nodes.h revision af88835231c2508509eb19aa2d21b92879351962
1/*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#ifndef ART_COMPILER_OPTIMIZING_NODES_H_
18#define ART_COMPILER_OPTIMIZING_NODES_H_
19
20#include "base/arena_containers.h"
21#include "base/arena_object.h"
22#include "entrypoints/quick/quick_entrypoints_enum.h"
23#include "handle.h"
24#include "handle_scope.h"
25#include "invoke_type.h"
26#include "locations.h"
27#include "mirror/class.h"
28#include "offsets.h"
29#include "primitive.h"
30#include "utils/arena_bit_vector.h"
31#include "utils/growable_array.h"
32
33namespace art {
34
35class GraphChecker;
36class HBasicBlock;
37class HDoubleConstant;
38class HEnvironment;
39class HFloatConstant;
40class HGraphVisitor;
41class HInstruction;
42class HIntConstant;
43class HInvoke;
44class HLongConstant;
45class HNullConstant;
46class HPhi;
47class HSuspendCheck;
48class LiveInterval;
49class LocationSummary;
50class SsaBuilder;
51
52static const int kDefaultNumberOfBlocks = 8;
53static const int kDefaultNumberOfSuccessors = 2;
54static const int kDefaultNumberOfPredecessors = 2;
55static const int kDefaultNumberOfDominatedBlocks = 1;
56static const int kDefaultNumberOfBackEdges = 1;
57
58static constexpr uint32_t kMaxIntShiftValue = 0x1f;
59static constexpr uint64_t kMaxLongShiftValue = 0x3f;
60
61enum IfCondition {
62  kCondEQ,
63  kCondNE,
64  kCondLT,
65  kCondLE,
66  kCondGT,
67  kCondGE,
68};
69
70class HInstructionList {
71 public:
72  HInstructionList() : first_instruction_(nullptr), last_instruction_(nullptr) {}
73
74  void AddInstruction(HInstruction* instruction);
75  void RemoveInstruction(HInstruction* instruction);
76
77  // Return true if this list contains `instruction`.
78  bool Contains(HInstruction* instruction) const;
79
80  // Return true if `instruction1` is found before `instruction2` in
81  // this instruction list and false otherwise.  Abort if none
82  // of these instructions is found.
83  bool FoundBefore(const HInstruction* instruction1,
84                   const HInstruction* instruction2) const;
85
86  bool IsEmpty() const { return first_instruction_ == nullptr; }
87  void Clear() { first_instruction_ = last_instruction_ = nullptr; }
88
89  // Update the block of all instructions to be `block`.
90  void SetBlockOfInstructions(HBasicBlock* block) const;
91
92  void AddAfter(HInstruction* cursor, const HInstructionList& instruction_list);
93  void Add(const HInstructionList& instruction_list);
94
95 private:
96  HInstruction* first_instruction_;
97  HInstruction* last_instruction_;
98
99  friend class HBasicBlock;
100  friend class HGraph;
101  friend class HInstruction;
102  friend class HInstructionIterator;
103  friend class HBackwardInstructionIterator;
104
105  DISALLOW_COPY_AND_ASSIGN(HInstructionList);
106};
107
108// Control-flow graph of a method. Contains a list of basic blocks.
109class HGraph : public ArenaObject<kArenaAllocMisc> {
110 public:
111  HGraph(ArenaAllocator* arena, bool debuggable = false, int start_instruction_id = 0)
112      : arena_(arena),
113        blocks_(arena, kDefaultNumberOfBlocks),
114        reverse_post_order_(arena, kDefaultNumberOfBlocks),
115        linear_order_(arena, kDefaultNumberOfBlocks),
116        entry_block_(nullptr),
117        exit_block_(nullptr),
118        maximum_number_of_out_vregs_(0),
119        number_of_vregs_(0),
120        number_of_in_vregs_(0),
121        temporaries_vreg_slots_(0),
122        has_array_accesses_(false),
123        debuggable_(debuggable),
124        current_instruction_id_(start_instruction_id),
125        cached_null_constant_(nullptr),
126        cached_int_constants_(std::less<int32_t>(), arena->Adapter()),
127        cached_long_constants_(std::less<int64_t>(), arena->Adapter()) {}
128
129  ArenaAllocator* GetArena() const { return arena_; }
130  const GrowableArray<HBasicBlock*>& GetBlocks() const { return blocks_; }
131  HBasicBlock* GetBlock(size_t id) const { return blocks_.Get(id); }
132
133  HBasicBlock* GetEntryBlock() const { return entry_block_; }
134  HBasicBlock* GetExitBlock() const { return exit_block_; }
135
136  void SetEntryBlock(HBasicBlock* block) { entry_block_ = block; }
137  void SetExitBlock(HBasicBlock* block) { exit_block_ = block; }
138
139  void AddBlock(HBasicBlock* block);
140
141  // Try building the SSA form of this graph, with dominance computation and loop
142  // recognition. Returns whether it was successful in doing all these steps.
143  bool TryBuildingSsa() {
144    BuildDominatorTree();
145    // The SSA builder requires loops to all be natural. Specifically, the dead phi
146    // elimination phase checks the consistency of the graph when doing a post-order
147    // visit for eliminating dead phis: a dead phi can only have loop header phi
148    // users remaining when being visited.
149    if (!AnalyzeNaturalLoops()) return false;
150    TransformToSsa();
151    return true;
152  }
153
154  void BuildDominatorTree();
155  void TransformToSsa();
156  void SimplifyCFG();
157
158  // Analyze all natural loops in this graph. Returns false if one
159  // loop is not natural, that is the header does not dominate the
160  // back edge.
161  bool AnalyzeNaturalLoops() const;
162
163  // Inline this graph in `outer_graph`, replacing the given `invoke` instruction.
164  void InlineInto(HGraph* outer_graph, HInvoke* invoke);
165
166  void MergeEmptyBranches(HBasicBlock* start_block, HBasicBlock* end_block);
167
168  void SplitCriticalEdge(HBasicBlock* block, HBasicBlock* successor);
169  void SimplifyLoop(HBasicBlock* header);
170
171  int32_t GetNextInstructionId() {
172    DCHECK_NE(current_instruction_id_, INT32_MAX);
173    return current_instruction_id_++;
174  }
175
176  int32_t GetCurrentInstructionId() const {
177    return current_instruction_id_;
178  }
179
180  void SetCurrentInstructionId(int32_t id) {
181    current_instruction_id_ = id;
182  }
183
184  uint16_t GetMaximumNumberOfOutVRegs() const {
185    return maximum_number_of_out_vregs_;
186  }
187
188  void SetMaximumNumberOfOutVRegs(uint16_t new_value) {
189    maximum_number_of_out_vregs_ = new_value;
190  }
191
192  void UpdateTemporariesVRegSlots(size_t slots) {
193    temporaries_vreg_slots_ = std::max(slots, temporaries_vreg_slots_);
194  }
195
196  size_t GetTemporariesVRegSlots() const {
197    return temporaries_vreg_slots_;
198  }
199
200  void SetNumberOfVRegs(uint16_t number_of_vregs) {
201    number_of_vregs_ = number_of_vregs;
202  }
203
204  uint16_t GetNumberOfVRegs() const {
205    return number_of_vregs_;
206  }
207
208  void SetNumberOfInVRegs(uint16_t value) {
209    number_of_in_vregs_ = value;
210  }
211
212  uint16_t GetNumberOfLocalVRegs() const {
213    return number_of_vregs_ - number_of_in_vregs_;
214  }
215
216  const GrowableArray<HBasicBlock*>& GetReversePostOrder() const {
217    return reverse_post_order_;
218  }
219
220  const GrowableArray<HBasicBlock*>& GetLinearOrder() const {
221    return linear_order_;
222  }
223
224  bool HasArrayAccesses() const {
225    return has_array_accesses_;
226  }
227
228  void SetHasArrayAccesses(bool value) {
229    has_array_accesses_ = value;
230  }
231
232  bool IsDebuggable() const { return debuggable_; }
233
234  // Returns a constant of the given type and value. If it does not exist
235  // already, it is created and inserted into the graph. Only integral types
236  // are currently supported.
237  HConstant* GetConstant(Primitive::Type type, int64_t value);
238  HNullConstant* GetNullConstant();
239  HIntConstant* GetIntConstant(int32_t value) {
240    return CreateConstant(value, &cached_int_constants_);
241  }
242  HLongConstant* GetLongConstant(int64_t value) {
243    return CreateConstant(value, &cached_long_constants_);
244  }
245
246 private:
247  HBasicBlock* FindCommonDominator(HBasicBlock* first, HBasicBlock* second) const;
248  void VisitBlockForDominatorTree(HBasicBlock* block,
249                                  HBasicBlock* predecessor,
250                                  GrowableArray<size_t>* visits);
251  void FindBackEdges(ArenaBitVector* visited);
252  void VisitBlockForBackEdges(HBasicBlock* block,
253                              ArenaBitVector* visited,
254                              ArenaBitVector* visiting);
255  void RemoveInstructionsAsUsersFromDeadBlocks(const ArenaBitVector& visited) const;
256  void RemoveDeadBlocks(const ArenaBitVector& visited);
257
258  template <class InstType, typename ValueType>
259  InstType* CreateConstant(ValueType value, ArenaSafeMap<ValueType, InstType*>* cache);
260  void InsertConstant(HConstant* instruction);
261
262  ArenaAllocator* const arena_;
263
264  // List of blocks in insertion order.
265  GrowableArray<HBasicBlock*> blocks_;
266
267  // List of blocks to perform a reverse post order tree traversal.
268  GrowableArray<HBasicBlock*> reverse_post_order_;
269
270  // List of blocks to perform a linear order tree traversal.
271  GrowableArray<HBasicBlock*> linear_order_;
272
273  HBasicBlock* entry_block_;
274  HBasicBlock* exit_block_;
275
276  // The maximum number of virtual registers arguments passed to a HInvoke in this graph.
277  uint16_t maximum_number_of_out_vregs_;
278
279  // The number of virtual registers in this method. Contains the parameters.
280  uint16_t number_of_vregs_;
281
282  // The number of virtual registers used by parameters of this method.
283  uint16_t number_of_in_vregs_;
284
285  // Number of vreg size slots that the temporaries use (used in baseline compiler).
286  size_t temporaries_vreg_slots_;
287
288  // Has array accesses. We can totally skip BCE if it's false.
289  bool has_array_accesses_;
290
291  // Indicates whether the graph should be compiled in a way that
292  // ensures full debuggability. If false, we can apply more
293  // aggressive optimizations that may limit the level of debugging.
294  const bool debuggable_;
295
296  // The current id to assign to a newly added instruction. See HInstruction.id_.
297  int32_t current_instruction_id_;
298
299  // Cached common constants often needed by optimization passes.
300  HNullConstant* cached_null_constant_;
301  ArenaSafeMap<int32_t, HIntConstant*> cached_int_constants_;
302  ArenaSafeMap<int64_t, HLongConstant*> cached_long_constants_;
303
304  friend class SsaLivenessAnalysis;  // For the linear order.
305  ART_FRIEND_TEST(GraphTest, IfSuccessorSimpleJoinBlock1);
306  DISALLOW_COPY_AND_ASSIGN(HGraph);
307};
308
309class HLoopInformation : public ArenaObject<kArenaAllocMisc> {
310 public:
311  HLoopInformation(HBasicBlock* header, HGraph* graph)
312      : header_(header),
313        suspend_check_(nullptr),
314        back_edges_(graph->GetArena(), kDefaultNumberOfBackEdges),
315        // Make bit vector growable, as the number of blocks may change.
316        blocks_(graph->GetArena(), graph->GetBlocks().Size(), true) {}
317
318  HBasicBlock* GetHeader() const {
319    return header_;
320  }
321
322  void SetHeader(HBasicBlock* block) {
323    header_ = block;
324  }
325
326  HSuspendCheck* GetSuspendCheck() const { return suspend_check_; }
327  void SetSuspendCheck(HSuspendCheck* check) { suspend_check_ = check; }
328  bool HasSuspendCheck() const { return suspend_check_ != nullptr; }
329
330  void AddBackEdge(HBasicBlock* back_edge) {
331    back_edges_.Add(back_edge);
332  }
333
334  void RemoveBackEdge(HBasicBlock* back_edge) {
335    back_edges_.Delete(back_edge);
336  }
337
338  bool IsBackEdge(const HBasicBlock& block) const {
339    for (size_t i = 0, e = back_edges_.Size(); i < e; ++i) {
340      if (back_edges_.Get(i) == &block) return true;
341    }
342    return false;
343  }
344
345  size_t NumberOfBackEdges() const {
346    return back_edges_.Size();
347  }
348
349  HBasicBlock* GetPreHeader() const;
350
351  const GrowableArray<HBasicBlock*>& GetBackEdges() const {
352    return back_edges_;
353  }
354
355  void ClearBackEdges() {
356    back_edges_.Reset();
357  }
358
359  // Find blocks that are part of this loop. Returns whether the loop is a natural loop,
360  // that is the header dominates the back edge.
361  bool Populate();
362
363  // Returns whether this loop information contains `block`.
364  // Note that this loop information *must* be populated before entering this function.
365  bool Contains(const HBasicBlock& block) const;
366
367  // Returns whether this loop information is an inner loop of `other`.
368  // Note that `other` *must* be populated before entering this function.
369  bool IsIn(const HLoopInformation& other) const;
370
371  const ArenaBitVector& GetBlocks() const { return blocks_; }
372
373  void Add(HBasicBlock* block);
374  void Remove(HBasicBlock* block);
375
376 private:
377  // Internal recursive implementation of `Populate`.
378  void PopulateRecursive(HBasicBlock* block);
379
380  HBasicBlock* header_;
381  HSuspendCheck* suspend_check_;
382  GrowableArray<HBasicBlock*> back_edges_;
383  ArenaBitVector blocks_;
384
385  DISALLOW_COPY_AND_ASSIGN(HLoopInformation);
386};
387
388static constexpr size_t kNoLifetime = -1;
389static constexpr uint32_t kNoDexPc = -1;
390
391// A block in a method. Contains the list of instructions represented
392// as a double linked list. Each block knows its predecessors and
393// successors.
394
395class HBasicBlock : public ArenaObject<kArenaAllocMisc> {
396 public:
397  explicit HBasicBlock(HGraph* graph, uint32_t dex_pc = kNoDexPc)
398      : graph_(graph),
399        predecessors_(graph->GetArena(), kDefaultNumberOfPredecessors),
400        successors_(graph->GetArena(), kDefaultNumberOfSuccessors),
401        loop_information_(nullptr),
402        dominator_(nullptr),
403        dominated_blocks_(graph->GetArena(), kDefaultNumberOfDominatedBlocks),
404        block_id_(-1),
405        dex_pc_(dex_pc),
406        lifetime_start_(kNoLifetime),
407        lifetime_end_(kNoLifetime),
408        is_catch_block_(false) {}
409
410  const GrowableArray<HBasicBlock*>& GetPredecessors() const {
411    return predecessors_;
412  }
413
414  const GrowableArray<HBasicBlock*>& GetSuccessors() const {
415    return successors_;
416  }
417
418  const GrowableArray<HBasicBlock*>& GetDominatedBlocks() const {
419    return dominated_blocks_;
420  }
421
422  bool IsEntryBlock() const {
423    return graph_->GetEntryBlock() == this;
424  }
425
426  bool IsExitBlock() const {
427    return graph_->GetExitBlock() == this;
428  }
429
430  bool IsSingleGoto() const;
431
432  void AddBackEdge(HBasicBlock* back_edge) {
433    if (loop_information_ == nullptr) {
434      loop_information_ = new (graph_->GetArena()) HLoopInformation(this, graph_);
435    }
436    DCHECK_EQ(loop_information_->GetHeader(), this);
437    loop_information_->AddBackEdge(back_edge);
438  }
439
440  HGraph* GetGraph() const { return graph_; }
441  void SetGraph(HGraph* graph) { graph_ = graph; }
442
443  int GetBlockId() const { return block_id_; }
444  void SetBlockId(int id) { block_id_ = id; }
445
446  HBasicBlock* GetDominator() const { return dominator_; }
447  void SetDominator(HBasicBlock* dominator) { dominator_ = dominator; }
448  void AddDominatedBlock(HBasicBlock* block) { dominated_blocks_.Add(block); }
449  void ReplaceDominatedBlock(HBasicBlock* existing, HBasicBlock* new_block) {
450    for (size_t i = 0, e = dominated_blocks_.Size(); i < e; ++i) {
451      if (dominated_blocks_.Get(i) == existing) {
452        dominated_blocks_.Put(i, new_block);
453        return;
454      }
455    }
456    LOG(FATAL) << "Unreachable";
457    UNREACHABLE();
458  }
459
460  int NumberOfBackEdges() const {
461    return loop_information_ == nullptr
462        ? 0
463        : loop_information_->NumberOfBackEdges();
464  }
465
466  HInstruction* GetFirstInstruction() const { return instructions_.first_instruction_; }
467  HInstruction* GetLastInstruction() const { return instructions_.last_instruction_; }
468  const HInstructionList& GetInstructions() const { return instructions_; }
469  const HInstructionList& GetPhis() const { return phis_; }
470  HInstruction* GetFirstPhi() const { return phis_.first_instruction_; }
471
472  void AddSuccessor(HBasicBlock* block) {
473    successors_.Add(block);
474    block->predecessors_.Add(this);
475  }
476
477  void ReplaceSuccessor(HBasicBlock* existing, HBasicBlock* new_block) {
478    size_t successor_index = GetSuccessorIndexOf(existing);
479    DCHECK_NE(successor_index, static_cast<size_t>(-1));
480    existing->RemovePredecessor(this);
481    new_block->predecessors_.Add(this);
482    successors_.Put(successor_index, new_block);
483  }
484
485  void ReplacePredecessor(HBasicBlock* existing, HBasicBlock* new_block) {
486    size_t predecessor_index = GetPredecessorIndexOf(existing);
487    DCHECK_NE(predecessor_index, static_cast<size_t>(-1));
488    existing->RemoveSuccessor(this);
489    new_block->successors_.Add(this);
490    predecessors_.Put(predecessor_index, new_block);
491  }
492
493  void RemovePredecessor(HBasicBlock* block) {
494    predecessors_.Delete(block);
495  }
496
497  void RemoveSuccessor(HBasicBlock* block) {
498    successors_.Delete(block);
499  }
500
501  void ClearAllPredecessors() {
502    predecessors_.Reset();
503  }
504
505  void AddPredecessor(HBasicBlock* block) {
506    predecessors_.Add(block);
507    block->successors_.Add(this);
508  }
509
510  void SwapPredecessors() {
511    DCHECK_EQ(predecessors_.Size(), 2u);
512    HBasicBlock* temp = predecessors_.Get(0);
513    predecessors_.Put(0, predecessors_.Get(1));
514    predecessors_.Put(1, temp);
515  }
516
517  size_t GetPredecessorIndexOf(HBasicBlock* predecessor) {
518    for (size_t i = 0, e = predecessors_.Size(); i < e; ++i) {
519      if (predecessors_.Get(i) == predecessor) {
520        return i;
521      }
522    }
523    return -1;
524  }
525
526  size_t GetSuccessorIndexOf(HBasicBlock* successor) {
527    for (size_t i = 0, e = successors_.Size(); i < e; ++i) {
528      if (successors_.Get(i) == successor) {
529        return i;
530      }
531    }
532    return -1;
533  }
534
535  // Split the block into two blocks just after `cursor`. Returns the newly
536  // created block. Note that this method just updates raw block information,
537  // like predecessors, successors, dominators, and instruction list. It does not
538  // update the graph, reverse post order, loop information, nor make sure the
539  // blocks are consistent (for example ending with a control flow instruction).
