContainsElement(successors_, block, start_from);
674  }
675
676  const ArenaVector<HBasicBlock*>& GetDominatedBlocks() const {
677    return dominated_blocks_;
678  }
679
680  bool IsEntryBlock() const {
681    return graph_->GetEntryBlock() == this;
682  }
683
684  bool IsExitBlock() const {
685    return graph_->GetExitBlock() == this;
686  }
687
688  bool IsSingleGoto() const;
689  bool IsSingleTryBoundary() const;
690
691  // Returns true if this block emits nothing but a jump.
692  bool IsSingleJump() const {
693    HLoopInformation* loop_info = GetLoopInformation();
694    return (IsSingleGoto() || IsSingleTryBoundary())
695           // Back edges generate a suspend check.
696           && (loop_info == nullptr || !loop_info->IsBackEdge(*this));
697  }
698
699  void AddBackEdge(HBasicBlock* back_edge) {
700    if (loop_information_ == nullptr) {
701      loop_information_ = new (graph_->GetArena()) HLoopInformation(this, graph_);
702    }
703    DCHECK_EQ(loop_information_->GetHeader(), this);
704    loop_information_->AddBackEdge(back_edge);
705  }
706
707  HGraph* GetGraph() const { return graph_; }
708  void SetGraph(HGraph* graph) { graph_ = graph; }
709
710  uint32_t GetBlockId() const { return block_id_; }
711  void SetBlockId(int id) { block_id_ = id; }
712  uint32_t GetDexPc() const { return dex_pc_; }
713
714  HBasicBlock* GetDominator() const { return dominator_; }
715  void SetDominator(HBasicBlock* dominator) { dominator_ = dominator; }
716  void AddDominatedBlock(HBasicBlock* block) { dominated_blocks_.push_back(block); }
717
718  void RemoveDominatedBlock(HBasicBlock* block) {
719    RemoveElement(dominated_blocks_, block);
720  }
721
722  void ReplaceDominatedBlock(HBasicBlock* existing, HBasicBlock* new_block) {
723    ReplaceElement(dominated_blocks_, existing, new_block);
724  }
725
726  void ClearDominanceInformation();
727
728  int NumberOfBackEdges() const {
729    return IsLoopHeader() ? loop_information_->NumberOfBackEdges() : 0;
730  }
731
732  HInstruction* GetFirstInstruction() const { return instructions_.first_instruction_; }
733  HInstruction* GetLastInstruction() const { return instructions_.last_instruction_; }
734  const HInstructionList& GetInstructions() const { return instructions_; }
735  HInstruction* GetFirstPhi() const { return phis_.first_instruction_; }
736  HInstruction* GetLastPhi() const { return phis_.last_instruction_; }
737  const HInstructionList& GetPhis() const { return phis_; }
738
739  void AddSuccessor(HBasicBlock* block) {
740    successors_.push_back(block);
741    block->predecessors_.push_back(this);
742  }
743
744  void ReplaceSuccessor(HBasicBlock* existing, HBasicBlock* new_block) {
745    size_t successor_index = GetSuccessorIndexOf(existing);
746    existing->RemovePredecessor(this);
747    new_block->predecessors_.push_back(this);
748    successors_[successor_index] = new_block;
749  }
750
751  void ReplacePredecessor(HBasicBlock* existing, HBasicBlock* new_block) {
752    size_t predecessor_index = GetPredecessorIndexOf(existing);
753    existing->RemoveSuccessor(this);
754    new_block->successors_.push_back(this);
755    predecessors_[predecessor_index] = new_block;
756  }
757
758  // Insert `this` between `predecessor` and `successor. This method
759  // preserves the indicies, and will update the first edge found between
760  // `predecessor` and `successor`.
761  void InsertBetween(HBasicBlock* predecessor, HBasicBlock* successor) {
762    size_t predecessor_index = successor->GetPredecessorIndexOf(predecessor);
763    size_t successor_index = predecessor->GetSuccessorIndexOf(successor);
764    successor->predecessors_[predecessor_index] = this;
765    predecessor->successors_[successor_index] = this;
766    successors_.push_back(successor);
767    predecessors_.push_back(predecessor);
768  }
769
770  void RemovePredecessor(HBasicBlock* block) {
771    predecessors_.erase(predecessors_.begin() + GetPredecessorIndexOf(block));
772  }
773
774  void RemoveSuccessor(HBasicBlock* block) {
775    successors_.erase(successors_.begin() + GetSuccessorIndexOf(block));
776  }
777
778  void ClearAllPredecessors() {
779    predecessors_.clear();
780  }
781
782  void AddPredecessor(HBasicBlock* block) {
783    predecessors_.push_back(block);
784    block->successors_.push_back(this);
785  }
786
787  void SwapPredecessors() {
788    DCHECK_EQ(predecessors_.size(), 2u);
789    std::swap(predecessors_[0], predecessors_[1]);
790  }
791
792  void SwapSuccessors() {
793    DCHECK_EQ(successors_.size(), 2u);
794    std::swap(successors_[0], successors_[1]);
795  }
796
797  size_t GetPredecessorIndexOf(HBasicBlock* predecessor) const {
798    return IndexOfElement(predecessors_, predecessor);
799  }
800
801  size_t GetSuccessorIndexOf(HBasicBlock* successor) const {
802    return IndexOfElement(successors_, successor);
803  }
804
805  HBasicBlock* GetSinglePredecessor() const {
806    DCHECK_EQ(GetPredecessors().size(), 1u);
807    return GetPredecessors()[0];
808  }
809
810  HBasicBlock* GetSingleSuccessor() const {
811    DCHECK_EQ(GetSuccessors().size(), 1u);
812    return GetSuccessors()[0];
813  }
814
815  // Returns whether the first occurrence of `predecessor` in the list of
816  // predecessors is at index `idx`.
817  bool IsFirstIndexOfPredecessor(HBasicBlock* predecessor, size_t idx) const {
818    DCHECK_EQ(GetPredecessors()[idx], predecessor);
819    return GetPredecessorIndexOf(predecessor) == idx;
820  }
821
822  // Create a new block between this block and its predecessors. The new block
823  // is added to the graph, all predecessor edges are relinked to it and an edge
824  // is created to `this`. Returns the new empty block. Reverse post order or
825  // loop and try/catch information are not updated.
826  HBasicBlock* CreateImmediateDominator();
827
828  // Split the block into two blocks just before `cursor`. Returns the newly
829  // created, latter block. Note that this method will add the block to the
830  // graph, create a Goto at the end of the former block and will create an edge
831  // between the blocks. It will not, however, update the reverse post order or
832  // loop and try/catch information.
833  HBasicBlock* SplitBefore(HInstruction* cursor);
834
835  // Split the block into two blocks just after `cursor`. Returns the newly
836  // created block. Note that this method just updates raw block information,
837  // like predecessors, successors, dominators, and instruction list. It does not
838  // update the graph, reverse post order, loop information, nor make sure the
839  // blocks are consistent (for example ending with a control flow instruction).
840  HBasicBlock* SplitAfter(HInstruction* cursor);
841
842  // Split catch block into two blocks after the original move-exception bytecode
843  // instruction, or at the beginning if not present. Returns the newly created,
844  // latter block, or nullptr if such block could not be created (must be dead
845  // in that case). Note that this method just updates raw block information,
846  // like predecessors, successors, dominators, and instruction list. It does not
847  // update the graph, reverse post order, loop information, nor make sure the
848  // blocks are consistent (for example ending with a control flow instruction).
849  HBasicBlock* SplitCatchBlockAfterMoveException();
850
851  // Merge `other` at the end of `this`. Successors and dominated blocks of
852  // `other` are changed to be successors and dominated blocks of `this`. Note
853  // that this method does not update the graph, reverse post order, loop
854  // information, nor make sure the blocks are consistent (for example ending
855  // with a control flow instruction).
856  void MergeWithInlined(HBasicBlock* other);
857
858  // Replace `this` with `other`. Predecessors, successors, and dominated blocks
859  // of `this` are moved to `other`.
860  // Note that this method does not update the graph, reverse post order, loop
861  // information, nor make sure the blocks are consistent (for example ending
862  // with a control flow instruction).
863  void ReplaceWith(HBasicBlock* other);
864
865  // Merge `other` at the end of `this`. This method updates loops, reverse post
866  // order, links to predecessors, successors, dominators and deletes the block
867  // from the graph. The two blocks must be successive, i.e. `this` the only
868  // predecessor of `other` and vice versa.
869  void MergeWith(HBasicBlock* other);
870
871  // Disconnects `this` from all its predecessors, successors and dominator,
872  // removes it from all loops it is included in and eventually from the graph.
873  // The block must not dominate any other block. Predecessors and successors
874  // are safely updated.
875  void DisconnectAndDelete();
876
877  void AddInstruction(HInstruction* instruction);
878  // Insert `instruction` before/after an existing instruction `cursor`.
879  void InsertInstructionBefore(HInstruction* instruction, HInstruction* cursor);
880  void InsertInstructionAfter(HInstruction* instruction, HInstruction* cursor);
881  // Replace instruction `initial` with `replacement` within this block.
882  void ReplaceAndRemoveInstructionWith(HInstruction* initial,
883                                       HInstruction* replacement);
884  void AddPhi(HPhi* phi);
885  void InsertPhiAfter(HPhi* instruction, HPhi* cursor);
886  // RemoveInstruction and RemovePhi delete a given instruction from the respective
887  // instruction list. With 'ensure_safety' set to true, it verifies that the
888  // instruction is not in use and removes it from the use lists of its inputs.
889  void RemoveInstruction(HInstruction* instruction, bool ensure_safety = true);
890  void RemovePhi(HPhi* phi, bool ensure_safety = true);
891  void RemoveInstructionOrPhi(HInstruction* instruction, bool ensure_safety = true);
892
893  bool IsLoopHeader() const {
894    return IsInLoop() && (loop_information_->GetHeader() == this);
895  }
896
897  bool IsLoopPreHeaderFirstPredecessor() const {
898    DCHECK(IsLoopHeader());
899    return GetPredecessors()[0] == GetLoopInformation()->GetPreHeader();
900  }
901
902  HLoopInformation* GetLoopInformation() const {
903    return loop_information_;
904  }
905
906  // Set the loop_information_ on this block. Overrides the current
907  // loop_information if it is an outer loop of the passed loop information.
908  // Note that this method is called while creating the loop information.
909  void SetInLoop(HLoopInformation* info) {
910    if (IsLoopHeader()) {
911      // Nothing to do. This just means `info` is an outer loop.
912    } else if (!IsInLoop()) {
913      loop_information_ = info;
914    } else if (loop_information_->Contains(*info->GetHeader())) {
915      // Block is currently part of an outer loop. Make it part of this inner loop.
916      // Note that a non loop header having a loop information means this loop information
917      // has already been populated
918      loop_information_ = info;
919    } else {
920      // Block is part of an inner loop. Do not update the loop information.
921      // Note that we cannot do the check `info->Contains(loop_information_)->GetHeader()`
922      // at this point, because this method is being called while populating `info`.
923    }
924  }
925
926  // Raw update of the loop information.
927  void SetLoopInformation(HLoopInformation* info) {
928    loop_information_ = info;
929  }
930
931  bool IsInLoop() const { return loop_information_ != nullptr; }
932
933  TryCatchInformation* GetTryCatchInformation() const { return try_catch_information_; }
934
935  void SetTryCatchInformation(TryCatchInformation* try_catch_information) {
936    try_catch_information_ = try_catch_information;
937  }
938
939  bool IsTryBlock() const {
940    return try_catch_information_ != nullptr && try_catch_information_->IsTryBlock();
941  }
942
943  bool IsCatchBlock() const {
944    return try_catch_information_ != nullptr && try_catch_information_->IsCatchBlock();
945  }
946
947  // Returns the try entry that this block's successors should have. They will
948  // be in the same try, unless the block ends in a try boundary. In that case,
949  // the appropriate try entry will be returned.
950  const HTryBoundary* ComputeTryEntryOfSuccessors() const;
951
952  bool HasThrowingInstructions() const;
953
954  // Returns whether this block dominates the blocked passed as parameter.
955  bool Dominates(HBasicBlock* block) const;
956
957  size_t GetLifetimeStart() const { return lifetime_start_; }
958  size_t GetLifetimeEnd() const { return lifetime_end_; }
959
960  void SetLifetimeStart(size_t start) { lifetime_start_ = start; }
961  void SetLifetimeEnd(size_t end) { lifetime_end_ = end; }
962
963  bool EndsWithControlFlowInstruction() const;
964  bool EndsWithIf() const;
965  bool EndsWithTryBoundary() const;
966  bool HasSinglePhi() const;
967
968 private:
969  HGraph* graph_;
970  ArenaVector<HBasicBlock*> predecessors_;
971  ArenaVector<HBasicBlock*> successors_;
972  HInstructionList instructions_;
973  HInstructionList phis_;
974  HLoopInformation* loop_information_;
975  HBasicBlock* dominator_;
976  ArenaVector<HBasicBlock*> dominated_blocks_;
977  uint32_t block_id_;
978  // The dex program counter of the first instruction of this block.
979  const uint32_t dex_pc_;
980  size_t lifetime_start_;
981  size_t lifetime_end_;
982  TryCatchInformation* try_catch_information_;
983
984  friend class HGraph;
985  friend class HInstruction;
986
987  DISALLOW_COPY_AND_ASSIGN(HBasicBlock);
988};
989
990// Iterates over the LoopInformation of all loops which contain 'block'
991// from the innermost to the outermost.
992class HLoopInformationOutwardIterator : public ValueObject {
993 public:
994  explicit HLoopInformationOutwardIterator(const HBasicBlock& block)
995      : current_(block.GetLoopInformation()) {}
996
997  bool Done() const { return current_ == nullptr; }
998
999  void Advance() {
1000    DCHECK(!Done());
1001    current_ = current_->GetPreHeader()->GetLoopInformation();
1002  }
1003
1004  HLoopInformation* Current() const {
1005    DCHECK(!Done());
1006    return current_;
1007  }
1008
1009 private:
1010  HLoopInformation* current_;
1011
1012  DISALLOW_COPY_AND_ASSIGN(HLoopInformationOutwardIterator);
1013};
1014
1015#define FOR_EACH_CONCRETE_INSTRUCTION_COMMON(M)                         \
1016  M(Above, Condition)                                                   \
1017  M(AboveOrEqual, Condition)                                            \
1018  M(Add, BinaryOperation)                                               \
1019  M(And, BinaryOperation)                                               \
1020  M(ArrayGet, Instruction)                                              \
1021  M(ArrayLength, Instruction)                                           \
1022  M(ArraySet, Instruction)                                              \
1023  M(Below, Condition)                                                   \
1024  M(BelowOrEqual, Condition)                                            \
1025  M(BooleanNot, UnaryOperation)                                         \
1026  M(BoundsCheck, Instruction)                                           \
1027  M(BoundType, Instruction)                                             \
1028  M(CheckCast, Instruction)                                             \
1029  M(ClearException, Instruction)                                        \
1030  M(ClinitCheck, Instruction)                                           \
1031  M(Compare, BinaryOperation)                                           \
1032  M(Condition, BinaryOperation)                                         \
1033  M(CurrentMethod, Instruction)                                         \
1034  M(Deoptimize, Instruction)                                            \
1035  M(Div, BinaryOperation)                                               \
1036  M(DivZeroCheck, Instruction)                                          \
1037  M(DoubleConstant, Constant)                                           \
1038  M(Equal, Condition)                                                   \
1039  M(Exit, Instruction)                                                  \
1040  M(FakeString, Instruction)                                            \
1041  M(FloatConstant, Constant)                                            \
1042  M(Goto, Instruction)                                                  \
1043  M(GreaterThan, Condition)                                             \
1044  M(GreaterThanOrEqual, Condition)                                      \
1045  M(If, Instruction)                                                    \
1046  M(InstanceFieldGet, Instruction)                                      \
1047  M(InstanceFieldSet, Instruction)                                      \
1048  M(InstanceOf, Instruction)                                            \
1049  M(IntConstant, Constant)                                              \
1050  M(InvokeUnresolved, Invoke)                                           \
1051  M(InvokeInterface, Invoke)                                            \
1052  M(InvokeStaticOrDirect, Invoke)                                       \
1053  M(InvokeVirtual, Invoke)                                              \
1054  M(LessThan, Condition)                                                \
1055  M(LessThanOrEqual, Condition)                                         \
1056  M(LoadClass, Instruction)                                             \
1057  M(LoadException, Instruction)                                         \
1058  M(LoadLocal, Instruction)                                             \
1059  M(LoadString, Instruction)                                            \
1060  M(Local, Instruction)                                                 \
1061  M(LongConstant, Constant)                                             \
1062  M(MemoryBarrier, Instruction)                                         \
1063  M(MonitorOperation, Instruction)                                      \
1064  M(Mul, BinaryOperation)                                               \
1065  M(Neg, UnaryOperation)                                                \
1066  M(NewArray, Instruction)                                              \
1067  M(NewInstance, Instruction)                                           \
1068  M(Not, UnaryOperation)                                                \
1069  M(NotEqual, Condition)                                                \
1070  M(NullConstant, Instruction)                                          \
1071  M(NullCheck, Instruction)                                             \
1072  M(Or, BinaryOperation)                                                \
1073  M(PackedSwitch, Instruction)                                          \
1074  M(ParallelMove, Instruction)                                          \
1075  M(ParameterValue, Instruction)                                        \
1076  M(Phi, Instruction)                                                   \
1077  M(Rem, BinaryOperation)                                               \
1078  M(Return, Instruction)                                                \
1079  M(ReturnVoid, Instruction)                                            \
1080  M(Shl, BinaryOperation)                                               \
1081  M(Shr, BinaryOperation)                                               \
1082  M(StaticFieldGet, Instruction)                                        \
1083  M(StaticFieldSet, Instruction)                                        \
1084  M(UnresolvedInstanceFieldGet, Instruction)                            \
1085  M(UnresolvedInstanceFieldSet, Instruction)                            \
1086  M(UnresolvedStaticFieldGet, Instruction)                              \
1087  M(UnresolvedStaticFieldSet, Instruction)                              \
1088  M(StoreLocal, Instruction)                                            \
1089  M(Sub, BinaryOperation)                                               \
1090  M(SuspendCheck, Instruction)                                          \
1091  M(Temporary, Instruction)                                             \
1092  M(Throw, Instruction)                                                 \
1093  M(TryBoundary, Instruction)                                           \
1094  M(TypeConversion, Instruction)                                        \
1095  M(UShr, BinaryOperation)                                              \
1096  M(Xor, BinaryOperation)                                               \
1097
1098#define FOR_EACH_CONCRETE_INSTRUCTION_ARM(M)
1099
1100#ifndef ART_ENABLE_CODEGEN_arm64
1101#define FOR_EACH_CONCRETE_INSTRUCTION_ARM64(M)
1102#else
1103#define FOR_EACH_CONCRETE_INSTRUCTION_ARM64(M)                          \
1104  M(Arm64IntermediateAddress, Instruction)
1105#endif
1106
1107#define FOR_EACH_CONCRETE_INSTRUCTION_MIPS(M)
1108
1109#define FOR_EACH_CONCRETE_INSTRUCTION_MIPS64(M)
1110
1111#ifndef ART_ENABLE_CODEGEN_x86
1112#define FOR_EACH_CONCRETE_INSTRUCTION_X86(M)
1113#else
1114#define FOR_EACH_CONCRETE_INSTRUCTION_X86(M)                            \
1115  M(X86ComputeBaseMethodAddress, Instruction)                           \
1116  M(X86LoadFromConstantTable, Instruction)                              \
1117  M(X86PackedSwitch, Instruction)
1118#endif
1119
1120#define FOR_EACH_CONCRETE_INSTRUCTION_X86_64(M)
1121
1122#define FOR_EACH_CONCRETE_INSTRUCTION(M)                                \
1123  FOR_EACH_CONCRETE_INSTRUCTION_COMMON(M)                               \
1124  FOR_EACH_CONCRETE_INSTRUCTION_ARM(M)                                  \
1125  FOR_EACH_CONCRETE_INSTRUCTION_ARM64(M)                                \
1126  FOR_EACH_CONCRETE_INSTRUCTION_MIPS(M)                                 \
1127  FOR_EACH_CONCRETE_INSTRUCTION_MIPS64(M)                               \
1128  FOR_EACH_CONCRETE_INSTRUCTION_X86(M)                                  \
1129  FOR_EACH_CONCRETE_INSTRUCTION_X86_64(M)
1130
1131#define FOR_EACH_INSTRUCTION(M)                                         \
1132  FOR_EACH_CONCRETE_INSTRUCTION(M)                                      \
1133  M(Constant, Instruction)                                              \
1134  M(UnaryOperation, Instruction)                                        \
1135  M(BinaryOperation, Instruction)                                       \
1136  M(Invoke, Instruction)
1137
1138#define FORWARD_DECLARATION(type, super) class H##type;
1139FOR_EACH_INSTRUCTION(FORWARD_DECLARATION)
1140#undef FORWARD_DECLARATION
1141
1142#define DECLARE_INSTRUCTION(type)                                       \
1143  InstructionKind GetKind() const OVERRIDE { return k##type; }          \
1144  const char* DebugName() const OVERRIDE { return #type; }              \
1145  const H##type* As##type() const OVERRIDE { return this; }             \
1146  H##type* As##type() OVERRIDE { return this; }                         \
1147  bool InstructionTypeEquals(HInstruction* other) const OVERRIDE {      \
1148    return other->Is##type();                                           \
1149  }                                                                     \
1150  void Accept(HGraphVisitor* visitor) OVERRIDE
1151
1152template <typename T> class HUseList;
1153
1154template <typename T>
1155class HUseListNode : public ArenaObject<kArenaAllocUseListNode> {
1156 public:
1157  HUseListNode* GetPrevious() const { return prev_; }
1158  HUseListNode* GetNext() const { return next_; }
1159  T GetUser() const { return user_; }
1160  size_t GetIndex() const { return index_; }
1161  void SetIndex(size_t index) { index_ = index; }
1162
1163 private:
1164  HUseListNode(T user, size_t index)
1165      : user_(user), index_(index), prev_(nullptr), next_(nullptr) {}
1166
1167  T const user_;
1168  size_t index_;
1169  HUseListNode<T>* prev_;
1170  HUseListNode<T>* next_;
1171
1172  friend class HUseList<T>;
1173
1174  DISALLOW_COPY_AND_ASSIGN(HUseListNode);
1175};
1176
1177template <typename T>
1178class HUseList : public ValueObject {
1179 public:
1180  HUseList() : first_(nullptr) {}
1181
1182  void Clear() {
1183    first_ = nullptr;
1184  }
1185
1186  // Adds a new entry at the beginning of the use list and returns
1187  // the newly created node.
1188  HUseListNode<T>* AddUse(T user, size_t index, ArenaAllocator* arena) {
1189    HUseListNode<T>* new_node = new (arena) HUseListNode<T>(user, index);
1190    if (IsEmpty()) {
1191      first_ = new_node;
1192    } else {
1193      first_->prev_ = new_node;
1194      new_node->next_ = first_;
1195      first_ = new_node;
1196    }
1197    return new_node;
1198  }
1199
1200  HUseListNode<T>* GetFirst() const {
1201    return first_;
1202  }
1203
1204  void Remove(HUseListNode<T>* node) {
1205    DCHECK(node != nullptr);
1206    DCHECK(Contains(node));
1207
1208    if (node->prev_ != nullptr) {
1209      node->prev_->next_ = node->next_;
1210    }
1211    if (node->next_ != nullptr) {
1212      node->next_->prev_ = node->prev_;
1213    }
1214    if (node == first_) {
1215      first_ = node->next_;
1216    }
1217  }
1218
1219  bool Contains(const HUseListNode<T>* node) const {
1220    if (node == nullptr) {
1221      return false;
1222    }
1223    for (HUseListNode<T>* current = first_; current != nullptr; current = current->GetNext()) {
1224      if (current == node) {
1225        return true;
1226      }
1227    }
1228    return false;
1229  }
1230
1231  bool IsEmpty() const {
1232    return first_ == nullptr;
1233  }
1234
1235  bool HasOnlyOneUse() const {
1236    return first_ != nullptr && first_->next_ == nullptr;
1237  }
1238
1239  size_t SizeSlow() const {
1240    size_t count = 0;
1241    for (HUseListNode<T>* current = first_; current != nullptr; current = current->GetNext()) {
1242      ++count;
1243    }
1244    return count;
1245  }
1246
1247 private:
1248  HUseListNode<T>* first_;
1249};
1250
1251template<typename T>
1252class HUseIterator : public ValueObject {
1253 public:
1254  explicit HUseIterator(const HUseList<T>& uses) : current_(uses.GetFirst()) {}
1255
1256  bool Done() const { return current_ == nullptr; }
1257
1258  void Advance() {
1259    DCHECK(!Done());
1260    current_ = current_->GetNext();
1261  }
1262
1263  HUseListNode<T>* Current() const {
1264    DCHECK(!Done());
1265    return current_;
1266  }
1267
1268 private:
1269  HUseListNode<T>* current_;
1270
1271  friend class HValue;
1272};
1273
1274// This class is used by HEnvironment and HInstruction classes to record the
1275// instructions they use and pointers to the corresponding HUseListNodes kept
1276// by the used instructions.
