nodes.h revision e6dbf48d7a549e58a3d798bbbdc391e4d091b432
1/*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#ifndef ART_COMPILER_OPTIMIZING_NODES_H_
18#define ART_COMPILER_OPTIMIZING_NODES_H_
19
20#include <algorithm>
21#include <array>
22#include <type_traits>
23
24#include "base/arena_containers.h"
25#include "base/arena_object.h"
26#include "base/stl_util.h"
27#include "dex/compiler_enums.h"
28#include "entrypoints/quick/quick_entrypoints_enum.h"
29#include "handle.h"
30#include "handle_scope.h"
31#include "invoke_type.h"
32#include "locations.h"
33#include "method_reference.h"
34#include "mirror/class.h"
35#include "offsets.h"
36#include "primitive.h"
37#include "utils/arena_bit_vector.h"
38
39namespace art {
40
41class GraphChecker;
42class HBasicBlock;
43class HCurrentMethod;
44class HDoubleConstant;
45class HEnvironment;
46class HFakeString;
47class HFloatConstant;
48class HGraphBuilder;
49class HGraphVisitor;
50class HInstruction;
51class HIntConstant;
52class HInvoke;
53class HLongConstant;
54class HNullConstant;
55class HPhi;
56class HSuspendCheck;
57class HTryBoundary;
58class LiveInterval;
59class LocationSummary;
60class SlowPathCode;
61class SsaBuilder;
62
63namespace mirror {
64class DexCache;
65}  // namespace mirror
66
67static const int kDefaultNumberOfBlocks = 8;
68static const int kDefaultNumberOfSuccessors = 2;
69static const int kDefaultNumberOfPredecessors = 2;
70static const int kDefaultNumberOfExceptionalPredecessors = 0;
71static const int kDefaultNumberOfDominatedBlocks = 1;
72static const int kDefaultNumberOfBackEdges = 1;
73
74static constexpr uint32_t kMaxIntShiftValue = 0x1f;
75static constexpr uint64_t kMaxLongShiftValue = 0x3f;
76
77static constexpr uint32_t kUnknownFieldIndex = static_cast<uint32_t>(-1);
78
79static constexpr InvokeType kInvalidInvokeType = static_cast<InvokeType>(-1);
80
81static constexpr uint32_t kNoDexPc = -1;
82
83enum IfCondition {
84  // All types.
85  kCondEQ,  // ==
86  kCondNE,  // !=
87  // Signed integers and floating-point numbers.
88  kCondLT,  // <
89  kCondLE,  // <=
90  kCondGT,  // >
91  kCondGE,  // >=
92  // Unsigned integers.
93  kCondB,   // <
94  kCondBE,  // <=
95  kCondA,   // >
96  kCondAE,  // >=
97};
98
99class HInstructionList : public ValueObject {
100 public:
101  HInstructionList() : first_instruction_(nullptr), last_instruction_(nullptr) {}
102
103  void AddInstruction(HInstruction* instruction);
104  void RemoveInstruction(HInstruction* instruction);
105
106  // Insert `instruction` before/after an existing instruction `cursor`.
107  void InsertInstructionBefore(HInstruction* instruction, HInstruction* cursor);
108  void InsertInstructionAfter(HInstruction* instruction, HInstruction* cursor);
109
110  // Return true if this list contains `instruction`.
111  bool Contains(HInstruction* instruction) const;
112
113  // Return true if `instruction1` is found before `instruction2` in
114  // this instruction list and false otherwise.  Abort if none
115  // of these instructions is found.
116  bool FoundBefore(const HInstruction* instruction1,
117                   const HInstruction* instruction2) const;
118
119  bool IsEmpty() const { return first_instruction_ == nullptr; }
120  void Clear() { first_instruction_ = last_instruction_ = nullptr; }
121
122  // Update the block of all instructions to be `block`.
123  void SetBlockOfInstructions(HBasicBlock* block) const;
124
125  void AddAfter(HInstruction* cursor, const HInstructionList& instruction_list);
126  void Add(const HInstructionList& instruction_list);
127
128  // Return the number of instructions in the list. This is an expensive operation.
129  size_t CountSize() const;
130
131 private:
132  HInstruction* first_instruction_;
133  HInstruction* last_instruction_;
134
135  friend class HBasicBlock;
136  friend class HGraph;
137  friend class HInstruction;
138  friend class HInstructionIterator;
139  friend class HBackwardInstructionIterator;
140
141  DISALLOW_COPY_AND_ASSIGN(HInstructionList);
142};
143
144// Control-flow graph of a method. Contains a list of basic blocks.
145class HGraph : public ArenaObject<kArenaAllocGraph> {
146 public:
147  HGraph(ArenaAllocator* arena,
148         const DexFile& dex_file,
149         uint32_t method_idx,
150         bool should_generate_constructor_barrier,
151         InstructionSet instruction_set,
152         InvokeType invoke_type = kInvalidInvokeType,
153         bool debuggable = false,
154         int start_instruction_id = 0)
155      : arena_(arena),
156        blocks_(arena->Adapter(kArenaAllocBlockList)),
157        reverse_post_order_(arena->Adapter(kArenaAllocReversePostOrder)),
158        linear_order_(arena->Adapter(kArenaAllocLinearOrder)),
159        entry_block_(nullptr),
160        exit_block_(nullptr),
161        maximum_number_of_out_vregs_(0),
162        number_of_vregs_(0),
163        number_of_in_vregs_(0),
164        temporaries_vreg_slots_(0),
165        has_bounds_checks_(false),
166        has_try_catch_(false),
167        debuggable_(debuggable),
168        current_instruction_id_(start_instruction_id),
169        dex_file_(dex_file),
170        method_idx_(method_idx),
171        invoke_type_(invoke_type),
172        in_ssa_form_(false),
173        should_generate_constructor_barrier_(should_generate_constructor_barrier),
174        instruction_set_(instruction_set),
175        cached_null_constant_(nullptr),
176        cached_int_constants_(std::less<int32_t>(), arena->Adapter(kArenaAllocConstantsMap)),
177        cached_float_constants_(std::less<int32_t>(), arena->Adapter(kArenaAllocConstantsMap)),
178        cached_long_constants_(std::less<int64_t>(), arena->Adapter(kArenaAllocConstantsMap)),
179        cached_double_constants_(std::less<int64_t>(), arena->Adapter(kArenaAllocConstantsMap)),
180        cached_current_method_(nullptr) {
181    blocks_.reserve(kDefaultNumberOfBlocks);
182  }
183
184  ArenaAllocator* GetArena() const { return arena_; }
185  const ArenaVector<HBasicBlock*>& GetBlocks() const { return blocks_; }
186
187  bool IsInSsaForm() const { return in_ssa_form_; }
188
189  HBasicBlock* GetEntryBlock() const { return entry_block_; }
190  HBasicBlock* GetExitBlock() const { return exit_block_; }
191  bool HasExitBlock() const { return exit_block_ != nullptr; }
192
193  void SetEntryBlock(HBasicBlock* block) { entry_block_ = block; }
194  void SetExitBlock(HBasicBlock* block) { exit_block_ = block; }
195
196  void AddBlock(HBasicBlock* block);
197
198  // Try building the SSA form of this graph, with dominance computation and loop
199  // recognition. Returns whether it was successful in doing all these steps.
200  bool TryBuildingSsa() {
201    BuildDominatorTree();
202    // The SSA builder requires loops to all be natural. Specifically, the dead phi
203    // elimination phase checks the consistency of the graph when doing a post-order
204    // visit for eliminating dead phis: a dead phi can only have loop header phi
205    // users remaining when being visited.
206    if (!AnalyzeNaturalLoops()) return false;
207    // Precompute per-block try membership before entering the SSA builder,
208    // which needs the information to build catch block phis from values of
209    // locals at throwing instructions inside try blocks.
210    ComputeTryBlockInformation();
211    TransformToSsa();
212    in_ssa_form_ = true;
213    return true;
214  }
215
216  void ComputeDominanceInformation();
217  void ClearDominanceInformation();
218
219  void BuildDominatorTree();
220  void TransformToSsa();
221  void SimplifyCFG();
222  void SimplifyCatchBlocks();
223
224  // Analyze all natural loops in this graph. Returns false if one
225  // loop is not natural, that is the header does not dominate the
226  // back edge.
227  bool AnalyzeNaturalLoops() const;
228
229  // Iterate over blocks to compute try block membership. Needs reverse post
230  // order and loop information.
231  void ComputeTryBlockInformation();
232
233  // Inline this graph in `outer_graph`, replacing the given `invoke` instruction.
234  // Returns the instruction used to replace the invoke expression or null if the
235  // invoke is for a void method.
236  HInstruction* InlineInto(HGraph* outer_graph, HInvoke* invoke);
237
238  // Need to add a couple of blocks to test if the loop body is entered and
239  // put deoptimization instructions, etc.
240  void TransformLoopHeaderForBCE(HBasicBlock* header);
241
242  // Removes `block` from the graph.
243  void DeleteDeadBlock(HBasicBlock* block);
244
245  // Splits the edge between `block` and `successor` while preserving the
246  // indices in the predecessor/successor lists. If there are multiple edges
247  // between the blocks, the lowest indices are used.
248  // Returns the new block which is empty and has the same dex pc as `successor`.
249  HBasicBlock* SplitEdge(HBasicBlock* block, HBasicBlock* successor);
250
251  void SplitCriticalEdge(HBasicBlock* block, HBasicBlock* successor);
252  void SimplifyLoop(HBasicBlock* header);
253
254  int32_t GetNextInstructionId() {
255    DCHECK_NE(current_instruction_id_, INT32_MAX);
256    return current_instruction_id_++;
257  }
258
259  int32_t GetCurrentInstructionId() const {
260    return current_instruction_id_;
261  }
262
263  void SetCurrentInstructionId(int32_t id) {
264    current_instruction_id_ = id;
265  }
266
267  uint16_t GetMaximumNumberOfOutVRegs() const {
268    return maximum_number_of_out_vregs_;
269  }
270
271  void SetMaximumNumberOfOutVRegs(uint16_t new_value) {
272    maximum_number_of_out_vregs_ = new_value;
273  }
274
275  void UpdateMaximumNumberOfOutVRegs(uint16_t other_value) {
276    maximum_number_of_out_vregs_ = std::max(maximum_number_of_out_vregs_, other_value);
277  }
278
279  void UpdateTemporariesVRegSlots(size_t slots) {
280    temporaries_vreg_slots_ = std::max(slots, temporaries_vreg_slots_);
281  }
282
283  size_t GetTemporariesVRegSlots() const {
284    DCHECK(!in_ssa_form_);
285    return temporaries_vreg_slots_;
286  }
287
288  void SetNumberOfVRegs(uint16_t number_of_vregs) {
289    number_of_vregs_ = number_of_vregs;
290  }
291
292  uint16_t GetNumberOfVRegs() const {
293    return number_of_vregs_;
294  }
295
296  void SetNumberOfInVRegs(uint16_t value) {
297    number_of_in_vregs_ = value;
298  }
299
300  uint16_t GetNumberOfLocalVRegs() const {
301    DCHECK(!in_ssa_form_);
302    return number_of_vregs_ - number_of_in_vregs_;
303  }
304
305  const ArenaVector<HBasicBlock*>& GetReversePostOrder() const {
306    return reverse_post_order_;
307  }
308
309  const ArenaVector<HBasicBlock*>& GetLinearOrder() const {
310    return linear_order_;
311  }
312
313  bool HasBoundsChecks() const {
314    return has_bounds_checks_;
315  }
316
317  void SetHasBoundsChecks(bool value) {
318    has_bounds_checks_ = value;
319  }
320
321  bool ShouldGenerateConstructorBarrier() const {
322    return should_generate_constructor_barrier_;
323  }
324
325  bool IsDebuggable() const { return debuggable_; }
326
327  // Returns a constant of the given type and value. If it does not exist
328  // already, it is created and inserted into the graph. This method is only for
329  // integral types.
330  HConstant* GetConstant(Primitive::Type type, int64_t value, uint32_t dex_pc = kNoDexPc);
331
332  // TODO: This is problematic for the consistency of reference type propagation
333  // because it can be created anytime after the pass and thus it will be left
334  // with an invalid type.
335  HNullConstant* GetNullConstant(uint32_t dex_pc = kNoDexPc);
336
337  HIntConstant* GetIntConstant(int32_t value, uint32_t dex_pc = kNoDexPc) {
338    return CreateConstant(value, &cached_int_constants_, dex_pc);
339  }
340  HLongConstant* GetLongConstant(int64_t value, uint32_t dex_pc = kNoDexPc) {
341    return CreateConstant(value, &cached_long_constants_, dex_pc);
342  }
343  HFloatConstant* GetFloatConstant(float value, uint32_t dex_pc = kNoDexPc) {
344    return CreateConstant(bit_cast<int32_t, float>(value), &cached_float_constants_, dex_pc);
345  }
346  HDoubleConstant* GetDoubleConstant(double value, uint32_t dex_pc = kNoDexPc) {
347    return CreateConstant(bit_cast<int64_t, double>(value), &cached_double_constants_, dex_pc);
348  }
349
350  HCurrentMethod* GetCurrentMethod();
351
352  HBasicBlock* FindCommonDominator(HBasicBlock* first, HBasicBlock* second) const;
353
354  const DexFile& GetDexFile() const {
355    return dex_file_;
356  }
357
358  uint32_t GetMethodIdx() const {
359    return method_idx_;
360  }
361
362  InvokeType GetInvokeType() const {
363    return invoke_type_;
364  }
365
366  InstructionSet GetInstructionSet() const {
367    return instruction_set_;
368  }
369
370  bool HasTryCatch() const { return has_try_catch_; }
371  void SetHasTryCatch(bool value) { has_try_catch_ = value; }
372
373 private:
374  void FindBackEdges(ArenaBitVector* visited);
375  void RemoveInstructionsAsUsersFromDeadBlocks(const ArenaBitVector& visited) const;
376  void RemoveDeadBlocks(const ArenaBitVector& visited);
377
378  template <class InstructionType, typename ValueType>
379  InstructionType* CreateConstant(ValueType value,
380                                  ArenaSafeMap<ValueType, InstructionType*>* cache,
381                                  uint32_t dex_pc = kNoDexPc) {
382    // Try to find an existing constant of the given value.
383    InstructionType* constant = nullptr;
384    auto cached_constant = cache->find(value);
385    if (cached_constant != cache->end()) {
386      constant = cached_constant->second;
387    }
388
389    // If not found or previously deleted, create and cache a new instruction.
390    // Don't bother reviving a previously deleted instruction, for simplicity.
391    if (constant == nullptr || constant->GetBlock() == nullptr) {
392      constant = new (arena_) InstructionType(value, dex_pc);
393      cache->Overwrite(value, constant);
394      InsertConstant(constant);
395    }
396    return constant;
397  }
398
399  void InsertConstant(HConstant* instruction);
400
401  // Cache a float constant into the graph. This method should only be
402  // called by the SsaBuilder when creating "equivalent" instructions.
403  void CacheFloatConstant(HFloatConstant* constant);
404
405  // See CacheFloatConstant comment.
406  void CacheDoubleConstant(HDoubleConstant* constant);
407
408  ArenaAllocator* const arena_;
409
410  // List of blocks in insertion order.
411  ArenaVector<HBasicBlock*> blocks_;
412
413  // List of blocks to perform a reverse post order tree traversal.
414  ArenaVector<HBasicBlock*> reverse_post_order_;
415
416  // List of blocks to perform a linear order tree traversal.
417  ArenaVector<HBasicBlock*> linear_order_;
418
419  HBasicBlock* entry_block_;
420  HBasicBlock* exit_block_;
421
422  // The maximum number of virtual registers arguments passed to a HInvoke in this graph.
423  uint16_t maximum_number_of_out_vregs_;
424
425  // The number of virtual registers in this method. Contains the parameters.
426  uint16_t number_of_vregs_;
427
428  // The number of virtual registers used by parameters of this method.
429  uint16_t number_of_in_vregs_;
430
431  // Number of vreg size slots that the temporaries use (used in baseline compiler).
432  size_t temporaries_vreg_slots_;
433
434  // Has bounds checks. We can totally skip BCE if it's false.
435  bool has_bounds_checks_;
436
437  // Flag whether there are any try/catch blocks in the graph. We will skip
438  // try/catch-related passes if false.
439  bool has_try_catch_;
440
441  // Indicates whether the graph should be compiled in a way that
442  // ensures full debuggability. If false, we can apply more
443  // aggressive optimizations that may limit the level of debugging.
444  const bool debuggable_;
445
446  // The current id to assign to a newly added instruction. See HInstruction.id_.
447  int32_t current_instruction_id_;
448
449  // The dex file from which the method is from.
450  const DexFile& dex_file_;
451
452  // The method index in the dex file.
453  const uint32_t method_idx_;
454
455  // If inlined, this encodes how the callee is being invoked.
456  const InvokeType invoke_type_;
457
458  // Whether the graph has been transformed to SSA form. Only used
459  // in debug mode to ensure we are not using properties only valid
460  // for non-SSA form (like the number of temporaries).
461  bool in_ssa_form_;
462
463  const bool should_generate_constructor_barrier_;
464
465  const InstructionSet instruction_set_;
466
467  // Cached constants.
468  HNullConstant* cached_null_constant_;
469  ArenaSafeMap<int32_t, HIntConstant*> cached_int_constants_;
470  ArenaSafeMap<int32_t, HFloatConstant*> cached_float_constants_;
471  ArenaSafeMap<int64_t, HLongConstant*> cached_long_constants_;
472  ArenaSafeMap<int64_t, HDoubleConstant*> cached_double_constants_;
473
474  HCurrentMethod* cached_current_method_;
475
476  friend class SsaBuilder;           // For caching constants.
477  friend class SsaLivenessAnalysis;  // For the linear order.
478  ART_FRIEND_TEST(GraphTest, IfSuccessorSimpleJoinBlock1);
479  DISALLOW_COPY_AND_ASSIGN(HGraph);
480};
481
482class HLoopInformation : public ArenaObject<kArenaAllocLoopInfo> {
483 public:
484  HLoopInformation(HBasicBlock* header, HGraph* graph)
485      : header_(header),
486        suspend_check_(nullptr),
487        back_edges_(graph->GetArena()->Adapter(kArenaAllocLoopInfoBackEdges)),
488        // Make bit vector growable, as the number of blocks may change.
489        blocks_(graph->GetArena(), graph->GetBlocks().size(), true) {
490    back_edges_.reserve(kDefaultNumberOfBackEdges);
491  }
492
493  HBasicBlock* GetHeader() const {
494    return header_;
495  }
496
497  void SetHeader(HBasicBlock* block) {
498    header_ = block;
499  }
500
501  HSuspendCheck* GetSuspendCheck() const { return suspend_check_; }
502  void SetSuspendCheck(HSuspendCheck* check) { suspend_check_ = check; }
503  bool HasSuspendCheck() const { return suspend_check_ != nullptr; }
504
505  void AddBackEdge(HBasicBlock* back_edge) {
506    back_edges_.push_back(back_edge);
507  }
508
509  void RemoveBackEdge(HBasicBlock* back_edge) {
510    RemoveElement(back_edges_, back_edge);
511  }
512
513  bool IsBackEdge(const HBasicBlock& block) const {
514    return ContainsElement(back_edges_, &block);
515  }
516
517  size_t NumberOfBackEdges() const {
518    return back_edges_.size();
519  }
520
521  HBasicBlock* GetPreHeader() const;
522
523  const ArenaVector<HBasicBlock*>& GetBackEdges() const {
524    return back_edges_;
525  }
526
527  // Returns the lifetime position of the back edge that has the
528  // greatest lifetime position.