540  HBasicBlock* SplitAfter(HInstruction* cursor);
541
542  // Merge `other` at the end of `this`. Successors and dominated blocks of
543  // `other` are changed to be successors and dominated blocks of `this`. Note
544  // that this method does not update the graph, reverse post order, loop
545  // information, nor make sure the blocks are consistent (for example ending
546  // with a control flow instruction).
547  void MergeWith(HBasicBlock* other);
548
549  // Replace `this` with `other`. Predecessors, successors, and dominated blocks
550  // of `this` are moved to `other`.
551  // Note that this method does not update the graph, reverse post order, loop
552  // information, nor make sure the blocks are consistent (for example ending
553  // with a control flow instruction).
554  void ReplaceWith(HBasicBlock* other);
555
556  // Disconnects `this` from all its predecessors, successors and the dominator.
557  // It assumes that `this` does not dominate any blocks.
558  // Note that this method does not update the graph, reverse post order, loop
559  // information, nor make sure the blocks are consistent (for example ending
560  // with a control flow instruction).
561  void DisconnectFromAll();
562
563  void AddInstruction(HInstruction* instruction);
564  void InsertInstructionBefore(HInstruction* instruction, HInstruction* cursor);
565  // Replace instruction `initial` with `replacement` within this block.
566  void ReplaceAndRemoveInstructionWith(HInstruction* initial,
567                                       HInstruction* replacement);
568  void AddPhi(HPhi* phi);
569  void InsertPhiAfter(HPhi* instruction, HPhi* cursor);
570  // RemoveInstruction and RemovePhi delete a given instruction from the respective
571  // instruction list. With 'ensure_safety' set to true, it verifies that the
572  // instruction is not in use and removes it from the use lists of its inputs.
573  void RemoveInstruction(HInstruction* instruction, bool ensure_safety = true);
574  void RemovePhi(HPhi* phi, bool ensure_safety = true);
575
576  bool IsLoopHeader() const {
577    return (loop_information_ != nullptr) && (loop_information_->GetHeader() == this);
578  }
579
580  bool IsLoopPreHeaderFirstPredecessor() const {
581    DCHECK(IsLoopHeader());
582    DCHECK(!GetPredecessors().IsEmpty());
583    return GetPredecessors().Get(0) == GetLoopInformation()->GetPreHeader();
584  }
585
586  HLoopInformation* GetLoopInformation() const {
587    return loop_information_;
588  }
589
590  // Set the loop_information_ on this block. Overrides the current
591  // loop_information if it is an outer loop of the passed loop information.
592  // Note that this method is called while creating the loop information.
593  void SetInLoop(HLoopInformation* info) {
594    if (IsLoopHeader()) {
595      // Nothing to do. This just means `info` is an outer loop.
596    } else if (loop_information_ == nullptr) {
597      loop_information_ = info;
598    } else if (loop_information_->Contains(*info->GetHeader())) {
599      // Block is currently part of an outer loop. Make it part of this inner loop.
600      // Note that a non loop header having a loop information means this loop information
601      // has already been populated
602      loop_information_ = info;
603    } else {
604      // Block is part of an inner loop. Do not update the loop information.
605      // Note that we cannot do the check `info->Contains(loop_information_)->GetHeader()`
606      // at this point, because this method is being called while populating `info`.
607    }
608  }
609
610  // Raw update of the loop information.
611  void SetLoopInformation(HLoopInformation* info) {
612    loop_information_ = info;
613  }
614
615  bool IsInLoop() const { return loop_information_ != nullptr; }
616
617  // Returns wheter this block dominates the blocked passed as parameter.
618  bool Dominates(HBasicBlock* block) const;
619
620  size_t GetLifetimeStart() const { return lifetime_start_; }
621  size_t GetLifetimeEnd() const { return lifetime_end_; }
622
623  void SetLifetimeStart(size_t start) { lifetime_start_ = start; }
624  void SetLifetimeEnd(size_t end) { lifetime_end_ = end; }
625
626  uint32_t GetDexPc() const { return dex_pc_; }
627
628  bool IsCatchBlock() const { return is_catch_block_; }
629  void SetIsCatchBlock() { is_catch_block_ = true; }
630
631  bool EndsWithControlFlowInstruction() const;
632  bool EndsWithIf() const;
633  bool HasSinglePhi() const;
634
635 private:
636  HGraph* graph_;
637  GrowableArray<HBasicBlock*> predecessors_;
638  GrowableArray<HBasicBlock*> successors_;
639  HInstructionList instructions_;
640  HInstructionList phis_;
641  HLoopInformation* loop_information_;
642  HBasicBlock* dominator_;
643  GrowableArray<HBasicBlock*> dominated_blocks_;
644  int block_id_;
645  // The dex program counter of the first instruction of this block.
646  const uint32_t dex_pc_;
647  size_t lifetime_start_;
648  size_t lifetime_end_;
649  bool is_catch_block_;
650
651  friend class HGraph;
652  friend class HInstruction;
653
654  DISALLOW_COPY_AND_ASSIGN(HBasicBlock);
655};
656
657// Iterates over the LoopInformation of all loops which contain 'block'
658// from the innermost to the outermost.
659class HLoopInformationOutwardIterator : public ValueObject {
660 public:
661  explicit HLoopInformationOutwardIterator(const HBasicBlock& block)
662      : current_(block.GetLoopInformation()) {}
663
664  bool Done() const { return current_ == nullptr; }
665
666  void Advance() {
667    DCHECK(!Done());
668    current_ = current_->GetHeader()->GetDominator()->GetLoopInformation();
669  }
670
671  HLoopInformation* Current() const {
672    DCHECK(!Done());
673    return current_;
674  }
675
676 private:
677  HLoopInformation* current_;
678
679  DISALLOW_COPY_AND_ASSIGN(HLoopInformationOutwardIterator);
680};
681
682#define FOR_EACH_CONCRETE_INSTRUCTION(M)                                \
683  M(Add, BinaryOperation)                                               \
684  M(And, BinaryOperation)                                               \
685  M(ArrayGet, Instruction)                                              \
686  M(ArrayLength, Instruction)                                           \
687  M(ArraySet, Instruction)                                              \
688  M(BooleanNot, UnaryOperation)                                         \
689  M(BoundsCheck, Instruction)                                           \
690  M(BoundType, Instruction)                                             \
691  M(CheckCast, Instruction)                                             \
692  M(ClinitCheck, Instruction)                                           \
693  M(Compare, BinaryOperation)                                           \
694  M(Condition, BinaryOperation)                                         \
695  M(Deoptimize, Instruction)                                            \
696  M(Div, BinaryOperation)                                               \
697  M(DivZeroCheck, Instruction)                                          \
698  M(DoubleConstant, Constant)                                           \
699  M(Equal, Condition)                                                   \
700  M(Exit, Instruction)                                                  \
701  M(FloatConstant, Constant)                                            \
702  M(Goto, Instruction)                                                  \
703  M(GreaterThan, Condition)                                             \
704  M(GreaterThanOrEqual, Condition)                                      \
705  M(If, Instruction)                                                    \
706  M(InstanceFieldGet, Instruction)                                      \
707  M(InstanceFieldSet, Instruction)                                      \
708  M(InstanceOf, Instruction)                                            \
709  M(IntConstant, Constant)                                              \
710  M(InvokeInterface, Invoke)                                            \
711  M(InvokeStaticOrDirect, Invoke)                                       \
712  M(InvokeVirtual, Invoke)                                              \
713  M(LessThan, Condition)                                                \
714  M(LessThanOrEqual, Condition)                                         \
715  M(LoadClass, Instruction)                                             \
716  M(LoadException, Instruction)                                         \
717  M(LoadLocal, Instruction)                                             \
718  M(LoadString, Instruction)                                            \
719  M(Local, Instruction)                                                 \
720  M(LongConstant, Constant)                                             \
721  M(MonitorOperation, Instruction)                                      \
722  M(Mul, BinaryOperation)                                               \
723  M(Neg, UnaryOperation)                                                \
724  M(NewArray, Instruction)                                              \
725  M(NewInstance, Instruction)                                           \
726  M(Not, UnaryOperation)                                                \
727  M(NotEqual, Condition)                                                \
728  M(NullConstant, Instruction)                                          \
729  M(NullCheck, Instruction)                                             \
730  M(Or, BinaryOperation)                                                \
731  M(ParallelMove, Instruction)                                          \
732  M(ParameterValue, Instruction)                                        \
733  M(Phi, Instruction)                                                   \
734  M(Rem, BinaryOperation)                                               \
735  M(Return, Instruction)                                                \
736  M(ReturnVoid, Instruction)                                            \
737  M(Shl, BinaryOperation)                                               \
738  M(Shr, BinaryOperation)                                               \
739  M(StaticFieldGet, Instruction)                                        \
740  M(StaticFieldSet, Instruction)                                        \
741  M(StoreLocal, Instruction)                                            \
742  M(Sub, BinaryOperation)                                               \
743  M(SuspendCheck, Instruction)                                          \
744  M(Temporary, Instruction)                                             \
745  M(Throw, Instruction)                                                 \
746  M(TypeConversion, Instruction)                                        \
747  M(UShr, BinaryOperation)                                              \
748  M(Xor, BinaryOperation)                                               \
749
750#define FOR_EACH_INSTRUCTION(M)                                         \
751  FOR_EACH_CONCRETE_INSTRUCTION(M)                                      \
752  M(Constant, Instruction)                                              \
753  M(UnaryOperation, Instruction)                                        \
754  M(BinaryOperation, Instruction)                                       \
755  M(Invoke, Instruction)
756
757#define FORWARD_DECLARATION(type, super) class H##type;
758FOR_EACH_INSTRUCTION(FORWARD_DECLARATION)
759#undef FORWARD_DECLARATION
760
761#define DECLARE_INSTRUCTION(type)                                       \
762  InstructionKind GetKind() const OVERRIDE { return k##type; }          \
763  const char* DebugName() const OVERRIDE { return #type; }              \
764  const H##type* As##type() const OVERRIDE { return this; }             \
765  H##type* As##type() OVERRIDE { return this; }                         \
766  bool InstructionTypeEquals(HInstruction* other) const OVERRIDE {      \
767    return other->Is##type();                                           \
768  }                                                                     \
769  void Accept(HGraphVisitor* visitor) OVERRIDE
770
771template <typename T> class HUseList;
772
773template <typename T>
774class HUseListNode : public ArenaObject<kArenaAllocMisc> {
775 public:
776  HUseListNode* GetPrevious() const { return prev_; }
777  HUseListNode* GetNext() const { return next_; }
778  T GetUser() const { return user_; }
779  size_t GetIndex() const { return index_; }
780
781 private:
782  HUseListNode(T user, size_t index)
783      : user_(user), index_(index), prev_(nullptr), next_(nullptr) {}
784
785  T const user_;
786  const size_t index_;
787  HUseListNode<T>* prev_;
788  HUseListNode<T>* next_;
789
790  friend class HUseList<T>;
791
792  DISALLOW_COPY_AND_ASSIGN(HUseListNode);
793};
794
795template <typename T>
796class HUseList : public ValueObject {
797 public:
798  HUseList() : first_(nullptr) {}
799
800  void Clear() {
801    first_ = nullptr;
802  }
803
804  // Adds a new entry at the beginning of the use list and returns
805  // the newly created node.
806  HUseListNode<T>* AddUse(T user, size_t index, ArenaAllocator* arena) {
807    HUseListNode<T>* new_node = new (arena) HUseListNode<T>(user, index);
808    if (IsEmpty()) {
809      first_ = new_node;
810    } else {
811      first_->prev_ = new_node;
812      new_node->next_ = first_;
813      first_ = new_node;
814    }
815    return new_node;
816  }
817
818  HUseListNode<T>* GetFirst() const {
819    return first_;
820  }
821
822  void Remove(HUseListNode<T>* node) {
823    DCHECK(node != nullptr);
824    DCHECK(Contains(node));
825
826    if (node->prev_ != nullptr) {
827      node->prev_->next_ = node->next_;
828    }
829    if (node->next_ != nullptr) {
830      node->next_->prev_ = node->prev_;
831    }
832    if (node == first_) {
833      first_ = node->next_;
834    }
835  }
836
837  bool Contains(const HUseListNode<T>* node) const {
838    if (node == nullptr) {
839      return false;
840    }
841    for (HUseListNode<T>* current = first_; current != nullptr; current = current->GetNext()) {
842      if (current == node) {
843        return true;
844      }
845    }
846    return false;
847  }
848
849  bool IsEmpty() const {
850    return first_ == nullptr;
851  }
852
853  bool HasOnlyOneUse() const {
854    return first_ != nullptr && first_->next_ == nullptr;
855  }
856
857 private:
858  HUseListNode<T>* first_;
859};
860
861template<typename T>
862class HUseIterator : public ValueObject {
863 public:
864  explicit HUseIterator(const HUseList<T>& uses) : current_(uses.GetFirst()) {}
865
866  bool Done() const { return current_ == nullptr; }
867
868  void Advance() {
869    DCHECK(!Done());
870    current_ = current_->GetNext();
871  }
872
873  HUseListNode<T>* Current() const {
874    DCHECK(!Done());
875    return current_;
876  }
877
878 private:
879  HUseListNode<T>* current_;
880
881  friend class HValue;
882};
883
884// This class is used by HEnvironment and HInstruction classes to record the
885// instructions they use and pointers to the corresponding HUseListNodes kept
886// by the used instructions.
887template <typename T>
888class HUserRecord : public ValueObject {
889 public:
890  HUserRecord() : instruction_(nullptr), use_node_(nullptr) {}
891  explicit HUserRecord(HInstruction* instruction) : instruction_(instruction), use_node_(nullptr) {}
892
893  HUserRecord(const HUserRecord<T>& old_record, HUseListNode<T>* use_node)
894    : instruction_(old_record.instruction_), use_node_(use_node) {
895    DCHECK(instruction_ != nullptr);
896    DCHECK(use_node_ != nullptr);
897    DCHECK(old_record.use_node_ == nullptr);
898  }
899
900  HInstruction* GetInstruction() const { return instruction_; }
901  HUseListNode<T>* GetUseNode() const { return use_node_; }
902
903 private:
904  // Instruction used by the user.
905  HInstruction* instruction_;
906
907  // Corresponding entry in the use list kept by 'instruction_'.
908  HUseListNode<T>* use_node_;
909};
910
911// Represents the side effects an instruction may have.