1277template <typename T>
1278class HUserRecord : public ValueObject {
1279 public:
1280  HUserRecord() : instruction_(nullptr), use_node_(nullptr) {}
1281  explicit HUserRecord(HInstruction* instruction) : instruction_(instruction), use_node_(nullptr) {}
1282
1283  HUserRecord(const HUserRecord<T>& old_record, HUseListNode<T>* use_node)
1284    : instruction_(old_record.instruction_), use_node_(use_node) {
1285    DCHECK(instruction_ != nullptr);
1286    DCHECK(use_node_ != nullptr);
1287    DCHECK(old_record.use_node_ == nullptr);
1288  }
1289
1290  HInstruction* GetInstruction() const { return instruction_; }
1291  HUseListNode<T>* GetUseNode() const { return use_node_; }
1292
1293 private:
1294  // Instruction used by the user.
1295  HInstruction* instruction_;
1296
1297  // Corresponding entry in the use list kept by 'instruction_'.
1298  HUseListNode<T>* use_node_;
1299};
1300
1301/**
1302 * Side-effects representation.
1303 *
1304 * For write/read dependences on fields/arrays, the dependence analysis uses
1305 * type disambiguation (e.g. a float field write cannot modify the value of an
1306 * integer field read) and the access type (e.g.  a reference array write cannot
1307 * modify the value of a reference field read [although it may modify the
1308 * reference fetch prior to reading the field, which is represented by its own
1309 * write/read dependence]). The analysis makes conservative points-to
1310 * assumptions on reference types (e.g. two same typed arrays are assumed to be
1311 * the same, and any reference read depends on any reference read without
1312 * further regard of its type).
1313 *
1314 * The internal representation uses 38-bit and is described in the table below.
1315 * The first line indicates the side effect, and for field/array accesses the
1316 * second line indicates the type of the access (in the order of the
1317 * Primitive::Type enum).
1318 * The two numbered lines below indicate the bit position in the bitfield (read
1319 * vertically).
1320 *
1321 *   |Depends on GC|ARRAY-R  |FIELD-R  |Can trigger GC|ARRAY-W  |FIELD-W  |
1322 *   +-------------+---------+---------+--------------+---------+---------+
1323 *   |             |DFJISCBZL|DFJISCBZL|              |DFJISCBZL|DFJISCBZL|
1324 *   |      3      |333333322|222222221|       1      |111111110|000000000|
1325 *   |      7      |654321098|765432109|       8      |765432109|876543210|
1326 *
1327 * Note that, to ease the implementation, 'changes' bits are least significant
1328 * bits, while 'dependency' bits are most significant bits.
1329 */
1330class SideEffects : public ValueObject {
1331 public:
1332  SideEffects() : flags_(0) {}
1333
1334  static SideEffects None() {
1335    return SideEffects(0);
1336  }
1337
1338  static SideEffects All() {
1339    return SideEffects(kAllChangeBits | kAllDependOnBits);
1340  }
1341
1342  static SideEffects AllChanges() {
1343    return SideEffects(kAllChangeBits);
1344  }
1345
1346  static SideEffects AllDependencies() {
1347    return SideEffects(kAllDependOnBits);
1348  }
1349
1350  static SideEffects AllExceptGCDependency() {
1351    return AllWritesAndReads().Union(SideEffects::CanTriggerGC());
1352  }
1353
1354  static SideEffects AllWritesAndReads() {
1355    return SideEffects(kAllWrites | kAllReads);
1356  }
1357
1358  static SideEffects AllWrites() {
1359    return SideEffects(kAllWrites);
1360  }
1361
1362  static SideEffects AllReads() {
1363    return SideEffects(kAllReads);
1364  }
1365
1366  static SideEffects FieldWriteOfType(Primitive::Type type, bool is_volatile) {
1367    return is_volatile
1368        ? AllWritesAndReads()
1369        : SideEffects(TypeFlagWithAlias(type, kFieldWriteOffset));
1370  }
1371
1372  static SideEffects ArrayWriteOfType(Primitive::Type type) {
1373    return SideEffects(TypeFlagWithAlias(type, kArrayWriteOffset));
1374  }
1375
1376  static SideEffects FieldReadOfType(Primitive::Type type, bool is_volatile) {
1377    return is_volatile
1378        ? AllWritesAndReads()
1379        : SideEffects(TypeFlagWithAlias(type, kFieldReadOffset));
1380  }
1381
1382  static SideEffects ArrayReadOfType(Primitive::Type type) {
1383    return SideEffects(TypeFlagWithAlias(type, kArrayReadOffset));
1384  }
1385
1386  static SideEffects CanTriggerGC() {
1387    return SideEffects(1ULL << kCanTriggerGCBit);
1388  }
1389
1390  static SideEffects DependsOnGC() {
1391    return SideEffects(1ULL << kDependsOnGCBit);
1392  }
1393
1394  // Combines the side-effects of this and the other.
1395  SideEffects Union(SideEffects other) const {
1396    return SideEffects(flags_ | other.flags_);
1397  }
1398
1399  SideEffects Exclusion(SideEffects other) const {
1400    return SideEffects(flags_ & ~other.flags_);
1401  }
1402
1403  void Add(SideEffects other) {
1404    flags_ |= other.flags_;
1405  }
1406
1407  bool Includes(SideEffects other) const {
1408    return (other.flags_ & flags_) == other.flags_;
1409  }
1410
1411  bool HasSideEffects() const {
1412    return (flags_ & kAllChangeBits);
1413  }
1414
1415  bool HasDependencies() const {
1416    return (flags_ & kAllDependOnBits);
1417  }
1418
1419  // Returns true if there are no side effects or dependencies.
1420  bool DoesNothing() const {
1421    return flags_ == 0;
1422  }
1423
1424  // Returns true if something is written.
1425  bool DoesAnyWrite() const {
1426    return (flags_ & kAllWrites);
1427  }
1428
1429  // Returns true if something is read.
1430  bool DoesAnyRead() const {
1431    return (flags_ & kAllReads);
1432  }
1433
1434  // Returns true if potentially everything is written and read
1435  // (every type and every kind of access).
1436  bool DoesAllReadWrite() const {
1437    return (flags_ & (kAllWrites | kAllReads)) == (kAllWrites | kAllReads);
1438  }
1439
1440  bool DoesAll() const {
1441    return flags_ == (kAllChangeBits | kAllDependOnBits);
1442  }
1443
1444  // Returns true if `this` may read something written by `other`.
1445  bool MayDependOn(SideEffects other) const {
1446    const uint64_t depends_on_flags = (flags_ & kAllDependOnBits) >> kChangeBits;
1447    return (other.flags_ & depends_on_flags);
1448  }
1449
1450  // Returns string representation of flags (for debugging only).
1451  // Format: |x|DFJISCBZL|DFJISCBZL|y|DFJISCBZL|DFJISCBZL|
1452  std::string ToString() const {
1453    std::string flags = "|";
1454    for (int s = kLastBit; s >= 0; s--) {
1455      bool current_bit_is_set = ((flags_ >> s) & 1) != 0;
1456      if ((s == kDependsOnGCBit) || (s == kCanTriggerGCBit)) {
1457        // This is a bit for the GC side effect.
1458        if (current_bit_is_set) {
1459          flags += "GC";
1460        }
1461        flags += "|";
1462      } else {
1463        // This is a bit for the array/field analysis.
1464        // The underscore character stands for the 'can trigger GC' bit.
1465        static const char *kDebug = "LZBCSIJFDLZBCSIJFD_LZBCSIJFDLZBCSIJFD";
1466        if (current_bit_is_set) {
1467          flags += kDebug[s];
1468        }
1469        if ((s == kFieldWriteOffset) || (s == kArrayWriteOffset) ||
1470            (s == kFieldReadOffset) || (s == kArrayReadOffset)) {
1471          flags += "|";
1472        }
1473      }
1474    }
1475    return flags;
1476  }
1477
1478  bool Equals(const SideEffects& other) const { return flags_ == other.flags_; }
1479
1480 private:
1481  static constexpr int kFieldArrayAnalysisBits = 9;
1482
1483  static constexpr int kFieldWriteOffset = 0;
1484  static constexpr int kArrayWriteOffset = kFieldWriteOffset + kFieldArrayAnalysisBits;
1485  static constexpr int kLastBitForWrites = kArrayWriteOffset + kFieldArrayAnalysisBits - 1;
1486  static constexpr int kCanTriggerGCBit = kLastBitForWrites + 1;
1487
1488  static constexpr int kChangeBits = kCanTriggerGCBit + 1;
1489
1490  static constexpr int kFieldReadOffset = kCanTriggerGCBit + 1;
1491  static constexpr int kArrayReadOffset = kFieldReadOffset + kFieldArrayAnalysisBits;
1492  static constexpr int kLastBitForReads = kArrayReadOffset + kFieldArrayAnalysisBits - 1;
1493  static constexpr int kDependsOnGCBit = kLastBitForReads + 1;
1494
1495  static constexpr int kLastBit = kDependsOnGCBit;
1496  static constexpr int kDependOnBits = kLastBit + 1 - kChangeBits;
1497
1498  // Aliases.
1499
1500  static_assert(kChangeBits == kDependOnBits,
1501                "the 'change' bits should match the 'depend on' bits.");
1502
1503  static constexpr uint64_t kAllChangeBits = ((1ULL << kChangeBits) - 1);
1504  static constexpr uint64_t kAllDependOnBits = ((1ULL << kDependOnBits) - 1) << kChangeBits;
1505  static constexpr uint64_t kAllWrites =
1506      ((1ULL << (kLastBitForWrites + 1 - kFieldWriteOffset)) - 1) << kFieldWriteOffset;
1507  static constexpr uint64_t kAllReads =
1508      ((1ULL << (kLastBitForReads + 1 - kFieldReadOffset)) - 1) << kFieldReadOffset;
1509
1510  // Work around the fact that HIR aliases I/F and J/D.
1511  // TODO: remove this interceptor once HIR types are clean
1512  static uint64_t TypeFlagWithAlias(Primitive::Type type, int offset) {
1513    switch (type) {
1514      case Primitive::kPrimInt:
1515      case Primitive::kPrimFloat:
1516        return TypeFlag(Primitive::kPrimInt, offset) |
1517               TypeFlag(Primitive::kPrimFloat, offset);
1518      case Primitive::kPrimLong:
1519      case Primitive::kPrimDouble:
1520        return TypeFlag(Primitive::kPrimLong, offset) |
1521               TypeFlag(Primitive::kPrimDouble, offset);
1522      default:
1523        return TypeFlag(type, offset);
1524    }
1525  }
1526
1527  // Translates type to bit flag.
1528  static uint64_t TypeFlag(Primitive::Type type, int offset) {
1529    CHECK_NE(type, Primitive::kPrimVoid);
1530    const uint64_t one = 1;
1531    const int shift = type;  // 0-based consecutive enum
1532    DCHECK_LE(kFieldWriteOffset, shift);
1533    DCHECK_LT(shift, kArrayWriteOffset);
1534    return one << (type + offset);
1535  }
1536
1537  // Private constructor on direct flags value.
1538  explicit SideEffects(uint64_t flags) : flags_(flags) {}
1539
1540  uint64_t flags_;
1541};
1542
1543// A HEnvironment object contains the values of virtual registers at a given location.
1544class HEnvironment : public ArenaObject<kArenaAllocEnvironment> {
1545 public:
1546  HEnvironment(ArenaAllocator* arena,
1547               size_t number_of_vregs,
1548               const DexFile& dex_file,
1549               uint32_t method_idx,
1550               uint32_t dex_pc,
1551               InvokeType invoke_type,
1552               HInstruction* holder)
1553     : vregs_(number_of_vregs, arena->Adapter(kArenaAllocEnvironmentVRegs)),
1554       locations_(number_of_vregs, arena->Adapter(kArenaAllocEnvironmentLocations)),
1555       parent_(nullptr),
1556       dex_file_(dex_file),
1557       method_idx_(method_idx),
1558       dex_pc_(dex_pc),
1559       invoke_type_(invoke_type),
1560       holder_(holder) {
1561  }
1562
1563  HEnvironment(ArenaAllocator* arena, const HEnvironment& to_copy, HInstruction* holder)
1564      : HEnvironment(arena,
1565                     to_copy.Size(),
1566                     to_copy.GetDexFile(),
1567                     to_copy.GetMethodIdx(),
1568                     to_copy.GetDexPc(),
1569                     to_copy.GetInvokeType(),
1570                     holder) {}
1571
1572  void SetAndCopyParentChain(ArenaAllocator* allocator, HEnvironment* parent) {
1573    if (parent_ != nullptr) {
1574      parent_->SetAndCopyParentChain(allocator, parent);
1575    } else {
1576      parent_ = new (allocator) HEnvironment(allocator, *parent, holder_);
1577      parent_->CopyFrom(parent);
1578      if (parent->GetParent() != nullptr) {
1579        parent_->SetAndCopyParentChain(allocator, parent->GetParent());
1580      }
1581    }
1582  }
1583
1584  void CopyFrom(const ArenaVector<HInstruction*>& locals);
1585  void CopyFrom(HEnvironment* environment);
1586
1587  // Copy from `env`. If it's a loop phi for `loop_header`, copy the first
1588  // input to the loop phi instead. This is for inserting instructions that
1589  // require an environment (like HDeoptimization) in the loop pre-header.
1590  void CopyFromWithLoopPhiAdjustment(HEnvironment* env, HBasicBlock* loop_header);
1591
1592  void SetRawEnvAt(size_t index, HInstruction* instruction) {
1593    vregs_[index] = HUserRecord<HEnvironment*>(instruction);
1594  }
1595
1596  HInstruction* GetInstructionAt(size_t index) const {
1597    return vregs_[index].GetInstruction();
1598  }
1599
1600  void RemoveAsUserOfInput(size_t index) const;
1601
1602  size_t Size() const { return vregs_.size(); }
1603
1604  HEnvironment* GetParent() const { return parent_; }
1605
1606  void SetLocationAt(size_t index, Location location) {
1607    locations_[index] = location;
1608  }
1609
1610  Location GetLocationAt(size_t index) const {
1611    return locations_[index];
1612  }
1613
1614  uint32_t GetDexPc() const {
1615    return dex_pc_;
1616  }
1617
1618  uint32_t GetMethodIdx() const {
1619    return method_idx_;
1620  }
1621
1622  InvokeType GetInvokeType() const {
1623    return invoke_type_;
1624  }
1625
1626  const DexFile& GetDexFile() const {
1627    return dex_file_;
1628  }
1629
1630  HInstruction* GetHolder() const {
1631    return holder_;
1632  }
1633
1634
1635  bool IsFromInlinedInvoke() const {
1636    return GetParent() != nullptr;
1637  }
1638
1639 private:
1640  // Record instructions' use entries of this environment for constant-time removal.
1641  // It should only be called by HInstruction when a new environment use is added.
1642  void RecordEnvUse(HUseListNode<HEnvironment*>* env_use) {
1643    DCHECK(env_use->GetUser() == this);
1644    size_t index = env_use->GetIndex();
1645    vregs_[index] = HUserRecord<HEnvironment*>(vregs_[index], env_use);
1646  }
1647
1648  ArenaVector<HUserRecord<HEnvironment*>> vregs_;
1649  ArenaVector<Location> locations_;
1650  HEnvironment* parent_;
1651  const DexFile& dex_file_;
1652  const uint32_t method_idx_;
1653  const uint32_t dex_pc_;
1654  const InvokeType invoke_type_;
1655
1656  // The instruction that holds this environment.
1657  HInstruction* const holder_;
1658
1659  friend class HInstruction;
1660
1661  DISALLOW_COPY_AND_ASSIGN(HEnvironment);
1662};
1663
1664class ReferenceTypeInfo : ValueObject {
1665 public:
1666  typedef Handle<mirror::Class> TypeHandle;
1667
1668  static ReferenceTypeInfo Create(TypeHandle type_handle, bool is_exact) {
1669    // The constructor will check that the type_handle is valid.
1670    return ReferenceTypeInfo(type_handle, is_exact);
1671  }
1672
1673  static ReferenceTypeInfo CreateInvalid() { return ReferenceTypeInfo(); }
1674
1675  static bool IsValidHandle(TypeHandle handle) SHARED_REQUIRES(Locks::mutator_lock_) {
1676    return handle.GetReference() != nullptr;
1677  }
1678
1679  bool IsValid() const SHARED_REQUIRES(Locks::mutator_lock_) {
1680    return IsValidHandle(type_handle_);
1681  }
1682
1683  bool IsExact() const { return is_exact_; }
1684
1685  bool IsObjectClass() const SHARED_REQUIRES(Locks::mutator_lock_) {
1686    DCHECK(IsValid());
1687    return GetTypeHandle()->IsObjectClass();
1688  }
1689
1690  bool IsStringClass() const SHARED_REQUIRES(Locks::mutator_lock_) {
1691    DCHECK(IsValid());
1692    return GetTypeHandle()->IsStringClass();
1693  }
1694
1695  bool IsObjectArray() const SHARED_REQUIRES(Locks::mutator_lock_) {
1696    DCHECK(IsValid());
1697    return IsArrayClass() && GetTypeHandle()->GetComponentType()->IsObjectClass();
1698  }
1699
1700  bool IsInterface() const SHARED_REQUIRES(Locks::mutator_lock_) {
1701    DCHECK(IsValid());
1702    return GetTypeHandle()->IsInterface();
1703  }
1704
1705  bool IsArrayClass() const SHARED_REQUIRES(Locks::mutator_lock_) {
1706    DCHECK(IsValid());
1707    return GetTypeHandle()->IsArrayClass();
1708  }
1709
1710  bool IsPrimitiveArrayClass() const SHARED_REQUIRES(Locks::mutator_lock_) {
1711    DCHECK(IsValid());
1712    return GetTypeHandle()->IsPrimitiveArray();
1713  }
1714
1715  bool IsNonPrimitiveArrayClass() const SHARED_REQUIRES(Locks::mutator_lock_) {
1716    DCHECK(IsValid());
1717    return GetTypeHandle()->IsArrayClass() && !GetTypeHandle()->IsPrimitiveArray();
1718  }
1719
1720  bool CanArrayHold(ReferenceTypeInfo rti)  const SHARED_REQUIRES(Locks::mutator_lock_) {
1721    DCHECK(IsValid());
1722    if (!IsExact()) return false;
1723    if (!IsArrayClass()) return false;
1724    return GetTypeHandle()->GetComponentType()->IsAssignableFrom(rti.GetTypeHandle().Get());
1725  }
1726
1727  bool CanArrayHoldValuesOf(ReferenceTypeInfo rti)  const SHARED_REQUIRES(Locks::mutator_lock_) {
1728    DCHECK(IsValid());
1729    if (!IsExact()) return false;
1730    if (!IsArrayClass()) return false;
1731    if (!rti.IsArrayClass()) return false;
1732    return GetTypeHandle()->GetComponentType()->IsAssignableFrom(
1733        rti.GetTypeHandle()->GetComponentType());
1734  }
1735
1736  Handle<mirror::Class> GetTypeHandle() const { return type_handle_; }
1737
1738  bool IsSupertypeOf(ReferenceTypeInfo rti) const SHARED_REQUIRES(Locks::mutator_lock_) {
1739    DCHECK(IsValid());
1740    DCHECK(rti.IsValid());
1741    return GetTypeHandle()->IsAssignableFrom(rti.GetTypeHandle().Get());
1742  }
1743
1744  bool IsStrictSupertypeOf(ReferenceTypeInfo rti) const SHARED_REQUIRES(Locks::mutator_lock_) {
1745    DCHECK(IsValid());
1746    DCHECK(rti.IsValid());
1747    return GetTypeHandle().Get() != rti.GetTypeHandle().Get() &&
1748        GetTypeHandle()->IsAssignableFrom(rti.GetTypeHandle().Get());
1749  }
1750
1751  // Returns true if the type information provide the same amount of details.
1752  // Note that it does not mean that the instructions have the same actual type
1753  // (because the type can be the result of a merge).
1754  bool IsEqual(ReferenceTypeInfo rti) SHARED_REQUIRES(Locks::mutator_lock_) {
1755    if (!IsValid() && !rti.IsValid()) {
1756      // Invalid types are equal.
1757      return true;
1758    }
1759    if (!IsValid() || !rti.IsValid()) {
1760      // One is valid, the other not.
1761      return false;
1762    }
1763    return IsExact() == rti.IsExact()
1764        && GetTypeHandle().Get() == rti.GetTypeHandle().Get();
1765  }
1766
1767 private:
1768  ReferenceTypeInfo();
1769  ReferenceTypeInfo(TypeHandle type_handle, bool is_exact);
1770
1771  // The class of the object.
1772  TypeHandle type_handle_;
1773  // Whether or not the type is exact or a superclass of the actual type.
1774  // Whether or not we have any information about this type.
1775  bool is_exact_;
1776};
1777
1778std::ostream& operator<<(std::ostream& os, const ReferenceTypeInfo& rhs);
1779
1780class HInstruction : public ArenaObject<kArenaAllocInstruction> {
1781 public:
1782  HInstruction(SideEffects side_effects, uint32_t dex_pc)
1783      : previous_(nullptr),
1784        next_(nullptr),
1785        block_(nullptr),
1786        dex_pc_(dex_pc),
1787        id_(-1),
1788        ssa_index_(-1),
1789        environment_(nullptr),
1790        locations_(nullptr),
1791        live_interval_(nullptr),
1792        lifetime_position_(kNoLifetime),
1793        side_effects_(side_effects),
1794        reference_type_info_(ReferenceTypeInfo::CreateInvalid()) {}
1795
1796  virtual ~HInstruction() {}
1797
1798#define DECLARE_KIND(type, super) k##type,
1799  enum InstructionKind {
1800    FOR_EACH_INSTRUCTION(DECLARE_KIND)
1801  };
1802#undef DECLARE_KIND
1803
1804  HInstruction* GetNext() const { return next_; }
1805  HInstruction* GetPrevious() const { return previous_; }
1806
1807  HInstruction* GetNextDisregardingMoves() const;
1808  HInstruction* GetPreviousDisregardingMoves() const;
1809
1810  HBasicBlock* GetBlock() const { return block_; }
1811  ArenaAllocator* GetArena() const { return block_->GetGraph()->GetArena(); }
1812  void SetBlock(HBasicBlock* block) { block_ = block; }
1813  bool IsInBlock() const { return block_ != nullptr; }
1814  bool IsInLoop() const { return block_->IsInLoop(); }
1815  bool IsLoopHeaderPhi() { return IsPhi() && block_->IsLoopHeader(); }
1816
1817  virtual size_t InputCount() const = 0;
1818  HInstruction* InputAt(size_t i) const { return InputRecordAt(i).GetInstruction(); }
1819
1820  virtual void Accept(HGraphVisitor* visitor) = 0;
1821  virtual const char* DebugName() const = 0;
1822
1823  virtual Primitive::Type GetType() const { return Primitive::kPrimVoid; }
1824  void SetRawInputAt(size_t index, HInstruction* input) {
1825    SetRawInputRecordAt(index, HUserRecord<HInstruction*>(input));
1826  }
1827
1828  virtual bool NeedsEnvironment() const { return false; }
1829
1830  uint32_t GetDexPc() const { return dex_pc_; }
1831
1832  virtual bool IsControlFlow() const { return false; }
1833
1834  virtual bool CanThrow() const { return false; }
1835  bool CanThrowIntoCatchBlock() const { return CanThrow() && block_->IsTryBlock(); }
1836
1837  bool HasSideEffects() const { return side_effects_.HasSideEffects(); }
1838  bool DoesAnyWrite() const { return side_effects_.DoesAnyWrite(); }
1839
1840  // Does not apply for all instructions, but having this at top level greatly
1841  // simplifies the null check elimination.
1842  // TODO: Consider merging can_be_null into ReferenceTypeInfo.
1843  virtual bool CanBeNull() const {
1844    DCHECK_EQ(GetType(), Primitive::kPrimNot) << "CanBeNull only applies to reference types";
1845    return true;
1846  }
1847
1848  virtual bool CanDoImplicitNullCheckOn(HInstruction* obj ATTRIBUTE_UNUSED) const {
1849    return false;
1850  }
1851
1852  void SetReferenceTypeInfo(ReferenceTypeInfo rti);
1853
1854  ReferenceTypeInfo GetReferenceTypeInfo() const {
1855    DCHECK_EQ(GetType(), Primitive::kPrimNot);
1856    return reference_type_info_;
1857  }
1858
1859  void AddUseAt(HInstruction* user, size_t index) {
1860    DCHECK(user != nullptr);
1861    HUseListNode<HInstruction*>* use =
1862        uses_.AddUse(user, index, GetBlock()->GetGraph()->GetArena());
1863    user->SetRawInputRecordAt(index, HUserRecord<HInstruction*>(user->InputRecordAt(index), use));
1864  }
1865
1866  void AddEnvUseAt(HEnvironment* user, size_t index) {
1867    DCHECK(user != nullptr);
1868    HUseListNode<HEnvironment*>* env_use =
1869        env_uses_.AddUse(user, index, GetBlock()->GetGraph()->GetArena());
1870    user->RecordEnvUse(env_use);
1871  }
1872
1873  void RemoveAsUserOfInput(size_t input) {
1874    HUserRecord<HInstruction*> input_use = InputRecordAt(input);
1875    input_use.GetInstruction()->uses_.Remove(input_use.GetUseNode());
1876  }
1877
1878  const HUseList<HInstruction*>& GetUses() const { return uses_; }
1879  const HUseList<HEnvironment*>& GetEnvUses() const { return env_uses_; }
1880
1881  bool HasUses() const { return !uses_.IsEmpty() || !env_uses_.IsEmpty(); }
1882  bool HasEnvironmentUses() const { return !env_uses_.IsEmpty(); }
1883  bool HasNonEnvironmentUses() const { return !uses_.IsEmpty(); }
1884  bool HasOnlyOneNonEnvironmentUse() const {
1885    return !HasEnvironmentUses() && GetUses().HasOnlyOneUse();
1886  }
1887
1888  // Does this instruction strictly dominate `other_instruction`?
