nodes.h revision cc42be074ed15235426cdbcb34f357ead2be2caf
1/*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#ifndef ART_COMPILER_OPTIMIZING_NODES_H_
18#define ART_COMPILER_OPTIMIZING_NODES_H_
19
20#include <algorithm>
21#include <array>
22#include <type_traits>
23
24#include "base/arena_bit_vector.h"
25#include "base/arena_containers.h"
26#include "base/arena_object.h"
27#include "base/array_ref.h"
28#include "base/stl_util.h"
29#include "base/transform_array_ref.h"
30#include "dex_file.h"
31#include "entrypoints/quick/quick_entrypoints_enum.h"
32#include "handle.h"
33#include "handle_scope.h"
34#include "invoke_type.h"
35#include "intrinsics_enum.h"
36#include "locations.h"
37#include "method_reference.h"
38#include "mirror/class.h"
39#include "offsets.h"
40#include "primitive.h"
41#include "utils/intrusive_forward_list.h"
42
43namespace art {
44
45class GraphChecker;
46class HBasicBlock;
47class HCurrentMethod;
48class HDoubleConstant;
49class HEnvironment;
50class HFloatConstant;
51class HGraphBuilder;
52class HGraphVisitor;
53class HInstruction;
54class HIntConstant;
55class HInvoke;
56class HLongConstant;
57class HNullConstant;
58class HPhi;
59class HSuspendCheck;
60class HTryBoundary;
61class LiveInterval;
62class LocationSummary;
63class SlowPathCode;
64class SsaBuilder;
65
66namespace mirror {
67class DexCache;
68}  // namespace mirror
69
70static const int kDefaultNumberOfBlocks = 8;
71static const int kDefaultNumberOfSuccessors = 2;
72static const int kDefaultNumberOfPredecessors = 2;
73static const int kDefaultNumberOfExceptionalPredecessors = 0;
74static const int kDefaultNumberOfDominatedBlocks = 1;
75static const int kDefaultNumberOfBackEdges = 1;
76
77// The maximum (meaningful) distance (31) that can be used in an integer shift/rotate operation.
78static constexpr int32_t kMaxIntShiftDistance = 0x1f;
79// The maximum (meaningful) distance (63) that can be used in a long shift/rotate operation.
80static constexpr int32_t kMaxLongShiftDistance = 0x3f;
81
82static constexpr uint32_t kUnknownFieldIndex = static_cast<uint32_t>(-1);
83static constexpr uint16_t kUnknownClassDefIndex = static_cast<uint16_t>(-1);
84
85static constexpr InvokeType kInvalidInvokeType = static_cast<InvokeType>(-1);
86
87static constexpr uint32_t kNoDexPc = -1;
88
89inline bool IsSameDexFile(const DexFile& lhs, const DexFile& rhs) {
90  // For the purposes of the compiler, the dex files must actually be the same object
91  // if we want to safely treat them as the same. This is especially important for JIT
92  // as custom class loaders can open the same underlying file (or memory) multiple
93  // times and provide different class resolution but no two class loaders should ever
94  // use the same DexFile object - doing so is an unsupported hack that can lead to
95  // all sorts of weird failures.
96  return &lhs == &rhs;
97}
98
99enum IfCondition {
100  // All types.
101  kCondEQ,  // ==
102  kCondNE,  // !=
103  // Signed integers and floating-point numbers.
104  kCondLT,  // <
105  kCondLE,  // <=
106  kCondGT,  // >
107  kCondGE,  // >=
108  // Unsigned integers.
109  kCondB,   // <
110  kCondBE,  // <=
111  kCondA,   // >
112  kCondAE,  // >=
113  // First and last aliases.
114  kCondFirst = kCondEQ,
115  kCondLast = kCondAE,
116};
117
118enum GraphAnalysisResult {
119  kAnalysisSkipped,
120  kAnalysisInvalidBytecode,
121  kAnalysisFailThrowCatchLoop,
122  kAnalysisFailAmbiguousArrayOp,
123  kAnalysisSuccess,
124};
125
126class HInstructionList : public ValueObject {
127 public:
128  HInstructionList() : first_instruction_(nullptr), last_instruction_(nullptr) {}
129
130  void AddInstruction(HInstruction* instruction);
131  void RemoveInstruction(HInstruction* instruction);
132
133  // Insert `instruction` before/after an existing instruction `cursor`.
134  void InsertInstructionBefore(HInstruction* instruction, HInstruction* cursor);
135  void InsertInstructionAfter(HInstruction* instruction, HInstruction* cursor);
136
137  // Return true if this list contains `instruction`.
138  bool Contains(HInstruction* instruction) const;
139
140  // Return true if `instruction1` is found before `instruction2` in
141  // this instruction list and false otherwise.  Abort if none
142  // of these instructions is found.
143  bool FoundBefore(const HInstruction* instruction1,
144                   const HInstruction* instruction2) const;
145
146  bool IsEmpty() const { return first_instruction_ == nullptr; }
147  void Clear() { first_instruction_ = last_instruction_ = nullptr; }
148
149  // Update the block of all instructions to be `block`.
150  void SetBlockOfInstructions(HBasicBlock* block) const;
151
152  void AddAfter(HInstruction* cursor, const HInstructionList& instruction_list);
153  void AddBefore(HInstruction* cursor, const HInstructionList& instruction_list);
154  void Add(const HInstructionList& instruction_list);
155
156  // Return the number of instructions in the list. This is an expensive operation.
157  size_t CountSize() const;
158
159 private:
160  HInstruction* first_instruction_;
161  HInstruction* last_instruction_;
162
163  friend class HBasicBlock;
164  friend class HGraph;
165  friend class HInstruction;
166  friend class HInstructionIterator;
167  friend class HBackwardInstructionIterator;
168
169  DISALLOW_COPY_AND_ASSIGN(HInstructionList);
170};
171
172class ReferenceTypeInfo : ValueObject {
173 public:
174  typedef Handle<mirror::Class> TypeHandle;
175
176  static ReferenceTypeInfo Create(TypeHandle type_handle, bool is_exact);
177
178  static ReferenceTypeInfo Create(TypeHandle type_handle) REQUIRES_SHARED(Locks::mutator_lock_) {
179    return Create(type_handle, type_handle->CannotBeAssignedFromOtherTypes());
180  }
181
182  static ReferenceTypeInfo CreateUnchecked(TypeHandle type_handle, bool is_exact) {
183    return ReferenceTypeInfo(type_handle, is_exact);
184  }
185
186  static ReferenceTypeInfo CreateInvalid() { return ReferenceTypeInfo(); }
187
188  static bool IsValidHandle(TypeHandle handle) {
189    return handle.GetReference() != nullptr;
190  }
191
192  bool IsValid() const {
193    return IsValidHandle(type_handle_);
194  }
195
196  bool IsExact() const { return is_exact_; }
197
198  bool IsObjectClass() const REQUIRES_SHARED(Locks::mutator_lock_) {
199    DCHECK(IsValid());
200    return GetTypeHandle()->IsObjectClass();
201  }
202
203  bool IsStringClass() const REQUIRES_SHARED(Locks::mutator_lock_) {
204    DCHECK(IsValid());
205    return GetTypeHandle()->IsStringClass();
206  }
207
208  bool IsObjectArray() const REQUIRES_SHARED(Locks::mutator_lock_) {
209    DCHECK(IsValid());
210    return IsArrayClass() && GetTypeHandle()->GetComponentType()->IsObjectClass();
211  }
212
213  bool IsInterface() const REQUIRES_SHARED(Locks::mutator_lock_) {
214    DCHECK(IsValid());
215    return GetTypeHandle()->IsInterface();
216  }
217
218  bool IsArrayClass() const REQUIRES_SHARED(Locks::mutator_lock_) {
219    DCHECK(IsValid());
220    return GetTypeHandle()->IsArrayClass();
221  }
222
223  bool IsPrimitiveArrayClass() const REQUIRES_SHARED(Locks::mutator_lock_) {
224    DCHECK(IsValid());
225    return GetTypeHandle()->IsPrimitiveArray();
226  }
227
228  bool IsNonPrimitiveArrayClass() const REQUIRES_SHARED(Locks::mutator_lock_) {
229    DCHECK(IsValid());
230    return GetTypeHandle()->IsArrayClass() && !GetTypeHandle()->IsPrimitiveArray();
231  }
232
233  bool CanArrayHold(ReferenceTypeInfo rti)  const REQUIRES_SHARED(Locks::mutator_lock_) {
234    DCHECK(IsValid());
235    if (!IsExact()) return false;
236    if (!IsArrayClass()) return false;
237    return GetTypeHandle()->GetComponentType()->IsAssignableFrom(rti.GetTypeHandle().Get());
238  }
239
240  bool CanArrayHoldValuesOf(ReferenceTypeInfo rti)  const REQUIRES_SHARED(Locks::mutator_lock_) {
241    DCHECK(IsValid());
242    if (!IsExact()) return false;
243    if (!IsArrayClass()) return false;
244    if (!rti.IsArrayClass()) return false;
245    return GetTypeHandle()->GetComponentType()->IsAssignableFrom(
246        rti.GetTypeHandle()->GetComponentType());
247  }
248
249  Handle<mirror::Class> GetTypeHandle() const { return type_handle_; }
250
251  bool IsSupertypeOf(ReferenceTypeInfo rti) const REQUIRES_SHARED(Locks::mutator_lock_) {
252    DCHECK(IsValid());
253    DCHECK(rti.IsValid());
254    return GetTypeHandle()->IsAssignableFrom(rti.GetTypeHandle().Get());
255  }
256
257  bool IsStrictSupertypeOf(ReferenceTypeInfo rti) const REQUIRES_SHARED(Locks::mutator_lock_) {
258    DCHECK(IsValid());
259    DCHECK(rti.IsValid());
260    return GetTypeHandle().Get() != rti.GetTypeHandle().Get() &&
261        GetTypeHandle()->IsAssignableFrom(rti.GetTypeHandle().Get());
262  }
263
264  // Returns true if the type information provide the same amount of details.
265  // Note that it does not mean that the instructions have the same actual type
266  // (because the type can be the result of a merge).
267  bool IsEqual(ReferenceTypeInfo rti) const REQUIRES_SHARED(Locks::mutator_lock_) {
268    if (!IsValid() && !rti.IsValid()) {
269      // Invalid types are equal.
270      return true;
271    }
272    if (!IsValid() || !rti.IsValid()) {
273      // One is valid, the other not.
274      return false;
275    }
276    return IsExact() == rti.IsExact()
277        && GetTypeHandle().Get() == rti.GetTypeHandle().Get();
278  }
279
280 private:
281  ReferenceTypeInfo() : type_handle_(TypeHandle()), is_exact_(false) {}
282  ReferenceTypeInfo(TypeHandle type_handle, bool is_exact)
283      : type_handle_(type_handle), is_exact_(is_exact) { }
284
285  // The class of the object.
286  TypeHandle type_handle_;
287  // Whether or not the type is exact or a superclass of the actual type.
288  // Whether or not we have any information about this type.
289  bool is_exact_;
290};
291
292std::ostream& operator<<(std::ostream& os, const ReferenceTypeInfo& rhs);
293
294// Control-flow graph of a method. Contains a list of basic blocks.
295class HGraph : public ArenaObject<kArenaAllocGraph> {
296 public:
297  HGraph(ArenaAllocator* arena,
298         const DexFile& dex_file,
299         uint32_t method_idx,
300         bool should_generate_constructor_barrier,
301         InstructionSet instruction_set,
302         InvokeType invoke_type = kInvalidInvokeType,
303         bool debuggable = false,
304         bool osr = false,
305         int start_instruction_id = 0)
306      : arena_(arena),
307        blocks_(arena->Adapter(kArenaAllocBlockList)),
308        reverse_post_order_(arena->Adapter(kArenaAllocReversePostOrder)),
309        linear_order_(arena->Adapter(kArenaAllocLinearOrder)),
310        entry_block_(nullptr),
311        exit_block_(nullptr),
312        maximum_number_of_out_vregs_(0),
313        number_of_vregs_(0),
314        number_of_in_vregs_(0),
315        temporaries_vreg_slots_(0),
316        has_bounds_checks_(false),
317        has_try_catch_(false),
318        has_irreducible_loops_(false),
319        debuggable_(debuggable),
320        current_instruction_id_(start_instruction_id),
321        dex_file_(dex_file),
322        method_idx_(method_idx),
323        invoke_type_(invoke_type),
324        in_ssa_form_(false),
325        should_generate_constructor_barrier_(should_generate_constructor_barrier),
326        instruction_set_(instruction_set),
327        cached_null_constant_(nullptr),
328        cached_int_constants_(std::less<int32_t>(), arena->Adapter(kArenaAllocConstantsMap)),
329        cached_float_constants_(std::less<int32_t>(), arena->Adapter(kArenaAllocConstantsMap)),
330        cached_long_constants_(std::less<int64_t>(), arena->Adapter(kArenaAllocConstantsMap)),
331        cached_double_constants_(std::less<int64_t>(), arena->Adapter(kArenaAllocConstantsMap)),
332        cached_current_method_(nullptr),
333        inexact_object_rti_(ReferenceTypeInfo::CreateInvalid()),
334        osr_(osr) {
335    blocks_.reserve(kDefaultNumberOfBlocks);
336  }
337
338  // Acquires and stores RTI of inexact Object to be used when creating HNullConstant.
339  void InitializeInexactObjectRTI(VariableSizedHandleScope* handles);
340
341  ArenaAllocator* GetArena() const { return arena_; }
342  const ArenaVector<HBasicBlock*>& GetBlocks() const { return blocks_; }
343
344  bool IsInSsaForm() const { return in_ssa_form_; }
345  void SetInSsaForm() { in_ssa_form_ = true; }
346
347  HBasicBlock* GetEntryBlock() const { return entry_block_; }
348  HBasicBlock* GetExitBlock() const { return exit_block_; }
349  bool HasExitBlock() const { return exit_block_ != nullptr; }
350
351  void SetEntryBlock(HBasicBlock* block) { entry_block_ = block; }
352  void SetExitBlock(HBasicBlock* block) { exit_block_ = block; }
353
354  void AddBlock(HBasicBlock* block);
355
356  void ComputeDominanceInformation();
357  void ClearDominanceInformation();
358  void ClearLoopInformation();
359  void FindBackEdges(ArenaBitVector* visited);
360  GraphAnalysisResult BuildDominatorTree();
361  void SimplifyCFG();
362  void SimplifyCatchBlocks();
363
364  // Analyze all natural loops in this graph. Returns a code specifying that it
365  // was successful or the reason for failure. The method will fail if a loop
366  // is a throw-catch loop, i.e. the header is a catch block.
367  GraphAnalysisResult AnalyzeLoops() const;
368
369  // Iterate over blocks to compute try block membership. Needs reverse post
370  // order and loop information.
371  void ComputeTryBlockInformation();
372
373  // Inline this graph in `outer_graph`, replacing the given `invoke` instruction.
374  // Returns the instruction to replace the invoke expression or null if the
375  // invoke is for a void method. Note that the caller is responsible for replacing
376  // and removing the invoke instruction.
377  HInstruction* InlineInto(HGraph* outer_graph, HInvoke* invoke);
378
379  // Update the loop and try membership of `block`, which was spawned from `reference`.
380  // In case `reference` is a back edge, `replace_if_back_edge` notifies whether `block`
381  // should be the new back edge.
382  void UpdateLoopAndTryInformationOfNewBlock(HBasicBlock* block,
383                                             HBasicBlock* reference,
384                                             bool replace_if_back_edge);
385
386  // Need to add a couple of blocks to test if the loop body is entered and
387  // put deoptimization instructions, etc.
388  void TransformLoopHeaderForBCE(HBasicBlock* header);
389
390  // Removes `block` from the graph. Assumes `block` has been disconnected from
391  // other blocks and has no instructions or phis.
392  void DeleteDeadEmptyBlock(HBasicBlock* block);
393
394  // Splits the edge between `block` and `successor` while preserving the
395  // indices in the predecessor/successor lists. If there are multiple edges
396  // between the blocks, the lowest indices are used.
397  // Returns the new block which is empty and has the same dex pc as `successor`.
398  HBasicBlock* SplitEdge(HBasicBlock* block, HBasicBlock* successor);
399
400  void SplitCriticalEdge(HBasicBlock* block, HBasicBlock* successor);
401  void SimplifyLoop(HBasicBlock* header);
402
403  int32_t GetNextInstructionId() {
404    DCHECK_NE(current_instruction_id_, INT32_MAX);
405    return current_instruction_id_++;
406  }
407
408  int32_t GetCurrentInstructionId() const {
409    return current_instruction_id_;
410  }
411
412  void SetCurrentInstructionId(int32_t id) {
413    DCHECK_GE(id, current_instruction_id_);
414    current_instruction_id_ = id;
415  }
416
417  uint16_t GetMaximumNumberOfOutVRegs() const {
418    return maximum_number_of_out_vregs_;
419  }
420
421  void SetMaximumNumberOfOutVRegs(uint16_t new_value) {
422    maximum_number_of_out_vregs_ = new_value;
423  }
424
425  void UpdateMaximumNumberOfOutVRegs(uint16_t other_value) {
426    maximum_number_of_out_vregs_ = std::max(maximum_number_of_out_vregs_, other_value);
427  }
428
429  void UpdateTemporariesVRegSlots(size_t slots) {
430    temporaries_vreg_slots_ = std::max(slots, temporaries_vreg_slots_);
431  }
432
433  size_t GetTemporariesVRegSlots() const {
434    DCHECK(!in_ssa_form_);
435    return temporaries_vreg_slots_;
436  }
437
438  void SetNumberOfVRegs(uint16_t number_of_vregs) {
439    number_of_vregs_ = number_of_vregs;
440  }
441
442  uint16_t GetNumberOfVRegs() const {
443    return number_of_vregs_;
444  }
445
446  void SetNumberOfInVRegs(uint16_t value) {
447    number_of_in_vregs_ = value;
448  }
449
450  uint16_t GetNumberOfInVRegs() const {
451    return number_of_in_vregs_;
452  }
453
454  uint16_t GetNumberOfLocalVRegs() const {
455    DCHECK(!in_ssa_form_);
456    return number_of_vregs_ - number_of_in_vregs_;
457  }
458
459  const ArenaVector<HBasicBlock*>& GetReversePostOrder() const {
460    return reverse_post_order_;
461  }
462
463  const ArenaVector<HBasicBlock*>& GetLinearOrder() const {
464    return linear_order_;
465  }
466
467  bool HasBoundsChecks() const {
468    return has_bounds_checks_;
469  }
470
471  void SetHasBoundsChecks(bool value) {
472    has_bounds_checks_ = value;
473  }
474
475  bool ShouldGenerateConstructorBarrier() const {
476    return should_generate_constructor_barrier_;
477  }
478
479  bool IsDebuggable() const { return debuggable_; }
480
481  // Returns a constant of the given type and value. If it does not exist
482  // already, it is created and inserted into the graph. This method is only for
483  // integral types.
484  HConstant* GetConstant(Primitive::Type type, int64_t value, uint32_t dex_pc = kNoDexPc);
485
486  // TODO: This is problematic for the consistency of reference type propagation
487  // because it can be created anytime after the pass and thus it will be left
488  // with an invalid type.
489  HNullConstant* GetNullConstant(uint32_t dex_pc = kNoDexPc);
490
491  HIntConstant* GetIntConstant(int32_t value, uint32_t dex_pc = kNoDexPc) {
492    return CreateConstant(value, &cached_int_constants_, dex_pc);
493  }
494  HLongConstant* GetLongConstant(int64_t value, uint32_t dex_pc = kNoDexPc) {
495    return CreateConstant(value, &cached_long_constants_, dex_pc);
496  }
497  HFloatConstant* GetFloatConstant(float value, uint32_t dex_pc = kNoDexPc) {
498    return CreateConstant(bit_cast<int32_t, float>(value), &cached_float_constants_, dex_pc);
499  }
500  HDoubleConstant* GetDoubleConstant(double value, uint32_t dex_pc = kNoDexPc) {
501    return CreateConstant(bit_cast<int64_t, double>(value), &cached_double_constants_, dex_pc);
502  }
503
504  HCurrentMethod* GetCurrentMethod();
505
506  const DexFile& GetDexFile() const {
507    return dex_file_;
508  }
509
510  uint32_t GetMethodIdx() const {
511    return method_idx_;
512  }
513
514  InvokeType GetInvokeType() const {
515    return invoke_type_;
516  }
517
518  InstructionSet GetInstructionSet() const {
519    return instruction_set_;
520  }
521
522  bool IsCompilingOsr() const { return osr_; }
523
524  bool HasTryCatch() const { return has_try_catch_; }
525  void SetHasTryCatch(bool value) { has_try_catch_ = value; }
526
527  bool HasIrreducibleLoops() const { return has_irreducible_loops_; }
528  void SetHasIrreducibleLoops(bool value) { has_irreducible_loops_ = value; }
529
530  ArtMethod* GetArtMethod() const { return art_method_; }
531  void SetArtMethod(ArtMethod* method) { art_method_ = method; }
532
533  // Returns an instruction with the opposite boolean value from 'cond'.
534  // The instruction has been inserted into the graph, either as a constant, or
535  // before cursor.
536  HInstruction* InsertOppositeCondition(HInstruction* cond, HInstruction* cursor);
537
538  ReferenceTypeInfo GetInexactObjectRti() const { return inexact_object_rti_; }
539
540 private:
541  void RemoveInstructionsAsUsersFromDeadBlocks(const ArenaBitVector& visited) const;
542  void RemoveDeadBlocks(const ArenaBitVector& visited);
543
544  template <class InstructionType, typename ValueType>
545  InstructionType* CreateConstant(ValueType value,
546                                  ArenaSafeMap<ValueType, InstructionType*>* cache,
547                                  uint32_t dex_pc = kNoDexPc) {
548    // Try to find an existing constant of the given value.
549    InstructionType* constant = nullptr;
550    auto cached_constant = cache->find(value);
551    if (cached_constant != cache->end()) {
552      constant = cached_constant->second;
553    }
554
555    // If not found or previously deleted, create and cache a new instruction.
556    // Don't bother reviving a previously deleted instruction, for simplicity.
557    if (constant == nullptr || constant->GetBlock() == nullptr) {
558      constant = new (arena_) InstructionType(value, dex_pc);
559      cache->Overwrite(value, constant);
560      InsertConstant(constant);
561    }
562    return constant;
563  }
564
565  void InsertConstant(HConstant* instruction);
566
567  // Cache a float constant into the graph. This method should only be
568  // called by the SsaBuilder when creating "equivalent" instructions.
569  void CacheFloatConstant(HFloatConstant* constant);
570
571  // See CacheFloatConstant comment.
572  void CacheDoubleConstant(HDoubleConstant* constant);
573
574  ArenaAllocator* const arena_;
575
576  // List of blocks in insertion order.
577  ArenaVector<HBasicBlock*> blocks_;
578
579  // List of blocks to perform a reverse post order tree traversal.
580  ArenaVector<HBasicBlock*> reverse_post_order_;
581
582  // List of blocks to perform a linear order tree traversal. Unlike the reverse
583  // post order, this order is not incrementally kept up-to-date.
584  ArenaVector<HBasicBlock*> linear_order_;
585
586  HBasicBlock* entry_block_;
587  HBasicBlock* exit_block_;
588
589  // The maximum number of virtual registers arguments passed to a HInvoke in this graph.
590  uint16_t maximum_number_of_out_vregs_;
591
592  // The number of virtual registers in this method. Contains the parameters.
593  uint16_t number_of_vregs_;
594
595  // The number of virtual registers used by parameters of this method.
596  uint16_t number_of_in_vregs_;
597
598  // Number of vreg size slots that the temporaries use (used in baseline compiler).
599  size_t temporaries_vreg_slots_;
600
601  // Has bounds checks. We can totally skip BCE if it's false.
602  bool has_bounds_checks_;
603
604  // Flag whether there are any try/catch blocks in the graph. We will skip
605  // try/catch-related passes if false.
606  bool has_try_catch_;
607
608  // Flag whether there are any irreducible loops in the graph.
609  bool has_irreducible_loops_;
610
611  // Indicates whether the graph should be compiled in a way that
612  // ensures full debuggability. If false, we can apply more
613  // aggressive optimizations that may limit the level of debugging.
614  const bool debuggable_;
615
616  // The current id to assign to a newly added instruction. See HInstruction.id_.
617  int32_t current_instruction_id_;
618
619  // The dex file from which the method is from.
620  const DexFile& dex_file_;
621
622  // The method index in the dex file.
623  const uint32_t method_idx_;
624
625  // If inlined, this encodes how the callee is being invoked.
626  const InvokeType invoke_type_;
627
628  // Whether the graph has been transformed to SSA form. Only used
629  // in debug mode to ensure we are not using properties only valid
630  // for non-SSA form (like the number of temporaries).
631  bool in_ssa_form_;
632
633  const bool should_generate_constructor_barrier_;
634
635  const InstructionSet instruction_set_;
636
637  // Cached constants.
638  HNullConstant* cached_null_constant_;
639  ArenaSafeMap<int32_t, HIntConstant*> cached_int_constants_;
640  ArenaSafeMap<int32_t, HFloatConstant*> cached_float_constants_;
641  ArenaSafeMap<int64_t, HLongConstant*> cached_long_constants_;
642  ArenaSafeMap<int64_t, HDoubleConstant*> cached_double_constants_;
643
644  HCurrentMethod* cached_current_method_;
645
646  // The ArtMethod this graph is for. Note that for AOT, it may be null,
647  // for example for methods whose declaring class could not be resolved
648  // (such as when the superclass could not be found).
649  ArtMethod* art_method_;
650
651  // Keep the RTI of inexact Object to avoid having to pass stack handle
652  // collection pointer to passes which may create NullConstant.
653  ReferenceTypeInfo inexact_object_rti_;
654
655  // Whether we are compiling this graph for on stack replacement: this will
656  // make all loops seen as irreducible and emit special stack maps to mark
657  // compiled code entries which the interpreter can directly jump to.
658  const bool osr_;
659
660  friend class SsaBuilder;           // For caching constants.
661  friend class SsaLivenessAnalysis;  // For the linear order.
662  friend class HInliner;             // For the reverse post order.
663  ART_FRIEND_TEST(GraphTest, IfSuccessorSimpleJoinBlock1);
664  DISALLOW_COPY_AND_ASSIGN(HGraph);
665};
666
667class HLoopInformation : public ArenaObject<kArenaAllocLoopInfo> {
668 public:
669  HLoopInformation(HBasicBlock* header, HGraph* graph)
670      : header_(header),
671        suspend_check_(nullptr),
672        irreducible_(false),
673        contains_irreducible_loop_(false),
674        back_edges_(graph->GetArena()->Adapter(kArenaAllocLoopInfoBackEdges)),
675        // Make bit vector growable, as the number of blocks may change.
676        blocks_(graph->GetArena(), graph->GetBlocks().size(), true, kArenaAllocLoopInfoBackEdges) {
677    back_edges_.reserve(kDefaultNumberOfBackEdges);
678  }
679
680  bool IsIrreducible() const { return irreducible_; }
681  bool ContainsIrreducibleLoop() const { return contains_irreducible_loop_; }
682
683  void Dump(std::ostream& os);
684
685  HBasicBlock* GetHeader() const {
686    return header_;
687  }
688
689  void SetHeader(HBasicBlock* block) {
690    header_ = block;
691  }
692
693  HSuspendCheck* GetSuspendCheck() const { return suspend_check_; }
694  void SetSuspendCheck(HSuspendCheck* check) { suspend_check_ = check; }
695  bool HasSuspendCheck() const { return suspend_check_ != nullptr; }
696
697  void AddBackEdge(HBasicBlock* back_edge) {
698    back_edges_.push_back(back_edge);
699  }
700
701  void RemoveBackEdge(HBasicBlock* back_edge) {
702    RemoveElement(back_edges_, back_edge);
703  }
704
705  bool IsBackEdge(const HBasicBlock& block) const {
706    return ContainsElement(back_edges_, &block);
707  }
708
709  size_t NumberOfBackEdges() const {
710    return back_edges_.size();
711  }
712
713  HBasicBlock* GetPreHeader() const;
714
715  const ArenaVector<HBasicBlock*>& GetBackEdges() const {
716    return back_edges_;
717  }
718
719  // Returns the lifetime position of the back edge that has the
720  // greatest lifetime position.
721  size_t GetLifetimeEnd() const;
722
723  void ReplaceBackEdge(HBasicBlock* existing, HBasicBlock* new_back_edge) {
724    ReplaceElement(back_edges_, existing, new_back_edge);
725  }
726
727  // Finds blocks that are part of this loop.
728  void Populate();
729
730  // Returns whether this loop information contains `block`.
731  // Note that this loop information *must* be populated before entering this function.
732  bool Contains(const HBasicBlock& block) const;
733
734  // Returns whether this loop information is an inner loop of `other`.
735  // Note that `other` *must* be populated before entering this function.
736  bool IsIn(const HLoopInformation& other) const;
737
738  // Returns true if instruction is not defined within this loop.
739  bool IsDefinedOutOfTheLoop(HInstruction* instruction) const;
740
741  const ArenaBitVector& GetBlocks() const { return blocks_; }
742
743  void Add(HBasicBlock* block);
744  void Remove(HBasicBlock* block);
745
746  void ClearAllBlocks() {
747    blocks_.ClearAllBits();
748  }
749
750  bool HasBackEdgeNotDominatedByHeader() const;
751
752  bool IsPopulated() const {
753    return blocks_.GetHighestBitSet() != -1;
754  }
755
756  bool DominatesAllBackEdges(HBasicBlock* block);
757
758 private:
759  // Internal recursive implementation of `Populate`.
760  void PopulateRecursive(HBasicBlock* block);
761  void PopulateIrreducibleRecursive(HBasicBlock* block, ArenaBitVector* finalized);
762
763  HBasicBlock* header_;
764  HSuspendCheck* suspend_check_;
765  bool irreducible_;
766  bool contains_irreducible_loop_;
767  ArenaVector<HBasicBlock*> back_edges_;
768  ArenaBitVector blocks_;
769
770  DISALLOW_COPY_AND_ASSIGN(HLoopInformation);
771};
772
773// Stores try/catch information for basic blocks.
774// Note that HGraph is constructed so that catch blocks cannot simultaneously
775// be try blocks.
776class TryCatchInformation : public ArenaObject<kArenaAllocTryCatchInfo> {
777 public:
778  // Try block information constructor.
779  explicit TryCatchInformation(const HTryBoundary& try_entry)
780      : try_entry_(&try_entry),
781        catch_dex_file_(nullptr),
782        catch_type_index_(DexFile::kDexNoIndex16) {
783    DCHECK(try_entry_ != nullptr);
784  }
785
786  // Catch block information constructor.
787  TryCatchInformation(uint16_t catch_type_index, const DexFile& dex_file)
788      : try_entry_(nullptr),
789        catch_dex_file_(&dex_file),
790        catch_type_index_(catch_type_index) {}
791
792  bool IsTryBlock() const { return try_entry_ != nullptr; }
793
794  const HTryBoundary& GetTryEntry() const {
795    DCHECK(IsTryBlock());
796    return *try_entry_;
797  }
798
799  bool IsCatchBlock() const { return catch_dex_file_ != nullptr; }
800
801  bool IsCatchAllTypeIndex() const {
802    DCHECK(IsCatchBlock());
803    return catch_type_index_ == DexFile::kDexNoIndex16;
804  }
805
806  uint16_t GetCatchTypeIndex() const {
807    DCHECK(IsCatchBlock());
808    return catch_type_index_;
809  }
810
811  const DexFile& GetCatchDexFile() const {
812    DCHECK(IsCatchBlock());
813    return *catch_dex_file_;
814  }
815
816 private:
817  // One of possibly several TryBoundary instructions entering the block's try.
818  // Only set for try blocks.
819  const HTryBoundary* try_entry_;
820
821  // Exception type information. Only set for catch blocks.
822  const DexFile* catch_dex_file_;
823  const uint16_t catch_type_index_;
824};
825
826static constexpr size_t kNoLifetime = -1;
827static constexpr uint32_t kInvalidBlockId = static_cast<uint32_t>(-1);
828
829// A block in a method. Contains the list of instructions represented
830// as a double linked list. Each block knows its predecessors and
831// successors.
832
833class HBasicBlock : public ArenaObject<kArenaAllocBasicBlock> {
834 public:
835  explicit HBasicBlock(HGraph* graph, uint32_t dex_pc = kNoDexPc)
836      : graph_(graph),
837        predecessors_(graph->GetArena()->Adapter(kArenaAllocPredecessors)),
838        successors_(graph->GetArena()->Adapter(kArenaAllocSuccessors)),
839        loop_information_(nullptr),
840        dominator_(nullptr),
841        dominated_blocks_(graph->GetArena()->Adapter(kArenaAllocDominated)),
842        block_id_(kInvalidBlockId),
843        dex_pc_(dex_pc),
844        lifetime_start_(kNoLifetime),
845        lifetime_end_(kNoLifetime),
846        try_catch_information_(nullptr) {
847    predecessors_.reserve(kDefaultNumberOfPredecessors);
848    successors_.reserve(kDefaultNumberOfSuccessors);
849    dominated_blocks_.reserve(kDefaultNumberOfDominatedBlocks);
850  }
851
852  const ArenaVector<HBasicBlock*>& GetPredecessors() const {
853    return predecessors_;
854  }
855
856  const ArenaVector<HBasicBlock*>& GetSuccessors() const {
857    return successors_;
858  }
859
860  ArrayRef<HBasicBlock* const> GetNormalSuccessors() const;
861  ArrayRef<HBasicBlock* const> GetExceptionalSuccessors() const;
862
863  bool HasSuccessor(const HBasicBlock* block, size_t start_from = 0u) {
864    return ContainsElement(successors_, block, start_from);
865  }
866
867  const ArenaVector<HBasicBlock*>& GetDominatedBlocks() const {
868    return dominated_blocks_;
869  }
870
871  bool IsEntryBlock() const {
872    return graph_->GetEntryBlock() == this;
873  }
874
875  bool IsExitBlock() const {
876    return graph_->GetExitBlock() == this;
877  }
878
879  bool IsSingleGoto() const;
880  bool IsSingleTryBoundary() const;
881
882  // Returns true if this block emits nothing but a jump.
883  bool IsSingleJump() const {
884    HLoopInformation* loop_info = GetLoopInformation();
885    return (IsSingleGoto() || IsSingleTryBoundary())
886           // Back edges generate a suspend check.
887           && (loop_info == nullptr || !loop_info->IsBackEdge(*this));
888  }
889
890  void AddBackEdge(HBasicBlock* back_edge) {
891    if (loop_information_ == nullptr) {
892      loop_information_ = new (graph_->GetArena()) HLoopInformation(this, graph_);
893    }
894    DCHECK_EQ(loop_information_->GetHeader(), this);
895    loop_information_->AddBackEdge(back_edge);
896  }
897
898  HGraph* GetGraph() const { return graph_; }
899  void SetGraph(HGraph* graph) { graph_ = graph; }
900
901  uint32_t GetBlockId() const { return block_id_; }
902  void SetBlockId(int id) { block_id_ = id; }
903  uint32_t GetDexPc() const { return dex_pc_; }
904
905  HBasicBlock* GetDominator() const { return dominator_; }
906  void SetDominator(HBasicBlock* dominator) { dominator_ = dominator; }
907  void AddDominatedBlock(HBasicBlock* block) { dominated_blocks_.push_back(block); }
908
909  void RemoveDominatedBlock(HBasicBlock* block) {
910    RemoveElement(dominated_blocks_, block);
911  }
912
913  void ReplaceDominatedBlock(HBasicBlock* existing, HBasicBlock* new_block) {
914    ReplaceElement(dominated_blocks_, existing, new_block);
915  }
916
917  void ClearDominanceInformation();
918
919  int NumberOfBackEdges() const {
920    return IsLoopHeader() ? loop_information_->NumberOfBackEdges() : 0;
921  }
922
923  HInstruction* GetFirstInstruction() const { return instructions_.first_instruction_; }
924  HInstruction* GetLastInstruction() const { return instructions_.last_instruction_; }
925  const HInstructionList& GetInstructions() const { return instructions_; }
926  HInstruction* GetFirstPhi() const { return phis_.first_instruction_; }
927  HInstruction* GetLastPhi() const { return phis_.last_instruction_; }
928  const HInstructionList& GetPhis() const { return phis_; }
929
930  HInstruction* GetFirstInstructionDisregardMoves() const;
931
932  void AddSuccessor(HBasicBlock* block) {
933    successors_.push_back(block);
934    block->predecessors_.push_back(this);
935  }
936
937  void ReplaceSuccessor(HBasicBlock* existing, HBasicBlock* new_block) {
938    size_t successor_index = GetSuccessorIndexOf(existing);
939    existing->RemovePredecessor(this);
940    new_block->predecessors_.push_back(this);
941    successors_[successor_index] = new_block;
942  }
943
944  void ReplacePredecessor(HBasicBlock* existing, HBasicBlock* new_block) {
945    size_t predecessor_index = GetPredecessorIndexOf(existing);
946    existing->RemoveSuccessor(this);
947    new_block->successors_.push_back(this);
948    predecessors_[predecessor_index] = new_block;
949  }
950
951  // Insert `this` between `predecessor` and `successor. This method
952  // preserves the indicies, and will update the first edge found between
953  // `predecessor` and `successor`.