912class SideEffects : public ValueObject {
913 public:
914  SideEffects() : flags_(0) {}
915
916  static SideEffects None() {
917    return SideEffects(0);
918  }
919
920  static SideEffects All() {
921    return SideEffects(ChangesSomething().flags_ | DependsOnSomething().flags_);
922  }
923
924  static SideEffects ChangesSomething() {
925    return SideEffects((1 << kFlagChangesCount) - 1);
926  }
927
928  static SideEffects DependsOnSomething() {
929    int count = kFlagDependsOnCount - kFlagChangesCount;
930    return SideEffects(((1 << count) - 1) << kFlagChangesCount);
931  }
932
933  SideEffects Union(SideEffects other) const {
934    return SideEffects(flags_ | other.flags_);
935  }
936
937  bool HasSideEffects() const {
938    size_t all_bits_set = (1 << kFlagChangesCount) - 1;
939    return (flags_ & all_bits_set) != 0;
940  }
941
942  bool HasAllSideEffects() const {
943    size_t all_bits_set = (1 << kFlagChangesCount) - 1;
944    return all_bits_set == (flags_ & all_bits_set);
945  }
946
947  bool DependsOn(SideEffects other) const {
948    size_t depends_flags = other.ComputeDependsFlags();
949    return (flags_ & depends_flags) != 0;
950  }
951
952  bool HasDependencies() const {
953    int count = kFlagDependsOnCount - kFlagChangesCount;
954    size_t all_bits_set = (1 << count) - 1;
955    return ((flags_ >> kFlagChangesCount) & all_bits_set) != 0;
956  }
957
958 private:
959  static constexpr int kFlagChangesSomething = 0;
960  static constexpr int kFlagChangesCount = kFlagChangesSomething + 1;
961
962  static constexpr int kFlagDependsOnSomething = kFlagChangesCount;
963  static constexpr int kFlagDependsOnCount = kFlagDependsOnSomething + 1;
964
965  explicit SideEffects(size_t flags) : flags_(flags) {}
966
967  size_t ComputeDependsFlags() const {
968    return flags_ << kFlagChangesCount;
969  }
970
971  size_t flags_;
972};
973
974// A HEnvironment object contains the values of virtual registers at a given location.
975class HEnvironment : public ArenaObject<kArenaAllocMisc> {
976 public:
977  HEnvironment(ArenaAllocator* arena, size_t number_of_vregs)
978     : vregs_(arena, number_of_vregs) {
979    vregs_.SetSize(number_of_vregs);
980    for (size_t i = 0; i < number_of_vregs; i++) {
981      vregs_.Put(i, HUserRecord<HEnvironment*>());
982    }
983  }
984
985  void CopyFrom(HEnvironment* env);
986
987  void SetRawEnvAt(size_t index, HInstruction* instruction) {
988    vregs_.Put(index, HUserRecord<HEnvironment*>(instruction));
989  }
990
991  HInstruction* GetInstructionAt(size_t index) const {
992    return vregs_.Get(index).GetInstruction();
993  }
994
995  void RemoveAsUserOfInput(size_t index) const;
996
997  size_t Size() const { return vregs_.Size(); }
998
999 private:
1000  // Record instructions' use entries of this environment for constant-time removal.
1001  // It should only be called by HInstruction when a new environment use is added.
1002  void RecordEnvUse(HUseListNode<HEnvironment*>* env_use) {
1003    DCHECK(env_use->GetUser() == this);
1004    size_t index = env_use->GetIndex();
1005    vregs_.Put(index, HUserRecord<HEnvironment*>(vregs_.Get(index), env_use));
1006  }
1007
1008  GrowableArray<HUserRecord<HEnvironment*> > vregs_;
1009
1010  friend HInstruction;
1011
1012  DISALLOW_COPY_AND_ASSIGN(HEnvironment);
1013};
1014
1015class ReferenceTypeInfo : ValueObject {
1016 public:
1017  typedef Handle<mirror::Class> TypeHandle;
1018
1019  static ReferenceTypeInfo Create(TypeHandle type_handle, bool is_exact)
1020      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1021    if (type_handle->IsObjectClass()) {
1022      // Override the type handle to be consistent with the case when we get to
1023      // Top but don't have the Object class available. It avoids having to guess
1024      // what value the type_handle has when it's Top.
1025      return ReferenceTypeInfo(TypeHandle(), is_exact, true);
1026    } else {
1027      return ReferenceTypeInfo(type_handle, is_exact, false);
1028    }
1029  }
1030
1031  static ReferenceTypeInfo CreateTop(bool is_exact) {
1032    return ReferenceTypeInfo(TypeHandle(), is_exact, true);
1033  }
1034
1035  bool IsExact() const { return is_exact_; }
1036  bool IsTop() const { return is_top_; }
1037
1038  Handle<mirror::Class> GetTypeHandle() const { return type_handle_; }
1039
1040  bool IsSupertypeOf(ReferenceTypeInfo rti) const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1041    if (IsTop()) {
1042      // Top (equivalent for java.lang.Object) is supertype of anything.
1043      return true;
1044    }
1045    if (rti.IsTop()) {
1046      // If we get here `this` is not Top() so it can't be a supertype.
1047      return false;
1048    }
1049    return GetTypeHandle()->IsAssignableFrom(rti.GetTypeHandle().Get());
1050  }
1051
1052  // Returns true if the type information provide the same amount of details.
1053  // Note that it does not mean that the instructions have the same actual type
1054  // (e.g. tops are equal but they can be the result of a merge).
1055  bool IsEqual(ReferenceTypeInfo rti) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1056    if (IsExact() != rti.IsExact()) {
1057      return false;
1058    }
1059    if (IsTop() && rti.IsTop()) {
1060      // `Top` means java.lang.Object, so the types are equivalent.
1061      return true;
1062    }
1063    if (IsTop() || rti.IsTop()) {
1064      // If only one is top or object than they are not equivalent.
1065      // NB: We need this extra check because the type_handle of `Top` is invalid
1066      // and we cannot inspect its reference.
1067      return false;
1068    }
1069
1070    // Finally check the types.
1071    return GetTypeHandle().Get() == rti.GetTypeHandle().Get();
1072  }
1073
1074 private:
1075  ReferenceTypeInfo() : ReferenceTypeInfo(TypeHandle(), false, true) {}
1076  ReferenceTypeInfo(TypeHandle type_handle, bool is_exact, bool is_top)
1077      : type_handle_(type_handle), is_exact_(is_exact), is_top_(is_top) {}
1078
1079  // The class of the object.
1080  TypeHandle type_handle_;
1081  // Whether or not the type is exact or a superclass of the actual type.
1082  // Whether or not we have any information about this type.
1083  bool is_exact_;
1084  // A true value here means that the object type should be java.lang.Object.
1085  // We don't have access to the corresponding mirror object every time so this
1086  // flag acts as a substitute. When true, the TypeHandle refers to a null
1087  // pointer and should not be used.
1088  bool is_top_;
1089};
1090
1091std::ostream& operator<<(std::ostream& os, const ReferenceTypeInfo& rhs);
1092
1093class HInstruction : public ArenaObject<kArenaAllocMisc> {
1094 public:
1095  explicit HInstruction(SideEffects side_effects)
1096      : previous_(nullptr),
1097        next_(nullptr),
1098        block_(nullptr),
1099        id_(-1),
1100        ssa_index_(-1),
1101        environment_(nullptr),
1102        locations_(nullptr),
1103        live_interval_(nullptr),
1104        lifetime_position_(kNoLifetime),
1105        side_effects_(side_effects),
1106        reference_type_info_(ReferenceTypeInfo::CreateTop(/* is_exact */ false)) {}
1107
1108  virtual ~HInstruction() {}
1109
1110#define DECLARE_KIND(type, super) k##type,
1111  enum InstructionKind {
1112    FOR_EACH_INSTRUCTION(DECLARE_KIND)
1113  };
1114#undef DECLARE_KIND
1115
1116  HInstruction* GetNext() const { return next_; }
1117  HInstruction* GetPrevious() const { return previous_; }
1118
1119  HInstruction* GetNextDisregardingMoves() const;
1120  HInstruction* GetPreviousDisregardingMoves() const;
1121
1122  HBasicBlock* GetBlock() const { return block_; }
1123  void SetBlock(HBasicBlock* block) { block_ = block; }
1124  bool IsInBlock() const { return block_ != nullptr; }
1125  bool IsInLoop() const { return block_->IsInLoop(); }
1126  bool IsLoopHeaderPhi() { return IsPhi() && block_->IsLoopHeader(); }
1127
1128  virtual size_t InputCount() const = 0;
1129  HInstruction* InputAt(size_t i) const { return InputRecordAt(i).GetInstruction(); }
1130
1131  virtual void Accept(HGraphVisitor* visitor) = 0;
1132  virtual const char* DebugName() const = 0;
1133
1134  virtual Primitive::Type GetType() const { return Primitive::kPrimVoid; }
1135  void SetRawInputAt(size_t index, HInstruction* input) {
1136    SetRawInputRecordAt(index, HUserRecord<HInstruction*>(input));
1137  }
1138
1139  virtual bool NeedsEnvironment() const { return false; }
1140  virtual bool IsControlFlow() const { return false; }
1141  virtual bool CanThrow() const { return false; }
1142  bool HasSideEffects() const { return side_effects_.HasSideEffects(); }
1143
1144  virtual bool ActAsNullConstant() const { return false; }
1145
1146  // Does not apply for all instructions, but having this at top level greatly
1147  // simplifies the null check elimination.
1148  virtual bool CanBeNull() const {
1149    DCHECK_EQ(GetType(), Primitive::kPrimNot) << "CanBeNull only applies to reference types";
1150    return true;
1151  }
1152
1153  virtual bool CanDoImplicitNullCheck() const { return false; }
1154
1155  void SetReferenceTypeInfo(ReferenceTypeInfo reference_type_info) {
1156    DCHECK_EQ(GetType(), Primitive::kPrimNot);
1157    reference_type_info_ = reference_type_info;
1158  }
1159
1160  ReferenceTypeInfo GetReferenceTypeInfo() const {
1161    DCHECK_EQ(GetType(), Primitive::kPrimNot);
1162    return reference_type_info_;
1163  }
1164
1165  void AddUseAt(HInstruction* user, size_t index) {
1166    DCHECK(user != nullptr);
1167    HUseListNode<HInstruction*>* use =
1168        uses_.AddUse(user, index, GetBlock()->GetGraph()->GetArena());
1169    user->SetRawInputRecordAt(index, HUserRecord<HInstruction*>(user->InputRecordAt(index), use));
1170  }
1171
1172  void AddEnvUseAt(HEnvironment* user, size_t index) {
1173    DCHECK(user != nullptr);
1174    HUseListNode<HEnvironment*>* env_use =
1175        env_uses_.AddUse(user, index, GetBlock()->GetGraph()->GetArena());
1176    user->RecordEnvUse(env_use);
1177  }
1178
1179  void RemoveAsUserOfInput(size_t input) {
1180    HUserRecord<HInstruction*> input_use = InputRecordAt(input);
1181    input_use.GetInstruction()->uses_.Remove(input_use.GetUseNode());
1182  }
1183
1184  const HUseList<HInstruction*>& GetUses() const { return uses_; }
1185  const HUseList<HEnvironment*>& GetEnvUses() const { return env_uses_; }
1186
1187  bool HasUses() const { return !uses_.IsEmpty() || !env_uses_.IsEmpty(); }
1188  bool HasEnvironmentUses() const { return !env_uses_.IsEmpty(); }
1189  bool HasNonEnvironmentUses() const { return !uses_.IsEmpty(); }
1190  bool HasOnlyOneNonEnvironmentUse() const {
1191    return !HasEnvironmentUses() && GetUses().HasOnlyOneUse();
1192  }
1193
1194  // Does this instruction strictly dominate `other_instruction`?
1195  // Returns false if this instruction and `other_instruction` are the same.
1196  // Aborts if this instruction and `other_instruction` are both phis.
1197  bool StrictlyDominates(HInstruction* other_instruction) const;
1198
1199  int GetId() const { return id_; }
1200  void SetId(int id) { id_ = id; }
1201
1202  int GetSsaIndex() const { return ssa_index_; }
1203  void SetSsaIndex(int ssa_index) { ssa_index_ = ssa_index; }
1204  bool HasSsaIndex() const { return ssa_index_ != -1; }
1205
1206  bool HasEnvironment() const { return environment_ != nullptr; }
1207  HEnvironment* GetEnvironment() const { return environment_; }
1208  // Set the `environment_` field. Raw because this method does not
1209  // update the uses lists.
1210  void SetRawEnvironment(HEnvironment* environment) { environment_ = environment; }
1211
1212  // Set the environment of this instruction, copying it from `environment`. While
1213  // copying, the uses lists are being updated.
1214  void CopyEnvironmentFrom(HEnvironment* environment) {
1215    ArenaAllocator* allocator = GetBlock()->GetGraph()->GetArena();
1216    environment_ = new (allocator) HEnvironment(allocator, environment->Size());
1217    environment_->CopyFrom(environment);
1218  }
1219
1220  // Returns the number of entries in the environment. Typically, that is the
1221  // number of dex registers in a method. It could be more in case of inlining.
1222  size_t EnvironmentSize() const;
1223
1224  LocationSummary* GetLocations() const { return locations_; }
1225  void SetLocations(LocationSummary* locations) { locations_ = locations; }
1226
1227  void ReplaceWith(HInstruction* instruction);
1228  void ReplaceInput(HInstruction* replacement, size_t index);
1229
1230  // This is almost the same as doing `ReplaceWith()`. But in this helper, the
1231  // uses of this instruction by `other` are *not* updated.
1232  void ReplaceWithExceptInReplacementAtIndex(HInstruction* other, size_t use_index) {
1233    ReplaceWith(other);
1234    other->ReplaceInput(this, use_index);
1235  }
1236
1237  // Move `this` instruction before `cursor`.
1238  void MoveBefore(HInstruction* cursor);
1239
1240#define INSTRUCTION_TYPE_CHECK(type, super)                                    \
1241  bool Is##type() const { return (As##type() != nullptr); }                    \
1242  virtual const H##type* As##type() const { return nullptr; }                  \
1243  virtual H##type* As##type() { return nullptr; }
1244
1245  FOR_EACH_INSTRUCTION(INSTRUCTION_TYPE_CHECK)
1246#undef INSTRUCTION_TYPE_CHECK
1247
1248  // Returns whether the instruction can be moved within the graph.
1249  virtual bool CanBeMoved() const { return false; }
1250
1251  // Returns whether the two instructions are of the same kind.
1252  virtual bool InstructionTypeEquals(HInstruction* other) const {
1253    UNUSED(other);
1254    return false;
1255  }
1256
1257  // Returns whether any data encoded in the two instructions is equal.
1258  // This method does not look at the inputs. Both instructions must be
1259  // of the same type, otherwise the method has undefined behavior.
1260  virtual bool InstructionDataEquals(HInstruction* other) const {
1261    UNUSED(other);
1262    return false;
1263  }
1264
1265  // Returns whether two instructions are equal, that is:
1266  // 1) They have the same type and contain the same data (InstructionDataEquals).
1267  // 2) Their inputs are identical.
1268  bool Equals(HInstruction* other) const;
1269
1270  virtual InstructionKind GetKind() const = 0;
1271
1272  virtual size_t ComputeHashCode() const {
1273    size_t result = GetKind();
1274    for (size_t i = 0, e = InputCount(); i < e; ++i) {
1275      result = (result * 31) + InputAt(i)->GetId();
1276    }
1277    return result;
1278  }
1279
1280  SideEffects GetSideEffects() const { return side_effects_; }
1281
1282  size_t GetLifetimePosition() const { return lifetime_position_; }
1283  void SetLifetimePosition(size_t position) { lifetime_position_ = position; }
1284  LiveInterval* GetLiveInterval() const { return live_interval_; }
1285  void SetLiveInterval(LiveInterval* interval) { live_interval_ = interval; }
1286  bool HasLiveInterval() const { return live_interval_ != nullptr; }
1287
1288  bool IsSuspendCheckEntry() const { return IsSuspendCheck() && GetBlock()->IsEntryBlock(); }
1289
1290  // Returns whether the code generation of the instruction will require to have access
1291  // to the current method. Such instructions are:
1292  // (1): Instructions that require an environment, as calling the runtime requires
1293  //      to walk the stack and have the current method stored at a specific stack address.
1294  // (2): Object literals like classes and strings, that are loaded from the dex cache
1295  //      fields of the current method.
1296  bool NeedsCurrentMethod() const {
1297    return NeedsEnvironment() || IsLoadClass() || IsLoadString();
1298  }
1299
1300  virtual bool NeedsDexCache() const { return false; }
1301
1302 protected:
1303  virtual const HUserRecord<HInstruction*> InputRecordAt(size_t i) const = 0;
1304  virtual void SetRawInputRecordAt(size_t index, const HUserRecord<HInstruction*>& input) = 0;
1305
1306 private:
1307  void RemoveEnvironmentUser(HUseListNode<HEnvironment*>* use_node) { env_uses_.Remove(use_node); }
1308
1309  HInstruction* previous_;
1310  HInstruction* next_;
1311  HBasicBlock* block_;
1312
1313  // An instruction gets an id when it is added to the graph.
1314  // It reflects creation order. A negative id means the instruction
1315  // has not been added to the graph.
1316  int id_;
1317
1318  // When doing liveness analysis, instructions that have uses get an SSA index.
1319  int ssa_index_;
1320
1321  // List of instructions that have this instruction as input.
1322  HUseList<HInstruction*> uses_;
1323
1324  // List of environments that contain this instruction.
1325  HUseList<HEnvironment*> env_uses_;
1326
1327  // The environment associated with this instruction. Not null if the instruction
1328  // might jump out of the method.
1329  HEnvironment* environment_;
1330
1331  // Set by the code generator.
1332  LocationSummary* locations_;
1333
1334  // Set by the liveness analysis.
1335  LiveInterval* live_interval_;
1336
1337  // Set by the liveness analysis, this is the position in a linear
1338  // order of blocks where this instruction's live interval start.
1339  size_t lifetime_position_;
1340
1341  const SideEffects side_effects_;
1342
1343  // TODO: for primitive types this should be marked as invalid.