1889  // Returns false if this instruction and `other_instruction` are the same.
1890  // Aborts if this instruction and `other_instruction` are both phis.
1891  bool StrictlyDominates(HInstruction* other_instruction) const;
1892
1893  int GetId() const { return id_; }
1894  void SetId(int id) { id_ = id; }
1895
1896  int GetSsaIndex() const { return ssa_index_; }
1897  void SetSsaIndex(int ssa_index) { ssa_index_ = ssa_index; }
1898  bool HasSsaIndex() const { return ssa_index_ != -1; }
1899
1900  bool HasEnvironment() const { return environment_ != nullptr; }
1901  HEnvironment* GetEnvironment() const { return environment_; }
1902  // Set the `environment_` field. Raw because this method does not
1903  // update the uses lists.
1904  void SetRawEnvironment(HEnvironment* environment) {
1905    DCHECK(environment_ == nullptr);
1906    DCHECK_EQ(environment->GetHolder(), this);
1907    environment_ = environment;
1908  }
1909
1910  // Set the environment of this instruction, copying it from `environment`. While
1911  // copying, the uses lists are being updated.
1912  void CopyEnvironmentFrom(HEnvironment* environment) {
1913    DCHECK(environment_ == nullptr);
1914    ArenaAllocator* allocator = GetBlock()->GetGraph()->GetArena();
1915    environment_ = new (allocator) HEnvironment(allocator, *environment, this);
1916    environment_->CopyFrom(environment);
1917    if (environment->GetParent() != nullptr) {
1918      environment_->SetAndCopyParentChain(allocator, environment->GetParent());
1919    }
1920  }
1921
1922  void CopyEnvironmentFromWithLoopPhiAdjustment(HEnvironment* environment,
1923                                                HBasicBlock* block) {
1924    DCHECK(environment_ == nullptr);
1925    ArenaAllocator* allocator = GetBlock()->GetGraph()->GetArena();
1926    environment_ = new (allocator) HEnvironment(allocator, *environment, this);
1927    environment_->CopyFromWithLoopPhiAdjustment(environment, block);
1928    if (environment->GetParent() != nullptr) {
1929      environment_->SetAndCopyParentChain(allocator, environment->GetParent());
1930    }
1931  }
1932
1933  // Returns the number of entries in the environment. Typically, that is the
1934  // number of dex registers in a method. It could be more in case of inlining.
1935  size_t EnvironmentSize() const;
1936
1937  LocationSummary* GetLocations() const { return locations_; }
1938  void SetLocations(LocationSummary* locations) { locations_ = locations; }
1939
1940  void ReplaceWith(HInstruction* instruction);
1941  void ReplaceInput(HInstruction* replacement, size_t index);
1942
1943  // This is almost the same as doing `ReplaceWith()`. But in this helper, the
1944  // uses of this instruction by `other` are *not* updated.
1945  void ReplaceWithExceptInReplacementAtIndex(HInstruction* other, size_t use_index) {
1946    ReplaceWith(other);
1947    other->ReplaceInput(this, use_index);
1948  }
1949
1950  // Move `this` instruction before `cursor`.
1951  void MoveBefore(HInstruction* cursor);
1952
1953#define INSTRUCTION_TYPE_CHECK(type, super)                                    \
1954  bool Is##type() const { return (As##type() != nullptr); }                    \
1955  virtual const H##type* As##type() const { return nullptr; }                  \
1956  virtual H##type* As##type() { return nullptr; }
1957
1958  FOR_EACH_INSTRUCTION(INSTRUCTION_TYPE_CHECK)
1959#undef INSTRUCTION_TYPE_CHECK
1960
1961  // Returns whether the instruction can be moved within the graph.
1962  virtual bool CanBeMoved() const { return false; }
1963
1964  // Returns whether the two instructions are of the same kind.
1965  virtual bool InstructionTypeEquals(HInstruction* other ATTRIBUTE_UNUSED) const {
1966    return false;
1967  }
1968
1969  // Returns whether any data encoded in the two instructions is equal.
1970  // This method does not look at the inputs. Both instructions must be
1971  // of the same type, otherwise the method has undefined behavior.
1972  virtual bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const {
1973    return false;
1974  }
1975
1976  // Returns whether two instructions are equal, that is:
1977  // 1) They have the same type and contain the same data (InstructionDataEquals).
1978  // 2) Their inputs are identical.
1979  bool Equals(HInstruction* other) const;
1980
1981  virtual InstructionKind GetKind() const = 0;
1982
1983  virtual size_t ComputeHashCode() const {
1984    size_t result = GetKind();
1985    for (size_t i = 0, e = InputCount(); i < e; ++i) {
1986      result = (result * 31) + InputAt(i)->GetId();
1987    }
1988    return result;
1989  }
1990
1991  SideEffects GetSideEffects() const { return side_effects_; }
1992  void AddSideEffects(SideEffects other) { side_effects_.Add(other); }
1993
1994  size_t GetLifetimePosition() const { return lifetime_position_; }
1995  void SetLifetimePosition(size_t position) { lifetime_position_ = position; }
1996  LiveInterval* GetLiveInterval() const { return live_interval_; }
1997  void SetLiveInterval(LiveInterval* interval) { live_interval_ = interval; }
1998  bool HasLiveInterval() const { return live_interval_ != nullptr; }
1999
2000  bool IsSuspendCheckEntry() const { return IsSuspendCheck() && GetBlock()->IsEntryBlock(); }
2001
2002  // Returns whether the code generation of the instruction will require to have access
2003  // to the current method. Such instructions are:
2004  // (1): Instructions that require an environment, as calling the runtime requires
2005  //      to walk the stack and have the current method stored at a specific stack address.
2006  // (2): Object literals like classes and strings, that are loaded from the dex cache
2007  //      fields of the current method.
2008  bool NeedsCurrentMethod() const {
2009    return NeedsEnvironment() || IsLoadClass() || IsLoadString();
2010  }
2011
2012  // Returns whether the code generation of the instruction will require to have access
2013  // to the dex cache of the current method's declaring class via the current method.
2014  virtual bool NeedsDexCacheOfDeclaringClass() const { return false; }
2015
2016  // Does this instruction have any use in an environment before
2017  // control flow hits 'other'?
2018  bool HasAnyEnvironmentUseBefore(HInstruction* other);
2019
2020  // Remove all references to environment uses of this instruction.
2021  // The caller must ensure that this is safe to do.
2022  void RemoveEnvironmentUsers();
2023
2024 protected:
2025  virtual const HUserRecord<HInstruction*> InputRecordAt(size_t i) const = 0;
2026  virtual void SetRawInputRecordAt(size_t index, const HUserRecord<HInstruction*>& input) = 0;
2027
2028 private:
2029  void RemoveEnvironmentUser(HUseListNode<HEnvironment*>* use_node) { env_uses_.Remove(use_node); }
2030
2031  HInstruction* previous_;
2032  HInstruction* next_;
2033  HBasicBlock* block_;
2034  const uint32_t dex_pc_;
2035
2036  // An instruction gets an id when it is added to the graph.
2037  // It reflects creation order. A negative id means the instruction
2038  // has not been added to the graph.
2039  int id_;
2040
2041  // When doing liveness analysis, instructions that have uses get an SSA index.
2042  int ssa_index_;
2043
2044  // List of instructions that have this instruction as input.
2045  HUseList<HInstruction*> uses_;
2046
2047  // List of environments that contain this instruction.
2048  HUseList<HEnvironment*> env_uses_;
2049
2050  // The environment associated with this instruction. Not null if the instruction
2051  // might jump out of the method.
2052  HEnvironment* environment_;
2053
2054  // Set by the code generator.
2055  LocationSummary* locations_;
2056
2057  // Set by the liveness analysis.
2058  LiveInterval* live_interval_;
2059
2060  // Set by the liveness analysis, this is the position in a linear
2061  // order of blocks where this instruction's live interval start.
2062  size_t lifetime_position_;
2063
2064  SideEffects side_effects_;
2065
2066  // TODO: for primitive types this should be marked as invalid.
2067  ReferenceTypeInfo reference_type_info_;
2068
2069  friend class GraphChecker;
2070  friend class HBasicBlock;
2071  friend class HEnvironment;
2072  friend class HGraph;
2073  friend class HInstructionList;
2074
2075  DISALLOW_COPY_AND_ASSIGN(HInstruction);
2076};
2077std::ostream& operator<<(std::ostream& os, const HInstruction::InstructionKind& rhs);
2078
2079class HInputIterator : public ValueObject {
2080 public:
2081  explicit HInputIterator(HInstruction* instruction) : instruction_(instruction), index_(0) {}
2082
2083  bool Done() const { return index_ == instruction_->InputCount(); }
2084  HInstruction* Current() const { return instruction_->InputAt(index_); }
2085  void Advance() { index_++; }
2086
2087 private:
2088  HInstruction* instruction_;
2089  size_t index_;
2090
2091  DISALLOW_COPY_AND_ASSIGN(HInputIterator);
2092};
2093
2094class HInstructionIterator : public ValueObject {
2095 public:
2096  explicit HInstructionIterator(const HInstructionList& instructions)
2097      : instruction_(instructions.first_instruction_) {
2098    next_ = Done() ? nullptr : instruction_->GetNext();
2099  }
2100
2101  bool Done() const { return instruction_ == nullptr; }
2102  HInstruction* Current() const { return instruction_; }
2103  void Advance() {
2104    instruction_ = next_;
2105    next_ = Done() ? nullptr : instruction_->GetNext();
2106  }
2107
2108 private:
2109  HInstruction* instruction_;
2110  HInstruction* next_;
2111
2112  DISALLOW_COPY_AND_ASSIGN(HInstructionIterator);
2113};
2114
2115class HBackwardInstructionIterator : public ValueObject {
2116 public:
2117  explicit HBackwardInstructionIterator(const HInstructionList& instructions)
2118      : instruction_(instructions.last_instruction_) {
2119    next_ = Done() ? nullptr : instruction_->GetPrevious();
2120  }
2121
2122  bool Done() const { return instruction_ == nullptr; }
2123  HInstruction* Current() const { return instruction_; }
2124  void Advance() {
2125    instruction_ = next_;
2126    next_ = Done() ? nullptr : instruction_->GetPrevious();
2127  }
2128
2129 private:
2130  HInstruction* instruction_;
2131  HInstruction* next_;
2132
2133  DISALLOW_COPY_AND_ASSIGN(HBackwardInstructionIterator);
2134};
2135
2136template<size_t N>
2137class HTemplateInstruction: public HInstruction {
2138 public:
2139  HTemplateInstruction<N>(SideEffects side_effects, uint32_t dex_pc)
2140      : HInstruction(side_effects, dex_pc), inputs_() {}
2141  virtual ~HTemplateInstruction() {}
2142
2143  size_t InputCount() const OVERRIDE { return N; }
2144
2145 protected:
2146  const HUserRecord<HInstruction*> InputRecordAt(size_t i) const OVERRIDE {
2147    DCHECK_LT(i, N);
2148    return inputs_[i];
2149  }
2150
2151  void SetRawInputRecordAt(size_t i, const HUserRecord<HInstruction*>& input) OVERRIDE {
2152    DCHECK_LT(i, N);
2153    inputs_[i] = input;
2154  }
2155
2156 private:
2157  std::array<HUserRecord<HInstruction*>, N> inputs_;
2158
2159  friend class SsaBuilder;
2160};
2161
2162// HTemplateInstruction specialization for N=0.
2163template<>
2164class HTemplateInstruction<0>: public HInstruction {
2165 public:
2166  explicit HTemplateInstruction<0>(SideEffects side_effects, uint32_t dex_pc)
2167      : HInstruction(side_effects, dex_pc) {}
2168
2169  virtual ~HTemplateInstruction() {}
2170
2171  size_t InputCount() const OVERRIDE { return 0; }
2172
2173 protected:
2174  const HUserRecord<HInstruction*> InputRecordAt(size_t i ATTRIBUTE_UNUSED) const OVERRIDE {
2175    LOG(FATAL) << "Unreachable";
2176    UNREACHABLE();
2177  }
2178
2179  void SetRawInputRecordAt(size_t i ATTRIBUTE_UNUSED,
2180                           const HUserRecord<HInstruction*>& input ATTRIBUTE_UNUSED) OVERRIDE {
2181    LOG(FATAL) << "Unreachable";
2182    UNREACHABLE();
2183  }
2184
2185 private:
2186  friend class SsaBuilder;
2187};
2188
2189template<intptr_t N>
2190class HExpression : public HTemplateInstruction<N> {
2191 public:
2192  HExpression<N>(Primitive::Type type, SideEffects side_effects, uint32_t dex_pc)
2193      : HTemplateInstruction<N>(side_effects, dex_pc), type_(type) {}
2194  virtual ~HExpression() {}
2195
2196  Primitive::Type GetType() const OVERRIDE { return type_; }
2197
2198 protected:
2199  Primitive::Type type_;
2200};
2201
2202// Represents dex's RETURN_VOID opcode. A HReturnVoid is a control flow
2203// instruction that branches to the exit block.
2204class HReturnVoid : public HTemplateInstruction<0> {
2205 public:
2206  explicit HReturnVoid(uint32_t dex_pc = kNoDexPc)
2207      : HTemplateInstruction(SideEffects::None(), dex_pc) {}
2208
2209  bool IsControlFlow() const OVERRIDE { return true; }
2210
2211  DECLARE_INSTRUCTION(ReturnVoid);
2212
2213 private:
2214  DISALLOW_COPY_AND_ASSIGN(HReturnVoid);
2215};
2216
2217// Represents dex's RETURN opcodes. A HReturn is a control flow
2218// instruction that branches to the exit block.
2219class HReturn : public HTemplateInstruction<1> {
2220 public:
2221  explicit HReturn(HInstruction* value, uint32_t dex_pc = kNoDexPc)
2222      : HTemplateInstruction(SideEffects::None(), dex_pc) {
2223    SetRawInputAt(0, value);
2224  }
2225
2226  bool IsControlFlow() const OVERRIDE { return true; }
2227
2228  DECLARE_INSTRUCTION(Return);
2229
2230 private:
2231  DISALLOW_COPY_AND_ASSIGN(HReturn);
2232};
2233
2234// The exit instruction is the only instruction of the exit block.
2235// Instructions aborting the method (HThrow and HReturn) must branch to the
2236// exit block.
2237class HExit : public HTemplateInstruction<0> {
2238 public:
2239  explicit HExit(uint32_t dex_pc = kNoDexPc) : HTemplateInstruction(SideEffects::None(), dex_pc) {}
2240
2241  bool IsControlFlow() const OVERRIDE { return true; }
2242
2243  DECLARE_INSTRUCTION(Exit);
2244
2245 private:
2246  DISALLOW_COPY_AND_ASSIGN(HExit);
2247};
2248
2249// Jumps from one block to another.
2250class HGoto : public HTemplateInstruction<0> {
2251 public:
2252  explicit HGoto(uint32_t dex_pc = kNoDexPc) : HTemplateInstruction(SideEffects::None(), dex_pc) {}
2253
2254  bool IsControlFlow() const OVERRIDE { return true; }
2255
2256  HBasicBlock* GetSuccessor() const {
2257    return GetBlock()->GetSingleSuccessor();
2258  }
2259
2260  DECLARE_INSTRUCTION(Goto);
2261
2262 private:
2263  DISALLOW_COPY_AND_ASSIGN(HGoto);
2264};
2265
2266class HConstant : public HExpression<0> {
2267 public:
2268  explicit HConstant(Primitive::Type type, uint32_t dex_pc = kNoDexPc)
2269      : HExpression(type, SideEffects::None(), dex_pc) {}
2270
2271  bool CanBeMoved() const OVERRIDE { return true; }
2272
2273  virtual bool IsMinusOne() const { return false; }
2274  virtual bool IsZero() const { return false; }
2275  virtual bool IsOne() const { return false; }
2276
2277  virtual uint64_t GetValueAsUint64() const = 0;
2278
2279  DECLARE_INSTRUCTION(Constant);
2280
2281 private:
2282  DISALLOW_COPY_AND_ASSIGN(HConstant);
2283};
2284
2285class HNullConstant : public HConstant {
2286 public:
2287  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
2288    return true;
2289  }
2290
2291  uint64_t GetValueAsUint64() const OVERRIDE { return 0; }
2292
2293  size_t ComputeHashCode() const OVERRIDE { return 0; }
2294
2295  DECLARE_INSTRUCTION(NullConstant);
2296
2297 private:
2298  explicit HNullConstant(uint32_t dex_pc = kNoDexPc) : HConstant(Primitive::kPrimNot, dex_pc) {}
2299
2300  friend class HGraph;
2301  DISALLOW_COPY_AND_ASSIGN(HNullConstant);
2302};
2303
2304// Constants of the type int. Those can be from Dex instructions, or
2305// synthesized (for example with the if-eqz instruction).
2306class HIntConstant : public HConstant {
2307 public:
2308  int32_t GetValue() const { return value_; }
2309
2310  uint64_t GetValueAsUint64() const OVERRIDE {
2311    return static_cast<uint64_t>(static_cast<uint32_t>(value_));
2312  }
2313
2314  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2315    DCHECK(other->IsIntConstant());
2316    return other->AsIntConstant()->value_ == value_;
2317  }
2318
2319  size_t ComputeHashCode() const OVERRIDE { return GetValue(); }
2320
2321  bool IsMinusOne() const OVERRIDE { return GetValue() == -1; }
2322  bool IsZero() const OVERRIDE { return GetValue() == 0; }
2323  bool IsOne() const OVERRIDE { return GetValue() == 1; }
2324
2325  DECLARE_INSTRUCTION(IntConstant);
2326
2327 private:
2328  explicit HIntConstant(int32_t value, uint32_t dex_pc = kNoDexPc)
2329      : HConstant(Primitive::kPrimInt, dex_pc), value_(value) {}
2330  explicit HIntConstant(bool value, uint32_t dex_pc = kNoDexPc)
2331      : HConstant(Primitive::kPrimInt, dex_pc), value_(value ? 1 : 0) {}
2332
2333  const int32_t value_;
2334
2335  friend class HGraph;
2336  ART_FRIEND_TEST(GraphTest, InsertInstructionBefore);
2337  ART_FRIEND_TYPED_TEST(ParallelMoveTest, ConstantLast);
2338  DISALLOW_COPY_AND_ASSIGN(HIntConstant);
2339};
2340
2341class HLongConstant : public HConstant {
2342 public:
2343  int64_t GetValue() const { return value_; }
2344
2345  uint64_t GetValueAsUint64() const OVERRIDE { return value_; }
2346
2347  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2348    DCHECK(other->IsLongConstant());
2349    return other->AsLongConstant()->value_ == value_;
2350  }
2351
2352  size_t ComputeHashCode() const OVERRIDE { return static_cast<size_t>(GetValue()); }
2353
2354  bool IsMinusOne() const OVERRIDE { return GetValue() == -1; }
2355  bool IsZero() const OVERRIDE { return GetValue() == 0; }
2356  bool IsOne() const OVERRIDE { return GetValue() == 1; }
2357
2358  DECLARE_INSTRUCTION(LongConstant);
2359
2360 private:
2361  explicit HLongConstant(int64_t value, uint32_t dex_pc = kNoDexPc)
2362      : HConstant(Primitive::kPrimLong, dex_pc), value_(value) {}
2363
2364  const int64_t value_;
2365
2366  friend class HGraph;
2367  DISALLOW_COPY_AND_ASSIGN(HLongConstant);
2368};
2369
2370// Conditional branch. A block ending with an HIf instruction must have
2371// two successors.
2372class HIf : public HTemplateInstruction<1> {
2373 public:
2374  explicit HIf(HInstruction* input, uint32_t dex_pc = kNoDexPc)
2375      : HTemplateInstruction(SideEffects::None(), dex_pc) {
2376    SetRawInputAt(0, input);
2377  }
2378
2379  bool IsControlFlow() const OVERRIDE { return true; }
2380
2381  HBasicBlock* IfTrueSuccessor() const {
2382    return GetBlock()->GetSuccessors()[0];
2383  }
2384
2385  HBasicBlock* IfFalseSuccessor() const {
2386    return GetBlock()->GetSuccessors()[1];
2387  }
2388
2389  DECLARE_INSTRUCTION(If);
2390
2391 private:
2392  DISALLOW_COPY_AND_ASSIGN(HIf);
2393};
2394
2395
2396// Abstract instruction which marks the beginning and/or end of a try block and
2397// links it to the respective exception handlers. Behaves the same as a Goto in
2398// non-exceptional control flow.
2399// Normal-flow successor is stored at index zero, exception handlers under
2400// higher indices in no particular order.
2401class HTryBoundary : public HTemplateInstruction<0> {
2402 public:
2403  enum BoundaryKind {
2404    kEntry,
2405    kExit,
2406  };
2407
2408  explicit HTryBoundary(BoundaryKind kind, uint32_t dex_pc = kNoDexPc)
2409      : HTemplateInstruction(SideEffects::None(), dex_pc), kind_(kind) {}
2410
2411  bool IsControlFlow() const OVERRIDE { return true; }
2412
2413  // Returns the block's non-exceptional successor (index zero).
2414  HBasicBlock* GetNormalFlowSuccessor() const { return GetBlock()->GetSuccessors()[0]; }
2415
2416  ArrayRef<HBasicBlock* const> GetExceptionHandlers() const {
2417    return ArrayRef<HBasicBlock* const>(GetBlock()->GetSuccessors()).SubArray(1u);
2418  }
2419
2420  // Returns whether `handler` is among its exception handlers (non-zero index
2421  // successors).
2422  bool HasExceptionHandler(const HBasicBlock& handler) const {
2423    DCHECK(handler.IsCatchBlock());
2424    return GetBlock()->HasSuccessor(&handler, 1u /* Skip first successor. */);
2425  }
2426
2427  // If not present already, adds `handler` to its block's list of exception
2428  // handlers.
2429  void AddExceptionHandler(HBasicBlock* handler) {
2430    if (!HasExceptionHandler(*handler)) {
2431      GetBlock()->AddSuccessor(handler);
2432    }
2433  }
2434
2435  bool IsEntry() const { return kind_ == BoundaryKind::kEntry; }
2436
2437  bool HasSameExceptionHandlersAs(const HTryBoundary& other) const;
2438
2439  DECLARE_INSTRUCTION(TryBoundary);
2440
2441 private:
2442  const BoundaryKind kind_;
2443
2444  DISALLOW_COPY_AND_ASSIGN(HTryBoundary);
2445};
2446
2447// Deoptimize to interpreter, upon checking a condition.
2448class HDeoptimize : public HTemplateInstruction<1> {
2449 public:
2450  explicit HDeoptimize(HInstruction* cond, uint32_t dex_pc)
2451      : HTemplateInstruction(SideEffects::None(), dex_pc) {
2452    SetRawInputAt(0, cond);
2453  }
2454
2455  bool NeedsEnvironment() const OVERRIDE { return true; }
2456  bool CanThrow() const OVERRIDE { return true; }
2457
2458  DECLARE_INSTRUCTION(Deoptimize);
2459
2460 private:
2461  DISALLOW_COPY_AND_ASSIGN(HDeoptimize);
2462};
2463
2464// Represents the ArtMethod that was passed as a first argument to
2465// the method. It is used by instructions that depend on it, like
2466// instructions that work with the dex cache.
2467class HCurrentMethod : public HExpression<0> {
2468 public:
2469  explicit HCurrentMethod(Primitive::Type type, uint32_t dex_pc = kNoDexPc)
2470      : HExpression(type, SideEffects::None(), dex_pc) {}
2471
2472  DECLARE_INSTRUCTION(CurrentMethod);
2473
2474 private:
2475  DISALLOW_COPY_AND_ASSIGN(HCurrentMethod);
2476};
2477
2478// PackedSwitch (jump table). A block ending with a PackedSwitch instruction will
2479// have one successor for each entry in the switch table, and the final successor
2480// will be the block containing the next Dex opcode.
2481class HPackedSwitch : public HTemplateInstruction<1> {
2482 public:
2483  HPackedSwitch(int32_t start_value,
2484                uint32_t num_entries,
2485                HInstruction* input,
2486                uint32_t dex_pc = kNoDexPc)
2487    : HTemplateInstruction(SideEffects::None(), dex_pc),
2488      start_value_(start_value),
2489      num_entries_(num_entries) {
2490    SetRawInputAt(0, input);
2491  }
2492
2493  bool IsControlFlow() const OVERRIDE { return true; }
2494
2495  int32_t GetStartValue() const { return start_value_; }
2496
2497  uint32_t GetNumEntries() const { return num_entries_; }
2498
2499  HBasicBlock* GetDefaultBlock() const {
2500    // Last entry is the default block.