529  size_t GetLifetimeEnd() const;
530
531  void ReplaceBackEdge(HBasicBlock* existing, HBasicBlock* new_back_edge) {
532    ReplaceElement(back_edges_, existing, new_back_edge);
533  }
534
535  // Finds blocks that are part of this loop. Returns whether the loop is a natural loop,
536  // that is the header dominates the back edge.
537  bool Populate();
538
539  // Reanalyzes the loop by removing loop info from its blocks and re-running
540  // Populate(). If there are no back edges left, the loop info is completely
541  // removed as well as its SuspendCheck instruction. It must be run on nested
542  // inner loops first.
543  void Update();
544
545  // Returns whether this loop information contains `block`.
546  // Note that this loop information *must* be populated before entering this function.
547  bool Contains(const HBasicBlock& block) const;
548
549  // Returns whether this loop information is an inner loop of `other`.
550  // Note that `other` *must* be populated before entering this function.
551  bool IsIn(const HLoopInformation& other) const;
552
553  const ArenaBitVector& GetBlocks() const { return blocks_; }
554
555  void Add(HBasicBlock* block);
556  void Remove(HBasicBlock* block);
557
558 private:
559  // Internal recursive implementation of `Populate`.
560  void PopulateRecursive(HBasicBlock* block);
561
562  HBasicBlock* header_;
563  HSuspendCheck* suspend_check_;
564  ArenaVector<HBasicBlock*> back_edges_;
565  ArenaBitVector blocks_;
566
567  DISALLOW_COPY_AND_ASSIGN(HLoopInformation);
568};
569
570// Stores try/catch information for basic blocks.
571// Note that HGraph is constructed so that catch blocks cannot simultaneously
572// be try blocks.
573class TryCatchInformation : public ArenaObject<kArenaAllocTryCatchInfo> {
574 public:
575  // Try block information constructor.
576  explicit TryCatchInformation(const HTryBoundary& try_entry)
577      : try_entry_(&try_entry),
578        catch_dex_file_(nullptr),
579        catch_type_index_(DexFile::kDexNoIndex16) {
580    DCHECK(try_entry_ != nullptr);
581  }
582
583  // Catch block information constructor.
584  TryCatchInformation(uint16_t catch_type_index, const DexFile& dex_file)
585      : try_entry_(nullptr),
586        catch_dex_file_(&dex_file),
587        catch_type_index_(catch_type_index) {}
588
589  bool IsTryBlock() const { return try_entry_ != nullptr; }
590
591  const HTryBoundary& GetTryEntry() const {
592    DCHECK(IsTryBlock());
593    return *try_entry_;
594  }
595
596  bool IsCatchBlock() const { return catch_dex_file_ != nullptr; }
597
598  bool IsCatchAllTypeIndex() const {
599    DCHECK(IsCatchBlock());
600    return catch_type_index_ == DexFile::kDexNoIndex16;
601  }
602
603  uint16_t GetCatchTypeIndex() const {
604    DCHECK(IsCatchBlock());
605    return catch_type_index_;
606  }
607
608  const DexFile& GetCatchDexFile() const {
609    DCHECK(IsCatchBlock());
610    return *catch_dex_file_;
611  }
612
613 private:
614  // One of possibly several TryBoundary instructions entering the block's try.
615  // Only set for try blocks.
616  const HTryBoundary* try_entry_;
617
618  // Exception type information. Only set for catch blocks.
619  const DexFile* catch_dex_file_;
620  const uint16_t catch_type_index_;
621};
622
623static constexpr size_t kNoLifetime = -1;
624static constexpr uint32_t kInvalidBlockId = static_cast<uint32_t>(-1);
625
626// A block in a method. Contains the list of instructions represented
627// as a double linked list. Each block knows its predecessors and
628// successors.
629
630class HBasicBlock : public ArenaObject<kArenaAllocBasicBlock> {
631 public:
632  HBasicBlock(HGraph* graph, uint32_t dex_pc = kNoDexPc)
633      : graph_(graph),
634        predecessors_(graph->GetArena()->Adapter(kArenaAllocPredecessors)),
635        successors_(graph->GetArena()->Adapter(kArenaAllocSuccessors)),
636        loop_information_(nullptr),
637        dominator_(nullptr),
638        dominated_blocks_(graph->GetArena()->Adapter(kArenaAllocDominated)),
639        block_id_(kInvalidBlockId),
640        dex_pc_(dex_pc),
641        lifetime_start_(kNoLifetime),
642        lifetime_end_(kNoLifetime),
643        try_catch_information_(nullptr) {
644    predecessors_.reserve(kDefaultNumberOfPredecessors);
645    successors_.reserve(kDefaultNumberOfSuccessors);
646    dominated_blocks_.reserve(kDefaultNumberOfDominatedBlocks);
647  }
648
649  const ArenaVector<HBasicBlock*>& GetPredecessors() const {
650    return predecessors_;
651  }
652
653  const ArenaVector<HBasicBlock*>& GetSuccessors() const {
654    return successors_;
655  }
656
657  bool HasSuccessor(const HBasicBlock* block, size_t start_from = 0u) {
658    return ContainsElement(successors_, block, start_from);
659  }
660
661  const ArenaVector<HBasicBlock*>& GetDominatedBlocks() const {
662    return dominated_blocks_;
663  }
664
665  bool IsEntryBlock() const {
666    return graph_->GetEntryBlock() == this;
667  }
668
669  bool IsExitBlock() const {
670    return graph_->GetExitBlock() == this;
671  }
672
673  bool IsSingleGoto() const;
674  bool IsSingleTryBoundary() const;
675
676  // Returns true if this block emits nothing but a jump.
677  bool IsSingleJump() const {
678    HLoopInformation* loop_info = GetLoopInformation();
679    return (IsSingleGoto() || IsSingleTryBoundary())
680           // Back edges generate a suspend check.
681           && (loop_info == nullptr || !loop_info->IsBackEdge(*this));
682  }
683
684  void AddBackEdge(HBasicBlock* back_edge) {
685    if (loop_information_ == nullptr) {
686      loop_information_ = new (graph_->GetArena()) HLoopInformation(this, graph_);
687    }
688    DCHECK_EQ(loop_information_->GetHeader(), this);
689    loop_information_->AddBackEdge(back_edge);
690  }
691
692  HGraph* GetGraph() const { return graph_; }
693  void SetGraph(HGraph* graph) { graph_ = graph; }
694
695  uint32_t GetBlockId() const { return block_id_; }
696  void SetBlockId(int id) { block_id_ = id; }
697  uint32_t GetDexPc() const { return dex_pc_; }
698
699  HBasicBlock* GetDominator() const { return dominator_; }
700  void SetDominator(HBasicBlock* dominator) { dominator_ = dominator; }
701  void AddDominatedBlock(HBasicBlock* block) { dominated_blocks_.push_back(block); }
702
703  void RemoveDominatedBlock(HBasicBlock* block) {
704    RemoveElement(dominated_blocks_, block);
705  }
706
707  void ReplaceDominatedBlock(HBasicBlock* existing, HBasicBlock* new_block) {
708    ReplaceElement(dominated_blocks_, existing, new_block);
709  }
710
711  void ClearDominanceInformation();
712
713  int NumberOfBackEdges() const {
714    return IsLoopHeader() ? loop_information_->NumberOfBackEdges() : 0;
715  }
716
717  HInstruction* GetFirstInstruction() const { return instructions_.first_instruction_; }
718  HInstruction* GetLastInstruction() const { return instructions_.last_instruction_; }
719  const HInstructionList& GetInstructions() const { return instructions_; }
720  HInstruction* GetFirstPhi() const { return phis_.first_instruction_; }
721  HInstruction* GetLastPhi() const { return phis_.last_instruction_; }
722  const HInstructionList& GetPhis() const { return phis_; }
723
724  void AddSuccessor(HBasicBlock* block) {
725    successors_.push_back(block);
726    block->predecessors_.push_back(this);
727  }
728
729  void ReplaceSuccessor(HBasicBlock* existing, HBasicBlock* new_block) {
730    size_t successor_index = GetSuccessorIndexOf(existing);
731    existing->RemovePredecessor(this);
732    new_block->predecessors_.push_back(this);
733    successors_[successor_index] = new_block;
734  }
735
736  void ReplacePredecessor(HBasicBlock* existing, HBasicBlock* new_block) {
737    size_t predecessor_index = GetPredecessorIndexOf(existing);
738    existing->RemoveSuccessor(this);
739    new_block->successors_.push_back(this);
740    predecessors_[predecessor_index] = new_block;
741  }
742
743  // Insert `this` between `predecessor` and `successor. This method
744  // preserves the indicies, and will update the first edge found between
745  // `predecessor` and `successor`.
746  void InsertBetween(HBasicBlock* predecessor, HBasicBlock* successor) {
747    size_t predecessor_index = successor->GetPredecessorIndexOf(predecessor);
748    size_t successor_index = predecessor->GetSuccessorIndexOf(successor);
749    successor->predecessors_[predecessor_index] = this;
750    predecessor->successors_[successor_index] = this;
751    successors_.push_back(successor);
752    predecessors_.push_back(predecessor);
753  }
754
755  void RemovePredecessor(HBasicBlock* block) {
756    predecessors_.erase(predecessors_.begin() + GetPredecessorIndexOf(block));
757  }
758
759  void RemoveSuccessor(HBasicBlock* block) {
760    successors_.erase(successors_.begin() + GetSuccessorIndexOf(block));
761  }
762
763  void ClearAllPredecessors() {
764    predecessors_.clear();
765  }
766
767  void AddPredecessor(HBasicBlock* block) {
768    predecessors_.push_back(block);
769    block->successors_.push_back(this);
770  }
771
772  void SwapPredecessors() {
773    DCHECK_EQ(predecessors_.size(), 2u);
774    std::swap(predecessors_[0], predecessors_[1]);
775  }
776
777  void SwapSuccessors() {
778    DCHECK_EQ(successors_.size(), 2u);
779    std::swap(successors_[0], successors_[1]);
780  }
781
782  size_t GetPredecessorIndexOf(HBasicBlock* predecessor) const {
783    return IndexOfElement(predecessors_, predecessor);
784  }
785
786  size_t GetSuccessorIndexOf(HBasicBlock* successor) const {
787    return IndexOfElement(successors_, successor);
788  }
789
790  HBasicBlock* GetSinglePredecessor() const {
791    DCHECK_EQ(GetPredecessors().size(), 1u);
792    return GetPredecessors()[0];
793  }
794
795  HBasicBlock* GetSingleSuccessor() const {
796    DCHECK_EQ(GetSuccessors().size(), 1u);
797    return GetSuccessors()[0];
798  }
799
800  // Returns whether the first occurrence of `predecessor` in the list of
801  // predecessors is at index `idx`.
802  bool IsFirstIndexOfPredecessor(HBasicBlock* predecessor, size_t idx) const {
803    DCHECK_EQ(GetPredecessors()[idx], predecessor);
804    return GetPredecessorIndexOf(predecessor) == idx;
805  }
806
807  // Returns the number of non-exceptional successors. SsaChecker ensures that
808  // these are stored at the beginning of the successor list.
809  size_t NumberOfNormalSuccessors() const {
810    return EndsWithTryBoundary() ? 1 : GetSuccessors().size();
811  }
812
813  // Create a new block between this block and its predecessors. The new block
814  // is added to the graph, all predecessor edges are relinked to it and an edge
815  // is created to `this`. Returns the new empty block. Reverse post order or
816  // loop and try/catch information are not updated.
817  HBasicBlock* CreateImmediateDominator();
818
819  // Split the block into two blocks just before `cursor`. Returns the newly
820  // created, latter block. Note that this method will add the block to the
821  // graph, create a Goto at the end of the former block and will create an edge
822  // between the blocks. It will not, however, update the reverse post order or
823  // loop and try/catch information.
824  HBasicBlock* SplitBefore(HInstruction* cursor);
825
826  // Split the block into two blocks just after `cursor`. Returns the newly
827  // created block. Note that this method just updates raw block information,
828  // like predecessors, successors, dominators, and instruction list. It does not
829  // update the graph, reverse post order, loop information, nor make sure the
830  // blocks are consistent (for example ending with a control flow instruction).
831  HBasicBlock* SplitAfter(HInstruction* cursor);
832
833  // Merge `other` at the end of `this`. Successors and dominated blocks of
834  // `other` are changed to be successors and dominated blocks of `this`. Note
835  // that this method does not update the graph, reverse post order, loop
836  // information, nor make sure the blocks are consistent (for example ending
837  // with a control flow instruction).
838  void MergeWithInlined(HBasicBlock* other);
839
840  // Replace `this` with `other`. Predecessors, successors, and dominated blocks
841  // of `this` are moved to `other`.
842  // Note that this method does not update the graph, reverse post order, loop
843  // information, nor make sure the blocks are consistent (for example ending
844  // with a control flow instruction).
845  void ReplaceWith(HBasicBlock* other);
846
847  // Merge `other` at the end of `this`. This method updates loops, reverse post
848  // order, links to predecessors, successors, dominators and deletes the block
849  // from the graph. The two blocks must be successive, i.e. `this` the only
850  // predecessor of `other` and vice versa.
851  void MergeWith(HBasicBlock* other);
852
853  // Disconnects `this` from all its predecessors, successors and dominator,
854  // removes it from all loops it is included in and eventually from the graph.
855  // The block must not dominate any other block. Predecessors and successors
856  // are safely updated.
857  void DisconnectAndDelete();
858
859  void AddInstruction(HInstruction* instruction);
860  // Insert `instruction` before/after an existing instruction `cursor`.
861  void InsertInstructionBefore(HInstruction* instruction, HInstruction* cursor);
862  void InsertInstructionAfter(HInstruction* instruction, HInstruction* cursor);
863  // Replace instruction `initial` with `replacement` within this block.
864  void ReplaceAndRemoveInstructionWith(HInstruction* initial,
865                                       HInstruction* replacement);
866  void AddPhi(HPhi* phi);
867  void InsertPhiAfter(HPhi* instruction, HPhi* cursor);
868  // RemoveInstruction and RemovePhi delete a given instruction from the respective
869  // instruction list. With 'ensure_safety' set to true, it verifies that the
870  // instruction is not in use and removes it from the use lists of its inputs.
871  void RemoveInstruction(HInstruction* instruction, bool ensure_safety = true);
872  void RemovePhi(HPhi* phi, bool ensure_safety = true);
873  void RemoveInstructionOrPhi(HInstruction* instruction, bool ensure_safety = true);
874
875  bool IsLoopHeader() const {
876    return IsInLoop() && (loop_information_->GetHeader() == this);
877  }
878
879  bool IsLoopPreHeaderFirstPredecessor() const {
880    DCHECK(IsLoopHeader());
881    return GetPredecessors()[0] == GetLoopInformation()->GetPreHeader();
882  }
883
884  HLoopInformation* GetLoopInformation() const {
885    return loop_information_;
886  }
887
888  // Set the loop_information_ on this block. Overrides the current
889  // loop_information if it is an outer loop of the passed loop information.
890  // Note that this method is called while creating the loop information.
891  void SetInLoop(HLoopInformation* info) {
892    if (IsLoopHeader()) {
893      // Nothing to do. This just means `info` is an outer loop.
894    } else if (!IsInLoop()) {
895      loop_information_ = info;
896    } else if (loop_information_->Contains(*info->GetHeader())) {
897      // Block is currently part of an outer loop. Make it part of this inner loop.
898      // Note that a non loop header having a loop information means this loop information
899      // has already been populated
900      loop_information_ = info;
901    } else {
902      // Block is part of an inner loop. Do not update the loop information.
903      // Note that we cannot do the check `info->Contains(loop_information_)->GetHeader()`
904      // at this point, because this method is being called while populating `info`.
905    }
906  }
907
908  // Raw update of the loop information.
909  void SetLoopInformation(HLoopInformation* info) {
910    loop_information_ = info;
911  }
912
913  bool IsInLoop() const { return loop_information_ != nullptr; }
914
915  TryCatchInformation* GetTryCatchInformation() const { return try_catch_information_; }
916
917  void SetTryCatchInformation(TryCatchInformation* try_catch_information) {
918    try_catch_information_ = try_catch_information;
919  }
920
921  bool IsTryBlock() const {
922    return try_catch_information_ != nullptr && try_catch_information_->IsTryBlock();
923  }
924
925  bool IsCatchBlock() const {
926    return try_catch_information_ != nullptr && try_catch_information_->IsCatchBlock();
927  }
928
929  // Returns the try entry that this block's successors should have. They will
930  // be in the same try, unless the block ends in a try boundary. In that case,
931  // the appropriate try entry will be returned.
932  const HTryBoundary* ComputeTryEntryOfSuccessors() const;
933
934  bool HasThrowingInstructions() const;
935
936  // Returns whether this block dominates the blocked passed as parameter.
937  bool Dominates(HBasicBlock* block) const;
938
939  size_t GetLifetimeStart() const { return lifetime_start_; }
940  size_t GetLifetimeEnd() const { return lifetime_end_; }
941
942  void SetLifetimeStart(size_t start) { lifetime_start_ = start; }
943  void SetLifetimeEnd(size_t end) { lifetime_end_ = end; }
944
945  bool EndsWithControlFlowInstruction() const;
946  bool EndsWithIf() const;
947  bool EndsWithTryBoundary() const;
948  bool HasSinglePhi() const;
949
950 private:
951  HGraph* graph_;
952  ArenaVector<HBasicBlock*> predecessors_;
953  ArenaVector<HBasicBlock*> successors_;
954  HInstructionList instructions_;
955  HInstructionList phis_;
956  HLoopInformation* loop_information_;
957  HBasicBlock* dominator_;
958  ArenaVector<HBasicBlock*> dominated_blocks_;
959  uint32_t block_id_;
960  // The dex program counter of the first instruction of this block.
961  const uint32_t dex_pc_;
962  size_t lifetime_start_;
963  size_t lifetime_end_;
964  TryCatchInformation* try_catch_information_;
965
966  friend class HGraph;
967  friend class HInstruction;
968
969  DISALLOW_COPY_AND_ASSIGN(HBasicBlock);
970};
971
972// Iterates over the LoopInformation of all loops which contain 'block'
973// from the innermost to the outermost.