1344  ReferenceTypeInfo reference_type_info_;
1345
1346  friend class GraphChecker;
1347  friend class HBasicBlock;
1348  friend class HEnvironment;
1349  friend class HGraph;
1350  friend class HInstructionList;
1351
1352  DISALLOW_COPY_AND_ASSIGN(HInstruction);
1353};
1354std::ostream& operator<<(std::ostream& os, const HInstruction::InstructionKind& rhs);
1355
1356class HInputIterator : public ValueObject {
1357 public:
1358  explicit HInputIterator(HInstruction* instruction) : instruction_(instruction), index_(0) {}
1359
1360  bool Done() const { return index_ == instruction_->InputCount(); }
1361  HInstruction* Current() const { return instruction_->InputAt(index_); }
1362  void Advance() { index_++; }
1363
1364 private:
1365  HInstruction* instruction_;
1366  size_t index_;
1367
1368  DISALLOW_COPY_AND_ASSIGN(HInputIterator);
1369};
1370
1371class HInstructionIterator : public ValueObject {
1372 public:
1373  explicit HInstructionIterator(const HInstructionList& instructions)
1374      : instruction_(instructions.first_instruction_) {
1375    next_ = Done() ? nullptr : instruction_->GetNext();
1376  }
1377
1378  bool Done() const { return instruction_ == nullptr; }
1379  HInstruction* Current() const { return instruction_; }
1380  void Advance() {
1381    instruction_ = next_;
1382    next_ = Done() ? nullptr : instruction_->GetNext();
1383  }
1384
1385 private:
1386  HInstruction* instruction_;
1387  HInstruction* next_;
1388
1389  DISALLOW_COPY_AND_ASSIGN(HInstructionIterator);
1390};
1391
1392class HBackwardInstructionIterator : public ValueObject {
1393 public:
1394  explicit HBackwardInstructionIterator(const HInstructionList& instructions)
1395      : instruction_(instructions.last_instruction_) {
1396    next_ = Done() ? nullptr : instruction_->GetPrevious();
1397  }
1398
1399  bool Done() const { return instruction_ == nullptr; }
1400  HInstruction* Current() const { return instruction_; }
1401  void Advance() {
1402    instruction_ = next_;
1403    next_ = Done() ? nullptr : instruction_->GetPrevious();
1404  }
1405
1406 private:
1407  HInstruction* instruction_;
1408  HInstruction* next_;
1409
1410  DISALLOW_COPY_AND_ASSIGN(HBackwardInstructionIterator);
1411};
1412
1413// An embedded container with N elements of type T.  Used (with partial
1414// specialization for N=0) because embedded arrays cannot have size 0.
1415template<typename T, intptr_t N>
1416class EmbeddedArray {
1417 public:
1418  EmbeddedArray() : elements_() {}
1419
1420  intptr_t GetLength() const { return N; }
1421
1422  const T& operator[](intptr_t i) const {
1423    DCHECK_LT(i, GetLength());
1424    return elements_[i];
1425  }
1426
1427  T& operator[](intptr_t i) {
1428    DCHECK_LT(i, GetLength());
1429    return elements_[i];
1430  }
1431
1432  const T& At(intptr_t i) const {
1433    return (*this)[i];
1434  }
1435
1436  void SetAt(intptr_t i, const T& val) {
1437    (*this)[i] = val;
1438  }
1439
1440 private:
1441  T elements_[N];
1442};
1443
1444template<typename T>
1445class EmbeddedArray<T, 0> {
1446 public:
1447  intptr_t length() const { return 0; }
1448  const T& operator[](intptr_t i) const {
1449    UNUSED(i);
1450    LOG(FATAL) << "Unreachable";
1451    UNREACHABLE();
1452  }
1453  T& operator[](intptr_t i) {
1454    UNUSED(i);
1455    LOG(FATAL) << "Unreachable";
1456    UNREACHABLE();
1457  }
1458};
1459
1460template<intptr_t N>
1461class HTemplateInstruction: public HInstruction {
1462 public:
1463  HTemplateInstruction<N>(SideEffects side_effects)
1464      : HInstruction(side_effects), inputs_() {}
1465  virtual ~HTemplateInstruction() {}
1466
1467  size_t InputCount() const OVERRIDE { return N; }
1468
1469 protected:
1470  const HUserRecord<HInstruction*> InputRecordAt(size_t i) const OVERRIDE { return inputs_[i]; }
1471
1472  void SetRawInputRecordAt(size_t i, const HUserRecord<HInstruction*>& input) OVERRIDE {
1473    inputs_[i] = input;
1474  }
1475
1476 private:
1477  EmbeddedArray<HUserRecord<HInstruction*>, N> inputs_;
1478
1479  friend class SsaBuilder;
1480};
1481
1482template<intptr_t N>
1483class HExpression : public HTemplateInstruction<N> {
1484 public:
1485  HExpression<N>(Primitive::Type type, SideEffects side_effects)
1486      : HTemplateInstruction<N>(side_effects), type_(type) {}
1487  virtual ~HExpression() {}
1488
1489  Primitive::Type GetType() const OVERRIDE { return type_; }
1490
1491 protected:
1492  Primitive::Type type_;
1493};
1494
1495// Represents dex's RETURN_VOID opcode. A HReturnVoid is a control flow
1496// instruction that branches to the exit block.
1497class HReturnVoid : public HTemplateInstruction<0> {
1498 public:
1499  HReturnVoid() : HTemplateInstruction(SideEffects::None()) {}
1500
1501  bool IsControlFlow() const OVERRIDE { return true; }
1502
1503  DECLARE_INSTRUCTION(ReturnVoid);
1504
1505 private:
1506  DISALLOW_COPY_AND_ASSIGN(HReturnVoid);
1507};
1508
1509// Represents dex's RETURN opcodes. A HReturn is a control flow
1510// instruction that branches to the exit block.
1511class HReturn : public HTemplateInstruction<1> {
1512 public:
1513  explicit HReturn(HInstruction* value) : HTemplateInstruction(SideEffects::None()) {
1514    SetRawInputAt(0, value);
1515  }
1516
1517  bool IsControlFlow() const OVERRIDE { return true; }
1518
1519  DECLARE_INSTRUCTION(Return);
1520
1521 private:
1522  DISALLOW_COPY_AND_ASSIGN(HReturn);
1523};
1524
1525// The exit instruction is the only instruction of the exit block.
1526// Instructions aborting the method (HThrow and HReturn) must branch to the
1527// exit block.
1528class HExit : public HTemplateInstruction<0> {
1529 public:
1530  HExit() : HTemplateInstruction(SideEffects::None()) {}
1531
1532  bool IsControlFlow() const OVERRIDE { return true; }
1533
1534  DECLARE_INSTRUCTION(Exit);
1535
1536 private:
1537  DISALLOW_COPY_AND_ASSIGN(HExit);
1538};
1539
1540// Jumps from one block to another.
1541class HGoto : public HTemplateInstruction<0> {
1542 public:
1543  HGoto() : HTemplateInstruction(SideEffects::None()) {}
1544
1545  bool IsControlFlow() const OVERRIDE { return true; }
1546
1547  HBasicBlock* GetSuccessor() const {
1548    return GetBlock()->GetSuccessors().Get(0);
1549  }
1550
1551  DECLARE_INSTRUCTION(Goto);
1552
1553 private:
1554  DISALLOW_COPY_AND_ASSIGN(HGoto);
1555};
1556
1557
1558// Conditional branch. A block ending with an HIf instruction must have
1559// two successors.
1560class HIf : public HTemplateInstruction<1> {
1561 public:
1562  explicit HIf(HInstruction* input) : HTemplateInstruction(SideEffects::None()) {
1563    SetRawInputAt(0, input);
1564  }
1565
1566  bool IsControlFlow() const OVERRIDE { return true; }
1567
1568  HBasicBlock* IfTrueSuccessor() const {
1569    return GetBlock()->GetSuccessors().Get(0);
1570  }
1571
1572  HBasicBlock* IfFalseSuccessor() const {
1573    return GetBlock()->GetSuccessors().Get(1);
1574  }
1575
1576  DECLARE_INSTRUCTION(If);
1577
1578 private:
1579  DISALLOW_COPY_AND_ASSIGN(HIf);
1580};
1581
1582// Deoptimize to interpreter, upon checking a condition.
1583class HDeoptimize : public HTemplateInstruction<1> {
1584 public:
1585  HDeoptimize(HInstruction* cond, uint32_t dex_pc)
1586      : HTemplateInstruction(SideEffects::None()),
1587        dex_pc_(dex_pc) {
1588    SetRawInputAt(0, cond);
1589  }
1590
1591  bool NeedsEnvironment() const OVERRIDE { return true; }
1592  bool CanThrow() const OVERRIDE { return true; }
1593  uint32_t GetDexPc() const { return dex_pc_; }
1594
1595  DECLARE_INSTRUCTION(Deoptimize);
1596
1597 private:
1598  uint32_t dex_pc_;
1599
1600  DISALLOW_COPY_AND_ASSIGN(HDeoptimize);
1601};
1602
1603class HUnaryOperation : public HExpression<1> {
1604 public:
1605  HUnaryOperation(Primitive::Type result_type, HInstruction* input)
1606      : HExpression(result_type, SideEffects::None()) {
1607    SetRawInputAt(0, input);
1608  }
1609
1610  HInstruction* GetInput() const { return InputAt(0); }
1611  Primitive::Type GetResultType() const { return GetType(); }
1612
1613  bool CanBeMoved() const OVERRIDE { return true; }
1614  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
1615    UNUSED(other);
1616    return true;
1617  }
1618
1619  // Try to statically evaluate `operation` and return a HConstant
1620  // containing the result of this evaluation.  If `operation` cannot
1621  // be evaluated as a constant, return nullptr.
1622  HConstant* TryStaticEvaluation() const;
1623
1624  // Apply this operation to `x`.
1625  virtual int32_t Evaluate(int32_t x) const = 0;
1626  virtual int64_t Evaluate(int64_t x) const = 0;
1627
1628  DECLARE_INSTRUCTION(UnaryOperation);
1629
1630 private:
1631  DISALLOW_COPY_AND_ASSIGN(HUnaryOperation);
1632};
1633
1634class HBinaryOperation : public HExpression<2> {
1635 public:
1636  HBinaryOperation(Primitive::Type result_type,
1637                   HInstruction* left,
1638                   HInstruction* right) : HExpression(result_type, SideEffects::None()) {
1639    SetRawInputAt(0, left);
1640    SetRawInputAt(1, right);
1641  }
1642
1643  HInstruction* GetLeft() const { return InputAt(0); }
1644  HInstruction* GetRight() const { return InputAt(1); }
1645  Primitive::Type GetResultType() const { return GetType(); }
1646
1647  virtual bool IsCommutative() const { return false; }
1648
1649  // Put constant on the right.
1650  // Returns whether order is changed.
1651  bool OrderInputsWithConstantOnTheRight() {
1652    HInstruction* left = InputAt(0);
1653    HInstruction* right = InputAt(1);
1654    if (left->IsConstant() && !right->IsConstant()) {
1655      ReplaceInput(right, 0);
1656      ReplaceInput(left, 1);
1657      return true;
1658    }
1659    return false;
1660  }
1661
1662  // Order inputs by instruction id, but favor constant on the right side.
1663  // This helps GVN for commutative ops.
1664  void OrderInputs() {
1665    DCHECK(IsCommutative());
1666    HInstruction* left = InputAt(0);
1667    HInstruction* right = InputAt(1);
1668    if (left == right || (!left->IsConstant() && right->IsConstant())) {
1669      return;
1670    }
1671    if (OrderInputsWithConstantOnTheRight()) {
1672      return;
1673    }
1674    // Order according to instruction id.
1675    if (left->GetId() > right->GetId()) {
1676      ReplaceInput(right, 0);
1677      ReplaceInput(left, 1);
1678    }
1679  }
1680
1681  bool CanBeMoved() const OVERRIDE { return true; }
1682  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
1683    UNUSED(other);
1684    return true;
1685  }
1686
1687  // Try to statically evaluate `operation` and return a HConstant
1688  // containing the result of this evaluation.  If `operation` cannot
1689  // be evaluated as a constant, return nullptr.
1690  HConstant* TryStaticEvaluation() const;
1691
1692  // Apply this operation to `x` and `y`.
1693  virtual int32_t Evaluate(int32_t x, int32_t y) const = 0;
1694  virtual int64_t Evaluate(int64_t x, int64_t y) const = 0;
1695
1696  // Returns an input that can legally be used as the right input and is
1697  // constant, or nullptr.
1698  HConstant* GetConstantRight() const;
1699
1700  // If `GetConstantRight()` returns one of the input, this returns the other
1701  // one. Otherwise it returns nullptr.
1702  HInstruction* GetLeastConstantLeft() const;
1703
1704  DECLARE_INSTRUCTION(BinaryOperation);
1705
1706 private:
1707  DISALLOW_COPY_AND_ASSIGN(HBinaryOperation);
1708};
1709
1710class HCondition : public HBinaryOperation {
1711 public:
1712  HCondition(HInstruction* first, HInstruction* second)
1713      : HBinaryOperation(Primitive::kPrimBoolean, first, second),
1714        needs_materialization_(true) {}
1715
1716  bool NeedsMaterialization() const { return needs_materialization_; }
1717  void ClearNeedsMaterialization() { needs_materialization_ = false; }
1718
1719  // For code generation purposes, returns whether this instruction is just before
1720  // `instruction`, and disregard moves in between.
1721  bool IsBeforeWhenDisregardMoves(HInstruction* instruction) const;
1722
1723  DECLARE_INSTRUCTION(Condition);
1724
1725  virtual IfCondition GetCondition() const = 0;
1726
1727 private:
1728  // For register allocation purposes, returns whether this instruction needs to be
1729  // materialized (that is, not just be in the processor flags).
1730  bool needs_materialization_;
1731
1732  DISALLOW_COPY_AND_ASSIGN(HCondition);
1733};
1734
1735// Instruction to check if two inputs are equal to each other.
1736class HEqual : public HCondition {
1737 public:
1738  HEqual(HInstruction* first, HInstruction* second)
1739      : HCondition(first, second) {}
1740
1741  bool IsCommutative() const OVERRIDE { return true; }
1742
1743  int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE {
1744    return x == y ? 1 : 0;
1745  }
1746  int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE {
1747    return x == y ? 1 : 0;
1748  }
1749
1750  DECLARE_INSTRUCTION(Equal);
1751
1752  IfCondition GetCondition() const OVERRIDE {
1753    return kCondEQ;
1754  }
1755
1756 private:
1757  DISALLOW_COPY_AND_ASSIGN(HEqual);
1758};
1759
1760class HNotEqual : public HCondition {
1761 public:
1762  HNotEqual(HInstruction* first, HInstruction* second)
1763      : HCondition(first, second) {}
1764
1765  bool IsCommutative() const OVERRIDE { return true; }
1766
1767  int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE {
1768    return x != y ? 1 : 0;
1769  }
1770  int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE {
1771    return x != y ? 1 : 0;
1772  }
1773
1774  DECLARE_INSTRUCTION(NotEqual);
1775
1776  IfCondition GetCondition() const OVERRIDE {
1777    return kCondNE;
1778  }
1779
1780 private:
1781  DISALLOW_COPY_AND_ASSIGN(HNotEqual);
1782};
1783
1784class HLessThan : public HCondition {
1785 public:
1786  HLessThan(HInstruction* first, HInstruction* second)
1787      : HCondition(first, second) {}
1788
1789  int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE {
1790    return x < y ? 1 : 0;
1791  }
1792  int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE {
1793    return x < y ? 1 : 0;
1794  }
1795
1796  DECLARE_INSTRUCTION(LessThan);
1797
1798  IfCondition GetCondition() const OVERRIDE {
1799    return kCondLT;
1800  }
1801
1802 private:
1803  DISALLOW_COPY_AND_ASSIGN(HLessThan);
1804};
1805
1806class HLessThanOrEqual : public HCondition {
1807 public:
1808  HLessThanOrEqual(HInstruction* first, HInstruction* second)
1809      : HCondition(first, second) {}
1810
1811  int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE {
1812    return x <= y ? 1 : 0;
1813  }
1814  int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE {
1815    return x <= y ? 1 : 0;
1816  }
1817
1818  DECLARE_INSTRUCTION(LessThanOrEqual);
1819
1820  IfCondition GetCondition() const OVERRIDE {
1821    return kCondLE;
1822  }
1823
1824 private:
1825  DISALLOW_COPY_AND_ASSIGN(HLessThanOrEqual);
1826};
1827
1828class HGreaterThan : public HCondition {
1829 public:
1830  HGreaterThan(HInstruction* first, HInstruction* second)
1831      : HCondition(first, second) {}
1832
1833  int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE {
1834    return x > y ? 1 : 0;
1835  }
1836  int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE {
1837    return x > y ? 1 : 0;
1838  }
1839
1840  DECLARE_INSTRUCTION(GreaterThan);
1841
1842  IfCondition GetCondition() const OVERRIDE {
1843    return kCondGT;
1844  }
1845
1846 private:
1847  DISALLOW_COPY_AND_ASSIGN(HGreaterThan);
1848};
1849
1850class HGreaterThanOrEqual : public HCondition {
1851 public:
1852  HGreaterThanOrEqual(HInstruction* first, HInstruction* second)
1853      : HCondition(first, second) {}
1854
1855  int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE {
1856    return x >= y ? 1 : 0;
1857  }
1858  int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE {
1859    return x >= y ? 1 : 0;
1860  }
1861
1862  DECLARE_INSTRUCTION(GreaterThanOrEqual);
1863
1864  IfCondition GetCondition() const OVERRIDE {
1865    return kCondGE;
1866  }
1867
1868 private:
1869  DISALLOW_COPY_AND_ASSIGN(HGreaterThanOrEqual);
1870};
1871
1872
1873// Instruction to check how two inputs compare to each other.