954  void InsertBetween(HBasicBlock* predecessor, HBasicBlock* successor) {
955    size_t predecessor_index = successor->GetPredecessorIndexOf(predecessor);
956    size_t successor_index = predecessor->GetSuccessorIndexOf(successor);
957    successor->predecessors_[predecessor_index] = this;
958    predecessor->successors_[successor_index] = this;
959    successors_.push_back(successor);
960    predecessors_.push_back(predecessor);
961  }
962
963  void RemovePredecessor(HBasicBlock* block) {
964    predecessors_.erase(predecessors_.begin() + GetPredecessorIndexOf(block));
965  }
966
967  void RemoveSuccessor(HBasicBlock* block) {
968    successors_.erase(successors_.begin() + GetSuccessorIndexOf(block));
969  }
970
971  void ClearAllPredecessors() {
972    predecessors_.clear();
973  }
974
975  void AddPredecessor(HBasicBlock* block) {
976    predecessors_.push_back(block);
977    block->successors_.push_back(this);
978  }
979
980  void SwapPredecessors() {
981    DCHECK_EQ(predecessors_.size(), 2u);
982    std::swap(predecessors_[0], predecessors_[1]);
983  }
984
985  void SwapSuccessors() {
986    DCHECK_EQ(successors_.size(), 2u);
987    std::swap(successors_[0], successors_[1]);
988  }
989
990  size_t GetPredecessorIndexOf(HBasicBlock* predecessor) const {
991    return IndexOfElement(predecessors_, predecessor);
992  }
993
994  size_t GetSuccessorIndexOf(HBasicBlock* successor) const {
995    return IndexOfElement(successors_, successor);
996  }
997
998  HBasicBlock* GetSinglePredecessor() const {
999    DCHECK_EQ(GetPredecessors().size(), 1u);
1000    return GetPredecessors()[0];
1001  }
1002
1003  HBasicBlock* GetSingleSuccessor() const {
1004    DCHECK_EQ(GetSuccessors().size(), 1u);
1005    return GetSuccessors()[0];
1006  }
1007
1008  // Returns whether the first occurrence of `predecessor` in the list of
1009  // predecessors is at index `idx`.
1010  bool IsFirstIndexOfPredecessor(HBasicBlock* predecessor, size_t idx) const {
1011    DCHECK_EQ(GetPredecessors()[idx], predecessor);
1012    return GetPredecessorIndexOf(predecessor) == idx;
1013  }
1014
1015  // Create a new block between this block and its predecessors. The new block
1016  // is added to the graph, all predecessor edges are relinked to it and an edge
1017  // is created to `this`. Returns the new empty block. Reverse post order or
1018  // loop and try/catch information are not updated.
1019  HBasicBlock* CreateImmediateDominator();
1020
1021  // Split the block into two blocks just before `cursor`. Returns the newly
1022  // created, latter block. Note that this method will add the block to the
1023  // graph, create a Goto at the end of the former block and will create an edge
1024  // between the blocks. It will not, however, update the reverse post order or
1025  // loop and try/catch information.
1026  HBasicBlock* SplitBefore(HInstruction* cursor);
1027
1028  // Split the block into two blocks just before `cursor`. Returns the newly
1029  // created block. Note that this method just updates raw block information,
1030  // like predecessors, successors, dominators, and instruction list. It does not
1031  // update the graph, reverse post order, loop information, nor make sure the
1032  // blocks are consistent (for example ending with a control flow instruction).
1033  HBasicBlock* SplitBeforeForInlining(HInstruction* cursor);
1034
1035  // Similar to `SplitBeforeForInlining` but does it after `cursor`.
1036  HBasicBlock* SplitAfterForInlining(HInstruction* cursor);
1037
1038  // Merge `other` at the end of `this`. Successors and dominated blocks of
1039  // `other` are changed to be successors and dominated blocks of `this`. Note
1040  // that this method does not update the graph, reverse post order, loop
1041  // information, nor make sure the blocks are consistent (for example ending
1042  // with a control flow instruction).
1043  void MergeWithInlined(HBasicBlock* other);
1044
1045  // Replace `this` with `other`. Predecessors, successors, and dominated blocks
1046  // of `this` are moved to `other`.
1047  // Note that this method does not update the graph, reverse post order, loop
1048  // information, nor make sure the blocks are consistent (for example ending
1049  // with a control flow instruction).
1050  void ReplaceWith(HBasicBlock* other);
1051
1052  // Merge `other` at the end of `this`. This method updates loops, reverse post
1053  // order, links to predecessors, successors, dominators and deletes the block
1054  // from the graph. The two blocks must be successive, i.e. `this` the only
1055  // predecessor of `other` and vice versa.
1056  void MergeWith(HBasicBlock* other);
1057
1058  // Disconnects `this` from all its predecessors, successors and dominator,
1059  // removes it from all loops it is included in and eventually from the graph.
1060  // The block must not dominate any other block. Predecessors and successors
1061  // are safely updated.
1062  void DisconnectAndDelete();
1063
1064  void AddInstruction(HInstruction* instruction);
1065  // Insert `instruction` before/after an existing instruction `cursor`.
1066  void InsertInstructionBefore(HInstruction* instruction, HInstruction* cursor);
1067  void InsertInstructionAfter(HInstruction* instruction, HInstruction* cursor);
1068  // Replace instruction `initial` with `replacement` within this block.
1069  void ReplaceAndRemoveInstructionWith(HInstruction* initial,
1070                                       HInstruction* replacement);
1071  void AddPhi(HPhi* phi);
1072  void InsertPhiAfter(HPhi* instruction, HPhi* cursor);
1073  // RemoveInstruction and RemovePhi delete a given instruction from the respective
1074  // instruction list. With 'ensure_safety' set to true, it verifies that the
1075  // instruction is not in use and removes it from the use lists of its inputs.
1076  void RemoveInstruction(HInstruction* instruction, bool ensure_safety = true);
1077  void RemovePhi(HPhi* phi, bool ensure_safety = true);
1078  void RemoveInstructionOrPhi(HInstruction* instruction, bool ensure_safety = true);
1079
1080  bool IsLoopHeader() const {
1081    return IsInLoop() && (loop_information_->GetHeader() == this);
1082  }
1083
1084  bool IsLoopPreHeaderFirstPredecessor() const {
1085    DCHECK(IsLoopHeader());
1086    return GetPredecessors()[0] == GetLoopInformation()->GetPreHeader();
1087  }
1088
1089  bool IsFirstPredecessorBackEdge() const {
1090    DCHECK(IsLoopHeader());
1091    return GetLoopInformation()->IsBackEdge(*GetPredecessors()[0]);
1092  }
1093
1094  HLoopInformation* GetLoopInformation() const {
1095    return loop_information_;
1096  }
1097
1098  // Set the loop_information_ on this block. Overrides the current
1099  // loop_information if it is an outer loop of the passed loop information.
1100  // Note that this method is called while creating the loop information.
1101  void SetInLoop(HLoopInformation* info) {
1102    if (IsLoopHeader()) {
1103      // Nothing to do. This just means `info` is an outer loop.
1104    } else if (!IsInLoop()) {
1105      loop_information_ = info;
1106    } else if (loop_information_->Contains(*info->GetHeader())) {
1107      // Block is currently part of an outer loop. Make it part of this inner loop.
1108      // Note that a non loop header having a loop information means this loop information
1109      // has already been populated
1110      loop_information_ = info;
1111    } else {
1112      // Block is part of an inner loop. Do not update the loop information.
1113      // Note that we cannot do the check `info->Contains(loop_information_)->GetHeader()`
1114      // at this point, because this method is being called while populating `info`.
1115    }
1116  }
1117
1118  // Raw update of the loop information.
1119  void SetLoopInformation(HLoopInformation* info) {
1120    loop_information_ = info;
1121  }
1122
1123  bool IsInLoop() const { return loop_information_ != nullptr; }
1124
1125  TryCatchInformation* GetTryCatchInformation() const { return try_catch_information_; }
1126
1127  void SetTryCatchInformation(TryCatchInformation* try_catch_information) {
1128    try_catch_information_ = try_catch_information;
1129  }
1130
1131  bool IsTryBlock() const {
1132    return try_catch_information_ != nullptr && try_catch_information_->IsTryBlock();
1133  }
1134
1135  bool IsCatchBlock() const {
1136    return try_catch_information_ != nullptr && try_catch_information_->IsCatchBlock();
1137  }
1138
1139  // Returns the try entry that this block's successors should have. They will
1140  // be in the same try, unless the block ends in a try boundary. In that case,
1141  // the appropriate try entry will be returned.
1142  const HTryBoundary* ComputeTryEntryOfSuccessors() const;
1143
1144  bool HasThrowingInstructions() const;
1145
1146  // Returns whether this block dominates the blocked passed as parameter.
1147  bool Dominates(HBasicBlock* block) const;
1148
1149  size_t GetLifetimeStart() const { return lifetime_start_; }
1150  size_t GetLifetimeEnd() const { return lifetime_end_; }
1151
1152  void SetLifetimeStart(size_t start) { lifetime_start_ = start; }
1153  void SetLifetimeEnd(size_t end) { lifetime_end_ = end; }
1154
1155  bool EndsWithControlFlowInstruction() const;
1156  bool EndsWithIf() const;
1157  bool EndsWithTryBoundary() const;
1158  bool HasSinglePhi() const;
1159
1160 private:
1161  HGraph* graph_;
1162  ArenaVector<HBasicBlock*> predecessors_;
1163  ArenaVector<HBasicBlock*> successors_;
1164  HInstructionList instructions_;
1165  HInstructionList phis_;
1166  HLoopInformation* loop_information_;
1167  HBasicBlock* dominator_;
1168  ArenaVector<HBasicBlock*> dominated_blocks_;
1169  uint32_t block_id_;
1170  // The dex program counter of the first instruction of this block.
1171  const uint32_t dex_pc_;
1172  size_t lifetime_start_;
1173  size_t lifetime_end_;
1174  TryCatchInformation* try_catch_information_;
1175
1176  friend class HGraph;
1177  friend class HInstruction;
1178
1179  DISALLOW_COPY_AND_ASSIGN(HBasicBlock);
1180};
1181
1182// Iterates over the LoopInformation of all loops which contain 'block'
1183// from the innermost to the outermost.
1184class HLoopInformationOutwardIterator : public ValueObject {
1185 public:
1186  explicit HLoopInformationOutwardIterator(const HBasicBlock& block)
1187      : current_(block.GetLoopInformation()) {}
1188
1189  bool Done() const { return current_ == nullptr; }
1190
1191  void Advance() {
1192    DCHECK(!Done());
1193    current_ = current_->GetPreHeader()->GetLoopInformation();
1194  }
1195
1196  HLoopInformation* Current() const {
1197    DCHECK(!Done());
1198    return current_;
1199  }
1200
1201 private:
1202  HLoopInformation* current_;
1203
1204  DISALLOW_COPY_AND_ASSIGN(HLoopInformationOutwardIterator);
1205};
1206
1207#define FOR_EACH_CONCRETE_INSTRUCTION_COMMON(M)                         \
1208  M(Above, Condition)                                                   \
1209  M(AboveOrEqual, Condition)                                            \
1210  M(Add, BinaryOperation)                                               \
1211  M(And, BinaryOperation)                                               \
1212  M(ArrayGet, Instruction)                                              \
1213  M(ArrayLength, Instruction)                                           \
1214  M(ArraySet, Instruction)                                              \
1215  M(Below, Condition)                                                   \
1216  M(BelowOrEqual, Condition)                                            \
1217  M(BooleanNot, UnaryOperation)                                         \
1218  M(BoundsCheck, Instruction)                                           \
1219  M(BoundType, Instruction)                                             \
1220  M(CheckCast, Instruction)                                             \
1221  M(ClassTableGet, Instruction)                                         \
1222  M(ClearException, Instruction)                                        \
1223  M(ClinitCheck, Instruction)                                           \
1224  M(Compare, BinaryOperation)                                           \
1225  M(CurrentMethod, Instruction)                                         \
1226  M(Deoptimize, Instruction)                                            \
1227  M(Div, BinaryOperation)                                               \
1228  M(DivZeroCheck, Instruction)                                          \
1229  M(DoubleConstant, Constant)                                           \
1230  M(Equal, Condition)                                                   \
1231  M(Exit, Instruction)                                                  \
1232  M(FloatConstant, Constant)                                            \
1233  M(Goto, Instruction)                                                  \
1234  M(GreaterThan, Condition)                                             \
1235  M(GreaterThanOrEqual, Condition)                                      \
1236  M(If, Instruction)                                                    \
1237  M(InstanceFieldGet, Instruction)                                      \
1238  M(InstanceFieldSet, Instruction)                                      \
1239  M(InstanceOf, Instruction)                                            \
1240  M(IntConstant, Constant)                                              \
1241  M(InvokeUnresolved, Invoke)                                           \
1242  M(InvokeInterface, Invoke)                                            \
1243  M(InvokeStaticOrDirect, Invoke)                                       \
1244  M(InvokeVirtual, Invoke)                                              \
1245  M(LessThan, Condition)                                                \
1246  M(LessThanOrEqual, Condition)                                         \
1247  M(LoadClass, Instruction)                                             \
1248  M(LoadException, Instruction)                                         \
1249  M(LoadString, Instruction)                                            \
1250  M(LongConstant, Constant)                                             \
1251  M(MemoryBarrier, Instruction)                                         \
1252  M(MonitorOperation, Instruction)                                      \
1253  M(Mul, BinaryOperation)                                               \
1254  M(NativeDebugInfo, Instruction)                                       \
1255  M(Neg, UnaryOperation)                                                \
1256  M(NewArray, Instruction)                                              \
1257  M(NewInstance, Instruction)                                           \
1258  M(Not, UnaryOperation)                                                \
1259  M(NotEqual, Condition)                                                \
1260  M(NullConstant, Instruction)                                          \
1261  M(NullCheck, Instruction)                                             \
1262  M(Or, BinaryOperation)                                                \
1263  M(PackedSwitch, Instruction)                                          \
1264  M(ParallelMove, Instruction)                                          \
1265  M(ParameterValue, Instruction)                                        \
1266  M(Phi, Instruction)                                                   \
1267  M(Rem, BinaryOperation)                                               \
1268  M(Return, Instruction)                                                \
1269  M(ReturnVoid, Instruction)                                            \
1270  M(Ror, BinaryOperation)                                               \
1271  M(Shl, BinaryOperation)                                               \
1272  M(Shr, BinaryOperation)                                               \
1273  M(StaticFieldGet, Instruction)                                        \
1274  M(StaticFieldSet, Instruction)                                        \
1275  M(UnresolvedInstanceFieldGet, Instruction)                            \
1276  M(UnresolvedInstanceFieldSet, Instruction)                            \
1277  M(UnresolvedStaticFieldGet, Instruction)                              \
1278  M(UnresolvedStaticFieldSet, Instruction)                              \
1279  M(Select, Instruction)                                                \
1280  M(Sub, BinaryOperation)                                               \
1281  M(SuspendCheck, Instruction)                                          \
1282  M(Throw, Instruction)                                                 \
1283  M(TryBoundary, Instruction)                                           \
1284  M(TypeConversion, Instruction)                                        \
1285  M(UShr, BinaryOperation)                                              \
1286  M(Xor, BinaryOperation)                                               \
1287
1288/*
1289 * Instructions, shared across several (not all) architectures.
1290 */
1291#if !defined(ART_ENABLE_CODEGEN_arm) && !defined(ART_ENABLE_CODEGEN_arm64)
1292#define FOR_EACH_CONCRETE_INSTRUCTION_SHARED(M)
1293#else
1294#define FOR_EACH_CONCRETE_INSTRUCTION_SHARED(M)                         \
1295  M(BitwiseNegatedRight, Instruction)                                   \
1296  M(MultiplyAccumulate, Instruction)                                    \
1297  M(IntermediateAddress, Instruction)
1298#endif
1299
1300#ifndef ART_ENABLE_CODEGEN_arm
1301#define FOR_EACH_CONCRETE_INSTRUCTION_ARM(M)
1302#else
1303#define FOR_EACH_CONCRETE_INSTRUCTION_ARM(M)                            \
1304  M(ArmDexCacheArraysBase, Instruction)
1305#endif
1306
1307#ifndef ART_ENABLE_CODEGEN_arm64
1308#define FOR_EACH_CONCRETE_INSTRUCTION_ARM64(M)
1309#else
1310#define FOR_EACH_CONCRETE_INSTRUCTION_ARM64(M)                          \
1311  M(Arm64DataProcWithShifterOp, Instruction)
1312#endif
1313
1314#ifndef ART_ENABLE_CODEGEN_mips
1315#define FOR_EACH_CONCRETE_INSTRUCTION_MIPS(M)
1316#else
1317#define FOR_EACH_CONCRETE_INSTRUCTION_MIPS(M)                           \
1318  M(MipsComputeBaseMethodAddress, Instruction)                          \
1319  M(MipsDexCacheArraysBase, Instruction)                                \
1320  M(MipsPackedSwitch, Instruction)
1321#endif
1322
1323#define FOR_EACH_CONCRETE_INSTRUCTION_MIPS64(M)
1324
1325#ifndef ART_ENABLE_CODEGEN_x86
1326#define FOR_EACH_CONCRETE_INSTRUCTION_X86(M)
1327#else
1328#define FOR_EACH_CONCRETE_INSTRUCTION_X86(M)                            \
1329  M(X86ComputeBaseMethodAddress, Instruction)                           \
1330  M(X86LoadFromConstantTable, Instruction)                              \
1331  M(X86FPNeg, Instruction)                                              \
1332  M(X86PackedSwitch, Instruction)
1333#endif
1334
1335#define FOR_EACH_CONCRETE_INSTRUCTION_X86_64(M)
1336
1337#define FOR_EACH_CONCRETE_INSTRUCTION(M)                                \
1338  FOR_EACH_CONCRETE_INSTRUCTION_COMMON(M)                               \
1339  FOR_EACH_CONCRETE_INSTRUCTION_SHARED(M)                               \
1340  FOR_EACH_CONCRETE_INSTRUCTION_ARM(M)                                  \
1341  FOR_EACH_CONCRETE_INSTRUCTION_ARM64(M)                                \
1342  FOR_EACH_CONCRETE_INSTRUCTION_MIPS(M)                                 \
1343  FOR_EACH_CONCRETE_INSTRUCTION_MIPS64(M)                               \
1344  FOR_EACH_CONCRETE_INSTRUCTION_X86(M)                                  \
1345  FOR_EACH_CONCRETE_INSTRUCTION_X86_64(M)
1346
1347#define FOR_EACH_ABSTRACT_INSTRUCTION(M)                                \
1348  M(Condition, BinaryOperation)                                         \
1349  M(Constant, Instruction)                                              \
1350  M(UnaryOperation, Instruction)                                        \
1351  M(BinaryOperation, Instruction)                                       \
1352  M(Invoke, Instruction)
1353
1354#define FOR_EACH_INSTRUCTION(M)                                         \
1355  FOR_EACH_CONCRETE_INSTRUCTION(M)                                      \
1356  FOR_EACH_ABSTRACT_INSTRUCTION(M)
1357
1358#define FORWARD_DECLARATION(type, super) class H##type;
1359FOR_EACH_INSTRUCTION(FORWARD_DECLARATION)
1360#undef FORWARD_DECLARATION
1361
1362#define DECLARE_INSTRUCTION(type)                                         \
1363  InstructionKind GetKindInternal() const OVERRIDE { return k##type; }    \
1364  const char* DebugName() const OVERRIDE { return #type; }                \
1365  bool InstructionTypeEquals(const HInstruction* other) const OVERRIDE {  \
1366    return other->Is##type();                                             \
1367  }                                                                       \
1368  void Accept(HGraphVisitor* visitor) OVERRIDE
1369
1370#define DECLARE_ABSTRACT_INSTRUCTION(type)                              \
1371  bool Is##type() const { return As##type() != nullptr; }               \
1372  const H##type* As##type() const { return this; }                      \
1373  H##type* As##type() { return this; }
1374
1375template <typename T>
1376class HUseListNode : public ArenaObject<kArenaAllocUseListNode> {
1377 public:
1378  T GetUser() const { return user_; }
1379  size_t GetIndex() const { return index_; }
1380  void SetIndex(size_t index) { index_ = index; }
1381
1382  // Hook for the IntrusiveForwardList<>.
1383  // TODO: Hide this better.
1384  IntrusiveForwardListHook hook;
1385
1386 private:
1387  HUseListNode(T user, size_t index)
1388      : user_(user), index_(index) {}
1389
1390  T const user_;
1391  size_t index_;
1392
1393  friend class HInstruction;
1394
1395  DISALLOW_COPY_AND_ASSIGN(HUseListNode);
1396};
1397
1398template <typename T>
1399using HUseList = IntrusiveForwardList<HUseListNode<T>>;
1400
1401// This class is used by HEnvironment and HInstruction classes to record the
1402// instructions they use and pointers to the corresponding HUseListNodes kept
1403// by the used instructions.
1404template <typename T>
1405class HUserRecord : public ValueObject {
1406 public:
1407  HUserRecord() : instruction_(nullptr), before_use_node_() {}
1408  explicit HUserRecord(HInstruction* instruction) : instruction_(instruction), before_use_node_() {}
1409
1410  HUserRecord(const HUserRecord<T>& old_record, typename HUseList<T>::iterator before_use_node)
1411      : HUserRecord(old_record.instruction_, before_use_node) {}
1412  HUserRecord(HInstruction* instruction, typename HUseList<T>::iterator before_use_node)
1413      : instruction_(instruction), before_use_node_(before_use_node) {
1414    DCHECK(instruction_ != nullptr);
1415  }
1416
1417  HInstruction* GetInstruction() const { return instruction_; }
1418  typename HUseList<T>::iterator GetBeforeUseNode() const { return before_use_node_; }
1419  typename HUseList<T>::iterator GetUseNode() const { return ++GetBeforeUseNode(); }
1420
1421 private:
1422  // Instruction used by the user.
1423  HInstruction* instruction_;
1424
1425  // Iterator before the corresponding entry in the use list kept by 'instruction_'.
1426  typename HUseList<T>::iterator before_use_node_;
1427};
1428
1429// Helper class that extracts the input instruction from HUserRecord<HInstruction*>.
1430// This is used for HInstruction::GetInputs() to return a container wrapper providing
1431// HInstruction* values even though the underlying container has HUserRecord<>s.
1432struct HInputExtractor {
1433  HInstruction* operator()(HUserRecord<HInstruction*>& record) const {
1434    return record.GetInstruction();
1435  }
1436  const HInstruction* operator()(const HUserRecord<HInstruction*>& record) const {
1437    return record.GetInstruction();
1438  }
1439};
1440
1441using HInputsRef = TransformArrayRef<HUserRecord<HInstruction*>, HInputExtractor>;
1442using HConstInputsRef = TransformArrayRef<const HUserRecord<HInstruction*>, HInputExtractor>;
1443
1444/**
1445 * Side-effects representation.
1446 *
1447 * For write/read dependences on fields/arrays, the dependence analysis uses
1448 * type disambiguation (e.g. a float field write cannot modify the value of an
1449 * integer field read) and the access type (e.g.  a reference array write cannot
1450 * modify the value of a reference field read [although it may modify the
1451 * reference fetch prior to reading the field, which is represented by its own
1452 * write/read dependence]). The analysis makes conservative points-to
1453 * assumptions on reference types (e.g. two same typed arrays are assumed to be
1454 * the same, and any reference read depends on any reference read without
1455 * further regard of its type).
1456 *
1457 * The internal representation uses 38-bit and is described in the table below.
1458 * The first line indicates the side effect, and for field/array accesses the
1459 * second line indicates the type of the access (in the order of the
1460 * Primitive::Type enum).
1461 * The two numbered lines below indicate the bit position in the bitfield (read
1462 * vertically).
1463 *
1464 *   |Depends on GC|ARRAY-R  |FIELD-R  |Can trigger GC|ARRAY-W  |FIELD-W  |
1465 *   +-------------+---------+---------+--------------+---------+---------+
1466 *   |             |DFJISCBZL|DFJISCBZL|              |DFJISCBZL|DFJISCBZL|
1467 *   |      3      |333333322|222222221|       1      |111111110|000000000|
1468 *   |      7      |654321098|765432109|       8      |765432109|876543210|
1469 *
1470 * Note that, to ease the implementation, 'changes' bits are least significant
1471 * bits, while 'dependency' bits are most significant bits.
1472 */
1473class SideEffects : public ValueObject {
1474 public:
1475  SideEffects() : flags_(0) {}
1476
1477  static SideEffects None() {
1478    return SideEffects(0);
1479  }
1480
1481  static SideEffects All() {
1482    return SideEffects(kAllChangeBits | kAllDependOnBits);
1483  }
1484
1485  static SideEffects AllChanges() {
1486    return SideEffects(kAllChangeBits);
1487  }
1488
1489  static SideEffects AllDependencies() {
1490    return SideEffects(kAllDependOnBits);
1491  }
1492
1493  static SideEffects AllExceptGCDependency() {
1494    return AllWritesAndReads().Union(SideEffects::CanTriggerGC());
1495  }
1496
1497  static SideEffects AllWritesAndReads() {
1498    return SideEffects(kAllWrites | kAllReads);
1499  }
1500
1501  static SideEffects AllWrites() {
1502    return SideEffects(kAllWrites);
1503  }
1504
1505  static SideEffects AllReads() {
1506    return SideEffects(kAllReads);
1507  }
1508
1509  static SideEffects FieldWriteOfType(Primitive::Type type, bool is_volatile) {
1510    return is_volatile
1511        ? AllWritesAndReads()
1512        : SideEffects(TypeFlag(type, kFieldWriteOffset));
1513  }
1514
1515  static SideEffects ArrayWriteOfType(Primitive::Type type) {
1516    return SideEffects(TypeFlag(type, kArrayWriteOffset));
1517  }
1518
1519  static SideEffects FieldReadOfType(Primitive::Type type, bool is_volatile) {
1520    return is_volatile
1521        ? AllWritesAndReads()
1522        : SideEffects(TypeFlag(type, kFieldReadOffset));
1523  }
1524
1525  static SideEffects ArrayReadOfType(Primitive::Type type) {
1526    return SideEffects(TypeFlag(type, kArrayReadOffset));
1527  }
1528
1529  static SideEffects CanTriggerGC() {
1530    return SideEffects(1ULL << kCanTriggerGCBit);
1531  }
1532
1533  static SideEffects DependsOnGC() {
1534    return SideEffects(1ULL << kDependsOnGCBit);
1535  }
1536
1537  // Combines the side-effects of this and the other.
1538  SideEffects Union(SideEffects other) const {
1539    return SideEffects(flags_ | other.flags_);
1540  }
1541
1542  SideEffects Exclusion(SideEffects other) const {
1543    return SideEffects(flags_ & ~other.flags_);
1544  }
1545
1546  void Add(SideEffects other) {
1547    flags_ |= other.flags_;
1548  }
1549
1550  bool Includes(SideEffects other) const {
1551    return (other.flags_ & flags_) == other.flags_;
1552  }
1553
1554  bool HasSideEffects() const {
1555    return (flags_ & kAllChangeBits);
1556  }
1557
1558  bool HasDependencies() const {
1559    return (flags_ & kAllDependOnBits);
1560  }
1561
1562  // Returns true if there are no side effects or dependencies.
1563  bool DoesNothing() const {
1564    return flags_ == 0;
1565  }
1566
1567  // Returns true if something is written.
1568  bool DoesAnyWrite() const {
1569    return (flags_ & kAllWrites);
1570  }
1571
1572  // Returns true if something is read.
1573  bool DoesAnyRead() const {
1574    return (flags_ & kAllReads);
1575  }
1576
1577  // Returns true if potentially everything is written and read
1578  // (every type and every kind of access).
1579  bool DoesAllReadWrite() const {
1580    return (flags_ & (kAllWrites | kAllReads)) == (kAllWrites | kAllReads);
1581  }
1582
1583  bool DoesAll() const {
1584    return flags_ == (kAllChangeBits | kAllDependOnBits);
1585  }
1586
1587  // Returns true if `this` may read something written by `other`.
1588  bool MayDependOn(SideEffects other) const {
1589    const uint64_t depends_on_flags = (flags_ & kAllDependOnBits) >> kChangeBits;
1590    return (other.flags_ & depends_on_flags);
1591  }
1592
1593  // Returns string representation of flags (for debugging only).
1594  // Format: |x|DFJISCBZL|DFJISCBZL|y|DFJISCBZL|DFJISCBZL|
1595  std::string ToString() const {
1596    std::string flags = "|";
1597    for (int s = kLastBit; s >= 0; s--) {
1598      bool current_bit_is_set = ((flags_ >> s) & 1) != 0;
1599      if ((s == kDependsOnGCBit) || (s == kCanTriggerGCBit)) {
1600        // This is a bit for the GC side effect.
1601        if (current_bit_is_set) {
1602          flags += "GC";
1603        }
1604        flags += "|";
1605      } else {
1606        // This is a bit for the array/field analysis.
1607        // The underscore character stands for the 'can trigger GC' bit.
1608        static const char *kDebug = "LZBCSIJFDLZBCSIJFD_LZBCSIJFDLZBCSIJFD";
1609        if (current_bit_is_set) {
1610          flags += kDebug[s];
1611        }
1612        if ((s == kFieldWriteOffset) || (s == kArrayWriteOffset) ||
1613            (s == kFieldReadOffset) || (s == kArrayReadOffset)) {
1614          flags += "|";
1615        }
1616      }
1617    }
1618    return flags;
1619  }
1620
1621  bool Equals(const SideEffects& other) const { return flags_ == other.flags_; }
1622
1623 private:
1624  static constexpr int kFieldArrayAnalysisBits = 9;
1625
1626  static constexpr int kFieldWriteOffset = 0;
1627  static constexpr int kArrayWriteOffset = kFieldWriteOffset + kFieldArrayAnalysisBits;
1628  static constexpr int kLastBitForWrites = kArrayWriteOffset + kFieldArrayAnalysisBits - 1;
1629  static constexpr int kCanTriggerGCBit = kLastBitForWrites + 1;
1630
1631  static constexpr int kChangeBits = kCanTriggerGCBit + 1;
1632
1633  static constexpr int kFieldReadOffset = kCanTriggerGCBit + 1;
1634  static constexpr int kArrayReadOffset = kFieldReadOffset + kFieldArrayAnalysisBits;
1635  static constexpr int kLastBitForReads = kArrayReadOffset + kFieldArrayAnalysisBits - 1;
1636  static constexpr int kDependsOnGCBit = kLastBitForReads + 1;
1637
1638  static constexpr int kLastBit = kDependsOnGCBit;
1639  static constexpr int kDependOnBits = kLastBit + 1 - kChangeBits;
1640
1641  // Aliases.
1642
1643  static_assert(kChangeBits == kDependOnBits,
1644                "the 'change' bits should match the 'depend on' bits.");
1645
1646  static constexpr uint64_t kAllChangeBits = ((1ULL << kChangeBits) - 1);
1647  static constexpr uint64_t kAllDependOnBits = ((1ULL << kDependOnBits) - 1) << kChangeBits;
1648  static constexpr uint64_t kAllWrites =
1649      ((1ULL << (kLastBitForWrites + 1 - kFieldWriteOffset)) - 1) << kFieldWriteOffset;
1650  static constexpr uint64_t kAllReads =
1651      ((1ULL << (kLastBitForReads + 1 - kFieldReadOffset)) - 1) << kFieldReadOffset;
1652
1653  // Translates type to bit flag.
1654  static uint64_t TypeFlag(Primitive::Type type, int offset) {
1655    CHECK_NE(type, Primitive::kPrimVoid);
1656    const uint64_t one = 1;
1657    const int shift = type;  // 0-based consecutive enum
1658    DCHECK_LE(kFieldWriteOffset, shift);
1659    DCHECK_LT(shift, kArrayWriteOffset);
1660    return one << (type + offset);
1661  }
1662
1663  // Private constructor on direct flags value.
1664  explicit SideEffects(uint64_t flags) : flags_(flags) {}
1665
1666  uint64_t flags_;
1667};
1668
1669// A HEnvironment object contains the values of virtual registers at a given location.
1670class HEnvironment : public ArenaObject<kArenaAllocEnvironment> {
1671 public:
1672  HEnvironment(ArenaAllocator* arena,
1673               size_t number_of_vregs,
1674               const DexFile& dex_file,
1675               uint32_t method_idx,
1676               uint32_t dex_pc,
1677               InvokeType invoke_type,
1678               HInstruction* holder)
1679     : vregs_(number_of_vregs, arena->Adapter(kArenaAllocEnvironmentVRegs)),
1680       locations_(number_of_vregs, arena->Adapter(kArenaAllocEnvironmentLocations)),
1681       parent_(nullptr),
1682       dex_file_(dex_file),
1683       method_idx_(method_idx),
1684       dex_pc_(dex_pc),
1685       invoke_type_(invoke_type),
1686       holder_(holder) {
1687  }
1688
1689  HEnvironment(ArenaAllocator* arena, const HEnvironment& to_copy, HInstruction* holder)
1690      : HEnvironment(arena,
1691                     to_copy.Size(),
1692                     to_copy.GetDexFile(),
1693                     to_copy.GetMethodIdx(),
1694                     to_copy.GetDexPc(),
1695                     to_copy.GetInvokeType(),
1696                     holder) {}
1697
1698  void SetAndCopyParentChain(ArenaAllocator* allocator, HEnvironment* parent) {
1699    if (parent_ != nullptr) {
1700      parent_->SetAndCopyParentChain(allocator, parent);
1701    } else {
1702      parent_ = new (allocator) HEnvironment(allocator, *parent, holder_);
1703      parent_->CopyFrom(parent);
1704      if (parent->GetParent() != nullptr) {
1705        parent_->SetAndCopyParentChain(allocator, parent->GetParent());
1706      }
1707    }
1708  }
1709
1710  void CopyFrom(const ArenaVector<HInstruction*>& locals);
1711  void CopyFrom(HEnvironment* environment);
1712
1713  // Copy from `env`. If it's a loop phi for `loop_header`, copy the first
1714  // input to the loop phi instead. This is for inserting instructions that
1715  // require an environment (like HDeoptimization) in the loop pre-header.