974class HLoopInformationOutwardIterator : public ValueObject {
975 public:
976  explicit HLoopInformationOutwardIterator(const HBasicBlock& block)
977      : current_(block.GetLoopInformation()) {}
978
979  bool Done() const { return current_ == nullptr; }
980
981  void Advance() {
982    DCHECK(!Done());
983    current_ = current_->GetPreHeader()->GetLoopInformation();
984  }
985
986  HLoopInformation* Current() const {
987    DCHECK(!Done());
988    return current_;
989  }
990
991 private:
992  HLoopInformation* current_;
993
994  DISALLOW_COPY_AND_ASSIGN(HLoopInformationOutwardIterator);
995};
996
997#define FOR_EACH_CONCRETE_INSTRUCTION_COMMON(M)                         \
998  M(Above, Condition)                                                   \
999  M(AboveOrEqual, Condition)                                            \
1000  M(Add, BinaryOperation)                                               \
1001  M(And, BinaryOperation)                                               \
1002  M(ArrayGet, Instruction)                                              \
1003  M(ArrayLength, Instruction)                                           \
1004  M(ArraySet, Instruction)                                              \
1005  M(Below, Condition)                                                   \
1006  M(BelowOrEqual, Condition)                                            \
1007  M(BooleanNot, UnaryOperation)                                         \
1008  M(BoundsCheck, Instruction)                                           \
1009  M(BoundType, Instruction)                                             \
1010  M(CheckCast, Instruction)                                             \
1011  M(ClearException, Instruction)                                        \
1012  M(ClinitCheck, Instruction)                                           \
1013  M(Compare, BinaryOperation)                                           \
1014  M(Condition, BinaryOperation)                                         \
1015  M(CurrentMethod, Instruction)                                         \
1016  M(Deoptimize, Instruction)                                            \
1017  M(Div, BinaryOperation)                                               \
1018  M(DivZeroCheck, Instruction)                                          \
1019  M(DoubleConstant, Constant)                                           \
1020  M(Equal, Condition)                                                   \
1021  M(Exit, Instruction)                                                  \
1022  M(FakeString, Instruction)                                            \
1023  M(FloatConstant, Constant)                                            \
1024  M(Goto, Instruction)                                                  \
1025  M(GreaterThan, Condition)                                             \
1026  M(GreaterThanOrEqual, Condition)                                      \
1027  M(If, Instruction)                                                    \
1028  M(InstanceFieldGet, Instruction)                                      \
1029  M(InstanceFieldSet, Instruction)                                      \
1030  M(InstanceOf, Instruction)                                            \
1031  M(IntConstant, Constant)                                              \
1032  M(InvokeUnresolved, Invoke)                                           \
1033  M(InvokeInterface, Invoke)                                            \
1034  M(InvokeStaticOrDirect, Invoke)                                       \
1035  M(InvokeVirtual, Invoke)                                              \
1036  M(LessThan, Condition)                                                \
1037  M(LessThanOrEqual, Condition)                                         \
1038  M(LoadClass, Instruction)                                             \
1039  M(LoadException, Instruction)                                         \
1040  M(LoadLocal, Instruction)                                             \
1041  M(LoadString, Instruction)                                            \
1042  M(Local, Instruction)                                                 \
1043  M(LongConstant, Constant)                                             \
1044  M(MemoryBarrier, Instruction)                                         \
1045  M(MonitorOperation, Instruction)                                      \
1046  M(Mul, BinaryOperation)                                               \
1047  M(Neg, UnaryOperation)                                                \
1048  M(NewArray, Instruction)                                              \
1049  M(NewInstance, Instruction)                                           \
1050  M(Not, UnaryOperation)                                                \
1051  M(NotEqual, Condition)                                                \
1052  M(NullConstant, Instruction)                                          \
1053  M(NullCheck, Instruction)                                             \
1054  M(Or, BinaryOperation)                                                \
1055  M(PackedSwitch, Instruction)                                          \
1056  M(ParallelMove, Instruction)                                          \
1057  M(ParameterValue, Instruction)                                        \
1058  M(Phi, Instruction)                                                   \
1059  M(Rem, BinaryOperation)                                               \
1060  M(Return, Instruction)                                                \
1061  M(ReturnVoid, Instruction)                                            \
1062  M(Shl, BinaryOperation)                                               \
1063  M(Shr, BinaryOperation)                                               \
1064  M(StaticFieldGet, Instruction)                                        \
1065  M(StaticFieldSet, Instruction)                                        \
1066  M(UnresolvedInstanceFieldGet, Instruction)                            \
1067  M(UnresolvedInstanceFieldSet, Instruction)                            \
1068  M(UnresolvedStaticFieldGet, Instruction)                              \
1069  M(UnresolvedStaticFieldSet, Instruction)                              \
1070  M(StoreLocal, Instruction)                                            \
1071  M(Sub, BinaryOperation)                                               \
1072  M(SuspendCheck, Instruction)                                          \
1073  M(Temporary, Instruction)                                             \
1074  M(Throw, Instruction)                                                 \
1075  M(TryBoundary, Instruction)                                           \
1076  M(TypeConversion, Instruction)                                        \
1077  M(UShr, BinaryOperation)                                              \
1078  M(Xor, BinaryOperation)                                               \
1079
1080#define FOR_EACH_CONCRETE_INSTRUCTION_ARM(M)
1081
1082#ifndef ART_ENABLE_CODEGEN_arm64
1083#define FOR_EACH_CONCRETE_INSTRUCTION_ARM64(M)
1084#else
1085#define FOR_EACH_CONCRETE_INSTRUCTION_ARM64(M)                          \
1086  M(Arm64IntermediateAddress, Instruction)
1087#endif
1088
1089#define FOR_EACH_CONCRETE_INSTRUCTION_MIPS64(M)
1090
1091#ifndef ART_ENABLE_CODEGEN_x86
1092#define FOR_EACH_CONCRETE_INSTRUCTION_X86(M)
1093#else
1094#define FOR_EACH_CONCRETE_INSTRUCTION_X86(M)                            \
1095  M(X86ComputeBaseMethodAddress, Instruction)                           \
1096  M(X86LoadFromConstantTable, Instruction)                              \
1097  M(X86PackedSwitch, Instruction)
1098#endif
1099
1100#define FOR_EACH_CONCRETE_INSTRUCTION_X86_64(M)
1101
1102#define FOR_EACH_CONCRETE_INSTRUCTION(M)                                \
1103  FOR_EACH_CONCRETE_INSTRUCTION_COMMON(M)                               \
1104  FOR_EACH_CONCRETE_INSTRUCTION_ARM(M)                                  \
1105  FOR_EACH_CONCRETE_INSTRUCTION_ARM64(M)                                \
1106  FOR_EACH_CONCRETE_INSTRUCTION_MIPS64(M)                               \
1107  FOR_EACH_CONCRETE_INSTRUCTION_X86(M)                                  \
1108  FOR_EACH_CONCRETE_INSTRUCTION_X86_64(M)
1109
1110#define FOR_EACH_INSTRUCTION(M)                                         \
1111  FOR_EACH_CONCRETE_INSTRUCTION(M)                                      \
1112  M(Constant, Instruction)                                              \
1113  M(UnaryOperation, Instruction)                                        \
1114  M(BinaryOperation, Instruction)                                       \
1115  M(Invoke, Instruction)
1116
1117#define FORWARD_DECLARATION(type, super) class H##type;
1118FOR_EACH_INSTRUCTION(FORWARD_DECLARATION)
1119#undef FORWARD_DECLARATION
1120
1121#define DECLARE_INSTRUCTION(type)                                       \
1122  InstructionKind GetKind() const OVERRIDE { return k##type; }          \
1123  const char* DebugName() const OVERRIDE { return #type; }              \
1124  const H##type* As##type() const OVERRIDE { return this; }             \
1125  H##type* As##type() OVERRIDE { return this; }                         \
1126  bool InstructionTypeEquals(HInstruction* other) const OVERRIDE {      \
1127    return other->Is##type();                                           \
1128  }                                                                     \
1129  void Accept(HGraphVisitor* visitor) OVERRIDE
1130
1131template <typename T> class HUseList;
1132
1133template <typename T>
1134class HUseListNode : public ArenaObject<kArenaAllocUseListNode> {
1135 public:
1136  HUseListNode* GetPrevious() const { return prev_; }
1137  HUseListNode* GetNext() const { return next_; }
1138  T GetUser() const { return user_; }
1139  size_t GetIndex() const { return index_; }
1140  void SetIndex(size_t index) { index_ = index; }
1141
1142 private:
1143  HUseListNode(T user, size_t index)
1144      : user_(user), index_(index), prev_(nullptr), next_(nullptr) {}
1145
1146  T const user_;
1147  size_t index_;
1148  HUseListNode<T>* prev_;
1149  HUseListNode<T>* next_;
1150
1151  friend class HUseList<T>;
1152
1153  DISALLOW_COPY_AND_ASSIGN(HUseListNode);
1154};
1155
1156template <typename T>
1157class HUseList : public ValueObject {
1158 public:
1159  HUseList() : first_(nullptr) {}
1160
1161  void Clear() {
1162    first_ = nullptr;
1163  }
1164
1165  // Adds a new entry at the beginning of the use list and returns
1166  // the newly created node.
1167  HUseListNode<T>* AddUse(T user, size_t index, ArenaAllocator* arena) {
1168    HUseListNode<T>* new_node = new (arena) HUseListNode<T>(user, index);
1169    if (IsEmpty()) {
1170      first_ = new_node;
1171    } else {
1172      first_->prev_ = new_node;
1173      new_node->next_ = first_;
1174      first_ = new_node;
1175    }
1176    return new_node;
1177  }
1178
1179  HUseListNode<T>* GetFirst() const {
1180    return first_;
1181  }
1182
1183  void Remove(HUseListNode<T>* node) {
1184    DCHECK(node != nullptr);
1185    DCHECK(Contains(node));
1186
1187    if (node->prev_ != nullptr) {
1188      node->prev_->next_ = node->next_;
1189    }
1190    if (node->next_ != nullptr) {
1191      node->next_->prev_ = node->prev_;
1192    }
1193    if (node == first_) {
1194      first_ = node->next_;
1195    }
1196  }
1197
1198  bool Contains(const HUseListNode<T>* node) const {
1199    if (node == nullptr) {
1200      return false;
1201    }
1202    for (HUseListNode<T>* current = first_; current != nullptr; current = current->GetNext()) {
1203      if (current == node) {
1204        return true;
1205      }
1206    }
1207    return false;
1208  }
1209
1210  bool IsEmpty() const {
1211    return first_ == nullptr;
1212  }
1213
1214  bool HasOnlyOneUse() const {
1215    return first_ != nullptr && first_->next_ == nullptr;
1216  }
1217
1218  size_t SizeSlow() const {
1219    size_t count = 0;
1220    for (HUseListNode<T>* current = first_; current != nullptr; current = current->GetNext()) {
1221      ++count;
1222    }
1223    return count;
1224  }
1225
1226 private:
1227  HUseListNode<T>* first_;
1228};
1229
1230template<typename T>
1231class HUseIterator : public ValueObject {
1232 public:
1233  explicit HUseIterator(const HUseList<T>& uses) : current_(uses.GetFirst()) {}
1234
1235  bool Done() const { return current_ == nullptr; }
1236
1237  void Advance() {
1238    DCHECK(!Done());
1239    current_ = current_->GetNext();
1240  }
1241
1242  HUseListNode<T>* Current() const {
1243    DCHECK(!Done());
1244    return current_;
1245  }
1246
1247 private:
1248  HUseListNode<T>* current_;
1249
1250  friend class HValue;
1251};
1252
1253// This class is used by HEnvironment and HInstruction classes to record the
1254// instructions they use and pointers to the corresponding HUseListNodes kept
1255// by the used instructions.
1256template <typename T>
1257class HUserRecord : public ValueObject {
1258 public:
1259  HUserRecord() : instruction_(nullptr), use_node_(nullptr) {}
1260  explicit HUserRecord(HInstruction* instruction) : instruction_(instruction), use_node_(nullptr) {}
1261
1262  HUserRecord(const HUserRecord<T>& old_record, HUseListNode<T>* use_node)
1263    : instruction_(old_record.instruction_), use_node_(use_node) {
1264    DCHECK(instruction_ != nullptr);
1265    DCHECK(use_node_ != nullptr);
1266    DCHECK(old_record.use_node_ == nullptr);
1267  }
1268
1269  HInstruction* GetInstruction() const { return instruction_; }
1270  HUseListNode<T>* GetUseNode() const { return use_node_; }
1271
1272 private:
1273  // Instruction used by the user.
1274  HInstruction* instruction_;
1275
1276  // Corresponding entry in the use list kept by 'instruction_'.
1277  HUseListNode<T>* use_node_;
1278};
1279
1280/**
1281 * Side-effects representation.
1282 *
1283 * For write/read dependences on fields/arrays, the dependence analysis uses
1284 * type disambiguation (e.g. a float field write cannot modify the value of an
1285 * integer field read) and the access type (e.g.  a reference array write cannot
1286 * modify the value of a reference field read [although it may modify the
1287 * reference fetch prior to reading the field, which is represented by its own
1288 * write/read dependence]). The analysis makes conservative points-to
1289 * assumptions on reference types (e.g. two same typed arrays are assumed to be
1290 * the same, and any reference read depends on any reference read without
1291 * further regard of its type).
1292 *
1293 * The internal representation uses 38-bit and is described in the table below.
1294 * The first line indicates the side effect, and for field/array accesses the
1295 * second line indicates the type of the access (in the order of the
1296 * Primitive::Type enum).
1297 * The two numbered lines below indicate the bit position in the bitfield (read
1298 * vertically).
1299 *
1300 *   |Depends on GC|ARRAY-R  |FIELD-R  |Can trigger GC|ARRAY-W  |FIELD-W  |
1301 *   +-------------+---------+---------+--------------+---------+---------+
1302 *   |             |DFJISCBZL|DFJISCBZL|              |DFJISCBZL|DFJISCBZL|
1303 *   |      3      |333333322|222222221|       1      |111111110|000000000|
1304 *   |      7      |654321098|765432109|       8      |765432109|876543210|
1305 *
1306 * Note that, to ease the implementation, 'changes' bits are least significant
1307 * bits, while 'dependency' bits are most significant bits.
1308 */
1309class SideEffects : public ValueObject {
1310 public:
1311  SideEffects() : flags_(0) {}
1312
1313  static SideEffects None() {
1314    return SideEffects(0);
1315  }
1316
1317  static SideEffects All() {
1318    return SideEffects(kAllChangeBits | kAllDependOnBits);
1319  }
1320
1321  static SideEffects AllChanges() {
1322    return SideEffects(kAllChangeBits);
1323  }
1324
1325  static SideEffects AllDependencies() {
1326    return SideEffects(kAllDependOnBits);
1327  }
1328
1329  static SideEffects AllExceptGCDependency() {
1330    return AllWritesAndReads().Union(SideEffects::CanTriggerGC());
1331  }
1332
1333  static SideEffects AllWritesAndReads() {
1334    return SideEffects(kAllWrites | kAllReads);
1335  }
1336
1337  static SideEffects AllWrites() {
1338    return SideEffects(kAllWrites);
1339  }
1340
1341  static SideEffects AllReads() {
1342    return SideEffects(kAllReads);
1343  }
1344
1345  static SideEffects FieldWriteOfType(Primitive::Type type, bool is_volatile) {
1346    return is_volatile
1347        ? AllWritesAndReads()
1348        : SideEffects(TypeFlagWithAlias(type, kFieldWriteOffset));
1349  }
1350
1351  static SideEffects ArrayWriteOfType(Primitive::Type type) {
1352    return SideEffects(TypeFlagWithAlias(type, kArrayWriteOffset));
1353  }
1354
1355  static SideEffects FieldReadOfType(Primitive::Type type, bool is_volatile) {
1356    return is_volatile
1357        ? AllWritesAndReads()
1358        : SideEffects(TypeFlagWithAlias(type, kFieldReadOffset));
1359  }
1360
1361  static SideEffects ArrayReadOfType(Primitive::Type type) {
1362    return SideEffects(TypeFlagWithAlias(type, kArrayReadOffset));
1363  }
1364
1365  static SideEffects CanTriggerGC() {
1366    return SideEffects(1ULL << kCanTriggerGCBit);
1367  }
1368
1369  static SideEffects DependsOnGC() {
1370    return SideEffects(1ULL << kDependsOnGCBit);
1371  }
1372
1373  // Combines the side-effects of this and the other.
1374  SideEffects Union(SideEffects other) const {
1375    return SideEffects(flags_ | other.flags_);
1376  }
1377
1378  SideEffects Exclusion(SideEffects other) const {
1379    return SideEffects(flags_ & ~other.flags_);
1380  }
1381
1382  void Add(SideEffects other) {
1383    flags_ |= other.flags_;
1384  }
1385
1386  bool Includes(SideEffects other) const {
1387    return (other.flags_ & flags_) == other.flags_;
1388  }
1389
1390  bool HasSideEffects() const {
1391    return (flags_ & kAllChangeBits);
1392  }
1393
1394  bool HasDependencies() const {
1395    return (flags_ & kAllDependOnBits);
1396  }
1397
1398  // Returns true if there are no side effects or dependencies.
1399  bool DoesNothing() const {
1400    return flags_ == 0;
1401  }
1402
1403  // Returns true if something is written.
1404  bool DoesAnyWrite() const {
1405    return (flags_ & kAllWrites);
1406  }
1407
1408  // Returns true if something is read.
1409  bool DoesAnyRead() const {
1410    return (flags_ & kAllReads);
1411  }
1412
1413  // Returns true if potentially everything is written and read
1414  // (every type and every kind of access).
1415  bool DoesAllReadWrite() const {
1416    return (flags_ & (kAllWrites | kAllReads)) == (kAllWrites | kAllReads);
1417  }
1418
1419  bool DoesAll() const {
1420    return flags_ == (kAllChangeBits | kAllDependOnBits);
1421  }
1422
1423  // Returns true if this may read something written by other.
1424  bool MayDependOn(SideEffects other) const {
1425    const uint64_t depends_on_flags = (flags_ & kAllDependOnBits) >> kChangeBits;
1426    return (other.flags_ & depends_on_flags);
1427  }
1428
1429  // Returns string representation of flags (for debugging only).
1430  // Format: |x|DFJISCBZL|DFJISCBZL|y|DFJISCBZL|DFJISCBZL|
1431  std::string ToString() const {
1432    std::string flags = "|";
1433    for (int s = kLastBit; s >= 0; s--) {
1434      bool current_bit_is_set = ((flags_ >> s) & 1) != 0;
1435      if ((s == kDependsOnGCBit) || (s == kCanTriggerGCBit)) {
1436        // This is a bit for the GC side effect.
1437        if (current_bit_is_set) {
1438          flags += "GC";
1439        }
1440        flags += "|";
1441      } else {
1442        // This is a bit for the array/field analysis.
1443        // The underscore character stands for the 'can trigger GC' bit.
1444        static const char *kDebug = "LZBCSIJFDLZBCSIJFD_LZBCSIJFDLZBCSIJFD";
1445        if (current_bit_is_set) {
1446          flags += kDebug[s];
1447        }
1448        if ((s == kFieldWriteOffset) || (s == kArrayWriteOffset) ||
1449            (s == kFieldReadOffset) || (s == kArrayReadOffset)) {
1450          flags += "|";
1451        }
1452      }
1453    }
1454    return flags;
1455  }
1456
1457  bool Equals(const SideEffects& other) const { return flags_ == other.flags_; }
1458
1459 private:
1460  static constexpr int kFieldArrayAnalysisBits = 9;
1461
1462  static constexpr int kFieldWriteOffset = 0;
1463  static constexpr int kArrayWriteOffset = kFieldWriteOffset + kFieldArrayAnalysisBits;
1464  static constexpr int kLastBitForWrites = kArrayWriteOffset + kFieldArrayAnalysisBits - 1;
1465  static constexpr int kCanTriggerGCBit = kLastBitForWrites + 1;
1466
1467  static constexpr int kChangeBits = kCanTriggerGCBit + 1;
1468
1469  static constexpr int kFieldReadOffset = kCanTriggerGCBit + 1;
1470  static constexpr int kArrayReadOffset = kFieldReadOffset + kFieldArrayAnalysisBits;
1471  static constexpr int kLastBitForReads = kArrayReadOffset + kFieldArrayAnalysisBits - 1;
1472  static constexpr int kDependsOnGCBit = kLastBitForReads + 1;
1473
1474  static constexpr int kLastBit = kDependsOnGCBit;
1475  static constexpr int kDependOnBits = kLastBit + 1 - kChangeBits;
1476
1477  // Aliases.