1874// Result is 0 if input0 == input1, 1 if input0 > input1, or -1 if input0 < input1.
1875class HCompare : public HBinaryOperation {
1876 public:
1877  // The bias applies for floating point operations and indicates how NaN
1878  // comparisons are treated:
1879  enum Bias {
1880    kNoBias,  // bias is not applicable (i.e. for long operation)
1881    kGtBias,  // return 1 for NaN comparisons
1882    kLtBias,  // return -1 for NaN comparisons
1883  };
1884
1885  HCompare(Primitive::Type type, HInstruction* first, HInstruction* second, Bias bias)
1886      : HBinaryOperation(Primitive::kPrimInt, first, second), bias_(bias) {
1887    DCHECK_EQ(type, first->GetType());
1888    DCHECK_EQ(type, second->GetType());
1889  }
1890
1891  int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE {
1892    return
1893      x == y ? 0 :
1894      x > y ? 1 :
1895      -1;
1896  }
1897
1898  int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE {
1899    return
1900      x == y ? 0 :
1901      x > y ? 1 :
1902      -1;
1903  }
1904
1905  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
1906    return bias_ == other->AsCompare()->bias_;
1907  }
1908
1909  bool IsGtBias() { return bias_ == kGtBias; }
1910
1911  DECLARE_INSTRUCTION(Compare);
1912
1913 private:
1914  const Bias bias_;
1915
1916  DISALLOW_COPY_AND_ASSIGN(HCompare);
1917};
1918
1919// A local in the graph. Corresponds to a Dex register.
1920class HLocal : public HTemplateInstruction<0> {
1921 public:
1922  explicit HLocal(uint16_t reg_number)
1923      : HTemplateInstruction(SideEffects::None()), reg_number_(reg_number) {}
1924
1925  DECLARE_INSTRUCTION(Local);
1926
1927  uint16_t GetRegNumber() const { return reg_number_; }
1928
1929 private:
1930  // The Dex register number.
1931  const uint16_t reg_number_;
1932
1933  DISALLOW_COPY_AND_ASSIGN(HLocal);
1934};
1935
1936// Load a given local. The local is an input of this instruction.
1937class HLoadLocal : public HExpression<1> {
1938 public:
1939  HLoadLocal(HLocal* local, Primitive::Type type)
1940      : HExpression(type, SideEffects::None()) {
1941    SetRawInputAt(0, local);
1942  }
1943
1944  HLocal* GetLocal() const { return reinterpret_cast<HLocal*>(InputAt(0)); }
1945
1946  DECLARE_INSTRUCTION(LoadLocal);
1947
1948 private:
1949  DISALLOW_COPY_AND_ASSIGN(HLoadLocal);
1950};
1951
1952// Store a value in a given local. This instruction has two inputs: the value
1953// and the local.
1954class HStoreLocal : public HTemplateInstruction<2> {
1955 public:
1956  HStoreLocal(HLocal* local, HInstruction* value) : HTemplateInstruction(SideEffects::None()) {
1957    SetRawInputAt(0, local);
1958    SetRawInputAt(1, value);
1959  }
1960
1961  HLocal* GetLocal() const { return reinterpret_cast<HLocal*>(InputAt(0)); }
1962
1963  DECLARE_INSTRUCTION(StoreLocal);
1964
1965 private:
1966  DISALLOW_COPY_AND_ASSIGN(HStoreLocal);
1967};
1968
1969class HConstant : public HExpression<0> {
1970 public:
1971  explicit HConstant(Primitive::Type type) : HExpression(type, SideEffects::None()) {}
1972
1973  bool CanBeMoved() const OVERRIDE { return true; }
1974
1975  virtual bool IsMinusOne() const { return false; }
1976  virtual bool IsZero() const { return false; }
1977  virtual bool IsOne() const { return false; }
1978
1979  DECLARE_INSTRUCTION(Constant);
1980
1981 private:
1982  DISALLOW_COPY_AND_ASSIGN(HConstant);
1983};
1984
1985class HFloatConstant : public HConstant {
1986 public:
1987  float GetValue() const { return value_; }
1988
1989  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
1990    return bit_cast<uint32_t, float>(other->AsFloatConstant()->value_) ==
1991        bit_cast<uint32_t, float>(value_);
1992  }
1993
1994  size_t ComputeHashCode() const OVERRIDE { return static_cast<size_t>(GetValue()); }
1995
1996  bool IsMinusOne() const OVERRIDE {
1997    return bit_cast<uint32_t, float>(AsFloatConstant()->GetValue()) ==
1998        bit_cast<uint32_t, float>((-1.0f));
1999  }
2000  bool IsZero() const OVERRIDE {
2001    return AsFloatConstant()->GetValue() == 0.0f;
2002  }
2003  bool IsOne() const OVERRIDE {
2004    return bit_cast<uint32_t, float>(AsFloatConstant()->GetValue()) ==
2005        bit_cast<uint32_t, float>(1.0f);
2006  }
2007
2008  DECLARE_INSTRUCTION(FloatConstant);
2009
2010 private:
2011  explicit HFloatConstant(float value) : HConstant(Primitive::kPrimFloat), value_(value) {}
2012
2013  const float value_;
2014
2015  // Only the SsaBuilder can currently create floating-point constants. If we
2016  // ever need to create them later in the pipeline, we will have to handle them
2017  // the same way as integral constants.
2018  friend class SsaBuilder;
2019  DISALLOW_COPY_AND_ASSIGN(HFloatConstant);
2020};
2021
2022class HDoubleConstant : public HConstant {
2023 public:
2024  double GetValue() const { return value_; }
2025
2026  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2027    return bit_cast<uint64_t, double>(other->AsDoubleConstant()->value_) ==
2028        bit_cast<uint64_t, double>(value_);
2029  }
2030
2031  size_t ComputeHashCode() const OVERRIDE { return static_cast<size_t>(GetValue()); }
2032
2033  bool IsMinusOne() const OVERRIDE {
2034    return bit_cast<uint64_t, double>(AsDoubleConstant()->GetValue()) ==
2035        bit_cast<uint64_t, double>((-1.0));
2036  }
2037  bool IsZero() const OVERRIDE {
2038    return AsDoubleConstant()->GetValue() == 0.0;
2039  }
2040  bool IsOne() const OVERRIDE {
2041    return bit_cast<uint64_t, double>(AsDoubleConstant()->GetValue()) ==
2042        bit_cast<uint64_t, double>(1.0);
2043  }
2044
2045  DECLARE_INSTRUCTION(DoubleConstant);
2046
2047 private:
2048  explicit HDoubleConstant(double value) : HConstant(Primitive::kPrimDouble), value_(value) {}
2049
2050  const double value_;
2051
2052  // Only the SsaBuilder can currently create floating-point constants. If we
2053  // ever need to create them later in the pipeline, we will have to handle them
2054  // the same way as integral constants.
2055  friend class SsaBuilder;
2056  DISALLOW_COPY_AND_ASSIGN(HDoubleConstant);
2057};
2058
2059class HNullConstant : public HConstant {
2060 public:
2061  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
2062    return true;
2063  }
2064
2065  size_t ComputeHashCode() const OVERRIDE { return 0; }
2066
2067  bool ActAsNullConstant() const OVERRIDE { return true; }
2068
2069  DECLARE_INSTRUCTION(NullConstant);
2070
2071 private:
2072  HNullConstant() : HConstant(Primitive::kPrimNot) {}
2073
2074  friend class HGraph;
2075  DISALLOW_COPY_AND_ASSIGN(HNullConstant);
2076};
2077
2078// Constants of the type int. Those can be from Dex instructions, or
2079// synthesized (for example with the if-eqz instruction).
2080class HIntConstant : public HConstant {
2081 public:
2082  int32_t GetValue() const { return value_; }
2083
2084  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2085    return other->AsIntConstant()->value_ == value_;
2086  }
2087
2088  size_t ComputeHashCode() const OVERRIDE { return GetValue(); }
2089
2090  // TODO: Null is represented by the `0` constant. In most cases we replace it
2091  // with a HNullConstant but we don't do it when comparing (a != null). This
2092  // method is an workaround until we fix the above.
2093  bool ActAsNullConstant() const OVERRIDE { return value_ == 0; }
2094
2095  bool IsMinusOne() const OVERRIDE { return GetValue() == -1; }
2096  bool IsZero() const OVERRIDE { return GetValue() == 0; }
2097  bool IsOne() const OVERRIDE { return GetValue() == 1; }
2098
2099  DECLARE_INSTRUCTION(IntConstant);
2100
2101 private:
2102  explicit HIntConstant(int32_t value) : HConstant(Primitive::kPrimInt), value_(value) {}
2103
2104  const int32_t value_;
2105
2106  friend class HGraph;
2107  ART_FRIEND_TEST(GraphTest, InsertInstructionBefore);
2108  ART_FRIEND_TEST(ParallelMoveTest, ConstantLast);
2109  DISALLOW_COPY_AND_ASSIGN(HIntConstant);
2110};
2111
2112class HLongConstant : public HConstant {
2113 public:
2114  int64_t GetValue() const { return value_; }
2115
2116  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2117    return other->AsLongConstant()->value_ == value_;
2118  }
2119
2120  size_t ComputeHashCode() const OVERRIDE { return static_cast<size_t>(GetValue()); }
2121
2122  bool IsMinusOne() const OVERRIDE { return GetValue() == -1; }
2123  bool IsZero() const OVERRIDE { return GetValue() == 0; }
2124  bool IsOne() const OVERRIDE { return GetValue() == 1; }
2125
2126  DECLARE_INSTRUCTION(LongConstant);
2127
2128 private:
2129  explicit HLongConstant(int64_t value) : HConstant(Primitive::kPrimLong), value_(value) {}
2130
2131  const int64_t value_;
2132
2133  friend class HGraph;
2134  DISALLOW_COPY_AND_ASSIGN(HLongConstant);
2135};
2136
2137enum class Intrinsics {
2138#define OPTIMIZING_INTRINSICS(Name, IsStatic) k ## Name,
2139#include "intrinsics_list.h"
2140  kNone,
2141  INTRINSICS_LIST(OPTIMIZING_INTRINSICS)
2142#undef INTRINSICS_LIST
2143#undef OPTIMIZING_INTRINSICS
2144};
2145std::ostream& operator<<(std::ostream& os, const Intrinsics& intrinsic);
2146
2147class HInvoke : public HInstruction {
2148 public:
2149  size_t InputCount() const OVERRIDE { return inputs_.Size(); }
2150
2151  // Runtime needs to walk the stack, so Dex -> Dex calls need to
2152  // know their environment.
2153  bool NeedsEnvironment() const OVERRIDE { return true; }
2154
2155  void SetArgumentAt(size_t index, HInstruction* argument) {
2156    SetRawInputAt(index, argument);
2157  }
2158
2159  Primitive::Type GetType() const OVERRIDE { return return_type_; }
2160
2161  uint32_t GetDexPc() const { return dex_pc_; }
2162
2163  uint32_t GetDexMethodIndex() const { return dex_method_index_; }
2164
2165  Intrinsics GetIntrinsic() {
2166    return intrinsic_;
2167  }
2168
2169  void SetIntrinsic(Intrinsics intrinsic) {
2170    intrinsic_ = intrinsic;
2171  }
2172
2173  DECLARE_INSTRUCTION(Invoke);
2174
2175 protected:
2176  HInvoke(ArenaAllocator* arena,
2177          uint32_t number_of_arguments,
2178          Primitive::Type return_type,
2179          uint32_t dex_pc,
2180          uint32_t dex_method_index)
2181    : HInstruction(SideEffects::All()),
2182      inputs_(arena, number_of_arguments),
2183      return_type_(return_type),
2184      dex_pc_(dex_pc),
2185      dex_method_index_(dex_method_index),
2186      intrinsic_(Intrinsics::kNone) {
2187    inputs_.SetSize(number_of_arguments);
2188  }
2189
2190  const HUserRecord<HInstruction*> InputRecordAt(size_t i) const OVERRIDE { return inputs_.Get(i); }
2191  void SetRawInputRecordAt(size_t index, const HUserRecord<HInstruction*>& input) OVERRIDE {
2192    inputs_.Put(index, input);
2193  }
2194
2195  GrowableArray<HUserRecord<HInstruction*> > inputs_;
2196  const Primitive::Type return_type_;
2197  const uint32_t dex_pc_;
2198  const uint32_t dex_method_index_;
2199  Intrinsics intrinsic_;
2200
2201 private:
2202  DISALLOW_COPY_AND_ASSIGN(HInvoke);
2203};
2204
2205class HInvokeStaticOrDirect : public HInvoke {
2206 public:
2207  HInvokeStaticOrDirect(ArenaAllocator* arena,
2208                        uint32_t number_of_arguments,
2209                        Primitive::Type return_type,
2210                        uint32_t dex_pc,
2211                        uint32_t dex_method_index,
2212                        bool is_recursive,
2213                        InvokeType original_invoke_type,
2214                        InvokeType invoke_type)
2215      : HInvoke(arena, number_of_arguments, return_type, dex_pc, dex_method_index),
2216        original_invoke_type_(original_invoke_type),
2217        invoke_type_(invoke_type),
2218        is_recursive_(is_recursive) {}
2219
2220  bool CanDoImplicitNullCheck() const OVERRIDE {
2221    // We access the method via the dex cache so we can't do an implicit null check.
2222    // TODO: for intrinsics we can generate implicit null checks.
2223    return false;
2224  }
2225
2226  InvokeType GetOriginalInvokeType() const { return original_invoke_type_; }
2227  InvokeType GetInvokeType() const { return invoke_type_; }
2228  bool IsRecursive() const { return is_recursive_; }
2229  bool NeedsDexCache() const OVERRIDE { return !IsRecursive(); }
2230
2231  DECLARE_INSTRUCTION(InvokeStaticOrDirect);
2232
2233 private:
2234  const InvokeType original_invoke_type_;
2235  const InvokeType invoke_type_;
2236  const bool is_recursive_;
2237
2238  DISALLOW_COPY_AND_ASSIGN(HInvokeStaticOrDirect);
2239};
2240
2241class HInvokeVirtual : public HInvoke {
2242 public:
2243  HInvokeVirtual(ArenaAllocator* arena,
2244                 uint32_t number_of_arguments,
2245                 Primitive::Type return_type,
2246                 uint32_t dex_pc,
2247                 uint32_t dex_method_index,
2248                 uint32_t vtable_index)
2249      : HInvoke(arena, number_of_arguments, return_type, dex_pc, dex_method_index),
2250        vtable_index_(vtable_index) {}
2251
2252  bool CanDoImplicitNullCheck() const OVERRIDE {
2253    // TODO: Add implicit null checks in intrinsics.
2254    return !GetLocations()->Intrinsified();
2255  }
2256
2257  uint32_t GetVTableIndex() const { return vtable_index_; }
2258
2259  DECLARE_INSTRUCTION(InvokeVirtual);
2260
2261 private:
2262  const uint32_t vtable_index_;
2263
2264  DISALLOW_COPY_AND_ASSIGN(HInvokeVirtual);
2265};
2266
2267class HInvokeInterface : public HInvoke {
2268 public:
2269  HInvokeInterface(ArenaAllocator* arena,
2270                   uint32_t number_of_arguments,
2271                   Primitive::Type return_type,
2272                   uint32_t dex_pc,
2273                   uint32_t dex_method_index,
2274                   uint32_t imt_index)
2275      : HInvoke(arena, number_of_arguments, return_type, dex_pc, dex_method_index),
2276        imt_index_(imt_index) {}
2277
2278  bool CanDoImplicitNullCheck() const OVERRIDE {
2279    // TODO: Add implicit null checks in intrinsics.
2280    return !GetLocations()->Intrinsified();
2281  }
2282
2283  uint32_t GetImtIndex() const { return imt_index_; }
2284  uint32_t GetDexMethodIndex() const { return dex_method_index_; }
2285
2286  DECLARE_INSTRUCTION(InvokeInterface);
2287
2288 private:
2289  const uint32_t imt_index_;
2290
2291  DISALLOW_COPY_AND_ASSIGN(HInvokeInterface);
2292};
2293
2294class HNewInstance : public HExpression<0> {
2295 public:
2296  HNewInstance(uint32_t dex_pc, uint16_t type_index, QuickEntrypointEnum entrypoint)
2297      : HExpression(Primitive::kPrimNot, SideEffects::None()),
2298        dex_pc_(dex_pc),
2299        type_index_(type_index),
2300        entrypoint_(entrypoint) {}
2301
2302  uint32_t GetDexPc() const { return dex_pc_; }
2303  uint16_t GetTypeIndex() const { return type_index_; }
2304
2305  // Calls runtime so needs an environment.
2306  bool NeedsEnvironment() const OVERRIDE { return true; }
2307  // It may throw when called on:
2308  //   - interfaces
2309  //   - abstract/innaccessible/unknown classes
2310  // TODO: optimize when possible.