1716  void CopyFromWithLoopPhiAdjustment(HEnvironment* env, HBasicBlock* loop_header);
1717
1718  void SetRawEnvAt(size_t index, HInstruction* instruction) {
1719    vregs_[index] = HUserRecord<HEnvironment*>(instruction);
1720  }
1721
1722  HInstruction* GetInstructionAt(size_t index) const {
1723    return vregs_[index].GetInstruction();
1724  }
1725
1726  void RemoveAsUserOfInput(size_t index) const;
1727
1728  size_t Size() const { return vregs_.size(); }
1729
1730  HEnvironment* GetParent() const { return parent_; }
1731
1732  void SetLocationAt(size_t index, Location location) {
1733    locations_[index] = location;
1734  }
1735
1736  Location GetLocationAt(size_t index) const {
1737    return locations_[index];
1738  }
1739
1740  uint32_t GetDexPc() const {
1741    return dex_pc_;
1742  }
1743
1744  uint32_t GetMethodIdx() const {
1745    return method_idx_;
1746  }
1747
1748  InvokeType GetInvokeType() const {
1749    return invoke_type_;
1750  }
1751
1752  const DexFile& GetDexFile() const {
1753    return dex_file_;
1754  }
1755
1756  HInstruction* GetHolder() const {
1757    return holder_;
1758  }
1759
1760
1761  bool IsFromInlinedInvoke() const {
1762    return GetParent() != nullptr;
1763  }
1764
1765 private:
1766  ArenaVector<HUserRecord<HEnvironment*>> vregs_;
1767  ArenaVector<Location> locations_;
1768  HEnvironment* parent_;
1769  const DexFile& dex_file_;
1770  const uint32_t method_idx_;
1771  const uint32_t dex_pc_;
1772  const InvokeType invoke_type_;
1773
1774  // The instruction that holds this environment.
1775  HInstruction* const holder_;
1776
1777  friend class HInstruction;
1778
1779  DISALLOW_COPY_AND_ASSIGN(HEnvironment);
1780};
1781
1782class HInstruction : public ArenaObject<kArenaAllocInstruction> {
1783 public:
1784  HInstruction(SideEffects side_effects, uint32_t dex_pc)
1785      : previous_(nullptr),
1786        next_(nullptr),
1787        block_(nullptr),
1788        dex_pc_(dex_pc),
1789        id_(-1),
1790        ssa_index_(-1),
1791        packed_fields_(0u),
1792        environment_(nullptr),
1793        locations_(nullptr),
1794        live_interval_(nullptr),
1795        lifetime_position_(kNoLifetime),
1796        side_effects_(side_effects),
1797        reference_type_handle_(ReferenceTypeInfo::CreateInvalid().GetTypeHandle()) {
1798    SetPackedFlag<kFlagReferenceTypeIsExact>(ReferenceTypeInfo::CreateInvalid().IsExact());
1799  }
1800
1801  virtual ~HInstruction() {}
1802
1803#define DECLARE_KIND(type, super) k##type,
1804  enum InstructionKind {
1805    FOR_EACH_INSTRUCTION(DECLARE_KIND)
1806  };
1807#undef DECLARE_KIND
1808
1809  HInstruction* GetNext() const { return next_; }
1810  HInstruction* GetPrevious() const { return previous_; }
1811
1812  HInstruction* GetNextDisregardingMoves() const;
1813  HInstruction* GetPreviousDisregardingMoves() const;
1814
1815  HBasicBlock* GetBlock() const { return block_; }
1816  ArenaAllocator* GetArena() const { return block_->GetGraph()->GetArena(); }
1817  void SetBlock(HBasicBlock* block) { block_ = block; }
1818  bool IsInBlock() const { return block_ != nullptr; }
1819  bool IsInLoop() const { return block_->IsInLoop(); }
1820  bool IsLoopHeaderPhi() const { return IsPhi() && block_->IsLoopHeader(); }
1821  bool IsIrreducibleLoopHeaderPhi() const {
1822    return IsLoopHeaderPhi() && GetBlock()->GetLoopInformation()->IsIrreducible();
1823  }
1824
1825  virtual ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() = 0;
1826
1827  ArrayRef<const HUserRecord<HInstruction*>> GetInputRecords() const {
1828    // One virtual method is enough, just const_cast<> and then re-add the const.
1829    return ArrayRef<const HUserRecord<HInstruction*>>(
1830        const_cast<HInstruction*>(this)->GetInputRecords());
1831  }
1832
1833  HInputsRef GetInputs() {
1834    return MakeTransformArrayRef(GetInputRecords(), HInputExtractor());
1835  }
1836
1837  HConstInputsRef GetInputs() const {
1838    return MakeTransformArrayRef(GetInputRecords(), HInputExtractor());
1839  }
1840
1841  size_t InputCount() const { return GetInputRecords().size(); }
1842  HInstruction* InputAt(size_t i) const { return InputRecordAt(i).GetInstruction(); }
1843
1844  void SetRawInputAt(size_t index, HInstruction* input) {
1845    SetRawInputRecordAt(index, HUserRecord<HInstruction*>(input));
1846  }
1847
1848  virtual void Accept(HGraphVisitor* visitor) = 0;
1849  virtual const char* DebugName() const = 0;
1850
1851  virtual Primitive::Type GetType() const { return Primitive::kPrimVoid; }
1852
1853  virtual bool NeedsEnvironment() const { return false; }
1854
1855  uint32_t GetDexPc() const { return dex_pc_; }
1856
1857  virtual bool IsControlFlow() const { return false; }
1858
1859  virtual bool CanThrow() const { return false; }
1860  bool CanThrowIntoCatchBlock() const { return CanThrow() && block_->IsTryBlock(); }
1861
1862  bool HasSideEffects() const { return side_effects_.HasSideEffects(); }
1863  bool DoesAnyWrite() const { return side_effects_.DoesAnyWrite(); }
1864
1865  // Does not apply for all instructions, but having this at top level greatly
1866  // simplifies the null check elimination.
1867  // TODO: Consider merging can_be_null into ReferenceTypeInfo.
1868  virtual bool CanBeNull() const {
1869    DCHECK_EQ(GetType(), Primitive::kPrimNot) << "CanBeNull only applies to reference types";
1870    return true;
1871  }
1872
1873  virtual bool CanDoImplicitNullCheckOn(HInstruction* obj ATTRIBUTE_UNUSED) const {
1874    return false;
1875  }
1876
1877  virtual bool IsActualObject() const {
1878    return GetType() == Primitive::kPrimNot;
1879  }
1880
1881  void SetReferenceTypeInfo(ReferenceTypeInfo rti);
1882
1883  ReferenceTypeInfo GetReferenceTypeInfo() const {
1884    DCHECK_EQ(GetType(), Primitive::kPrimNot);
1885    return ReferenceTypeInfo::CreateUnchecked(reference_type_handle_,
1886                                              GetPackedFlag<kFlagReferenceTypeIsExact>());
1887  }
1888
1889  void AddUseAt(HInstruction* user, size_t index) {
1890    DCHECK(user != nullptr);
1891    // Note: fixup_end remains valid across push_front().
1892    auto fixup_end = uses_.empty() ? uses_.begin() : ++uses_.begin();
1893    HUseListNode<HInstruction*>* new_node =
1894        new (GetBlock()->GetGraph()->GetArena()) HUseListNode<HInstruction*>(user, index);
1895    uses_.push_front(*new_node);
1896    FixUpUserRecordsAfterUseInsertion(fixup_end);
1897  }
1898
1899  void AddEnvUseAt(HEnvironment* user, size_t index) {
1900    DCHECK(user != nullptr);
1901    // Note: env_fixup_end remains valid across push_front().
1902    auto env_fixup_end = env_uses_.empty() ? env_uses_.begin() : ++env_uses_.begin();
1903    HUseListNode<HEnvironment*>* new_node =
1904        new (GetBlock()->GetGraph()->GetArena()) HUseListNode<HEnvironment*>(user, index);
1905    env_uses_.push_front(*new_node);
1906    FixUpUserRecordsAfterEnvUseInsertion(env_fixup_end);
1907  }
1908
1909  void RemoveAsUserOfInput(size_t input) {
1910    HUserRecord<HInstruction*> input_use = InputRecordAt(input);
1911    HUseList<HInstruction*>::iterator before_use_node = input_use.GetBeforeUseNode();
1912    input_use.GetInstruction()->uses_.erase_after(before_use_node);
1913    input_use.GetInstruction()->FixUpUserRecordsAfterUseRemoval(before_use_node);
1914  }
1915
1916  void RemoveAsUserOfAllInputs() {
1917    for (const HUserRecord<HInstruction*>& input_use : GetInputRecords()) {
1918      HUseList<HInstruction*>::iterator before_use_node = input_use.GetBeforeUseNode();
1919      input_use.GetInstruction()->uses_.erase_after(before_use_node);
1920      input_use.GetInstruction()->FixUpUserRecordsAfterUseRemoval(before_use_node);
1921    }
1922  }
1923
1924  const HUseList<HInstruction*>& GetUses() const { return uses_; }
1925  const HUseList<HEnvironment*>& GetEnvUses() const { return env_uses_; }
1926
1927  bool HasUses() const { return !uses_.empty() || !env_uses_.empty(); }
1928  bool HasEnvironmentUses() const { return !env_uses_.empty(); }
1929  bool HasNonEnvironmentUses() const { return !uses_.empty(); }
1930  bool HasOnlyOneNonEnvironmentUse() const {
1931    return !HasEnvironmentUses() && GetUses().HasExactlyOneElement();
1932  }
1933
1934  bool IsRemovable() const {
1935    return
1936        !HasSideEffects() &&
1937        !CanThrow() &&
1938        !IsSuspendCheck() &&
1939        !IsControlFlow() &&
1940        !IsNativeDebugInfo() &&
1941        !IsParameterValue() &&
1942        // If we added an explicit barrier then we should keep it.
1943        !IsMemoryBarrier();
1944  }
1945
1946  bool IsDeadAndRemovable() const {
1947    return IsRemovable() && !HasUses();
1948  }
1949
1950  // Does this instruction strictly dominate `other_instruction`?
1951  // Returns false if this instruction and `other_instruction` are the same.
1952  // Aborts if this instruction and `other_instruction` are both phis.
1953  bool StrictlyDominates(HInstruction* other_instruction) const;
1954
1955  int GetId() const { return id_; }
1956  void SetId(int id) { id_ = id; }
1957
1958  int GetSsaIndex() const { return ssa_index_; }
1959  void SetSsaIndex(int ssa_index) { ssa_index_ = ssa_index; }
1960  bool HasSsaIndex() const { return ssa_index_ != -1; }
1961
1962  bool HasEnvironment() const { return environment_ != nullptr; }
1963  HEnvironment* GetEnvironment() const { return environment_; }
1964  // Set the `environment_` field. Raw because this method does not
1965  // update the uses lists.
1966  void SetRawEnvironment(HEnvironment* environment) {
1967    DCHECK(environment_ == nullptr);
1968    DCHECK_EQ(environment->GetHolder(), this);
1969    environment_ = environment;
1970  }
1971
1972  void InsertRawEnvironment(HEnvironment* environment) {
1973    DCHECK(environment_ != nullptr);
1974    DCHECK_EQ(environment->GetHolder(), this);
1975    DCHECK(environment->GetParent() == nullptr);
1976    environment->parent_ = environment_;
1977    environment_ = environment;
1978  }
1979
1980  void RemoveEnvironment();
1981
1982  // Set the environment of this instruction, copying it from `environment`. While
1983  // copying, the uses lists are being updated.
1984  void CopyEnvironmentFrom(HEnvironment* environment) {
1985    DCHECK(environment_ == nullptr);
1986    ArenaAllocator* allocator = GetBlock()->GetGraph()->GetArena();
1987    environment_ = new (allocator) HEnvironment(allocator, *environment, this);
1988    environment_->CopyFrom(environment);
1989    if (environment->GetParent() != nullptr) {
1990      environment_->SetAndCopyParentChain(allocator, environment->GetParent());
1991    }
1992  }
1993
1994  void CopyEnvironmentFromWithLoopPhiAdjustment(HEnvironment* environment,
1995                                                HBasicBlock* block) {
1996    DCHECK(environment_ == nullptr);
1997    ArenaAllocator* allocator = GetBlock()->GetGraph()->GetArena();
1998    environment_ = new (allocator) HEnvironment(allocator, *environment, this);
1999    environment_->CopyFromWithLoopPhiAdjustment(environment, block);
2000    if (environment->GetParent() != nullptr) {
2001      environment_->SetAndCopyParentChain(allocator, environment->GetParent());
2002    }
2003  }
2004
2005  // Returns the number of entries in the environment. Typically, that is the
2006  // number of dex registers in a method. It could be more in case of inlining.
2007  size_t EnvironmentSize() const;
2008
2009  LocationSummary* GetLocations() const { return locations_; }
2010  void SetLocations(LocationSummary* locations) { locations_ = locations; }
2011
2012  void ReplaceWith(HInstruction* instruction);
2013  void ReplaceInput(HInstruction* replacement, size_t index);
2014
2015  // This is almost the same as doing `ReplaceWith()`. But in this helper, the
2016  // uses of this instruction by `other` are *not* updated.
2017  void ReplaceWithExceptInReplacementAtIndex(HInstruction* other, size_t use_index) {
2018    ReplaceWith(other);
2019    other->ReplaceInput(this, use_index);
2020  }
2021
2022  // Move `this` instruction before `cursor`.
2023  void MoveBefore(HInstruction* cursor);
2024
2025  // Move `this` before its first user and out of any loops. If there is no
2026  // out-of-loop user that dominates all other users, move the instruction
2027  // to the end of the out-of-loop common dominator of the user's blocks.
2028  //
2029  // This can be used only on non-throwing instructions with no side effects that
2030  // have at least one use but no environment uses.
2031  void MoveBeforeFirstUserAndOutOfLoops();
2032
2033#define INSTRUCTION_TYPE_CHECK(type, super)                                    \
2034  bool Is##type() const;                                                       \
2035  const H##type* As##type() const;                                             \
2036  H##type* As##type();
2037
2038  FOR_EACH_CONCRETE_INSTRUCTION(INSTRUCTION_TYPE_CHECK)
2039#undef INSTRUCTION_TYPE_CHECK
2040
2041#define INSTRUCTION_TYPE_CHECK(type, super)                                    \
2042  bool Is##type() const { return (As##type() != nullptr); }                    \
2043  virtual const H##type* As##type() const { return nullptr; }                  \
2044  virtual H##type* As##type() { return nullptr; }
2045  FOR_EACH_ABSTRACT_INSTRUCTION(INSTRUCTION_TYPE_CHECK)
2046#undef INSTRUCTION_TYPE_CHECK
2047
2048  // Returns whether the instruction can be moved within the graph.
2049  virtual bool CanBeMoved() const { return false; }
2050
2051  // Returns whether the two instructions are of the same kind.
2052  virtual bool InstructionTypeEquals(const HInstruction* other ATTRIBUTE_UNUSED) const {
2053    return false;
2054  }
2055
2056  // Returns whether any data encoded in the two instructions is equal.
2057  // This method does not look at the inputs. Both instructions must be
2058  // of the same type, otherwise the method has undefined behavior.
2059  virtual bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const {
2060    return false;
2061  }
2062
2063  // Returns whether two instructions are equal, that is:
2064  // 1) They have the same type and contain the same data (InstructionDataEquals).
2065  // 2) Their inputs are identical.
2066  bool Equals(const HInstruction* other) const;
2067
2068  // TODO: Remove this indirection when the [[pure]] attribute proposal (n3744)
2069  // is adopted and implemented by our C++ compiler(s). Fow now, we need to hide
2070  // the virtual function because the __attribute__((__pure__)) doesn't really
2071  // apply the strong requirement for virtual functions, preventing optimizations.
2072  InstructionKind GetKind() const PURE;
2073  virtual InstructionKind GetKindInternal() const = 0;
2074
2075  virtual size_t ComputeHashCode() const {
2076    size_t result = GetKind();
2077    for (const HInstruction* input : GetInputs()) {
2078      result = (result * 31) + input->GetId();
2079    }
2080    return result;
2081  }
2082
2083  SideEffects GetSideEffects() const { return side_effects_; }
2084  void SetSideEffects(SideEffects other) { side_effects_ = other; }
2085  void AddSideEffects(SideEffects other) { side_effects_.Add(other); }
2086
2087  size_t GetLifetimePosition() const { return lifetime_position_; }
2088  void SetLifetimePosition(size_t position) { lifetime_position_ = position; }
2089  LiveInterval* GetLiveInterval() const { return live_interval_; }
2090  void SetLiveInterval(LiveInterval* interval) { live_interval_ = interval; }
2091  bool HasLiveInterval() const { return live_interval_ != nullptr; }
2092
2093  bool IsSuspendCheckEntry() const { return IsSuspendCheck() && GetBlock()->IsEntryBlock(); }
2094
2095  // Returns whether the code generation of the instruction will require to have access
2096  // to the current method. Such instructions are:
2097  // (1): Instructions that require an environment, as calling the runtime requires
2098  //      to walk the stack and have the current method stored at a specific stack address.
2099  // (2): HCurrentMethod, potentially used by HInvokeStaticOrDirect, HLoadString, or HLoadClass
2100  //      to access the dex cache.
2101  bool NeedsCurrentMethod() const {
2102    return NeedsEnvironment() || IsCurrentMethod();
2103  }
2104
2105  // Returns whether the code generation of the instruction will require to have access
2106  // to the dex cache of the current method's declaring class via the current method.
2107  virtual bool NeedsDexCacheOfDeclaringClass() const { return false; }
2108
2109  // Does this instruction have any use in an environment before
2110  // control flow hits 'other'?
2111  bool HasAnyEnvironmentUseBefore(HInstruction* other);
2112
2113  // Remove all references to environment uses of this instruction.
2114  // The caller must ensure that this is safe to do.
2115  void RemoveEnvironmentUsers();
2116
2117  bool IsEmittedAtUseSite() const { return GetPackedFlag<kFlagEmittedAtUseSite>(); }
2118  void MarkEmittedAtUseSite() { SetPackedFlag<kFlagEmittedAtUseSite>(true); }
2119
2120 protected:
2121  // If set, the machine code for this instruction is assumed to be generated by
2122  // its users. Used by liveness analysis to compute use positions accordingly.
2123  static constexpr size_t kFlagEmittedAtUseSite = 0u;
2124  static constexpr size_t kFlagReferenceTypeIsExact = kFlagEmittedAtUseSite + 1;
2125  static constexpr size_t kNumberOfGenericPackedBits = kFlagReferenceTypeIsExact + 1;
2126  static constexpr size_t kMaxNumberOfPackedBits = sizeof(uint32_t) * kBitsPerByte;
2127
2128  const HUserRecord<HInstruction*> InputRecordAt(size_t i) const {
2129    return GetInputRecords()[i];
2130  }
2131
2132  void SetRawInputRecordAt(size_t index, const HUserRecord<HInstruction*>& input) {
2133    ArrayRef<HUserRecord<HInstruction*>> input_records = GetInputRecords();
2134    input_records[index] = input;
2135  }
2136
2137  uint32_t GetPackedFields() const {
2138    return packed_fields_;
2139  }
2140
2141  template <size_t flag>
2142  bool GetPackedFlag() const {
2143    return (packed_fields_ & (1u << flag)) != 0u;
2144  }
2145
2146  template <size_t flag>
2147  void SetPackedFlag(bool value = true) {
2148    packed_fields_ = (packed_fields_ & ~(1u << flag)) | ((value ? 1u : 0u) << flag);
2149  }
2150
2151  template <typename BitFieldType>
2152  typename BitFieldType::value_type GetPackedField() const {
2153    return BitFieldType::Decode(packed_fields_);
2154  }
2155
2156  template <typename BitFieldType>
2157  void SetPackedField(typename BitFieldType::value_type value) {
2158    DCHECK(IsUint<BitFieldType::size>(static_cast<uintptr_t>(value)));
2159    packed_fields_ = BitFieldType::Update(value, packed_fields_);
2160  }
2161
2162 private:
2163  void FixUpUserRecordsAfterUseInsertion(HUseList<HInstruction*>::iterator fixup_end) {
2164    auto before_use_node = uses_.before_begin();
2165    for (auto use_node = uses_.begin(); use_node != fixup_end; ++use_node) {
2166      HInstruction* user = use_node->GetUser();
2167      size_t input_index = use_node->GetIndex();
2168      user->SetRawInputRecordAt(input_index, HUserRecord<HInstruction*>(this, before_use_node));
2169      before_use_node = use_node;
2170    }
2171  }
2172
2173  void FixUpUserRecordsAfterUseRemoval(HUseList<HInstruction*>::iterator before_use_node) {
2174    auto next = ++HUseList<HInstruction*>::iterator(before_use_node);
2175    if (next != uses_.end()) {
2176      HInstruction* next_user = next->GetUser();
2177      size_t next_index = next->GetIndex();
2178      DCHECK(next_user->InputRecordAt(next_index).GetInstruction() == this);
2179      next_user->SetRawInputRecordAt(next_index, HUserRecord<HInstruction*>(this, before_use_node));
2180    }
2181  }
2182
2183  void FixUpUserRecordsAfterEnvUseInsertion(HUseList<HEnvironment*>::iterator env_fixup_end) {
2184    auto before_env_use_node = env_uses_.before_begin();
2185    for (auto env_use_node = env_uses_.begin(); env_use_node != env_fixup_end; ++env_use_node) {
2186      HEnvironment* user = env_use_node->GetUser();
2187      size_t input_index = env_use_node->GetIndex();
2188      user->vregs_[input_index] = HUserRecord<HEnvironment*>(this, before_env_use_node);
2189      before_env_use_node = env_use_node;
2190    }
2191  }
2192
2193  void FixUpUserRecordsAfterEnvUseRemoval(HUseList<HEnvironment*>::iterator before_env_use_node) {
2194    auto next = ++HUseList<HEnvironment*>::iterator(before_env_use_node);
2195    if (next != env_uses_.end()) {
2196      HEnvironment* next_user = next->GetUser();
2197      size_t next_index = next->GetIndex();
2198      DCHECK(next_user->vregs_[next_index].GetInstruction() == this);
2199      next_user->vregs_[next_index] = HUserRecord<HEnvironment*>(this, before_env_use_node);
2200    }
2201  }
2202
2203  HInstruction* previous_;
2204  HInstruction* next_;
2205  HBasicBlock* block_;
2206  const uint32_t dex_pc_;
2207
2208  // An instruction gets an id when it is added to the graph.
2209  // It reflects creation order. A negative id means the instruction
2210  // has not been added to the graph.
2211  int id_;
2212
2213  // When doing liveness analysis, instructions that have uses get an SSA index.
2214  int ssa_index_;
2215
2216  // Packed fields.
2217  uint32_t packed_fields_;
2218
2219  // List of instructions that have this instruction as input.
2220  HUseList<HInstruction*> uses_;
2221
2222  // List of environments that contain this instruction.
2223  HUseList<HEnvironment*> env_uses_;
2224
2225  // The environment associated with this instruction. Not null if the instruction
2226  // might jump out of the method.
2227  HEnvironment* environment_;
2228
2229  // Set by the code generator.
2230  LocationSummary* locations_;
2231
2232  // Set by the liveness analysis.
2233  LiveInterval* live_interval_;
2234
2235  // Set by the liveness analysis, this is the position in a linear
2236  // order of blocks where this instruction's live interval start.
2237  size_t lifetime_position_;
2238
2239  SideEffects side_effects_;
2240
2241  // The reference handle part of the reference type info.
2242  // The IsExact() flag is stored in packed fields.
2243  // TODO: for primitive types this should be marked as invalid.
2244  ReferenceTypeInfo::TypeHandle reference_type_handle_;
2245
2246  friend class GraphChecker;
2247  friend class HBasicBlock;
2248  friend class HEnvironment;
2249  friend class HGraph;
2250  friend class HInstructionList;
2251
2252  DISALLOW_COPY_AND_ASSIGN(HInstruction);
2253};
2254std::ostream& operator<<(std::ostream& os, const HInstruction::InstructionKind& rhs);
2255
2256class HInstructionIterator : public ValueObject {
2257 public:
2258  explicit HInstructionIterator(const HInstructionList& instructions)
2259      : instruction_(instructions.first_instruction_) {
2260    next_ = Done() ? nullptr : instruction_->GetNext();
2261  }
2262
2263  bool Done() const { return instruction_ == nullptr; }
2264  HInstruction* Current() const { return instruction_; }
2265  void Advance() {
2266    instruction_ = next_;
2267    next_ = Done() ? nullptr : instruction_->GetNext();
2268  }
2269
2270 private:
2271  HInstruction* instruction_;
2272  HInstruction* next_;
2273
2274  DISALLOW_COPY_AND_ASSIGN(HInstructionIterator);
2275};
2276
2277class HBackwardInstructionIterator : public ValueObject {
2278 public:
2279  explicit HBackwardInstructionIterator(const HInstructionList& instructions)
2280      : instruction_(instructions.last_instruction_) {
2281    next_ = Done() ? nullptr : instruction_->GetPrevious();
2282  }
2283
2284  bool Done() const { return instruction_ == nullptr; }
2285  HInstruction* Current() const { return instruction_; }
2286  void Advance() {
2287    instruction_ = next_;
2288    next_ = Done() ? nullptr : instruction_->GetPrevious();
2289  }
2290
2291 private:
2292  HInstruction* instruction_;
2293  HInstruction* next_;
2294
2295  DISALLOW_COPY_AND_ASSIGN(HBackwardInstructionIterator);
2296};
2297
2298template<size_t N>
2299class HTemplateInstruction: public HInstruction {
2300 public:
2301  HTemplateInstruction<N>(SideEffects side_effects, uint32_t dex_pc)
2302      : HInstruction(side_effects, dex_pc), inputs_() {}
2303  virtual ~HTemplateInstruction() {}
2304
2305  using HInstruction::GetInputRecords;  // Keep the const version visible.
2306  ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() OVERRIDE FINAL {
2307    return ArrayRef<HUserRecord<HInstruction*>>(inputs_);
2308  }
2309
2310 private:
2311  std::array<HUserRecord<HInstruction*>, N> inputs_;
2312
2313  friend class SsaBuilder;
2314};
2315
2316// HTemplateInstruction specialization for N=0.
2317template<>
2318class HTemplateInstruction<0>: public HInstruction {
2319 public:
2320  explicit HTemplateInstruction<0>(SideEffects side_effects, uint32_t dex_pc)
2321      : HInstruction(side_effects, dex_pc) {}
2322
2323  virtual ~HTemplateInstruction() {}
2324
2325  using HInstruction::GetInputRecords;  // Keep the const version visible.
2326  ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() OVERRIDE FINAL {
2327    return ArrayRef<HUserRecord<HInstruction*>>();
2328  }
2329
2330 private:
2331  friend class SsaBuilder;
2332};
2333
2334template<intptr_t N>
2335class HExpression : public HTemplateInstruction<N> {
2336 public:
2337  HExpression<N>(Primitive::Type type, SideEffects side_effects, uint32_t dex_pc)
2338      : HTemplateInstruction<N>(side_effects, dex_pc) {
2339    this->template SetPackedField<TypeField>(type);
2340  }
2341  virtual ~HExpression() {}
2342
2343  Primitive::Type GetType() const OVERRIDE {
2344    return TypeField::Decode(this->GetPackedFields());
2345  }
2346
2347 protected:
2348  static constexpr size_t kFieldType = HInstruction::kNumberOfGenericPackedBits;
2349  static constexpr size_t kFieldTypeSize =
2350      MinimumBitsToStore(static_cast<size_t>(Primitive::kPrimLast));
2351  static constexpr size_t kNumberOfExpressionPackedBits = kFieldType + kFieldTypeSize;
2352  static_assert(kNumberOfExpressionPackedBits <= HInstruction::kMaxNumberOfPackedBits,
2353                "Too many packed fields.");
2354  using TypeField = BitField<Primitive::Type, kFieldType, kFieldTypeSize>;
2355};
2356
2357// Represents dex's RETURN_VOID opcode. A HReturnVoid is a control flow
2358// instruction that branches to the exit block.
2359class HReturnVoid FINAL : public HTemplateInstruction<0> {
2360 public:
2361  explicit HReturnVoid(uint32_t dex_pc = kNoDexPc)
2362      : HTemplateInstruction(SideEffects::None(), dex_pc) {}
2363
2364  bool IsControlFlow() const OVERRIDE { return true; }
2365
2366  DECLARE_INSTRUCTION(ReturnVoid);
2367
2368 private:
2369  DISALLOW_COPY_AND_ASSIGN(HReturnVoid);
2370};
2371
2372// Represents dex's RETURN opcodes. A HReturn is a control flow
2373// instruction that branches to the exit block.
2374class HReturn FINAL : public HTemplateInstruction<1> {
2375 public:
2376  explicit HReturn(HInstruction* value, uint32_t dex_pc = kNoDexPc)
2377      : HTemplateInstruction(SideEffects::None(), dex_pc) {
2378    SetRawInputAt(0, value);
2379  }
2380
2381  bool IsControlFlow() const OVERRIDE { return true; }
2382
2383  DECLARE_INSTRUCTION(Return);
2384
2385 private:
2386  DISALLOW_COPY_AND_ASSIGN(HReturn);
2387};
2388
2389class HPhi FINAL : public HInstruction {
2390 public:
2391  HPhi(ArenaAllocator* arena,
2392       uint32_t reg_number,
2393       size_t number_of_inputs,
2394       Primitive::Type type,
2395       uint32_t dex_pc = kNoDexPc)
2396      : HInstruction(SideEffects::None(), dex_pc),
2397        inputs_(number_of_inputs, arena->Adapter(kArenaAllocPhiInputs)),
2398        reg_number_(reg_number) {
2399    SetPackedField<TypeField>(ToPhiType(type));
2400    DCHECK_NE(GetType(), Primitive::kPrimVoid);
2401    // Phis are constructed live and marked dead if conflicting or unused.
2402    // Individual steps of SsaBuilder should assume that if a phi has been
2403    // marked dead, it can be ignored and will be removed by SsaPhiElimination.
2404    SetPackedFlag<kFlagIsLive>(true);
2405    SetPackedFlag<kFlagCanBeNull>(true);
2406  }
2407
2408  // Returns a type equivalent to the given `type`, but that a `HPhi` can hold.
2409  static Primitive::Type ToPhiType(Primitive::Type type) {
2410    return Primitive::PrimitiveKind(type);
2411  }
2412
2413  bool IsCatchPhi() const { return GetBlock()->IsCatchBlock(); }
2414
2415  using HInstruction::GetInputRecords;  // Keep the const version visible.
2416  ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() OVERRIDE FINAL {
2417    return ArrayRef<HUserRecord<HInstruction*>>(inputs_);
2418  }
2419
2420  void AddInput(HInstruction* input);
2421  void RemoveInputAt(size_t index);
2422
2423  Primitive::Type GetType() const OVERRIDE { return GetPackedField<TypeField>(); }
2424  void SetType(Primitive::Type new_type) {
2425    // Make sure that only valid type changes occur. The following are allowed:
2426    //  (1) int  -> float/ref (primitive type propagation),
2427    //  (2) long -> double (primitive type propagation).
2428    DCHECK(GetType() == new_type ||
2429           (GetType() == Primitive::kPrimInt && new_type == Primitive::kPrimFloat) ||
2430           (GetType() == Primitive::kPrimInt && new_type == Primitive::kPrimNot) ||
2431           (GetType() == Primitive::kPrimLong && new_type == Primitive::kPrimDouble));
2432    SetPackedField<TypeField>(new_type);
2433  }
2434
2435  bool CanBeNull() const OVERRIDE { return GetPackedFlag<kFlagCanBeNull>(); }
2436  void SetCanBeNull(bool can_be_null) { SetPackedFlag<kFlagCanBeNull>(can_be_null); }
2437
2438  uint32_t GetRegNumber() const { return reg_number_; }
2439
2440  void SetDead() { SetPackedFlag<kFlagIsLive>(false); }
2441  void SetLive() { SetPackedFlag<kFlagIsLive>(true); }
2442  bool IsDead() const { return !IsLive(); }
2443  bool IsLive() const { return GetPackedFlag<kFlagIsLive>(); }
2444
2445  bool IsVRegEquivalentOf(const HInstruction* other) const {
2446    return other != nullptr
2447        && other->IsPhi()
2448        && other->AsPhi()->GetBlock() == GetBlock()
2449        && other->AsPhi()->GetRegNumber() == GetRegNumber();
2450  }
2451
2452  // Returns the next equivalent phi (starting from the current one) or null if there is none.
2453  // An equivalent phi is a phi having the same dex register and type.
2454  // It assumes that phis with the same dex register are adjacent.
2455  HPhi* GetNextEquivalentPhiWithSameType() {
2456    HInstruction* next = GetNext();
2457    while (next != nullptr && next->AsPhi()->GetRegNumber() == reg_number_) {
2458      if (next->GetType() == GetType()) {
2459        return next->AsPhi();
2460      }
2461      next = next->GetNext();
2462    }
2463    return nullptr;
2464  }
2465
2466  DECLARE_INSTRUCTION(Phi);
2467
2468 private:
2469  static constexpr size_t kFieldType = HInstruction::kNumberOfGenericPackedBits;
2470  static constexpr size_t kFieldTypeSize =
2471      MinimumBitsToStore(static_cast<size_t>(Primitive::kPrimLast));
2472  static constexpr size_t kFlagIsLive = kFieldType + kFieldTypeSize;
2473  static constexpr size_t kFlagCanBeNull = kFlagIsLive + 1;
2474  static constexpr size_t kNumberOfPhiPackedBits = kFlagCanBeNull + 1;
2475  static_assert(kNumberOfPhiPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields.");
2476  using TypeField = BitField<Primitive::Type, kFieldType, kFieldTypeSize>;
2477
2478  ArenaVector<HUserRecord<HInstruction*>> inputs_;
2479  const uint32_t reg_number_;
2480
2481  DISALLOW_COPY_AND_ASSIGN(HPhi);
2482};
2483
2484// The exit instruction is the only instruction of the exit block.
2485// Instructions aborting the method (HThrow and HReturn) must branch to the
2486// exit block.
2487class HExit FINAL : public HTemplateInstruction<0> {
2488 public:
2489  explicit HExit(uint32_t dex_pc = kNoDexPc) : HTemplateInstruction(SideEffects::None(), dex_pc) {}
2490
2491  bool IsControlFlow() const OVERRIDE { return true; }
2492
2493  DECLARE_INSTRUCTION(Exit);
2494
2495 private:
2496  DISALLOW_COPY_AND_ASSIGN(HExit);
2497};
2498
2499// Jumps from one block to another.
2500class HGoto FINAL : public HTemplateInstruction<0> {
2501 public:
2502  explicit HGoto(uint32_t dex_pc = kNoDexPc) : HTemplateInstruction(SideEffects::None(), dex_pc) {}
2503
2504  bool IsControlFlow() const OVERRIDE { return true; }
2505
2506  HBasicBlock* GetSuccessor() const {
2507    return GetBlock()->GetSingleSuccessor();
2508  }
2509
2510  DECLARE_INSTRUCTION(Goto);
2511
2512 private:
2513  DISALLOW_COPY_AND_ASSIGN(HGoto);
2514};
2515
2516class HConstant : public HExpression<0> {
2517 public:
2518  explicit HConstant(Primitive::Type type, uint32_t dex_pc = kNoDexPc)
2519      : HExpression(type, SideEffects::None(), dex_pc) {}
2520
2521  bool CanBeMoved() const OVERRIDE { return true; }
2522
2523  // Is this constant -1 in the arithmetic sense?
2524  virtual bool IsMinusOne() const { return false; }
2525  // Is this constant 0 in the arithmetic sense?
2526  virtual bool IsArithmeticZero() const { return false; }
2527  // Is this constant a 0-bit pattern?
2528  virtual bool IsZeroBitPattern() const { return false; }
2529  // Is this constant 1 in the arithmetic sense?
2530  virtual bool IsOne() const { return false; }
2531
2532  virtual uint64_t GetValueAsUint64() const = 0;
2533
2534  DECLARE_ABSTRACT_INSTRUCTION(Constant);
2535
2536 private:
2537  DISALLOW_COPY_AND_ASSIGN(HConstant);
2538};
2539
2540class HNullConstant FINAL : public HConstant {
2541 public:
2542  bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
2543    return true;
2544  }
2545
2546  uint64_t GetValueAsUint64() const OVERRIDE { return 0; }
2547
2548  size_t ComputeHashCode() const OVERRIDE { return 0; }
2549
2550  // The null constant representation is a 0-bit pattern.