1478
1479  static_assert(kChangeBits == kDependOnBits,
1480                "the 'change' bits should match the 'depend on' bits.");
1481
1482  static constexpr uint64_t kAllChangeBits = ((1ULL << kChangeBits) - 1);
1483  static constexpr uint64_t kAllDependOnBits = ((1ULL << kDependOnBits) - 1) << kChangeBits;
1484  static constexpr uint64_t kAllWrites =
1485      ((1ULL << (kLastBitForWrites + 1 - kFieldWriteOffset)) - 1) << kFieldWriteOffset;
1486  static constexpr uint64_t kAllReads =
1487      ((1ULL << (kLastBitForReads + 1 - kFieldReadOffset)) - 1) << kFieldReadOffset;
1488
1489  // Work around the fact that HIR aliases I/F and J/D.
1490  // TODO: remove this interceptor once HIR types are clean
1491  static uint64_t TypeFlagWithAlias(Primitive::Type type, int offset) {
1492    switch (type) {
1493      case Primitive::kPrimInt:
1494      case Primitive::kPrimFloat:
1495        return TypeFlag(Primitive::kPrimInt, offset) |
1496               TypeFlag(Primitive::kPrimFloat, offset);
1497      case Primitive::kPrimLong:
1498      case Primitive::kPrimDouble:
1499        return TypeFlag(Primitive::kPrimLong, offset) |
1500               TypeFlag(Primitive::kPrimDouble, offset);
1501      default:
1502        return TypeFlag(type, offset);
1503    }
1504  }
1505
1506  // Translates type to bit flag.
1507  static uint64_t TypeFlag(Primitive::Type type, int offset) {
1508    CHECK_NE(type, Primitive::kPrimVoid);
1509    const uint64_t one = 1;
1510    const int shift = type;  // 0-based consecutive enum
1511    DCHECK_LE(kFieldWriteOffset, shift);
1512    DCHECK_LT(shift, kArrayWriteOffset);
1513    return one << (type + offset);
1514  }
1515
1516  // Private constructor on direct flags value.
1517  explicit SideEffects(uint64_t flags) : flags_(flags) {}
1518
1519  uint64_t flags_;
1520};
1521
1522// A HEnvironment object contains the values of virtual registers at a given location.
1523class HEnvironment : public ArenaObject<kArenaAllocEnvironment> {
1524 public:
1525  HEnvironment(ArenaAllocator* arena,
1526               size_t number_of_vregs,
1527               const DexFile& dex_file,
1528               uint32_t method_idx,
1529               uint32_t dex_pc,
1530               InvokeType invoke_type,
1531               HInstruction* holder)
1532     : vregs_(number_of_vregs, arena->Adapter(kArenaAllocEnvironmentVRegs)),
1533       locations_(number_of_vregs, arena->Adapter(kArenaAllocEnvironmentLocations)),
1534       parent_(nullptr),
1535       dex_file_(dex_file),
1536       method_idx_(method_idx),
1537       dex_pc_(dex_pc),
1538       invoke_type_(invoke_type),
1539       holder_(holder) {
1540  }
1541
1542  HEnvironment(ArenaAllocator* arena, const HEnvironment& to_copy, HInstruction* holder)
1543      : HEnvironment(arena,
1544                     to_copy.Size(),
1545                     to_copy.GetDexFile(),
1546                     to_copy.GetMethodIdx(),
1547                     to_copy.GetDexPc(),
1548                     to_copy.GetInvokeType(),
1549                     holder) {}
1550
1551  void SetAndCopyParentChain(ArenaAllocator* allocator, HEnvironment* parent) {
1552    if (parent_ != nullptr) {
1553      parent_->SetAndCopyParentChain(allocator, parent);
1554    } else {
1555      parent_ = new (allocator) HEnvironment(allocator, *parent, holder_);
1556      parent_->CopyFrom(parent);
1557      if (parent->GetParent() != nullptr) {
1558        parent_->SetAndCopyParentChain(allocator, parent->GetParent());
1559      }
1560    }
1561  }
1562
1563  void CopyFrom(const ArenaVector<HInstruction*>& locals);
1564  void CopyFrom(HEnvironment* environment);
1565
1566  // Copy from `env`. If it's a loop phi for `loop_header`, copy the first
1567  // input to the loop phi instead. This is for inserting instructions that
1568  // require an environment (like HDeoptimization) in the loop pre-header.
1569  void CopyFromWithLoopPhiAdjustment(HEnvironment* env, HBasicBlock* loop_header);
1570
1571  void SetRawEnvAt(size_t index, HInstruction* instruction) {
1572    vregs_[index] = HUserRecord<HEnvironment*>(instruction);
1573  }
1574
1575  HInstruction* GetInstructionAt(size_t index) const {
1576    return vregs_[index].GetInstruction();
1577  }
1578
1579  void RemoveAsUserOfInput(size_t index) const;
1580
1581  size_t Size() const { return vregs_.size(); }
1582
1583  HEnvironment* GetParent() const { return parent_; }
1584
1585  void SetLocationAt(size_t index, Location location) {
1586    locations_[index] = location;
1587  }
1588
1589  Location GetLocationAt(size_t index) const {
1590    return locations_[index];
1591  }
1592
1593  uint32_t GetDexPc() const {
1594    return dex_pc_;
1595  }
1596
1597  uint32_t GetMethodIdx() const {
1598    return method_idx_;
1599  }
1600
1601  InvokeType GetInvokeType() const {
1602    return invoke_type_;
1603  }
1604
1605  const DexFile& GetDexFile() const {
1606    return dex_file_;
1607  }
1608
1609  HInstruction* GetHolder() const {
1610    return holder_;
1611  }
1612
1613 private:
1614  // Record instructions' use entries of this environment for constant-time removal.
1615  // It should only be called by HInstruction when a new environment use is added.
1616  void RecordEnvUse(HUseListNode<HEnvironment*>* env_use) {
1617    DCHECK(env_use->GetUser() == this);
1618    size_t index = env_use->GetIndex();
1619    vregs_[index] = HUserRecord<HEnvironment*>(vregs_[index], env_use);
1620  }
1621
1622  ArenaVector<HUserRecord<HEnvironment*>> vregs_;
1623  ArenaVector<Location> locations_;
1624  HEnvironment* parent_;
1625  const DexFile& dex_file_;
1626  const uint32_t method_idx_;
1627  const uint32_t dex_pc_;
1628  const InvokeType invoke_type_;
1629
1630  // The instruction that holds this environment.
1631  HInstruction* const holder_;
1632
1633  friend class HInstruction;
1634
1635  DISALLOW_COPY_AND_ASSIGN(HEnvironment);
1636};
1637
1638class ReferenceTypeInfo : ValueObject {
1639 public:
1640  typedef Handle<mirror::Class> TypeHandle;
1641
1642  static ReferenceTypeInfo Create(TypeHandle type_handle, bool is_exact) {
1643    // The constructor will check that the type_handle is valid.
1644    return ReferenceTypeInfo(type_handle, is_exact);
1645  }
1646
1647  static ReferenceTypeInfo CreateInvalid() { return ReferenceTypeInfo(); }
1648
1649  static bool IsValidHandle(TypeHandle handle) SHARED_REQUIRES(Locks::mutator_lock_) {
1650    return handle.GetReference() != nullptr;
1651  }
1652
1653  bool IsValid() const SHARED_REQUIRES(Locks::mutator_lock_) {
1654    return IsValidHandle(type_handle_);
1655  }
1656
1657  bool IsExact() const { return is_exact_; }
1658
1659  bool IsObjectClass() const SHARED_REQUIRES(Locks::mutator_lock_) {
1660    DCHECK(IsValid());
1661    return GetTypeHandle()->IsObjectClass();
1662  }
1663
1664  bool IsStringClass() const SHARED_REQUIRES(Locks::mutator_lock_) {
1665    DCHECK(IsValid());
1666    return GetTypeHandle()->IsStringClass();
1667  }
1668
1669  bool IsObjectArray() const SHARED_REQUIRES(Locks::mutator_lock_) {
1670    DCHECK(IsValid());
1671    return IsArrayClass() && GetTypeHandle()->GetComponentType()->IsObjectClass();
1672  }
1673
1674  bool IsInterface() const SHARED_REQUIRES(Locks::mutator_lock_) {
1675    DCHECK(IsValid());
1676    return GetTypeHandle()->IsInterface();
1677  }
1678
1679  bool IsArrayClass() const SHARED_REQUIRES(Locks::mutator_lock_) {
1680    DCHECK(IsValid());
1681    return GetTypeHandle()->IsArrayClass();
1682  }
1683
1684  bool IsPrimitiveArrayClass() const SHARED_REQUIRES(Locks::mutator_lock_) {
1685    DCHECK(IsValid());
1686    return GetTypeHandle()->IsPrimitiveArray();
1687  }
1688
1689  bool IsNonPrimitiveArrayClass() const SHARED_REQUIRES(Locks::mutator_lock_) {
1690    DCHECK(IsValid());
1691    return GetTypeHandle()->IsArrayClass() && !GetTypeHandle()->IsPrimitiveArray();
1692  }
1693
1694  bool CanArrayHold(ReferenceTypeInfo rti)  const SHARED_REQUIRES(Locks::mutator_lock_) {
1695    DCHECK(IsValid());
1696    if (!IsExact()) return false;
1697    if (!IsArrayClass()) return false;
1698    return GetTypeHandle()->GetComponentType()->IsAssignableFrom(rti.GetTypeHandle().Get());
1699  }
1700
1701  bool CanArrayHoldValuesOf(ReferenceTypeInfo rti)  const SHARED_REQUIRES(Locks::mutator_lock_) {
1702    DCHECK(IsValid());
1703    if (!IsExact()) return false;
1704    if (!IsArrayClass()) return false;
1705    if (!rti.IsArrayClass()) return false;
1706    return GetTypeHandle()->GetComponentType()->IsAssignableFrom(
1707        rti.GetTypeHandle()->GetComponentType());
1708  }
1709
1710  Handle<mirror::Class> GetTypeHandle() const { return type_handle_; }
1711
1712  bool IsSupertypeOf(ReferenceTypeInfo rti) const SHARED_REQUIRES(Locks::mutator_lock_) {
1713    DCHECK(IsValid());
1714    DCHECK(rti.IsValid());
1715    return GetTypeHandle()->IsAssignableFrom(rti.GetTypeHandle().Get());
1716  }
1717
1718  // Returns true if the type information provide the same amount of details.
1719  // Note that it does not mean that the instructions have the same actual type
1720  // (because the type can be the result of a merge).
1721  bool IsEqual(ReferenceTypeInfo rti) SHARED_REQUIRES(Locks::mutator_lock_) {
1722    if (!IsValid() && !rti.IsValid()) {
1723      // Invalid types are equal.
1724      return true;
1725    }
1726    if (!IsValid() || !rti.IsValid()) {
1727      // One is valid, the other not.
1728      return false;
1729    }
1730    return IsExact() == rti.IsExact()
1731        && GetTypeHandle().Get() == rti.GetTypeHandle().Get();
1732  }
1733
1734 private:
1735  ReferenceTypeInfo();
1736  ReferenceTypeInfo(TypeHandle type_handle, bool is_exact);
1737
1738  // The class of the object.
1739  TypeHandle type_handle_;
1740  // Whether or not the type is exact or a superclass of the actual type.
1741  // Whether or not we have any information about this type.
1742  bool is_exact_;
1743};
1744
1745std::ostream& operator<<(std::ostream& os, const ReferenceTypeInfo& rhs);
1746
1747class HInstruction : public ArenaObject<kArenaAllocInstruction> {
1748 public:
1749  HInstruction(SideEffects side_effects, uint32_t dex_pc)
1750      : previous_(nullptr),
1751        next_(nullptr),
1752        block_(nullptr),
1753        dex_pc_(dex_pc),
1754        id_(-1),
1755        ssa_index_(-1),
1756        environment_(nullptr),
1757        locations_(nullptr),
1758        live_interval_(nullptr),
1759        lifetime_position_(kNoLifetime),
1760        side_effects_(side_effects),
1761        reference_type_info_(ReferenceTypeInfo::CreateInvalid()) {}
1762
1763  virtual ~HInstruction() {}
1764
1765#define DECLARE_KIND(type, super) k##type,
1766  enum InstructionKind {
1767    FOR_EACH_INSTRUCTION(DECLARE_KIND)
1768  };
1769#undef DECLARE_KIND
1770
1771  HInstruction* GetNext() const { return next_; }
1772  HInstruction* GetPrevious() const { return previous_; }
1773
1774  HInstruction* GetNextDisregardingMoves() const;
1775  HInstruction* GetPreviousDisregardingMoves() const;
1776
1777  HBasicBlock* GetBlock() const { return block_; }
1778  ArenaAllocator* GetArena() const { return block_->GetGraph()->GetArena(); }
1779  void SetBlock(HBasicBlock* block) { block_ = block; }
1780  bool IsInBlock() const { return block_ != nullptr; }
1781  bool IsInLoop() const { return block_->IsInLoop(); }
1782  bool IsLoopHeaderPhi() { return IsPhi() && block_->IsLoopHeader(); }
1783
1784  virtual size_t InputCount() const = 0;
1785  HInstruction* InputAt(size_t i) const { return InputRecordAt(i).GetInstruction(); }
1786
1787  virtual void Accept(HGraphVisitor* visitor) = 0;
1788  virtual const char* DebugName() const = 0;
1789
1790  virtual Primitive::Type GetType() const { return Primitive::kPrimVoid; }
1791  void SetRawInputAt(size_t index, HInstruction* input) {
1792    SetRawInputRecordAt(index, HUserRecord<HInstruction*>(input));
1793  }
1794
1795  virtual bool NeedsEnvironment() const { return false; }
1796
1797  uint32_t GetDexPc() const { return dex_pc_; }
1798
1799  virtual bool IsControlFlow() const { return false; }
1800
1801  virtual bool CanThrow() const { return false; }
1802  bool CanThrowIntoCatchBlock() const { return CanThrow() && block_->IsTryBlock(); }
1803
1804  bool HasSideEffects() const { return side_effects_.HasSideEffects(); }
1805  bool DoesAnyWrite() const { return side_effects_.DoesAnyWrite(); }
1806
1807  // Does not apply for all instructions, but having this at top level greatly
1808  // simplifies the null check elimination.
1809  // TODO: Consider merging can_be_null into ReferenceTypeInfo.
1810  virtual bool CanBeNull() const {
1811    DCHECK_EQ(GetType(), Primitive::kPrimNot) << "CanBeNull only applies to reference types";
1812    return true;
1813  }
1814
1815  virtual bool CanDoImplicitNullCheckOn(HInstruction* obj ATTRIBUTE_UNUSED) const {
1816    return false;
1817  }
1818
1819  void SetReferenceTypeInfo(ReferenceTypeInfo rti);
1820
1821  ReferenceTypeInfo GetReferenceTypeInfo() const {
1822    DCHECK_EQ(GetType(), Primitive::kPrimNot);
1823    return reference_type_info_;
1824  }
1825
1826  void AddUseAt(HInstruction* user, size_t index) {
1827    DCHECK(user != nullptr);
1828    HUseListNode<HInstruction*>* use =
1829        uses_.AddUse(user, index, GetBlock()->GetGraph()->GetArena());
1830    user->SetRawInputRecordAt(index, HUserRecord<HInstruction*>(user->InputRecordAt(index), use));
1831  }
1832
1833  void AddEnvUseAt(HEnvironment* user, size_t index) {
1834    DCHECK(user != nullptr);
1835    HUseListNode<HEnvironment*>* env_use =
1836        env_uses_.AddUse(user, index, GetBlock()->GetGraph()->GetArena());
1837    user->RecordEnvUse(env_use);
1838  }
1839
1840  void RemoveAsUserOfInput(size_t input) {
1841    HUserRecord<HInstruction*> input_use = InputRecordAt(input);
1842    input_use.GetInstruction()->uses_.Remove(input_use.GetUseNode());
1843  }
1844
1845  const HUseList<HInstruction*>& GetUses() const { return uses_; }
1846  const HUseList<HEnvironment*>& GetEnvUses() const { return env_uses_; }
1847
1848  bool HasUses() const { return !uses_.IsEmpty() || !env_uses_.IsEmpty(); }
1849  bool HasEnvironmentUses() const { return !env_uses_.IsEmpty(); }
1850  bool HasNonEnvironmentUses() const { return !uses_.IsEmpty(); }
1851  bool HasOnlyOneNonEnvironmentUse() const {
1852    return !HasEnvironmentUses() && GetUses().HasOnlyOneUse();
1853  }
1854
1855  // Does this instruction strictly dominate `other_instruction`?
1856  // Returns false if this instruction and `other_instruction` are the same.
1857  // Aborts if this instruction and `other_instruction` are both phis.
1858  bool StrictlyDominates(HInstruction* other_instruction) const;
1859
1860  int GetId() const { return id_; }
1861  void SetId(int id) { id_ = id; }
1862
1863  int GetSsaIndex() const { return ssa_index_; }
1864  void SetSsaIndex(int ssa_index) { ssa_index_ = ssa_index; }
1865  bool HasSsaIndex() const { return ssa_index_ != -1; }
1866
1867  bool HasEnvironment() const { return environment_ != nullptr; }
1868  HEnvironment* GetEnvironment() const { return environment_; }
1869  // Set the `environment_` field. Raw because this method does not
1870  // update the uses lists.
1871  void SetRawEnvironment(HEnvironment* environment) {
1872    DCHECK(environment_ == nullptr);
1873    DCHECK_EQ(environment->GetHolder(), this);
1874    environment_ = environment;
1875  }
1876
1877  // Set the environment of this instruction, copying it from `environment`. While
1878  // copying, the uses lists are being updated.
1879  void CopyEnvironmentFrom(HEnvironment* environment) {
1880    DCHECK(environment_ == nullptr);
1881    ArenaAllocator* allocator = GetBlock()->GetGraph()->GetArena();
1882    environment_ = new (allocator) HEnvironment(allocator, *environment, this);
1883    environment_->CopyFrom(environment);
1884    if (environment->GetParent() != nullptr) {
1885      environment_->SetAndCopyParentChain(allocator, environment->GetParent());
1886    }
1887  }
1888
1889  void CopyEnvironmentFromWithLoopPhiAdjustment(HEnvironment* environment,
1890                                                HBasicBlock* block) {
1891    DCHECK(environment_ == nullptr);
1892    ArenaAllocator* allocator = GetBlock()->GetGraph()->GetArena();
1893    environment_ = new (allocator) HEnvironment(allocator, *environment, this);
1894    environment_->CopyFromWithLoopPhiAdjustment(environment, block);
1895    if (environment->GetParent() != nullptr) {
1896      environment_->SetAndCopyParentChain(allocator, environment->GetParent());
1897    }
1898  }
1899
1900  // Returns the number of entries in the environment. Typically, that is the
1901  // number of dex registers in a method. It could be more in case of inlining.
1902  size_t EnvironmentSize() const;
1903
1904  LocationSummary* GetLocations() const { return locations_; }
1905  void SetLocations(LocationSummary* locations) { locations_ = locations; }
1906
1907  void ReplaceWith(HInstruction* instruction);
1908  void ReplaceInput(HInstruction* replacement, size_t index);
1909
1910  // This is almost the same as doing `ReplaceWith()`. But in this helper, the
1911  // uses of this instruction by `other` are *not* updated.
1912  void ReplaceWithExceptInReplacementAtIndex(HInstruction* other, size_t use_index) {
1913    ReplaceWith(other);
1914    other->ReplaceInput(this, use_index);
1915  }
1916
1917  // Move `this` instruction before `cursor`.