2311  bool CanThrow() const OVERRIDE { return true; }
2312
2313  bool CanBeNull() const OVERRIDE { return false; }
2314
2315  QuickEntrypointEnum GetEntrypoint() const { return entrypoint_; }
2316
2317  DECLARE_INSTRUCTION(NewInstance);
2318
2319 private:
2320  const uint32_t dex_pc_;
2321  const uint16_t type_index_;
2322  const QuickEntrypointEnum entrypoint_;
2323
2324  DISALLOW_COPY_AND_ASSIGN(HNewInstance);
2325};
2326
2327class HNeg : public HUnaryOperation {
2328 public:
2329  explicit HNeg(Primitive::Type result_type, HInstruction* input)
2330      : HUnaryOperation(result_type, input) {}
2331
2332  int32_t Evaluate(int32_t x) const OVERRIDE { return -x; }
2333  int64_t Evaluate(int64_t x) const OVERRIDE { return -x; }
2334
2335  DECLARE_INSTRUCTION(Neg);
2336
2337 private:
2338  DISALLOW_COPY_AND_ASSIGN(HNeg);
2339};
2340
2341class HNewArray : public HExpression<1> {
2342 public:
2343  HNewArray(HInstruction* length,
2344            uint32_t dex_pc,
2345            uint16_t type_index,
2346            QuickEntrypointEnum entrypoint)
2347      : HExpression(Primitive::kPrimNot, SideEffects::None()),
2348        dex_pc_(dex_pc),
2349        type_index_(type_index),
2350        entrypoint_(entrypoint) {
2351    SetRawInputAt(0, length);
2352  }
2353
2354  uint32_t GetDexPc() const { return dex_pc_; }
2355  uint16_t GetTypeIndex() const { return type_index_; }
2356
2357  // Calls runtime so needs an environment.
2358  bool NeedsEnvironment() const OVERRIDE { return true; }
2359
2360  // May throw NegativeArraySizeException, OutOfMemoryError, etc.
2361  bool CanThrow() const OVERRIDE { return true; }
2362
2363  bool CanBeNull() const OVERRIDE { return false; }
2364
2365  QuickEntrypointEnum GetEntrypoint() const { return entrypoint_; }
2366
2367  DECLARE_INSTRUCTION(NewArray);
2368
2369 private:
2370  const uint32_t dex_pc_;
2371  const uint16_t type_index_;
2372  const QuickEntrypointEnum entrypoint_;
2373
2374  DISALLOW_COPY_AND_ASSIGN(HNewArray);
2375};
2376
2377class HAdd : public HBinaryOperation {
2378 public:
2379  HAdd(Primitive::Type result_type, HInstruction* left, HInstruction* right)
2380      : HBinaryOperation(result_type, left, right) {}
2381
2382  bool IsCommutative() const OVERRIDE { return true; }
2383
2384  int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE {
2385    return x + y;
2386  }
2387  int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE {
2388    return x + y;
2389  }
2390
2391  DECLARE_INSTRUCTION(Add);
2392
2393 private:
2394  DISALLOW_COPY_AND_ASSIGN(HAdd);
2395};
2396
2397class HSub : public HBinaryOperation {
2398 public:
2399  HSub(Primitive::Type result_type, HInstruction* left, HInstruction* right)
2400      : HBinaryOperation(result_type, left, right) {}
2401
2402  int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE {
2403    return x - y;
2404  }
2405  int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE {
2406    return x - y;
2407  }
2408
2409  DECLARE_INSTRUCTION(Sub);
2410
2411 private:
2412  DISALLOW_COPY_AND_ASSIGN(HSub);
2413};
2414
2415class HMul : public HBinaryOperation {
2416 public:
2417  HMul(Primitive::Type result_type, HInstruction* left, HInstruction* right)
2418      : HBinaryOperation(result_type, left, right) {}
2419
2420  bool IsCommutative() const OVERRIDE { return true; }
2421
2422  int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE { return x * y; }
2423  int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE { return x * y; }
2424
2425  DECLARE_INSTRUCTION(Mul);
2426
2427 private:
2428  DISALLOW_COPY_AND_ASSIGN(HMul);
2429};
2430
2431class HDiv : public HBinaryOperation {
2432 public:
2433  HDiv(Primitive::Type result_type, HInstruction* left, HInstruction* right, uint32_t dex_pc)
2434      : HBinaryOperation(result_type, left, right), dex_pc_(dex_pc) {}
2435
2436  int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE {
2437    // Our graph structure ensures we never have 0 for `y` during constant folding.
2438    DCHECK_NE(y, 0);
2439    // Special case -1 to avoid getting a SIGFPE on x86(_64).
2440    return (y == -1) ? -x : x / y;
2441  }
2442
2443  int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE {
2444    DCHECK_NE(y, 0);
2445    // Special case -1 to avoid getting a SIGFPE on x86(_64).
2446    return (y == -1) ? -x : x / y;
2447  }
2448
2449  uint32_t GetDexPc() const { return dex_pc_; }
2450
2451  DECLARE_INSTRUCTION(Div);
2452
2453 private:
2454  const uint32_t dex_pc_;
2455
2456  DISALLOW_COPY_AND_ASSIGN(HDiv);
2457};
2458
2459class HRem : public HBinaryOperation {
2460 public:
2461  HRem(Primitive::Type result_type, HInstruction* left, HInstruction* right, uint32_t dex_pc)
2462      : HBinaryOperation(result_type, left, right), dex_pc_(dex_pc) {}
2463
2464  int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE {
2465    DCHECK_NE(y, 0);
2466    // Special case -1 to avoid getting a SIGFPE on x86(_64).
2467    return (y == -1) ? 0 : x % y;
2468  }
2469
2470  int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE {
2471    DCHECK_NE(y, 0);
2472    // Special case -1 to avoid getting a SIGFPE on x86(_64).
2473    return (y == -1) ? 0 : x % y;
2474  }
2475
2476  uint32_t GetDexPc() const { return dex_pc_; }
2477
2478  DECLARE_INSTRUCTION(Rem);
2479
2480 private:
2481  const uint32_t dex_pc_;
2482
2483  DISALLOW_COPY_AND_ASSIGN(HRem);
2484};
2485
2486class HDivZeroCheck : public HExpression<1> {
2487 public:
2488  HDivZeroCheck(HInstruction* value, uint32_t dex_pc)
2489      : HExpression(value->GetType(), SideEffects::None()), dex_pc_(dex_pc) {
2490    SetRawInputAt(0, value);
2491  }
2492
2493  bool CanBeMoved() const OVERRIDE { return true; }
2494
2495  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2496    UNUSED(other);
2497    return true;
2498  }
2499
2500  bool NeedsEnvironment() const OVERRIDE { return true; }
2501  bool CanThrow() const OVERRIDE { return true; }
2502
2503  uint32_t GetDexPc() const { return dex_pc_; }
2504
2505  DECLARE_INSTRUCTION(DivZeroCheck);
2506
2507 private:
2508  const uint32_t dex_pc_;
2509
2510  DISALLOW_COPY_AND_ASSIGN(HDivZeroCheck);
2511};
2512
2513class HShl : public HBinaryOperation {
2514 public:
2515  HShl(Primitive::Type result_type, HInstruction* left, HInstruction* right)
2516      : HBinaryOperation(result_type, left, right) {}
2517
2518  int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE { return x << (y & kMaxIntShiftValue); }
2519  int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE { return x << (y & kMaxLongShiftValue); }
2520
2521  DECLARE_INSTRUCTION(Shl);
2522
2523 private:
2524  DISALLOW_COPY_AND_ASSIGN(HShl);
2525};
2526
2527class HShr : public HBinaryOperation {
2528 public:
2529  HShr(Primitive::Type result_type, HInstruction* left, HInstruction* right)
2530      : HBinaryOperation(result_type, left, right) {}
2531
2532  int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE { return x >> (y & kMaxIntShiftValue); }
2533  int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE { return x >> (y & kMaxLongShiftValue); }
2534
2535  DECLARE_INSTRUCTION(Shr);
2536
2537 private:
2538  DISALLOW_COPY_AND_ASSIGN(HShr);
2539};
2540
2541class HUShr : public HBinaryOperation {
2542 public:
2543  HUShr(Primitive::Type result_type, HInstruction* left, HInstruction* right)
2544      : HBinaryOperation(result_type, left, right) {}
2545
2546  int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE {
2547    uint32_t ux = static_cast<uint32_t>(x);
2548    uint32_t uy = static_cast<uint32_t>(y) & kMaxIntShiftValue;
2549    return static_cast<int32_t>(ux >> uy);
2550  }
2551
2552  int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE {
2553    uint64_t ux = static_cast<uint64_t>(x);
2554    uint64_t uy = static_cast<uint64_t>(y) & kMaxLongShiftValue;
2555    return static_cast<int64_t>(ux >> uy);
2556  }
2557
2558  DECLARE_INSTRUCTION(UShr);
2559
2560 private:
2561  DISALLOW_COPY_AND_ASSIGN(HUShr);
2562};
2563
2564class HAnd : public HBinaryOperation {
2565 public:
2566  HAnd(Primitive::Type result_type, HInstruction* left, HInstruction* right)
2567      : HBinaryOperation(result_type, left, right) {}
2568
2569  bool IsCommutative() const OVERRIDE { return true; }
2570
2571  int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE { return x & y; }
2572  int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE { return x & y; }
2573
2574  DECLARE_INSTRUCTION(And);
2575
2576 private:
2577  DISALLOW_COPY_AND_ASSIGN(HAnd);
2578};
2579
2580class HOr : public HBinaryOperation {
2581 public:
2582  HOr(Primitive::Type result_type, HInstruction* left, HInstruction* right)
2583      : HBinaryOperation(result_type, left, right) {}
2584
2585  bool IsCommutative() const OVERRIDE { return true; }
2586
2587  int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE { return x | y; }
2588  int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE { return x | y; }
2589
2590  DECLARE_INSTRUCTION(Or);
2591
2592 private:
2593  DISALLOW_COPY_AND_ASSIGN(HOr);
2594};
2595
2596class HXor : public HBinaryOperation {
2597 public:
2598  HXor(Primitive::Type result_type, HInstruction* left, HInstruction* right)
2599      : HBinaryOperation(result_type, left, right) {}
2600
2601  bool IsCommutative() const OVERRIDE { return true; }
2602
2603  int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE { return x ^ y; }
2604  int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE { return x ^ y; }
2605
2606  DECLARE_INSTRUCTION(Xor);
2607
2608 private:
2609  DISALLOW_COPY_AND_ASSIGN(HXor);
2610};
2611
2612// The value of a parameter in this method. Its location depends on
2613// the calling convention.
2614class HParameterValue : public HExpression<0> {
2615 public:
2616  HParameterValue(uint8_t index, Primitive::Type parameter_type, bool is_this = false)
2617      : HExpression(parameter_type, SideEffects::None()), index_(index), is_this_(is_this) {}
2618
2619  uint8_t GetIndex() const { return index_; }
2620
2621  bool CanBeNull() const OVERRIDE { return !is_this_; }
2622
2623  DECLARE_INSTRUCTION(ParameterValue);
2624
2625 private:
2626  // The index of this parameter in the parameters list. Must be less
2627  // than HGraph::number_of_in_vregs_.
2628  const uint8_t index_;
2629
2630  // Whether or not the parameter value corresponds to 'this' argument.
2631  const bool is_this_;
2632
2633  DISALLOW_COPY_AND_ASSIGN(HParameterValue);
2634};
2635
2636class HNot : public HUnaryOperation {
2637 public:
2638  explicit HNot(Primitive::Type result_type, HInstruction* input)
2639      : HUnaryOperation(result_type, input) {}
2640
2641  bool CanBeMoved() const OVERRIDE { return true; }
2642  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2643    UNUSED(other);
2644    return true;
2645  }
2646
2647  int32_t Evaluate(int32_t x) const OVERRIDE { return ~x; }
2648  int64_t Evaluate(int64_t x) const OVERRIDE { return ~x; }
2649
2650  DECLARE_INSTRUCTION(Not);
2651
2652 private:
2653  DISALLOW_COPY_AND_ASSIGN(HNot);
2654};
2655
2656class HBooleanNot : public HUnaryOperation {
2657 public:
2658  explicit HBooleanNot(HInstruction* input)
2659      : HUnaryOperation(Primitive::Type::kPrimBoolean, input) {}
2660
2661  bool CanBeMoved() const OVERRIDE { return true; }
2662  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2663    UNUSED(other);
2664    return true;
2665  }
2666
2667  int32_t Evaluate(int32_t x) const OVERRIDE {
2668    DCHECK(IsUint<1>(x));
2669    return !x;
2670  }
2671
2672  int64_t Evaluate(int64_t x ATTRIBUTE_UNUSED) const OVERRIDE {
2673    LOG(FATAL) << DebugName() << " cannot be used with 64-bit values";
2674    UNREACHABLE();
2675  }
2676
2677  DECLARE_INSTRUCTION(BooleanNot);
2678
2679 private:
2680  DISALLOW_COPY_AND_ASSIGN(HBooleanNot);
2681};
2682
2683class HTypeConversion : public HExpression<1> {
2684 public:
2685  // Instantiate a type conversion of `input` to `result_type`.
2686  HTypeConversion(Primitive::Type result_type, HInstruction* input, uint32_t dex_pc)
2687      : HExpression(result_type, SideEffects::None()), dex_pc_(dex_pc) {
2688    SetRawInputAt(0, input);
2689    DCHECK_NE(input->GetType(), result_type);
2690  }
2691
2692  HInstruction* GetInput() const { return InputAt(0); }
2693  Primitive::Type GetInputType() const { return GetInput()->GetType(); }
2694  Primitive::Type GetResultType() const { return GetType(); }
2695
2696  // Required by the x86 and ARM code generators when producing calls
2697  // to the runtime.
2698  uint32_t GetDexPc() const { return dex_pc_; }
2699
2700  bool CanBeMoved() const OVERRIDE { return true; }
2701  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE { return true; }
2702
2703  DECLARE_INSTRUCTION(TypeConversion);
2704
2705 private:
2706  const uint32_t dex_pc_;
2707
2708  DISALLOW_COPY_AND_ASSIGN(HTypeConversion);
2709};
2710
2711static constexpr uint32_t kNoRegNumber = -1;
2712
2713class HPhi : public HInstruction {
2714 public:
2715  HPhi(ArenaAllocator* arena, uint32_t reg_number, size_t number_of_inputs, Primitive::Type type)
2716      : HInstruction(SideEffects::None()),
2717        inputs_(arena, number_of_inputs),
2718        reg_number_(reg_number),
2719        type_(type),
2720        is_live_(false),
2721        can_be_null_(true) {
2722    inputs_.SetSize(number_of_inputs);
2723  }
2724
2725  // Returns a type equivalent to the given `type`, but that a `HPhi` can hold.
2726  static Primitive::Type ToPhiType(Primitive::Type type) {
2727    switch (type) {
2728      case Primitive::kPrimBoolean:
2729      case Primitive::kPrimByte:
2730      case Primitive::kPrimShort:
2731      case Primitive::kPrimChar:
2732        return Primitive::kPrimInt;
2733      default:
2734        return type;
2735    }
2736  }
2737
2738  size_t InputCount() const OVERRIDE { return inputs_.Size(); }
2739
2740  void AddInput(HInstruction* input);
2741
2742  Primitive::Type GetType() const OVERRIDE { return type_; }
2743  void SetType(Primitive::Type type) { type_ = type; }
2744
2745  bool CanBeNull() const OVERRIDE { return can_be_null_; }
2746  void SetCanBeNull(bool can_be_null) { can_be_null_ = can_be_null; }
2747
2748  uint32_t GetRegNumber() const { return reg_number_; }
2749
2750  void SetDead() { is_live_ = false; }
2751  void SetLive() { is_live_ = true; }
2752  bool IsDead() const { return !is_live_; }
2753  bool IsLive() const { return is_live_; }
2754
2755  DECLARE_INSTRUCTION(Phi);
2756
2757 protected:
2758  const HUserRecord<HInstruction*> InputRecordAt(size_t i) const OVERRIDE { return inputs_.Get(i); }
2759
2760  void SetRawInputRecordAt(size_t index, const HUserRecord<HInstruction*>& input) OVERRIDE {
2761    inputs_.Put(index, input);
2762  }
2763
2764 private:
2765  GrowableArray<HUserRecord<HInstruction*> > inputs_;
2766  const uint32_t reg_number_;
2767  Primitive::Type type_;
2768  bool is_live_;
2769  bool can_be_null_;
2770
2771  DISALLOW_COPY_AND_ASSIGN(HPhi);
2772};
2773
2774class HNullCheck : public HExpression<1> {
2775 public:
2776  HNullCheck(HInstruction* value, uint32_t dex_pc)
2777      : HExpression(value->GetType(), SideEffects::None()), dex_pc_(dex_pc) {
2778    SetRawInputAt(0, value);
2779  }
2780
2781  bool CanBeMoved() const OVERRIDE { return true; }
2782  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2783    UNUSED(other);
2784    return true;
2785  }
2786
2787  bool NeedsEnvironment() const OVERRIDE { return true; }
2788
2789  bool CanThrow() const OVERRIDE { return true; }
2790
2791  bool CanBeNull() const OVERRIDE { return false; }
2792
2793  uint32_t GetDexPc() const { return dex_pc_; }
2794
2795  DECLARE_INSTRUCTION(NullCheck);
2796
2797 private:
2798  const uint32_t dex_pc_;
2799
2800  DISALLOW_COPY_AND_ASSIGN(HNullCheck);
2801};
2802
2803class FieldInfo : public ValueObject {
2804 public:
2805  FieldInfo(MemberOffset field_offset, Primitive::Type field_type, bool is_volatile)
2806      : field_offset_(field_offset), field_type_(field_type), is_volatile_(is_volatile) {}
2807
2808  MemberOffset GetFieldOffset() const { return field_offset_; }
2809  Primitive::Type GetFieldType() const { return field_type_; }
2810  bool IsVolatile() const { return is_volatile_; }
2811
2812 private:
2813  const MemberOffset field_offset_;
2814  const Primitive::Type field_type_;
2815  const bool is_volatile_;
2816};
2817
2818class HInstanceFieldGet : public HExpression<1> {
2819 public:
2820  HInstanceFieldGet(HInstruction* value,
2821                    Primitive::Type field_type,
2822                    MemberOffset field_offset,
2823                    bool is_volatile)
2824      : HExpression(field_type, SideEffects::DependsOnSomething()),
2825        field_info_(field_offset, field_type, is_volatile) {
2826    SetRawInputAt(0, value);
2827  }
2828
2829  bool CanBeMoved() const OVERRIDE { return !IsVolatile(); }
2830
2831  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2832    HInstanceFieldGet* other_get = other->AsInstanceFieldGet();
2833    return GetFieldOffset().SizeValue() == other_get->GetFieldOffset().SizeValue();
2834  }
2835
2836  bool CanDoImplicitNullCheck() const OVERRIDE {
2837    return GetFieldOffset().Uint32Value() < kPageSize;
2838  }
2839
2840  size_t ComputeHashCode() const OVERRIDE {
2841    return (HInstruction::ComputeHashCode() << 7) | GetFieldOffset().SizeValue();
2842  }
2843
2844  const FieldInfo& GetFieldInfo() const { return field_info_; }
2845  MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
2846  Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); }
2847  bool IsVolatile() const { return field_info_.IsVolatile(); }
2848
2849  DECLARE_INSTRUCTION(InstanceFieldGet);
2850
2851 private:
2852  const FieldInfo field_info_;
2853
2854  DISALLOW_COPY_AND_ASSIGN(HInstanceFieldGet);
2855};
2856
2857class HInstanceFieldSet : public HTemplateInstruction<2> {
2858 public:
2859  HInstanceFieldSet(HInstruction* object,
2860                    HInstruction* value,
2861                    Primitive::Type field_type,
2862                    MemberOffset field_offset,
2863                    bool is_volatile)
2864      : HTemplateInstruction(SideEffects::ChangesSomething()),
2865        field_info_(field_offset, field_type, is_volatile) {
2866    SetRawInputAt(0, object);
2867    SetRawInputAt(1, value);
2868  }
2869
2870  bool CanDoImplicitNullCheck() const OVERRIDE {
2871    return GetFieldOffset().Uint32Value() < kPageSize;
2872  }
2873
2874  const FieldInfo& GetFieldInfo() const { return field_info_; }
2875  MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
2876  Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); }
2877  bool IsVolatile() const { return field_info_.IsVolatile(); }
2878  HInstruction* GetValue() const { return InputAt(1); }
2879
2880  DECLARE_INSTRUCTION(InstanceFieldSet);
2881
2882 private:
2883  const FieldInfo field_info_;
2884
2885  DISALLOW_COPY_AND_ASSIGN(HInstanceFieldSet);
2886};
2887
2888class HArrayGet : public HExpression<2> {
2889 public:
2890  HArrayGet(HInstruction* array, HInstruction* index, Primitive::Type type)
2891      : HExpression(type, SideEffects::DependsOnSomething()) {
2892    SetRawInputAt(0, array);
2893    SetRawInputAt(1, index);
2894  }
2895
2896  bool CanBeMoved() const OVERRIDE { return true; }
2897  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2898    UNUSED(other);
2899    return true;
2900  }
2901  bool CanDoImplicitNullCheck() const OVERRIDE {
2902    // TODO: We can be smarter here.