2551  virtual bool IsZeroBitPattern() const { return true; }
2552
2553  DECLARE_INSTRUCTION(NullConstant);
2554
2555 private:
2556  explicit HNullConstant(uint32_t dex_pc = kNoDexPc) : HConstant(Primitive::kPrimNot, dex_pc) {}
2557
2558  friend class HGraph;
2559  DISALLOW_COPY_AND_ASSIGN(HNullConstant);
2560};
2561
2562// Constants of the type int. Those can be from Dex instructions, or
2563// synthesized (for example with the if-eqz instruction).
2564class HIntConstant FINAL : public HConstant {
2565 public:
2566  int32_t GetValue() const { return value_; }
2567
2568  uint64_t GetValueAsUint64() const OVERRIDE {
2569    return static_cast<uint64_t>(static_cast<uint32_t>(value_));
2570  }
2571
2572  bool InstructionDataEquals(const HInstruction* other) const OVERRIDE {
2573    DCHECK(other->IsIntConstant()) << other->DebugName();
2574    return other->AsIntConstant()->value_ == value_;
2575  }
2576
2577  size_t ComputeHashCode() const OVERRIDE { return GetValue(); }
2578
2579  bool IsMinusOne() const OVERRIDE { return GetValue() == -1; }
2580  bool IsArithmeticZero() const OVERRIDE { return GetValue() == 0; }
2581  bool IsZeroBitPattern() const OVERRIDE { return GetValue() == 0; }
2582  bool IsOne() const OVERRIDE { return GetValue() == 1; }
2583
2584  // Integer constants are used to encode Boolean values as well,
2585  // where 1 means true and 0 means false.
2586  bool IsTrue() const { return GetValue() == 1; }
2587  bool IsFalse() const { return GetValue() == 0; }
2588
2589  DECLARE_INSTRUCTION(IntConstant);
2590
2591 private:
2592  explicit HIntConstant(int32_t value, uint32_t dex_pc = kNoDexPc)
2593      : HConstant(Primitive::kPrimInt, dex_pc), value_(value) {}
2594  explicit HIntConstant(bool value, uint32_t dex_pc = kNoDexPc)
2595      : HConstant(Primitive::kPrimInt, dex_pc), value_(value ? 1 : 0) {}
2596
2597  const int32_t value_;
2598
2599  friend class HGraph;
2600  ART_FRIEND_TEST(GraphTest, InsertInstructionBefore);
2601  ART_FRIEND_TYPED_TEST(ParallelMoveTest, ConstantLast);
2602  DISALLOW_COPY_AND_ASSIGN(HIntConstant);
2603};
2604
2605class HLongConstant FINAL : public HConstant {
2606 public:
2607  int64_t GetValue() const { return value_; }
2608
2609  uint64_t GetValueAsUint64() const OVERRIDE { return value_; }
2610
2611  bool InstructionDataEquals(const HInstruction* other) const OVERRIDE {
2612    DCHECK(other->IsLongConstant()) << other->DebugName();
2613    return other->AsLongConstant()->value_ == value_;
2614  }
2615
2616  size_t ComputeHashCode() const OVERRIDE { return static_cast<size_t>(GetValue()); }
2617
2618  bool IsMinusOne() const OVERRIDE { return GetValue() == -1; }
2619  bool IsArithmeticZero() const OVERRIDE { return GetValue() == 0; }
2620  bool IsZeroBitPattern() const OVERRIDE { return GetValue() == 0; }
2621  bool IsOne() const OVERRIDE { return GetValue() == 1; }
2622
2623  DECLARE_INSTRUCTION(LongConstant);
2624
2625 private:
2626  explicit HLongConstant(int64_t value, uint32_t dex_pc = kNoDexPc)
2627      : HConstant(Primitive::kPrimLong, dex_pc), value_(value) {}
2628
2629  const int64_t value_;
2630
2631  friend class HGraph;
2632  DISALLOW_COPY_AND_ASSIGN(HLongConstant);
2633};
2634
2635class HFloatConstant FINAL : public HConstant {
2636 public:
2637  float GetValue() const { return value_; }
2638
2639  uint64_t GetValueAsUint64() const OVERRIDE {
2640    return static_cast<uint64_t>(bit_cast<uint32_t, float>(value_));
2641  }
2642
2643  bool InstructionDataEquals(const HInstruction* other) const OVERRIDE {
2644    DCHECK(other->IsFloatConstant()) << other->DebugName();
2645    return other->AsFloatConstant()->GetValueAsUint64() == GetValueAsUint64();
2646  }
2647
2648  size_t ComputeHashCode() const OVERRIDE { return static_cast<size_t>(GetValue()); }
2649
2650  bool IsMinusOne() const OVERRIDE {
2651    return bit_cast<uint32_t, float>(value_) == bit_cast<uint32_t, float>((-1.0f));
2652  }
2653  bool IsArithmeticZero() const OVERRIDE {
2654    return std::fpclassify(value_) == FP_ZERO;
2655  }
2656  bool IsArithmeticPositiveZero() const {
2657    return IsArithmeticZero() && !std::signbit(value_);
2658  }
2659  bool IsArithmeticNegativeZero() const {
2660    return IsArithmeticZero() && std::signbit(value_);
2661  }
2662  bool IsZeroBitPattern() const OVERRIDE {
2663    return bit_cast<uint32_t, float>(value_) == bit_cast<uint32_t, float>(0.0f);
2664  }
2665  bool IsOne() const OVERRIDE {
2666    return bit_cast<uint32_t, float>(value_) == bit_cast<uint32_t, float>(1.0f);
2667  }
2668  bool IsNaN() const {
2669    return std::isnan(value_);
2670  }
2671
2672  DECLARE_INSTRUCTION(FloatConstant);
2673
2674 private:
2675  explicit HFloatConstant(float value, uint32_t dex_pc = kNoDexPc)
2676      : HConstant(Primitive::kPrimFloat, dex_pc), value_(value) {}
2677  explicit HFloatConstant(int32_t value, uint32_t dex_pc = kNoDexPc)
2678      : HConstant(Primitive::kPrimFloat, dex_pc), value_(bit_cast<float, int32_t>(value)) {}
2679
2680  const float value_;
2681
2682  // Only the SsaBuilder and HGraph can create floating-point constants.
2683  friend class SsaBuilder;
2684  friend class HGraph;
2685  DISALLOW_COPY_AND_ASSIGN(HFloatConstant);
2686};
2687
2688class HDoubleConstant FINAL : public HConstant {
2689 public:
2690  double GetValue() const { return value_; }
2691
2692  uint64_t GetValueAsUint64() const OVERRIDE { return bit_cast<uint64_t, double>(value_); }
2693
2694  bool InstructionDataEquals(const HInstruction* other) const OVERRIDE {
2695    DCHECK(other->IsDoubleConstant()) << other->DebugName();
2696    return other->AsDoubleConstant()->GetValueAsUint64() == GetValueAsUint64();
2697  }
2698
2699  size_t ComputeHashCode() const OVERRIDE { return static_cast<size_t>(GetValue()); }
2700
2701  bool IsMinusOne() const OVERRIDE {
2702    return bit_cast<uint64_t, double>(value_) == bit_cast<uint64_t, double>((-1.0));
2703  }
2704  bool IsArithmeticZero() const OVERRIDE {
2705    return std::fpclassify(value_) == FP_ZERO;
2706  }
2707  bool IsArithmeticPositiveZero() const {
2708    return IsArithmeticZero() && !std::signbit(value_);
2709  }
2710  bool IsArithmeticNegativeZero() const {
2711    return IsArithmeticZero() && std::signbit(value_);
2712  }
2713  bool IsZeroBitPattern() const OVERRIDE {
2714    return bit_cast<uint64_t, double>(value_) == bit_cast<uint64_t, double>((0.0));
2715  }
2716  bool IsOne() const OVERRIDE {
2717    return bit_cast<uint64_t, double>(value_) == bit_cast<uint64_t, double>(1.0);
2718  }
2719  bool IsNaN() const {
2720    return std::isnan(value_);
2721  }
2722
2723  DECLARE_INSTRUCTION(DoubleConstant);
2724
2725 private:
2726  explicit HDoubleConstant(double value, uint32_t dex_pc = kNoDexPc)
2727      : HConstant(Primitive::kPrimDouble, dex_pc), value_(value) {}
2728  explicit HDoubleConstant(int64_t value, uint32_t dex_pc = kNoDexPc)
2729      : HConstant(Primitive::kPrimDouble, dex_pc), value_(bit_cast<double, int64_t>(value)) {}
2730
2731  const double value_;
2732
2733  // Only the SsaBuilder and HGraph can create floating-point constants.
2734  friend class SsaBuilder;
2735  friend class HGraph;
2736  DISALLOW_COPY_AND_ASSIGN(HDoubleConstant);
2737};
2738
2739// Conditional branch. A block ending with an HIf instruction must have
2740// two successors.
2741class HIf FINAL : public HTemplateInstruction<1> {
2742 public:
2743  explicit HIf(HInstruction* input, uint32_t dex_pc = kNoDexPc)
2744      : HTemplateInstruction(SideEffects::None(), dex_pc) {
2745    SetRawInputAt(0, input);
2746  }
2747
2748  bool IsControlFlow() const OVERRIDE { return true; }
2749
2750  HBasicBlock* IfTrueSuccessor() const {
2751    return GetBlock()->GetSuccessors()[0];
2752  }
2753
2754  HBasicBlock* IfFalseSuccessor() const {
2755    return GetBlock()->GetSuccessors()[1];
2756  }
2757
2758  DECLARE_INSTRUCTION(If);
2759
2760 private:
2761  DISALLOW_COPY_AND_ASSIGN(HIf);
2762};
2763
2764
2765// Abstract instruction which marks the beginning and/or end of a try block and
2766// links it to the respective exception handlers. Behaves the same as a Goto in
2767// non-exceptional control flow.
2768// Normal-flow successor is stored at index zero, exception handlers under
2769// higher indices in no particular order.
2770class HTryBoundary FINAL : public HTemplateInstruction<0> {
2771 public:
2772  enum class BoundaryKind {
2773    kEntry,
2774    kExit,
2775    kLast = kExit
2776  };
2777
2778  explicit HTryBoundary(BoundaryKind kind, uint32_t dex_pc = kNoDexPc)
2779      : HTemplateInstruction(SideEffects::None(), dex_pc) {
2780    SetPackedField<BoundaryKindField>(kind);
2781  }
2782
2783  bool IsControlFlow() const OVERRIDE { return true; }
2784
2785  // Returns the block's non-exceptional successor (index zero).
2786  HBasicBlock* GetNormalFlowSuccessor() const { return GetBlock()->GetSuccessors()[0]; }
2787
2788  ArrayRef<HBasicBlock* const> GetExceptionHandlers() const {
2789    return ArrayRef<HBasicBlock* const>(GetBlock()->GetSuccessors()).SubArray(1u);
2790  }
2791
2792  // Returns whether `handler` is among its exception handlers (non-zero index
2793  // successors).
2794  bool HasExceptionHandler(const HBasicBlock& handler) const {
2795    DCHECK(handler.IsCatchBlock());
2796    return GetBlock()->HasSuccessor(&handler, 1u /* Skip first successor. */);
2797  }
2798
2799  // If not present already, adds `handler` to its block's list of exception
2800  // handlers.
2801  void AddExceptionHandler(HBasicBlock* handler) {
2802    if (!HasExceptionHandler(*handler)) {
2803      GetBlock()->AddSuccessor(handler);
2804    }
2805  }
2806
2807  BoundaryKind GetBoundaryKind() const { return GetPackedField<BoundaryKindField>(); }
2808  bool IsEntry() const { return GetBoundaryKind() == BoundaryKind::kEntry; }
2809
2810  bool HasSameExceptionHandlersAs(const HTryBoundary& other) const;
2811
2812  DECLARE_INSTRUCTION(TryBoundary);
2813
2814 private:
2815  static constexpr size_t kFieldBoundaryKind = kNumberOfGenericPackedBits;
2816  static constexpr size_t kFieldBoundaryKindSize =
2817      MinimumBitsToStore(static_cast<size_t>(BoundaryKind::kLast));
2818  static constexpr size_t kNumberOfTryBoundaryPackedBits =
2819      kFieldBoundaryKind + kFieldBoundaryKindSize;
2820  static_assert(kNumberOfTryBoundaryPackedBits <= kMaxNumberOfPackedBits,
2821                "Too many packed fields.");
2822  using BoundaryKindField = BitField<BoundaryKind, kFieldBoundaryKind, kFieldBoundaryKindSize>;
2823
2824  DISALLOW_COPY_AND_ASSIGN(HTryBoundary);
2825};
2826
2827// Deoptimize to interpreter, upon checking a condition.
2828class HDeoptimize FINAL : public HTemplateInstruction<1> {
2829 public:
2830  // We set CanTriggerGC to prevent any intermediate address to be live
2831  // at the point of the `HDeoptimize`.
2832  HDeoptimize(HInstruction* cond, uint32_t dex_pc)
2833      : HTemplateInstruction(SideEffects::CanTriggerGC(), dex_pc) {
2834    SetRawInputAt(0, cond);
2835  }
2836
2837  bool CanBeMoved() const OVERRIDE { return true; }
2838  bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
2839    return true;
2840  }
2841  bool NeedsEnvironment() const OVERRIDE { return true; }
2842  bool CanThrow() const OVERRIDE { return true; }
2843
2844  DECLARE_INSTRUCTION(Deoptimize);
2845
2846 private:
2847  DISALLOW_COPY_AND_ASSIGN(HDeoptimize);
2848};
2849
2850// Represents the ArtMethod that was passed as a first argument to
2851// the method. It is used by instructions that depend on it, like
2852// instructions that work with the dex cache.
2853class HCurrentMethod FINAL : public HExpression<0> {
2854 public:
2855  explicit HCurrentMethod(Primitive::Type type, uint32_t dex_pc = kNoDexPc)
2856      : HExpression(type, SideEffects::None(), dex_pc) {}
2857
2858  DECLARE_INSTRUCTION(CurrentMethod);
2859
2860 private:
2861  DISALLOW_COPY_AND_ASSIGN(HCurrentMethod);
2862};
2863
2864// Fetches an ArtMethod from the virtual table or the interface method table
2865// of a class.
2866class HClassTableGet FINAL : public HExpression<1> {
2867 public:
2868  enum class TableKind {
2869    kVTable,
2870    kIMTable,
2871    kLast = kIMTable
2872  };
2873  HClassTableGet(HInstruction* cls,
2874                 Primitive::Type type,
2875                 TableKind kind,
2876                 size_t index,
2877                 uint32_t dex_pc)
2878      : HExpression(type, SideEffects::None(), dex_pc),
2879        index_(index) {
2880    SetPackedField<TableKindField>(kind);
2881    SetRawInputAt(0, cls);
2882  }
2883
2884  bool CanBeMoved() const OVERRIDE { return true; }
2885  bool InstructionDataEquals(const HInstruction* other) const OVERRIDE {
2886    return other->AsClassTableGet()->GetIndex() == index_ &&
2887        other->AsClassTableGet()->GetPackedFields() == GetPackedFields();
2888  }
2889
2890  TableKind GetTableKind() const { return GetPackedField<TableKindField>(); }
2891  size_t GetIndex() const { return index_; }
2892
2893  DECLARE_INSTRUCTION(ClassTableGet);
2894
2895 private:
2896  static constexpr size_t kFieldTableKind = kNumberOfExpressionPackedBits;
2897  static constexpr size_t kFieldTableKindSize =
2898      MinimumBitsToStore(static_cast<size_t>(TableKind::kLast));
2899  static constexpr size_t kNumberOfClassTableGetPackedBits = kFieldTableKind + kFieldTableKindSize;
2900  static_assert(kNumberOfClassTableGetPackedBits <= kMaxNumberOfPackedBits,
2901                "Too many packed fields.");
2902  using TableKindField = BitField<TableKind, kFieldTableKind, kFieldTableKind>;
2903
2904  // The index of the ArtMethod in the table.
2905  const size_t index_;
2906
2907  DISALLOW_COPY_AND_ASSIGN(HClassTableGet);
2908};
2909
2910// PackedSwitch (jump table). A block ending with a PackedSwitch instruction will
2911// have one successor for each entry in the switch table, and the final successor
2912// will be the block containing the next Dex opcode.
2913class HPackedSwitch FINAL : public HTemplateInstruction<1> {
2914 public:
2915  HPackedSwitch(int32_t start_value,
2916                uint32_t num_entries,
2917                HInstruction* input,
2918                uint32_t dex_pc = kNoDexPc)
2919    : HTemplateInstruction(SideEffects::None(), dex_pc),
2920      start_value_(start_value),
2921      num_entries_(num_entries) {
2922    SetRawInputAt(0, input);
2923  }
2924
2925  bool IsControlFlow() const OVERRIDE { return true; }
2926
2927  int32_t GetStartValue() const { return start_value_; }
2928
2929  uint32_t GetNumEntries() const { return num_entries_; }
2930
2931  HBasicBlock* GetDefaultBlock() const {
2932    // Last entry is the default block.
2933    return GetBlock()->GetSuccessors()[num_entries_];
2934  }
2935  DECLARE_INSTRUCTION(PackedSwitch);
2936
2937 private:
2938  const int32_t start_value_;
2939  const uint32_t num_entries_;
2940
2941  DISALLOW_COPY_AND_ASSIGN(HPackedSwitch);
2942};
2943
2944class HUnaryOperation : public HExpression<1> {
2945 public:
2946  HUnaryOperation(Primitive::Type result_type, HInstruction* input, uint32_t dex_pc = kNoDexPc)
2947      : HExpression(result_type, SideEffects::None(), dex_pc) {
2948    SetRawInputAt(0, input);
2949  }
2950
2951  HInstruction* GetInput() const { return InputAt(0); }
2952  Primitive::Type GetResultType() const { return GetType(); }
2953
2954  bool CanBeMoved() const OVERRIDE { return true; }
2955  bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
2956    return true;
2957  }
2958
2959  // Try to statically evaluate `this` and return a HConstant
2960  // containing the result of this evaluation.  If `this` cannot
2961  // be evaluated as a constant, return null.
2962  HConstant* TryStaticEvaluation() const;
2963
2964  // Apply this operation to `x`.
2965  virtual HConstant* Evaluate(HIntConstant* x) const = 0;
2966  virtual HConstant* Evaluate(HLongConstant* x) const = 0;
2967  virtual HConstant* Evaluate(HFloatConstant* x) const = 0;
2968  virtual HConstant* Evaluate(HDoubleConstant* x) const = 0;
2969
2970  DECLARE_ABSTRACT_INSTRUCTION(UnaryOperation);
2971
2972 private:
2973  DISALLOW_COPY_AND_ASSIGN(HUnaryOperation);
2974};
2975
2976class HBinaryOperation : public HExpression<2> {
2977 public:
2978  HBinaryOperation(Primitive::Type result_type,
2979                   HInstruction* left,
2980                   HInstruction* right,
2981                   SideEffects side_effects = SideEffects::None(),
2982                   uint32_t dex_pc = kNoDexPc)
2983      : HExpression(result_type, side_effects, dex_pc) {
2984    SetRawInputAt(0, left);
2985    SetRawInputAt(1, right);
2986  }
2987
2988  HInstruction* GetLeft() const { return InputAt(0); }
2989  HInstruction* GetRight() const { return InputAt(1); }
2990  Primitive::Type GetResultType() const { return GetType(); }
2991
2992  virtual bool IsCommutative() const { return false; }
2993
2994  // Put constant on the right.
2995  // Returns whether order is changed.
2996  bool OrderInputsWithConstantOnTheRight() {
2997    HInstruction* left = InputAt(0);
2998    HInstruction* right = InputAt(1);
2999    if (left->IsConstant() && !right->IsConstant()) {
3000      ReplaceInput(right, 0);
3001      ReplaceInput(left, 1);
3002      return true;
3003    }
3004    return false;
3005  }
3006
3007  // Order inputs by instruction id, but favor constant on the right side.
3008  // This helps GVN for commutative ops.
3009  void OrderInputs() {
3010    DCHECK(IsCommutative());
3011    HInstruction* left = InputAt(0);
3012    HInstruction* right = InputAt(1);
3013    if (left == right || (!left->IsConstant() && right->IsConstant())) {
3014      return;
3015    }
3016    if (OrderInputsWithConstantOnTheRight()) {
3017      return;
3018    }
3019    // Order according to instruction id.
3020    if (left->GetId() > right->GetId()) {
3021      ReplaceInput(right, 0);
3022      ReplaceInput(left, 1);
3023    }
3024  }
3025
3026  bool CanBeMoved() const OVERRIDE { return true; }
3027  bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
3028    return true;
3029  }
3030
3031  // Try to statically evaluate `this` and return a HConstant
3032  // containing the result of this evaluation.  If `this` cannot
3033  // be evaluated as a constant, return null.
3034  HConstant* TryStaticEvaluation() const;
3035
3036  // Apply this operation to `x` and `y`.
3037  virtual HConstant* Evaluate(HNullConstant* x ATTRIBUTE_UNUSED,
3038                              HNullConstant* y ATTRIBUTE_UNUSED) const {
3039    LOG(FATAL) << DebugName() << " is not defined for the (null, null) case.";
3040    UNREACHABLE();
3041  }
3042  virtual HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const = 0;
3043  virtual HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const = 0;
3044  virtual HConstant* Evaluate(HLongConstant* x ATTRIBUTE_UNUSED,
3045                              HIntConstant* y ATTRIBUTE_UNUSED) const {
3046    LOG(FATAL) << DebugName() << " is not defined for the (long, int) case.";
3047    UNREACHABLE();
3048  }
3049  virtual HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const = 0;
3050  virtual HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const = 0;
3051
3052  // Returns an input that can legally be used as the right input and is
3053  // constant, or null.
3054  HConstant* GetConstantRight() const;
3055
3056  // If `GetConstantRight()` returns one of the input, this returns the other
3057  // one. Otherwise it returns null.
3058  HInstruction* GetLeastConstantLeft() const;
3059
3060  DECLARE_ABSTRACT_INSTRUCTION(BinaryOperation);
3061
3062 private:
3063  DISALLOW_COPY_AND_ASSIGN(HBinaryOperation);
3064};
3065
3066// The comparison bias applies for floating point operations and indicates how NaN
3067// comparisons are treated:
3068enum class ComparisonBias {
3069  kNoBias,  // bias is not applicable (i.e. for long operation)
3070  kGtBias,  // return 1 for NaN comparisons
3071  kLtBias,  // return -1 for NaN comparisons
3072  kLast = kLtBias
3073};
3074
3075std::ostream& operator<<(std::ostream& os, const ComparisonBias& rhs);
3076
3077class HCondition : public HBinaryOperation {
3078 public:
3079  HCondition(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
3080      : HBinaryOperation(Primitive::kPrimBoolean, first, second, SideEffects::None(), dex_pc) {
3081    SetPackedField<ComparisonBiasField>(ComparisonBias::kNoBias);
3082  }
3083
3084  // For code generation purposes, returns whether this instruction is just before
3085  // `instruction`, and disregard moves in between.
3086  bool IsBeforeWhenDisregardMoves(HInstruction* instruction) const;
3087
3088  DECLARE_ABSTRACT_INSTRUCTION(Condition);
3089
3090  virtual IfCondition GetCondition() const = 0;
3091
3092  virtual IfCondition GetOppositeCondition() const = 0;
3093
3094  bool IsGtBias() const { return GetBias() == ComparisonBias::kGtBias; }
3095  bool IsLtBias() const { return GetBias() == ComparisonBias::kLtBias; }
3096
3097  ComparisonBias GetBias() const { return GetPackedField<ComparisonBiasField>(); }
3098  void SetBias(ComparisonBias bias) { SetPackedField<ComparisonBiasField>(bias); }
3099
3100  bool InstructionDataEquals(const HInstruction* other) const OVERRIDE {
3101    return GetPackedFields() == other->AsCondition()->GetPackedFields();
3102  }
3103
3104  bool IsFPConditionTrueIfNaN() const {
3105    DCHECK(Primitive::IsFloatingPointType(InputAt(0)->GetType())) << InputAt(0)->GetType();
3106    IfCondition if_cond = GetCondition();
3107    if (if_cond == kCondNE) {
3108      return true;
3109    } else if (if_cond == kCondEQ) {
3110      return false;
3111    }
3112    return ((if_cond == kCondGT) || (if_cond == kCondGE)) && IsGtBias();
3113  }
3114
3115  bool IsFPConditionFalseIfNaN() const {
3116    DCHECK(Primitive::IsFloatingPointType(InputAt(0)->GetType())) << InputAt(0)->GetType();
3117    IfCondition if_cond = GetCondition();
3118    if (if_cond == kCondEQ) {
3119      return true;
3120    } else if (if_cond == kCondNE) {
3121      return false;
3122    }
3123    return ((if_cond == kCondLT) || (if_cond == kCondLE)) && IsGtBias();
3124  }
3125
3126 protected:
3127  // Needed if we merge a HCompare into a HCondition.
3128  static constexpr size_t kFieldComparisonBias = kNumberOfExpressionPackedBits;
3129  static constexpr size_t kFieldComparisonBiasSize =
3130      MinimumBitsToStore(static_cast<size_t>(ComparisonBias::kLast));
3131  static constexpr size_t kNumberOfConditionPackedBits =
3132      kFieldComparisonBias + kFieldComparisonBiasSize;
3133  static_assert(kNumberOfConditionPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields.");
3134  using ComparisonBiasField =
3135      BitField<ComparisonBias, kFieldComparisonBias, kFieldComparisonBiasSize>;
3136
3137  template <typename T>
3138  int32_t Compare(T x, T y) const { return x > y ? 1 : (x < y ? -1 : 0); }
3139
3140  template <typename T>
3141  int32_t CompareFP(T x, T y) const {
3142    DCHECK(Primitive::IsFloatingPointType(InputAt(0)->GetType())) << InputAt(0)->GetType();
3143    DCHECK_NE(GetBias(), ComparisonBias::kNoBias);
3144    // Handle the bias.
3145    return std::isunordered(x, y) ? (IsGtBias() ? 1 : -1) : Compare(x, y);
3146  }
3147
3148  // Return an integer constant containing the result of a condition evaluated at compile time.
3149  HIntConstant* MakeConstantCondition(bool value, uint32_t dex_pc) const {
3150    return GetBlock()->GetGraph()->GetIntConstant(value, dex_pc);
3151  }
3152
3153 private:
3154  DISALLOW_COPY_AND_ASSIGN(HCondition);
3155};
3156
3157// Instruction to check if two inputs are equal to each other.
3158class HEqual FINAL : public HCondition {
3159 public:
3160  HEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
3161      : HCondition(first, second, dex_pc) {}
3162
3163  bool IsCommutative() const OVERRIDE { return true; }
3164
3165  HConstant* Evaluate(HNullConstant* x ATTRIBUTE_UNUSED,
3166                      HNullConstant* y ATTRIBUTE_UNUSED) const OVERRIDE {
3167    return MakeConstantCondition(true, GetDexPc());
3168  }
3169  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3170    return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
3171  }
3172  // In the following Evaluate methods, a HCompare instruction has
3173  // been merged into this HEqual instruction; evaluate it as
3174  // `Compare(x, y) == 0`.
3175  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3176    return MakeConstantCondition(Compute(Compare(x->GetValue(), y->GetValue()), 0),
3177                                 GetDexPc());
3178  }
3179  HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const OVERRIDE {
3180    return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
3181  }
3182  HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const OVERRIDE {
3183    return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
3184  }
3185
3186  DECLARE_INSTRUCTION(Equal);
3187
3188  IfCondition GetCondition() const OVERRIDE {
3189    return kCondEQ;
3190  }
3191
3192  IfCondition GetOppositeCondition() const OVERRIDE {
3193    return kCondNE;
3194  }
3195
3196 private:
3197  template <typename T> static bool Compute(T x, T y) { return x == y; }
3198
3199  DISALLOW_COPY_AND_ASSIGN(HEqual);
3200};
3201
3202class HNotEqual FINAL : public HCondition {
3203 public:
3204  HNotEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
3205      : HCondition(first, second, dex_pc) {}
3206
3207  bool IsCommutative() const OVERRIDE { return true; }
3208
3209  HConstant* Evaluate(HNullConstant* x ATTRIBUTE_UNUSED,
3210                      HNullConstant* y ATTRIBUTE_UNUSED) const OVERRIDE {
3211    return MakeConstantCondition(false, GetDexPc());
3212  }
3213  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3214    return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
3215  }
3216  // In the following Evaluate methods, a HCompare instruction has
3217  // been merged into this HNotEqual instruction; evaluate it as
3218  // `Compare(x, y) != 0`.
3219  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3220    return MakeConstantCondition(Compute(Compare(x->GetValue(), y->GetValue()), 0), GetDexPc());
3221  }
3222  HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const OVERRIDE {
3223    return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
3224  }
3225  HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const OVERRIDE {
3226    return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
3227  }
3228
3229  DECLARE_INSTRUCTION(NotEqual);
3230
3231  IfCondition GetCondition() const OVERRIDE {
3232    return kCondNE;
3233  }
3234
3235  IfCondition GetOppositeCondition() const OVERRIDE {
3236    return kCondEQ;
3237  }
3238
3239 private:
3240  template <typename T> static bool Compute(T x, T y) { return x != y; }
3241
3242  DISALLOW_COPY_AND_ASSIGN(HNotEqual);
3243};
3244
3245class HLessThan FINAL : public HCondition {
3246 public:
3247  HLessThan(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
3248      : HCondition(first, second, dex_pc) {}
3249
3250  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3251    return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
3252  }
3253  // In the following Evaluate methods, a HCompare instruction has
3254  // been merged into this HLessThan instruction; evaluate it as
3255  // `Compare(x, y) < 0`.
3256  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3257    return MakeConstantCondition(Compute(Compare(x->GetValue(), y->GetValue()), 0), GetDexPc());
3258  }
3259  HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const OVERRIDE {
3260    return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
3261  }
3262  HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const OVERRIDE {
3263    return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
3264  }
3265
3266  DECLARE_INSTRUCTION(LessThan);
3267
3268  IfCondition GetCondition() const OVERRIDE {
3269    return kCondLT;
3270  }
3271
3272  IfCondition GetOppositeCondition() const OVERRIDE {
3273    return kCondGE;
3274  }
3275
3276 private:
3277  template <typename T> static bool Compute(T x, T y) { return x < y; }
3278
3279  DISALLOW_COPY_AND_ASSIGN(HLessThan);
3280};
3281
3282class HLessThanOrEqual FINAL : public HCondition {
3283 public:
3284  HLessThanOrEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
3285      : HCondition(first, second, dex_pc) {}
3286
3287  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3288    return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
3289  }
3290  // In the following Evaluate methods, a HCompare instruction has
3291  // been merged into this HLessThanOrEqual instruction; evaluate it as
3292  // `Compare(x, y) <= 0`.
3293  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3294    return MakeConstantCondition(Compute(Compare(x->GetValue(), y->GetValue()), 0), GetDexPc());
3295  }
3296  HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const OVERRIDE {
3297    return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
3298  }
3299  HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const OVERRIDE {
3300    return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
3301  }
3302
3303  DECLARE_INSTRUCTION(LessThanOrEqual);
3304
3305  IfCondition GetCondition() const OVERRIDE {
3306    return kCondLE;
3307  }
3308
3309  IfCondition GetOppositeCondition() const OVERRIDE {
3310    return kCondGT;
3311  }
3312
3313 private:
3314  template <typename T> static bool Compute(T x, T y) { return x <= y; }
3315
3316  DISALLOW_COPY_AND_ASSIGN(HLessThanOrEqual);
3317};
3318
3319class HGreaterThan FINAL : public HCondition {
3320 public:
3321  HGreaterThan(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
3322      : HCondition(first, second, dex_pc) {}
3323
3324  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3325    return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
3326  }
3327  // In the following Evaluate methods, a HCompare instruction has
3328  // been merged into this HGreaterThan instruction; evaluate it as
3329  // `Compare(x, y) > 0`.
3330  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3331    return MakeConstantCondition(Compute(Compare(x->GetValue(), y->GetValue()), 0), GetDexPc());
3332  }
3333  HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const OVERRIDE {
3334    return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
3335  }
3336  HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const OVERRIDE {
3337    return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
3338  }
3339
3340  DECLARE_INSTRUCTION(GreaterThan);
3341
3342  IfCondition GetCondition() const OVERRIDE {
3343    return kCondGT;
3344  }
3345
3346  IfCondition GetOppositeCondition() const OVERRIDE {
3347    return kCondLE;
3348  }
3349
3350 private:
3351  template <typename T> static bool Compute(T x, T y) { return x > y; }
3352
3353  DISALLOW_COPY_AND_ASSIGN(HGreaterThan);
3354};
3355
3356class HGreaterThanOrEqual FINAL : public HCondition {
3357 public:
3358  HGreaterThanOrEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
3359      : HCondition(first, second, dex_pc) {}
3360
3361  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3362    return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
3363  }
3364  // In the following Evaluate methods, a HCompare instruction has
3365  // been merged into this HGreaterThanOrEqual instruction; evaluate it as
3366  // `Compare(x, y) >= 0`.
3367  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3368    return MakeConstantCondition(Compute(Compare(x->GetValue(), y->GetValue()), 0), GetDexPc());
3369  }
3370  HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const OVERRIDE {
3371    return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
3372  }
3373  HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const OVERRIDE {
3374    return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
3375  }
3376
3377  DECLARE_INSTRUCTION(GreaterThanOrEqual);
3378
3379  IfCondition GetCondition() const OVERRIDE {
3380    return kCondGE;
3381  }
3382
3383  IfCondition GetOppositeCondition() const OVERRIDE {
3384    return kCondLT;
3385  }
3386
3387 private:
3388  template <typename T> static bool Compute(T x, T y) { return x >= y; }
3389
3390  DISALLOW_COPY_AND_ASSIGN(HGreaterThanOrEqual);
3391};
3392
3393class HBelow FINAL : public HCondition {
3394 public:
3395  HBelow(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
3396      : HCondition(first, second, dex_pc) {}
3397
3398  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3399    return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
3400  }
3401  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3402    return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
3403  }
3404  HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED,
3405                      HFloatConstant* y ATTRIBUTE_UNUSED) const OVERRIDE {
3406    LOG(FATAL) << DebugName() << " is not defined for float values";
3407    UNREACHABLE();
3408  }
3409  HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED,
3410                      HDoubleConstant* y ATTRIBUTE_UNUSED) const OVERRIDE {
3411    LOG(FATAL) << DebugName() << " is not defined for double values";
3412    UNREACHABLE();
3413  }
3414
3415  DECLARE_INSTRUCTION(Below);
3416
3417  IfCondition GetCondition() const OVERRIDE {
3418    return kCondB;
3419  }
3420
3421  IfCondition GetOppositeCondition() const OVERRIDE {
3422    return kCondAE;
3423  }
3424
3425 private:
3426  template <typename T> static bool Compute(T x, T y) {
3427    return MakeUnsigned(x) < MakeUnsigned(y);
3428  }
3429
3430  DISALLOW_COPY_AND_ASSIGN(HBelow);
3431};
3432
3433class HBelowOrEqual FINAL : public HCondition {
3434 public:
3435  HBelowOrEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
3436      : HCondition(first, second, dex_pc) {}
3437
3438  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3439    return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
3440  }
3441  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3442    return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
3443  }
3444  HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED,
3445                      HFloatConstant* y ATTRIBUTE_UNUSED) const OVERRIDE {
3446    LOG(FATAL) << DebugName() << " is not defined for float values";
3447    UNREACHABLE();
3448  }
3449  HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED,
3450                      HDoubleConstant* y ATTRIBUTE_UNUSED) const OVERRIDE {
3451    LOG(FATAL) << DebugName() << " is not defined for double values";
3452    UNREACHABLE();
3453  }
3454
3455  DECLARE_INSTRUCTION(BelowOrEqual);
3456
3457  IfCondition GetCondition() const OVERRIDE {
3458    return kCondBE;
3459  }
3460
3461  IfCondition GetOppositeCondition() const OVERRIDE {
3462    return kCondA;
3463  }
3464
3465 private:
3466  template <typename T> static bool Compute(T x, T y) {
3467    return MakeUnsigned(x) <= MakeUnsigned(y);
3468  }
3469
3470  DISALLOW_COPY_AND_ASSIGN(HBelowOrEqual);
3471};
3472
3473class HAbove FINAL : public HCondition {
3474 public:
3475  HAbove(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
3476      : HCondition(first, second, dex_pc) {}
3477
3478  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3479    return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
3480  }
3481  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3482    return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
3483  }
3484  HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED,
3485                      HFloatConstant* y ATTRIBUTE_UNUSED) const OVERRIDE {
3486    LOG(FATAL) << DebugName() << " is not defined for float values";
3487    UNREACHABLE();
3488  }
3489  HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED,
3490                      HDoubleConstant* y ATTRIBUTE_UNUSED) const OVERRIDE {
3491    LOG(FATAL) << DebugName() << " is not defined for double values";
3492    UNREACHABLE();
3493  }
3494
3495  DECLARE_INSTRUCTION(Above);
3496
3497  IfCondition GetCondition() const OVERRIDE {
3498    return kCondA;
3499  }
3500
3501  IfCondition GetOppositeCondition() const OVERRIDE {
3502    return kCondBE;
3503  }
3504
3505 private:
3506  template <typename T> static bool Compute(T x, T y) {
3507    return MakeUnsigned(x) > MakeUnsigned(y);
3508  }
3509
3510  DISALLOW_COPY_AND_ASSIGN(HAbove);
3511};
3512
3513class HAboveOrEqual FINAL : public HCondition {
3514 public:
3515  HAboveOrEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
3516      : HCondition(first, second, dex_pc) {}
3517
3518  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3519    return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
3520  }
3521  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3522    return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
3523  }
3524  HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED,
3525                      HFloatConstant* y ATTRIBUTE_UNUSED) const OVERRIDE {
3526    LOG(FATAL) << DebugName() << " is not defined for float values";
3527    UNREACHABLE();
3528  }
3529  HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED,
3530                      HDoubleConstant* y ATTRIBUTE_UNUSED) const OVERRIDE {
3531    LOG(FATAL) << DebugName() << " is not defined for double values";
3532    UNREACHABLE();
3533  }
3534
3535  DECLARE_INSTRUCTION(AboveOrEqual);
3536
3537  IfCondition GetCondition() const OVERRIDE {
3538    return kCondAE;
3539  }
3540
3541  IfCondition GetOppositeCondition() const OVERRIDE {
3542    return kCondB;
3543  }
3544
3545 private:
3546  template <typename T> static bool Compute(T x, T y) {
3547    return MakeUnsigned(x) >= MakeUnsigned(y);
3548  }
3549
3550  DISALLOW_COPY_AND_ASSIGN(HAboveOrEqual);
3551};
3552
3553// Instruction to check how two inputs compare to each other.