1918  void MoveBefore(HInstruction* cursor);
1919
1920#define INSTRUCTION_TYPE_CHECK(type, super)                                    \
1921  bool Is##type() const { return (As##type() != nullptr); }                    \
1922  virtual const H##type* As##type() const { return nullptr; }                  \
1923  virtual H##type* As##type() { return nullptr; }
1924
1925  FOR_EACH_INSTRUCTION(INSTRUCTION_TYPE_CHECK)
1926#undef INSTRUCTION_TYPE_CHECK
1927
1928  // Returns whether the instruction can be moved within the graph.
1929  virtual bool CanBeMoved() const { return false; }
1930
1931  // Returns whether the two instructions are of the same kind.
1932  virtual bool InstructionTypeEquals(HInstruction* other ATTRIBUTE_UNUSED) const {
1933    return false;
1934  }
1935
1936  // Returns whether any data encoded in the two instructions is equal.
1937  // This method does not look at the inputs. Both instructions must be
1938  // of the same type, otherwise the method has undefined behavior.
1939  virtual bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const {
1940    return false;
1941  }
1942
1943  // Returns whether two instructions are equal, that is:
1944  // 1) They have the same type and contain the same data (InstructionDataEquals).
1945  // 2) Their inputs are identical.
1946  bool Equals(HInstruction* other) const;
1947
1948  virtual InstructionKind GetKind() const = 0;
1949
1950  virtual size_t ComputeHashCode() const {
1951    size_t result = GetKind();
1952    for (size_t i = 0, e = InputCount(); i < e; ++i) {
1953      result = (result * 31) + InputAt(i)->GetId();
1954    }
1955    return result;
1956  }
1957
1958  SideEffects GetSideEffects() const { return side_effects_; }
1959  void AddSideEffects(SideEffects other) { side_effects_.Add(other); }
1960
1961  size_t GetLifetimePosition() const { return lifetime_position_; }
1962  void SetLifetimePosition(size_t position) { lifetime_position_ = position; }
1963  LiveInterval* GetLiveInterval() const { return live_interval_; }
1964  void SetLiveInterval(LiveInterval* interval) { live_interval_ = interval; }
1965  bool HasLiveInterval() const { return live_interval_ != nullptr; }
1966
1967  bool IsSuspendCheckEntry() const { return IsSuspendCheck() && GetBlock()->IsEntryBlock(); }
1968
1969  // Returns whether the code generation of the instruction will require to have access
1970  // to the current method. Such instructions are:
1971  // (1): Instructions that require an environment, as calling the runtime requires
1972  //      to walk the stack and have the current method stored at a specific stack address.
1973  // (2): Object literals like classes and strings, that are loaded from the dex cache
1974  //      fields of the current method.
1975  bool NeedsCurrentMethod() const {
1976    return NeedsEnvironment() || IsLoadClass() || IsLoadString();
1977  }
1978
1979  virtual bool NeedsDexCache() const { return false; }
1980
1981  // Does this instruction have any use in an environment before
1982  // control flow hits 'other'?
1983  bool HasAnyEnvironmentUseBefore(HInstruction* other);
1984
1985  // Remove all references to environment uses of this instruction.
1986  // The caller must ensure that this is safe to do.
1987  void RemoveEnvironmentUsers();
1988
1989 protected:
1990  virtual const HUserRecord<HInstruction*> InputRecordAt(size_t i) const = 0;
1991  virtual void SetRawInputRecordAt(size_t index, const HUserRecord<HInstruction*>& input) = 0;
1992
1993 private:
1994  void RemoveEnvironmentUser(HUseListNode<HEnvironment*>* use_node) { env_uses_.Remove(use_node); }
1995
1996  HInstruction* previous_;
1997  HInstruction* next_;
1998  HBasicBlock* block_;
1999  const uint32_t dex_pc_;
2000
2001  // An instruction gets an id when it is added to the graph.
2002  // It reflects creation order. A negative id means the instruction
2003  // has not been added to the graph.
2004  int id_;
2005
2006  // When doing liveness analysis, instructions that have uses get an SSA index.
2007  int ssa_index_;
2008
2009  // List of instructions that have this instruction as input.
2010  HUseList<HInstruction*> uses_;
2011
2012  // List of environments that contain this instruction.
2013  HUseList<HEnvironment*> env_uses_;
2014
2015  // The environment associated with this instruction. Not null if the instruction
2016  // might jump out of the method.
2017  HEnvironment* environment_;
2018
2019  // Set by the code generator.
2020  LocationSummary* locations_;
2021
2022  // Set by the liveness analysis.
2023  LiveInterval* live_interval_;
2024
2025  // Set by the liveness analysis, this is the position in a linear
2026  // order of blocks where this instruction's live interval start.
2027  size_t lifetime_position_;
2028
2029  SideEffects side_effects_;
2030
2031  // TODO: for primitive types this should be marked as invalid.
2032  ReferenceTypeInfo reference_type_info_;
2033
2034  friend class GraphChecker;
2035  friend class HBasicBlock;
2036  friend class HEnvironment;
2037  friend class HGraph;
2038  friend class HInstructionList;
2039
2040  DISALLOW_COPY_AND_ASSIGN(HInstruction);
2041};
2042std::ostream& operator<<(std::ostream& os, const HInstruction::InstructionKind& rhs);
2043
2044class HInputIterator : public ValueObject {
2045 public:
2046  explicit HInputIterator(HInstruction* instruction) : instruction_(instruction), index_(0) {}
2047
2048  bool Done() const { return index_ == instruction_->InputCount(); }
2049  HInstruction* Current() const { return instruction_->InputAt(index_); }
2050  void Advance() { index_++; }
2051
2052 private:
2053  HInstruction* instruction_;
2054  size_t index_;
2055
2056  DISALLOW_COPY_AND_ASSIGN(HInputIterator);
2057};
2058
2059class HInstructionIterator : public ValueObject {
2060 public:
2061  explicit HInstructionIterator(const HInstructionList& instructions)
2062      : instruction_(instructions.first_instruction_) {
2063    next_ = Done() ? nullptr : instruction_->GetNext();
2064  }
2065
2066  bool Done() const { return instruction_ == nullptr; }
2067  HInstruction* Current() const { return instruction_; }
2068  void Advance() {
2069    instruction_ = next_;
2070    next_ = Done() ? nullptr : instruction_->GetNext();
2071  }
2072
2073 private:
2074  HInstruction* instruction_;
2075  HInstruction* next_;
2076
2077  DISALLOW_COPY_AND_ASSIGN(HInstructionIterator);
2078};
2079
2080class HBackwardInstructionIterator : public ValueObject {
2081 public:
2082  explicit HBackwardInstructionIterator(const HInstructionList& instructions)
2083      : instruction_(instructions.last_instruction_) {
2084    next_ = Done() ? nullptr : instruction_->GetPrevious();
2085  }
2086
2087  bool Done() const { return instruction_ == nullptr; }
2088  HInstruction* Current() const { return instruction_; }
2089  void Advance() {
2090    instruction_ = next_;
2091    next_ = Done() ? nullptr : instruction_->GetPrevious();
2092  }
2093
2094 private:
2095  HInstruction* instruction_;
2096  HInstruction* next_;
2097
2098  DISALLOW_COPY_AND_ASSIGN(HBackwardInstructionIterator);
2099};
2100
2101template<size_t N>
2102class HTemplateInstruction: public HInstruction {
2103 public:
2104  HTemplateInstruction<N>(SideEffects side_effects, uint32_t dex_pc)
2105      : HInstruction(side_effects, dex_pc), inputs_() {}
2106  virtual ~HTemplateInstruction() {}
2107
2108  size_t InputCount() const OVERRIDE { return N; }
2109
2110 protected:
2111  const HUserRecord<HInstruction*> InputRecordAt(size_t i) const OVERRIDE {
2112    DCHECK_LT(i, N);
2113    return inputs_[i];
2114  }
2115
2116  void SetRawInputRecordAt(size_t i, const HUserRecord<HInstruction*>& input) OVERRIDE {
2117    DCHECK_LT(i, N);
2118    inputs_[i] = input;
2119  }
2120
2121 private:
2122  std::array<HUserRecord<HInstruction*>, N> inputs_;
2123
2124  friend class SsaBuilder;
2125};
2126
2127// HTemplateInstruction specialization for N=0.
2128template<>
2129class HTemplateInstruction<0>: public HInstruction {
2130 public:
2131  explicit HTemplateInstruction<0>(SideEffects side_effects, uint32_t dex_pc)
2132      : HInstruction(side_effects, dex_pc) {}
2133
2134  virtual ~HTemplateInstruction() {}
2135
2136  size_t InputCount() const OVERRIDE { return 0; }
2137
2138 protected:
2139  const HUserRecord<HInstruction*> InputRecordAt(size_t i ATTRIBUTE_UNUSED) const OVERRIDE {
2140    LOG(FATAL) << "Unreachable";
2141    UNREACHABLE();
2142  }
2143
2144  void SetRawInputRecordAt(size_t i ATTRIBUTE_UNUSED,
2145                           const HUserRecord<HInstruction*>& input ATTRIBUTE_UNUSED) OVERRIDE {
2146    LOG(FATAL) << "Unreachable";
2147    UNREACHABLE();
2148  }
2149
2150 private:
2151  friend class SsaBuilder;
2152};
2153
2154template<intptr_t N>
2155class HExpression : public HTemplateInstruction<N> {
2156 public:
2157  HExpression<N>(Primitive::Type type, SideEffects side_effects, uint32_t dex_pc)
2158      : HTemplateInstruction<N>(side_effects, dex_pc), type_(type) {}
2159  virtual ~HExpression() {}
2160
2161  Primitive::Type GetType() const OVERRIDE { return type_; }
2162
2163 protected:
2164  Primitive::Type type_;
2165};
2166
2167// Represents dex's RETURN_VOID opcode. A HReturnVoid is a control flow
2168// instruction that branches to the exit block.
2169class HReturnVoid : public HTemplateInstruction<0> {
2170 public:
2171  explicit HReturnVoid(uint32_t dex_pc = kNoDexPc)
2172      : HTemplateInstruction(SideEffects::None(), dex_pc) {}
2173
2174  bool IsControlFlow() const OVERRIDE { return true; }
2175
2176  DECLARE_INSTRUCTION(ReturnVoid);
2177
2178 private:
2179  DISALLOW_COPY_AND_ASSIGN(HReturnVoid);
2180};
2181
2182// Represents dex's RETURN opcodes. A HReturn is a control flow
2183// instruction that branches to the exit block.
2184class HReturn : public HTemplateInstruction<1> {
2185 public:
2186  explicit HReturn(HInstruction* value, uint32_t dex_pc = kNoDexPc)
2187      : HTemplateInstruction(SideEffects::None(), dex_pc) {
2188    SetRawInputAt(0, value);
2189  }
2190
2191  bool IsControlFlow() const OVERRIDE { return true; }
2192
2193  DECLARE_INSTRUCTION(Return);
2194
2195 private:
2196  DISALLOW_COPY_AND_ASSIGN(HReturn);
2197};
2198
2199// The exit instruction is the only instruction of the exit block.
2200// Instructions aborting the method (HThrow and HReturn) must branch to the
2201// exit block.
2202class HExit : public HTemplateInstruction<0> {
2203 public:
2204  explicit HExit(uint32_t dex_pc = kNoDexPc) : HTemplateInstruction(SideEffects::None(), dex_pc) {}
2205
2206  bool IsControlFlow() const OVERRIDE { return true; }
2207
2208  DECLARE_INSTRUCTION(Exit);
2209
2210 private:
2211  DISALLOW_COPY_AND_ASSIGN(HExit);
2212};
2213
2214// Jumps from one block to another.
2215class HGoto : public HTemplateInstruction<0> {
2216 public:
2217  explicit HGoto(uint32_t dex_pc = kNoDexPc) : HTemplateInstruction(SideEffects::None(), dex_pc) {}
2218
2219  bool IsControlFlow() const OVERRIDE { return true; }
2220
2221  HBasicBlock* GetSuccessor() const {
2222    return GetBlock()->GetSingleSuccessor();
2223  }
2224
2225  DECLARE_INSTRUCTION(Goto);
2226
2227 private:
2228  DISALLOW_COPY_AND_ASSIGN(HGoto);
2229};
2230
2231class HConstant : public HExpression<0> {
2232 public:
2233  explicit HConstant(Primitive::Type type, uint32_t dex_pc = kNoDexPc)
2234      : HExpression(type, SideEffects::None(), dex_pc) {}
2235
2236  bool CanBeMoved() const OVERRIDE { return true; }
2237
2238  virtual bool IsMinusOne() const { return false; }
2239  virtual bool IsZero() const { return false; }
2240  virtual bool IsOne() const { return false; }
2241
2242  virtual uint64_t GetValueAsUint64() const = 0;
2243
2244  DECLARE_INSTRUCTION(Constant);
2245
2246 private:
2247  DISALLOW_COPY_AND_ASSIGN(HConstant);
2248};
2249
2250class HNullConstant : public HConstant {
2251 public:
2252  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
2253    return true;
2254  }
2255
2256  uint64_t GetValueAsUint64() const OVERRIDE { return 0; }
2257
2258  size_t ComputeHashCode() const OVERRIDE { return 0; }
2259
2260  DECLARE_INSTRUCTION(NullConstant);
2261
2262 private:
2263  explicit HNullConstant(uint32_t dex_pc = kNoDexPc) : HConstant(Primitive::kPrimNot, dex_pc) {}
2264
2265  friend class HGraph;
2266  DISALLOW_COPY_AND_ASSIGN(HNullConstant);
2267};
2268
2269// Constants of the type int. Those can be from Dex instructions, or
2270// synthesized (for example with the if-eqz instruction).
2271class HIntConstant : public HConstant {
2272 public:
2273  int32_t GetValue() const { return value_; }
2274
2275  uint64_t GetValueAsUint64() const OVERRIDE {
2276    return static_cast<uint64_t>(static_cast<uint32_t>(value_));
2277  }
2278
2279  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2280    DCHECK(other->IsIntConstant());
2281    return other->AsIntConstant()->value_ == value_;
2282  }
2283
2284  size_t ComputeHashCode() const OVERRIDE { return GetValue(); }
2285
2286  bool IsMinusOne() const OVERRIDE { return GetValue() == -1; }
2287  bool IsZero() const OVERRIDE { return GetValue() == 0; }
2288  bool IsOne() const OVERRIDE { return GetValue() == 1; }
2289
2290  DECLARE_INSTRUCTION(IntConstant);
2291
2292 private:
2293  explicit HIntConstant(int32_t value, uint32_t dex_pc = kNoDexPc)
2294      : HConstant(Primitive::kPrimInt, dex_pc), value_(value) {}
2295  explicit HIntConstant(bool value, uint32_t dex_pc = kNoDexPc)
2296      : HConstant(Primitive::kPrimInt, dex_pc), value_(value ? 1 : 0) {}
2297
2298  const int32_t value_;
2299
2300  friend class HGraph;
2301  ART_FRIEND_TEST(GraphTest, InsertInstructionBefore);
2302  ART_FRIEND_TYPED_TEST(ParallelMoveTest, ConstantLast);
2303  DISALLOW_COPY_AND_ASSIGN(HIntConstant);
2304};
2305
2306class HLongConstant : public HConstant {
2307 public:
2308  int64_t GetValue() const { return value_; }
2309
2310  uint64_t GetValueAsUint64() const OVERRIDE { return value_; }
2311
2312  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2313    DCHECK(other->IsLongConstant());
2314    return other->AsLongConstant()->value_ == value_;
2315  }
2316
2317  size_t ComputeHashCode() const OVERRIDE { return static_cast<size_t>(GetValue()); }
2318
2319  bool IsMinusOne() const OVERRIDE { return GetValue() == -1; }
2320  bool IsZero() const OVERRIDE { return GetValue() == 0; }
2321  bool IsOne() const OVERRIDE { return GetValue() == 1; }
2322
2323  DECLARE_INSTRUCTION(LongConstant);
2324
2325 private:
2326  explicit HLongConstant(int64_t value, uint32_t dex_pc = kNoDexPc)
2327      : HConstant(Primitive::kPrimLong, dex_pc), value_(value) {}
2328
2329  const int64_t value_;
2330
2331  friend class HGraph;
2332  DISALLOW_COPY_AND_ASSIGN(HLongConstant);
2333};
2334
2335// Conditional branch. A block ending with an HIf instruction must have
2336// two successors.
2337class HIf : public HTemplateInstruction<1> {
2338 public:
2339  explicit HIf(HInstruction* input, uint32_t dex_pc = kNoDexPc)
2340      : HTemplateInstruction(SideEffects::None(), dex_pc) {
2341    SetRawInputAt(0, input);
2342  }
2343
2344  bool IsControlFlow() const OVERRIDE { return true; }
2345
2346  HBasicBlock* IfTrueSuccessor() const {
2347    return GetBlock()->GetSuccessors()[0];
2348  }
2349
2350  HBasicBlock* IfFalseSuccessor() const {
2351    return GetBlock()->GetSuccessors()[1];
2352  }
2353
2354  DECLARE_INSTRUCTION(If);
2355
2356 private:
2357  DISALLOW_COPY_AND_ASSIGN(HIf);
2358};
2359
2360
2361// Abstract instruction which marks the beginning and/or end of a try block and
2362// links it to the respective exception handlers. Behaves the same as a Goto in
2363// non-exceptional control flow.
2364// Normal-flow successor is stored at index zero, exception handlers under
2365// higher indices in no particular order.
2366class HTryBoundary : public HTemplateInstruction<0> {
2367 public:
2368  enum BoundaryKind {
2369    kEntry,
2370    kExit,
2371  };
2372
2373  explicit HTryBoundary(BoundaryKind kind, uint32_t dex_pc = kNoDexPc)
2374      : HTemplateInstruction(SideEffects::None(), dex_pc), kind_(kind) {}
2375
2376  bool IsControlFlow() const OVERRIDE { return true; }
2377
2378  // Returns the block's non-exceptional successor (index zero).
2379  HBasicBlock* GetNormalFlowSuccessor() const { return GetBlock()->GetSuccessors()[0]; }
2380
2381  // Returns whether `handler` is among its exception handlers (non-zero index
2382  // successors).
2383  bool HasExceptionHandler(const HBasicBlock& handler) const {
2384    DCHECK(handler.IsCatchBlock());
2385    return GetBlock()->HasSuccessor(&handler, 1u /* Skip first successor. */);
2386  }
2387
2388  // If not present already, adds `handler` to its block's list of exception
2389  // handlers.
2390  void AddExceptionHandler(HBasicBlock* handler) {
2391    if (!HasExceptionHandler(*handler)) {
2392      GetBlock()->AddSuccessor(handler);
2393    }
2394  }
2395
2396  bool IsEntry() const { return kind_ == BoundaryKind::kEntry; }
2397
2398  bool HasSameExceptionHandlersAs(const HTryBoundary& other) const;
2399
2400  DECLARE_INSTRUCTION(TryBoundary);
2401
2402 private:
2403  const BoundaryKind kind_;
2404
2405  DISALLOW_COPY_AND_ASSIGN(HTryBoundary);
2406};
2407
2408// Iterator over exception handlers of a given HTryBoundary, i.e. over
2409// exceptional successors of its basic block.