2501    return GetBlock()->GetSuccessors()[num_entries_];
2502  }
2503  DECLARE_INSTRUCTION(PackedSwitch);
2504
2505 private:
2506  const int32_t start_value_;
2507  const uint32_t num_entries_;
2508
2509  DISALLOW_COPY_AND_ASSIGN(HPackedSwitch);
2510};
2511
2512class HUnaryOperation : public HExpression<1> {
2513 public:
2514  HUnaryOperation(Primitive::Type result_type, HInstruction* input, uint32_t dex_pc = kNoDexPc)
2515      : HExpression(result_type, SideEffects::None(), dex_pc) {
2516    SetRawInputAt(0, input);
2517  }
2518
2519  HInstruction* GetInput() const { return InputAt(0); }
2520  Primitive::Type GetResultType() const { return GetType(); }
2521
2522  bool CanBeMoved() const OVERRIDE { return true; }
2523  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
2524    return true;
2525  }
2526
2527  // Try to statically evaluate `operation` and return a HConstant
2528  // containing the result of this evaluation.  If `operation` cannot
2529  // be evaluated as a constant, return null.
2530  HConstant* TryStaticEvaluation() const;
2531
2532  // Apply this operation to `x`.
2533  virtual HConstant* Evaluate(HIntConstant* x) const = 0;
2534  virtual HConstant* Evaluate(HLongConstant* x) const = 0;
2535
2536  DECLARE_INSTRUCTION(UnaryOperation);
2537
2538 private:
2539  DISALLOW_COPY_AND_ASSIGN(HUnaryOperation);
2540};
2541
2542class HBinaryOperation : public HExpression<2> {
2543 public:
2544  HBinaryOperation(Primitive::Type result_type,
2545                   HInstruction* left,
2546                   HInstruction* right,
2547                   SideEffects side_effects = SideEffects::None(),
2548                   uint32_t dex_pc = kNoDexPc)
2549      : HExpression(result_type, side_effects, dex_pc) {
2550    SetRawInputAt(0, left);
2551    SetRawInputAt(1, right);
2552  }
2553
2554  HInstruction* GetLeft() const { return InputAt(0); }
2555  HInstruction* GetRight() const { return InputAt(1); }
2556  Primitive::Type GetResultType() const { return GetType(); }
2557
2558  virtual bool IsCommutative() const { return false; }
2559
2560  // Put constant on the right.
2561  // Returns whether order is changed.
2562  bool OrderInputsWithConstantOnTheRight() {
2563    HInstruction* left = InputAt(0);
2564    HInstruction* right = InputAt(1);
2565    if (left->IsConstant() && !right->IsConstant()) {
2566      ReplaceInput(right, 0);
2567      ReplaceInput(left, 1);
2568      return true;
2569    }
2570    return false;
2571  }
2572
2573  // Order inputs by instruction id, but favor constant on the right side.
2574  // This helps GVN for commutative ops.
2575  void OrderInputs() {
2576    DCHECK(IsCommutative());
2577    HInstruction* left = InputAt(0);
2578    HInstruction* right = InputAt(1);
2579    if (left == right || (!left->IsConstant() && right->IsConstant())) {
2580      return;
2581    }
2582    if (OrderInputsWithConstantOnTheRight()) {
2583      return;
2584    }
2585    // Order according to instruction id.
2586    if (left->GetId() > right->GetId()) {
2587      ReplaceInput(right, 0);
2588      ReplaceInput(left, 1);
2589    }
2590  }
2591
2592  bool CanBeMoved() const OVERRIDE { return true; }
2593  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
2594    return true;
2595  }
2596
2597  // Try to statically evaluate `operation` and return a HConstant
2598  // containing the result of this evaluation.  If `operation` cannot
2599  // be evaluated as a constant, return null.
2600  HConstant* TryStaticEvaluation() const;
2601
2602  // Apply this operation to `x` and `y`.
2603  virtual HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const = 0;
2604  virtual HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const = 0;
2605  virtual HConstant* Evaluate(HIntConstant* x ATTRIBUTE_UNUSED,
2606                              HLongConstant* y ATTRIBUTE_UNUSED) const {
2607    VLOG(compiler) << DebugName() << " is not defined for the (int, long) case.";
2608    return nullptr;
2609  }
2610  virtual HConstant* Evaluate(HLongConstant* x ATTRIBUTE_UNUSED,
2611                              HIntConstant* y ATTRIBUTE_UNUSED) const {
2612    VLOG(compiler) << DebugName() << " is not defined for the (long, int) case.";
2613    return nullptr;
2614  }
2615  virtual HConstant* Evaluate(HNullConstant* x ATTRIBUTE_UNUSED,
2616                              HNullConstant* y ATTRIBUTE_UNUSED) const {
2617    VLOG(compiler) << DebugName() << " is not defined for the (null, null) case.";
2618    return nullptr;
2619  }
2620
2621  // Returns an input that can legally be used as the right input and is
2622  // constant, or null.
2623  HConstant* GetConstantRight() const;
2624
2625  // If `GetConstantRight()` returns one of the input, this returns the other
2626  // one. Otherwise it returns null.
2627  HInstruction* GetLeastConstantLeft() const;
2628
2629  DECLARE_INSTRUCTION(BinaryOperation);
2630
2631 private:
2632  DISALLOW_COPY_AND_ASSIGN(HBinaryOperation);
2633};
2634
2635// The comparison bias applies for floating point operations and indicates how NaN
2636// comparisons are treated:
2637enum class ComparisonBias {
2638  kNoBias,  // bias is not applicable (i.e. for long operation)
2639  kGtBias,  // return 1 for NaN comparisons
2640  kLtBias,  // return -1 for NaN comparisons
2641};
2642
2643class HCondition : public HBinaryOperation {
2644 public:
2645  HCondition(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2646      : HBinaryOperation(Primitive::kPrimBoolean, first, second, SideEffects::None(), dex_pc),
2647        needs_materialization_(true),
2648        bias_(ComparisonBias::kNoBias) {}
2649
2650  bool NeedsMaterialization() const { return needs_materialization_; }
2651  void ClearNeedsMaterialization() { needs_materialization_ = false; }
2652
2653  // For code generation purposes, returns whether this instruction is just before
2654  // `instruction`, and disregard moves in between.
2655  bool IsBeforeWhenDisregardMoves(HInstruction* instruction) const;
2656
2657  DECLARE_INSTRUCTION(Condition);
2658
2659  virtual IfCondition GetCondition() const = 0;
2660
2661  virtual IfCondition GetOppositeCondition() const = 0;
2662
2663  bool IsGtBias() const { return bias_ == ComparisonBias::kGtBias; }
2664
2665  void SetBias(ComparisonBias bias) { bias_ = bias; }
2666
2667  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2668    return bias_ == other->AsCondition()->bias_;
2669  }
2670
2671  bool IsFPConditionTrueIfNaN() const {
2672    DCHECK(Primitive::IsFloatingPointType(InputAt(0)->GetType()));
2673    IfCondition if_cond = GetCondition();
2674    return IsGtBias() ? ((if_cond == kCondGT) || (if_cond == kCondGE)) : (if_cond == kCondNE);
2675  }
2676
2677  bool IsFPConditionFalseIfNaN() const {
2678    DCHECK(Primitive::IsFloatingPointType(InputAt(0)->GetType()));
2679    IfCondition if_cond = GetCondition();
2680    return IsGtBias() ? ((if_cond == kCondLT) || (if_cond == kCondLE)) : (if_cond == kCondEQ);
2681  }
2682
2683 private:
2684  // For register allocation purposes, returns whether this instruction needs to be
2685  // materialized (that is, not just be in the processor flags).
2686  bool needs_materialization_;
2687
2688  // Needed if we merge a HCompare into a HCondition.
2689  ComparisonBias bias_;
2690
2691  DISALLOW_COPY_AND_ASSIGN(HCondition);
2692};
2693
2694// Instruction to check if two inputs are equal to each other.
2695class HEqual : public HCondition {
2696 public:
2697  HEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2698      : HCondition(first, second, dex_pc) {}
2699
2700  bool IsCommutative() const OVERRIDE { return true; }
2701
2702  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2703    return GetBlock()->GetGraph()->GetIntConstant(
2704        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2705  }
2706  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2707    return GetBlock()->GetGraph()->GetIntConstant(
2708        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2709  }
2710  HConstant* Evaluate(HNullConstant* x ATTRIBUTE_UNUSED,
2711                      HNullConstant* y ATTRIBUTE_UNUSED) const OVERRIDE {
2712    return GetBlock()->GetGraph()->GetIntConstant(1);
2713  }
2714
2715  DECLARE_INSTRUCTION(Equal);
2716
2717  IfCondition GetCondition() const OVERRIDE {
2718    return kCondEQ;
2719  }
2720
2721  IfCondition GetOppositeCondition() const OVERRIDE {
2722    return kCondNE;
2723  }
2724
2725 private:
2726  template <typename T> bool Compute(T x, T y) const { return x == y; }
2727
2728  DISALLOW_COPY_AND_ASSIGN(HEqual);
2729};
2730
2731class HNotEqual : public HCondition {
2732 public:
2733  HNotEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2734      : HCondition(first, second, dex_pc) {}
2735
2736  bool IsCommutative() const OVERRIDE { return true; }
2737
2738  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2739    return GetBlock()->GetGraph()->GetIntConstant(
2740        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2741  }
2742  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2743    return GetBlock()->GetGraph()->GetIntConstant(
2744        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2745  }
2746  HConstant* Evaluate(HNullConstant* x ATTRIBUTE_UNUSED,
2747                      HNullConstant* y ATTRIBUTE_UNUSED) const OVERRIDE {
2748    return GetBlock()->GetGraph()->GetIntConstant(0);
2749  }
2750
2751  DECLARE_INSTRUCTION(NotEqual);
2752
2753  IfCondition GetCondition() const OVERRIDE {
2754    return kCondNE;
2755  }
2756
2757  IfCondition GetOppositeCondition() const OVERRIDE {
2758    return kCondEQ;
2759  }
2760
2761 private:
2762  template <typename T> bool Compute(T x, T y) const { return x != y; }
2763
2764  DISALLOW_COPY_AND_ASSIGN(HNotEqual);
2765};
2766
2767class HLessThan : public HCondition {
2768 public:
2769  HLessThan(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2770      : HCondition(first, second, dex_pc) {}
2771
2772  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2773    return GetBlock()->GetGraph()->GetIntConstant(
2774        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2775  }
2776  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2777    return GetBlock()->GetGraph()->GetIntConstant(
2778        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2779  }
2780
2781  DECLARE_INSTRUCTION(LessThan);
2782
2783  IfCondition GetCondition() const OVERRIDE {
2784    return kCondLT;
2785  }
2786
2787  IfCondition GetOppositeCondition() const OVERRIDE {
2788    return kCondGE;
2789  }
2790
2791 private:
2792  template <typename T> bool Compute(T x, T y) const { return x < y; }
2793
2794  DISALLOW_COPY_AND_ASSIGN(HLessThan);
2795};
2796
2797class HLessThanOrEqual : public HCondition {
2798 public:
2799  HLessThanOrEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2800      : HCondition(first, second, dex_pc) {}
2801
2802  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2803    return GetBlock()->GetGraph()->GetIntConstant(
2804        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2805  }
2806  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2807    return GetBlock()->GetGraph()->GetIntConstant(
2808        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2809  }
2810
2811  DECLARE_INSTRUCTION(LessThanOrEqual);
2812
2813  IfCondition GetCondition() const OVERRIDE {
2814    return kCondLE;
2815  }
2816
2817  IfCondition GetOppositeCondition() const OVERRIDE {
2818    return kCondGT;
2819  }
2820
2821 private:
2822  template <typename T> bool Compute(T x, T y) const { return x <= y; }
2823
2824  DISALLOW_COPY_AND_ASSIGN(HLessThanOrEqual);
2825};
2826
2827class HGreaterThan : public HCondition {
2828 public:
2829  HGreaterThan(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2830      : HCondition(first, second, dex_pc) {}
2831
2832  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2833    return GetBlock()->GetGraph()->GetIntConstant(
2834        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2835  }
2836  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2837    return GetBlock()->GetGraph()->GetIntConstant(
2838        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2839  }
2840
2841  DECLARE_INSTRUCTION(GreaterThan);
2842
2843  IfCondition GetCondition() const OVERRIDE {
2844    return kCondGT;
2845  }
2846
2847  IfCondition GetOppositeCondition() const OVERRIDE {
2848    return kCondLE;
2849  }
2850
2851 private:
2852  template <typename T> bool Compute(T x, T y) const { return x > y; }
2853
2854  DISALLOW_COPY_AND_ASSIGN(HGreaterThan);
2855};
2856
2857class HGreaterThanOrEqual : public HCondition {
2858 public:
2859  HGreaterThanOrEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2860      : HCondition(first, second, dex_pc) {}
2861
2862  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2863    return GetBlock()->GetGraph()->GetIntConstant(
2864        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2865  }
2866  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2867    return GetBlock()->GetGraph()->GetIntConstant(
2868        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2869  }
2870
2871  DECLARE_INSTRUCTION(GreaterThanOrEqual);
2872
2873  IfCondition GetCondition() const OVERRIDE {
2874    return kCondGE;
2875  }
2876
2877  IfCondition GetOppositeCondition() const OVERRIDE {
2878    return kCondLT;
2879  }
2880
2881 private:
2882  template <typename T> bool Compute(T x, T y) const { return x >= y; }
2883
2884  DISALLOW_COPY_AND_ASSIGN(HGreaterThanOrEqual);
2885};
2886
2887class HBelow : public HCondition {
2888 public:
2889  HBelow(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2890      : HCondition(first, second, dex_pc) {}
2891
2892  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2893    return GetBlock()->GetGraph()->GetIntConstant(
2894        Compute(static_cast<uint32_t>(x->GetValue()),
2895                static_cast<uint32_t>(y->GetValue())), GetDexPc());
2896  }
2897  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2898    return GetBlock()->GetGraph()->GetIntConstant(
2899        Compute(static_cast<uint64_t>(x->GetValue()),
2900                static_cast<uint64_t>(y->GetValue())), GetDexPc());
2901  }
2902
2903  DECLARE_INSTRUCTION(Below);
2904
2905  IfCondition GetCondition() const OVERRIDE {
2906    return kCondB;
2907  }
2908
2909  IfCondition GetOppositeCondition() const OVERRIDE {
2910    return kCondAE;
2911  }
2912
2913 private:
2914  template <typename T> bool Compute(T x, T y) const { return x < y; }
2915
2916  DISALLOW_COPY_AND_ASSIGN(HBelow);
2917};
2918
2919class HBelowOrEqual : public HCondition {
2920 public:
2921  HBelowOrEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2922      : HCondition(first, second, dex_pc) {}
2923
2924  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2925    return GetBlock()->GetGraph()->GetIntConstant(
2926        Compute(static_cast<uint32_t>(x->GetValue()),
2927                static_cast<uint32_t>(y->GetValue())), GetDexPc());
2928  }
2929  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2930    return GetBlock()->GetGraph()->GetIntConstant(
2931        Compute(static_cast<uint64_t>(x->GetValue()),
2932                static_cast<uint64_t>(y->GetValue())), GetDexPc());
2933  }
2934
2935  DECLARE_INSTRUCTION(BelowOrEqual);
2936
2937  IfCondition GetCondition() const OVERRIDE {
2938    return kCondBE;
2939  }
2940
2941  IfCondition GetOppositeCondition() const OVERRIDE {
2942    return kCondA;
2943  }
2944
2945 private:
2946  template <typename T> bool Compute(T x, T y) const { return x <= y; }
2947
2948  DISALLOW_COPY_AND_ASSIGN(HBelowOrEqual);
2949};
2950
2951class HAbove : public HCondition {
2952 public:
2953  HAbove(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2954      : HCondition(first, second, dex_pc) {}
2955
2956  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2957    return GetBlock()->GetGraph()->GetIntConstant(
2958        Compute(static_cast<uint32_t>(x->GetValue()),
2959                static_cast<uint32_t>(y->GetValue())), GetDexPc());
2960  }
2961  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2962    return GetBlock()->GetGraph()->GetIntConstant(
2963        Compute(static_cast<uint64_t>(x->GetValue()),
2964                static_cast<uint64_t>(y->GetValue())), GetDexPc());
2965  }
2966
2967  DECLARE_INSTRUCTION(Above);
2968
2969  IfCondition GetCondition() const OVERRIDE {
2970    return kCondA;
2971  }
2972
2973  IfCondition GetOppositeCondition() const OVERRIDE {
2974    return kCondBE;
2975  }
2976
2977 private:
2978  template <typename T> bool Compute(T x, T y) const { return x > y; }
2979
2980  DISALLOW_COPY_AND_ASSIGN(HAbove);
2981};
2982
2983class HAboveOrEqual : public HCondition {
2984 public:
2985  HAboveOrEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2986      : HCondition(first, second, dex_pc) {}
2987
2988  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2989    return GetBlock()->GetGraph()->GetIntConstant(
2990        Compute(static_cast<uint32_t>(x->GetValue()),
2991                static_cast<uint32_t>(y->GetValue())), GetDexPc());
2992  }
2993  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2994    return GetBlock()->GetGraph()->GetIntConstant(
2995        Compute(static_cast<uint64_t>(x->GetValue()),
2996                static_cast<uint64_t>(y->GetValue())), GetDexPc());
2997  }
2998
2999  DECLARE_INSTRUCTION(AboveOrEqual);
3000
3001  IfCondition GetCondition() const OVERRIDE {
3002    return kCondAE;
3003  }
3004
3005  IfCondition GetOppositeCondition() const OVERRIDE {
3006    return kCondB;
3007  }
3008
3009 private:
3010  template <typename T> bool Compute(T x, T y) const { return x >= y; }
3011
3012  DISALLOW_COPY_AND_ASSIGN(HAboveOrEqual);
3013};
3014
3015// Instruction to check how two inputs compare to each other.
3016// Result is 0 if input0 == input1, 1 if input0 > input1, or -1 if input0 < input1.
3017class HCompare : public HBinaryOperation {
3018 public:
3019  HCompare(Primitive::Type type,
3020           HInstruction* first,
3021           HInstruction* second,
3022           ComparisonBias bias,
3023           uint32_t dex_pc)
3024      : HBinaryOperation(Primitive::kPrimInt,
3025                         first,
3026                         second,
3027                         SideEffectsForArchRuntimeCalls(type),
3028                         dex_pc),
3029        bias_(bias) {
3030    DCHECK_EQ(type, first->GetType());
3031    DCHECK_EQ(type, second->GetType());
3032  }
3033
3034  template <typename T>
3035  int32_t Compute(T x, T y) const { return x == y ? 0 : x > y ? 1 : -1; }
3036
3037  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3038    return GetBlock()->GetGraph()->GetIntConstant(
3039        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3040  }
3041  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3042    return GetBlock()->GetGraph()->GetIntConstant(
3043        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3044  }
3045
3046  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
3047    return bias_ == other->AsCompare()->bias_;
3048  }
3049
3050  ComparisonBias GetBias() const { return bias_; }
3051
3052  bool IsGtBias() { return bias_ == ComparisonBias::kGtBias; }
3053
3054
3055  static SideEffects SideEffectsForArchRuntimeCalls(Primitive::Type type) {
3056    // MIPS64 uses a runtime call for FP comparisons.
3057    return Primitive::IsFloatingPointType(type) ? SideEffects::CanTriggerGC() : SideEffects::None();
3058  }
3059
3060  DECLARE_INSTRUCTION(Compare);
3061
3062 private:
3063  const ComparisonBias bias_;
3064
3065  DISALLOW_COPY_AND_ASSIGN(HCompare);
3066};
3067
3068// A local in the graph. Corresponds to a Dex register.
3069class HLocal : public HTemplateInstruction<0> {
3070 public:
3071  explicit HLocal(uint16_t reg_number)
3072      : HTemplateInstruction(SideEffects::None(), kNoDexPc), reg_number_(reg_number) {}
3073
3074  DECLARE_INSTRUCTION(Local);
3075
3076  uint16_t GetRegNumber() const { return reg_number_; }
3077
3078 private:
3079  // The Dex register number.
3080  const uint16_t reg_number_;
3081
3082  DISALLOW_COPY_AND_ASSIGN(HLocal);
3083};
3084
3085// Load a given local. The local is an input of this instruction.
3086class HLoadLocal : public HExpression<1> {
3087 public:
3088  HLoadLocal(HLocal* local, Primitive::Type type, uint32_t dex_pc = kNoDexPc)
3089      : HExpression(type, SideEffects::None(), dex_pc) {
3090    SetRawInputAt(0, local);
3091  }
3092
3093  HLocal* GetLocal() const { return reinterpret_cast<HLocal*>(InputAt(0)); }
3094
3095  DECLARE_INSTRUCTION(LoadLocal);
3096
3097 private:
3098  DISALLOW_COPY_AND_ASSIGN(HLoadLocal);
3099};
3100
3101// Store a value in a given local. This instruction has two inputs: the value
3102// and the local.
3103class HStoreLocal : public HTemplateInstruction<2> {
3104 public:
3105  HStoreLocal(HLocal* local, HInstruction* value, uint32_t dex_pc = kNoDexPc)
3106      : HTemplateInstruction(SideEffects::None(), dex_pc) {
3107    SetRawInputAt(0, local);
3108    SetRawInputAt(1, value);
3109  }
3110
3111  HLocal* GetLocal() const { return reinterpret_cast<HLocal*>(InputAt(0)); }
3112
3113  DECLARE_INSTRUCTION(StoreLocal);
3114
3115 private:
3116  DISALLOW_COPY_AND_ASSIGN(HStoreLocal);
3117};
3118
3119class HFloatConstant : public HConstant {
3120 public:
3121  float GetValue() const { return value_; }
3122
3123  uint64_t GetValueAsUint64() const OVERRIDE {
3124    return static_cast<uint64_t>(bit_cast<uint32_t, float>(value_));
3125  }
3126
3127  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
3128    DCHECK(other->IsFloatConstant());
3129    return other->AsFloatConstant()->GetValueAsUint64() == GetValueAsUint64();
3130  }
3131
3132  size_t ComputeHashCode() const OVERRIDE { return static_cast<size_t>(GetValue()); }
3133
3134  bool IsMinusOne() const OVERRIDE {
3135    return bit_cast<uint32_t, float>(value_) == bit_cast<uint32_t, float>((-1.0f));
3136  }
3137  bool IsZero() const OVERRIDE {
3138    return value_ == 0.0f;
3139  }
3140  bool IsOne() const OVERRIDE {
3141    return bit_cast<uint32_t, float>(value_) == bit_cast<uint32_t, float>(1.0f);
3142  }
3143  bool IsNaN() const {
3144    return std::isnan(value_);
3145  }
3146
3147  DECLARE_INSTRUCTION(FloatConstant);
3148
3149 private:
3150  explicit HFloatConstant(float value, uint32_t dex_pc = kNoDexPc)
3151      : HConstant(Primitive::kPrimFloat, dex_pc), value_(value) {}
3152  explicit HFloatConstant(int32_t value, uint32_t dex_pc = kNoDexPc)
3153      : HConstant(Primitive::kPrimFloat, dex_pc), value_(bit_cast<float, int32_t>(value)) {}
3154
3155  const float value_;
3156
3157  // Only the SsaBuilder and HGraph can create floating-point constants.
3158  friend class SsaBuilder;
3159  friend class HGraph;
3160  DISALLOW_COPY_AND_ASSIGN(HFloatConstant);
3161};
3162
3163class HDoubleConstant : public HConstant {
3164 public:
3165  double GetValue() const { return value_; }
3166
3167  uint64_t GetValueAsUint64() const OVERRIDE { return bit_cast<uint64_t, double>(value_); }
3168
3169  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
3170    DCHECK(other->IsDoubleConstant());
3171    return other->AsDoubleConstant()->GetValueAsUint64() == GetValueAsUint64();
3172  }
3173
3174  size_t ComputeHashCode() const OVERRIDE { return static_cast<size_t>(GetValue()); }
3175
3176  bool IsMinusOne() const OVERRIDE {
3177    return bit_cast<uint64_t, double>(value_) == bit_cast<uint64_t, double>((-1.0));
3178  }
3179  bool IsZero() const OVERRIDE {
3180    return value_ == 0.0;
3181  }
3182  bool IsOne() const OVERRIDE {
3183    return bit_cast<uint64_t, double>(value_) == bit_cast<uint64_t, double>(1.0);
3184  }
3185  bool IsNaN() const {
3186    return std::isnan(value_);
3187  }
3188
3189  DECLARE_INSTRUCTION(DoubleConstant);
3190
3191 private:
3192  explicit HDoubleConstant(double value, uint32_t dex_pc = kNoDexPc)
3193      : HConstant(Primitive::kPrimDouble, dex_pc), value_(value) {}
3194  explicit HDoubleConstant(int64_t value, uint32_t dex_pc = kNoDexPc)
3195      : HConstant(Primitive::kPrimDouble, dex_pc), value_(bit_cast<double, int64_t>(value)) {}
3196
3197  const double value_;
3198
3199  // Only the SsaBuilder and HGraph can create floating-point constants.