3554// Result is 0 if input0 == input1, 1 if input0 > input1, or -1 if input0 < input1.
3555class HCompare FINAL : public HBinaryOperation {
3556 public:
3557  // Note that `comparison_type` is the type of comparison performed
3558  // between the comparison's inputs, not the type of the instantiated
3559  // HCompare instruction (which is always Primitive::kPrimInt).
3560  HCompare(Primitive::Type comparison_type,
3561           HInstruction* first,
3562           HInstruction* second,
3563           ComparisonBias bias,
3564           uint32_t dex_pc)
3565      : HBinaryOperation(Primitive::kPrimInt,
3566                         first,
3567                         second,
3568                         SideEffectsForArchRuntimeCalls(comparison_type),
3569                         dex_pc) {
3570    SetPackedField<ComparisonBiasField>(bias);
3571    DCHECK_EQ(comparison_type, Primitive::PrimitiveKind(first->GetType()));
3572    DCHECK_EQ(comparison_type, Primitive::PrimitiveKind(second->GetType()));
3573  }
3574
3575  template <typename T>
3576  int32_t Compute(T x, T y) const { return x > y ? 1 : (x < y ? -1 : 0); }
3577
3578  template <typename T>
3579  int32_t ComputeFP(T x, T y) const {
3580    DCHECK(Primitive::IsFloatingPointType(InputAt(0)->GetType())) << InputAt(0)->GetType();
3581    DCHECK_NE(GetBias(), ComparisonBias::kNoBias);
3582    // Handle the bias.
3583    return std::isunordered(x, y) ? (IsGtBias() ? 1 : -1) : Compute(x, y);
3584  }
3585
3586  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3587    // Note that there is no "cmp-int" Dex instruction so we shouldn't
3588    // reach this code path when processing a freshly built HIR
3589    // graph. However HCompare integer instructions can be synthesized
3590    // by the instruction simplifier to implement IntegerCompare and
3591    // IntegerSignum intrinsics, so we have to handle this case.
3592    return MakeConstantComparison(Compute(x->GetValue(), y->GetValue()), GetDexPc());
3593  }
3594  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3595    return MakeConstantComparison(Compute(x->GetValue(), y->GetValue()), GetDexPc());
3596  }
3597  HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const OVERRIDE {
3598    return MakeConstantComparison(ComputeFP(x->GetValue(), y->GetValue()), GetDexPc());
3599  }
3600  HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const OVERRIDE {
3601    return MakeConstantComparison(ComputeFP(x->GetValue(), y->GetValue()), GetDexPc());
3602  }
3603
3604  bool InstructionDataEquals(const HInstruction* other) const OVERRIDE {
3605    return GetPackedFields() == other->AsCompare()->GetPackedFields();
3606  }
3607
3608  ComparisonBias GetBias() const { return GetPackedField<ComparisonBiasField>(); }
3609
3610  // Does this compare instruction have a "gt bias" (vs an "lt bias")?
3611  // Only meaningful for floating-point comparisons.
3612  bool IsGtBias() const {
3613    DCHECK(Primitive::IsFloatingPointType(InputAt(0)->GetType())) << InputAt(0)->GetType();
3614    return GetBias() == ComparisonBias::kGtBias;
3615  }
3616
3617  static SideEffects SideEffectsForArchRuntimeCalls(Primitive::Type type ATTRIBUTE_UNUSED) {
3618    // Comparisons do not require a runtime call in any back end.
3619    return SideEffects::None();
3620  }
3621
3622  DECLARE_INSTRUCTION(Compare);
3623
3624 protected:
3625  static constexpr size_t kFieldComparisonBias = kNumberOfExpressionPackedBits;
3626  static constexpr size_t kFieldComparisonBiasSize =
3627      MinimumBitsToStore(static_cast<size_t>(ComparisonBias::kLast));
3628  static constexpr size_t kNumberOfComparePackedBits =
3629      kFieldComparisonBias + kFieldComparisonBiasSize;
3630  static_assert(kNumberOfComparePackedBits <= kMaxNumberOfPackedBits, "Too many packed fields.");
3631  using ComparisonBiasField =
3632      BitField<ComparisonBias, kFieldComparisonBias, kFieldComparisonBiasSize>;
3633
3634  // Return an integer constant containing the result of a comparison evaluated at compile time.
3635  HIntConstant* MakeConstantComparison(int32_t value, uint32_t dex_pc) const {
3636    DCHECK(value == -1 || value == 0 || value == 1) << value;
3637    return GetBlock()->GetGraph()->GetIntConstant(value, dex_pc);
3638  }
3639
3640 private:
3641  DISALLOW_COPY_AND_ASSIGN(HCompare);
3642};
3643
3644class HNewInstance FINAL : public HExpression<2> {
3645 public:
3646  HNewInstance(HInstruction* cls,
3647               HCurrentMethod* current_method,
3648               uint32_t dex_pc,
3649               uint16_t type_index,
3650               const DexFile& dex_file,
3651               bool needs_access_check,
3652               bool finalizable,
3653               QuickEntrypointEnum entrypoint)
3654      : HExpression(Primitive::kPrimNot, SideEffects::CanTriggerGC(), dex_pc),
3655        type_index_(type_index),
3656        dex_file_(dex_file),
3657        entrypoint_(entrypoint) {
3658    SetPackedFlag<kFlagNeedsAccessCheck>(needs_access_check);
3659    SetPackedFlag<kFlagFinalizable>(finalizable);
3660    SetRawInputAt(0, cls);
3661    SetRawInputAt(1, current_method);
3662  }
3663
3664  uint16_t GetTypeIndex() const { return type_index_; }
3665  const DexFile& GetDexFile() const { return dex_file_; }
3666
3667  // Calls runtime so needs an environment.
3668  bool NeedsEnvironment() const OVERRIDE { return true; }
3669
3670  // Can throw errors when out-of-memory or if it's not instantiable/accessible.
3671  bool CanThrow() const OVERRIDE { return true; }
3672
3673  // Needs to call into runtime to make sure it's instantiable/accessible.
3674  bool NeedsAccessCheck() const { return GetPackedFlag<kFlagNeedsAccessCheck>(); }
3675
3676  bool IsFinalizable() const { return GetPackedFlag<kFlagFinalizable>(); }
3677
3678  bool CanBeNull() const OVERRIDE { return false; }
3679
3680  QuickEntrypointEnum GetEntrypoint() const { return entrypoint_; }
3681
3682  void SetEntrypoint(QuickEntrypointEnum entrypoint) {
3683    entrypoint_ = entrypoint;
3684  }
3685
3686  bool IsStringAlloc() const;
3687
3688  DECLARE_INSTRUCTION(NewInstance);
3689
3690 private:
3691  static constexpr size_t kFlagNeedsAccessCheck = kNumberOfExpressionPackedBits;
3692  static constexpr size_t kFlagFinalizable = kFlagNeedsAccessCheck + 1;
3693  static constexpr size_t kNumberOfNewInstancePackedBits = kFlagFinalizable + 1;
3694  static_assert(kNumberOfNewInstancePackedBits <= kMaxNumberOfPackedBits,
3695                "Too many packed fields.");
3696
3697  const uint16_t type_index_;
3698  const DexFile& dex_file_;
3699  QuickEntrypointEnum entrypoint_;
3700
3701  DISALLOW_COPY_AND_ASSIGN(HNewInstance);
3702};
3703
3704enum IntrinsicNeedsEnvironmentOrCache {
3705  kNoEnvironmentOrCache,        // Intrinsic does not require an environment or dex cache.
3706  kNeedsEnvironmentOrCache      // Intrinsic requires an environment or requires a dex cache.
3707};
3708
3709enum IntrinsicSideEffects {
3710  kNoSideEffects,     // Intrinsic does not have any heap memory side effects.
3711  kReadSideEffects,   // Intrinsic may read heap memory.
3712  kWriteSideEffects,  // Intrinsic may write heap memory.
3713  kAllSideEffects     // Intrinsic may read or write heap memory, or trigger GC.
3714};
3715
3716enum IntrinsicExceptions {
3717  kNoThrow,  // Intrinsic does not throw any exceptions.
3718  kCanThrow  // Intrinsic may throw exceptions.
3719};
3720
3721class HInvoke : public HInstruction {
3722 public:
3723  bool NeedsEnvironment() const OVERRIDE;
3724
3725  using HInstruction::GetInputRecords;  // Keep the const version visible.
3726  ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() OVERRIDE {
3727    return ArrayRef<HUserRecord<HInstruction*>>(inputs_);
3728  }
3729
3730  void SetArgumentAt(size_t index, HInstruction* argument) {
3731    SetRawInputAt(index, argument);
3732  }
3733
3734  // Return the number of arguments.  This number can be lower than
3735  // the number of inputs returned by InputCount(), as some invoke
3736  // instructions (e.g. HInvokeStaticOrDirect) can have non-argument
3737  // inputs at the end of their list of inputs.
3738  uint32_t GetNumberOfArguments() const { return number_of_arguments_; }
3739
3740  Primitive::Type GetType() const OVERRIDE { return GetPackedField<ReturnTypeField>(); }
3741
3742  uint32_t GetDexMethodIndex() const { return dex_method_index_; }
3743  const DexFile& GetDexFile() const { return GetEnvironment()->GetDexFile(); }
3744
3745  InvokeType GetInvokeType() const {
3746    return GetPackedField<InvokeTypeField>();
3747  }
3748
3749  Intrinsics GetIntrinsic() const {
3750    return intrinsic_;
3751  }
3752
3753  void SetIntrinsic(Intrinsics intrinsic,
3754                    IntrinsicNeedsEnvironmentOrCache needs_env_or_cache,
3755                    IntrinsicSideEffects side_effects,
3756                    IntrinsicExceptions exceptions);
3757
3758  bool IsFromInlinedInvoke() const {
3759    return GetEnvironment()->IsFromInlinedInvoke();
3760  }
3761
3762  bool CanThrow() const OVERRIDE { return GetPackedFlag<kFlagCanThrow>(); }
3763
3764  bool CanBeMoved() const OVERRIDE { return IsIntrinsic(); }
3765
3766  bool InstructionDataEquals(const HInstruction* other) const OVERRIDE {
3767    return intrinsic_ != Intrinsics::kNone && intrinsic_ == other->AsInvoke()->intrinsic_;
3768  }
3769
3770  uint32_t* GetIntrinsicOptimizations() {
3771    return &intrinsic_optimizations_;
3772  }
3773
3774  const uint32_t* GetIntrinsicOptimizations() const {
3775    return &intrinsic_optimizations_;
3776  }
3777
3778  bool IsIntrinsic() const { return intrinsic_ != Intrinsics::kNone; }
3779
3780  ArtMethod* GetResolvedMethod() const { return resolved_method_; }
3781
3782  DECLARE_ABSTRACT_INSTRUCTION(Invoke);
3783
3784 protected:
3785  static constexpr size_t kFieldInvokeType = kNumberOfGenericPackedBits;
3786  static constexpr size_t kFieldInvokeTypeSize =
3787      MinimumBitsToStore(static_cast<size_t>(kMaxInvokeType));
3788  static constexpr size_t kFieldReturnType =
3789      kFieldInvokeType + kFieldInvokeTypeSize;
3790  static constexpr size_t kFieldReturnTypeSize =
3791      MinimumBitsToStore(static_cast<size_t>(Primitive::kPrimLast));
3792  static constexpr size_t kFlagCanThrow = kFieldReturnType + kFieldReturnTypeSize;
3793  static constexpr size_t kNumberOfInvokePackedBits = kFlagCanThrow + 1;
3794  static_assert(kNumberOfInvokePackedBits <= kMaxNumberOfPackedBits, "Too many packed fields.");
3795  using InvokeTypeField = BitField<InvokeType, kFieldInvokeType, kFieldInvokeTypeSize>;
3796  using ReturnTypeField = BitField<Primitive::Type, kFieldReturnType, kFieldReturnTypeSize>;
3797
3798  HInvoke(ArenaAllocator* arena,
3799          uint32_t number_of_arguments,
3800          uint32_t number_of_other_inputs,
3801          Primitive::Type return_type,
3802          uint32_t dex_pc,
3803          uint32_t dex_method_index,
3804          ArtMethod* resolved_method,
3805          InvokeType invoke_type)
3806    : HInstruction(
3807          SideEffects::AllExceptGCDependency(), dex_pc),  // Assume write/read on all fields/arrays.
3808      number_of_arguments_(number_of_arguments),
3809      resolved_method_(resolved_method),
3810      inputs_(number_of_arguments + number_of_other_inputs,
3811              arena->Adapter(kArenaAllocInvokeInputs)),
3812      dex_method_index_(dex_method_index),
3813      intrinsic_(Intrinsics::kNone),
3814      intrinsic_optimizations_(0) {
3815    SetPackedField<ReturnTypeField>(return_type);
3816    SetPackedField<InvokeTypeField>(invoke_type);
3817    SetPackedFlag<kFlagCanThrow>(true);
3818  }
3819
3820  void SetCanThrow(bool can_throw) { SetPackedFlag<kFlagCanThrow>(can_throw); }
3821
3822  uint32_t number_of_arguments_;
3823  ArtMethod* const resolved_method_;
3824  ArenaVector<HUserRecord<HInstruction*>> inputs_;
3825  const uint32_t dex_method_index_;
3826  Intrinsics intrinsic_;
3827
3828  // A magic word holding optimizations for intrinsics. See intrinsics.h.
3829  uint32_t intrinsic_optimizations_;
3830
3831 private:
3832  DISALLOW_COPY_AND_ASSIGN(HInvoke);
3833};
3834
3835class HInvokeUnresolved FINAL : public HInvoke {
3836 public:
3837  HInvokeUnresolved(ArenaAllocator* arena,
3838                    uint32_t number_of_arguments,
3839                    Primitive::Type return_type,
3840                    uint32_t dex_pc,
3841                    uint32_t dex_method_index,
3842                    InvokeType invoke_type)
3843      : HInvoke(arena,
3844                number_of_arguments,
3845                0u /* number_of_other_inputs */,
3846                return_type,
3847                dex_pc,
3848                dex_method_index,
3849                nullptr,
3850                invoke_type) {
3851  }
3852
3853  DECLARE_INSTRUCTION(InvokeUnresolved);
3854
3855 private:
3856  DISALLOW_COPY_AND_ASSIGN(HInvokeUnresolved);
3857};
3858
3859class HInvokeStaticOrDirect FINAL : public HInvoke {
3860 public:
3861  // Requirements of this method call regarding the class
3862  // initialization (clinit) check of its declaring class.
3863  enum class ClinitCheckRequirement {
3864    kNone,      // Class already initialized.
3865    kExplicit,  // Static call having explicit clinit check as last input.
3866    kImplicit,  // Static call implicitly requiring a clinit check.
3867    kLast = kImplicit
3868  };
3869
3870  // Determines how to load the target ArtMethod*.
3871  enum class MethodLoadKind {
3872    // Use a String init ArtMethod* loaded from Thread entrypoints.
3873    kStringInit,
3874
3875    // Use the method's own ArtMethod* loaded by the register allocator.
3876    kRecursive,
3877
3878    // Use ArtMethod* at a known address, embed the direct address in the code.
3879    // Used for app->boot calls with non-relocatable image and for JIT-compiled calls.
3880    kDirectAddress,
3881
3882    // Use ArtMethod* at an address that will be known at link time, embed the direct
3883    // address in the code. If the image is relocatable, emit .patch_oat entry.
3884    // Used for app->boot calls with relocatable image and boot->boot calls, whether
3885    // the image relocatable or not.
3886    kDirectAddressWithFixup,
3887
3888    // Load from resolved methods array in the dex cache using a PC-relative load.
3889    // Used when we need to use the dex cache, for example for invoke-static that
3890    // may cause class initialization (the entry may point to a resolution method),
3891    // and we know that we can access the dex cache arrays using a PC-relative load.
3892    kDexCachePcRelative,
3893
3894    // Use ArtMethod* from the resolved methods of the compiled method's own ArtMethod*.
3895    // Used for JIT when we need to use the dex cache. This is also the last-resort-kind
3896    // used when other kinds are unavailable (say, dex cache arrays are not PC-relative)
3897    // or unimplemented or impractical (i.e. slow) on a particular architecture.
3898    kDexCacheViaMethod,
3899  };
3900
3901  // Determines the location of the code pointer.
3902  enum class CodePtrLocation {
3903    // Recursive call, use local PC-relative call instruction.
3904    kCallSelf,
3905
3906    // Use PC-relative call instruction patched at link time.
3907    // Used for calls within an oat file, boot->boot or app->app.
3908    kCallPCRelative,
3909
3910    // Call to a known target address, embed the direct address in code.
3911    // Used for app->boot call with non-relocatable image and for JIT-compiled calls.
3912    kCallDirect,
3913
3914    // Call to a target address that will be known at link time, embed the direct
3915    // address in code. If the image is relocatable, emit .patch_oat entry.
3916    // Used for app->boot calls with relocatable image and boot->boot calls, whether
3917    // the image relocatable or not.
3918    kCallDirectWithFixup,
3919
3920    // Use code pointer from the ArtMethod*.
3921    // Used when we don't know the target code. This is also the last-resort-kind used when
3922    // other kinds are unimplemented or impractical (i.e. slow) on a particular architecture.
3923    kCallArtMethod,
3924  };
3925
3926  struct DispatchInfo {
3927    MethodLoadKind method_load_kind;
3928    CodePtrLocation code_ptr_location;
3929    // The method load data holds
3930    //   - thread entrypoint offset for kStringInit method if this is a string init invoke.
3931    //     Note that there are multiple string init methods, each having its own offset.
3932    //   - the method address for kDirectAddress
3933    //   - the dex cache arrays offset for kDexCachePcRel.
3934    uint64_t method_load_data;
3935    uint64_t direct_code_ptr;
3936  };
3937
3938  HInvokeStaticOrDirect(ArenaAllocator* arena,
3939                        uint32_t number_of_arguments,
3940                        Primitive::Type return_type,
3941                        uint32_t dex_pc,
3942                        uint32_t method_index,
3943                        ArtMethod* resolved_method,
3944                        DispatchInfo dispatch_info,
3945                        InvokeType invoke_type,
3946                        MethodReference target_method,
3947                        ClinitCheckRequirement clinit_check_requirement)
3948      : HInvoke(arena,
3949                number_of_arguments,
3950                // There is potentially one extra argument for the HCurrentMethod node, and
3951                // potentially one other if the clinit check is explicit, and potentially
3952                // one other if the method is a string factory.
3953                (NeedsCurrentMethodInput(dispatch_info.method_load_kind) ? 1u : 0u) +
3954                    (clinit_check_requirement == ClinitCheckRequirement::kExplicit ? 1u : 0u),
3955                return_type,
3956                dex_pc,
3957                method_index,
3958                resolved_method,
3959                invoke_type),
3960        target_method_(target_method),
3961        dispatch_info_(dispatch_info) {
3962    SetPackedField<ClinitCheckRequirementField>(clinit_check_requirement);
3963  }
3964
3965  void SetDispatchInfo(const DispatchInfo& dispatch_info) {
3966    bool had_current_method_input = HasCurrentMethodInput();
3967    bool needs_current_method_input = NeedsCurrentMethodInput(dispatch_info.method_load_kind);
3968
3969    // Using the current method is the default and once we find a better
3970    // method load kind, we should not go back to using the current method.
3971    DCHECK(had_current_method_input || !needs_current_method_input);
3972
3973    if (had_current_method_input && !needs_current_method_input) {
3974      DCHECK_EQ(InputAt(GetSpecialInputIndex()), GetBlock()->GetGraph()->GetCurrentMethod());
3975      RemoveInputAt(GetSpecialInputIndex());
3976    }
3977    dispatch_info_ = dispatch_info;
3978  }
3979
3980  void AddSpecialInput(HInstruction* input) {
3981    // We allow only one special input.
3982    DCHECK(!IsStringInit() && !HasCurrentMethodInput());
3983    DCHECK(InputCount() == GetSpecialInputIndex() ||
3984           (InputCount() == GetSpecialInputIndex() + 1 && IsStaticWithExplicitClinitCheck()));
3985    InsertInputAt(GetSpecialInputIndex(), input);
3986  }
3987
3988  using HInstruction::GetInputRecords;  // Keep the const version visible.
3989  ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() OVERRIDE {
3990    ArrayRef<HUserRecord<HInstruction*>> input_records = HInvoke::GetInputRecords();
3991    if (kIsDebugBuild && IsStaticWithExplicitClinitCheck()) {
3992      DCHECK(!input_records.empty());
3993      DCHECK_GT(input_records.size(), GetNumberOfArguments());
3994      HInstruction* last_input = input_records.back().GetInstruction();
3995      // Note: `last_input` may be null during arguments setup.
3996      if (last_input != nullptr) {
3997        // `last_input` is the last input of a static invoke marked as having
3998        // an explicit clinit check. It must either be:
3999        // - an art::HClinitCheck instruction, set by art::HGraphBuilder; or
4000        // - an art::HLoadClass instruction, set by art::PrepareForRegisterAllocation.
4001        DCHECK(last_input->IsClinitCheck() || last_input->IsLoadClass()) << last_input->DebugName();
4002      }
4003    }
4004    return input_records;
4005  }
4006
4007  bool CanDoImplicitNullCheckOn(HInstruction* obj ATTRIBUTE_UNUSED) const OVERRIDE {
4008    // We access the method via the dex cache so we can't do an implicit null check.
4009    // TODO: for intrinsics we can generate implicit null checks.
4010    return false;
4011  }
4012
4013  bool CanBeNull() const OVERRIDE {
4014    return GetPackedField<ReturnTypeField>() == Primitive::kPrimNot && !IsStringInit();
4015  }
4016
4017  // Get the index of the special input, if any.
4018  //
4019  // If the invoke HasCurrentMethodInput(), the "special input" is the current
4020  // method pointer; otherwise there may be one platform-specific special input,
4021  // such as PC-relative addressing base.
4022  uint32_t GetSpecialInputIndex() const { return GetNumberOfArguments(); }
4023  bool HasSpecialInput() const { return GetNumberOfArguments() != InputCount(); }
4024
4025  MethodLoadKind GetMethodLoadKind() const { return dispatch_info_.method_load_kind; }
4026  CodePtrLocation GetCodePtrLocation() const { return dispatch_info_.code_ptr_location; }
4027  bool IsRecursive() const { return GetMethodLoadKind() == MethodLoadKind::kRecursive; }
4028  bool NeedsDexCacheOfDeclaringClass() const OVERRIDE;
4029  bool IsStringInit() const { return GetMethodLoadKind() == MethodLoadKind::kStringInit; }
4030  bool HasMethodAddress() const { return GetMethodLoadKind() == MethodLoadKind::kDirectAddress; }
4031  bool HasPcRelativeDexCache() const {
4032    return GetMethodLoadKind() == MethodLoadKind::kDexCachePcRelative;
4033  }
4034  bool HasCurrentMethodInput() const {
4035    // This function can be called only after the invoke has been fully initialized by the builder.
4036    if (NeedsCurrentMethodInput(GetMethodLoadKind())) {
4037      DCHECK(InputAt(GetSpecialInputIndex())->IsCurrentMethod());
4038      return true;
4039    } else {
4040      DCHECK(InputCount() == GetSpecialInputIndex() ||
4041             !InputAt(GetSpecialInputIndex())->IsCurrentMethod());
4042      return false;
4043    }
4044  }
4045  bool HasDirectCodePtr() const { return GetCodePtrLocation() == CodePtrLocation::kCallDirect; }
4046
4047  QuickEntrypointEnum GetStringInitEntryPoint() const {
4048    DCHECK(IsStringInit());
4049    return static_cast<QuickEntrypointEnum>(dispatch_info_.method_load_data);
4050  }
4051
4052  uint64_t GetMethodAddress() const {
4053    DCHECK(HasMethodAddress());
4054    return dispatch_info_.method_load_data;
4055  }
4056
4057  uint32_t GetDexCacheArrayOffset() const {
4058    DCHECK(HasPcRelativeDexCache());
4059    return dispatch_info_.method_load_data;
4060  }
4061
4062  uint64_t GetDirectCodePtr() const {
4063    DCHECK(HasDirectCodePtr());
4064    return dispatch_info_.direct_code_ptr;
4065  }
4066
4067  ClinitCheckRequirement GetClinitCheckRequirement() const {
4068    return GetPackedField<ClinitCheckRequirementField>();
4069  }
4070
4071  // Is this instruction a call to a static method?
4072  bool IsStatic() const {
4073    return GetInvokeType() == kStatic;
4074  }
4075
4076  MethodReference GetTargetMethod() const {
4077    return target_method_;
4078  }
4079
4080  // Remove the HClinitCheck or the replacement HLoadClass (set as last input by
4081  // PrepareForRegisterAllocation::VisitClinitCheck() in lieu of the initial HClinitCheck)
4082  // instruction; only relevant for static calls with explicit clinit check.
4083  void RemoveExplicitClinitCheck(ClinitCheckRequirement new_requirement) {
4084    DCHECK(IsStaticWithExplicitClinitCheck());
4085    size_t last_input_index = inputs_.size() - 1u;
4086    HInstruction* last_input = inputs_.back().GetInstruction();
4087    DCHECK(last_input != nullptr);
4088    DCHECK(last_input->IsLoadClass() || last_input->IsClinitCheck()) << last_input->DebugName();
4089    RemoveAsUserOfInput(last_input_index);
4090    inputs_.pop_back();
4091    SetPackedField<ClinitCheckRequirementField>(new_requirement);
4092    DCHECK(!IsStaticWithExplicitClinitCheck());
4093  }
4094
4095  // Is this a call to a static method whose declaring class has an
4096  // explicit initialization check in the graph?
4097  bool IsStaticWithExplicitClinitCheck() const {
4098    return IsStatic() && (GetClinitCheckRequirement() == ClinitCheckRequirement::kExplicit);
4099  }
4100
4101  // Is this a call to a static method whose declaring class has an
4102  // implicit intialization check requirement?
4103  bool IsStaticWithImplicitClinitCheck() const {
4104    return IsStatic() && (GetClinitCheckRequirement() == ClinitCheckRequirement::kImplicit);
4105  }
4106
4107  // Does this method load kind need the current method as an input?
4108  static bool NeedsCurrentMethodInput(MethodLoadKind kind) {
4109    return kind == MethodLoadKind::kRecursive || kind == MethodLoadKind::kDexCacheViaMethod;
4110  }
4111
4112  DECLARE_INSTRUCTION(InvokeStaticOrDirect);
4113
4114 protected:
4115  void InsertInputAt(size_t index, HInstruction* input);
4116  void RemoveInputAt(size_t index);
4117
4118 private:
4119  static constexpr size_t kFieldClinitCheckRequirement = kNumberOfInvokePackedBits;
4120  static constexpr size_t kFieldClinitCheckRequirementSize =
4121      MinimumBitsToStore(static_cast<size_t>(ClinitCheckRequirement::kLast));
4122  static constexpr size_t kNumberOfInvokeStaticOrDirectPackedBits =
4123      kFieldClinitCheckRequirement + kFieldClinitCheckRequirementSize;
4124  static_assert(kNumberOfInvokeStaticOrDirectPackedBits <= kMaxNumberOfPackedBits,
4125                "Too many packed fields.");
4126  using ClinitCheckRequirementField = BitField<ClinitCheckRequirement,
4127                                               kFieldClinitCheckRequirement,
4128                                               kFieldClinitCheckRequirementSize>;
4129
4130  // Cached values of the resolved method, to avoid needing the mutator lock.
4131  MethodReference target_method_;
4132  DispatchInfo dispatch_info_;
4133
4134  DISALLOW_COPY_AND_ASSIGN(HInvokeStaticOrDirect);
4135};
4136std::ostream& operator<<(std::ostream& os, HInvokeStaticOrDirect::MethodLoadKind rhs);
4137std::ostream& operator<<(std::ostream& os, HInvokeStaticOrDirect::ClinitCheckRequirement rhs);
4138
4139class HInvokeVirtual FINAL : public HInvoke {
4140 public:
4141  HInvokeVirtual(ArenaAllocator* arena,
4142                 uint32_t number_of_arguments,
4143                 Primitive::Type return_type,
4144                 uint32_t dex_pc,
4145                 uint32_t dex_method_index,
4146                 ArtMethod* resolved_method,
4147                 uint32_t vtable_index)
4148      : HInvoke(arena,
4149                number_of_arguments,
4150                0u,
4151                return_type,
4152                dex_pc,
4153                dex_method_index,
4154                resolved_method,
4155                kVirtual),
4156        vtable_index_(vtable_index) {}
4157
4158  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
4159    // TODO: Add implicit null checks in intrinsics.
4160    return (obj == InputAt(0)) && !GetLocations()->Intrinsified();
4161  }
4162
4163  uint32_t GetVTableIndex() const { return vtable_index_; }
4164
4165  DECLARE_INSTRUCTION(InvokeVirtual);
4166
4167 private:
4168  // Cached value of the resolved method, to avoid needing the mutator lock.
4169  const uint32_t vtable_index_;
4170
4171  DISALLOW_COPY_AND_ASSIGN(HInvokeVirtual);
4172};
4173
4174class HInvokeInterface FINAL : public HInvoke {
4175 public:
4176  HInvokeInterface(ArenaAllocator* arena,
4177                   uint32_t number_of_arguments,
4178                   Primitive::Type return_type,
4179                   uint32_t dex_pc,
4180                   uint32_t dex_method_index,
4181                   ArtMethod* resolved_method,
4182                   uint32_t imt_index)
4183      : HInvoke(arena,
4184                number_of_arguments,
4185                0u,
4186                return_type,
4187                dex_pc,
4188                dex_method_index,
4189                resolved_method,
4190                kInterface),
4191        imt_index_(imt_index) {}
4192
4193  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
4194    // TODO: Add implicit null checks in intrinsics.
4195    return (obj == InputAt(0)) && !GetLocations()->Intrinsified();
4196  }
4197
4198  uint32_t GetImtIndex() const { return imt_index_; }
4199  uint32_t GetDexMethodIndex() const { return dex_method_index_; }
4200
4201  DECLARE_INSTRUCTION(InvokeInterface);
4202
4203 private:
4204  // Cached value of the resolved method, to avoid needing the mutator lock.
4205  const uint32_t imt_index_;
4206
4207  DISALLOW_COPY_AND_ASSIGN(HInvokeInterface);
4208};
4209
4210class HNeg FINAL : public HUnaryOperation {
4211 public:
4212  HNeg(Primitive::Type result_type, HInstruction* input, uint32_t dex_pc = kNoDexPc)
4213      : HUnaryOperation(result_type, input, dex_pc) {
4214    DCHECK_EQ(result_type, Primitive::PrimitiveKind(input->GetType()));
4215  }
4216
4217  template <typename T> static T Compute(T x) { return -x; }
4218
4219  HConstant* Evaluate(HIntConstant* x) const OVERRIDE {
4220    return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue()), GetDexPc());
4221  }
4222  HConstant* Evaluate(HLongConstant* x) const OVERRIDE {
4223    return GetBlock()->GetGraph()->GetLongConstant(Compute(x->GetValue()), GetDexPc());
4224  }
4225  HConstant* Evaluate(HFloatConstant* x) const OVERRIDE {
4226    return GetBlock()->GetGraph()->GetFloatConstant(Compute(x->GetValue()), GetDexPc());
4227  }
4228  HConstant* Evaluate(HDoubleConstant* x) const OVERRIDE {
4229    return GetBlock()->GetGraph()->GetDoubleConstant(Compute(x->GetValue()), GetDexPc());
4230  }
4231
4232  DECLARE_INSTRUCTION(Neg);
4233
4234 private:
4235  DISALLOW_COPY_AND_ASSIGN(HNeg);
4236};
4237
4238class HNewArray FINAL : public HExpression<2> {
4239 public:
4240  HNewArray(HInstruction* length,
4241            HCurrentMethod* current_method,
4242            uint32_t dex_pc,
4243            uint16_t type_index,
4244            const DexFile& dex_file,
4245            QuickEntrypointEnum entrypoint)
4246      : HExpression(Primitive::kPrimNot, SideEffects::CanTriggerGC(), dex_pc),
4247        type_index_(type_index),
4248        dex_file_(dex_file),
4249        entrypoint_(entrypoint) {
4250    SetRawInputAt(0, length);
4251    SetRawInputAt(1, current_method);
4252  }
4253
4254  uint16_t GetTypeIndex() const { return type_index_; }
4255  const DexFile& GetDexFile() const { return dex_file_; }
4256
4257  // Calls runtime so needs an environment.
4258  bool NeedsEnvironment() const OVERRIDE { return true; }
4259
4260  // May throw NegativeArraySizeException, OutOfMemoryError, etc.