2410class HExceptionHandlerIterator : public ValueObject {
2411 public:
2412  explicit HExceptionHandlerIterator(const HTryBoundary& try_boundary)
2413    : block_(*try_boundary.GetBlock()), index_(block_.NumberOfNormalSuccessors()) {}
2414
2415  bool Done() const { return index_ == block_.GetSuccessors().size(); }
2416  HBasicBlock* Current() const { return block_.GetSuccessors()[index_]; }
2417  size_t CurrentSuccessorIndex() const { return index_; }
2418  void Advance() { ++index_; }
2419
2420 private:
2421  const HBasicBlock& block_;
2422  size_t index_;
2423
2424  DISALLOW_COPY_AND_ASSIGN(HExceptionHandlerIterator);
2425};
2426
2427// Deoptimize to interpreter, upon checking a condition.
2428class HDeoptimize : public HTemplateInstruction<1> {
2429 public:
2430  explicit HDeoptimize(HInstruction* cond, uint32_t dex_pc)
2431      : HTemplateInstruction(SideEffects::None(), dex_pc) {
2432    SetRawInputAt(0, cond);
2433  }
2434
2435  bool NeedsEnvironment() const OVERRIDE { return true; }
2436  bool CanThrow() const OVERRIDE { return true; }
2437
2438  DECLARE_INSTRUCTION(Deoptimize);
2439
2440 private:
2441  DISALLOW_COPY_AND_ASSIGN(HDeoptimize);
2442};
2443
2444// Represents the ArtMethod that was passed as a first argument to
2445// the method. It is used by instructions that depend on it, like
2446// instructions that work with the dex cache.
2447class HCurrentMethod : public HExpression<0> {
2448 public:
2449  explicit HCurrentMethod(Primitive::Type type, uint32_t dex_pc = kNoDexPc)
2450      : HExpression(type, SideEffects::None(), dex_pc) {}
2451
2452  DECLARE_INSTRUCTION(CurrentMethod);
2453
2454 private:
2455  DISALLOW_COPY_AND_ASSIGN(HCurrentMethod);
2456};
2457
2458// PackedSwitch (jump table). A block ending with a PackedSwitch instruction will
2459// have one successor for each entry in the switch table, and the final successor
2460// will be the block containing the next Dex opcode.
2461class HPackedSwitch : public HTemplateInstruction<1> {
2462 public:
2463  HPackedSwitch(int32_t start_value,
2464                uint32_t num_entries,
2465                HInstruction* input,
2466                uint32_t dex_pc = kNoDexPc)
2467    : HTemplateInstruction(SideEffects::None(), dex_pc),
2468      start_value_(start_value),
2469      num_entries_(num_entries) {
2470    SetRawInputAt(0, input);
2471  }
2472
2473  bool IsControlFlow() const OVERRIDE { return true; }
2474
2475  int32_t GetStartValue() const { return start_value_; }
2476
2477  uint32_t GetNumEntries() const { return num_entries_; }
2478
2479  HBasicBlock* GetDefaultBlock() const {
2480    // Last entry is the default block.
2481    return GetBlock()->GetSuccessors()[num_entries_];
2482  }
2483  DECLARE_INSTRUCTION(PackedSwitch);
2484
2485 private:
2486  const int32_t start_value_;
2487  const uint32_t num_entries_;
2488
2489  DISALLOW_COPY_AND_ASSIGN(HPackedSwitch);
2490};
2491
2492class HUnaryOperation : public HExpression<1> {
2493 public:
2494  HUnaryOperation(Primitive::Type result_type, HInstruction* input, uint32_t dex_pc = kNoDexPc)
2495      : HExpression(result_type, SideEffects::None(), dex_pc) {
2496    SetRawInputAt(0, input);
2497  }
2498
2499  HInstruction* GetInput() const { return InputAt(0); }
2500  Primitive::Type GetResultType() const { return GetType(); }
2501
2502  bool CanBeMoved() const OVERRIDE { return true; }
2503  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
2504    return true;
2505  }
2506
2507  // Try to statically evaluate `operation` and return a HConstant
2508  // containing the result of this evaluation.  If `operation` cannot
2509  // be evaluated as a constant, return null.
2510  HConstant* TryStaticEvaluation() const;
2511
2512  // Apply this operation to `x`.
2513  virtual HConstant* Evaluate(HIntConstant* x) const = 0;
2514  virtual HConstant* Evaluate(HLongConstant* x) const = 0;
2515
2516  DECLARE_INSTRUCTION(UnaryOperation);
2517
2518 private:
2519  DISALLOW_COPY_AND_ASSIGN(HUnaryOperation);
2520};
2521
2522class HBinaryOperation : public HExpression<2> {
2523 public:
2524  HBinaryOperation(Primitive::Type result_type,
2525                   HInstruction* left,
2526                   HInstruction* right,
2527                   SideEffects side_effects = SideEffects::None(),
2528                   uint32_t dex_pc = kNoDexPc)
2529      : HExpression(result_type, side_effects, dex_pc) {
2530    SetRawInputAt(0, left);
2531    SetRawInputAt(1, right);
2532  }
2533
2534  HInstruction* GetLeft() const { return InputAt(0); }
2535  HInstruction* GetRight() const { return InputAt(1); }
2536  Primitive::Type GetResultType() const { return GetType(); }
2537
2538  virtual bool IsCommutative() const { return false; }
2539
2540  // Put constant on the right.
2541  // Returns whether order is changed.
2542  bool OrderInputsWithConstantOnTheRight() {
2543    HInstruction* left = InputAt(0);
2544    HInstruction* right = InputAt(1);
2545    if (left->IsConstant() && !right->IsConstant()) {
2546      ReplaceInput(right, 0);
2547      ReplaceInput(left, 1);
2548      return true;
2549    }
2550    return false;
2551  }
2552
2553  // Order inputs by instruction id, but favor constant on the right side.
2554  // This helps GVN for commutative ops.
2555  void OrderInputs() {
2556    DCHECK(IsCommutative());
2557    HInstruction* left = InputAt(0);
2558    HInstruction* right = InputAt(1);
2559    if (left == right || (!left->IsConstant() && right->IsConstant())) {
2560      return;
2561    }
2562    if (OrderInputsWithConstantOnTheRight()) {
2563      return;
2564    }
2565    // Order according to instruction id.
2566    if (left->GetId() > right->GetId()) {
2567      ReplaceInput(right, 0);
2568      ReplaceInput(left, 1);
2569    }
2570  }
2571
2572  bool CanBeMoved() const OVERRIDE { return true; }
2573  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
2574    return true;
2575  }
2576
2577  // Try to statically evaluate `operation` and return a HConstant
2578  // containing the result of this evaluation.  If `operation` cannot
2579  // be evaluated as a constant, return null.
2580  HConstant* TryStaticEvaluation() const;
2581
2582  // Apply this operation to `x` and `y`.
2583  virtual HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const = 0;
2584  virtual HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const = 0;
2585  virtual HConstant* Evaluate(HIntConstant* x ATTRIBUTE_UNUSED,
2586                              HLongConstant* y ATTRIBUTE_UNUSED) const {
2587    VLOG(compiler) << DebugName() << " is not defined for the (int, long) case.";
2588    return nullptr;
2589  }
2590  virtual HConstant* Evaluate(HLongConstant* x ATTRIBUTE_UNUSED,
2591                              HIntConstant* y ATTRIBUTE_UNUSED) const {
2592    VLOG(compiler) << DebugName() << " is not defined for the (long, int) case.";
2593    return nullptr;
2594  }
2595
2596  // Returns an input that can legally be used as the right input and is
2597  // constant, or null.
2598  HConstant* GetConstantRight() const;
2599
2600  // If `GetConstantRight()` returns one of the input, this returns the other
2601  // one. Otherwise it returns null.
2602  HInstruction* GetLeastConstantLeft() const;
2603
2604  DECLARE_INSTRUCTION(BinaryOperation);
2605
2606 private:
2607  DISALLOW_COPY_AND_ASSIGN(HBinaryOperation);
2608};
2609
2610// The comparison bias applies for floating point operations and indicates how NaN
2611// comparisons are treated:
2612enum class ComparisonBias {
2613  kNoBias,  // bias is not applicable (i.e. for long operation)
2614  kGtBias,  // return 1 for NaN comparisons
2615  kLtBias,  // return -1 for NaN comparisons
2616};
2617
2618class HCondition : public HBinaryOperation {
2619 public:
2620  HCondition(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2621      : HBinaryOperation(Primitive::kPrimBoolean, first, second, SideEffects::None(), dex_pc),
2622        needs_materialization_(true),
2623        bias_(ComparisonBias::kNoBias) {}
2624
2625  bool NeedsMaterialization() const { return needs_materialization_; }
2626  void ClearNeedsMaterialization() { needs_materialization_ = false; }
2627
2628  // For code generation purposes, returns whether this instruction is just before
2629  // `instruction`, and disregard moves in between.
2630  bool IsBeforeWhenDisregardMoves(HInstruction* instruction) const;
2631
2632  DECLARE_INSTRUCTION(Condition);
2633
2634  virtual IfCondition GetCondition() const = 0;
2635
2636  virtual IfCondition GetOppositeCondition() const = 0;
2637
2638  bool IsGtBias() const { return bias_ == ComparisonBias::kGtBias; }
2639
2640  void SetBias(ComparisonBias bias) { bias_ = bias; }
2641
2642  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2643    return bias_ == other->AsCondition()->bias_;
2644  }
2645
2646  bool IsFPConditionTrueIfNaN() const {
2647    DCHECK(Primitive::IsFloatingPointType(InputAt(0)->GetType()));
2648    IfCondition if_cond = GetCondition();
2649    return IsGtBias() ? ((if_cond == kCondGT) || (if_cond == kCondGE)) : (if_cond == kCondNE);
2650  }
2651
2652  bool IsFPConditionFalseIfNaN() const {
2653    DCHECK(Primitive::IsFloatingPointType(InputAt(0)->GetType()));
2654    IfCondition if_cond = GetCondition();
2655    return IsGtBias() ? ((if_cond == kCondLT) || (if_cond == kCondLE)) : (if_cond == kCondEQ);
2656  }
2657
2658 private:
2659  // For register allocation purposes, returns whether this instruction needs to be
2660  // materialized (that is, not just be in the processor flags).
2661  bool needs_materialization_;
2662
2663  // Needed if we merge a HCompare into a HCondition.
2664  ComparisonBias bias_;
2665
2666  DISALLOW_COPY_AND_ASSIGN(HCondition);
2667};
2668
2669// Instruction to check if two inputs are equal to each other.
2670class HEqual : public HCondition {
2671 public:
2672  HEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2673      : HCondition(first, second, dex_pc) {}
2674
2675  bool IsCommutative() const OVERRIDE { return true; }
2676
2677  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2678    return GetBlock()->GetGraph()->GetIntConstant(
2679        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2680  }
2681  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2682    return GetBlock()->GetGraph()->GetIntConstant(
2683        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2684  }
2685
2686  DECLARE_INSTRUCTION(Equal);
2687
2688  IfCondition GetCondition() const OVERRIDE {
2689    return kCondEQ;
2690  }
2691
2692  IfCondition GetOppositeCondition() const OVERRIDE {
2693    return kCondNE;
2694  }
2695
2696 private:
2697  template <typename T> bool Compute(T x, T y) const { return x == y; }
2698
2699  DISALLOW_COPY_AND_ASSIGN(HEqual);
2700};
2701
2702class HNotEqual : public HCondition {
2703 public:
2704  HNotEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2705      : HCondition(first, second, dex_pc) {}
2706
2707  bool IsCommutative() const OVERRIDE { return true; }
2708
2709  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2710    return GetBlock()->GetGraph()->GetIntConstant(
2711        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2712  }
2713  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2714    return GetBlock()->GetGraph()->GetIntConstant(
2715        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2716  }
2717
2718  DECLARE_INSTRUCTION(NotEqual);
2719
2720  IfCondition GetCondition() const OVERRIDE {
2721    return kCondNE;
2722  }
2723
2724  IfCondition GetOppositeCondition() const OVERRIDE {
2725    return kCondEQ;
2726  }
2727
2728 private:
2729  template <typename T> bool Compute(T x, T y) const { return x != y; }
2730
2731  DISALLOW_COPY_AND_ASSIGN(HNotEqual);
2732};
2733
2734class HLessThan : public HCondition {
2735 public:
2736  HLessThan(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2737      : HCondition(first, second, dex_pc) {}
2738
2739  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2740    return GetBlock()->GetGraph()->GetIntConstant(
2741        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2742  }
2743  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2744    return GetBlock()->GetGraph()->GetIntConstant(
2745        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2746  }
2747
2748  DECLARE_INSTRUCTION(LessThan);
2749
2750  IfCondition GetCondition() const OVERRIDE {
2751    return kCondLT;
2752  }
2753
2754  IfCondition GetOppositeCondition() const OVERRIDE {
2755    return kCondGE;
2756  }
2757
2758 private:
2759  template <typename T> bool Compute(T x, T y) const { return x < y; }
2760
2761  DISALLOW_COPY_AND_ASSIGN(HLessThan);
2762};
2763
2764class HLessThanOrEqual : public HCondition {
2765 public:
2766  HLessThanOrEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2767      : HCondition(first, second, dex_pc) {}
2768
2769  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2770    return GetBlock()->GetGraph()->GetIntConstant(
2771        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2772  }
2773  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2774    return GetBlock()->GetGraph()->GetIntConstant(
2775        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2776  }
2777
2778  DECLARE_INSTRUCTION(LessThanOrEqual);
2779
2780  IfCondition GetCondition() const OVERRIDE {
2781    return kCondLE;
2782  }
2783
2784  IfCondition GetOppositeCondition() const OVERRIDE {
2785    return kCondGT;
2786  }
2787
2788 private:
2789  template <typename T> bool Compute(T x, T y) const { return x <= y; }
2790
2791  DISALLOW_COPY_AND_ASSIGN(HLessThanOrEqual);
2792};
2793
2794class HGreaterThan : public HCondition {
2795 public:
2796  HGreaterThan(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2797      : HCondition(first, second, dex_pc) {}
2798
2799  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2800    return GetBlock()->GetGraph()->GetIntConstant(
2801        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2802  }
2803  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2804    return GetBlock()->GetGraph()->GetIntConstant(
2805        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2806  }
2807
2808  DECLARE_INSTRUCTION(GreaterThan);
2809
2810  IfCondition GetCondition() const OVERRIDE {
2811    return kCondGT;
2812  }
2813
2814  IfCondition GetOppositeCondition() const OVERRIDE {
2815    return kCondLE;
2816  }
2817
2818 private:
2819  template <typename T> bool Compute(T x, T y) const { return x > y; }
2820
2821  DISALLOW_COPY_AND_ASSIGN(HGreaterThan);
2822};
2823
2824class HGreaterThanOrEqual : public HCondition {
2825 public:
2826  HGreaterThanOrEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2827      : HCondition(first, second, dex_pc) {}
2828
2829  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2830    return GetBlock()->GetGraph()->GetIntConstant(
2831        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2832  }
2833  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2834    return GetBlock()->GetGraph()->GetIntConstant(
2835        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2836  }
2837
2838  DECLARE_INSTRUCTION(GreaterThanOrEqual);
2839
2840  IfCondition GetCondition() const OVERRIDE {
2841    return kCondGE;
2842  }
2843
2844  IfCondition GetOppositeCondition() const OVERRIDE {
2845    return kCondLT;
2846  }
2847
2848 private:
2849  template <typename T> bool Compute(T x, T y) const { return x >= y; }
2850
2851  DISALLOW_COPY_AND_ASSIGN(HGreaterThanOrEqual);
2852};
2853
2854class HBelow : public HCondition {
2855 public:
2856  HBelow(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2857      : HCondition(first, second, dex_pc) {}
2858
2859  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2860    return GetBlock()->GetGraph()->GetIntConstant(
2861        Compute(static_cast<uint32_t>(x->GetValue()),
2862                static_cast<uint32_t>(y->GetValue())), GetDexPc());
2863  }
2864  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2865    return GetBlock()->GetGraph()->GetIntConstant(
2866        Compute(static_cast<uint64_t>(x->GetValue()),
2867                static_cast<uint64_t>(y->GetValue())), GetDexPc());
2868  }
2869
2870  DECLARE_INSTRUCTION(Below);
2871
2872  IfCondition GetCondition() const OVERRIDE {
2873    return kCondB;
2874  }
2875
2876  IfCondition GetOppositeCondition() const OVERRIDE {
2877    return kCondAE;
2878  }
2879
2880 private:
2881  template <typename T> bool Compute(T x, T y) const { return x < y; }
2882
2883  DISALLOW_COPY_AND_ASSIGN(HBelow);
2884};
2885
2886class HBelowOrEqual : public HCondition {
2887 public:
2888  HBelowOrEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2889      : HCondition(first, second, dex_pc) {}
2890
2891  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2892    return GetBlock()->GetGraph()->GetIntConstant(
2893        Compute(static_cast<uint32_t>(x->GetValue()),
2894                static_cast<uint32_t>(y->GetValue())), GetDexPc());
2895  }
2896  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2897    return GetBlock()->GetGraph()->GetIntConstant(
2898        Compute(static_cast<uint64_t>(x->GetValue()),
2899                static_cast<uint64_t>(y->GetValue())), GetDexPc());
2900  }
2901
2902  DECLARE_INSTRUCTION(BelowOrEqual);
2903
2904  IfCondition GetCondition() const OVERRIDE {
2905    return kCondBE;
2906  }
2907
2908  IfCondition GetOppositeCondition() const OVERRIDE {
2909    return kCondA;
2910  }
2911
2912 private:
2913  template <typename T> bool Compute(T x, T y) const { return x <= y; }
2914
2915  DISALLOW_COPY_AND_ASSIGN(HBelowOrEqual);
2916};
2917
2918class HAbove : public HCondition {
2919 public:
2920  HAbove(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2921      : HCondition(first, second, dex_pc) {}
2922
2923  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2924    return GetBlock()->GetGraph()->GetIntConstant(
2925        Compute(static_cast<uint32_t>(x->GetValue()),
2926                static_cast<uint32_t>(y->GetValue())), GetDexPc());
2927  }
2928  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2929    return GetBlock()->GetGraph()->GetIntConstant(
2930        Compute(static_cast<uint64_t>(x->GetValue()),
2931                static_cast<uint64_t>(y->GetValue())), GetDexPc());
2932  }
2933
2934  DECLARE_INSTRUCTION(Above);
2935
2936  IfCondition GetCondition() const OVERRIDE {
2937    return kCondA;
2938  }
2939
2940  IfCondition GetOppositeCondition() const OVERRIDE {
2941    return kCondBE;
2942  }
2943
2944 private:
2945  template <typename T> bool Compute(T x, T y) const { return x > y; }
2946
2947  DISALLOW_COPY_AND_ASSIGN(HAbove);
2948};
2949
2950class HAboveOrEqual : public HCondition {
2951 public:
2952  HAboveOrEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2953      : HCondition(first, second, dex_pc) {}
2954
2955  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2956    return GetBlock()->GetGraph()->GetIntConstant(
2957        Compute(static_cast<uint32_t>(x->GetValue()),
2958                static_cast<uint32_t>(y->GetValue())), GetDexPc());
2959  }
2960  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2961    return GetBlock()->GetGraph()->GetIntConstant(
2962        Compute(static_cast<uint64_t>(x->GetValue()),
2963                static_cast<uint64_t>(y->GetValue())), GetDexPc());
2964  }
2965
2966  DECLARE_INSTRUCTION(AboveOrEqual);
2967
2968  IfCondition GetCondition() const OVERRIDE {
2969    return kCondAE;
2970  }
2971
2972  IfCondition GetOppositeCondition() const OVERRIDE {
2973    return kCondB;
2974  }
2975
2976 private:
2977  template <typename T> bool Compute(T x, T y) const { return x >= y; }
2978
2979  DISALLOW_COPY_AND_ASSIGN(HAboveOrEqual);
2980};
2981
2982// Instruction to check how two inputs compare to each other.