2903    // Currently, the array access is always preceded by an ArrayLength or a NullCheck
2904    // which generates the implicit null check. There are cases when these can be removed
2905    // to produce better code. If we ever add optimizations to do so we should allow an
2906    // implicit check here (as long as the address falls in the first page).
2907    return false;
2908  }
2909
2910  void SetType(Primitive::Type type) { type_ = type; }
2911
2912  HInstruction* GetArray() const { return InputAt(0); }
2913  HInstruction* GetIndex() const { return InputAt(1); }
2914
2915  DECLARE_INSTRUCTION(ArrayGet);
2916
2917 private:
2918  DISALLOW_COPY_AND_ASSIGN(HArrayGet);
2919};
2920
2921class HArraySet : public HTemplateInstruction<3> {
2922 public:
2923  HArraySet(HInstruction* array,
2924            HInstruction* index,
2925            HInstruction* value,
2926            Primitive::Type expected_component_type,
2927            uint32_t dex_pc)
2928      : HTemplateInstruction(SideEffects::ChangesSomething()),
2929        dex_pc_(dex_pc),
2930        expected_component_type_(expected_component_type),
2931        needs_type_check_(value->GetType() == Primitive::kPrimNot) {
2932    SetRawInputAt(0, array);
2933    SetRawInputAt(1, index);
2934    SetRawInputAt(2, value);
2935  }
2936
2937  bool NeedsEnvironment() const OVERRIDE {
2938    // We currently always call a runtime method to catch array store
2939    // exceptions.
2940    return needs_type_check_;
2941  }
2942
2943  bool CanDoImplicitNullCheck() const OVERRIDE {
2944    // TODO: Same as for ArrayGet.
2945    return false;
2946  }
2947
2948  void ClearNeedsTypeCheck() {
2949    needs_type_check_ = false;
2950  }
2951
2952  bool NeedsTypeCheck() const { return needs_type_check_; }
2953
2954  uint32_t GetDexPc() const { return dex_pc_; }
2955
2956  HInstruction* GetArray() const { return InputAt(0); }
2957  HInstruction* GetIndex() const { return InputAt(1); }
2958  HInstruction* GetValue() const { return InputAt(2); }
2959
2960  Primitive::Type GetComponentType() const {
2961    // The Dex format does not type floating point index operations. Since the
2962    // `expected_component_type_` is set during building and can therefore not
2963    // be correct, we also check what is the value type. If it is a floating
2964    // point type, we must use that type.
2965    Primitive::Type value_type = GetValue()->GetType();
2966    return ((value_type == Primitive::kPrimFloat) || (value_type == Primitive::kPrimDouble))
2967        ? value_type
2968        : expected_component_type_;
2969  }
2970
2971  DECLARE_INSTRUCTION(ArraySet);
2972
2973 private:
2974  const uint32_t dex_pc_;
2975  const Primitive::Type expected_component_type_;
2976  bool needs_type_check_;
2977
2978  DISALLOW_COPY_AND_ASSIGN(HArraySet);
2979};
2980
2981class HArrayLength : public HExpression<1> {
2982 public:
2983  explicit HArrayLength(HInstruction* array)
2984      : HExpression(Primitive::kPrimInt, SideEffects::None()) {
2985    // Note that arrays do not change length, so the instruction does not
2986    // depend on any write.
2987    SetRawInputAt(0, array);
2988  }
2989
2990  bool CanBeMoved() const OVERRIDE { return true; }
2991  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2992    UNUSED(other);
2993    return true;
2994  }
2995  bool CanDoImplicitNullCheck() const OVERRIDE { return true; }
2996
2997  DECLARE_INSTRUCTION(ArrayLength);
2998
2999 private:
3000  DISALLOW_COPY_AND_ASSIGN(HArrayLength);
3001};
3002
3003class HBoundsCheck : public HExpression<2> {
3004 public:
3005  HBoundsCheck(HInstruction* index, HInstruction* length, uint32_t dex_pc)
3006      : HExpression(index->GetType(), SideEffects::None()), dex_pc_(dex_pc) {
3007    DCHECK(index->GetType() == Primitive::kPrimInt);
3008    SetRawInputAt(0, index);
3009    SetRawInputAt(1, length);
3010  }
3011
3012  bool CanBeMoved() const OVERRIDE { return true; }
3013  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
3014    UNUSED(other);
3015    return true;
3016  }
3017
3018  bool NeedsEnvironment() const OVERRIDE { return true; }
3019
3020  bool CanThrow() const OVERRIDE { return true; }
3021
3022  uint32_t GetDexPc() const { return dex_pc_; }
3023
3024  DECLARE_INSTRUCTION(BoundsCheck);
3025
3026 private:
3027  const uint32_t dex_pc_;
3028
3029  DISALLOW_COPY_AND_ASSIGN(HBoundsCheck);
3030};
3031
3032/**
3033 * Some DEX instructions are folded into multiple HInstructions that need
3034 * to stay live until the last HInstruction. This class
3035 * is used as a marker for the baseline compiler to ensure its preceding
3036 * HInstruction stays live. `index` represents the stack location index of the
3037 * instruction (the actual offset is computed as index * vreg_size).
3038 */
3039class HTemporary : public HTemplateInstruction<0> {
3040 public:
3041  explicit HTemporary(size_t index) : HTemplateInstruction(SideEffects::None()), index_(index) {}
3042
3043  size_t GetIndex() const { return index_; }
3044
3045  Primitive::Type GetType() const OVERRIDE {
3046    // The previous instruction is the one that will be stored in the temporary location.
3047    DCHECK(GetPrevious() != nullptr);
3048    return GetPrevious()->GetType();
3049  }
3050
3051  DECLARE_INSTRUCTION(Temporary);
3052
3053 private:
3054  const size_t index_;
3055
3056  DISALLOW_COPY_AND_ASSIGN(HTemporary);
3057};
3058
3059class HSuspendCheck : public HTemplateInstruction<0> {
3060 public:
3061  explicit HSuspendCheck(uint32_t dex_pc)
3062      : HTemplateInstruction(SideEffects::None()), dex_pc_(dex_pc) {}
3063
3064  bool NeedsEnvironment() const OVERRIDE {
3065    return true;
3066  }
3067
3068  uint32_t GetDexPc() const { return dex_pc_; }
3069
3070  DECLARE_INSTRUCTION(SuspendCheck);
3071
3072 private:
3073  const uint32_t dex_pc_;
3074
3075  DISALLOW_COPY_AND_ASSIGN(HSuspendCheck);
3076};
3077
3078/**
3079 * Instruction to load a Class object.
3080 */
3081class HLoadClass : public HExpression<0> {
3082 public:
3083  HLoadClass(uint16_t type_index,
3084             bool is_referrers_class,
3085             uint32_t dex_pc)
3086      : HExpression(Primitive::kPrimNot, SideEffects::None()),
3087        type_index_(type_index),
3088        is_referrers_class_(is_referrers_class),
3089        dex_pc_(dex_pc),
3090        generate_clinit_check_(false),
3091        loaded_class_rti_(ReferenceTypeInfo::CreateTop(/* is_exact */ false)) {}
3092
3093  bool CanBeMoved() const OVERRIDE { return true; }
3094
3095  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
3096    return other->AsLoadClass()->type_index_ == type_index_;
3097  }
3098
3099  size_t ComputeHashCode() const OVERRIDE { return type_index_; }
3100
3101  uint32_t GetDexPc() const { return dex_pc_; }
3102  uint16_t GetTypeIndex() const { return type_index_; }
3103  bool IsReferrersClass() const { return is_referrers_class_; }
3104
3105  bool NeedsEnvironment() const OVERRIDE {
3106    // Will call runtime and load the class if the class is not loaded yet.
3107    // TODO: finer grain decision.
3108    return !is_referrers_class_;
3109  }
3110
3111  bool MustGenerateClinitCheck() const {
3112    return generate_clinit_check_;
3113  }
3114
3115  void SetMustGenerateClinitCheck() {
3116    generate_clinit_check_ = true;
3117  }
3118
3119  bool CanCallRuntime() const {
3120    return MustGenerateClinitCheck() || !is_referrers_class_;
3121  }
3122
3123  bool CanThrow() const OVERRIDE {
3124    // May call runtime and and therefore can throw.
3125    // TODO: finer grain decision.
3126    return !is_referrers_class_;
3127  }
3128
3129  ReferenceTypeInfo GetLoadedClassRTI() {
3130    return loaded_class_rti_;
3131  }
3132
3133  void SetLoadedClassRTI(ReferenceTypeInfo rti) {
3134    // Make sure we only set exact types (the loaded class should never be merged).
3135    DCHECK(rti.IsExact());
3136    loaded_class_rti_ = rti;
3137  }
3138
3139  bool IsResolved() {
3140    return loaded_class_rti_.IsExact();
3141  }
3142
3143  bool NeedsDexCache() const OVERRIDE { return !is_referrers_class_; }
3144
3145  DECLARE_INSTRUCTION(LoadClass);
3146
3147 private:
3148  const uint16_t type_index_;
3149  const bool is_referrers_class_;
3150  const uint32_t dex_pc_;
3151  // Whether this instruction must generate the initialization check.
3152  // Used for code generation.
3153  bool generate_clinit_check_;
3154
3155  ReferenceTypeInfo loaded_class_rti_;
3156
3157  DISALLOW_COPY_AND_ASSIGN(HLoadClass);
3158};
3159
3160class HLoadString : public HExpression<0> {
3161 public:
3162  HLoadString(uint32_t string_index, uint32_t dex_pc)
3163      : HExpression(Primitive::kPrimNot, SideEffects::None()),
3164        string_index_(string_index),
3165        dex_pc_(dex_pc) {}
3166
3167  bool CanBeMoved() const OVERRIDE { return true; }
3168
3169  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
3170    return other->AsLoadString()->string_index_ == string_index_;
3171  }
3172
3173  size_t ComputeHashCode() const OVERRIDE { return string_index_; }
3174
3175  uint32_t GetDexPc() const { return dex_pc_; }
3176  uint32_t GetStringIndex() const { return string_index_; }
3177
3178  // TODO: Can we deopt or debug when we resolve a string?
3179  bool NeedsEnvironment() const OVERRIDE { return false; }
3180  bool NeedsDexCache() const OVERRIDE { return true; }
3181
3182  DECLARE_INSTRUCTION(LoadString);
3183
3184 private:
3185  const uint32_t string_index_;
3186  const uint32_t dex_pc_;
3187
3188  DISALLOW_COPY_AND_ASSIGN(HLoadString);
3189};
3190
3191// TODO: Pass this check to HInvokeStaticOrDirect nodes.
3192/**
3193 * Performs an initialization check on its Class object input.
3194 */
3195class HClinitCheck : public HExpression<1> {
3196 public:
3197  explicit HClinitCheck(HLoadClass* constant, uint32_t dex_pc)
3198      : HExpression(Primitive::kPrimNot, SideEffects::ChangesSomething()),
3199        dex_pc_(dex_pc) {
3200    SetRawInputAt(0, constant);
3201  }
3202
3203  bool CanBeMoved() const OVERRIDE { return true; }
3204  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
3205    UNUSED(other);
3206    return true;
3207  }
3208
3209  bool NeedsEnvironment() const OVERRIDE {
3210    // May call runtime to initialize the class.
3211    return true;
3212  }
3213
3214  uint32_t GetDexPc() const { return dex_pc_; }
3215
3216  HLoadClass* GetLoadClass() const { return InputAt(0)->AsLoadClass(); }
3217
3218  DECLARE_INSTRUCTION(ClinitCheck);
3219
3220 private:
3221  const uint32_t dex_pc_;
3222
3223  DISALLOW_COPY_AND_ASSIGN(HClinitCheck);
3224};
3225
3226class HStaticFieldGet : public HExpression<1> {
3227 public:
3228  HStaticFieldGet(HInstruction* cls,
3229                  Primitive::Type field_type,
3230                  MemberOffset field_offset,
3231                  bool is_volatile)
3232      : HExpression(field_type, SideEffects::DependsOnSomething()),
3233        field_info_(field_offset, field_type, is_volatile) {
3234    SetRawInputAt(0, cls);
3235  }
3236
3237
3238  bool CanBeMoved() const OVERRIDE { return !IsVolatile(); }
3239
3240  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
3241    HStaticFieldGet* other_get = other->AsStaticFieldGet();
3242    return GetFieldOffset().SizeValue() == other_get->GetFieldOffset().SizeValue();
3243  }
3244
3245  size_t ComputeHashCode() const OVERRIDE {
3246    return (HInstruction::ComputeHashCode() << 7) | GetFieldOffset().SizeValue();
3247  }
3248
3249  const FieldInfo& GetFieldInfo() const { return field_info_; }
3250  MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
3251  Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); }
3252  bool IsVolatile() const { return field_info_.IsVolatile(); }
3253
3254  DECLARE_INSTRUCTION(StaticFieldGet);
3255
3256 private:
3257  const FieldInfo field_info_;
3258
3259  DISALLOW_COPY_AND_ASSIGN(HStaticFieldGet);
3260};
3261
3262class HStaticFieldSet : public HTemplateInstruction<2> {
3263 public:
3264  HStaticFieldSet(HInstruction* cls,
3265                  HInstruction* value,
3266                  Primitive::Type field_type,
3267                  MemberOffset field_offset,
3268                  bool is_volatile)
3269      : HTemplateInstruction(SideEffects::ChangesSomething()),
3270        field_info_(field_offset, field_type, is_volatile) {
3271    SetRawInputAt(0, cls);
3272    SetRawInputAt(1, value);
3273  }
3274
3275  const FieldInfo& GetFieldInfo() const { return field_info_; }
3276  MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
3277  Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); }
3278  bool IsVolatile() const { return field_info_.IsVolatile(); }
3279
3280  HInstruction* GetValue() const { return InputAt(1); }
3281
3282  DECLARE_INSTRUCTION(StaticFieldSet);
3283
3284 private:
3285  const FieldInfo field_info_;
3286
3287  DISALLOW_COPY_AND_ASSIGN(HStaticFieldSet);
3288};
3289
3290// Implement the move-exception DEX instruction.