3200  friend class SsaBuilder;
3201  friend class HGraph;
3202  DISALLOW_COPY_AND_ASSIGN(HDoubleConstant);
3203};
3204
3205enum class Intrinsics {
3206#define OPTIMIZING_INTRINSICS(Name, IsStatic, NeedsEnvironmentOrCache) k ## Name,
3207#include "intrinsics_list.h"
3208  kNone,
3209  INTRINSICS_LIST(OPTIMIZING_INTRINSICS)
3210#undef INTRINSICS_LIST
3211#undef OPTIMIZING_INTRINSICS
3212};
3213std::ostream& operator<<(std::ostream& os, const Intrinsics& intrinsic);
3214
3215enum IntrinsicNeedsEnvironmentOrCache {
3216  kNoEnvironmentOrCache,        // Intrinsic does not require an environment or dex cache.
3217  kNeedsEnvironmentOrCache      // Intrinsic requires an environment or requires a dex cache.
3218};
3219
3220class HInvoke : public HInstruction {
3221 public:
3222  size_t InputCount() const OVERRIDE { return inputs_.size(); }
3223
3224  bool NeedsEnvironment() const OVERRIDE;
3225
3226  void SetArgumentAt(size_t index, HInstruction* argument) {
3227    SetRawInputAt(index, argument);
3228  }
3229
3230  // Return the number of arguments.  This number can be lower than
3231  // the number of inputs returned by InputCount(), as some invoke
3232  // instructions (e.g. HInvokeStaticOrDirect) can have non-argument
3233  // inputs at the end of their list of inputs.
3234  uint32_t GetNumberOfArguments() const { return number_of_arguments_; }
3235
3236  Primitive::Type GetType() const OVERRIDE { return return_type_; }
3237
3238
3239  uint32_t GetDexMethodIndex() const { return dex_method_index_; }
3240  const DexFile& GetDexFile() const { return GetEnvironment()->GetDexFile(); }
3241
3242  InvokeType GetOriginalInvokeType() const { return original_invoke_type_; }
3243
3244  Intrinsics GetIntrinsic() const {
3245    return intrinsic_;
3246  }
3247
3248  void SetIntrinsic(Intrinsics intrinsic, IntrinsicNeedsEnvironmentOrCache needs_env_or_cache);
3249
3250  bool IsFromInlinedInvoke() const {
3251    return GetEnvironment()->IsFromInlinedInvoke();
3252  }
3253
3254  bool CanThrow() const OVERRIDE { return true; }
3255
3256  uint32_t* GetIntrinsicOptimizations() {
3257    return &intrinsic_optimizations_;
3258  }
3259
3260  const uint32_t* GetIntrinsicOptimizations() const {
3261    return &intrinsic_optimizations_;
3262  }
3263
3264  bool IsIntrinsic() const { return intrinsic_ != Intrinsics::kNone; }
3265
3266  DECLARE_INSTRUCTION(Invoke);
3267
3268 protected:
3269  HInvoke(ArenaAllocator* arena,
3270          uint32_t number_of_arguments,
3271          uint32_t number_of_other_inputs,
3272          Primitive::Type return_type,
3273          uint32_t dex_pc,
3274          uint32_t dex_method_index,
3275          InvokeType original_invoke_type)
3276    : HInstruction(
3277          SideEffects::AllExceptGCDependency(), dex_pc),  // Assume write/read on all fields/arrays.
3278      number_of_arguments_(number_of_arguments),
3279      inputs_(number_of_arguments + number_of_other_inputs,
3280              arena->Adapter(kArenaAllocInvokeInputs)),
3281      return_type_(return_type),
3282      dex_method_index_(dex_method_index),
3283      original_invoke_type_(original_invoke_type),
3284      intrinsic_(Intrinsics::kNone),
3285      intrinsic_optimizations_(0) {
3286  }
3287
3288  const HUserRecord<HInstruction*> InputRecordAt(size_t index) const OVERRIDE {
3289    return inputs_[index];
3290  }
3291
3292  void SetRawInputRecordAt(size_t index, const HUserRecord<HInstruction*>& input) OVERRIDE {
3293    inputs_[index] = input;
3294  }
3295
3296  uint32_t number_of_arguments_;
3297  ArenaVector<HUserRecord<HInstruction*>> inputs_;
3298  const Primitive::Type return_type_;
3299  const uint32_t dex_method_index_;
3300  const InvokeType original_invoke_type_;
3301  Intrinsics intrinsic_;
3302
3303  // A magic word holding optimizations for intrinsics. See intrinsics.h.
3304  uint32_t intrinsic_optimizations_;
3305
3306 private:
3307  DISALLOW_COPY_AND_ASSIGN(HInvoke);
3308};
3309
3310class HInvokeUnresolved : public HInvoke {
3311 public:
3312  HInvokeUnresolved(ArenaAllocator* arena,
3313                    uint32_t number_of_arguments,
3314                    Primitive::Type return_type,
3315                    uint32_t dex_pc,
3316                    uint32_t dex_method_index,
3317                    InvokeType invoke_type)
3318      : HInvoke(arena,
3319                number_of_arguments,
3320                0u /* number_of_other_inputs */,
3321                return_type,
3322                dex_pc,
3323                dex_method_index,
3324                invoke_type) {
3325  }
3326
3327  DECLARE_INSTRUCTION(InvokeUnresolved);
3328
3329 private:
3330  DISALLOW_COPY_AND_ASSIGN(HInvokeUnresolved);
3331};
3332
3333class HInvokeStaticOrDirect : public HInvoke {
3334 public:
3335  // Requirements of this method call regarding the class
3336  // initialization (clinit) check of its declaring class.
3337  enum class ClinitCheckRequirement {
3338    kNone,      // Class already initialized.
3339    kExplicit,  // Static call having explicit clinit check as last input.
3340    kImplicit,  // Static call implicitly requiring a clinit check.
3341  };
3342
3343  // Determines how to load the target ArtMethod*.
3344  enum class MethodLoadKind {
3345    // Use a String init ArtMethod* loaded from Thread entrypoints.
3346    kStringInit,
3347
3348    // Use the method's own ArtMethod* loaded by the register allocator.
3349    kRecursive,
3350
3351    // Use ArtMethod* at a known address, embed the direct address in the code.
3352    // Used for app->boot calls with non-relocatable image and for JIT-compiled calls.
3353    kDirectAddress,
3354
3355    // Use ArtMethod* at an address that will be known at link time, embed the direct
3356    // address in the code. If the image is relocatable, emit .patch_oat entry.
3357    // Used for app->boot calls with relocatable image and boot->boot calls, whether
3358    // the image relocatable or not.
3359    kDirectAddressWithFixup,
3360
3361    // Load from resoved methods array in the dex cache using a PC-relative load.
3362    // Used when we need to use the dex cache, for example for invoke-static that
3363    // may cause class initialization (the entry may point to a resolution method),
3364    // and we know that we can access the dex cache arrays using a PC-relative load.
3365    kDexCachePcRelative,
3366
3367    // Use ArtMethod* from the resolved methods of the compiled method's own ArtMethod*.
3368    // Used for JIT when we need to use the dex cache. This is also the last-resort-kind
3369    // used when other kinds are unavailable (say, dex cache arrays are not PC-relative)
3370    // or unimplemented or impractical (i.e. slow) on a particular architecture.
3371    kDexCacheViaMethod,
3372  };
3373
3374  // Determines the location of the code pointer.
3375  enum class CodePtrLocation {
3376    // Recursive call, use local PC-relative call instruction.
3377    kCallSelf,
3378
3379    // Use PC-relative call instruction patched at link time.
3380    // Used for calls within an oat file, boot->boot or app->app.
3381    kCallPCRelative,
3382
3383    // Call to a known target address, embed the direct address in code.
3384    // Used for app->boot call with non-relocatable image and for JIT-compiled calls.
3385    kCallDirect,
3386
3387    // Call to a target address that will be known at link time, embed the direct
3388    // address in code. If the image is relocatable, emit .patch_oat entry.
3389    // Used for app->boot calls with relocatable image and boot->boot calls, whether
3390    // the image relocatable or not.
3391    kCallDirectWithFixup,
3392
3393    // Use code pointer from the ArtMethod*.
3394    // Used when we don't know the target code. This is also the last-resort-kind used when
3395    // other kinds are unimplemented or impractical (i.e. slow) on a particular architecture.
3396    kCallArtMethod,
3397  };
3398
3399  struct DispatchInfo {
3400    MethodLoadKind method_load_kind;
3401    CodePtrLocation code_ptr_location;
3402    // The method load data holds
3403    //   - thread entrypoint offset for kStringInit method if this is a string init invoke.
3404    //     Note that there are multiple string init methods, each having its own offset.
3405    //   - the method address for kDirectAddress
3406    //   - the dex cache arrays offset for kDexCachePcRel.
3407    uint64_t method_load_data;
3408    uint64_t direct_code_ptr;
3409  };
3410
3411  HInvokeStaticOrDirect(ArenaAllocator* arena,
3412                        uint32_t number_of_arguments,
3413                        Primitive::Type return_type,
3414                        uint32_t dex_pc,
3415                        uint32_t method_index,
3416                        MethodReference target_method,
3417                        DispatchInfo dispatch_info,
3418                        InvokeType original_invoke_type,
3419                        InvokeType invoke_type,
3420                        ClinitCheckRequirement clinit_check_requirement)
3421      : HInvoke(arena,
3422                number_of_arguments,
3423                // There is potentially one extra argument for the HCurrentMethod node, and
3424                // potentially one other if the clinit check is explicit, and potentially
3425                // one other if the method is a string factory.
3426                (NeedsCurrentMethodInput(dispatch_info.method_load_kind) ? 1u : 0u) +
3427                    (clinit_check_requirement == ClinitCheckRequirement::kExplicit ? 1u : 0u) +
3428                    (dispatch_info.method_load_kind == MethodLoadKind::kStringInit ? 1u : 0u),
3429                return_type,
3430                dex_pc,
3431                method_index,
3432                original_invoke_type),
3433        invoke_type_(invoke_type),
3434        clinit_check_requirement_(clinit_check_requirement),
3435        target_method_(target_method),
3436        dispatch_info_(dispatch_info) { }
3437
3438  void SetDispatchInfo(const DispatchInfo& dispatch_info) {
3439    bool had_current_method_input = HasCurrentMethodInput();
3440    bool needs_current_method_input = NeedsCurrentMethodInput(dispatch_info.method_load_kind);
3441
3442    // Using the current method is the default and once we find a better
3443    // method load kind, we should not go back to using the current method.
3444    DCHECK(had_current_method_input || !needs_current_method_input);
3445
3446    if (had_current_method_input && !needs_current_method_input) {
3447      DCHECK_EQ(InputAt(GetSpecialInputIndex()), GetBlock()->GetGraph()->GetCurrentMethod());
3448      RemoveInputAt(GetSpecialInputIndex());
3449    }
3450    dispatch_info_ = dispatch_info;
3451  }
3452
3453  void AddSpecialInput(HInstruction* input) {
3454    // We allow only one special input.
3455    DCHECK(!IsStringInit() && !HasCurrentMethodInput());
3456    DCHECK(InputCount() == GetSpecialInputIndex() ||
3457           (InputCount() == GetSpecialInputIndex() + 1 && IsStaticWithExplicitClinitCheck()));
3458    InsertInputAt(GetSpecialInputIndex(), input);
3459  }
3460
3461  bool CanDoImplicitNullCheckOn(HInstruction* obj ATTRIBUTE_UNUSED) const OVERRIDE {
3462    // We access the method via the dex cache so we can't do an implicit null check.
3463    // TODO: for intrinsics we can generate implicit null checks.
3464    return false;
3465  }
3466
3467  bool CanBeNull() const OVERRIDE {
3468    return return_type_ == Primitive::kPrimNot && !IsStringInit();
3469  }
3470
3471  // Get the index of the special input, if any.
3472  //
3473  // If the invoke IsStringInit(), it initially has a HFakeString special argument
3474  // which is removed by the instruction simplifier; if the invoke HasCurrentMethodInput(),
3475  // the "special input" is the current method pointer; otherwise there may be one
3476  // platform-specific special input, such as PC-relative addressing base.
3477  uint32_t GetSpecialInputIndex() const { return GetNumberOfArguments(); }
3478
3479  InvokeType GetInvokeType() const { return invoke_type_; }
3480  MethodLoadKind GetMethodLoadKind() const { return dispatch_info_.method_load_kind; }
3481  CodePtrLocation GetCodePtrLocation() const { return dispatch_info_.code_ptr_location; }
3482  bool IsRecursive() const { return GetMethodLoadKind() == MethodLoadKind::kRecursive; }
3483  bool NeedsDexCacheOfDeclaringClass() const OVERRIDE;
3484  bool IsStringInit() const { return GetMethodLoadKind() == MethodLoadKind::kStringInit; }
3485  bool HasMethodAddress() const { return GetMethodLoadKind() == MethodLoadKind::kDirectAddress; }
3486  bool HasPcRelativeDexCache() const {
3487    return GetMethodLoadKind() == MethodLoadKind::kDexCachePcRelative;
3488  }
3489  bool HasCurrentMethodInput() const {
3490    // This function can be called only after the invoke has been fully initialized by the builder.
3491    if (NeedsCurrentMethodInput(GetMethodLoadKind())) {
3492      DCHECK(InputAt(GetSpecialInputIndex())->IsCurrentMethod());
3493      return true;
3494    } else {
3495      DCHECK(InputCount() == GetSpecialInputIndex() ||
3496             !InputAt(GetSpecialInputIndex())->IsCurrentMethod());
3497      return false;
3498    }
3499  }
3500  bool HasDirectCodePtr() const { return GetCodePtrLocation() == CodePtrLocation::kCallDirect; }
3501  MethodReference GetTargetMethod() const { return target_method_; }
3502
3503  int32_t GetStringInitOffset() const {
3504    DCHECK(IsStringInit());
3505    return dispatch_info_.method_load_data;
3506  }
3507
3508  uint64_t GetMethodAddress() const {
3509    DCHECK(HasMethodAddress());
3510    return dispatch_info_.method_load_data;
3511  }
3512
3513  uint32_t GetDexCacheArrayOffset() const {
3514    DCHECK(HasPcRelativeDexCache());
3515    return dispatch_info_.method_load_data;
3516  }
3517
3518  uint64_t GetDirectCodePtr() const {
3519    DCHECK(HasDirectCodePtr());
3520    return dispatch_info_.direct_code_ptr;
3521  }
3522
3523  ClinitCheckRequirement GetClinitCheckRequirement() const { return clinit_check_requirement_; }
3524
3525  // Is this instruction a call to a static method?
3526  bool IsStatic() const {
3527    return GetInvokeType() == kStatic;
3528  }
3529
3530  // Remove the HClinitCheck or the replacement HLoadClass (set as last input by
3531  // PrepareForRegisterAllocation::VisitClinitCheck() in lieu of the initial HClinitCheck)
3532  // instruction; only relevant for static calls with explicit clinit check.
3533  void RemoveExplicitClinitCheck(ClinitCheckRequirement new_requirement) {
3534    DCHECK(IsStaticWithExplicitClinitCheck());
3535    size_t last_input_index = InputCount() - 1;
3536    HInstruction* last_input = InputAt(last_input_index);
3537    DCHECK(last_input != nullptr);
3538    DCHECK(last_input->IsLoadClass() || last_input->IsClinitCheck()) << last_input->DebugName();
3539    RemoveAsUserOfInput(last_input_index);
3540    inputs_.pop_back();
3541    clinit_check_requirement_ = new_requirement;
3542    DCHECK(!IsStaticWithExplicitClinitCheck());
3543  }
3544
3545  bool IsStringFactoryFor(HFakeString* str) const {
3546    if (!IsStringInit()) return false;
3547    DCHECK(!HasCurrentMethodInput());
3548    if (InputCount() == (number_of_arguments_)) return false;
3549    return InputAt(InputCount() - 1)->AsFakeString() == str;
3550  }
3551
3552  void RemoveFakeStringArgumentAsLastInput() {
3553    DCHECK(IsStringInit());
3554    size_t last_input_index = InputCount() - 1;
3555    HInstruction* last_input = InputAt(last_input_index);
3556    DCHECK(last_input != nullptr);
3557    DCHECK(last_input->IsFakeString()) << last_input->DebugName();
3558    RemoveAsUserOfInput(last_input_index);
3559    inputs_.pop_back();
3560  }
3561
3562  // Is this a call to a static method whose declaring class has an
3563  // explicit initialization check in the graph?
3564  bool IsStaticWithExplicitClinitCheck() const {
3565    return IsStatic() && (clinit_check_requirement_ == ClinitCheckRequirement::kExplicit);
3566  }
3567
3568  // Is this a call to a static method whose declaring class has an
3569  // implicit intialization check requirement?
3570  bool IsStaticWithImplicitClinitCheck() const {
3571    return IsStatic() && (clinit_check_requirement_ == ClinitCheckRequirement::kImplicit);
3572  }
3573
3574  // Does this method load kind need the current method as an input?
3575  static bool NeedsCurrentMethodInput(MethodLoadKind kind) {
3576    return kind == MethodLoadKind::kRecursive || kind == MethodLoadKind::kDexCacheViaMethod;
3577  }
3578
3579  DECLARE_INSTRUCTION(InvokeStaticOrDirect);
3580
3581 protected:
3582  const HUserRecord<HInstruction*> InputRecordAt(size_t i) const OVERRIDE {
3583    const HUserRecord<HInstruction*> input_record = HInvoke::InputRecordAt(i);
3584    if (kIsDebugBuild && IsStaticWithExplicitClinitCheck() && (i == InputCount() - 1)) {
3585      HInstruction* input = input_record.GetInstruction();
3586      // `input` is the last input of a static invoke marked as having
3587      // an explicit clinit check. It must either be:
3588      // - an art::HClinitCheck instruction, set by art::HGraphBuilder; or
3589      // - an art::HLoadClass instruction, set by art::PrepareForRegisterAllocation.
3590      DCHECK(input != nullptr);
3591      DCHECK(input->IsClinitCheck() || input->IsLoadClass()) << input->DebugName();
3592    }
3593    return input_record;
3594  }
3595
3596  void InsertInputAt(size_t index, HInstruction* input);
3597  void RemoveInputAt(size_t index);
3598
3599 private:
3600  const InvokeType invoke_type_;
3601  ClinitCheckRequirement clinit_check_requirement_;
3602  // The target method may refer to different dex file or method index than the original
3603  // invoke. This happens for sharpened calls and for calls where a method was redeclared
3604  // in derived class to increase visibility.
3605  MethodReference target_method_;
3606  DispatchInfo dispatch_info_;
3607
3608  DISALLOW_COPY_AND_ASSIGN(HInvokeStaticOrDirect);
3609};
3610std::ostream& operator<<(std::ostream& os, HInvokeStaticOrDirect::ClinitCheckRequirement rhs);
3611
3612class HInvokeVirtual : public HInvoke {
3613 public:
3614  HInvokeVirtual(ArenaAllocator* arena,
3615                 uint32_t number_of_arguments,
3616                 Primitive::Type return_type,
3617                 uint32_t dex_pc,
3618                 uint32_t dex_method_index,
3619                 uint32_t vtable_index)
3620      : HInvoke(arena, number_of_arguments, 0u, return_type, dex_pc, dex_method_index, kVirtual),
3621        vtable_index_(vtable_index) {}
3622
3623  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
3624    // TODO: Add implicit null checks in intrinsics.
3625    return (obj == InputAt(0)) && !GetLocations()->Intrinsified();
3626  }
3627
3628  uint32_t GetVTableIndex() const { return vtable_index_; }
3629
3630  DECLARE_INSTRUCTION(InvokeVirtual);
3631
3632 private:
3633  const uint32_t vtable_index_;
3634
3635  DISALLOW_COPY_AND_ASSIGN(HInvokeVirtual);
3636};
3637
3638class HInvokeInterface : public HInvoke {
3639 public:
3640  HInvokeInterface(ArenaAllocator* arena,
3641                   uint32_t number_of_arguments,
3642                   Primitive::Type return_type,
3643                   uint32_t dex_pc,
3644                   uint32_t dex_method_index,
3645                   uint32_t imt_index)
3646      : HInvoke(arena, number_of_arguments, 0u, return_type, dex_pc, dex_method_index, kInterface),
3647        imt_index_(imt_index) {}
3648
3649  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
3650    // TODO: Add implicit null checks in intrinsics.
3651    return (obj == InputAt(0)) && !GetLocations()->Intrinsified();
3652  }
3653
3654  uint32_t GetImtIndex() const { return imt_index_; }
3655  uint32_t GetDexMethodIndex() const { return dex_method_index_; }
3656
3657  DECLARE_INSTRUCTION(InvokeInterface);
3658
3659 private:
3660  const uint32_t imt_index_;
3661
3662  DISALLOW_COPY_AND_ASSIGN(HInvokeInterface);
3663};
3664
3665class HNewInstance : public HExpression<2> {
3666 public:
3667  HNewInstance(HInstruction* cls,
3668               HCurrentMethod* current_method,
3669               uint32_t dex_pc,
3670               uint16_t type_index,
3671               const DexFile& dex_file,
3672               bool can_throw,
3673               bool finalizable,
3674               QuickEntrypointEnum entrypoint)
3675      : HExpression(Primitive::kPrimNot, SideEffects::CanTriggerGC(), dex_pc),
3676        type_index_(type_index),
3677        dex_file_(dex_file),
3678        can_throw_(can_throw),
3679        finalizable_(finalizable),
3680        entrypoint_(entrypoint) {
3681    SetRawInputAt(0, cls);
3682    SetRawInputAt(1, current_method);
3683  }
3684
3685  uint16_t GetTypeIndex() const { return type_index_; }
3686  const DexFile& GetDexFile() const { return dex_file_; }
3687
3688  // Calls runtime so needs an environment.
3689  bool NeedsEnvironment() const OVERRIDE { return true; }
3690
3691  // It may throw when called on type that's not instantiable/accessible.
3692  // It can throw OOME.
3693  // TODO: distinguish between the two cases so we can for example allow allocation elimination.
3694  bool CanThrow() const OVERRIDE { return can_throw_ || true; }
3695
3696  bool IsFinalizable() const { return finalizable_; }
3697
3698  bool CanBeNull() const OVERRIDE { return false; }
3699
3700  QuickEntrypointEnum GetEntrypoint() const { return entrypoint_; }
3701
3702  void SetEntrypoint(QuickEntrypointEnum entrypoint) {
3703    entrypoint_ = entrypoint;
3704  }
3705
3706  DECLARE_INSTRUCTION(NewInstance);
3707
3708 private:
3709  const uint16_t type_index_;
3710  const DexFile& dex_file_;
3711  const bool can_throw_;
3712  const bool finalizable_;
3713  QuickEntrypointEnum entrypoint_;
3714
3715  DISALLOW_COPY_AND_ASSIGN(HNewInstance);
3716};
3717
3718class HNeg : public HUnaryOperation {
3719 public:
3720  HNeg(Primitive::Type result_type, HInstruction* input, uint32_t dex_pc = kNoDexPc)
3721      : HUnaryOperation(result_type, input, dex_pc) {}
3722
3723  template <typename T> T Compute(T x) const { return -x; }
3724
3725  HConstant* Evaluate(HIntConstant* x) const OVERRIDE {
3726    return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue()), GetDexPc());
3727  }
3728  HConstant* Evaluate(HLongConstant* x) const OVERRIDE {
3729    return GetBlock()->GetGraph()->GetLongConstant(Compute(x->GetValue()), GetDexPc());
3730  }
3731
3732  DECLARE_INSTRUCTION(Neg);
3733
3734 private:
3735  DISALLOW_COPY_AND_ASSIGN(HNeg);
3736};
3737
3738class HNewArray : public HExpression<2> {
3739 public:
3740  HNewArray(HInstruction* length,
3741            HCurrentMethod* current_method,
3742            uint32_t dex_pc,
3743            uint16_t type_index,
3744            const DexFile& dex_file,
3745            QuickEntrypointEnum entrypoint)
3746      : HExpression(Primitive::kPrimNot, SideEffects::CanTriggerGC(), dex_pc),
3747        type_index_(type_index),
3748        dex_file_(dex_file),
3749        entrypoint_(entrypoint) {
3750    SetRawInputAt(0, length);
3751    SetRawInputAt(1, current_method);
3752  }
3753
3754  uint16_t GetTypeIndex() const { return type_index_; }
3755  const DexFile& GetDexFile() const { return dex_file_; }
3756
3757  // Calls runtime so needs an environment.
3758  bool NeedsEnvironment() const OVERRIDE { return true; }
3759
3760  // May throw NegativeArraySizeException, OutOfMemoryError, etc.