2983// Result is 0 if input0 == input1, 1 if input0 > input1, or -1 if input0 < input1.
2984class HCompare : public HBinaryOperation {
2985 public:
2986  HCompare(Primitive::Type type,
2987           HInstruction* first,
2988           HInstruction* second,
2989           ComparisonBias bias,
2990           uint32_t dex_pc)
2991      : HBinaryOperation(Primitive::kPrimInt,
2992                         first,
2993                         second,
2994                         SideEffectsForArchRuntimeCalls(type),
2995                         dex_pc),
2996        bias_(bias) {
2997    DCHECK_EQ(type, first->GetType());
2998    DCHECK_EQ(type, second->GetType());
2999  }
3000
3001  template <typename T>
3002  int32_t Compute(T x, T y) const { return x == y ? 0 : x > y ? 1 : -1; }
3003
3004  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3005    return GetBlock()->GetGraph()->GetIntConstant(
3006        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3007  }
3008  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3009    return GetBlock()->GetGraph()->GetIntConstant(
3010        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3011  }
3012
3013  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
3014    return bias_ == other->AsCompare()->bias_;
3015  }
3016
3017  ComparisonBias GetBias() const { return bias_; }
3018
3019  bool IsGtBias() { return bias_ == ComparisonBias::kGtBias; }
3020
3021
3022  static SideEffects SideEffectsForArchRuntimeCalls(Primitive::Type type) {
3023    // MIPS64 uses a runtime call for FP comparisons.
3024    return Primitive::IsFloatingPointType(type) ? SideEffects::CanTriggerGC() : SideEffects::None();
3025  }
3026
3027  DECLARE_INSTRUCTION(Compare);
3028
3029 private:
3030  const ComparisonBias bias_;
3031
3032  DISALLOW_COPY_AND_ASSIGN(HCompare);
3033};
3034
3035// A local in the graph. Corresponds to a Dex register.
3036class HLocal : public HTemplateInstruction<0> {
3037 public:
3038  explicit HLocal(uint16_t reg_number)
3039      : HTemplateInstruction(SideEffects::None(), kNoDexPc), reg_number_(reg_number) {}
3040
3041  DECLARE_INSTRUCTION(Local);
3042
3043  uint16_t GetRegNumber() const { return reg_number_; }
3044
3045 private:
3046  // The Dex register number.
3047  const uint16_t reg_number_;
3048
3049  DISALLOW_COPY_AND_ASSIGN(HLocal);
3050};
3051
3052// Load a given local. The local is an input of this instruction.
3053class HLoadLocal : public HExpression<1> {
3054 public:
3055  HLoadLocal(HLocal* local, Primitive::Type type, uint32_t dex_pc = kNoDexPc)
3056      : HExpression(type, SideEffects::None(), dex_pc) {
3057    SetRawInputAt(0, local);
3058  }
3059
3060  HLocal* GetLocal() const { return reinterpret_cast<HLocal*>(InputAt(0)); }
3061
3062  DECLARE_INSTRUCTION(LoadLocal);
3063
3064 private:
3065  DISALLOW_COPY_AND_ASSIGN(HLoadLocal);
3066};
3067
3068// Store a value in a given local. This instruction has two inputs: the value
3069// and the local.
3070class HStoreLocal : public HTemplateInstruction<2> {
3071 public:
3072  HStoreLocal(HLocal* local, HInstruction* value, uint32_t dex_pc = kNoDexPc)
3073      : HTemplateInstruction(SideEffects::None(), dex_pc) {
3074    SetRawInputAt(0, local);
3075    SetRawInputAt(1, value);
3076  }
3077
3078  HLocal* GetLocal() const { return reinterpret_cast<HLocal*>(InputAt(0)); }
3079
3080  DECLARE_INSTRUCTION(StoreLocal);
3081
3082 private:
3083  DISALLOW_COPY_AND_ASSIGN(HStoreLocal);
3084};
3085
3086class HFloatConstant : public HConstant {
3087 public:
3088  float GetValue() const { return value_; }
3089
3090  uint64_t GetValueAsUint64() const OVERRIDE {
3091    return static_cast<uint64_t>(bit_cast<uint32_t, float>(value_));
3092  }
3093
3094  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
3095    DCHECK(other->IsFloatConstant());
3096    return other->AsFloatConstant()->GetValueAsUint64() == GetValueAsUint64();
3097  }
3098
3099  size_t ComputeHashCode() const OVERRIDE { return static_cast<size_t>(GetValue()); }
3100
3101  bool IsMinusOne() const OVERRIDE {
3102    return bit_cast<uint32_t, float>(value_) == bit_cast<uint32_t, float>((-1.0f));
3103  }
3104  bool IsZero() const OVERRIDE {
3105    return value_ == 0.0f;
3106  }
3107  bool IsOne() const OVERRIDE {
3108    return bit_cast<uint32_t, float>(value_) == bit_cast<uint32_t, float>(1.0f);
3109  }
3110  bool IsNaN() const {
3111    return std::isnan(value_);
3112  }
3113
3114  DECLARE_INSTRUCTION(FloatConstant);
3115
3116 private:
3117  explicit HFloatConstant(float value, uint32_t dex_pc = kNoDexPc)
3118      : HConstant(Primitive::kPrimFloat, dex_pc), value_(value) {}
3119  explicit HFloatConstant(int32_t value, uint32_t dex_pc = kNoDexPc)
3120      : HConstant(Primitive::kPrimFloat, dex_pc), value_(bit_cast<float, int32_t>(value)) {}
3121
3122  const float value_;
3123
3124  // Only the SsaBuilder and HGraph can create floating-point constants.
3125  friend class SsaBuilder;
3126  friend class HGraph;
3127  DISALLOW_COPY_AND_ASSIGN(HFloatConstant);
3128};
3129
3130class HDoubleConstant : public HConstant {
3131 public:
3132  double GetValue() const { return value_; }
3133
3134  uint64_t GetValueAsUint64() const OVERRIDE { return bit_cast<uint64_t, double>(value_); }
3135
3136  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
3137    DCHECK(other->IsDoubleConstant());
3138    return other->AsDoubleConstant()->GetValueAsUint64() == GetValueAsUint64();
3139  }
3140
3141  size_t ComputeHashCode() const OVERRIDE { return static_cast<size_t>(GetValue()); }
3142
3143  bool IsMinusOne() const OVERRIDE {
3144    return bit_cast<uint64_t, double>(value_) == bit_cast<uint64_t, double>((-1.0));
3145  }
3146  bool IsZero() const OVERRIDE {
3147    return value_ == 0.0;
3148  }
3149  bool IsOne() const OVERRIDE {
3150    return bit_cast<uint64_t, double>(value_) == bit_cast<uint64_t, double>(1.0);
3151  }
3152  bool IsNaN() const {
3153    return std::isnan(value_);
3154  }
3155
3156  DECLARE_INSTRUCTION(DoubleConstant);
3157
3158 private:
3159  explicit HDoubleConstant(double value, uint32_t dex_pc = kNoDexPc)
3160      : HConstant(Primitive::kPrimDouble, dex_pc), value_(value) {}
3161  explicit HDoubleConstant(int64_t value, uint32_t dex_pc = kNoDexPc)
3162      : HConstant(Primitive::kPrimDouble, dex_pc), value_(bit_cast<double, int64_t>(value)) {}
3163
3164  const double value_;
3165
3166  // Only the SsaBuilder and HGraph can create floating-point constants.
3167  friend class SsaBuilder;
3168  friend class HGraph;
3169  DISALLOW_COPY_AND_ASSIGN(HDoubleConstant);
3170};
3171
3172enum class Intrinsics {
3173#define OPTIMIZING_INTRINSICS(Name, IsStatic, NeedsEnvironmentOrCache) k ## Name,
3174#include "intrinsics_list.h"
3175  kNone,
3176  INTRINSICS_LIST(OPTIMIZING_INTRINSICS)
3177#undef INTRINSICS_LIST
3178#undef OPTIMIZING_INTRINSICS
3179};
3180std::ostream& operator<<(std::ostream& os, const Intrinsics& intrinsic);
3181
3182enum IntrinsicNeedsEnvironmentOrCache {
3183  kNoEnvironmentOrCache,        // Intrinsic does not require an environment or dex cache.
3184  kNeedsEnvironmentOrCache      // Intrinsic requires an environment or requires a dex cache.
3185};
3186
3187class HInvoke : public HInstruction {
3188 public:
3189  size_t InputCount() const OVERRIDE { return inputs_.size(); }
3190
3191  bool NeedsEnvironment() const OVERRIDE;
3192
3193  void SetArgumentAt(size_t index, HInstruction* argument) {
3194    SetRawInputAt(index, argument);
3195  }
3196
3197  // Return the number of arguments.  This number can be lower than
3198  // the number of inputs returned by InputCount(), as some invoke
3199  // instructions (e.g. HInvokeStaticOrDirect) can have non-argument
3200  // inputs at the end of their list of inputs.
3201  uint32_t GetNumberOfArguments() const { return number_of_arguments_; }
3202
3203  Primitive::Type GetType() const OVERRIDE { return return_type_; }
3204
3205
3206  uint32_t GetDexMethodIndex() const { return dex_method_index_; }
3207  const DexFile& GetDexFile() const { return GetEnvironment()->GetDexFile(); }
3208
3209  InvokeType GetOriginalInvokeType() const { return original_invoke_type_; }
3210
3211  Intrinsics GetIntrinsic() const {
3212    return intrinsic_;
3213  }
3214
3215  void SetIntrinsic(Intrinsics intrinsic, IntrinsicNeedsEnvironmentOrCache needs_env_or_cache);
3216
3217  bool IsFromInlinedInvoke() const {
3218    return GetEnvironment()->GetParent() != nullptr;
3219  }
3220
3221  bool CanThrow() const OVERRIDE { return true; }
3222
3223  uint32_t* GetIntrinsicOptimizations() {
3224    return &intrinsic_optimizations_;
3225  }
3226
3227  const uint32_t* GetIntrinsicOptimizations() const {
3228    return &intrinsic_optimizations_;
3229  }
3230
3231  bool IsIntrinsic() const { return intrinsic_ != Intrinsics::kNone; }
3232
3233  DECLARE_INSTRUCTION(Invoke);
3234
3235 protected:
3236  HInvoke(ArenaAllocator* arena,
3237          uint32_t number_of_arguments,
3238          uint32_t number_of_other_inputs,
3239          Primitive::Type return_type,
3240          uint32_t dex_pc,
3241          uint32_t dex_method_index,
3242          InvokeType original_invoke_type)
3243    : HInstruction(
3244          SideEffects::AllExceptGCDependency(), dex_pc),  // Assume write/read on all fields/arrays.
3245      number_of_arguments_(number_of_arguments),
3246      inputs_(number_of_arguments + number_of_other_inputs,
3247              arena->Adapter(kArenaAllocInvokeInputs)),
3248      return_type_(return_type),
3249      dex_method_index_(dex_method_index),
3250      original_invoke_type_(original_invoke_type),
3251      intrinsic_(Intrinsics::kNone),
3252      intrinsic_optimizations_(0) {
3253  }
3254
3255  const HUserRecord<HInstruction*> InputRecordAt(size_t index) const OVERRIDE {
3256    return inputs_[index];
3257  }
3258
3259  void SetRawInputRecordAt(size_t index, const HUserRecord<HInstruction*>& input) OVERRIDE {
3260    inputs_[index] = input;
3261  }
3262
3263  uint32_t number_of_arguments_;
3264  ArenaVector<HUserRecord<HInstruction*>> inputs_;
3265  const Primitive::Type return_type_;
3266  const uint32_t dex_method_index_;
3267  const InvokeType original_invoke_type_;
3268  Intrinsics intrinsic_;
3269
3270  // A magic word holding optimizations for intrinsics. See intrinsics.h.
3271  uint32_t intrinsic_optimizations_;
3272
3273 private:
3274  DISALLOW_COPY_AND_ASSIGN(HInvoke);
3275};
3276
3277class HInvokeUnresolved : public HInvoke {
3278 public:
3279  HInvokeUnresolved(ArenaAllocator* arena,
3280                    uint32_t number_of_arguments,
3281                    Primitive::Type return_type,
3282                    uint32_t dex_pc,
3283                    uint32_t dex_method_index,
3284                    InvokeType invoke_type)
3285      : HInvoke(arena,
3286                number_of_arguments,
3287                0u /* number_of_other_inputs */,
3288                return_type,
3289                dex_pc,
3290                dex_method_index,
3291                invoke_type) {
3292  }
3293
3294  DECLARE_INSTRUCTION(InvokeUnresolved);
3295
3296 private:
3297  DISALLOW_COPY_AND_ASSIGN(HInvokeUnresolved);
3298};
3299
3300class HInvokeStaticOrDirect : public HInvoke {
3301 public:
3302  // Requirements of this method call regarding the class
3303  // initialization (clinit) check of its declaring class.
3304  enum class ClinitCheckRequirement {
3305    kNone,      // Class already initialized.
3306    kExplicit,  // Static call having explicit clinit check as last input.
3307    kImplicit,  // Static call implicitly requiring a clinit check.
3308  };
3309
3310  // Determines how to load the target ArtMethod*.
3311  enum class MethodLoadKind {
3312    // Use a String init ArtMethod* loaded from Thread entrypoints.
3313    kStringInit,
3314
3315    // Use the method's own ArtMethod* loaded by the register allocator.
3316    kRecursive,
3317
3318    // Use ArtMethod* at a known address, embed the direct address in the code.
3319    // Used for app->boot calls with non-relocatable image and for JIT-compiled calls.
3320    kDirectAddress,
3321
3322    // Use ArtMethod* at an address that will be known at link time, embed the direct
3323    // address in the code. If the image is relocatable, emit .patch_oat entry.
3324    // Used for app->boot calls with relocatable image and boot->boot calls, whether
3325    // the image relocatable or not.
3326    kDirectAddressWithFixup,
3327
3328    // Load from resoved methods array in the dex cache using a PC-relative load.
3329    // Used when we need to use the dex cache, for example for invoke-static that
3330    // may cause class initialization (the entry may point to a resolution method),
3331    // and we know that we can access the dex cache arrays using a PC-relative load.
3332    kDexCachePcRelative,
3333
3334    // Use ArtMethod* from the resolved methods of the compiled method's own ArtMethod*.
3335    // Used for JIT when we need to use the dex cache. This is also the last-resort-kind
3336    // used when other kinds are unavailable (say, dex cache arrays are not PC-relative)
3337    // or unimplemented or impractical (i.e. slow) on a particular architecture.
3338    kDexCacheViaMethod,
3339  };
3340
3341  // Determines the location of the code pointer.
3342  enum class CodePtrLocation {
3343    // Recursive call, use local PC-relative call instruction.
3344    kCallSelf,
3345
3346    // Use PC-relative call instruction patched at link time.
3347    // Used for calls within an oat file, boot->boot or app->app.
3348    kCallPCRelative,
3349
3350    // Call to a known target address, embed the direct address in code.
3351    // Used for app->boot call with non-relocatable image and for JIT-compiled calls.
3352    kCallDirect,
3353
3354    // Call to a target address that will be known at link time, embed the direct
3355    // address in code. If the image is relocatable, emit .patch_oat entry.
3356    // Used for app->boot calls with relocatable image and boot->boot calls, whether
3357    // the image relocatable or not.
3358    kCallDirectWithFixup,
3359
3360    // Use code pointer from the ArtMethod*.
3361    // Used when we don't know the target code. This is also the last-resort-kind used when
3362    // other kinds are unimplemented or impractical (i.e. slow) on a particular architecture.
3363    kCallArtMethod,
3364  };
3365
3366  struct DispatchInfo {
3367    const MethodLoadKind method_load_kind;
3368    const CodePtrLocation code_ptr_location;
3369    // The method load data holds
3370    //   - thread entrypoint offset for kStringInit method if this is a string init invoke.
3371    //     Note that there are multiple string init methods, each having its own offset.
3372    //   - the method address for kDirectAddress
3373    //   - the dex cache arrays offset for kDexCachePcRel.
3374    const uint64_t method_load_data;
3375    const uint64_t direct_code_ptr;
3376  };
3377
3378  HInvokeStaticOrDirect(ArenaAllocator* arena,
3379                        uint32_t number_of_arguments,
3380                        Primitive::Type return_type,
3381                        uint32_t dex_pc,
3382                        uint32_t method_index,
3383                        MethodReference target_method,
3384                        DispatchInfo dispatch_info,
3385                        InvokeType original_invoke_type,
3386                        InvokeType invoke_type,
3387                        ClinitCheckRequirement clinit_check_requirement)
3388      : HInvoke(arena,
3389                number_of_arguments,
3390                // There is one extra argument for the HCurrentMethod node, and
3391                // potentially one other if the clinit check is explicit, and one other
3392                // if the method is a string factory.
3393                1u + (clinit_check_requirement == ClinitCheckRequirement::kExplicit ? 1u : 0u)
3394                   + (dispatch_info.method_load_kind == MethodLoadKind::kStringInit ? 1u : 0u),
3395                return_type,
3396                dex_pc,
3397                method_index,
3398                original_invoke_type),
3399        invoke_type_(invoke_type),
3400        clinit_check_requirement_(clinit_check_requirement),
3401        target_method_(target_method),
3402        dispatch_info_(dispatch_info) {}
3403
3404  bool CanDoImplicitNullCheckOn(HInstruction* obj ATTRIBUTE_UNUSED) const OVERRIDE {
3405    // We access the method via the dex cache so we can't do an implicit null check.
3406    // TODO: for intrinsics we can generate implicit null checks.
3407    return false;
3408  }
3409
3410  bool CanBeNull() const OVERRIDE {
3411    return return_type_ == Primitive::kPrimNot && !IsStringInit();
3412  }
3413
3414  InvokeType GetInvokeType() const { return invoke_type_; }
3415  MethodLoadKind GetMethodLoadKind() const { return dispatch_info_.method_load_kind; }
3416  CodePtrLocation GetCodePtrLocation() const { return dispatch_info_.code_ptr_location; }
3417  bool IsRecursive() const { return GetMethodLoadKind() == MethodLoadKind::kRecursive; }
3418  bool NeedsDexCache() const OVERRIDE;
3419  bool IsStringInit() const { return GetMethodLoadKind() == MethodLoadKind::kStringInit; }
3420  uint32_t GetCurrentMethodInputIndex() const { return GetNumberOfArguments(); }
3421  bool HasMethodAddress() const { return GetMethodLoadKind() == MethodLoadKind::kDirectAddress; }
3422  bool HasPcRelDexCache() const { return GetMethodLoadKind() == MethodLoadKind::kDexCachePcRelative; }
3423  bool HasDirectCodePtr() const { return GetCodePtrLocation() == CodePtrLocation::kCallDirect; }
3424  MethodReference GetTargetMethod() const { return target_method_; }
3425
3426  int32_t GetStringInitOffset() const {
3427    DCHECK(IsStringInit());
3428    return dispatch_info_.method_load_data;
3429  }
3430
3431  uint64_t GetMethodAddress() const {
3432    DCHECK(HasMethodAddress());
3433    return dispatch_info_.method_load_data;
3434  }
3435
3436  uint32_t GetDexCacheArrayOffset() const {
3437    DCHECK(HasPcRelDexCache());
3438    return dispatch_info_.method_load_data;
3439  }
3440
3441  uint64_t GetDirectCodePtr() const {
3442    DCHECK(HasDirectCodePtr());
3443    return dispatch_info_.direct_code_ptr;
3444  }
3445
3446  ClinitCheckRequirement GetClinitCheckRequirement() const { return clinit_check_requirement_; }
3447
3448  // Is this instruction a call to a static method?