4261  bool CanThrow() const OVERRIDE { return true; }
4262
4263  bool CanBeNull() const OVERRIDE { return false; }
4264
4265  QuickEntrypointEnum GetEntrypoint() const { return entrypoint_; }
4266
4267  DECLARE_INSTRUCTION(NewArray);
4268
4269 private:
4270  const uint16_t type_index_;
4271  const DexFile& dex_file_;
4272  const QuickEntrypointEnum entrypoint_;
4273
4274  DISALLOW_COPY_AND_ASSIGN(HNewArray);
4275};
4276
4277class HAdd FINAL : public HBinaryOperation {
4278 public:
4279  HAdd(Primitive::Type result_type,
4280       HInstruction* left,
4281       HInstruction* right,
4282       uint32_t dex_pc = kNoDexPc)
4283      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
4284
4285  bool IsCommutative() const OVERRIDE { return true; }
4286
4287  template <typename T> static T Compute(T x, T y) { return x + y; }
4288
4289  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
4290    return GetBlock()->GetGraph()->GetIntConstant(
4291        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4292  }
4293  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
4294    return GetBlock()->GetGraph()->GetLongConstant(
4295        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4296  }
4297  HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const OVERRIDE {
4298    return GetBlock()->GetGraph()->GetFloatConstant(
4299        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4300  }
4301  HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const OVERRIDE {
4302    return GetBlock()->GetGraph()->GetDoubleConstant(
4303        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4304  }
4305
4306  DECLARE_INSTRUCTION(Add);
4307
4308 private:
4309  DISALLOW_COPY_AND_ASSIGN(HAdd);
4310};
4311
4312class HSub FINAL : public HBinaryOperation {
4313 public:
4314  HSub(Primitive::Type result_type,
4315       HInstruction* left,
4316       HInstruction* right,
4317       uint32_t dex_pc = kNoDexPc)
4318      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
4319
4320  template <typename T> static T Compute(T x, T y) { return x - y; }
4321
4322  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
4323    return GetBlock()->GetGraph()->GetIntConstant(
4324        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4325  }
4326  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
4327    return GetBlock()->GetGraph()->GetLongConstant(
4328        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4329  }
4330  HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const OVERRIDE {
4331    return GetBlock()->GetGraph()->GetFloatConstant(
4332        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4333  }
4334  HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const OVERRIDE {
4335    return GetBlock()->GetGraph()->GetDoubleConstant(
4336        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4337  }
4338
4339  DECLARE_INSTRUCTION(Sub);
4340
4341 private:
4342  DISALLOW_COPY_AND_ASSIGN(HSub);
4343};
4344
4345class HMul FINAL : public HBinaryOperation {
4346 public:
4347  HMul(Primitive::Type result_type,
4348       HInstruction* left,
4349       HInstruction* right,
4350       uint32_t dex_pc = kNoDexPc)
4351      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
4352
4353  bool IsCommutative() const OVERRIDE { return true; }
4354
4355  template <typename T> static T Compute(T x, T y) { return x * y; }
4356
4357  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
4358    return GetBlock()->GetGraph()->GetIntConstant(
4359        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4360  }
4361  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
4362    return GetBlock()->GetGraph()->GetLongConstant(
4363        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4364  }
4365  HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const OVERRIDE {
4366    return GetBlock()->GetGraph()->GetFloatConstant(
4367        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4368  }
4369  HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const OVERRIDE {
4370    return GetBlock()->GetGraph()->GetDoubleConstant(
4371        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4372  }
4373
4374  DECLARE_INSTRUCTION(Mul);
4375
4376 private:
4377  DISALLOW_COPY_AND_ASSIGN(HMul);
4378};
4379
4380class HDiv FINAL : public HBinaryOperation {
4381 public:
4382  HDiv(Primitive::Type result_type,
4383       HInstruction* left,
4384       HInstruction* right,
4385       uint32_t dex_pc)
4386      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
4387
4388  template <typename T>
4389  T ComputeIntegral(T x, T y) const {
4390    DCHECK(!Primitive::IsFloatingPointType(GetType())) << GetType();
4391    // Our graph structure ensures we never have 0 for `y` during
4392    // constant folding.
4393    DCHECK_NE(y, 0);
4394    // Special case -1 to avoid getting a SIGFPE on x86(_64).
4395    return (y == -1) ? -x : x / y;
4396  }
4397
4398  template <typename T>
4399  T ComputeFP(T x, T y) const {
4400    DCHECK(Primitive::IsFloatingPointType(GetType())) << GetType();
4401    return x / y;
4402  }
4403
4404  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
4405    return GetBlock()->GetGraph()->GetIntConstant(
4406        ComputeIntegral(x->GetValue(), y->GetValue()), GetDexPc());
4407  }
4408  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
4409    return GetBlock()->GetGraph()->GetLongConstant(
4410        ComputeIntegral(x->GetValue(), y->GetValue()), GetDexPc());
4411  }
4412  HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const OVERRIDE {
4413    return GetBlock()->GetGraph()->GetFloatConstant(
4414        ComputeFP(x->GetValue(), y->GetValue()), GetDexPc());
4415  }
4416  HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const OVERRIDE {
4417    return GetBlock()->GetGraph()->GetDoubleConstant(
4418        ComputeFP(x->GetValue(), y->GetValue()), GetDexPc());
4419  }
4420
4421  DECLARE_INSTRUCTION(Div);
4422
4423 private:
4424  DISALLOW_COPY_AND_ASSIGN(HDiv);
4425};
4426
4427class HRem FINAL : public HBinaryOperation {
4428 public:
4429  HRem(Primitive::Type result_type,
4430       HInstruction* left,
4431       HInstruction* right,
4432       uint32_t dex_pc)
4433      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
4434
4435  template <typename T>
4436  T ComputeIntegral(T x, T y) const {
4437    DCHECK(!Primitive::IsFloatingPointType(GetType())) << GetType();
4438    // Our graph structure ensures we never have 0 for `y` during
4439    // constant folding.
4440    DCHECK_NE(y, 0);
4441    // Special case -1 to avoid getting a SIGFPE on x86(_64).
4442    return (y == -1) ? 0 : x % y;
4443  }
4444
4445  template <typename T>
4446  T ComputeFP(T x, T y) const {
4447    DCHECK(Primitive::IsFloatingPointType(GetType())) << GetType();
4448    return std::fmod(x, y);
4449  }
4450
4451  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
4452    return GetBlock()->GetGraph()->GetIntConstant(
4453        ComputeIntegral(x->GetValue(), y->GetValue()), GetDexPc());
4454  }
4455  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
4456    return GetBlock()->GetGraph()->GetLongConstant(
4457        ComputeIntegral(x->GetValue(), y->GetValue()), GetDexPc());
4458  }
4459  HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const OVERRIDE {
4460    return GetBlock()->GetGraph()->GetFloatConstant(
4461        ComputeFP(x->GetValue(), y->GetValue()), GetDexPc());
4462  }
4463  HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const OVERRIDE {
4464    return GetBlock()->GetGraph()->GetDoubleConstant(
4465        ComputeFP(x->GetValue(), y->GetValue()), GetDexPc());
4466  }
4467
4468  DECLARE_INSTRUCTION(Rem);
4469
4470 private:
4471  DISALLOW_COPY_AND_ASSIGN(HRem);
4472};
4473
4474class HDivZeroCheck FINAL : public HExpression<1> {
4475 public:
4476  // `HDivZeroCheck` can trigger GC, as it may call the `ArithmeticException`
4477  // constructor.
4478  HDivZeroCheck(HInstruction* value, uint32_t dex_pc)
4479      : HExpression(value->GetType(), SideEffects::CanTriggerGC(), dex_pc) {
4480    SetRawInputAt(0, value);
4481  }
4482
4483  Primitive::Type GetType() const OVERRIDE { return InputAt(0)->GetType(); }
4484
4485  bool CanBeMoved() const OVERRIDE { return true; }
4486
4487  bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
4488    return true;
4489  }
4490
4491  bool NeedsEnvironment() const OVERRIDE { return true; }
4492  bool CanThrow() const OVERRIDE { return true; }
4493
4494  DECLARE_INSTRUCTION(DivZeroCheck);
4495
4496 private:
4497  DISALLOW_COPY_AND_ASSIGN(HDivZeroCheck);
4498};
4499
4500class HShl FINAL : public HBinaryOperation {
4501 public:
4502  HShl(Primitive::Type result_type,
4503       HInstruction* value,
4504       HInstruction* distance,
4505       uint32_t dex_pc = kNoDexPc)
4506      : HBinaryOperation(result_type, value, distance, SideEffects::None(), dex_pc) {
4507    DCHECK_EQ(result_type, Primitive::PrimitiveKind(value->GetType()));
4508    DCHECK_EQ(Primitive::kPrimInt, Primitive::PrimitiveKind(distance->GetType()));
4509  }
4510
4511  template <typename T>
4512  static T Compute(T value, int32_t distance, int32_t max_shift_distance) {
4513    return value << (distance & max_shift_distance);
4514  }
4515
4516  HConstant* Evaluate(HIntConstant* value, HIntConstant* distance) const OVERRIDE {
4517    return GetBlock()->GetGraph()->GetIntConstant(
4518        Compute(value->GetValue(), distance->GetValue(), kMaxIntShiftDistance), GetDexPc());
4519  }
4520  HConstant* Evaluate(HLongConstant* value, HIntConstant* distance) const OVERRIDE {
4521    return GetBlock()->GetGraph()->GetLongConstant(
4522        Compute(value->GetValue(), distance->GetValue(), kMaxLongShiftDistance), GetDexPc());
4523  }
4524  HConstant* Evaluate(HLongConstant* value ATTRIBUTE_UNUSED,
4525                      HLongConstant* distance ATTRIBUTE_UNUSED) const OVERRIDE {
4526    LOG(FATAL) << DebugName() << " is not defined for the (long, long) case.";
4527    UNREACHABLE();
4528  }
4529  HConstant* Evaluate(HFloatConstant* value ATTRIBUTE_UNUSED,
4530                      HFloatConstant* distance ATTRIBUTE_UNUSED) const OVERRIDE {
4531    LOG(FATAL) << DebugName() << " is not defined for float values";
4532    UNREACHABLE();
4533  }
4534  HConstant* Evaluate(HDoubleConstant* value ATTRIBUTE_UNUSED,
4535                      HDoubleConstant* distance ATTRIBUTE_UNUSED) const OVERRIDE {
4536    LOG(FATAL) << DebugName() << " is not defined for double values";
4537    UNREACHABLE();
4538  }
4539
4540  DECLARE_INSTRUCTION(Shl);
4541
4542 private:
4543  DISALLOW_COPY_AND_ASSIGN(HShl);
4544};
4545
4546class HShr FINAL : public HBinaryOperation {
4547 public:
4548  HShr(Primitive::Type result_type,
4549       HInstruction* value,
4550       HInstruction* distance,
4551       uint32_t dex_pc = kNoDexPc)
4552      : HBinaryOperation(result_type, value, distance, SideEffects::None(), dex_pc) {
4553    DCHECK_EQ(result_type, Primitive::PrimitiveKind(value->GetType()));
4554    DCHECK_EQ(Primitive::kPrimInt, Primitive::PrimitiveKind(distance->GetType()));
4555  }
4556
4557  template <typename T>
4558  static T Compute(T value, int32_t distance, int32_t max_shift_distance) {
4559    return value >> (distance & max_shift_distance);
4560  }
4561
4562  HConstant* Evaluate(HIntConstant* value, HIntConstant* distance) const OVERRIDE {
4563    return GetBlock()->GetGraph()->GetIntConstant(
4564        Compute(value->GetValue(), distance->GetValue(), kMaxIntShiftDistance), GetDexPc());
4565  }
4566  HConstant* Evaluate(HLongConstant* value, HIntConstant* distance) const OVERRIDE {
4567    return GetBlock()->GetGraph()->GetLongConstant(
4568        Compute(value->GetValue(), distance->GetValue(), kMaxLongShiftDistance), GetDexPc());
4569  }
4570  HConstant* Evaluate(HLongConstant* value ATTRIBUTE_UNUSED,
4571                      HLongConstant* distance ATTRIBUTE_UNUSED) const OVERRIDE {
4572    LOG(FATAL) << DebugName() << " is not defined for the (long, long) case.";
4573    UNREACHABLE();
4574  }
4575  HConstant* Evaluate(HFloatConstant* value ATTRIBUTE_UNUSED,
4576                      HFloatConstant* distance ATTRIBUTE_UNUSED) const OVERRIDE {
4577    LOG(FATAL) << DebugName() << " is not defined for float values";
4578    UNREACHABLE();
4579  }
4580  HConstant* Evaluate(HDoubleConstant* value ATTRIBUTE_UNUSED,
4581                      HDoubleConstant* distance ATTRIBUTE_UNUSED) const OVERRIDE {
4582    LOG(FATAL) << DebugName() << " is not defined for double values";
4583    UNREACHABLE();
4584  }
4585
4586  DECLARE_INSTRUCTION(Shr);
4587
4588 private:
4589  DISALLOW_COPY_AND_ASSIGN(HShr);
4590};
4591
4592class HUShr FINAL : public HBinaryOperation {
4593 public:
4594  HUShr(Primitive::Type result_type,
4595        HInstruction* value,
4596        HInstruction* distance,
4597        uint32_t dex_pc = kNoDexPc)
4598      : HBinaryOperation(result_type, value, distance, SideEffects::None(), dex_pc) {
4599    DCHECK_EQ(result_type, Primitive::PrimitiveKind(value->GetType()));
4600    DCHECK_EQ(Primitive::kPrimInt, Primitive::PrimitiveKind(distance->GetType()));
4601  }
4602
4603  template <typename T>
4604  static T Compute(T value, int32_t distance, int32_t max_shift_distance) {
4605    typedef typename std::make_unsigned<T>::type V;
4606    V ux = static_cast<V>(value);
4607    return static_cast<T>(ux >> (distance & max_shift_distance));
4608  }
4609
4610  HConstant* Evaluate(HIntConstant* value, HIntConstant* distance) const OVERRIDE {
4611    return GetBlock()->GetGraph()->GetIntConstant(
4612        Compute(value->GetValue(), distance->GetValue(), kMaxIntShiftDistance), GetDexPc());
4613  }
4614  HConstant* Evaluate(HLongConstant* value, HIntConstant* distance) const OVERRIDE {
4615    return GetBlock()->GetGraph()->GetLongConstant(
4616        Compute(value->GetValue(), distance->GetValue(), kMaxLongShiftDistance), GetDexPc());
4617  }
4618  HConstant* Evaluate(HLongConstant* value ATTRIBUTE_UNUSED,
4619                      HLongConstant* distance ATTRIBUTE_UNUSED) const OVERRIDE {
4620    LOG(FATAL) << DebugName() << " is not defined for the (long, long) case.";
4621    UNREACHABLE();
4622  }
4623  HConstant* Evaluate(HFloatConstant* value ATTRIBUTE_UNUSED,
4624                      HFloatConstant* distance ATTRIBUTE_UNUSED) const OVERRIDE {
4625    LOG(FATAL) << DebugName() << " is not defined for float values";
4626    UNREACHABLE();
4627  }
4628  HConstant* Evaluate(HDoubleConstant* value ATTRIBUTE_UNUSED,
4629                      HDoubleConstant* distance ATTRIBUTE_UNUSED) const OVERRIDE {
4630    LOG(FATAL) << DebugName() << " is not defined for double values";
4631    UNREACHABLE();
4632  }
4633
4634  DECLARE_INSTRUCTION(UShr);
4635
4636 private:
4637  DISALLOW_COPY_AND_ASSIGN(HUShr);
4638};
4639
4640class HAnd FINAL : public HBinaryOperation {
4641 public:
4642  HAnd(Primitive::Type result_type,
4643       HInstruction* left,
4644       HInstruction* right,
4645       uint32_t dex_pc = kNoDexPc)
4646      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
4647
4648  bool IsCommutative() const OVERRIDE { return true; }
4649
4650  template <typename T> static T Compute(T x, T y) { return x & y; }
4651
4652  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
4653    return GetBlock()->GetGraph()->GetIntConstant(
4654        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4655  }
4656  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
4657    return GetBlock()->GetGraph()->GetLongConstant(
4658        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4659  }
4660  HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED,
4661                      HFloatConstant* y ATTRIBUTE_UNUSED) const OVERRIDE {
4662    LOG(FATAL) << DebugName() << " is not defined for float values";
4663    UNREACHABLE();
4664  }
4665  HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED,
4666                      HDoubleConstant* y ATTRIBUTE_UNUSED) const OVERRIDE {
4667    LOG(FATAL) << DebugName() << " is not defined for double values";
4668    UNREACHABLE();
4669  }
4670
4671  DECLARE_INSTRUCTION(And);
4672
4673 private:
4674  DISALLOW_COPY_AND_ASSIGN(HAnd);
4675};
4676
4677class HOr FINAL : public HBinaryOperation {
4678 public:
4679  HOr(Primitive::Type result_type,
4680      HInstruction* left,
4681      HInstruction* right,
4682      uint32_t dex_pc = kNoDexPc)
4683      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
4684
4685  bool IsCommutative() const OVERRIDE { return true; }
4686
4687  template <typename T> static T Compute(T x, T y) { return x | y; }
4688
4689  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
4690    return GetBlock()->GetGraph()->GetIntConstant(
4691        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4692  }
4693  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
4694    return GetBlock()->GetGraph()->GetLongConstant(
4695        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4696  }
4697  HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED,
4698                      HFloatConstant* y ATTRIBUTE_UNUSED) const OVERRIDE {
4699    LOG(FATAL) << DebugName() << " is not defined for float values";
4700    UNREACHABLE();
4701  }
4702  HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED,
4703                      HDoubleConstant* y ATTRIBUTE_UNUSED) const OVERRIDE {
4704    LOG(FATAL) << DebugName() << " is not defined for double values";
4705    UNREACHABLE();
4706  }
4707
4708  DECLARE_INSTRUCTION(Or);
4709
4710 private:
4711  DISALLOW_COPY_AND_ASSIGN(HOr);
4712};
4713
4714class HXor FINAL : public HBinaryOperation {
4715 public:
4716  HXor(Primitive::Type result_type,
4717       HInstruction* left,
4718       HInstruction* right,
4719       uint32_t dex_pc = kNoDexPc)
4720      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
4721
4722  bool IsCommutative() const OVERRIDE { return true; }
4723
4724  template <typename T> static T Compute(T x, T y) { return x ^ y; }
4725
4726  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
4727    return GetBlock()->GetGraph()->GetIntConstant(
4728        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4729  }
4730  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
4731    return GetBlock()->GetGraph()->GetLongConstant(
4732        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4733  }
4734  HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED,
4735                      HFloatConstant* y ATTRIBUTE_UNUSED) const OVERRIDE {
4736    LOG(FATAL) << DebugName() << " is not defined for float values";
4737    UNREACHABLE();
4738  }
4739  HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED,
4740                      HDoubleConstant* y ATTRIBUTE_UNUSED) const OVERRIDE {
4741    LOG(FATAL) << DebugName() << " is not defined for double values";
4742    UNREACHABLE();
4743  }
4744
4745  DECLARE_INSTRUCTION(Xor);
4746
4747 private:
4748  DISALLOW_COPY_AND_ASSIGN(HXor);
4749};
4750
4751class HRor FINAL : public HBinaryOperation {
4752 public:
4753  HRor(Primitive::Type result_type, HInstruction* value, HInstruction* distance)
4754    : HBinaryOperation(result_type, value, distance) {
4755    DCHECK_EQ(result_type, Primitive::PrimitiveKind(value->GetType()));
4756    DCHECK_EQ(Primitive::kPrimInt, Primitive::PrimitiveKind(distance->GetType()));
4757  }
4758
4759  template <typename T>
4760  static T Compute(T value, int32_t distance, int32_t max_shift_value) {
4761    typedef typename std::make_unsigned<T>::type V;
4762    V ux = static_cast<V>(value);
4763    if ((distance & max_shift_value) == 0) {
4764      return static_cast<T>(ux);
4765    } else {
4766      const V reg_bits = sizeof(T) * 8;
4767      return static_cast<T>(ux >> (distance & max_shift_value)) |
4768                           (value << (reg_bits - (distance & max_shift_value)));
4769    }
4770  }
4771
4772  HConstant* Evaluate(HIntConstant* value, HIntConstant* distance) const OVERRIDE {
4773    return GetBlock()->GetGraph()->GetIntConstant(
4774        Compute(value->GetValue(), distance->GetValue(), kMaxIntShiftDistance), GetDexPc());
4775  }
4776  HConstant* Evaluate(HLongConstant* value, HIntConstant* distance) const OVERRIDE {
4777    return GetBlock()->GetGraph()->GetLongConstant(
4778        Compute(value->GetValue(), distance->GetValue(), kMaxLongShiftDistance), GetDexPc());
4779  }
4780  HConstant* Evaluate(HLongConstant* value ATTRIBUTE_UNUSED,
4781                      HLongConstant* distance ATTRIBUTE_UNUSED) const OVERRIDE {
4782    LOG(FATAL) << DebugName() << " is not defined for the (long, long) case.";
4783    UNREACHABLE();
4784  }
4785  HConstant* Evaluate(HFloatConstant* value ATTRIBUTE_UNUSED,
4786                      HFloatConstant* distance ATTRIBUTE_UNUSED) const OVERRIDE {
4787    LOG(FATAL) << DebugName() << " is not defined for float values";
4788    UNREACHABLE();
4789  }
4790  HConstant* Evaluate(HDoubleConstant* value ATTRIBUTE_UNUSED,
4791                      HDoubleConstant* distance ATTRIBUTE_UNUSED) const OVERRIDE {
4792    LOG(FATAL) << DebugName() << " is not defined for double values";
4793    UNREACHABLE();
4794  }
4795
4796  DECLARE_INSTRUCTION(Ror);
4797
4798 private:
4799  DISALLOW_COPY_AND_ASSIGN(HRor);
4800};
4801
4802// The value of a parameter in this method. Its location depends on
4803// the calling convention.
4804class HParameterValue FINAL : public HExpression<0> {
4805 public:
4806  HParameterValue(const DexFile& dex_file,
4807                  uint16_t type_index,
4808                  uint8_t index,
4809                  Primitive::Type parameter_type,
4810                  bool is_this = false)
4811      : HExpression(parameter_type, SideEffects::None(), kNoDexPc),
4812        dex_file_(dex_file),
4813        type_index_(type_index),
4814        index_(index) {
4815    SetPackedFlag<kFlagIsThis>(is_this);
4816    SetPackedFlag<kFlagCanBeNull>(!is_this);
4817  }
4818
4819  const DexFile& GetDexFile() const { return dex_file_; }
4820  uint16_t GetTypeIndex() const { return type_index_; }
4821  uint8_t GetIndex() const { return index_; }
4822  bool IsThis() const { return GetPackedFlag<kFlagIsThis>(); }
4823
4824  bool CanBeNull() const OVERRIDE { return GetPackedFlag<kFlagCanBeNull>(); }
4825  void SetCanBeNull(bool can_be_null) { SetPackedFlag<kFlagCanBeNull>(can_be_null); }
4826
4827  DECLARE_INSTRUCTION(ParameterValue);
4828
4829 private:
4830  // Whether or not the parameter value corresponds to 'this' argument.
4831  static constexpr size_t kFlagIsThis = kNumberOfExpressionPackedBits;
4832  static constexpr size_t kFlagCanBeNull = kFlagIsThis + 1;
4833  static constexpr size_t kNumberOfParameterValuePackedBits = kFlagCanBeNull + 1;
4834  static_assert(kNumberOfParameterValuePackedBits <= kMaxNumberOfPackedBits,
4835                "Too many packed fields.");
4836
4837  const DexFile& dex_file_;
4838  const uint16_t type_index_;
4839  // The index of this parameter in the parameters list. Must be less
4840  // than HGraph::number_of_in_vregs_.
4841  const uint8_t index_;
4842
4843  DISALLOW_COPY_AND_ASSIGN(HParameterValue);
4844};
4845
4846class HNot FINAL : public HUnaryOperation {
4847 public:
4848  HNot(Primitive::Type result_type, HInstruction* input, uint32_t dex_pc = kNoDexPc)
4849      : HUnaryOperation(result_type, input, dex_pc) {}
4850
4851  bool CanBeMoved() const OVERRIDE { return true; }
4852  bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
4853    return true;
4854  }
4855
4856  template <typename T> static T Compute(T x) { return ~x; }
4857
4858  HConstant* Evaluate(HIntConstant* x) const OVERRIDE {
4859    return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue()), GetDexPc());
4860  }
4861  HConstant* Evaluate(HLongConstant* x) const OVERRIDE {
4862    return GetBlock()->GetGraph()->GetLongConstant(Compute(x->GetValue()), GetDexPc());
4863  }
4864  HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED) const OVERRIDE {
4865    LOG(FATAL) << DebugName() << " is not defined for float values";
4866    UNREACHABLE();
4867  }
4868  HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED) const OVERRIDE {
4869    LOG(FATAL) << DebugName() << " is not defined for double values";
4870    UNREACHABLE();
4871  }
4872
4873  DECLARE_INSTRUCTION(Not);
4874
4875 private:
4876  DISALLOW_COPY_AND_ASSIGN(HNot);
4877};
4878
4879class HBooleanNot FINAL : public HUnaryOperation {
4880 public:
4881  explicit HBooleanNot(HInstruction* input, uint32_t dex_pc = kNoDexPc)
4882      : HUnaryOperation(Primitive::Type::kPrimBoolean, input, dex_pc) {}
4883
4884  bool CanBeMoved() const OVERRIDE { return true; }
4885  bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
4886    return true;
4887  }
4888
4889  template <typename T> static bool Compute(T x) {
4890    DCHECK(IsUint<1>(x)) << x;
4891    return !x;
4892  }
4893
4894  HConstant* Evaluate(HIntConstant* x) const OVERRIDE {
4895    return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue()), GetDexPc());
4896  }
4897  HConstant* Evaluate(HLongConstant* x ATTRIBUTE_UNUSED) const OVERRIDE {
4898    LOG(FATAL) << DebugName() << " is not defined for long values";
4899    UNREACHABLE();
4900  }
4901  HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED) const OVERRIDE {
4902    LOG(FATAL) << DebugName() << " is not defined for float values";
4903    UNREACHABLE();
4904  }
4905  HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED) const OVERRIDE {
4906    LOG(FATAL) << DebugName() << " is not defined for double values";
4907    UNREACHABLE();
4908  }
4909
4910  DECLARE_INSTRUCTION(BooleanNot);
4911
4912 private:
4913  DISALLOW_COPY_AND_ASSIGN(HBooleanNot);
4914};
4915
4916class HTypeConversion FINAL : public HExpression<1> {
4917 public:
4918  // Instantiate a type conversion of `input` to `result_type`.
4919  HTypeConversion(Primitive::Type result_type, HInstruction* input, uint32_t dex_pc)
4920      : HExpression(result_type, SideEffects::None(), dex_pc) {
4921    SetRawInputAt(0, input);
4922    // Invariant: We should never generate a conversion to a Boolean value.
4923    DCHECK_NE(Primitive::kPrimBoolean, result_type);
4924  }
4925
4926  HInstruction* GetInput() const { return InputAt(0); }
4927  Primitive::Type GetInputType() const { return GetInput()->GetType(); }
4928  Primitive::Type GetResultType() const { return GetType(); }
4929
4930  bool CanBeMoved() const OVERRIDE { return true; }
4931  bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
4932    return true;
4933  }
4934
4935  // Try to statically evaluate the conversion and return a HConstant
4936  // containing the result.  If the input cannot be converted, return nullptr.
4937  HConstant* TryStaticEvaluation() const;
4938
4939  DECLARE_INSTRUCTION(TypeConversion);
4940
4941 private:
4942  DISALLOW_COPY_AND_ASSIGN(HTypeConversion);
4943};
4944
4945static constexpr uint32_t kNoRegNumber = -1;
4946
4947class HNullCheck FINAL : public HExpression<1> {
4948 public:
4949  // `HNullCheck` can trigger GC, as it may call the `NullPointerException`
4950  // constructor.
4951  HNullCheck(HInstruction* value, uint32_t dex_pc)
4952      : HExpression(value->GetType(), SideEffects::CanTriggerGC(), dex_pc) {
4953    SetRawInputAt(0, value);
4954  }
4955
4956  bool CanBeMoved() const OVERRIDE { return true; }
4957  bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
4958    return true;
4959  }
4960
4961  bool NeedsEnvironment() const OVERRIDE { return true; }
4962
4963  bool CanThrow() const OVERRIDE { return true; }
4964
4965  bool CanBeNull() const OVERRIDE { return false; }
4966
4967
4968  DECLARE_INSTRUCTION(NullCheck);
4969
4970 private:
4971  DISALLOW_COPY_AND_ASSIGN(HNullCheck);
4972};
4973
4974class FieldInfo : public ValueObject {
4975 public:
4976  FieldInfo(MemberOffset field_offset,
4977            Primitive::Type field_type,
4978            bool is_volatile,
4979            uint32_t index,
4980            uint16_t declaring_class_def_index,
4981            const DexFile& dex_file,
4982            Handle<mirror::DexCache> dex_cache)
4983      : field_offset_(field_offset),
4984        field_type_(field_type),
4985        is_volatile_(is_volatile),
4986        index_(index),
4987        declaring_class_def_index_(declaring_class_def_index),
4988        dex_file_(dex_file),
4989        dex_cache_(dex_cache) {}
4990
4991  MemberOffset GetFieldOffset() const { return field_offset_; }
4992  Primitive::Type GetFieldType() const { return field_type_; }
4993  uint32_t GetFieldIndex() const { return index_; }
4994  uint16_t GetDeclaringClassDefIndex() const { return declaring_class_def_index_;}
4995  const DexFile& GetDexFile() const { return dex_file_; }
4996  bool IsVolatile() const { return is_volatile_; }
4997  Handle<mirror::DexCache> GetDexCache() const { return dex_cache_; }
4998
4999 private:
5000  const MemberOffset field_offset_;
5001  const Primitive::Type field_type_;
5002  const bool is_volatile_;
5003  const uint32_t index_;
5004  const uint16_t declaring_class_def_index_;
5005  const DexFile& dex_file_;
5006  const Handle<mirror::DexCache> dex_cache_;
5007};
5008
5009class HInstanceFieldGet FINAL : public HExpression<1> {
5010 public:
5011  HInstanceFieldGet(HInstruction* value,
5012                    Primitive::Type field_type,
5013                    MemberOffset field_offset,
5014                    bool is_volatile,
5015                    uint32_t field_idx,
5016                    uint16_t declaring_class_def_index,
5017                    const DexFile& dex_file,
5018                    Handle<mirror::DexCache> dex_cache,
5019                    uint32_t dex_pc)
5020      : HExpression(field_type, SideEffects::FieldReadOfType(field_type, is_volatile), dex_pc),
5021        field_info_(field_offset,
5022                    field_type,
5023                    is_volatile,
5024                    field_idx,
5025                    declaring_class_def_index,
5026                    dex_file,
5027                    dex_cache) {
5028    SetRawInputAt(0, value);
5029  }
5030
5031  bool CanBeMoved() const OVERRIDE { return !IsVolatile(); }
5032
5033  bool InstructionDataEquals(const HInstruction* other) const OVERRIDE {
5034    const HInstanceFieldGet* other_get = other->AsInstanceFieldGet();
5035    return GetFieldOffset().SizeValue() == other_get->GetFieldOffset().SizeValue();
5036  }
5037
5038  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
5039    return (obj == InputAt(0)) && art::CanDoImplicitNullCheckOn(GetFieldOffset().Uint32Value());
5040  }
5041
5042  size_t ComputeHashCode() const OVERRIDE {
5043    return (HInstruction::ComputeHashCode() << 7) | GetFieldOffset().SizeValue();
5044  }
5045
5046  const FieldInfo& GetFieldInfo() const { return field_info_; }
5047  MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
5048  Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); }
5049  bool IsVolatile() const { return field_info_.IsVolatile(); }
5050
5051  DECLARE_INSTRUCTION(InstanceFieldGet);
5052
5053 private:
5054  const FieldInfo field_info_;
5055
5056  DISALLOW_COPY_AND_ASSIGN(HInstanceFieldGet);
5057};
5058
5059class HInstanceFieldSet FINAL : public HTemplateInstruction<2> {
5060 public:
5061  HInstanceFieldSet(HInstruction* object,
5062                    HInstruction* value,
5063                    Primitive::Type field_type,
5064                    MemberOffset field_offset,
5065                    bool is_volatile,
5066                    uint32_t field_idx,
5067                    uint16_t declaring_class_def_index,
5068                    const DexFile& dex_file,
5069                    Handle<mirror::DexCache> dex_cache,
5070                    uint32_t dex_pc)
5071      : HTemplateInstruction(SideEffects::FieldWriteOfType(field_type, is_volatile), dex_pc),
5072        field_info_(field_offset,
5073                    field_type,
5074                    is_volatile,
5075                    field_idx,
5076                    declaring_class_def_index,
5077                    dex_file,
5078                    dex_cache) {
5079    SetPackedFlag<kFlagValueCanBeNull>(true);
5080    SetRawInputAt(0, object);
5081    SetRawInputAt(1, value);
5082  }
5083
5084  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
5085    return (obj == InputAt(0)) && art::CanDoImplicitNullCheckOn(GetFieldOffset().Uint32Value());
5086  }
5087
5088  const FieldInfo& GetFieldInfo() const { return field_info_; }
5089  MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
5090  Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); }
5091  bool IsVolatile() const { return field_info_.IsVolatile(); }
5092  HInstruction* GetValue() const { return InputAt(1); }
5093  bool GetValueCanBeNull() const { return GetPackedFlag<kFlagValueCanBeNull>(); }
5094  void ClearValueCanBeNull() { SetPackedFlag<kFlagValueCanBeNull>(false); }
5095
5096  DECLARE_INSTRUCTION(InstanceFieldSet);
5097
5098 private:
5099  static constexpr size_t kFlagValueCanBeNull = kNumberOfGenericPackedBits;
5100  static constexpr size_t kNumberOfInstanceFieldSetPackedBits = kFlagValueCanBeNull + 1;
5101  static_assert(kNumberOfInstanceFieldSetPackedBits <= kMaxNumberOfPackedBits,
5102                "Too many packed fields.");
5103
5104  const FieldInfo field_info_;
5105
5106  DISALLOW_COPY_AND_ASSIGN(HInstanceFieldSet);
5107};
5108
5109class HArrayGet FINAL : public HExpression<2> {
5110 public:
5111  HArrayGet(HInstruction* array,
5112            HInstruction* index,
5113            Primitive::Type type,
5114            uint32_t dex_pc,
5115            bool is_string_char_at = false)
5116      : HExpression(type, SideEffects::ArrayReadOfType(type), dex_pc) {
5117    SetPackedFlag<kFlagIsStringCharAt>(is_string_char_at);
5118    SetRawInputAt(0, array);
5119    SetRawInputAt(1, index);
5120  }
5121
5122  bool CanBeMoved() const OVERRIDE { return true; }
5123  bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
5124    return true;
5125  }
5126  bool CanDoImplicitNullCheckOn(HInstruction* obj ATTRIBUTE_UNUSED) const OVERRIDE {
5127    // TODO: We can be smarter here.
5128    // Currently, the array access is always preceded by an ArrayLength or a NullCheck
5129    // which generates the implicit null check. There are cases when these can be removed
5130    // to produce better code. If we ever add optimizations to do so we should allow an
5131    // implicit check here (as long as the address falls in the first page).
5132    return false;
5133  }
5134
5135  bool IsEquivalentOf(HArrayGet* other) const {
5136    bool result = (GetDexPc() == other->GetDexPc());
5137    if (kIsDebugBuild && result) {
5138      DCHECK_EQ(GetBlock(), other->GetBlock());
5139      DCHECK_EQ(GetArray(), other->GetArray());
5140      DCHECK_EQ(GetIndex(), other->GetIndex());
5141      if (Primitive::IsIntOrLongType(GetType())) {
5142        DCHECK(Primitive::IsFloatingPointType(other->GetType())) << other->GetType();
5143      } else {
5144        DCHECK(Primitive::IsFloatingPointType(GetType())) << GetType();
5145        DCHECK(Primitive::IsIntOrLongType(other->GetType())) << other->GetType();
5146      }
5147    }
5148    return result;
5149  }
5150
5151  bool IsStringCharAt() const { return GetPackedFlag<kFlagIsStringCharAt>(); }
5152
5153  HInstruction* GetArray() const { return InputAt(0); }
5154  HInstruction* GetIndex() const { return InputAt(1); }
5155
5156  DECLARE_INSTRUCTION(ArrayGet);
5157
5158 private:
5159  // We treat a String as an array, creating the HArrayGet from String.charAt()
5160  // intrinsic in the instruction simplifier. We can always determine whether
5161  // a particular HArrayGet is actually a String.charAt() by looking at the type
5162  // of the input but that requires holding the mutator lock, so we prefer to use
5163  // a flag, so that code generators don't need to do the locking.