3761  bool CanThrow() const OVERRIDE { return true; }
3762
3763  bool CanBeNull() const OVERRIDE { return false; }
3764
3765  QuickEntrypointEnum GetEntrypoint() const { return entrypoint_; }
3766
3767  DECLARE_INSTRUCTION(NewArray);
3768
3769 private:
3770  const uint16_t type_index_;
3771  const DexFile& dex_file_;
3772  const QuickEntrypointEnum entrypoint_;
3773
3774  DISALLOW_COPY_AND_ASSIGN(HNewArray);
3775};
3776
3777class HAdd : public HBinaryOperation {
3778 public:
3779  HAdd(Primitive::Type result_type,
3780       HInstruction* left,
3781       HInstruction* right,
3782       uint32_t dex_pc = kNoDexPc)
3783      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
3784
3785  bool IsCommutative() const OVERRIDE { return true; }
3786
3787  template <typename T> T Compute(T x, T y) const { return x + y; }
3788
3789  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3790    return GetBlock()->GetGraph()->GetIntConstant(
3791        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3792  }
3793  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3794    return GetBlock()->GetGraph()->GetLongConstant(
3795        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3796  }
3797
3798  DECLARE_INSTRUCTION(Add);
3799
3800 private:
3801  DISALLOW_COPY_AND_ASSIGN(HAdd);
3802};
3803
3804class HSub : public HBinaryOperation {
3805 public:
3806  HSub(Primitive::Type result_type,
3807       HInstruction* left,
3808       HInstruction* right,
3809       uint32_t dex_pc = kNoDexPc)
3810      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
3811
3812  template <typename T> T Compute(T x, T y) const { return x - y; }
3813
3814  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3815    return GetBlock()->GetGraph()->GetIntConstant(
3816        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3817  }
3818  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3819    return GetBlock()->GetGraph()->GetLongConstant(
3820        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3821  }
3822
3823  DECLARE_INSTRUCTION(Sub);
3824
3825 private:
3826  DISALLOW_COPY_AND_ASSIGN(HSub);
3827};
3828
3829class HMul : public HBinaryOperation {
3830 public:
3831  HMul(Primitive::Type result_type,
3832       HInstruction* left,
3833       HInstruction* right,
3834       uint32_t dex_pc = kNoDexPc)
3835      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
3836
3837  bool IsCommutative() const OVERRIDE { return true; }
3838
3839  template <typename T> T Compute(T x, T y) const { return x * y; }
3840
3841  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3842    return GetBlock()->GetGraph()->GetIntConstant(
3843        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3844  }
3845  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3846    return GetBlock()->GetGraph()->GetLongConstant(
3847        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3848  }
3849
3850  DECLARE_INSTRUCTION(Mul);
3851
3852 private:
3853  DISALLOW_COPY_AND_ASSIGN(HMul);
3854};
3855
3856class HDiv : public HBinaryOperation {
3857 public:
3858  HDiv(Primitive::Type result_type,
3859       HInstruction* left,
3860       HInstruction* right,
3861       uint32_t dex_pc)
3862      : HBinaryOperation(result_type, left, right, SideEffectsForArchRuntimeCalls(), dex_pc) {}
3863
3864  template <typename T>
3865  T Compute(T x, T y) const {
3866    // Our graph structure ensures we never have 0 for `y` during
3867    // constant folding.
3868    DCHECK_NE(y, 0);
3869    // Special case -1 to avoid getting a SIGFPE on x86(_64).
3870    return (y == -1) ? -x : x / y;
3871  }
3872
3873  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3874    return GetBlock()->GetGraph()->GetIntConstant(
3875        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3876  }
3877  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3878    return GetBlock()->GetGraph()->GetLongConstant(
3879        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3880  }
3881
3882  static SideEffects SideEffectsForArchRuntimeCalls() {
3883    // The generated code can use a runtime call.
3884    return SideEffects::CanTriggerGC();
3885  }
3886
3887  DECLARE_INSTRUCTION(Div);
3888
3889 private:
3890  DISALLOW_COPY_AND_ASSIGN(HDiv);
3891};
3892
3893class HRem : public HBinaryOperation {
3894 public:
3895  HRem(Primitive::Type result_type,
3896       HInstruction* left,
3897       HInstruction* right,
3898       uint32_t dex_pc)
3899      : HBinaryOperation(result_type, left, right, SideEffectsForArchRuntimeCalls(), dex_pc) {}
3900
3901  template <typename T>
3902  T Compute(T x, T y) const {
3903    // Our graph structure ensures we never have 0 for `y` during
3904    // constant folding.
3905    DCHECK_NE(y, 0);
3906    // Special case -1 to avoid getting a SIGFPE on x86(_64).
3907    return (y == -1) ? 0 : x % y;
3908  }
3909
3910  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3911    return GetBlock()->GetGraph()->GetIntConstant(
3912        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3913  }
3914  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3915    return GetBlock()->GetGraph()->GetLongConstant(
3916        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3917  }
3918
3919
3920  static SideEffects SideEffectsForArchRuntimeCalls() {
3921    return SideEffects::CanTriggerGC();
3922  }
3923
3924  DECLARE_INSTRUCTION(Rem);
3925
3926 private:
3927  DISALLOW_COPY_AND_ASSIGN(HRem);
3928};
3929
3930class HDivZeroCheck : public HExpression<1> {
3931 public:
3932  HDivZeroCheck(HInstruction* value, uint32_t dex_pc)
3933      : HExpression(value->GetType(), SideEffects::None(), dex_pc) {
3934    SetRawInputAt(0, value);
3935  }
3936
3937  Primitive::Type GetType() const OVERRIDE { return InputAt(0)->GetType(); }
3938
3939  bool CanBeMoved() const OVERRIDE { return true; }
3940
3941  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
3942    return true;
3943  }
3944
3945  bool NeedsEnvironment() const OVERRIDE { return true; }
3946  bool CanThrow() const OVERRIDE { return true; }
3947
3948  DECLARE_INSTRUCTION(DivZeroCheck);
3949
3950 private:
3951  DISALLOW_COPY_AND_ASSIGN(HDivZeroCheck);
3952};
3953
3954class HShl : public HBinaryOperation {
3955 public:
3956  HShl(Primitive::Type result_type,
3957       HInstruction* left,
3958       HInstruction* right,
3959       uint32_t dex_pc = kNoDexPc)
3960      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
3961
3962  template <typename T, typename U, typename V>
3963  T Compute(T x, U y, V max_shift_value) const {
3964    static_assert(std::is_same<V, typename std::make_unsigned<T>::type>::value,
3965                  "V is not the unsigned integer type corresponding to T");
3966    return x << (y & max_shift_value);
3967  }
3968
3969  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3970    return GetBlock()->GetGraph()->GetIntConstant(
3971        Compute(x->GetValue(), y->GetValue(), kMaxIntShiftValue), GetDexPc());
3972  }
3973  // There is no `Evaluate(HIntConstant* x, HLongConstant* y)`, as this
3974  // case is handled as `x << static_cast<int>(y)`.
3975  HConstant* Evaluate(HLongConstant* x, HIntConstant* y) const OVERRIDE {
3976    return GetBlock()->GetGraph()->GetLongConstant(
3977        Compute(x->GetValue(), y->GetValue(), kMaxLongShiftValue), GetDexPc());
3978  }
3979  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3980    return GetBlock()->GetGraph()->GetLongConstant(
3981        Compute(x->GetValue(), y->GetValue(), kMaxLongShiftValue), GetDexPc());
3982  }
3983
3984  DECLARE_INSTRUCTION(Shl);
3985
3986 private:
3987  DISALLOW_COPY_AND_ASSIGN(HShl);
3988};
3989
3990class HShr : public HBinaryOperation {
3991 public:
3992  HShr(Primitive::Type result_type,
3993       HInstruction* left,
3994       HInstruction* right,
3995       uint32_t dex_pc = kNoDexPc)
3996      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
3997
3998  template <typename T, typename U, typename V>
3999  T Compute(T x, U y, V max_shift_value) const {
4000    static_assert(std::is_same<V, typename std::make_unsigned<T>::type>::value,
4001                  "V is not the unsigned integer type corresponding to T");
4002    return x >> (y & max_shift_value);
4003  }
4004
4005  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
4006    return GetBlock()->GetGraph()->GetIntConstant(
4007        Compute(x->GetValue(), y->GetValue(), kMaxIntShiftValue), GetDexPc());
4008  }
4009  // There is no `Evaluate(HIntConstant* x, HLongConstant* y)`, as this
4010  // case is handled as `x >> static_cast<int>(y)`.
4011  HConstant* Evaluate(HLongConstant* x, HIntConstant* y) const OVERRIDE {
4012    return GetBlock()->GetGraph()->GetLongConstant(
4013        Compute(x->GetValue(), y->GetValue(), kMaxLongShiftValue), GetDexPc());
4014  }
4015  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
4016    return GetBlock()->GetGraph()->GetLongConstant(
4017        Compute(x->GetValue(), y->GetValue(), kMaxLongShiftValue), GetDexPc());
4018  }
4019
4020  DECLARE_INSTRUCTION(Shr);
4021
4022 private:
4023  DISALLOW_COPY_AND_ASSIGN(HShr);
4024};
4025
4026class HUShr : public HBinaryOperation {
4027 public:
4028  HUShr(Primitive::Type result_type,
4029        HInstruction* left,
4030        HInstruction* right,
4031        uint32_t dex_pc = kNoDexPc)
4032      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
4033
4034  template <typename T, typename U, typename V>
4035  T Compute(T x, U y, V max_shift_value) const {
4036    static_assert(std::is_same<V, typename std::make_unsigned<T>::type>::value,
4037                  "V is not the unsigned integer type corresponding to T");
4038    V ux = static_cast<V>(x);
4039    return static_cast<T>(ux >> (y & max_shift_value));
4040  }
4041
4042  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
4043    return GetBlock()->GetGraph()->GetIntConstant(
4044        Compute(x->GetValue(), y->GetValue(), kMaxIntShiftValue), GetDexPc());
4045  }
4046  // There is no `Evaluate(HIntConstant* x, HLongConstant* y)`, as this
4047  // case is handled as `x >>> static_cast<int>(y)`.
4048  HConstant* Evaluate(HLongConstant* x, HIntConstant* y) const OVERRIDE {
4049    return GetBlock()->GetGraph()->GetLongConstant(
4050        Compute(x->GetValue(), y->GetValue(), kMaxLongShiftValue), GetDexPc());
4051  }
4052  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
4053    return GetBlock()->GetGraph()->GetLongConstant(
4054        Compute(x->GetValue(), y->GetValue(), kMaxLongShiftValue), GetDexPc());
4055  }
4056
4057  DECLARE_INSTRUCTION(UShr);
4058
4059 private:
4060  DISALLOW_COPY_AND_ASSIGN(HUShr);
4061};
4062
4063class HAnd : public HBinaryOperation {
4064 public:
4065  HAnd(Primitive::Type result_type,
4066       HInstruction* left,
4067       HInstruction* right,
4068       uint32_t dex_pc = kNoDexPc)
4069      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
4070
4071  bool IsCommutative() const OVERRIDE { return true; }
4072
4073  template <typename T, typename U>
4074  auto Compute(T x, U y) const -> decltype(x & y) { return x & y; }
4075
4076  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
4077    return GetBlock()->GetGraph()->GetIntConstant(
4078        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4079  }
4080  HConstant* Evaluate(HIntConstant* x, HLongConstant* y) const OVERRIDE {
4081    return GetBlock()->GetGraph()->GetLongConstant(
4082        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4083  }
4084  HConstant* Evaluate(HLongConstant* x, HIntConstant* y) const OVERRIDE {
4085    return GetBlock()->GetGraph()->GetLongConstant(
4086        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4087  }
4088  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
4089    return GetBlock()->GetGraph()->GetLongConstant(
4090        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4091  }
4092
4093  DECLARE_INSTRUCTION(And);
4094
4095 private:
4096  DISALLOW_COPY_AND_ASSIGN(HAnd);
4097};
4098
4099class HOr : public HBinaryOperation {
4100 public:
4101  HOr(Primitive::Type result_type,
4102      HInstruction* left,
4103      HInstruction* right,
4104      uint32_t dex_pc = kNoDexPc)
4105      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
4106
4107  bool IsCommutative() const OVERRIDE { return true; }
4108
4109  template <typename T, typename U>
4110  auto Compute(T x, U y) const -> decltype(x | y) { return x | y; }
4111
4112  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
4113    return GetBlock()->GetGraph()->GetIntConstant(
4114        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4115  }
4116  HConstant* Evaluate(HIntConstant* x, HLongConstant* y) const OVERRIDE {
4117    return GetBlock()->GetGraph()->GetLongConstant(
4118        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4119  }
4120  HConstant* Evaluate(HLongConstant* x, HIntConstant* y) const OVERRIDE {
4121    return GetBlock()->GetGraph()->GetLongConstant(
4122        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4123  }
4124  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
4125    return GetBlock()->GetGraph()->GetLongConstant(
4126        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4127  }
4128
4129  DECLARE_INSTRUCTION(Or);
4130
4131 private:
4132  DISALLOW_COPY_AND_ASSIGN(HOr);
4133};
4134
4135class HXor : public HBinaryOperation {
4136 public:
4137  HXor(Primitive::Type result_type,
4138       HInstruction* left,
4139       HInstruction* right,
4140       uint32_t dex_pc = kNoDexPc)
4141      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
4142
4143  bool IsCommutative() const OVERRIDE { return true; }
4144
4145  template <typename T, typename U>
4146  auto Compute(T x, U y) const -> decltype(x ^ y) { return x ^ y; }
4147
4148  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
4149    return GetBlock()->GetGraph()->GetIntConstant(
4150        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4151  }
4152  HConstant* Evaluate(HIntConstant* x, HLongConstant* y) const OVERRIDE {
4153    return GetBlock()->GetGraph()->GetLongConstant(
4154        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4155  }
4156  HConstant* Evaluate(HLongConstant* x, HIntConstant* y) const OVERRIDE {
4157    return GetBlock()->GetGraph()->GetLongConstant(
4158        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4159  }
4160  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
4161    return GetBlock()->GetGraph()->GetLongConstant(
4162        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4163  }
4164
4165  DECLARE_INSTRUCTION(Xor);
4166
4167 private:
4168  DISALLOW_COPY_AND_ASSIGN(HXor);
4169};
4170
4171// The value of a parameter in this method. Its location depends on
4172// the calling convention.
4173class HParameterValue : public HExpression<0> {
4174 public:
4175  HParameterValue(const DexFile& dex_file,
4176                  uint16_t type_index,
4177                  uint8_t index,
4178                  Primitive::Type parameter_type,
4179                  bool is_this = false)
4180      : HExpression(parameter_type, SideEffects::None(), kNoDexPc),
4181        dex_file_(dex_file),
4182        type_index_(type_index),
4183        index_(index),
4184        is_this_(is_this),
4185        can_be_null_(!is_this) {}
4186
4187  const DexFile& GetDexFile() const { return dex_file_; }
4188  uint16_t GetTypeIndex() const { return type_index_; }
4189  uint8_t GetIndex() const { return index_; }
4190  bool IsThis() const { return is_this_; }
4191
4192  bool CanBeNull() const OVERRIDE { return can_be_null_; }
4193  void SetCanBeNull(bool can_be_null) { can_be_null_ = can_be_null; }
4194
4195  DECLARE_INSTRUCTION(ParameterValue);
4196
4197 private:
4198  const DexFile& dex_file_;
4199  const uint16_t type_index_;
4200  // The index of this parameter in the parameters list. Must be less
4201  // than HGraph::number_of_in_vregs_.
4202  const uint8_t index_;
4203
4204  // Whether or not the parameter value corresponds to 'this' argument.
4205  const bool is_this_;
4206
4207  bool can_be_null_;
4208
4209  DISALLOW_COPY_AND_ASSIGN(HParameterValue);
4210};
4211
4212class HNot : public HUnaryOperation {
4213 public:
4214  HNot(Primitive::Type result_type, HInstruction* input, uint32_t dex_pc = kNoDexPc)
4215      : HUnaryOperation(result_type, input, dex_pc) {}
4216
4217  bool CanBeMoved() const OVERRIDE { return true; }
4218  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
4219    return true;
4220  }
4221
4222  template <typename T> T Compute(T x) const { return ~x; }
4223
4224  HConstant* Evaluate(HIntConstant* x) const OVERRIDE {
4225    return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue()), GetDexPc());
4226  }
4227  HConstant* Evaluate(HLongConstant* x) const OVERRIDE {
4228    return GetBlock()->GetGraph()->GetLongConstant(Compute(x->GetValue()), GetDexPc());
4229  }
4230
4231  DECLARE_INSTRUCTION(Not);
4232
4233 private:
4234  DISALLOW_COPY_AND_ASSIGN(HNot);
4235};
4236
4237class HBooleanNot : public HUnaryOperation {
4238 public:
4239  explicit HBooleanNot(HInstruction* input, uint32_t dex_pc = kNoDexPc)
4240      : HUnaryOperation(Primitive::Type::kPrimBoolean, input, dex_pc) {}
4241
4242  bool CanBeMoved() const OVERRIDE { return true; }
4243  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
4244    return true;
4245  }
4246
4247  template <typename T> bool Compute(T x) const {
4248    DCHECK(IsUint<1>(x));
4249    return !x;
4250  }
4251
4252  HConstant* Evaluate(HIntConstant* x) const OVERRIDE {
4253    return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue()), GetDexPc());
4254  }
4255  HConstant* Evaluate(HLongConstant* x ATTRIBUTE_UNUSED) const OVERRIDE {
4256    LOG(FATAL) << DebugName() << " is not defined for long values";
4257    UNREACHABLE();
4258  }
4259
4260  DECLARE_INSTRUCTION(BooleanNot);
4261
4262 private:
4263  DISALLOW_COPY_AND_ASSIGN(HBooleanNot);
4264};
4265
4266class HTypeConversion : public HExpression<1> {
4267 public:
4268  // Instantiate a type conversion of `input` to `result_type`.
4269  HTypeConversion(Primitive::Type result_type, HInstruction* input, uint32_t dex_pc)
4270      : HExpression(result_type,
4271                    SideEffectsForArchRuntimeCalls(input->GetType(), result_type),
4272                    dex_pc) {
4273    SetRawInputAt(0, input);
4274    DCHECK_NE(input->GetType(), result_type);
4275  }
4276
4277  HInstruction* GetInput() const { return InputAt(0); }
4278  Primitive::Type GetInputType() const { return GetInput()->GetType(); }
4279  Primitive::Type GetResultType() const { return GetType(); }
4280
4281  // Required by the x86, ARM, MIPS and MIPS64 code generators when producing calls
4282  // to the runtime.
4283
4284  bool CanBeMoved() const OVERRIDE { return true; }
4285  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE { return true; }
4286
4287  // Try to statically evaluate the conversion and return a HConstant
4288  // containing the result.  If the input cannot be converted, return nullptr.
4289  HConstant* TryStaticEvaluation() const;
4290
4291  static SideEffects SideEffectsForArchRuntimeCalls(Primitive::Type input_type,
4292                                                    Primitive::Type result_type) {
4293    // Some architectures may not require the 'GC' side effects, but at this point
4294    // in the compilation process we do not know what architecture we will
4295    // generate code for, so we must be conservative.
4296    if ((Primitive::IsFloatingPointType(input_type) && Primitive::IsIntegralType(result_type))
4297        || (input_type == Primitive::kPrimLong && Primitive::IsFloatingPointType(result_type))) {
4298      return SideEffects::CanTriggerGC();
4299    }
4300    return SideEffects::None();
4301  }
4302
4303  DECLARE_INSTRUCTION(TypeConversion);
4304
4305 private:
4306  DISALLOW_COPY_AND_ASSIGN(HTypeConversion);
4307};
4308
4309static constexpr uint32_t kNoRegNumber = -1;
4310
4311class HPhi : public HInstruction {
4312 public:
4313  HPhi(ArenaAllocator* arena,
4314       uint32_t reg_number,
4315       size_t number_of_inputs,
4316       Primitive::Type type,
4317       uint32_t dex_pc = kNoDexPc)
4318      : HInstruction(SideEffects::None(), dex_pc),
4319        inputs_(number_of_inputs, arena->Adapter(kArenaAllocPhiInputs)),
4320        reg_number_(reg_number),
4321        type_(type),
4322        is_live_(false),
4323        can_be_null_(true) {
4324  }
4325
4326  // Returns a type equivalent to the given `type`, but that a `HPhi` can hold.
4327  static Primitive::Type ToPhiType(Primitive::Type type) {
4328    switch (type) {
4329      case Primitive::kPrimBoolean:
4330      case Primitive::kPrimByte:
4331      case Primitive::kPrimShort:
4332      case Primitive::kPrimChar:
4333        return Primitive::kPrimInt;
4334      default:
4335        return type;
4336    }
4337  }
4338
4339  bool IsCatchPhi() const { return GetBlock()->IsCatchBlock(); }
4340
4341  size_t InputCount() const OVERRIDE { return inputs_.size(); }
4342
4343  void AddInput(HInstruction* input);
4344  void RemoveInputAt(size_t index);
4345
4346  Primitive::Type GetType() const OVERRIDE { return type_; }
4347  void SetType(Primitive::Type type) { type_ = type; }
4348
4349  bool CanBeNull() const OVERRIDE { return can_be_null_; }
4350  void SetCanBeNull(bool can_be_null) { can_be_null_ = can_be_null; }
4351
4352  uint32_t GetRegNumber() const { return reg_number_; }
4353
4354  void SetDead() { is_live_ = false; }
4355  void SetLive() { is_live_ = true; }
4356  bool IsDead() const { return !is_live_; }
4357  bool IsLive() const { return is_live_; }
4358
4359  bool IsVRegEquivalentOf(HInstruction* other) const {
4360    return other != nullptr
4361        && other->IsPhi()
4362        && other->AsPhi()->GetBlock() == GetBlock()
4363        && other->AsPhi()->GetRegNumber() == GetRegNumber();
4364  }
4365
4366  // Returns the next equivalent phi (starting from the current one) or null if there is none.
4367  // An equivalent phi is a phi having the same dex register and type.
4368  // It assumes that phis with the same dex register are adjacent.