3291class HLoadException : public HExpression<0> {
3292 public:
3293  HLoadException() : HExpression(Primitive::kPrimNot, SideEffects::None()) {}
3294
3295  DECLARE_INSTRUCTION(LoadException);
3296
3297 private:
3298  DISALLOW_COPY_AND_ASSIGN(HLoadException);
3299};
3300
3301class HThrow : public HTemplateInstruction<1> {
3302 public:
3303  HThrow(HInstruction* exception, uint32_t dex_pc)
3304      : HTemplateInstruction(SideEffects::None()), dex_pc_(dex_pc) {
3305    SetRawInputAt(0, exception);
3306  }
3307
3308  bool IsControlFlow() const OVERRIDE { return true; }
3309
3310  bool NeedsEnvironment() const OVERRIDE { return true; }
3311
3312  bool CanThrow() const OVERRIDE { return true; }
3313
3314  uint32_t GetDexPc() const { return dex_pc_; }
3315
3316  DECLARE_INSTRUCTION(Throw);
3317
3318 private:
3319  const uint32_t dex_pc_;
3320
3321  DISALLOW_COPY_AND_ASSIGN(HThrow);
3322};
3323
3324class HInstanceOf : public HExpression<2> {
3325 public:
3326  HInstanceOf(HInstruction* object,
3327              HLoadClass* constant,
3328              bool class_is_final,
3329              uint32_t dex_pc)
3330      : HExpression(Primitive::kPrimBoolean, SideEffects::None()),
3331        class_is_final_(class_is_final),
3332        must_do_null_check_(true),
3333        dex_pc_(dex_pc) {
3334    SetRawInputAt(0, object);
3335    SetRawInputAt(1, constant);
3336  }
3337
3338  bool CanBeMoved() const OVERRIDE { return true; }
3339
3340  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
3341    return true;
3342  }
3343
3344  bool NeedsEnvironment() const OVERRIDE {
3345    return false;
3346  }
3347
3348  uint32_t GetDexPc() const { return dex_pc_; }
3349
3350  bool IsClassFinal() const { return class_is_final_; }
3351
3352  // Used only in code generation.
3353  bool MustDoNullCheck() const { return must_do_null_check_; }
3354  void ClearMustDoNullCheck() { must_do_null_check_ = false; }
3355
3356  DECLARE_INSTRUCTION(InstanceOf);
3357
3358 private:
3359  const bool class_is_final_;
3360  bool must_do_null_check_;
3361  const uint32_t dex_pc_;
3362
3363  DISALLOW_COPY_AND_ASSIGN(HInstanceOf);
3364};
3365
3366class HBoundType : public HExpression<1> {
3367 public:
3368  HBoundType(HInstruction* input, ReferenceTypeInfo bound_type)
3369      : HExpression(Primitive::kPrimNot, SideEffects::None()),
3370        bound_type_(bound_type) {
3371    DCHECK_EQ(input->GetType(), Primitive::kPrimNot);
3372    SetRawInputAt(0, input);
3373  }
3374
3375  const ReferenceTypeInfo& GetBoundType() const { return bound_type_; }
3376
3377  bool CanBeNull() const OVERRIDE {
3378    // `null instanceof ClassX` always return false so we can't be null.
3379    return false;
3380  }
3381
3382  DECLARE_INSTRUCTION(BoundType);
3383
3384 private:
3385  // Encodes the most upper class that this instruction can have. In other words
3386  // it is always the case that GetBoundType().IsSupertypeOf(GetReferenceType()).
3387  // It is used to bound the type in cases like `if (x instanceof ClassX) {}`
3388  const ReferenceTypeInfo bound_type_;
3389
3390  DISALLOW_COPY_AND_ASSIGN(HBoundType);
3391};
3392
3393class HCheckCast : public HTemplateInstruction<2> {
3394 public:
3395  HCheckCast(HInstruction* object,
3396             HLoadClass* constant,
3397             bool class_is_final,
3398             uint32_t dex_pc)
3399      : HTemplateInstruction(SideEffects::None()),
3400        class_is_final_(class_is_final),
3401        must_do_null_check_(true),
3402        dex_pc_(dex_pc) {
3403    SetRawInputAt(0, object);
3404    SetRawInputAt(1, constant);
3405  }
3406
3407  bool CanBeMoved() const OVERRIDE { return true; }
3408
3409  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
3410    return true;
3411  }
3412
3413  bool NeedsEnvironment() const OVERRIDE {
3414    // Instruction may throw a CheckCastError.
3415    return true;
3416  }
3417
3418  bool CanThrow() const OVERRIDE { return true; }
3419
3420  bool MustDoNullCheck() const { return must_do_null_check_; }
3421  void ClearMustDoNullCheck() { must_do_null_check_ = false; }
3422
3423  uint32_t GetDexPc() const { return dex_pc_; }
3424
3425  bool IsClassFinal() const { return class_is_final_; }
3426
3427  DECLARE_INSTRUCTION(CheckCast);
3428
3429 private:
3430  const bool class_is_final_;
3431  bool must_do_null_check_;
3432  const uint32_t dex_pc_;
3433
3434  DISALLOW_COPY_AND_ASSIGN(HCheckCast);
3435};
3436
3437class HMonitorOperation : public HTemplateInstruction<1> {
3438 public:
3439  enum OperationKind {
3440    kEnter,
3441    kExit,
3442  };
3443
3444  HMonitorOperation(HInstruction* object, OperationKind kind, uint32_t dex_pc)
3445    : HTemplateInstruction(SideEffects::None()), kind_(kind), dex_pc_(dex_pc) {
3446    SetRawInputAt(0, object);
3447  }
3448
3449  // Instruction may throw a Java exception, so we need an environment.
3450  bool NeedsEnvironment() const OVERRIDE { return true; }
3451  bool CanThrow() const OVERRIDE { return true; }
3452
3453  uint32_t GetDexPc() const { return dex_pc_; }
3454
3455  bool IsEnter() const { return kind_ == kEnter; }
3456
3457  DECLARE_INSTRUCTION(MonitorOperation);
3458
3459 private:
3460  const OperationKind kind_;
3461  const uint32_t dex_pc_;
3462
3463 private:
3464  DISALLOW_COPY_AND_ASSIGN(HMonitorOperation);
3465};
3466
3467class MoveOperands : public ArenaObject<kArenaAllocMisc> {
3468 public:
3469  MoveOperands(Location source,
3470               Location destination,
3471               Primitive::Type type,
3472               HInstruction* instruction)
3473      : source_(source), destination_(destination), type_(type), instruction_(instruction) {}
3474
3475  Location GetSource() const { return source_; }
3476  Location GetDestination() const { return destination_; }
3477
3478  void SetSource(Location value) { source_ = value; }
3479  void SetDestination(Location value) { destination_ = value; }
3480
3481  // The parallel move resolver marks moves as "in-progress" by clearing the
3482  // destination (but not the source).
3483  Location MarkPending() {
3484    DCHECK(!IsPending());
3485    Location dest = destination_;
3486    destination_ = Location::NoLocation();
3487    return dest;
3488  }
3489
3490  void ClearPending(Location dest) {
3491    DCHECK(IsPending());
3492    destination_ = dest;
3493  }
3494
3495  bool IsPending() const {
3496    DCHECK(!source_.IsInvalid() || destination_.IsInvalid());
3497    return destination_.IsInvalid() && !source_.IsInvalid();
3498  }
3499
3500  // True if this blocks a move from the given location.
3501  bool Blocks(Location loc) const {
3502    return !IsEliminated() && (source_.Contains(loc) || loc.Contains(source_));
3503  }
3504
3505  // A move is redundant if it's been eliminated, if its source and
3506  // destination are the same, or if its destination is unneeded.
3507  bool IsRedundant() const {
3508    return IsEliminated() || destination_.IsInvalid() || source_.Equals(destination_);
3509  }
3510
3511  // We clear both operands to indicate move that's been eliminated.
3512  void Eliminate() {
3513    source_ = destination_ = Location::NoLocation();
3514  }
3515
3516  bool IsEliminated() const {
3517    DCHECK(!source_.IsInvalid() || destination_.IsInvalid());
3518    return source_.IsInvalid();
3519  }
3520
3521  bool Is64BitMove() const {
3522    return Primitive::Is64BitType(type_);
3523  }
3524
3525  HInstruction* GetInstruction() const { return instruction_; }
3526
3527 private:
3528  Location source_;
3529  Location destination_;
3530  // The type this move is for.
3531  Primitive::Type type_;
3532  // The instruction this move is assocatied with. Null when this move is
3533  // for moving an input in the expected locations of user (including a phi user).
3534  // This is only used in debug mode, to ensure we do not connect interval siblings
3535  // in the same parallel move.
3536  HInstruction* instruction_;
3537};
3538
3539static constexpr size_t kDefaultNumberOfMoves = 4;
3540
3541class HParallelMove : public HTemplateInstruction<0> {
3542 public:
3543  explicit HParallelMove(ArenaAllocator* arena)
3544      : HTemplateInstruction(SideEffects::None()), moves_(arena, kDefaultNumberOfMoves) {}
3545
3546  void AddMove(Location source,
3547               Location destination,
3548               Primitive::Type type,
3549               HInstruction* instruction) {
3550    DCHECK(source.IsValid());
3551    DCHECK(destination.IsValid());
3552    if (kIsDebugBuild) {
3553      if (instruction != nullptr) {
3554        for (size_t i = 0, e = moves_.Size(); i < e; ++i) {
3555          if (moves_.Get(i).GetInstruction() == instruction) {
3556            // Special case the situation where the move is for the spill slot
3557            // of the instruction.
3558            if ((GetPrevious() == instruction)
3559                || ((GetPrevious() == nullptr)
3560                    && instruction->IsPhi()
3561                    && instruction->GetBlock() == GetBlock())) {
3562              DCHECK_NE(destination.GetKind(), moves_.Get(i).GetDestination().GetKind())
3563                  << "Doing parallel moves for the same instruction.";
3564            } else {
3565              DCHECK(false) << "Doing parallel moves for the same instruction.";
3566            }
3567          }
3568        }
3569      }
3570      for (size_t i = 0, e = moves_.Size(); i < e; ++i) {
3571        DCHECK(!destination.Equals(moves_.Get(i).GetDestination()))
3572            << "Same destination for two moves in a parallel move.";
3573      }
3574    }
3575    moves_.Add(MoveOperands(source, destination, type, instruction));
3576  }
3577
3578  MoveOperands* MoveOperandsAt(size_t index) const {
3579    return moves_.GetRawStorage() + index;
3580  }
3581
3582  size_t NumMoves() const { return moves_.Size(); }
3583
3584  DECLARE_INSTRUCTION(ParallelMove);
3585
3586 private:
3587  GrowableArray<MoveOperands> moves_;
3588
3589  DISALLOW_COPY_AND_ASSIGN(HParallelMove);
3590};
3591
3592class HGraphVisitor : public ValueObject {
3593 public:
3594  explicit HGraphVisitor(HGraph* graph) : graph_(graph) {}
3595  virtual ~HGraphVisitor() {}
3596
3597  virtual void VisitInstruction(HInstruction* instruction) { UNUSED(instruction); }
3598  virtual void VisitBasicBlock(HBasicBlock* block);
3599
3600  // Visit the graph following basic block insertion order.
3601  void VisitInsertionOrder();
3602
3603  // Visit the graph following dominator tree reverse post-order.
3604  void VisitReversePostOrder();
3605
3606  HGraph* GetGraph() const { return graph_; }
3607
3608  // Visit functions for instruction classes.
3609#define DECLARE_VISIT_INSTRUCTION(name, super)                                        \
3610  virtual void Visit##name(H##name* instr) { VisitInstruction(instr); }
3611
3612  FOR_EACH_INSTRUCTION(DECLARE_VISIT_INSTRUCTION)
3613
3614#undef DECLARE_VISIT_INSTRUCTION
3615
3616 private:
3617  HGraph* const graph_;
3618
3619  DISALLOW_COPY_AND_ASSIGN(HGraphVisitor);
3620};
3621
3622class HGraphDelegateVisitor : public HGraphVisitor {
3623 public:
3624  explicit HGraphDelegateVisitor(HGraph* graph) : HGraphVisitor(graph) {}
3625  virtual ~HGraphDelegateVisitor() {}
3626
3627  // Visit functions that delegate to to super class.
3628#define DECLARE_VISIT_INSTRUCTION(name, super)                                        \
3629  void Visit##name(H##name* instr) OVERRIDE { Visit##super(instr); }
3630
3631  FOR_EACH_INSTRUCTION(DECLARE_VISIT_INSTRUCTION)
3632
3633#undef DECLARE_VISIT_INSTRUCTION
3634
3635 private:
3636  DISALLOW_COPY_AND_ASSIGN(HGraphDelegateVisitor);
3637};
3638
3639class HInsertionOrderIterator : public ValueObject {
3640 public:
3641  explicit HInsertionOrderIterator(const HGraph& graph) : graph_(graph), index_(0) {}
3642
3643  bool Done() const { return index_ == graph_.GetBlocks().Size(); }
3644  HBasicBlock* Current() const { return graph_.GetBlocks().Get(index_); }
3645  void Advance() { ++index_; }
3646
3647 private:
3648  const HGraph& graph_;
3649  size_t index_;
3650
3651  DISALLOW_COPY_AND_ASSIGN(HInsertionOrderIterator);
3652};
3653
3654class HReversePostOrderIterator : public ValueObject {
3655 public:
3656  explicit HReversePostOrderIterator(const HGraph& graph) : graph_(graph), index_(0) {
3657    // Check that reverse post order of the graph has been built.
3658    DCHECK(!graph.GetReversePostOrder().IsEmpty());
3659  }
3660
3661  bool Done() const { return index_ == graph_.GetReversePostOrder().Size(); }
3662  HBasicBlock* Current() const { return graph_.GetReversePostOrder().Get(index_); }
3663  void Advance() { ++index_; }
3664
3665 private:
3666  const HGraph& graph_;
3667  size_t index_;
3668
3669  DISALLOW_COPY_AND_ASSIGN(HReversePostOrderIterator);
3670};
3671
3672class HPostOrderIterator : public ValueObject {
3673 public:
3674  explicit HPostOrderIterator(const HGraph& graph)
3675      : graph_(graph), index_(graph_.GetReversePostOrder().Size()) {
3676    // Check that reverse post order of the graph has been built.
3677    DCHECK(!graph.GetReversePostOrder().IsEmpty());
3678  }
3679
3680  bool Done() const { return index_ == 0; }
3681  HBasicBlock* Current() const { return graph_.GetReversePostOrder().Get(index_ - 1); }
3682  void Advance() { --index_; }
3683
3684 private:
3685  const HGraph& graph_;
3686  size_t index_;
3687
3688  DISALLOW_COPY_AND_ASSIGN(HPostOrderIterator);
3689};
3690
3691class HLinearPostOrderIterator : public ValueObject {
3692 public:
3693  explicit HLinearPostOrderIterator(const HGraph& graph)
3694      : order_(graph.GetLinearOrder()), index_(graph.GetLinearOrder().Size()) {}
3695
3696  bool Done() const { return index_ == 0; }
3697
3698  HBasicBlock* Current() const { return order_.Get(index_ -1); }
3699
3700  void Advance() {
3701    --index_;
3702    DCHECK_GE(index_, 0U);
3703  }
3704
3705 private:
3706  const GrowableArray<HBasicBlock*>& order_;
3707  size_t index_;
3708
3709  DISALLOW_COPY_AND_ASSIGN(HLinearPostOrderIterator);
3710};
3711
3712class HLinearOrderIterator : public ValueObject {
3713 public:
3714  explicit HLinearOrderIterator(const HGraph& graph)
3715      : order_(graph.GetLinearOrder()), index_(0) {}
3716
3717  bool Done() const { return index_ == order_.Size(); }
3718  HBasicBlock* Current() const { return order_.Get(index_); }
3719  void Advance() { ++index_; }
3720
3721 private:
3722  const GrowableArray<HBasicBlock*>& order_;
3723  size_t index_;
3724
3725  DISALLOW_COPY_AND_ASSIGN(HLinearOrderIterator);
3726};
3727
3728// Iterator over the blocks that art part of the loop. Includes blocks part
3729// of an inner loop. The order in which the blocks are iterated is on their
3730// block id.
3731class HBlocksInLoopIterator : public ValueObject {
3732 public:
3733  explicit HBlocksInLoopIterator(const HLoopInformation& info)
3734      : blocks_in_loop_(info.GetBlocks()),
3735        blocks_(info.GetHeader()->GetGraph()->GetBlocks()),
3736        index_(0) {
3737    if (!blocks_in_loop_.IsBitSet(index_)) {
3738      Advance();
3739    }
3740  }
3741
3742  bool Done() const { return index_ == blocks_.Size(); }
3743  HBasicBlock* Current() const { return blocks_.Get(index_); }
3744  void Advance() {
3745    ++index_;
3746    for (size_t e = blocks_.Size(); index_ < e; ++index_) {
3747      if (blocks_in_loop_.IsBitSet(index_)) {
3748        break;
3749      }
3750    }
3751  }
3752
3753 private:
3754  const BitVector& blocks_in_loop_;
3755  const GrowableArray<HBasicBlock*>& blocks_;
3756  size_t index_;
3757
3758  DISALLOW_COPY_AND_ASSIGN(HBlocksInLoopIterator);
3759};
3760
3761inline int64_t Int64FromConstant(HConstant* constant) {
3762  DCHECK(constant->IsIntConstant() || constant->IsLongConstant());
3763  return constant->IsIntConstant() ? constant->AsIntConstant()->GetValue()
3764                                   : constant->AsLongConstant()->GetValue();
3765}
3766
3767}  // namespace art
3768
3769#endif  // ART_COMPILER_OPTIMIZING_NODES_H_
3770