5164  static constexpr size_t kFlagIsStringCharAt = kNumberOfExpressionPackedBits;
5165  static constexpr size_t kNumberOfArrayGetPackedBits = kFlagIsStringCharAt + 1;
5166  static_assert(kNumberOfArrayGetPackedBits <= HInstruction::kMaxNumberOfPackedBits,
5167                "Too many packed fields.");
5168
5169  DISALLOW_COPY_AND_ASSIGN(HArrayGet);
5170};
5171
5172class HArraySet FINAL : public HTemplateInstruction<3> {
5173 public:
5174  HArraySet(HInstruction* array,
5175            HInstruction* index,
5176            HInstruction* value,
5177            Primitive::Type expected_component_type,
5178            uint32_t dex_pc)
5179      : HTemplateInstruction(SideEffects::None(), dex_pc) {
5180    SetPackedField<ExpectedComponentTypeField>(expected_component_type);
5181    SetPackedFlag<kFlagNeedsTypeCheck>(value->GetType() == Primitive::kPrimNot);
5182    SetPackedFlag<kFlagValueCanBeNull>(true);
5183    SetPackedFlag<kFlagStaticTypeOfArrayIsObjectArray>(false);
5184    SetRawInputAt(0, array);
5185    SetRawInputAt(1, index);
5186    SetRawInputAt(2, value);
5187    // Make a best guess now, may be refined during SSA building.
5188    ComputeSideEffects();
5189  }
5190
5191  bool NeedsEnvironment() const OVERRIDE {
5192    // We call a runtime method to throw ArrayStoreException.
5193    return NeedsTypeCheck();
5194  }
5195
5196  // Can throw ArrayStoreException.
5197  bool CanThrow() const OVERRIDE { return NeedsTypeCheck(); }
5198
5199  bool CanDoImplicitNullCheckOn(HInstruction* obj ATTRIBUTE_UNUSED) const OVERRIDE {
5200    // TODO: Same as for ArrayGet.
5201    return false;
5202  }
5203
5204  void ClearNeedsTypeCheck() {
5205    SetPackedFlag<kFlagNeedsTypeCheck>(false);
5206  }
5207
5208  void ClearValueCanBeNull() {
5209    SetPackedFlag<kFlagValueCanBeNull>(false);
5210  }
5211
5212  void SetStaticTypeOfArrayIsObjectArray() {
5213    SetPackedFlag<kFlagStaticTypeOfArrayIsObjectArray>(true);
5214  }
5215
5216  bool GetValueCanBeNull() const { return GetPackedFlag<kFlagValueCanBeNull>(); }
5217  bool NeedsTypeCheck() const { return GetPackedFlag<kFlagNeedsTypeCheck>(); }
5218  bool StaticTypeOfArrayIsObjectArray() const {
5219    return GetPackedFlag<kFlagStaticTypeOfArrayIsObjectArray>();
5220  }
5221
5222  HInstruction* GetArray() const { return InputAt(0); }
5223  HInstruction* GetIndex() const { return InputAt(1); }
5224  HInstruction* GetValue() const { return InputAt(2); }
5225
5226  Primitive::Type GetComponentType() const {
5227    // The Dex format does not type floating point index operations. Since the
5228    // `expected_component_type_` is set during building and can therefore not
5229    // be correct, we also check what is the value type. If it is a floating
5230    // point type, we must use that type.
5231    Primitive::Type value_type = GetValue()->GetType();
5232    return ((value_type == Primitive::kPrimFloat) || (value_type == Primitive::kPrimDouble))
5233        ? value_type
5234        : GetRawExpectedComponentType();
5235  }
5236
5237  Primitive::Type GetRawExpectedComponentType() const {
5238    return GetPackedField<ExpectedComponentTypeField>();
5239  }
5240
5241  void ComputeSideEffects() {
5242    Primitive::Type type = GetComponentType();
5243    SetSideEffects(SideEffects::ArrayWriteOfType(type).Union(
5244        SideEffectsForArchRuntimeCalls(type)));
5245  }
5246
5247  static SideEffects SideEffectsForArchRuntimeCalls(Primitive::Type value_type) {
5248    return (value_type == Primitive::kPrimNot) ? SideEffects::CanTriggerGC() : SideEffects::None();
5249  }
5250
5251  DECLARE_INSTRUCTION(ArraySet);
5252
5253 private:
5254  static constexpr size_t kFieldExpectedComponentType = kNumberOfGenericPackedBits;
5255  static constexpr size_t kFieldExpectedComponentTypeSize =
5256      MinimumBitsToStore(static_cast<size_t>(Primitive::kPrimLast));
5257  static constexpr size_t kFlagNeedsTypeCheck =
5258      kFieldExpectedComponentType + kFieldExpectedComponentTypeSize;
5259  static constexpr size_t kFlagValueCanBeNull = kFlagNeedsTypeCheck + 1;
5260  // Cached information for the reference_type_info_ so that codegen
5261  // does not need to inspect the static type.
5262  static constexpr size_t kFlagStaticTypeOfArrayIsObjectArray = kFlagValueCanBeNull + 1;
5263  static constexpr size_t kNumberOfArraySetPackedBits =
5264      kFlagStaticTypeOfArrayIsObjectArray + 1;
5265  static_assert(kNumberOfArraySetPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields.");
5266  using ExpectedComponentTypeField =
5267      BitField<Primitive::Type, kFieldExpectedComponentType, kFieldExpectedComponentTypeSize>;
5268
5269  DISALLOW_COPY_AND_ASSIGN(HArraySet);
5270};
5271
5272class HArrayLength FINAL : public HExpression<1> {
5273 public:
5274  HArrayLength(HInstruction* array, uint32_t dex_pc, bool is_string_length = false)
5275      : HExpression(Primitive::kPrimInt, SideEffects::None(), dex_pc) {
5276    SetPackedFlag<kFlagIsStringLength>(is_string_length);
5277    // Note that arrays do not change length, so the instruction does not
5278    // depend on any write.
5279    SetRawInputAt(0, array);
5280  }
5281
5282  bool CanBeMoved() const OVERRIDE { return true; }
5283  bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
5284    return true;
5285  }
5286  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
5287    return obj == InputAt(0);
5288  }
5289
5290  bool IsStringLength() const { return GetPackedFlag<kFlagIsStringLength>(); }
5291
5292  DECLARE_INSTRUCTION(ArrayLength);
5293
5294 private:
5295  // We treat a String as an array, creating the HArrayLength from String.length()
5296  // or String.isEmpty() intrinsic in the instruction simplifier. We can always
5297  // determine whether a particular HArrayLength is actually a String.length() by
5298  // looking at the type of the input but that requires holding the mutator lock, so
5299  // we prefer to use a flag, so that code generators don't need to do the locking.
5300  static constexpr size_t kFlagIsStringLength = kNumberOfExpressionPackedBits;
5301  static constexpr size_t kNumberOfArrayLengthPackedBits = kFlagIsStringLength + 1;
5302  static_assert(kNumberOfArrayLengthPackedBits <= HInstruction::kMaxNumberOfPackedBits,
5303                "Too many packed fields.");
5304
5305  DISALLOW_COPY_AND_ASSIGN(HArrayLength);
5306};
5307
5308class HBoundsCheck FINAL : public HExpression<2> {
5309 public:
5310  // `HBoundsCheck` can trigger GC, as it may call the `IndexOutOfBoundsException`
5311  // constructor.
5312  HBoundsCheck(HInstruction* index,
5313               HInstruction* length,
5314               uint32_t dex_pc,
5315               uint32_t string_char_at_method_index = DexFile::kDexNoIndex)
5316      : HExpression(index->GetType(), SideEffects::CanTriggerGC(), dex_pc),
5317        string_char_at_method_index_(string_char_at_method_index) {
5318    DCHECK_EQ(Primitive::kPrimInt, Primitive::PrimitiveKind(index->GetType()));
5319    SetRawInputAt(0, index);
5320    SetRawInputAt(1, length);
5321  }
5322
5323  bool CanBeMoved() const OVERRIDE { return true; }
5324  bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
5325    return true;
5326  }
5327
5328  bool NeedsEnvironment() const OVERRIDE { return true; }
5329
5330  bool CanThrow() const OVERRIDE { return true; }
5331
5332  bool IsStringCharAt() const { return GetStringCharAtMethodIndex() != DexFile::kDexNoIndex; }
5333  uint32_t GetStringCharAtMethodIndex() const { return string_char_at_method_index_; }
5334
5335  HInstruction* GetIndex() const { return InputAt(0); }
5336
5337  DECLARE_INSTRUCTION(BoundsCheck);
5338
5339 private:
5340  // We treat a String as an array, creating the HBoundsCheck from String.charAt()
5341  // intrinsic in the instruction simplifier. We want to include the String.charAt()
5342  // in the stack trace if we actually throw the StringIndexOutOfBoundsException,
5343  // so we need to create an HEnvironment which will be translated to an InlineInfo
5344  // indicating the extra stack frame. Since we add this HEnvironment quite late,
5345  // in the PrepareForRegisterAllocation pass, we need to remember the method index
5346  // from the invoke as we don't want to look again at the dex bytecode.
5347  uint32_t string_char_at_method_index_;  // DexFile::kDexNoIndex if regular array.
5348
5349  DISALLOW_COPY_AND_ASSIGN(HBoundsCheck);
5350};
5351
5352class HSuspendCheck FINAL : public HTemplateInstruction<0> {
5353 public:
5354  explicit HSuspendCheck(uint32_t dex_pc = kNoDexPc)
5355      : HTemplateInstruction(SideEffects::CanTriggerGC(), dex_pc), slow_path_(nullptr) {}
5356
5357  bool NeedsEnvironment() const OVERRIDE {
5358    return true;
5359  }
5360
5361  void SetSlowPath(SlowPathCode* slow_path) { slow_path_ = slow_path; }
5362  SlowPathCode* GetSlowPath() const { return slow_path_; }
5363
5364  DECLARE_INSTRUCTION(SuspendCheck);
5365
5366 private:
5367  // Only used for code generation, in order to share the same slow path between back edges
5368  // of a same loop.
5369  SlowPathCode* slow_path_;
5370
5371  DISALLOW_COPY_AND_ASSIGN(HSuspendCheck);
5372};
5373
5374// Pseudo-instruction which provides the native debugger with mapping information.
5375// It ensures that we can generate line number and local variables at this point.
5376class HNativeDebugInfo : public HTemplateInstruction<0> {
5377 public:
5378  explicit HNativeDebugInfo(uint32_t dex_pc)
5379      : HTemplateInstruction<0>(SideEffects::None(), dex_pc) {}
5380
5381  bool NeedsEnvironment() const OVERRIDE {
5382    return true;
5383  }
5384
5385  DECLARE_INSTRUCTION(NativeDebugInfo);
5386
5387 private:
5388  DISALLOW_COPY_AND_ASSIGN(HNativeDebugInfo);
5389};
5390
5391/**
5392 * Instruction to load a Class object.
5393 */
5394class HLoadClass FINAL : public HInstruction {
5395 public:
5396  // Determines how to load the Class.
5397  enum class LoadKind {
5398    // Use the Class* from the method's own ArtMethod*.
5399    kReferrersClass,
5400
5401    // Use boot image Class* address that will be known at link time.
5402    // Used for boot image classes referenced by boot image code in non-PIC mode.
5403    kBootImageLinkTimeAddress,
5404
5405    // Use PC-relative boot image Class* address that will be known at link time.
5406    // Used for boot image classes referenced by boot image code in PIC mode.
5407    kBootImageLinkTimePcRelative,
5408
5409    // Use a known boot image Class* address, embedded in the code by the codegen.
5410    // Used for boot image classes referenced by apps in AOT- and JIT-compiled code.
5411    // Note: codegen needs to emit a linker patch if indicated by compiler options'
5412    // GetIncludePatchInformation().
5413    kBootImageAddress,
5414
5415    // Load from the resolved types array at an absolute address.
5416    // Used for classes outside the boot image referenced by JIT-compiled code.
5417    kDexCacheAddress,
5418
5419    // Load from resolved types array in the dex cache using a PC-relative load.
5420    // Used for classes outside boot image when we know that we can access
5421    // the dex cache arrays using a PC-relative load.
5422    kDexCachePcRelative,
5423
5424    // Load from resolved types array accessed through the class loaded from
5425    // the compiled method's own ArtMethod*. This is the default access type when
5426    // all other types are unavailable.
5427    kDexCacheViaMethod,
5428
5429    kLast = kDexCacheViaMethod
5430  };
5431
5432  HLoadClass(HCurrentMethod* current_method,
5433             uint16_t type_index,
5434             const DexFile& dex_file,
5435             bool is_referrers_class,
5436             uint32_t dex_pc,
5437             bool needs_access_check,
5438             bool is_in_dex_cache,
5439             bool is_in_boot_image)
5440      : HInstruction(SideEffectsForArchRuntimeCalls(), dex_pc),
5441        special_input_(HUserRecord<HInstruction*>(current_method)),
5442        type_index_(type_index),
5443        dex_file_(dex_file),
5444        loaded_class_rti_(ReferenceTypeInfo::CreateInvalid()) {
5445    // Referrers class should not need access check. We never inline unverified
5446    // methods so we can't possibly end up in this situation.
5447    DCHECK(!is_referrers_class || !needs_access_check);
5448
5449    SetPackedField<LoadKindField>(
5450        is_referrers_class ? LoadKind::kReferrersClass : LoadKind::kDexCacheViaMethod);
5451    SetPackedFlag<kFlagNeedsAccessCheck>(needs_access_check);
5452    SetPackedFlag<kFlagIsInDexCache>(is_in_dex_cache);
5453    SetPackedFlag<kFlagIsInBootImage>(is_in_boot_image);
5454    SetPackedFlag<kFlagGenerateClInitCheck>(false);
5455  }
5456
5457  void SetLoadKindWithAddress(LoadKind load_kind, uint64_t address) {
5458    DCHECK(HasAddress(load_kind));
5459    load_data_.address = address;
5460    SetLoadKindInternal(load_kind);
5461  }
5462
5463  void SetLoadKindWithTypeReference(LoadKind load_kind,
5464                                    const DexFile& dex_file,
5465                                    uint32_t type_index) {
5466    DCHECK(HasTypeReference(load_kind));
5467    DCHECK(IsSameDexFile(dex_file_, dex_file));
5468    DCHECK_EQ(type_index_, type_index);
5469    SetLoadKindInternal(load_kind);
5470  }
5471
5472  void SetLoadKindWithDexCacheReference(LoadKind load_kind,
5473                                        const DexFile& dex_file,
5474                                        uint32_t element_index) {
5475    DCHECK(HasDexCacheReference(load_kind));
5476    DCHECK(IsSameDexFile(dex_file_, dex_file));
5477    load_data_.dex_cache_element_index = element_index;
5478    SetLoadKindInternal(load_kind);
5479  }
5480
5481  LoadKind GetLoadKind() const {
5482    return GetPackedField<LoadKindField>();
5483  }
5484
5485  bool CanBeMoved() const OVERRIDE { return true; }
5486
5487  bool InstructionDataEquals(const HInstruction* other) const;
5488
5489  size_t ComputeHashCode() const OVERRIDE { return type_index_; }
5490
5491  bool CanBeNull() const OVERRIDE { return false; }
5492
5493  bool NeedsEnvironment() const OVERRIDE {
5494    return CanCallRuntime();
5495  }
5496
5497  void SetMustGenerateClinitCheck(bool generate_clinit_check) {
5498    // The entrypoint the code generator is going to call does not do
5499    // clinit of the class.
5500    DCHECK(!NeedsAccessCheck());
5501    SetPackedFlag<kFlagGenerateClInitCheck>(generate_clinit_check);
5502  }
5503
5504  bool CanCallRuntime() const {
5505    return MustGenerateClinitCheck() ||
5506           (!IsReferrersClass() && !IsInDexCache()) ||
5507           NeedsAccessCheck();
5508  }
5509
5510
5511  bool CanThrow() const OVERRIDE {
5512    return CanCallRuntime();
5513  }
5514
5515  ReferenceTypeInfo GetLoadedClassRTI() {
5516    return loaded_class_rti_;
5517  }
5518
5519  void SetLoadedClassRTI(ReferenceTypeInfo rti) {
5520    // Make sure we only set exact types (the loaded class should never be merged).
5521    DCHECK(rti.IsExact());
5522    loaded_class_rti_ = rti;
5523  }
5524
5525  uint32_t GetTypeIndex() const { return type_index_; }
5526  const DexFile& GetDexFile() const { return dex_file_; }
5527
5528  uint32_t GetDexCacheElementOffset() const;
5529
5530  uint64_t GetAddress() const {
5531    DCHECK(HasAddress(GetLoadKind()));
5532    return load_data_.address;
5533  }
5534
5535  bool NeedsDexCacheOfDeclaringClass() const OVERRIDE { return !IsReferrersClass(); }
5536
5537  static SideEffects SideEffectsForArchRuntimeCalls() {
5538    return SideEffects::CanTriggerGC();
5539  }
5540
5541  bool IsReferrersClass() const { return GetLoadKind() == LoadKind::kReferrersClass; }
5542  bool NeedsAccessCheck() const { return GetPackedFlag<kFlagNeedsAccessCheck>(); }
5543  bool IsInDexCache() const { return GetPackedFlag<kFlagIsInDexCache>(); }
5544  bool IsInBootImage() const { return GetPackedFlag<kFlagIsInBootImage>(); }
5545  bool MustGenerateClinitCheck() const { return GetPackedFlag<kFlagGenerateClInitCheck>(); }
5546
5547  void MarkInDexCache() {
5548    SetPackedFlag<kFlagIsInDexCache>(true);
5549    DCHECK(!NeedsEnvironment());
5550    RemoveEnvironment();
5551    SetSideEffects(SideEffects::None());
5552  }
5553
5554  void MarkInBootImage() {
5555    SetPackedFlag<kFlagIsInBootImage>(true);
5556  }
5557
5558  void AddSpecialInput(HInstruction* special_input);
5559
5560  using HInstruction::GetInputRecords;  // Keep the const version visible.
5561  ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() OVERRIDE FINAL {
5562    return ArrayRef<HUserRecord<HInstruction*>>(
5563        &special_input_, (special_input_.GetInstruction() != nullptr) ? 1u : 0u);
5564  }
5565
5566  Primitive::Type GetType() const OVERRIDE {
5567    return Primitive::kPrimNot;
5568  }
5569
5570  DECLARE_INSTRUCTION(LoadClass);
5571
5572 private:
5573  static constexpr size_t kFlagNeedsAccessCheck    = kNumberOfGenericPackedBits;
5574  static constexpr size_t kFlagIsInDexCache        = kFlagNeedsAccessCheck + 1;
5575  static constexpr size_t kFlagIsInBootImage       = kFlagIsInDexCache + 1;
5576  // Whether this instruction must generate the initialization check.
5577  // Used for code generation.
5578  static constexpr size_t kFlagGenerateClInitCheck = kFlagIsInBootImage + 1;
5579  static constexpr size_t kFieldLoadKind           = kFlagGenerateClInitCheck + 1;
5580  static constexpr size_t kFieldLoadKindSize =
5581      MinimumBitsToStore(static_cast<size_t>(LoadKind::kLast));
5582  static constexpr size_t kNumberOfLoadClassPackedBits = kFieldLoadKind + kFieldLoadKindSize;
5583  static_assert(kNumberOfLoadClassPackedBits < kMaxNumberOfPackedBits, "Too many packed fields.");
5584  using LoadKindField = BitField<LoadKind, kFieldLoadKind, kFieldLoadKindSize>;
5585
5586  static bool HasTypeReference(LoadKind load_kind) {
5587    return load_kind == LoadKind::kBootImageLinkTimeAddress ||
5588        load_kind == LoadKind::kBootImageLinkTimePcRelative ||
5589        load_kind == LoadKind::kDexCacheViaMethod ||
5590        load_kind == LoadKind::kReferrersClass;
5591  }
5592
5593  static bool HasAddress(LoadKind load_kind) {
5594    return load_kind == LoadKind::kBootImageAddress || load_kind == LoadKind::kDexCacheAddress;
5595  }
5596
5597  static bool HasDexCacheReference(LoadKind load_kind) {
5598    return load_kind == LoadKind::kDexCachePcRelative;
5599  }
5600
5601  void SetLoadKindInternal(LoadKind load_kind);
5602
5603  // The special input is the HCurrentMethod for kDexCacheViaMethod or kReferrersClass.
5604  // For other load kinds it's empty or possibly some architecture-specific instruction
5605  // for PC-relative loads, i.e. kDexCachePcRelative or kBootImageLinkTimePcRelative.
5606  HUserRecord<HInstruction*> special_input_;
5607
5608  const uint16_t type_index_;
5609  const DexFile& dex_file_;
5610
5611  union {
5612    uint32_t dex_cache_element_index;   // Only for dex cache reference.
5613    uint64_t address;  // Up to 64-bit, needed for kDexCacheAddress on 64-bit targets.
5614  } load_data_;
5615
5616  ReferenceTypeInfo loaded_class_rti_;
5617
5618  DISALLOW_COPY_AND_ASSIGN(HLoadClass);
5619};
5620std::ostream& operator<<(std::ostream& os, HLoadClass::LoadKind rhs);
5621
5622// Note: defined outside class to see operator<<(., HLoadClass::LoadKind).
5623inline uint32_t HLoadClass::GetDexCacheElementOffset() const {
5624  DCHECK(HasDexCacheReference(GetLoadKind())) << GetLoadKind();
5625  return load_data_.dex_cache_element_index;
5626}
5627
5628// Note: defined outside class to see operator<<(., HLoadClass::LoadKind).
5629inline void HLoadClass::AddSpecialInput(HInstruction* special_input) {
5630  // The special input is used for PC-relative loads on some architectures,
5631  // including literal pool loads, which are PC-relative too.
5632  DCHECK(GetLoadKind() == LoadKind::kBootImageLinkTimePcRelative ||
5633         GetLoadKind() == LoadKind::kDexCachePcRelative ||
5634         GetLoadKind() == LoadKind::kBootImageLinkTimeAddress ||
5635         GetLoadKind() == LoadKind::kBootImageAddress) << GetLoadKind();
5636  DCHECK(special_input_.GetInstruction() == nullptr);
5637  special_input_ = HUserRecord<HInstruction*>(special_input);
5638  special_input->AddUseAt(this, 0);
5639}
5640
5641class HLoadString FINAL : public HInstruction {
5642 public:
5643  // Determines how to load the String.
5644  enum class LoadKind {
5645    // Use boot image String* address that will be known at link time.
5646    // Used for boot image strings referenced by boot image code in non-PIC mode.
5647    kBootImageLinkTimeAddress,
5648
5649    // Use PC-relative boot image String* address that will be known at link time.
5650    // Used for boot image strings referenced by boot image code in PIC mode.
5651    kBootImageLinkTimePcRelative,
5652
5653    // Use a known boot image String* address, embedded in the code by the codegen.
5654    // Used for boot image strings referenced by apps in AOT- and JIT-compiled code.
5655    // Note: codegen needs to emit a linker patch if indicated by compiler options'
5656    // GetIncludePatchInformation().
5657    kBootImageAddress,
5658
5659    // Load from the resolved strings array at an absolute address.
5660    // Used for strings outside the boot image referenced by JIT-compiled code.
5661    kDexCacheAddress,
5662
5663    // Load from an entry in the .bss section using a PC-relative load.
5664    // Used for strings outside boot image when .bss is accessible with a PC-relative load.
5665    kBssEntry,
5666
5667    // Load from resolved strings array accessed through the class loaded from
5668    // the compiled method's own ArtMethod*. This is the default access type when
5669    // all other types are unavailable.
5670    kDexCacheViaMethod,
5671
5672    kLast = kDexCacheViaMethod
5673  };
5674
5675  HLoadString(HCurrentMethod* current_method,
5676              uint32_t string_index,
5677              const DexFile& dex_file,
5678              uint32_t dex_pc)
5679      : HInstruction(SideEffectsForArchRuntimeCalls(), dex_pc),
5680        special_input_(HUserRecord<HInstruction*>(current_method)),
5681        string_index_(string_index) {
5682    SetPackedFlag<kFlagIsInDexCache>(false);
5683    SetPackedField<LoadKindField>(LoadKind::kDexCacheViaMethod);
5684    load_data_.dex_file_ = &dex_file;
5685  }
5686
5687  void SetLoadKindWithAddress(LoadKind load_kind, uint64_t address) {
5688    DCHECK(HasAddress(load_kind));
5689    load_data_.address = address;
5690    SetLoadKindInternal(load_kind);
5691  }
5692
5693  void SetLoadKindWithStringReference(LoadKind load_kind,
5694                                      const DexFile& dex_file,
5695                                      uint32_t string_index) {
5696    DCHECK(HasStringReference(load_kind));
5697    load_data_.dex_file_ = &dex_file;
5698    string_index_ = string_index;
5699    SetLoadKindInternal(load_kind);
5700  }
5701
5702  LoadKind GetLoadKind() const {
5703    return GetPackedField<LoadKindField>();
5704  }
5705
5706  const DexFile& GetDexFile() const;
5707
5708  uint32_t GetStringIndex() const {
5709    DCHECK(HasStringReference(GetLoadKind()) || /* For slow paths. */ !IsInDexCache());
5710    return string_index_;
5711  }
5712
5713  uint64_t GetAddress() const {
5714    DCHECK(HasAddress(GetLoadKind()));
5715    return load_data_.address;
5716  }
5717
5718  bool CanBeMoved() const OVERRIDE { return true; }
5719
5720  bool InstructionDataEquals(const HInstruction* other) const OVERRIDE;
5721
5722  size_t ComputeHashCode() const OVERRIDE { return string_index_; }
5723
5724  // Will call the runtime if we need to load the string through
5725  // the dex cache and the string is not guaranteed to be there yet.
5726  bool NeedsEnvironment() const OVERRIDE {
5727    LoadKind load_kind = GetLoadKind();
5728    if (load_kind == LoadKind::kBootImageLinkTimeAddress ||
5729        load_kind == LoadKind::kBootImageLinkTimePcRelative ||
5730        load_kind == LoadKind::kBootImageAddress) {
5731      return false;
5732    }
5733    return !IsInDexCache();
5734  }
5735
5736  bool NeedsDexCacheOfDeclaringClass() const OVERRIDE {
5737    return GetLoadKind() == LoadKind::kDexCacheViaMethod;
5738  }
5739
5740  bool CanBeNull() const OVERRIDE { return false; }
5741  bool CanThrow() const OVERRIDE { return NeedsEnvironment(); }
5742
5743  static SideEffects SideEffectsForArchRuntimeCalls() {
5744    return SideEffects::CanTriggerGC();
5745  }
5746
5747  bool IsInDexCache() const { return GetPackedFlag<kFlagIsInDexCache>(); }
5748
5749  void MarkInDexCache() {
5750    SetPackedFlag<kFlagIsInDexCache>(true);
5751    DCHECK(!NeedsEnvironment());
5752    RemoveEnvironment();
5753    SetSideEffects(SideEffects::None());
5754  }
5755
5756  void AddSpecialInput(HInstruction* special_input);
5757
5758  using HInstruction::GetInputRecords;  // Keep the const version visible.
5759  ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() OVERRIDE FINAL {
5760    return ArrayRef<HUserRecord<HInstruction*>>(
5761        &special_input_, (special_input_.GetInstruction() != nullptr) ? 1u : 0u);
5762  }
5763
5764  Primitive::Type GetType() const OVERRIDE {
5765    return Primitive::kPrimNot;
5766  }
5767
5768  DECLARE_INSTRUCTION(LoadString);
5769
5770 private:
5771  static constexpr size_t kFlagIsInDexCache = kNumberOfGenericPackedBits;
5772  static constexpr size_t kFieldLoadKind = kFlagIsInDexCache + 1;
5773  static constexpr size_t kFieldLoadKindSize =
5774      MinimumBitsToStore(static_cast<size_t>(LoadKind::kLast));
5775  static constexpr size_t kNumberOfLoadStringPackedBits = kFieldLoadKind + kFieldLoadKindSize;
5776  static_assert(kNumberOfLoadStringPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields.");
5777  using LoadKindField = BitField<LoadKind, kFieldLoadKind, kFieldLoadKindSize>;
5778
5779  static bool HasStringReference(LoadKind load_kind) {
5780    return load_kind == LoadKind::kBootImageLinkTimeAddress ||
5781        load_kind == LoadKind::kBootImageLinkTimePcRelative ||
5782        load_kind == LoadKind::kBssEntry ||
5783        load_kind == LoadKind::kDexCacheViaMethod;
5784  }
5785
5786  static bool HasAddress(LoadKind load_kind) {
5787    return load_kind == LoadKind::kBootImageAddress || load_kind == LoadKind::kDexCacheAddress;
5788  }
5789
5790  void SetLoadKindInternal(LoadKind load_kind);
5791
5792  // The special input is the HCurrentMethod for kDexCacheViaMethod.
5793  // For other load kinds it's empty or possibly some architecture-specific instruction
5794  // for PC-relative loads, i.e. kDexCachePcRelative or kBootImageLinkTimePcRelative.
5795  HUserRecord<HInstruction*> special_input_;
5796
5797  // String index serves also as the hash code and it's also needed for slow-paths,
5798  // so it must not be overwritten with other load data.
5799  uint32_t string_index_;
5800
5801  union {
5802    const DexFile* dex_file_;            // For string reference.
5803    uint64_t address;  // Up to 64-bit, needed for kDexCacheAddress on 64-bit targets.
5804  } load_data_;
5805
5806  DISALLOW_COPY_AND_ASSIGN(HLoadString);
5807};
5808std::ostream& operator<<(std::ostream& os, HLoadString::LoadKind rhs);
5809
5810// Note: defined outside class to see operator<<(., HLoadString::LoadKind).
5811inline const DexFile& HLoadString::GetDexFile() const {
5812  DCHECK(HasStringReference(GetLoadKind())) << GetLoadKind();
5813  return *load_data_.dex_file_;
5814}
5815
5816// Note: defined outside class to see operator<<(., HLoadString::LoadKind).
5817inline void HLoadString::AddSpecialInput(HInstruction* special_input) {
5818  // The special input is used for PC-relative loads on some architectures,
5819  // including literal pool loads, which are PC-relative too.
5820  DCHECK(GetLoadKind() == LoadKind::kBootImageLinkTimePcRelative ||
5821         GetLoadKind() == LoadKind::kBssEntry ||
5822         GetLoadKind() == LoadKind::kBootImageLinkTimeAddress ||
5823         GetLoadKind() == LoadKind::kBootImageAddress) << GetLoadKind();
5824  // HLoadString::GetInputRecords() returns an empty array at this point,
5825  // so use the GetInputRecords() from the base class to set the input record.
5826  DCHECK(special_input_.GetInstruction() == nullptr);
5827  special_input_ = HUserRecord<HInstruction*>(special_input);
5828  special_input->AddUseAt(this, 0);
5829}
5830
5831/**
5832 * Performs an initialization check on its Class object input.
5833 */
5834class HClinitCheck FINAL : public HExpression<1> {
5835 public:
5836  HClinitCheck(HLoadClass* constant, uint32_t dex_pc)
5837      : HExpression(
5838            Primitive::kPrimNot,
5839            SideEffects::AllChanges(),  // Assume write/read on all fields/arrays.
5840            dex_pc) {
5841    SetRawInputAt(0, constant);
5842  }
5843
5844  bool CanBeMoved() const OVERRIDE { return true; }
5845  bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
5846    return true;
5847  }
5848
5849  bool NeedsEnvironment() const OVERRIDE {
5850    // May call runtime to initialize the class.