4369  HPhi* GetNextEquivalentPhiWithSameType() {
4370    HInstruction* next = GetNext();
4371    while (next != nullptr && next->AsPhi()->GetRegNumber() == reg_number_) {
4372      if (next->GetType() == GetType()) {
4373        return next->AsPhi();
4374      }
4375      next = next->GetNext();
4376    }
4377    return nullptr;
4378  }
4379
4380  DECLARE_INSTRUCTION(Phi);
4381
4382 protected:
4383  const HUserRecord<HInstruction*> InputRecordAt(size_t index) const OVERRIDE {
4384    return inputs_[index];
4385  }
4386
4387  void SetRawInputRecordAt(size_t index, const HUserRecord<HInstruction*>& input) OVERRIDE {
4388    inputs_[index] = input;
4389  }
4390
4391 private:
4392  ArenaVector<HUserRecord<HInstruction*> > inputs_;
4393  const uint32_t reg_number_;
4394  Primitive::Type type_;
4395  bool is_live_;
4396  bool can_be_null_;
4397
4398  DISALLOW_COPY_AND_ASSIGN(HPhi);
4399};
4400
4401class HNullCheck : public HExpression<1> {
4402 public:
4403  HNullCheck(HInstruction* value, uint32_t dex_pc)
4404      : HExpression(value->GetType(), SideEffects::None(), dex_pc) {
4405    SetRawInputAt(0, value);
4406  }
4407
4408  bool CanBeMoved() const OVERRIDE { return true; }
4409  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
4410    return true;
4411  }
4412
4413  bool NeedsEnvironment() const OVERRIDE { return true; }
4414
4415  bool CanThrow() const OVERRIDE { return true; }
4416
4417  bool CanBeNull() const OVERRIDE { return false; }
4418
4419
4420  DECLARE_INSTRUCTION(NullCheck);
4421
4422 private:
4423  DISALLOW_COPY_AND_ASSIGN(HNullCheck);
4424};
4425
4426class FieldInfo : public ValueObject {
4427 public:
4428  FieldInfo(MemberOffset field_offset,
4429            Primitive::Type field_type,
4430            bool is_volatile,
4431            uint32_t index,
4432            uint16_t declaring_class_def_index,
4433            const DexFile& dex_file,
4434            Handle<mirror::DexCache> dex_cache)
4435      : field_offset_(field_offset),
4436        field_type_(field_type),
4437        is_volatile_(is_volatile),
4438        index_(index),
4439        declaring_class_def_index_(declaring_class_def_index),
4440        dex_file_(dex_file),
4441        dex_cache_(dex_cache) {}
4442
4443  MemberOffset GetFieldOffset() const { return field_offset_; }
4444  Primitive::Type GetFieldType() const { return field_type_; }
4445  uint32_t GetFieldIndex() const { return index_; }
4446  uint16_t GetDeclaringClassDefIndex() const { return declaring_class_def_index_;}
4447  const DexFile& GetDexFile() const { return dex_file_; }
4448  bool IsVolatile() const { return is_volatile_; }
4449  Handle<mirror::DexCache> GetDexCache() const { return dex_cache_; }
4450
4451 private:
4452  const MemberOffset field_offset_;
4453  const Primitive::Type field_type_;
4454  const bool is_volatile_;
4455  const uint32_t index_;
4456  const uint16_t declaring_class_def_index_;
4457  const DexFile& dex_file_;
4458  const Handle<mirror::DexCache> dex_cache_;
4459};
4460
4461class HInstanceFieldGet : public HExpression<1> {
4462 public:
4463  HInstanceFieldGet(HInstruction* value,
4464                    Primitive::Type field_type,
4465                    MemberOffset field_offset,
4466                    bool is_volatile,
4467                    uint32_t field_idx,
4468                    uint16_t declaring_class_def_index,
4469                    const DexFile& dex_file,
4470                    Handle<mirror::DexCache> dex_cache,
4471                    uint32_t dex_pc)
4472      : HExpression(field_type,
4473                    SideEffects::FieldReadOfType(field_type, is_volatile),
4474                    dex_pc),
4475        field_info_(field_offset,
4476                    field_type,
4477                    is_volatile,
4478                    field_idx,
4479                    declaring_class_def_index,
4480                    dex_file,
4481                    dex_cache) {
4482    SetRawInputAt(0, value);
4483  }
4484
4485  bool CanBeMoved() const OVERRIDE { return !IsVolatile(); }
4486
4487  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
4488    HInstanceFieldGet* other_get = other->AsInstanceFieldGet();
4489    return GetFieldOffset().SizeValue() == other_get->GetFieldOffset().SizeValue();
4490  }
4491
4492  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
4493    return (obj == InputAt(0)) && GetFieldOffset().Uint32Value() < kPageSize;
4494  }
4495
4496  size_t ComputeHashCode() const OVERRIDE {
4497    return (HInstruction::ComputeHashCode() << 7) | GetFieldOffset().SizeValue();
4498  }
4499
4500  const FieldInfo& GetFieldInfo() const { return field_info_; }
4501  MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
4502  Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); }
4503  bool IsVolatile() const { return field_info_.IsVolatile(); }
4504
4505  DECLARE_INSTRUCTION(InstanceFieldGet);
4506
4507 private:
4508  const FieldInfo field_info_;
4509
4510  DISALLOW_COPY_AND_ASSIGN(HInstanceFieldGet);
4511};
4512
4513class HInstanceFieldSet : public HTemplateInstruction<2> {
4514 public:
4515  HInstanceFieldSet(HInstruction* object,
4516                    HInstruction* value,
4517                    Primitive::Type field_type,
4518                    MemberOffset field_offset,
4519                    bool is_volatile,
4520                    uint32_t field_idx,
4521                    uint16_t declaring_class_def_index,
4522                    const DexFile& dex_file,
4523                    Handle<mirror::DexCache> dex_cache,
4524                    uint32_t dex_pc)
4525      : HTemplateInstruction(SideEffects::FieldWriteOfType(field_type, is_volatile),
4526                             dex_pc),
4527        field_info_(field_offset,
4528                    field_type,
4529                    is_volatile,
4530                    field_idx,
4531                    declaring_class_def_index,
4532                    dex_file,
4533                    dex_cache),
4534        value_can_be_null_(true) {
4535    SetRawInputAt(0, object);
4536    SetRawInputAt(1, value);
4537  }
4538
4539  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
4540    return (obj == InputAt(0)) && GetFieldOffset().Uint32Value() < kPageSize;
4541  }
4542
4543  const FieldInfo& GetFieldInfo() const { return field_info_; }
4544  MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
4545  Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); }
4546  bool IsVolatile() const { return field_info_.IsVolatile(); }
4547  HInstruction* GetValue() const { return InputAt(1); }
4548  bool GetValueCanBeNull() const { return value_can_be_null_; }
4549  void ClearValueCanBeNull() { value_can_be_null_ = false; }
4550
4551  DECLARE_INSTRUCTION(InstanceFieldSet);
4552
4553 private:
4554  const FieldInfo field_info_;
4555  bool value_can_be_null_;
4556
4557  DISALLOW_COPY_AND_ASSIGN(HInstanceFieldSet);
4558};
4559
4560class HArrayGet : public HExpression<2> {
4561 public:
4562  HArrayGet(HInstruction* array,
4563            HInstruction* index,
4564            Primitive::Type type,
4565            uint32_t dex_pc,
4566            SideEffects additional_side_effects = SideEffects::None())
4567      : HExpression(type,
4568                    SideEffects::ArrayReadOfType(type).Union(additional_side_effects),
4569                    dex_pc) {
4570    SetRawInputAt(0, array);
4571    SetRawInputAt(1, index);
4572  }
4573
4574  bool CanBeMoved() const OVERRIDE { return true; }
4575  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
4576    return true;
4577  }
4578  bool CanDoImplicitNullCheckOn(HInstruction* obj ATTRIBUTE_UNUSED) const OVERRIDE {
4579    // TODO: We can be smarter here.
4580    // Currently, the array access is always preceded by an ArrayLength or a NullCheck
4581    // which generates the implicit null check. There are cases when these can be removed
4582    // to produce better code. If we ever add optimizations to do so we should allow an
4583    // implicit check here (as long as the address falls in the first page).
4584    return false;
4585  }
4586
4587  void SetType(Primitive::Type type) { type_ = type; }
4588
4589  HInstruction* GetArray() const { return InputAt(0); }
4590  HInstruction* GetIndex() const { return InputAt(1); }
4591
4592  DECLARE_INSTRUCTION(ArrayGet);
4593
4594 private:
4595  DISALLOW_COPY_AND_ASSIGN(HArrayGet);
4596};
4597
4598class HArraySet : public HTemplateInstruction<3> {
4599 public:
4600  HArraySet(HInstruction* array,
4601            HInstruction* index,
4602            HInstruction* value,
4603            Primitive::Type expected_component_type,
4604            uint32_t dex_pc,
4605            SideEffects additional_side_effects = SideEffects::None())
4606      : HTemplateInstruction(
4607            SideEffects::ArrayWriteOfType(expected_component_type).Union(
4608                SideEffectsForArchRuntimeCalls(value->GetType())).Union(
4609                    additional_side_effects),
4610            dex_pc),
4611        expected_component_type_(expected_component_type),
4612        needs_type_check_(value->GetType() == Primitive::kPrimNot),
4613        value_can_be_null_(true),
4614        static_type_of_array_is_object_array_(false) {
4615    SetRawInputAt(0, array);
4616    SetRawInputAt(1, index);
4617    SetRawInputAt(2, value);
4618  }
4619
4620  bool NeedsEnvironment() const OVERRIDE {
4621    // We currently always call a runtime method to catch array store
4622    // exceptions.
4623    return needs_type_check_;
4624  }
4625
4626  // Can throw ArrayStoreException.
4627  bool CanThrow() const OVERRIDE { return needs_type_check_; }
4628
4629  bool CanDoImplicitNullCheckOn(HInstruction* obj ATTRIBUTE_UNUSED) const OVERRIDE {
4630    // TODO: Same as for ArrayGet.
4631    return false;
4632  }
4633
4634  void ClearNeedsTypeCheck() {
4635    needs_type_check_ = false;
4636  }
4637
4638  void ClearValueCanBeNull() {
4639    value_can_be_null_ = false;
4640  }
4641
4642  void SetStaticTypeOfArrayIsObjectArray() {
4643    static_type_of_array_is_object_array_ = true;
4644  }
4645
4646  bool GetValueCanBeNull() const { return value_can_be_null_; }
4647  bool NeedsTypeCheck() const { return needs_type_check_; }
4648  bool StaticTypeOfArrayIsObjectArray() const { return static_type_of_array_is_object_array_; }
4649
4650  HInstruction* GetArray() const { return InputAt(0); }
4651  HInstruction* GetIndex() const { return InputAt(1); }
4652  HInstruction* GetValue() const { return InputAt(2); }
4653
4654  Primitive::Type GetComponentType() const {
4655    // The Dex format does not type floating point index operations. Since the
4656    // `expected_component_type_` is set during building and can therefore not
4657    // be correct, we also check what is the value type. If it is a floating
4658    // point type, we must use that type.
4659    Primitive::Type value_type = GetValue()->GetType();
4660    return ((value_type == Primitive::kPrimFloat) || (value_type == Primitive::kPrimDouble))
4661        ? value_type
4662        : expected_component_type_;
4663  }
4664
4665  Primitive::Type GetRawExpectedComponentType() const {
4666    return expected_component_type_;
4667  }
4668
4669  static SideEffects SideEffectsForArchRuntimeCalls(Primitive::Type value_type) {
4670    return (value_type == Primitive::kPrimNot) ? SideEffects::CanTriggerGC() : SideEffects::None();
4671  }
4672
4673  DECLARE_INSTRUCTION(ArraySet);
4674
4675 private:
4676  const Primitive::Type expected_component_type_;
4677  bool needs_type_check_;
4678  bool value_can_be_null_;
4679  // Cached information for the reference_type_info_ so that codegen
4680  // does not need to inspect the static type.
4681  bool static_type_of_array_is_object_array_;
4682
4683  DISALLOW_COPY_AND_ASSIGN(HArraySet);
4684};
4685
4686class HArrayLength : public HExpression<1> {
4687 public:
4688  HArrayLength(HInstruction* array, uint32_t dex_pc)
4689      : HExpression(Primitive::kPrimInt, SideEffects::None(), dex_pc) {
4690    // Note that arrays do not change length, so the instruction does not
4691    // depend on any write.
4692    SetRawInputAt(0, array);
4693  }
4694
4695  bool CanBeMoved() const OVERRIDE { return true; }
4696  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
4697    return true;
4698  }
4699  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
4700    return obj == InputAt(0);
4701  }
4702
4703  DECLARE_INSTRUCTION(ArrayLength);
4704
4705 private:
4706  DISALLOW_COPY_AND_ASSIGN(HArrayLength);
4707};
4708
4709class HBoundsCheck : public HExpression<2> {
4710 public:
4711  HBoundsCheck(HInstruction* index, HInstruction* length, uint32_t dex_pc)
4712      : HExpression(index->GetType(), SideEffects::None(), dex_pc) {
4713    DCHECK(index->GetType() == Primitive::kPrimInt);
4714    SetRawInputAt(0, index);
4715    SetRawInputAt(1, length);
4716  }
4717
4718  bool CanBeMoved() const OVERRIDE { return true; }
4719  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
4720    return true;
4721  }
4722
4723  bool NeedsEnvironment() const OVERRIDE { return true; }
4724
4725  bool CanThrow() const OVERRIDE { return true; }
4726
4727  HInstruction* GetIndex() const { return InputAt(0); }
4728
4729  DECLARE_INSTRUCTION(BoundsCheck);
4730
4731 private:
4732  DISALLOW_COPY_AND_ASSIGN(HBoundsCheck);
4733};
4734
4735/**
4736 * Some DEX instructions are folded into multiple HInstructions that need
4737 * to stay live until the last HInstruction. This class
4738 * is used as a marker for the baseline compiler to ensure its preceding
4739 * HInstruction stays live. `index` represents the stack location index of the
4740 * instruction (the actual offset is computed as index * vreg_size).
4741 */
4742class HTemporary : public HTemplateInstruction<0> {
4743 public:
4744  explicit HTemporary(size_t index, uint32_t dex_pc = kNoDexPc)
4745      : HTemplateInstruction(SideEffects::None(), dex_pc), index_(index) {}
4746
4747  size_t GetIndex() const { return index_; }
4748
4749  Primitive::Type GetType() const OVERRIDE {
4750    // The previous instruction is the one that will be stored in the temporary location.
4751    DCHECK(GetPrevious() != nullptr);
4752    return GetPrevious()->GetType();
4753  }
4754
4755  DECLARE_INSTRUCTION(Temporary);
4756
4757 private:
4758  const size_t index_;
4759  DISALLOW_COPY_AND_ASSIGN(HTemporary);
4760};
4761
4762class HSuspendCheck : public HTemplateInstruction<0> {
4763 public:
4764  explicit HSuspendCheck(uint32_t dex_pc)
4765      : HTemplateInstruction(SideEffects::CanTriggerGC(), dex_pc), slow_path_(nullptr) {}
4766
4767  bool NeedsEnvironment() const OVERRIDE {
4768    return true;
4769  }
4770
4771  void SetSlowPath(SlowPathCode* slow_path) { slow_path_ = slow_path; }
4772  SlowPathCode* GetSlowPath() const { return slow_path_; }
4773
4774  DECLARE_INSTRUCTION(SuspendCheck);
4775
4776 private:
4777  // Only used for code generation, in order to share the same slow path between back edges
4778  // of a same loop.
4779  SlowPathCode* slow_path_;
4780
4781  DISALLOW_COPY_AND_ASSIGN(HSuspendCheck);
4782};
4783
4784/**
4785 * Instruction to load a Class object.
4786 */
4787class HLoadClass : public HExpression<1> {
4788 public:
4789  HLoadClass(HCurrentMethod* current_method,
4790             uint16_t type_index,
4791             const DexFile& dex_file,
4792             bool is_referrers_class,
4793             uint32_t dex_pc,
4794             bool needs_access_check)
4795      : HExpression(Primitive::kPrimNot, SideEffectsForArchRuntimeCalls(), dex_pc),
4796        type_index_(type_index),
4797        dex_file_(dex_file),
4798        is_referrers_class_(is_referrers_class),
4799        generate_clinit_check_(false),
4800        needs_access_check_(needs_access_check),
4801        loaded_class_rti_(ReferenceTypeInfo::CreateInvalid()) {
4802    // Referrers class should not need access check. We never inline unverified
4803    // methods so we can't possibly end up in this situation.
4804    DCHECK(!is_referrers_class_ || !needs_access_check_);
4805    SetRawInputAt(0, current_method);
4806  }
4807
4808  bool CanBeMoved() const OVERRIDE { return true; }
4809
4810  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
4811    // Note that we don't need to test for generate_clinit_check_.
4812    // Whether or not we need to generate the clinit check is processed in
4813    // prepare_for_register_allocator based on existing HInvokes and HClinitChecks.
4814    return other->AsLoadClass()->type_index_ == type_index_ &&
4815        other->AsLoadClass()->needs_access_check_ == needs_access_check_;
4816  }
4817
4818  size_t ComputeHashCode() const OVERRIDE { return type_index_; }
4819
4820  uint16_t GetTypeIndex() const { return type_index_; }
4821  bool IsReferrersClass() const { return is_referrers_class_; }
4822  bool CanBeNull() const OVERRIDE { return false; }
4823
4824  bool NeedsEnvironment() const OVERRIDE {
4825    // Will call runtime and load the class if the class is not loaded yet.
4826    // TODO: finer grain decision.
4827    return !is_referrers_class_;
4828  }
4829
4830  bool MustGenerateClinitCheck() const {
4831    return generate_clinit_check_;
4832  }
4833  void SetMustGenerateClinitCheck(bool generate_clinit_check) {
4834    // The entrypoint the code generator is going to call does not do
4835    // clinit of the class.
4836    DCHECK(!NeedsAccessCheck());
4837    generate_clinit_check_ = generate_clinit_check;
4838  }
4839
4840  bool CanCallRuntime() const {
4841    return MustGenerateClinitCheck() || !is_referrers_class_ || needs_access_check_;
4842  }
4843
4844  bool NeedsAccessCheck() const {
4845    return needs_access_check_;
4846  }
4847
4848  bool CanThrow() const OVERRIDE {
4849    // May call runtime and and therefore can throw.
4850    // TODO: finer grain decision.
4851    return CanCallRuntime();
4852  }
4853
4854  ReferenceTypeInfo GetLoadedClassRTI() {
4855    return loaded_class_rti_;
4856  }
4857
4858  void SetLoadedClassRTI(ReferenceTypeInfo rti) {
4859    // Make sure we only set exact types (the loaded class should never be merged).
4860    DCHECK(rti.IsExact());
4861    loaded_class_rti_ = rti;
4862  }
4863
4864  const DexFile& GetDexFile() { return dex_file_; }
4865
4866  bool NeedsDexCacheOfDeclaringClass() const OVERRIDE { return !is_referrers_class_; }
4867
4868  static SideEffects SideEffectsForArchRuntimeCalls() {
4869    return SideEffects::CanTriggerGC();
4870  }
4871
4872  DECLARE_INSTRUCTION(LoadClass);
4873
4874 private:
4875  const uint16_t type_index_;
4876  const DexFile& dex_file_;
4877  const bool is_referrers_class_;
4878  // Whether this instruction must generate the initialization check.
4879  // Used for code generation.
4880  bool generate_clinit_check_;
4881  bool needs_access_check_;
4882
4883  ReferenceTypeInfo loaded_class_rti_;
4884
4885  DISALLOW_COPY_AND_ASSIGN(HLoadClass);
4886};
4887
4888class HLoadString : public HExpression<1> {
4889 public:
4890  HLoadString(HCurrentMethod* current_method, uint32_t string_index, uint32_t dex_pc)
4891      : HExpression(Primitive::kPrimNot, SideEffectsForArchRuntimeCalls(), dex_pc),
4892        string_index_(string_index) {
4893    SetRawInputAt(0, current_method);
4894  }
4895
4896  bool CanBeMoved() const OVERRIDE { return true; }
4897
4898  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
4899    return other->AsLoadString()->string_index_ == string_index_;
4900  }
4901
4902  size_t ComputeHashCode() const OVERRIDE { return string_index_; }
4903
4904  uint32_t GetStringIndex() const { return string_index_; }
4905
4906  // TODO: Can we deopt or debug when we resolve a string?
4907  bool NeedsEnvironment() const OVERRIDE { return false; }
4908  bool NeedsDexCacheOfDeclaringClass() const OVERRIDE { return true; }
4909  bool CanBeNull() const OVERRIDE { return false; }
4910
4911  static SideEffects SideEffectsForArchRuntimeCalls() {
4912    return SideEffects::CanTriggerGC();
4913  }
4914
4915  DECLARE_INSTRUCTION(LoadString);
4916
4917 private:
4918  const uint32_t string_index_;
4919
4920  DISALLOW_COPY_AND_ASSIGN(HLoadString);
4921};
4922
4923/**
4924 * Performs an initialization check on its Class object input.
4925 */
4926class HClinitCheck : public HExpression<1> {
4927 public:
4928  HClinitCheck(HLoadClass* constant, uint32_t dex_pc)
4929      : HExpression(
4930            Primitive::kPrimNot,
4931            SideEffects::AllChanges(),  // Assume write/read on all fields/arrays.
4932            dex_pc) {
4933    SetRawInputAt(0, constant);
4934  }
4935
4936  bool CanBeMoved() const OVERRIDE { return true; }
4937  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
4938    return true;
4939  }
4940
4941  bool NeedsEnvironment() const OVERRIDE {
4942    // May call runtime to initialize the class.
4943    return true;
4944  }
4945
4946  bool CanThrow() const OVERRIDE { return true; }
4947
4948  HLoadClass* GetLoadClass() const { return InputAt(0)->AsLoadClass(); }
4949
4950  DECLARE_INSTRUCTION(ClinitCheck);
4951
4952 private:
4953  DISALLOW_COPY_AND_ASSIGN(HClinitCheck);
4954};
4955
4956class HStaticFieldGet : public HExpression<1> {
4957 public:
4958  HStaticFieldGet(HInstruction* cls,
4959                  Primitive::Type field_type,
4960                  MemberOffset field_offset,
4961                  bool is_volatile,
4962                  uint32_t field_idx,
4963                  uint16_t declaring_class_def_index,
4964                  const DexFile& dex_file,
4965                  Handle<mirror::DexCache> dex_cache,
4966                  uint32_t dex_pc)
4967      : HExpression(field_type,
4968                    SideEffects::FieldReadOfType(field_type, is_volatile),
4969                    dex_pc),
4970        field_info_(field_offset,
4971                    field_type,
4972                    is_volatile,
4973                    field_idx,
4974                    declaring_class_def_index,
4975                    dex_file,
4976                    dex_cache) {
4977    SetRawInputAt(0, cls);
4978  }
4979
4980
4981  bool CanBeMoved() const OVERRIDE { return !IsVolatile(); }
4982
4983  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
4984    HStaticFieldGet* other_get = other->AsStaticFieldGet();
4985    return GetFieldOffset().SizeValue() == other_get->GetFieldOffset().SizeValue();
4986  }
4987
4988  size_t ComputeHashCode() const OVERRIDE {
4989    return (HInstruction::ComputeHashCode() << 7) | GetFieldOffset().SizeValue();
4990  }
4991
4992  const FieldInfo& GetFieldInfo() const { return field_info_; }
4993  MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
4994  Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); }
4995  bool IsVolatile() const { return field_info_.IsVolatile(); }
4996
4997  DECLARE_INSTRUCTION(StaticFieldGet);
4998
4999 private:
5000  const FieldInfo field_info_;
5001
5002  DISALLOW_COPY_AND_ASSIGN(HStaticFieldGet);
5003};
5004
5005class HStaticFieldSet : public HTemplateInstruction<2> {
5006 public:
5007  HStaticFieldSet(HInstruction* cls,
5008                  HInstruction* value,
5009                  Primitive::Type field_type,
5010                  MemberOffset field_offset,
5011                  bool is_volatile,
5012                  uint32_t field_idx,
5013                  uint16_t declaring_class_def_index,
5014                  const DexFile& dex_file,
5015                  Handle<mirror::DexCache> dex_cache,
5016                  uint32_t dex_pc)
5017      : HTemplateInstruction(SideEffects::FieldWriteOfType(field_type, is_volatile),
5018                             dex_pc),
5019        field_info_(field_offset,
5020                    field_type,
5021                    is_volatile,
5022                    field_idx,
5023                    declaring_class_def_index,
5024                    dex_file,
5025                    dex_cache),
5026        value_can_be_null_(true) {
5027    SetRawInputAt(0, cls);
5028    SetRawInputAt(1, value);
5029  }
5030
5031  const FieldInfo& GetFieldInfo() const { return field_info_; }
5032  MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
5033  Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); }
5034  bool IsVolatile() const { return field_info_.IsVolatile(); }
5035
5036  HInstruction* GetValue() const { return InputAt(1); }
5037  bool GetValueCanBeNull() const { return value_can_be_null_; }
5038  void ClearValueCanBeNull() { value_can_be_null_ = false; }
5039
5040  DECLARE_INSTRUCTION(StaticFieldSet);
5041
5042 private:
5043  const FieldInfo field_info_;
5044  bool value_can_be_null_;
5045
5046  DISALLOW_COPY_AND_ASSIGN(HStaticFieldSet);
5047};
5048
5049class HUnresolvedInstanceFieldGet : public HExpression<1> {
5050 public:
5051  HUnresolvedInstanceFieldGet(HInstruction* obj,
5052                              Primitive::Type field_type,
5053                              uint32_t field_index,
5054                              uint32_t dex_pc)
5055      : HExpression(field_type, SideEffects::AllExceptGCDependency(), dex_pc),
5056        field_index_(field_index) {
5057    SetRawInputAt(0, obj);
5058  }
5059
5060  bool NeedsEnvironment() const OVERRIDE { return true; }
5061  bool CanThrow() const OVERRIDE { return true; }
5062
5063  Primitive::Type GetFieldType() const { return GetType(); }
5064  uint32_t GetFieldIndex() const { return field_index_; }
5065
5066  DECLARE_INSTRUCTION(UnresolvedInstanceFieldGet);
5067
5068 private:
5069  const uint32_t field_index_;
5070
5071  DISALLOW_COPY_AND_ASSIGN(HUnresolvedInstanceFieldGet);
5072};
5073
5074class HUnresolvedInstanceFieldSet : public HTemplateInstruction<2> {
5075 public:
5076  HUnresolvedInstanceFieldSet(HInstruction* obj,
5077                              HInstruction* value,
5078                              Primitive::Type field_type,
5079                              uint32_t field_index,
5080                              uint32_t dex_pc)
5081      : HTemplateInstruction(SideEffects::AllExceptGCDependency(), dex_pc),
5082        field_type_(field_type),
5083        field_index_(field_index) {
5084    DCHECK_EQ(field_type, value->GetType());
5085    SetRawInputAt(0, obj);
5086    SetRawInputAt(1, value);
5087  }
5088
5089  bool NeedsEnvironment() const OVERRIDE { return true; }
5090  bool CanThrow() const OVERRIDE { return true; }
5091
5092  Primitive::Type GetFieldType() const { return field_type_; }
5093  uint32_t GetFieldIndex() const { return field_index_; }
5094
5095  DECLARE_INSTRUCTION(UnresolvedInstanceFieldSet);
5096
5097 private:
5098  const Primitive::Type field_type_;
5099  const uint32_t field_index_;
5100
5101  DISALLOW_COPY_AND_ASSIGN(HUnresolvedInstanceFieldSet);
5102};
5103
5104class HUnresolvedStaticFieldGet : public HExpression<0> {
5105 public:
5106  HUnresolvedStaticFieldGet(Primitive::Type field_type,
5107                            uint32_t field_index,
5108                            uint32_t dex_pc)
5109      : HExpression(field_type, SideEffects::AllExceptGCDependency(), dex_pc),
5110        field_index_(field_index) {
5111  }
5112
5113  bool NeedsEnvironment() const OVERRIDE { return true; }
5114  bool CanThrow() const OVERRIDE { return true; }
5115
5116  Primitive::Type GetFieldType() const { return GetType(); }
5117  uint32_t GetFieldIndex() const { return field_index_; }
5118
5119  DECLARE_INSTRUCTION(UnresolvedStaticFieldGet);
5120
5121 private:
5122  const uint32_t field_index_;
5123
5124  DISALLOW_COPY_AND_ASSIGN(HUnresolvedStaticFieldGet);
5125};
5126
5127class HUnresolvedStaticFieldSet : public HTemplateInstruction<1> {
5128 public:
5129  HUnresolvedStaticFieldSet(HInstruction* value,
5130                            Primitive::Type field_type,
5131                            uint32_t field_index,
5132                            uint32_t dex_pc)
5133      : HTemplateInstruction(SideEffects::AllExceptGCDependency(), dex_pc),
5134        field_type_(field_type),
5135        field_index_(field_index) {
5136    DCHECK_EQ(field_type, value->GetType());
5137    SetRawInputAt(0, value);
5138  }
5139
5140  bool NeedsEnvironment() const OVERRIDE { return true; }
5141  bool CanThrow() const OVERRIDE { return true; }
5142
5143  Primitive::Type GetFieldType() const { return field_type_; }
5144  uint32_t GetFieldIndex() const { return field_index_; }
5145
5146  DECLARE_INSTRUCTION(UnresolvedStaticFieldSet);
5147
5148 private:
5149  const Primitive::Type field_type_;
5150  const uint32_t field_index_;
5151
5152  DISALLOW_COPY_AND_ASSIGN(HUnresolvedStaticFieldSet);
5153};
5154
5155// Implement the move-exception DEX instruction.