5851    return true;
5852  }
5853
5854  bool CanThrow() const OVERRIDE { return true; }
5855
5856  HLoadClass* GetLoadClass() const { return InputAt(0)->AsLoadClass(); }
5857
5858  DECLARE_INSTRUCTION(ClinitCheck);
5859
5860 private:
5861  DISALLOW_COPY_AND_ASSIGN(HClinitCheck);
5862};
5863
5864class HStaticFieldGet FINAL : public HExpression<1> {
5865 public:
5866  HStaticFieldGet(HInstruction* cls,
5867                  Primitive::Type field_type,
5868                  MemberOffset field_offset,
5869                  bool is_volatile,
5870                  uint32_t field_idx,
5871                  uint16_t declaring_class_def_index,
5872                  const DexFile& dex_file,
5873                  Handle<mirror::DexCache> dex_cache,
5874                  uint32_t dex_pc)
5875      : HExpression(field_type, SideEffects::FieldReadOfType(field_type, is_volatile), dex_pc),
5876        field_info_(field_offset,
5877                    field_type,
5878                    is_volatile,
5879                    field_idx,
5880                    declaring_class_def_index,
5881                    dex_file,
5882                    dex_cache) {
5883    SetRawInputAt(0, cls);
5884  }
5885
5886
5887  bool CanBeMoved() const OVERRIDE { return !IsVolatile(); }
5888
5889  bool InstructionDataEquals(const HInstruction* other) const OVERRIDE {
5890    const HStaticFieldGet* other_get = other->AsStaticFieldGet();
5891    return GetFieldOffset().SizeValue() == other_get->GetFieldOffset().SizeValue();
5892  }
5893
5894  size_t ComputeHashCode() const OVERRIDE {
5895    return (HInstruction::ComputeHashCode() << 7) | GetFieldOffset().SizeValue();
5896  }
5897
5898  const FieldInfo& GetFieldInfo() const { return field_info_; }
5899  MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
5900  Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); }
5901  bool IsVolatile() const { return field_info_.IsVolatile(); }
5902
5903  DECLARE_INSTRUCTION(StaticFieldGet);
5904
5905 private:
5906  const FieldInfo field_info_;
5907
5908  DISALLOW_COPY_AND_ASSIGN(HStaticFieldGet);
5909};
5910
5911class HStaticFieldSet FINAL : public HTemplateInstruction<2> {
5912 public:
5913  HStaticFieldSet(HInstruction* cls,
5914                  HInstruction* value,
5915                  Primitive::Type field_type,
5916                  MemberOffset field_offset,
5917                  bool is_volatile,
5918                  uint32_t field_idx,
5919                  uint16_t declaring_class_def_index,
5920                  const DexFile& dex_file,
5921                  Handle<mirror::DexCache> dex_cache,
5922                  uint32_t dex_pc)
5923      : HTemplateInstruction(SideEffects::FieldWriteOfType(field_type, is_volatile), dex_pc),
5924        field_info_(field_offset,
5925                    field_type,
5926                    is_volatile,
5927                    field_idx,
5928                    declaring_class_def_index,
5929                    dex_file,
5930                    dex_cache) {
5931    SetPackedFlag<kFlagValueCanBeNull>(true);
5932    SetRawInputAt(0, cls);
5933    SetRawInputAt(1, value);
5934  }
5935
5936  const FieldInfo& GetFieldInfo() const { return field_info_; }
5937  MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
5938  Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); }
5939  bool IsVolatile() const { return field_info_.IsVolatile(); }
5940
5941  HInstruction* GetValue() const { return InputAt(1); }
5942  bool GetValueCanBeNull() const { return GetPackedFlag<kFlagValueCanBeNull>(); }
5943  void ClearValueCanBeNull() { SetPackedFlag<kFlagValueCanBeNull>(false); }
5944
5945  DECLARE_INSTRUCTION(StaticFieldSet);
5946
5947 private:
5948  static constexpr size_t kFlagValueCanBeNull = kNumberOfGenericPackedBits;
5949  static constexpr size_t kNumberOfStaticFieldSetPackedBits = kFlagValueCanBeNull + 1;
5950  static_assert(kNumberOfStaticFieldSetPackedBits <= kMaxNumberOfPackedBits,
5951                "Too many packed fields.");
5952
5953  const FieldInfo field_info_;
5954
5955  DISALLOW_COPY_AND_ASSIGN(HStaticFieldSet);
5956};
5957
5958class HUnresolvedInstanceFieldGet FINAL : public HExpression<1> {
5959 public:
5960  HUnresolvedInstanceFieldGet(HInstruction* obj,
5961                              Primitive::Type field_type,
5962                              uint32_t field_index,
5963                              uint32_t dex_pc)
5964      : HExpression(field_type, SideEffects::AllExceptGCDependency(), dex_pc),
5965        field_index_(field_index) {
5966    SetRawInputAt(0, obj);
5967  }
5968
5969  bool NeedsEnvironment() const OVERRIDE { return true; }
5970  bool CanThrow() const OVERRIDE { return true; }
5971
5972  Primitive::Type GetFieldType() const { return GetType(); }
5973  uint32_t GetFieldIndex() const { return field_index_; }
5974
5975  DECLARE_INSTRUCTION(UnresolvedInstanceFieldGet);
5976
5977 private:
5978  const uint32_t field_index_;
5979
5980  DISALLOW_COPY_AND_ASSIGN(HUnresolvedInstanceFieldGet);
5981};
5982
5983class HUnresolvedInstanceFieldSet FINAL : public HTemplateInstruction<2> {
5984 public:
5985  HUnresolvedInstanceFieldSet(HInstruction* obj,
5986                              HInstruction* value,
5987                              Primitive::Type field_type,
5988                              uint32_t field_index,
5989                              uint32_t dex_pc)
5990      : HTemplateInstruction(SideEffects::AllExceptGCDependency(), dex_pc),
5991        field_index_(field_index) {
5992    SetPackedField<FieldTypeField>(field_type);
5993    DCHECK_EQ(Primitive::PrimitiveKind(field_type), Primitive::PrimitiveKind(value->GetType()));
5994    SetRawInputAt(0, obj);
5995    SetRawInputAt(1, value);
5996  }
5997
5998  bool NeedsEnvironment() const OVERRIDE { return true; }
5999  bool CanThrow() const OVERRIDE { return true; }
6000
6001  Primitive::Type GetFieldType() const { return GetPackedField<FieldTypeField>(); }
6002  uint32_t GetFieldIndex() const { return field_index_; }
6003
6004  DECLARE_INSTRUCTION(UnresolvedInstanceFieldSet);
6005
6006 private:
6007  static constexpr size_t kFieldFieldType = HInstruction::kNumberOfGenericPackedBits;
6008  static constexpr size_t kFieldFieldTypeSize =
6009      MinimumBitsToStore(static_cast<size_t>(Primitive::kPrimLast));
6010  static constexpr size_t kNumberOfUnresolvedStaticFieldSetPackedBits =
6011      kFieldFieldType + kFieldFieldTypeSize;
6012  static_assert(kNumberOfUnresolvedStaticFieldSetPackedBits <= HInstruction::kMaxNumberOfPackedBits,
6013                "Too many packed fields.");
6014  using FieldTypeField = BitField<Primitive::Type, kFieldFieldType, kFieldFieldTypeSize>;
6015
6016  const uint32_t field_index_;
6017
6018  DISALLOW_COPY_AND_ASSIGN(HUnresolvedInstanceFieldSet);
6019};
6020
6021class HUnresolvedStaticFieldGet FINAL : public HExpression<0> {
6022 public:
6023  HUnresolvedStaticFieldGet(Primitive::Type field_type,
6024                            uint32_t field_index,
6025                            uint32_t dex_pc)
6026      : HExpression(field_type, SideEffects::AllExceptGCDependency(), dex_pc),
6027        field_index_(field_index) {
6028  }
6029
6030  bool NeedsEnvironment() const OVERRIDE { return true; }
6031  bool CanThrow() const OVERRIDE { return true; }
6032
6033  Primitive::Type GetFieldType() const { return GetType(); }
6034  uint32_t GetFieldIndex() const { return field_index_; }
6035
6036  DECLARE_INSTRUCTION(UnresolvedStaticFieldGet);
6037
6038 private:
6039  const uint32_t field_index_;
6040
6041  DISALLOW_COPY_AND_ASSIGN(HUnresolvedStaticFieldGet);
6042};
6043
6044class HUnresolvedStaticFieldSet FINAL : public HTemplateInstruction<1> {
6045 public:
6046  HUnresolvedStaticFieldSet(HInstruction* value,
6047                            Primitive::Type field_type,
6048                            uint32_t field_index,
6049                            uint32_t dex_pc)
6050      : HTemplateInstruction(SideEffects::AllExceptGCDependency(), dex_pc),
6051        field_index_(field_index) {
6052    SetPackedField<FieldTypeField>(field_type);
6053    DCHECK_EQ(Primitive::PrimitiveKind(field_type), Primitive::PrimitiveKind(value->GetType()));
6054    SetRawInputAt(0, value);
6055  }
6056
6057  bool NeedsEnvironment() const OVERRIDE { return true; }
6058  bool CanThrow() const OVERRIDE { return true; }
6059
6060  Primitive::Type GetFieldType() const { return GetPackedField<FieldTypeField>(); }
6061  uint32_t GetFieldIndex() const { return field_index_; }
6062
6063  DECLARE_INSTRUCTION(UnresolvedStaticFieldSet);
6064
6065 private:
6066  static constexpr size_t kFieldFieldType = HInstruction::kNumberOfGenericPackedBits;
6067  static constexpr size_t kFieldFieldTypeSize =
6068      MinimumBitsToStore(static_cast<size_t>(Primitive::kPrimLast));
6069  static constexpr size_t kNumberOfUnresolvedStaticFieldSetPackedBits =
6070      kFieldFieldType + kFieldFieldTypeSize;
6071  static_assert(kNumberOfUnresolvedStaticFieldSetPackedBits <= HInstruction::kMaxNumberOfPackedBits,
6072                "Too many packed fields.");
6073  using FieldTypeField = BitField<Primitive::Type, kFieldFieldType, kFieldFieldTypeSize>;
6074
6075  const uint32_t field_index_;
6076
6077  DISALLOW_COPY_AND_ASSIGN(HUnresolvedStaticFieldSet);
6078};
6079
6080// Implement the move-exception DEX instruction.
6081class HLoadException FINAL : public HExpression<0> {
6082 public:
6083  explicit HLoadException(uint32_t dex_pc = kNoDexPc)
6084      : HExpression(Primitive::kPrimNot, SideEffects::None(), dex_pc) {}
6085
6086  bool CanBeNull() const OVERRIDE { return false; }
6087
6088  DECLARE_INSTRUCTION(LoadException);
6089
6090 private:
6091  DISALLOW_COPY_AND_ASSIGN(HLoadException);
6092};
6093
6094// Implicit part of move-exception which clears thread-local exception storage.
6095// Must not be removed because the runtime expects the TLS to get cleared.
6096class HClearException FINAL : public HTemplateInstruction<0> {
6097 public:
6098  explicit HClearException(uint32_t dex_pc = kNoDexPc)
6099      : HTemplateInstruction(SideEffects::AllWrites(), dex_pc) {}
6100
6101  DECLARE_INSTRUCTION(ClearException);
6102
6103 private:
6104  DISALLOW_COPY_AND_ASSIGN(HClearException);
6105};
6106
6107class HThrow FINAL : public HTemplateInstruction<1> {
6108 public:
6109  HThrow(HInstruction* exception, uint32_t dex_pc)
6110      : HTemplateInstruction(SideEffects::CanTriggerGC(), dex_pc) {
6111    SetRawInputAt(0, exception);
6112  }
6113
6114  bool IsControlFlow() const OVERRIDE { return true; }
6115
6116  bool NeedsEnvironment() const OVERRIDE { return true; }
6117
6118  bool CanThrow() const OVERRIDE { return true; }
6119
6120
6121  DECLARE_INSTRUCTION(Throw);
6122
6123 private:
6124  DISALLOW_COPY_AND_ASSIGN(HThrow);
6125};
6126
6127/**
6128 * Implementation strategies for the code generator of a HInstanceOf
6129 * or `HCheckCast`.
6130 */
6131enum class TypeCheckKind {
6132  kUnresolvedCheck,       // Check against an unresolved type.
6133  kExactCheck,            // Can do a single class compare.
6134  kClassHierarchyCheck,   // Can just walk the super class chain.
6135  kAbstractClassCheck,    // Can just walk the super class chain, starting one up.
6136  kInterfaceCheck,        // No optimization yet when checking against an interface.
6137  kArrayObjectCheck,      // Can just check if the array is not primitive.
6138  kArrayCheck,            // No optimization yet when checking against a generic array.
6139  kLast = kArrayCheck
6140};
6141
6142std::ostream& operator<<(std::ostream& os, TypeCheckKind rhs);
6143
6144class HInstanceOf FINAL : public HExpression<2> {
6145 public:
6146  HInstanceOf(HInstruction* object,
6147              HLoadClass* constant,
6148              TypeCheckKind check_kind,
6149              uint32_t dex_pc)
6150      : HExpression(Primitive::kPrimBoolean,
6151                    SideEffectsForArchRuntimeCalls(check_kind),
6152                    dex_pc) {
6153    SetPackedField<TypeCheckKindField>(check_kind);
6154    SetPackedFlag<kFlagMustDoNullCheck>(true);
6155    SetRawInputAt(0, object);
6156    SetRawInputAt(1, constant);
6157  }
6158
6159  bool CanBeMoved() const OVERRIDE { return true; }
6160
6161  bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
6162    return true;
6163  }
6164
6165  bool NeedsEnvironment() const OVERRIDE {
6166    return CanCallRuntime(GetTypeCheckKind());
6167  }
6168
6169  // Used only in code generation.
6170  bool MustDoNullCheck() const { return GetPackedFlag<kFlagMustDoNullCheck>(); }
6171  void ClearMustDoNullCheck() { SetPackedFlag<kFlagMustDoNullCheck>(false); }
6172  TypeCheckKind GetTypeCheckKind() const { return GetPackedField<TypeCheckKindField>(); }
6173  bool IsExactCheck() const { return GetTypeCheckKind() == TypeCheckKind::kExactCheck; }
6174
6175  static bool CanCallRuntime(TypeCheckKind check_kind) {
6176    // Mips currently does runtime calls for any other checks.
6177    return check_kind != TypeCheckKind::kExactCheck;
6178  }
6179
6180  static SideEffects SideEffectsForArchRuntimeCalls(TypeCheckKind check_kind) {
6181    return CanCallRuntime(check_kind) ? SideEffects::CanTriggerGC() : SideEffects::None();
6182  }
6183
6184  DECLARE_INSTRUCTION(InstanceOf);
6185
6186 private:
6187  static constexpr size_t kFieldTypeCheckKind = kNumberOfExpressionPackedBits;
6188  static constexpr size_t kFieldTypeCheckKindSize =
6189      MinimumBitsToStore(static_cast<size_t>(TypeCheckKind::kLast));
6190  static constexpr size_t kFlagMustDoNullCheck = kFieldTypeCheckKind + kFieldTypeCheckKindSize;
6191  static constexpr size_t kNumberOfInstanceOfPackedBits = kFlagMustDoNullCheck + 1;
6192  static_assert(kNumberOfInstanceOfPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields.");
6193  using TypeCheckKindField = BitField<TypeCheckKind, kFieldTypeCheckKind, kFieldTypeCheckKindSize>;
6194
6195  DISALLOW_COPY_AND_ASSIGN(HInstanceOf);
6196};
6197
6198class HBoundType FINAL : public HExpression<1> {
6199 public:
6200  explicit HBoundType(HInstruction* input, uint32_t dex_pc = kNoDexPc)
6201      : HExpression(Primitive::kPrimNot, SideEffects::None(), dex_pc),
6202        upper_bound_(ReferenceTypeInfo::CreateInvalid()) {
6203    SetPackedFlag<kFlagUpperCanBeNull>(true);
6204    SetPackedFlag<kFlagCanBeNull>(true);
6205    DCHECK_EQ(input->GetType(), Primitive::kPrimNot);
6206    SetRawInputAt(0, input);
6207  }
6208
6209  // {Get,Set}Upper* should only be used in reference type propagation.
6210  const ReferenceTypeInfo& GetUpperBound() const { return upper_bound_; }
6211  bool GetUpperCanBeNull() const { return GetPackedFlag<kFlagUpperCanBeNull>(); }
6212  void SetUpperBound(const ReferenceTypeInfo& upper_bound, bool can_be_null);
6213
6214  void SetCanBeNull(bool can_be_null) {
6215    DCHECK(GetUpperCanBeNull() || !can_be_null);
6216    SetPackedFlag<kFlagCanBeNull>(can_be_null);
6217  }
6218
6219  bool CanBeNull() const OVERRIDE { return GetPackedFlag<kFlagCanBeNull>(); }
6220
6221  DECLARE_INSTRUCTION(BoundType);
6222
6223 private:
6224  // Represents the top constraint that can_be_null_ cannot exceed (i.e. if this
6225  // is false then CanBeNull() cannot be true).
6226  static constexpr size_t kFlagUpperCanBeNull = kNumberOfExpressionPackedBits;
6227  static constexpr size_t kFlagCanBeNull = kFlagUpperCanBeNull + 1;
6228  static constexpr size_t kNumberOfBoundTypePackedBits = kFlagCanBeNull + 1;
6229  static_assert(kNumberOfBoundTypePackedBits <= kMaxNumberOfPackedBits, "Too many packed fields.");
6230
6231  // Encodes the most upper class that this instruction can have. In other words
6232  // it is always the case that GetUpperBound().IsSupertypeOf(GetReferenceType()).
6233  // It is used to bound the type in cases like:
6234  //   if (x instanceof ClassX) {
6235  //     // uper_bound_ will be ClassX
6236  //   }
6237  ReferenceTypeInfo upper_bound_;
6238
6239  DISALLOW_COPY_AND_ASSIGN(HBoundType);
6240};
6241
6242class HCheckCast FINAL : public HTemplateInstruction<2> {
6243 public:
6244  HCheckCast(HInstruction* object,
6245             HLoadClass* constant,
6246             TypeCheckKind check_kind,
6247             uint32_t dex_pc)
6248      : HTemplateInstruction(SideEffects::CanTriggerGC(), dex_pc) {
6249    SetPackedField<TypeCheckKindField>(check_kind);
6250    SetPackedFlag<kFlagMustDoNullCheck>(true);
6251    SetRawInputAt(0, object);
6252    SetRawInputAt(1, constant);
6253  }
6254
6255  bool CanBeMoved() const OVERRIDE { return true; }
6256
6257  bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
6258    return true;
6259  }
6260
6261  bool NeedsEnvironment() const OVERRIDE {
6262    // Instruction may throw a CheckCastError.
6263    return true;
6264  }
6265
6266  bool CanThrow() const OVERRIDE { return true; }
6267
6268  bool MustDoNullCheck() const { return GetPackedFlag<kFlagMustDoNullCheck>(); }
6269  void ClearMustDoNullCheck() { SetPackedFlag<kFlagMustDoNullCheck>(false); }
6270  TypeCheckKind GetTypeCheckKind() const { return GetPackedField<TypeCheckKindField>(); }
6271  bool IsExactCheck() const { return GetTypeCheckKind() == TypeCheckKind::kExactCheck; }
6272
6273  DECLARE_INSTRUCTION(CheckCast);
6274
6275 private:
6276  static constexpr size_t kFieldTypeCheckKind = kNumberOfGenericPackedBits;
6277  static constexpr size_t kFieldTypeCheckKindSize =
6278      MinimumBitsToStore(static_cast<size_t>(TypeCheckKind::kLast));
6279  static constexpr size_t kFlagMustDoNullCheck = kFieldTypeCheckKind + kFieldTypeCheckKindSize;
6280  static constexpr size_t kNumberOfCheckCastPackedBits = kFlagMustDoNullCheck + 1;
6281  static_assert(kNumberOfCheckCastPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields.");
6282  using TypeCheckKindField = BitField<TypeCheckKind, kFieldTypeCheckKind, kFieldTypeCheckKindSize>;
6283
6284  DISALLOW_COPY_AND_ASSIGN(HCheckCast);
6285};
6286
6287/**
6288 * @brief Memory barrier types (see "The JSR-133 Cookbook for Compiler Writers").
6289 * @details We define the combined barrier types that are actually required
6290 * by the Java Memory Model, rather than using exactly the terminology from
6291 * the JSR-133 cookbook.  These should, in many cases, be replaced by acquire/release
6292 * primitives.  Note that the JSR-133 cookbook generally does not deal with
6293 * store atomicity issues, and the recipes there are not always entirely sufficient.
6294 * The current recipe is as follows:
6295 * -# Use AnyStore ~= (LoadStore | StoreStore) ~= release barrier before volatile store.
6296 * -# Use AnyAny barrier after volatile store.  (StoreLoad is as expensive.)
6297 * -# Use LoadAny barrier ~= (LoadLoad | LoadStore) ~= acquire barrier after each volatile load.
6298 * -# Use StoreStore barrier after all stores but before return from any constructor whose
6299 *    class has final fields.
6300 * -# Use NTStoreStore to order non-temporal stores with respect to all later
6301 *    store-to-memory instructions.  Only generated together with non-temporal stores.
6302 */
6303enum MemBarrierKind {
6304  kAnyStore,
6305  kLoadAny,
6306  kStoreStore,
6307  kAnyAny,
6308  kNTStoreStore,
6309  kLastBarrierKind = kNTStoreStore
6310};
6311std::ostream& operator<<(std::ostream& os, const MemBarrierKind& kind);
6312
6313class HMemoryBarrier FINAL : public HTemplateInstruction<0> {
6314 public:
6315  explicit HMemoryBarrier(MemBarrierKind barrier_kind, uint32_t dex_pc = kNoDexPc)
6316      : HTemplateInstruction(
6317            SideEffects::AllWritesAndReads(), dex_pc) {  // Assume write/read on all fields/arrays.
6318    SetPackedField<BarrierKindField>(barrier_kind);
6319  }
6320
6321  MemBarrierKind GetBarrierKind() { return GetPackedField<BarrierKindField>(); }
6322
6323  DECLARE_INSTRUCTION(MemoryBarrier);
6324
6325 private:
6326  static constexpr size_t kFieldBarrierKind = HInstruction::kNumberOfGenericPackedBits;
6327  static constexpr size_t kFieldBarrierKindSize =
6328      MinimumBitsToStore(static_cast<size_t>(kLastBarrierKind));
6329  static constexpr size_t kNumberOfMemoryBarrierPackedBits =
6330      kFieldBarrierKind + kFieldBarrierKindSize;
6331  static_assert(kNumberOfMemoryBarrierPackedBits <= kMaxNumberOfPackedBits,
6332                "Too many packed fields.");
6333  using BarrierKindField = BitField<MemBarrierKind, kFieldBarrierKind, kFieldBarrierKindSize>;
6334
6335  DISALLOW_COPY_AND_ASSIGN(HMemoryBarrier);
6336};
6337
6338class HMonitorOperation FINAL : public HTemplateInstruction<1> {
6339 public:
6340  enum class OperationKind {
6341    kEnter,
6342    kExit,
6343    kLast = kExit
6344  };
6345
6346  HMonitorOperation(HInstruction* object, OperationKind kind, uint32_t dex_pc)
6347    : HTemplateInstruction(
6348          SideEffects::AllExceptGCDependency(),  // Assume write/read on all fields/arrays.
6349          dex_pc) {
6350    SetPackedField<OperationKindField>(kind);
6351    SetRawInputAt(0, object);
6352  }
6353
6354  // Instruction may go into runtime, so we need an environment.
6355  bool NeedsEnvironment() const OVERRIDE { return true; }
6356
6357  bool CanThrow() const OVERRIDE {
6358    // Verifier guarantees that monitor-exit cannot throw.
6359    // This is important because it allows the HGraphBuilder to remove
6360    // a dead throw-catch loop generated for `synchronized` blocks/methods.
6361    return IsEnter();
6362  }
6363
6364  OperationKind GetOperationKind() const { return GetPackedField<OperationKindField>(); }
6365  bool IsEnter() const { return GetOperationKind() == OperationKind::kEnter; }
6366
6367  DECLARE_INSTRUCTION(MonitorOperation);
6368
6369 private:
6370  static constexpr size_t kFieldOperationKind = HInstruction::kNumberOfGenericPackedBits;
6371  static constexpr size_t kFieldOperationKindSize =
6372      MinimumBitsToStore(static_cast<size_t>(OperationKind::kLast));
6373  static constexpr size_t kNumberOfMonitorOperationPackedBits =
6374      kFieldOperationKind + kFieldOperationKindSize;
6375  static_assert(kNumberOfMonitorOperationPackedBits <= HInstruction::kMaxNumberOfPackedBits,
6376                "Too many packed fields.");
6377  using OperationKindField = BitField<OperationKind, kFieldOperationKind, kFieldOperationKindSize>;
6378
6379 private:
6380  DISALLOW_COPY_AND_ASSIGN(HMonitorOperation);
6381};
6382
6383class HSelect FINAL : public HExpression<3> {
6384 public:
6385  HSelect(HInstruction* condition,
6386          HInstruction* true_value,
6387          HInstruction* false_value,
6388          uint32_t dex_pc)
6389      : HExpression(HPhi::ToPhiType(true_value->GetType()), SideEffects::None(), dex_pc) {
6390    DCHECK_EQ(HPhi::ToPhiType(true_value->GetType()), HPhi::ToPhiType(false_value->GetType()));
6391
6392    // First input must be `true_value` or `false_value` to allow codegens to
6393    // use the SameAsFirstInput allocation policy. We make it `false_value`, so
6394    // that architectures which implement HSelect as a conditional move also
6395    // will not need to invert the condition.
6396    SetRawInputAt(0, false_value);
6397    SetRawInputAt(1, true_value);
6398    SetRawInputAt(2, condition);
6399  }
6400
6401  HInstruction* GetFalseValue() const { return InputAt(0); }
6402  HInstruction* GetTrueValue() const { return InputAt(1); }
6403  HInstruction* GetCondition() const { return InputAt(2); }
6404
6405  bool CanBeMoved() const OVERRIDE { return true; }
6406  bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
6407    return true;
6408  }
6409
6410  bool CanBeNull() const OVERRIDE {
6411    return GetTrueValue()->CanBeNull() || GetFalseValue()->CanBeNull();
6412  }
6413
6414  DECLARE_INSTRUCTION(Select);
6415
6416 private:
6417  DISALLOW_COPY_AND_ASSIGN(HSelect);
6418};
6419
6420class MoveOperands : public ArenaObject<kArenaAllocMoveOperands> {
6421 public:
6422  MoveOperands(Location source,
6423               Location destination,
6424               Primitive::Type type,
6425               HInstruction* instruction)
6426      : source_(source), destination_(destination), type_(type), instruction_(instruction) {}
6427
6428  Location GetSource() const { return source_; }
6429  Location GetDestination() const { return destination_; }
6430
6431  void SetSource(Location value) { source_ = value; }
6432  void SetDestination(Location value) { destination_ = value; }
6433
6434  // The parallel move resolver marks moves as "in-progress" by clearing the
6435  // destination (but not the source).
6436  Location MarkPending() {
6437    DCHECK(!IsPending());
6438    Location dest = destination_;
6439    destination_ = Location::NoLocation();
6440    return dest;
6441  }
6442
6443  void ClearPending(Location dest) {
6444    DCHECK(IsPending());
6445    destination_ = dest;
6446  }
6447
6448  bool IsPending() const {
6449    DCHECK(source_.IsValid() || destination_.IsInvalid());
6450    return destination_.IsInvalid() && source_.IsValid();
6451  }
6452
6453  // True if this blocks a move from the given location.
6454  bool Blocks(Location loc) const {
6455    return !IsEliminated() && source_.OverlapsWith(loc);
6456  }
6457
6458  // A move is redundant if it's been eliminated, if its source and
6459  // destination are the same, or if its destination is unneeded.
6460  bool IsRedundant() const {
6461    return IsEliminated() || destination_.IsInvalid() || source_.Equals(destination_);
6462  }
6463
6464  // We clear both operands to indicate move that's been eliminated.
6465  void Eliminate() {
6466    source_ = destination_ = Location::NoLocation();
6467  }
6468
6469  bool IsEliminated() const {
6470    DCHECK(!source_.IsInvalid() || destination_.IsInvalid());
6471    return source_.IsInvalid();
6472  }
6473
6474  Primitive::Type GetType() const { return type_; }
6475
6476  bool Is64BitMove() const {
6477    return Primitive::Is64BitType(type_);
6478  }
6479
6480  HInstruction* GetInstruction() const { return instruction_; }
6481
6482 private:
6483  Location source_;
6484  Location destination_;
6485  // The type this move is for.
6486  Primitive::Type type_;
6487  // The instruction this move is assocatied with. Null when this move is
6488  // for moving an input in the expected locations of user (including a phi user).
6489  // This is only used in debug mode, to ensure we do not connect interval siblings
6490  // in the same parallel move.
6491  HInstruction* instruction_;
6492};
6493
6494std::ostream& operator<<(std::ostream& os, const MoveOperands& rhs);
6495
6496static constexpr size_t kDefaultNumberOfMoves = 4;
6497
6498class HParallelMove FINAL : public HTemplateInstruction<0> {
6499 public:
6500  explicit HParallelMove(ArenaAllocator* arena, uint32_t dex_pc = kNoDexPc)
6501      : HTemplateInstruction(SideEffects::None(), dex_pc),
6502        moves_(arena->Adapter(kArenaAllocMoveOperands)) {
6503    moves_.reserve(kDefaultNumberOfMoves);
6504  }
6505
6506  void AddMove(Location source,
6507               Location destination,
6508               Primitive::Type type,
6509               HInstruction* instruction) {
6510    DCHECK(source.IsValid());
6511    DCHECK(destination.IsValid());
6512    if (kIsDebugBuild) {
6513      if (instruction != nullptr) {
6514        for (const MoveOperands& move : moves_) {
6515          if (move.GetInstruction() == instruction) {
6516            // Special case the situation where the move is for the spill slot
6517            // of the instruction.
6518            if ((GetPrevious() == instruction)
6519                || ((GetPrevious() == nullptr)
6520                    && instruction->IsPhi()
6521                    && instruction->GetBlock() == GetBlock())) {
6522              DCHECK_NE(destination.GetKind(), move.GetDestination().GetKind())
6523                  << "Doing parallel moves for the same instruction.";
6524            } else {
6525              DCHECK(false) << "Doing parallel moves for the same instruction.";
6526            }
6527          }
6528        }
6529      }
6530      for (const MoveOperands& move : moves_) {
6531        DCHECK(!destination.OverlapsWith(move.GetDestination()))
6532            << "Overlapped destination for two moves in a parallel move: "
6533            << move.GetSource() << " ==> " << move.GetDestination() << " and "
6534            << source << " ==> " << destination;
6535      }
6536    }
6537    moves_.emplace_back(source, destination, type, instruction);
6538  }
6539
6540  MoveOperands* MoveOperandsAt(size_t index) {
6541    return &moves_[index];
6542  }
6543
6544  size_t NumMoves() const { return moves_.size(); }
6545
6546  DECLARE_INSTRUCTION(ParallelMove);
6547
6548 private:
6549  ArenaVector<MoveOperands> moves_;
6550
6551  DISALLOW_COPY_AND_ASSIGN(HParallelMove);
6552};
6553
6554}  // namespace art
6555
6556#if defined(ART_ENABLE_CODEGEN_arm) || defined(ART_ENABLE_CODEGEN_arm64)
6557#include "nodes_shared.h"
6558#endif
6559#ifdef ART_ENABLE_CODEGEN_arm
6560#include "nodes_arm.h"
6561#endif
6562#ifdef ART_ENABLE_CODEGEN_arm64
6563#include "nodes_arm64.h"
6564#endif
6565#ifdef ART_ENABLE_CODEGEN_mips
6566#include "nodes_mips.h"
6567#endif
6568#ifdef ART_ENABLE_CODEGEN_x86
6569#include "nodes_x86.h"
6570#endif
6571
6572namespace art {
6573
6574class HGraphVisitor : public ValueObject {
6575 public:
6576  explicit HGraphVisitor(HGraph* graph) : graph_(graph) {}
6577  virtual ~HGraphVisitor() {}
6578
6579  virtual void VisitInstruction(HInstruction* instruction ATTRIBUTE_UNUSED) {}
6580  virtual void VisitBasicBlock(HBasicBlock* block);
6581
6582  // Visit the graph following basic block insertion order.
6583  void VisitInsertionOrder();
6584
6585  // Visit the graph following dominator tree reverse post-order.
6586  void VisitReversePostOrder();
6587
6588  HGraph* GetGraph() const { return graph_; }
6589
6590  // Visit functions for instruction classes.
6591#define DECLARE_VISIT_INSTRUCTION(name, super)                                        \
6592  virtual void Visit##name(H##name* instr) { VisitInstruction(instr); }
6593
6594  FOR_EACH_INSTRUCTION(DECLARE_VISIT_INSTRUCTION)
6595
6596#undef DECLARE_VISIT_INSTRUCTION
6597
6598 private:
6599  HGraph* const graph_;
6600
6601  DISALLOW_COPY_AND_ASSIGN(HGraphVisitor);
6602};
6603
6604class HGraphDelegateVisitor : public HGraphVisitor {
6605 public:
6606  explicit HGraphDelegateVisitor(HGraph* graph) : HGraphVisitor(graph) {}
6607  virtual ~HGraphDelegateVisitor() {}
6608
6609  // Visit functions that delegate to to super class.
6610#define DECLARE_VISIT_INSTRUCTION(name, super)                                        \
6611  void Visit##name(H##name* instr) OVERRIDE { Visit##super(instr); }
6612
6613  FOR_EACH_INSTRUCTION(DECLARE_VISIT_INSTRUCTION)
6614
6615#undef DECLARE_VISIT_INSTRUCTION
6616
6617 private:
6618  DISALLOW_COPY_AND_ASSIGN(HGraphDelegateVisitor);
6619};
6620
6621class HInsertionOrderIterator : public ValueObject {
6622 public:
6623  explicit HInsertionOrderIterator(const HGraph& graph) : graph_(graph), index_(0) {}
6624
6625  bool Done() const { return index_ == graph_.GetBlocks().size(); }
6626  HBasicBlock* Current() const { return graph_.GetBlocks()[index_]; }
6627  void Advance() { ++index_; }
6628
6629 private:
6630  const HGraph& graph_;
6631  size_t index_;
6632
6633  DISALLOW_COPY_AND_ASSIGN(HInsertionOrderIterator);
6634};
6635
6636class HReversePostOrderIterator : public ValueObject {
6637 public:
6638  explicit HReversePostOrderIterator(const HGraph& graph) : graph_(graph), index_(0) {
6639    // Check that reverse post order of the graph has been built.
6640    DCHECK(!graph.GetReversePostOrder().empty());
6641  }
6642
6643  bool Done() const { return index_ == graph_.GetReversePostOrder().size(); }
6644  HBasicBlock* Current() const { return graph_.GetReversePostOrder()[index_]; }
6645  void Advance() { ++index_; }
6646
6647 private:
6648  const HGraph& graph_;
6649  size_t index_;
6650
6651  DISALLOW_COPY_AND_ASSIGN(HReversePostOrderIterator);
6652};
6653
6654class HPostOrderIterator : public ValueObject {
6655 public:
6656  explicit HPostOrderIterator(const HGraph& graph)
6657      : graph_(graph), index_(graph_.GetReversePostOrder().size()) {
6658    // Check that reverse post order of the graph has been built.
6659    DCHECK(!graph.GetReversePostOrder().empty());
6660  }
6661
6662  bool Done() const { return index_ == 0; }
6663  HBasicBlock* Current() const { return graph_.GetReversePostOrder()[index_ - 1u]; }
6664  void Advance() { --index_; }
6665
6666 private:
6667  const HGraph& graph_;
6668  size_t index_;
6669
6670  DISALLOW_COPY_AND_ASSIGN(HPostOrderIterator);
6671};
6672
6673// Iterator over the blocks that art part of the loop. Includes blocks part
6674// of an inner loop. The order in which the blocks are iterated is on their
6675// block id.
6676class HBlocksInLoopIterator : public ValueObject {
6677 public:
6678  explicit HBlocksInLoopIterator(const HLoopInformation& info)
6679      : blocks_in_loop_(info.GetBlocks()),
6680        blocks_(info.GetHeader()->GetGraph()->GetBlocks()),
6681        index_(0) {
6682    if (!blocks_in_loop_.IsBitSet(index_)) {
6683      Advance();
6684    }
6685  }
6686
6687  bool Done() const { return index_ == blocks_.size(); }
6688  HBasicBlock* Current() const { return blocks_[index_]; }
6689  void Advance() {
6690    ++index_;
6691    for (size_t e = blocks_.size(); index_ < e; ++index_) {
6692      if (blocks_in_loop_.IsBitSet(index_)) {
6693        break;
6694      }
6695    }
6696  }
6697
6698 private:
6699  const BitVector& blocks_in_loop_;
6700  const ArenaVector<HBasicBlock*>& blocks_;
6701  size_t index_;
6702
6703  DISALLOW_COPY_AND_ASSIGN(HBlocksInLoopIterator);
6704};
6705
6706// Iterator over the blocks that art part of the loop. Includes blocks part
6707// of an inner loop. The order in which the blocks are iterated is reverse
6708// post order.
6709class HBlocksInLoopReversePostOrderIterator : public ValueObject {
6710 public:
6711  explicit HBlocksInLoopReversePostOrderIterator(const HLoopInformation& info)
6712      : blocks_in_loop_(info.GetBlocks()),
6713        blocks_(info.GetHeader()->GetGraph()->GetReversePostOrder()),
6714        index_(0) {
6715    if (!blocks_in_loop_.IsBitSet(blocks_[index_]->GetBlockId())) {
6716      Advance();
6717    }
6718  }
6719
6720  bool Done() const { return index_ == blocks_.size(); }
6721  HBasicBlock* Current() const { return blocks_[index_]; }
6722  void Advance() {
6723    ++index_;
6724    for (size_t e = blocks_.size(); index_ < e; ++index_) {
6725      if (blocks_in_loop_.IsBitSet(blocks_[index_]->GetBlockId())) {
6726        break;
6727      }
6728    }
6729  }
6730
6731 private:
6732  const BitVector& blocks_in_loop_;
6733  const ArenaVector<HBasicBlock*>& blocks_;
6734  size_t index_;
6735
6736  DISALLOW_COPY_AND_ASSIGN(HBlocksInLoopReversePostOrderIterator);
6737};
6738
6739inline int64_t Int64FromConstant(HConstant* constant) {
6740  if (constant->IsIntConstant()) {
6741    return constant->AsIntConstant()->GetValue();
6742  } else if (constant->IsLongConstant()) {
6743    return constant->AsLongConstant()->GetValue();
6744  } else {
6745    DCHECK(constant->IsNullConstant()) << constant->DebugName();
6746    return 0;
6747  }
6748}
6749
6750#define INSTRUCTION_TYPE_CHECK(type, super)                                    \
6751  inline bool HInstruction::Is##type() const { return GetKind() == k##type; }  \
6752  inline const H##type* HInstruction::As##type() const {                       \
6753    return Is##type() ? down_cast<const H##type*>(this) : nullptr;             \
6754  }                                                                            \
6755  inline H##type* HInstruction::As##type() {                                   \
6756    return Is##type() ? static_cast<H##type*>(this) : nullptr;                 \
6757  }
6758
6759  FOR_EACH_CONCRETE_INSTRUCTION(INSTRUCTION_TYPE_CHECK)
6760#undef INSTRUCTION_TYPE_CHECK
6761
6762// Create space in `blocks` for adding `number_of_new_blocks` entries
6763// starting at location `at`. Blocks after `at` are moved accordingly.
6764inline void MakeRoomFor(ArenaVector<HBasicBlock*>* blocks,
6765                        size_t number_of_new_blocks,
6766                        size_t after) {
6767  DCHECK_LT(after, blocks->size());
6768  size_t old_size = blocks->size();
6769  size_t new_size = old_size + number_of_new_blocks;
6770  blocks->resize(new_size);
6771  std::copy_backward(blocks->begin() + after + 1u, blocks->begin() + old_size, blocks->end());
6772}
6773
6774}  // namespace art
6775
6776#endif  // ART_COMPILER_OPTIMIZING_NODES_H_
6777