5156class HLoadException : public HExpression<0> {
5157 public:
5158  explicit HLoadException(uint32_t dex_pc = kNoDexPc)
5159      : HExpression(Primitive::kPrimNot, SideEffects::None(), dex_pc) {}
5160
5161  bool CanBeNull() const OVERRIDE { return false; }
5162
5163  DECLARE_INSTRUCTION(LoadException);
5164
5165 private:
5166  DISALLOW_COPY_AND_ASSIGN(HLoadException);
5167};
5168
5169// Implicit part of move-exception which clears thread-local exception storage.
5170// Must not be removed because the runtime expects the TLS to get cleared.
5171class HClearException : public HTemplateInstruction<0> {
5172 public:
5173  explicit HClearException(uint32_t dex_pc = kNoDexPc)
5174      : HTemplateInstruction(SideEffects::AllWrites(), dex_pc) {}
5175
5176  DECLARE_INSTRUCTION(ClearException);
5177
5178 private:
5179  DISALLOW_COPY_AND_ASSIGN(HClearException);
5180};
5181
5182class HThrow : public HTemplateInstruction<1> {
5183 public:
5184  HThrow(HInstruction* exception, uint32_t dex_pc)
5185      : HTemplateInstruction(SideEffects::CanTriggerGC(), dex_pc) {
5186    SetRawInputAt(0, exception);
5187  }
5188
5189  bool IsControlFlow() const OVERRIDE { return true; }
5190
5191  bool NeedsEnvironment() const OVERRIDE { return true; }
5192
5193  bool CanThrow() const OVERRIDE { return true; }
5194
5195
5196  DECLARE_INSTRUCTION(Throw);
5197
5198 private:
5199  DISALLOW_COPY_AND_ASSIGN(HThrow);
5200};
5201
5202/**
5203 * Implementation strategies for the code generator of a HInstanceOf
5204 * or `HCheckCast`.
5205 */
5206enum class TypeCheckKind {
5207  kUnresolvedCheck,       // Check against an unresolved type.
5208  kExactCheck,            // Can do a single class compare.
5209  kClassHierarchyCheck,   // Can just walk the super class chain.
5210  kAbstractClassCheck,    // Can just walk the super class chain, starting one up.
5211  kInterfaceCheck,        // No optimization yet when checking against an interface.
5212  kArrayObjectCheck,      // Can just check if the array is not primitive.
5213  kArrayCheck             // No optimization yet when checking against a generic array.
5214};
5215
5216class HInstanceOf : public HExpression<2> {
5217 public:
5218  HInstanceOf(HInstruction* object,
5219              HLoadClass* constant,
5220              TypeCheckKind check_kind,
5221              uint32_t dex_pc)
5222      : HExpression(Primitive::kPrimBoolean,
5223                    SideEffectsForArchRuntimeCalls(check_kind),
5224                    dex_pc),
5225        check_kind_(check_kind),
5226        must_do_null_check_(true) {
5227    SetRawInputAt(0, object);
5228    SetRawInputAt(1, constant);
5229  }
5230
5231  bool CanBeMoved() const OVERRIDE { return true; }
5232
5233  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
5234    return true;
5235  }
5236
5237  bool NeedsEnvironment() const OVERRIDE {
5238    return false;
5239  }
5240
5241  bool IsExactCheck() const { return check_kind_ == TypeCheckKind::kExactCheck; }
5242
5243  TypeCheckKind GetTypeCheckKind() const { return check_kind_; }
5244
5245  // Used only in code generation.
5246  bool MustDoNullCheck() const { return must_do_null_check_; }
5247  void ClearMustDoNullCheck() { must_do_null_check_ = false; }
5248
5249  static SideEffects SideEffectsForArchRuntimeCalls(TypeCheckKind check_kind) {
5250    return (check_kind == TypeCheckKind::kExactCheck)
5251        ? SideEffects::None()
5252        // Mips currently does runtime calls for any other checks.
5253        : SideEffects::CanTriggerGC();
5254  }
5255
5256  DECLARE_INSTRUCTION(InstanceOf);
5257
5258 private:
5259  const TypeCheckKind check_kind_;
5260  bool must_do_null_check_;
5261
5262  DISALLOW_COPY_AND_ASSIGN(HInstanceOf);
5263};
5264
5265class HBoundType : public HExpression<1> {
5266 public:
5267  // Constructs an HBoundType with the given upper_bound.
5268  // Ensures that the upper_bound is valid.
5269  HBoundType(HInstruction* input,
5270             ReferenceTypeInfo upper_bound,
5271             bool upper_can_be_null,
5272             uint32_t dex_pc = kNoDexPc)
5273      : HExpression(Primitive::kPrimNot, SideEffects::None(), dex_pc),
5274        upper_bound_(upper_bound),
5275        upper_can_be_null_(upper_can_be_null),
5276        can_be_null_(upper_can_be_null) {
5277    DCHECK_EQ(input->GetType(), Primitive::kPrimNot);
5278    SetRawInputAt(0, input);
5279    SetReferenceTypeInfo(upper_bound_);
5280  }
5281
5282  // GetUpper* should only be used in reference type propagation.
5283  const ReferenceTypeInfo& GetUpperBound() const { return upper_bound_; }
5284  bool GetUpperCanBeNull() const { return upper_can_be_null_; }
5285
5286  void SetCanBeNull(bool can_be_null) {
5287    DCHECK(upper_can_be_null_ || !can_be_null);
5288    can_be_null_ = can_be_null;
5289  }
5290
5291  bool CanBeNull() const OVERRIDE { return can_be_null_; }
5292
5293  DECLARE_INSTRUCTION(BoundType);
5294
5295 private:
5296  // Encodes the most upper class that this instruction can have. In other words
5297  // it is always the case that GetUpperBound().IsSupertypeOf(GetReferenceType()).
5298  // It is used to bound the type in cases like:
5299  //   if (x instanceof ClassX) {
5300  //     // uper_bound_ will be ClassX
5301  //   }
5302  const ReferenceTypeInfo upper_bound_;
5303  // Represents the top constraint that can_be_null_ cannot exceed (i.e. if this
5304  // is false then can_be_null_ cannot be true).
5305  const bool upper_can_be_null_;
5306  bool can_be_null_;
5307
5308  DISALLOW_COPY_AND_ASSIGN(HBoundType);
5309};
5310
5311class HCheckCast : public HTemplateInstruction<2> {
5312 public:
5313  HCheckCast(HInstruction* object,
5314             HLoadClass* constant,
5315             TypeCheckKind check_kind,
5316             uint32_t dex_pc)
5317      : HTemplateInstruction(SideEffects::CanTriggerGC(), dex_pc),
5318        check_kind_(check_kind),
5319        must_do_null_check_(true) {
5320    SetRawInputAt(0, object);
5321    SetRawInputAt(1, constant);
5322  }
5323
5324  bool CanBeMoved() const OVERRIDE { return true; }
5325
5326  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
5327    return true;
5328  }
5329
5330  bool NeedsEnvironment() const OVERRIDE {
5331    // Instruction may throw a CheckCastError.
5332    return true;
5333  }
5334
5335  bool CanThrow() const OVERRIDE { return true; }
5336
5337  bool MustDoNullCheck() const { return must_do_null_check_; }
5338  void ClearMustDoNullCheck() { must_do_null_check_ = false; }
5339  TypeCheckKind GetTypeCheckKind() const { return check_kind_; }
5340
5341  bool IsExactCheck() const { return check_kind_ == TypeCheckKind::kExactCheck; }
5342
5343  DECLARE_INSTRUCTION(CheckCast);
5344
5345 private:
5346  const TypeCheckKind check_kind_;
5347  bool must_do_null_check_;
5348
5349  DISALLOW_COPY_AND_ASSIGN(HCheckCast);
5350};
5351
5352class HMemoryBarrier : public HTemplateInstruction<0> {
5353 public:
5354  explicit HMemoryBarrier(MemBarrierKind barrier_kind, uint32_t dex_pc = kNoDexPc)
5355      : HTemplateInstruction(
5356            SideEffects::AllWritesAndReads(), dex_pc),  // Assume write/read on all fields/arrays.
5357        barrier_kind_(barrier_kind) {}
5358
5359  MemBarrierKind GetBarrierKind() { return barrier_kind_; }
5360
5361  DECLARE_INSTRUCTION(MemoryBarrier);
5362
5363 private:
5364  const MemBarrierKind barrier_kind_;
5365
5366  DISALLOW_COPY_AND_ASSIGN(HMemoryBarrier);
5367};
5368
5369class HMonitorOperation : public HTemplateInstruction<1> {
5370 public:
5371  enum OperationKind {
5372    kEnter,
5373    kExit,
5374  };
5375
5376  HMonitorOperation(HInstruction* object, OperationKind kind, uint32_t dex_pc)
5377    : HTemplateInstruction(
5378          SideEffects::AllExceptGCDependency(), dex_pc),  // Assume write/read on all fields/arrays.
5379      kind_(kind) {
5380    SetRawInputAt(0, object);
5381  }
5382
5383  // Instruction may throw a Java exception, so we need an environment.
5384  bool NeedsEnvironment() const OVERRIDE { return CanThrow(); }
5385
5386  bool CanThrow() const OVERRIDE {
5387    // Verifier guarantees that monitor-exit cannot throw.
5388    // This is important because it allows the HGraphBuilder to remove
5389    // a dead throw-catch loop generated for `synchronized` blocks/methods.
5390    return IsEnter();
5391  }
5392
5393
5394  bool IsEnter() const { return kind_ == kEnter; }
5395
5396  DECLARE_INSTRUCTION(MonitorOperation);
5397
5398 private:
5399  const OperationKind kind_;
5400
5401 private:
5402  DISALLOW_COPY_AND_ASSIGN(HMonitorOperation);
5403};
5404
5405/**
5406 * A HInstruction used as a marker for the replacement of new + <init>
5407 * of a String to a call to a StringFactory. Only baseline will see
5408 * the node at code generation, where it will be be treated as null.
5409 * When compiling non-baseline, `HFakeString` instructions are being removed
5410 * in the instruction simplifier.
5411 */
5412class HFakeString : public HTemplateInstruction<0> {
5413 public:
5414  explicit HFakeString(uint32_t dex_pc = kNoDexPc)
5415      : HTemplateInstruction(SideEffects::None(), dex_pc) {}
5416
5417  Primitive::Type GetType() const OVERRIDE { return Primitive::kPrimNot; }
5418
5419  DECLARE_INSTRUCTION(FakeString);
5420
5421 private:
5422  DISALLOW_COPY_AND_ASSIGN(HFakeString);
5423};
5424
5425class MoveOperands : public ArenaObject<kArenaAllocMoveOperands> {
5426 public:
5427  MoveOperands(Location source,
5428               Location destination,
5429               Primitive::Type type,
5430               HInstruction* instruction)
5431      : source_(source), destination_(destination), type_(type), instruction_(instruction) {}
5432
5433  Location GetSource() const { return source_; }
5434  Location GetDestination() const { return destination_; }
5435
5436  void SetSource(Location value) { source_ = value; }
5437  void SetDestination(Location value) { destination_ = value; }
5438
5439  // The parallel move resolver marks moves as "in-progress" by clearing the
5440  // destination (but not the source).
5441  Location MarkPending() {
5442    DCHECK(!IsPending());
5443    Location dest = destination_;
5444    destination_ = Location::NoLocation();
5445    return dest;
5446  }
5447
5448  void ClearPending(Location dest) {
5449    DCHECK(IsPending());
5450    destination_ = dest;
5451  }
5452
5453  bool IsPending() const {
5454    DCHECK(!source_.IsInvalid() || destination_.IsInvalid());
5455    return destination_.IsInvalid() && !source_.IsInvalid();
5456  }
5457
5458  // True if this blocks a move from the given location.
5459  bool Blocks(Location loc) const {
5460    return !IsEliminated() && source_.OverlapsWith(loc);
5461  }
5462
5463  // A move is redundant if it's been eliminated, if its source and
5464  // destination are the same, or if its destination is unneeded.
5465  bool IsRedundant() const {
5466    return IsEliminated() || destination_.IsInvalid() || source_.Equals(destination_);
5467  }
5468
5469  // We clear both operands to indicate move that's been eliminated.
5470  void Eliminate() {
5471    source_ = destination_ = Location::NoLocation();
5472  }
5473
5474  bool IsEliminated() const {
5475    DCHECK(!source_.IsInvalid() || destination_.IsInvalid());
5476    return source_.IsInvalid();
5477  }
5478
5479  Primitive::Type GetType() const { return type_; }
5480
5481  bool Is64BitMove() const {
5482    return Primitive::Is64BitType(type_);
5483  }
5484
5485  HInstruction* GetInstruction() const { return instruction_; }
5486
5487 private:
5488  Location source_;
5489  Location destination_;
5490  // The type this move is for.
5491  Primitive::Type type_;
5492  // The instruction this move is assocatied with. Null when this move is
5493  // for moving an input in the expected locations of user (including a phi user).
5494  // This is only used in debug mode, to ensure we do not connect interval siblings
5495  // in the same parallel move.
5496  HInstruction* instruction_;
5497};
5498
5499static constexpr size_t kDefaultNumberOfMoves = 4;
5500
5501class HParallelMove : public HTemplateInstruction<0> {
5502 public:
5503  explicit HParallelMove(ArenaAllocator* arena, uint32_t dex_pc = kNoDexPc)
5504      : HTemplateInstruction(SideEffects::None(), dex_pc),
5505        moves_(arena->Adapter(kArenaAllocMoveOperands)) {
5506    moves_.reserve(kDefaultNumberOfMoves);
5507  }
5508
5509  void AddMove(Location source,
5510               Location destination,
5511               Primitive::Type type,
5512               HInstruction* instruction) {
5513    DCHECK(source.IsValid());
5514    DCHECK(destination.IsValid());
5515    if (kIsDebugBuild) {
5516      if (instruction != nullptr) {
5517        for (const MoveOperands& move : moves_) {
5518          if (move.GetInstruction() == instruction) {
5519            // Special case the situation where the move is for the spill slot
5520            // of the instruction.
5521            if ((GetPrevious() == instruction)
5522                || ((GetPrevious() == nullptr)
5523                    && instruction->IsPhi()
5524                    && instruction->GetBlock() == GetBlock())) {
5525              DCHECK_NE(destination.GetKind(), move.GetDestination().GetKind())
5526                  << "Doing parallel moves for the same instruction.";
5527            } else {
5528              DCHECK(false) << "Doing parallel moves for the same instruction.";
5529            }
5530          }
5531        }
5532      }
5533      for (const MoveOperands& move : moves_) {
5534        DCHECK(!destination.OverlapsWith(move.GetDestination()))
5535            << "Overlapped destination for two moves in a parallel move: "
5536            << move.GetSource() << " ==> " << move.GetDestination() << " and "
5537            << source << " ==> " << destination;
5538      }
5539    }
5540    moves_.emplace_back(source, destination, type, instruction);
5541  }
5542
5543  MoveOperands* MoveOperandsAt(size_t index) {
5544    return &moves_[index];
5545  }
5546
5547  size_t NumMoves() const { return moves_.size(); }
5548
5549  DECLARE_INSTRUCTION(ParallelMove);
5550
5551 private:
5552  ArenaVector<MoveOperands> moves_;
5553
5554  DISALLOW_COPY_AND_ASSIGN(HParallelMove);
5555};
5556
5557}  // namespace art
5558
5559#ifdef ART_ENABLE_CODEGEN_arm64
5560#include "nodes_arm64.h"
5561#endif
5562#ifdef ART_ENABLE_CODEGEN_x86
5563#include "nodes_x86.h"
5564#endif
5565
5566namespace art {
5567
5568class HGraphVisitor : public ValueObject {
5569 public:
5570  explicit HGraphVisitor(HGraph* graph) : graph_(graph) {}
5571  virtual ~HGraphVisitor() {}
5572
5573  virtual void VisitInstruction(HInstruction* instruction ATTRIBUTE_UNUSED) {}
5574  virtual void VisitBasicBlock(HBasicBlock* block);
5575
5576  // Visit the graph following basic block insertion order.
5577  void VisitInsertionOrder();
5578
5579  // Visit the graph following dominator tree reverse post-order.
5580  void VisitReversePostOrder();
5581
5582  HGraph* GetGraph() const { return graph_; }
5583
5584  // Visit functions for instruction classes.
5585#define DECLARE_VISIT_INSTRUCTION(name, super)                                        \
5586  virtual void Visit##name(H##name* instr) { VisitInstruction(instr); }
5587
5588  FOR_EACH_INSTRUCTION(DECLARE_VISIT_INSTRUCTION)
5589
5590#undef DECLARE_VISIT_INSTRUCTION
5591
5592 private:
5593  HGraph* const graph_;
5594
5595  DISALLOW_COPY_AND_ASSIGN(HGraphVisitor);
5596};
5597
5598class HGraphDelegateVisitor : public HGraphVisitor {
5599 public:
5600  explicit HGraphDelegateVisitor(HGraph* graph) : HGraphVisitor(graph) {}
5601  virtual ~HGraphDelegateVisitor() {}
5602
5603  // Visit functions that delegate to to super class.
5604#define DECLARE_VISIT_INSTRUCTION(name, super)                                        \
5605  void Visit##name(H##name* instr) OVERRIDE { Visit##super(instr); }
5606
5607  FOR_EACH_INSTRUCTION(DECLARE_VISIT_INSTRUCTION)
5608
5609#undef DECLARE_VISIT_INSTRUCTION
5610
5611 private:
5612  DISALLOW_COPY_AND_ASSIGN(HGraphDelegateVisitor);
5613};
5614
5615class HInsertionOrderIterator : public ValueObject {
5616 public:
5617  explicit HInsertionOrderIterator(const HGraph& graph) : graph_(graph), index_(0) {}
5618
5619  bool Done() const { return index_ == graph_.GetBlocks().size(); }
5620  HBasicBlock* Current() const { return graph_.GetBlocks()[index_]; }
5621  void Advance() { ++index_; }
5622
5623 private:
5624  const HGraph& graph_;
5625  size_t index_;
5626
5627  DISALLOW_COPY_AND_ASSIGN(HInsertionOrderIterator);
5628};
5629
5630class HReversePostOrderIterator : public ValueObject {
5631 public:
5632  explicit HReversePostOrderIterator(const HGraph& graph) : graph_(graph), index_(0) {
5633    // Check that reverse post order of the graph has been built.
5634    DCHECK(!graph.GetReversePostOrder().empty());
5635  }
5636
5637  bool Done() const { return index_ == graph_.GetReversePostOrder().size(); }
5638  HBasicBlock* Current() const { return graph_.GetReversePostOrder()[index_]; }
5639  void Advance() { ++index_; }
5640
5641 private:
5642  const HGraph& graph_;
5643  size_t index_;
5644
5645  DISALLOW_COPY_AND_ASSIGN(HReversePostOrderIterator);
5646};
5647
5648class HPostOrderIterator : public ValueObject {
5649 public:
5650  explicit HPostOrderIterator(const HGraph& graph)
5651      : graph_(graph), index_(graph_.GetReversePostOrder().size()) {
5652    // Check that reverse post order of the graph has been built.
5653    DCHECK(!graph.GetReversePostOrder().empty());
5654  }
5655
5656  bool Done() const { return index_ == 0; }
5657  HBasicBlock* Current() const { return graph_.GetReversePostOrder()[index_ - 1u]; }
5658  void Advance() { --index_; }
5659
5660 private:
5661  const HGraph& graph_;
5662  size_t index_;
5663
5664  DISALLOW_COPY_AND_ASSIGN(HPostOrderIterator);
5665};
5666
5667class HLinearPostOrderIterator : public ValueObject {
5668 public:
5669  explicit HLinearPostOrderIterator(const HGraph& graph)
5670      : order_(graph.GetLinearOrder()), index_(graph.GetLinearOrder().size()) {}
5671
5672  bool Done() const { return index_ == 0; }
5673
5674  HBasicBlock* Current() const { return order_[index_ - 1u]; }
5675
5676  void Advance() {
5677    --index_;
5678    DCHECK_GE(index_, 0U);
5679  }
5680
5681 private:
5682  const ArenaVector<HBasicBlock*>& order_;
5683  size_t index_;
5684
5685  DISALLOW_COPY_AND_ASSIGN(HLinearPostOrderIterator);
5686};
5687
5688class HLinearOrderIterator : public ValueObject {
5689 public:
5690  explicit HLinearOrderIterator(const HGraph& graph)
5691      : order_(graph.GetLinearOrder()), index_(0) {}
5692
5693  bool Done() const { return index_ == order_.size(); }
5694  HBasicBlock* Current() const { return order_[index_]; }
5695  void Advance() { ++index_; }
5696
5697 private:
5698  const ArenaVector<HBasicBlock*>& order_;
5699  size_t index_;
5700
5701  DISALLOW_COPY_AND_ASSIGN(HLinearOrderIterator);
5702};
5703
5704// Iterator over the blocks that art part of the loop. Includes blocks part
5705// of an inner loop. The order in which the blocks are iterated is on their
5706// block id.
5707class HBlocksInLoopIterator : public ValueObject {
5708 public:
5709  explicit HBlocksInLoopIterator(const HLoopInformation& info)
5710      : blocks_in_loop_(info.GetBlocks()),
5711        blocks_(info.GetHeader()->GetGraph()->GetBlocks()),
5712        index_(0) {
5713    if (!blocks_in_loop_.IsBitSet(index_)) {
5714      Advance();
5715    }
5716  }
5717
5718  bool Done() const { return index_ == blocks_.size(); }
5719  HBasicBlock* Current() const { return blocks_[index_]; }
5720  void Advance() {
5721    ++index_;
5722    for (size_t e = blocks_.size(); index_ < e; ++index_) {
5723      if (blocks_in_loop_.IsBitSet(index_)) {
5724        break;
5725      }
5726    }
5727  }
5728
5729 private:
5730  const BitVector& blocks_in_loop_;
5731  const ArenaVector<HBasicBlock*>& blocks_;
5732  size_t index_;
5733
5734  DISALLOW_COPY_AND_ASSIGN(HBlocksInLoopIterator);
5735};
5736
5737// Iterator over the blocks that art part of the loop. Includes blocks part
5738// of an inner loop. The order in which the blocks are iterated is reverse
5739// post order.
5740class HBlocksInLoopReversePostOrderIterator : public ValueObject {
5741 public:
5742  explicit HBlocksInLoopReversePostOrderIterator(const HLoopInformation& info)
5743      : blocks_in_loop_(info.GetBlocks()),
5744        blocks_(info.GetHeader()->GetGraph()->GetReversePostOrder()),
5745        index_(0) {
5746    if (!blocks_in_loop_.IsBitSet(blocks_[index_]->GetBlockId())) {
5747      Advance();
5748    }
5749  }
5750
5751  bool Done() const { return index_ == blocks_.size(); }
5752  HBasicBlock* Current() const { return blocks_[index_]; }
5753  void Advance() {
5754    ++index_;
5755    for (size_t e = blocks_.size(); index_ < e; ++index_) {
5756      if (blocks_in_loop_.IsBitSet(blocks_[index_]->GetBlockId())) {
5757        break;
5758      }
5759    }
5760  }
5761
5762 private:
5763  const BitVector& blocks_in_loop_;
5764  const ArenaVector<HBasicBlock*>& blocks_;
5765  size_t index_;
5766
5767  DISALLOW_COPY_AND_ASSIGN(HBlocksInLoopReversePostOrderIterator);
5768};
5769
5770inline int64_t Int64FromConstant(HConstant* constant) {
5771  DCHECK(constant->IsIntConstant() || constant->IsLongConstant());
5772  return constant->IsIntConstant() ? constant->AsIntConstant()->GetValue()
5773                                   : constant->AsLongConstant()->GetValue();
5774}
5775
5776inline bool IsSameDexFile(const DexFile& lhs, const DexFile& rhs) {
5777  // For the purposes of the compiler, the dex files must actually be the same object
5778  // if we want to safely treat them as the same. This is especially important for JIT
5779  // as custom class loaders can open the same underlying file (or memory) multiple
5780  // times and provide different class resolution but no two class loaders should ever
5781  // use the same DexFile object - doing so is an unsupported hack that can lead to
5782  // all sorts of weird failures.
5783  return &lhs == &rhs;
5784}
5785
5786}  // namespace art
5787
5788#endif  // ART_COMPILER_OPTIMIZING_NODES_H_
5789