3449  bool IsStatic() const {
3450    return GetInvokeType() == kStatic;
3451  }
3452
3453  // Remove the art::HLoadClass instruction set as last input by
3454  // art::PrepareForRegisterAllocation::VisitClinitCheck in lieu of
3455  // the initial art::HClinitCheck instruction (only relevant for
3456  // static calls with explicit clinit check).
3457  void RemoveLoadClassAsLastInput() {
3458    DCHECK(IsStaticWithExplicitClinitCheck());
3459    size_t last_input_index = InputCount() - 1;
3460    HInstruction* last_input = InputAt(last_input_index);
3461    DCHECK(last_input != nullptr);
3462    DCHECK(last_input->IsLoadClass()) << last_input->DebugName();
3463    RemoveAsUserOfInput(last_input_index);
3464    inputs_.pop_back();
3465    clinit_check_requirement_ = ClinitCheckRequirement::kImplicit;
3466    DCHECK(IsStaticWithImplicitClinitCheck());
3467  }
3468
3469  bool IsStringFactoryFor(HFakeString* str) const {
3470    if (!IsStringInit()) return false;
3471    // +1 for the current method.
3472    if (InputCount() == (number_of_arguments_ + 1)) return false;
3473    return InputAt(InputCount() - 1)->AsFakeString() == str;
3474  }
3475
3476  void RemoveFakeStringArgumentAsLastInput() {
3477    DCHECK(IsStringInit());
3478    size_t last_input_index = InputCount() - 1;
3479    HInstruction* last_input = InputAt(last_input_index);
3480    DCHECK(last_input != nullptr);
3481    DCHECK(last_input->IsFakeString()) << last_input->DebugName();
3482    RemoveAsUserOfInput(last_input_index);
3483    inputs_.pop_back();
3484  }
3485
3486  // Is this a call to a static method whose declaring class has an
3487  // explicit intialization check in the graph?
3488  bool IsStaticWithExplicitClinitCheck() const {
3489    return IsStatic() && (clinit_check_requirement_ == ClinitCheckRequirement::kExplicit);
3490  }
3491
3492  // Is this a call to a static method whose declaring class has an
3493  // implicit intialization check requirement?
3494  bool IsStaticWithImplicitClinitCheck() const {
3495    return IsStatic() && (clinit_check_requirement_ == ClinitCheckRequirement::kImplicit);
3496  }
3497
3498  DECLARE_INSTRUCTION(InvokeStaticOrDirect);
3499
3500 protected:
3501  const HUserRecord<HInstruction*> InputRecordAt(size_t i) const OVERRIDE {
3502    const HUserRecord<HInstruction*> input_record = HInvoke::InputRecordAt(i);
3503    if (kIsDebugBuild && IsStaticWithExplicitClinitCheck() && (i == InputCount() - 1)) {
3504      HInstruction* input = input_record.GetInstruction();
3505      // `input` is the last input of a static invoke marked as having
3506      // an explicit clinit check. It must either be:
3507      // - an art::HClinitCheck instruction, set by art::HGraphBuilder; or
3508      // - an art::HLoadClass instruction, set by art::PrepareForRegisterAllocation.
3509      DCHECK(input != nullptr);
3510      DCHECK(input->IsClinitCheck() || input->IsLoadClass()) << input->DebugName();
3511    }
3512    return input_record;
3513  }
3514
3515 private:
3516  const InvokeType invoke_type_;
3517  ClinitCheckRequirement clinit_check_requirement_;
3518  // The target method may refer to different dex file or method index than the original
3519  // invoke. This happens for sharpened calls and for calls where a method was redeclared
3520  // in derived class to increase visibility.
3521  MethodReference target_method_;
3522  DispatchInfo dispatch_info_;
3523
3524  DISALLOW_COPY_AND_ASSIGN(HInvokeStaticOrDirect);
3525};
3526
3527class HInvokeVirtual : public HInvoke {
3528 public:
3529  HInvokeVirtual(ArenaAllocator* arena,
3530                 uint32_t number_of_arguments,
3531                 Primitive::Type return_type,
3532                 uint32_t dex_pc,
3533                 uint32_t dex_method_index,
3534                 uint32_t vtable_index)
3535      : HInvoke(arena, number_of_arguments, 0u, return_type, dex_pc, dex_method_index, kVirtual),
3536        vtable_index_(vtable_index) {}
3537
3538  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
3539    // TODO: Add implicit null checks in intrinsics.
3540    return (obj == InputAt(0)) && !GetLocations()->Intrinsified();
3541  }
3542
3543  uint32_t GetVTableIndex() const { return vtable_index_; }
3544
3545  DECLARE_INSTRUCTION(InvokeVirtual);
3546
3547 private:
3548  const uint32_t vtable_index_;
3549
3550  DISALLOW_COPY_AND_ASSIGN(HInvokeVirtual);
3551};
3552
3553class HInvokeInterface : public HInvoke {
3554 public:
3555  HInvokeInterface(ArenaAllocator* arena,
3556                   uint32_t number_of_arguments,
3557                   Primitive::Type return_type,
3558                   uint32_t dex_pc,
3559                   uint32_t dex_method_index,
3560                   uint32_t imt_index)
3561      : HInvoke(arena, number_of_arguments, 0u, return_type, dex_pc, dex_method_index, kInterface),
3562        imt_index_(imt_index) {}
3563
3564  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
3565    // TODO: Add implicit null checks in intrinsics.
3566    return (obj == InputAt(0)) && !GetLocations()->Intrinsified();
3567  }
3568
3569  uint32_t GetImtIndex() const { return imt_index_; }
3570  uint32_t GetDexMethodIndex() const { return dex_method_index_; }
3571
3572  DECLARE_INSTRUCTION(InvokeInterface);
3573
3574 private:
3575  const uint32_t imt_index_;
3576
3577  DISALLOW_COPY_AND_ASSIGN(HInvokeInterface);
3578};
3579
3580class HNewInstance : public HExpression<1> {
3581 public:
3582  HNewInstance(HCurrentMethod* current_method,
3583               uint32_t dex_pc,
3584               uint16_t type_index,
3585               const DexFile& dex_file,
3586               QuickEntrypointEnum entrypoint)
3587      : HExpression(Primitive::kPrimNot, SideEffects::CanTriggerGC(), dex_pc),
3588        type_index_(type_index),
3589        dex_file_(dex_file),
3590        entrypoint_(entrypoint) {
3591    SetRawInputAt(0, current_method);
3592  }
3593
3594  uint16_t GetTypeIndex() const { return type_index_; }
3595  const DexFile& GetDexFile() const { return dex_file_; }
3596
3597  // Calls runtime so needs an environment.
3598  bool NeedsEnvironment() const OVERRIDE { return true; }
3599  // It may throw when called on:
3600  //   - interfaces
3601  //   - abstract/innaccessible/unknown classes
3602  // TODO: optimize when possible.
3603  bool CanThrow() const OVERRIDE { return true; }
3604
3605  bool CanBeNull() const OVERRIDE { return false; }
3606
3607  QuickEntrypointEnum GetEntrypoint() const { return entrypoint_; }
3608
3609  DECLARE_INSTRUCTION(NewInstance);
3610
3611 private:
3612  const uint16_t type_index_;
3613  const DexFile& dex_file_;
3614  const QuickEntrypointEnum entrypoint_;
3615
3616  DISALLOW_COPY_AND_ASSIGN(HNewInstance);
3617};
3618
3619class HNeg : public HUnaryOperation {
3620 public:
3621  HNeg(Primitive::Type result_type, HInstruction* input, uint32_t dex_pc = kNoDexPc)
3622      : HUnaryOperation(result_type, input, dex_pc) {}
3623
3624  template <typename T> T Compute(T x) const { return -x; }
3625
3626  HConstant* Evaluate(HIntConstant* x) const OVERRIDE {
3627    return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue()), GetDexPc());
3628  }
3629  HConstant* Evaluate(HLongConstant* x) const OVERRIDE {
3630    return GetBlock()->GetGraph()->GetLongConstant(Compute(x->GetValue()), GetDexPc());
3631  }
3632
3633  DECLARE_INSTRUCTION(Neg);
3634
3635 private:
3636  DISALLOW_COPY_AND_ASSIGN(HNeg);
3637};
3638
3639class HNewArray : public HExpression<2> {
3640 public:
3641  HNewArray(HInstruction* length,
3642            HCurrentMethod* current_method,
3643            uint32_t dex_pc,
3644            uint16_t type_index,
3645            const DexFile& dex_file,
3646            QuickEntrypointEnum entrypoint)
3647      : HExpression(Primitive::kPrimNot, SideEffects::CanTriggerGC(), dex_pc),
3648        type_index_(type_index),
3649        dex_file_(dex_file),
3650        entrypoint_(entrypoint) {
3651    SetRawInputAt(0, length);
3652    SetRawInputAt(1, current_method);
3653  }
3654
3655  uint16_t GetTypeIndex() const { return type_index_; }
3656  const DexFile& GetDexFile() const { return dex_file_; }
3657
3658  // Calls runtime so needs an environment.
3659  bool NeedsEnvironment() const OVERRIDE { return true; }
3660
3661  // May throw NegativeArraySizeException, OutOfMemoryError, etc.
3662  bool CanThrow() const OVERRIDE { return true; }
3663
3664  bool CanBeNull() const OVERRIDE { return false; }
3665
3666  QuickEntrypointEnum GetEntrypoint() const { return entrypoint_; }
3667
3668  DECLARE_INSTRUCTION(NewArray);
3669
3670 private:
3671  const uint16_t type_index_;
3672  const DexFile& dex_file_;
3673  const QuickEntrypointEnum entrypoint_;
3674
3675  DISALLOW_COPY_AND_ASSIGN(HNewArray);
3676};
3677
3678class HAdd : public HBinaryOperation {
3679 public:
3680  HAdd(Primitive::Type result_type,
3681       HInstruction* left,
3682       HInstruction* right,
3683       uint32_t dex_pc = kNoDexPc)
3684      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
3685
3686  bool IsCommutative() const OVERRIDE { return true; }
3687
3688  template <typename T> T Compute(T x, T y) const { return x + y; }
3689
3690  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3691    return GetBlock()->GetGraph()->GetIntConstant(
3692        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3693  }
3694  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3695    return GetBlock()->GetGraph()->GetLongConstant(
3696        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3697  }
3698
3699  DECLARE_INSTRUCTION(Add);
3700
3701 private:
3702  DISALLOW_COPY_AND_ASSIGN(HAdd);
3703};
3704
3705class HSub : public HBinaryOperation {
3706 public:
3707  HSub(Primitive::Type result_type,
3708       HInstruction* left,
3709       HInstruction* right,
3710       uint32_t dex_pc = kNoDexPc)
3711      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
3712
3713  template <typename T> T Compute(T x, T y) const { return x - y; }
3714
3715  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3716    return GetBlock()->GetGraph()->GetIntConstant(
3717        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3718  }
3719  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3720    return GetBlock()->GetGraph()->GetLongConstant(
3721        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3722  }
3723
3724  DECLARE_INSTRUCTION(Sub);
3725
3726 private:
3727  DISALLOW_COPY_AND_ASSIGN(HSub);
3728};
3729
3730class HMul : public HBinaryOperation {
3731 public:
3732  HMul(Primitive::Type result_type,
3733       HInstruction* left,
3734       HInstruction* right,
3735       uint32_t dex_pc = kNoDexPc)
3736      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
3737
3738  bool IsCommutative() const OVERRIDE { return true; }
3739
3740  template <typename T> T Compute(T x, T y) const { return x * y; }
3741
3742  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3743    return GetBlock()->GetGraph()->GetIntConstant(
3744        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3745  }
3746  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3747    return GetBlock()->GetGraph()->GetLongConstant(
3748        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3749  }
3750
3751  DECLARE_INSTRUCTION(Mul);
3752
3753 private:
3754  DISALLOW_COPY_AND_ASSIGN(HMul);
3755};
3756
3757class HDiv : public HBinaryOperation {
3758 public:
3759  HDiv(Primitive::Type result_type,
3760       HInstruction* left,
3761       HInstruction* right,
3762       uint32_t dex_pc)
3763      : HBinaryOperation(result_type, left, right, SideEffectsForArchRuntimeCalls(), dex_pc) {}
3764
3765  template <typename T>
3766  T Compute(T x, T y) const {
3767    // Our graph structure ensures we never have 0 for `y` during
3768    // constant folding.
3769    DCHECK_NE(y, 0);
3770    // Special case -1 to avoid getting a SIGFPE on x86(_64).
3771    return (y == -1) ? -x : x / y;
3772  }
3773
3774  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3775    return GetBlock()->GetGraph()->GetIntConstant(
3776        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3777  }
3778  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3779    return GetBlock()->GetGraph()->GetLongConstant(
3780        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3781  }
3782
3783  static SideEffects SideEffectsForArchRuntimeCalls() {
3784    // The generated code can use a runtime call.
3785    return SideEffects::CanTriggerGC();
3786  }
3787
3788  DECLARE_INSTRUCTION(Div);
3789
3790 private:
3791  DISALLOW_COPY_AND_ASSIGN(HDiv);
3792};
3793
3794class HRem : public HBinaryOperation {
3795 public:
3796  HRem(Primitive::Type result_type,
3797       HInstruction* left,
3798       HInstruction* right,
3799       uint32_t dex_pc)
3800      : HBinaryOperation(result_type, left, right, SideEffectsForArchRuntimeCalls(), dex_pc) {}
3801
3802  template <typename T>
3803  T Compute(T x, T y) const {
3804    // Our graph structure ensures we never have 0 for `y` during
3805    // constant folding.
3806    DCHECK_NE(y, 0);
3807    // Special case -1 to avoid getting a SIGFPE on x86(_64).
3808    return (y == -1) ? 0 : x % y;
3809  }
3810
3811  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3812    return GetBlock()->GetGraph()->GetIntConstant(
3813        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3814  }
3815  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3816    return GetBlock()->GetGraph()->GetLongConstant(
3817        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3818  }
3819
3820
3821  static SideEffects SideEffectsForArchRuntimeCalls() {
3822    return SideEffects::CanTriggerGC();
3823  }
3824
3825  DECLARE_INSTRUCTION(Rem);
3826
3827 private:
3828  DISALLOW_COPY_AND_ASSIGN(HRem);
3829};
3830
3831class HDivZeroCheck : public HExpression<1> {
3832 public:
3833  HDivZeroCheck(HInstruction* value, uint32_t dex_pc)
3834      : HExpression(value->GetType(), SideEffects::None(), dex_pc) {
3835    SetRawInputAt(0, value);
3836  }
3837
3838  Primitive::Type GetType() const OVERRIDE { return InputAt(0)->GetType(); }
3839
3840  bool CanBeMoved() const OVERRIDE { return true; }
3841
3842  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
3843    return true;
3844  }
3845
3846  bool NeedsEnvironment() const OVERRIDE { return true; }
3847  bool CanThrow() const OVERRIDE { return true; }
3848
3849  DECLARE_INSTRUCTION(DivZeroCheck);
3850
3851 private:
3852  DISALLOW_COPY_AND_ASSIGN(HDivZeroCheck);
3853};
3854
3855class HShl : public HBinaryOperation {
3856 public:
3857  HShl(Primitive::Type result_type,
3858       HInstruction* left,
3859       HInstruction* right,
3860       uint32_t dex_pc = kNoDexPc)
3861      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
3862
3863  template <typename T, typename U, typename V>
3864  T Compute(T x, U y, V max_shift_value) const {
3865    static_assert(std::is_same<V, typename std::make_unsigned<T>::type>::value,
3866                  "V is not the unsigned integer type corresponding to T");
3867    return x << (y & max_shift_value);
3868  }
3869
3870  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3871    return GetBlock()->GetGraph()->GetIntConstant(
3872        Compute(x->GetValue(), y->GetValue(), kMaxIntShiftValue), GetDexPc());
3873  }
3874  // There is no `Evaluate(HIntConstant* x, HLongConstant* y)`, as this
3875  // case is handled as `x << static_cast<int>(y)`.
3876  HConstant* Evaluate(HLongConstant* x, HIntConstant* y) const OVERRIDE {
3877    return GetBlock()->GetGraph()->GetLongConstant(
3878        Compute(x->GetValue(), y->GetValue(), kMaxLongShiftValue), GetDexPc());
3879  }
3880  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3881    return GetBlock()->GetGraph()->GetLongConstant(
3882        Compute(x->GetValue(), y->GetValue(), kMaxLongShiftValue), GetDexPc());
3883  }
3884
3885  DECLARE_INSTRUCTION(Shl);
3886
3887 private:
3888  DISALLOW_COPY_AND_ASSIGN(HShl);
3889};
3890
3891class HShr : public HBinaryOperation {
3892 public:
3893  HShr(Primitive::Type result_type,
3894       HInstruction* left,
3895       HInstruction* right,
3896       uint32_t dex_pc = kNoDexPc)
3897      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
3898
3899  template <typename T, typename U, typename V>
3900  T Compute(T x, U y, V max_shift_value) const {
3901    static_assert(std::is_same<V, typename std::make_unsigned<T>::type>::value,
3902                  "V is not the unsigned integer type corresponding to T");
3903    return x >> (y & max_shift_value);
3904  }
3905
3906  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3907    return GetBlock()->GetGraph()->GetIntConstant(
3908        Compute(x->GetValue(), y->GetValue(), kMaxIntShiftValue), GetDexPc());
3909  }
3910  // There is no `Evaluate(HIntConstant* x, HLongConstant* y)`, as this
3911  // case is handled as `x >> static_cast<int>(y)`.
3912  HConstant* Evaluate(HLongConstant* x, HIntConstant* y) const OVERRIDE {
3913    return GetBlock()->GetGraph()->GetLongConstant(
3914        Compute(x->GetValue(), y->GetValue(), kMaxLongShiftValue), GetDexPc());
3915  }
3916  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3917    return GetBlock()->GetGraph()->GetLongConstant(
3918        Compute(x->GetValue(), y->GetValue(), kMaxLongShiftValue), GetDexPc());
3919  }
3920
3921  DECLARE_INSTRUCTION(Shr);
3922
3923 private:
3924  DISALLOW_COPY_AND_ASSIGN(HShr);
3925};
3926
3927class HUShr : public HBinaryOperation {
3928 public:
3929  HUShr(Primitive::Type result_type,
3930        HInstruction* left,
3931        HInstruction* right,
3932        uint32_t dex_pc = kNoDexPc)
3933      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
3934
3935  template <typename T, typename U, typename V>
3936  T Compute(T x, U y, V max_shift_value) const {
3937    static_assert(std::is_same<V, typename std::make_unsigned<T>::type>::value,
3938                  "V is not the unsigned integer type corresponding to T");
3939    V ux = static_cast<V>(x);
3940    return static_cast<T>(ux >> (y & max_shift_value));
3941  }
3942
3943  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3944    return GetBlock()->GetGraph()->GetIntConstant(
3945        Compute(x->GetValue(), y->GetValue(), kMaxIntShiftValue), GetDexPc());
3946  }
3947  // There is no `Evaluate(HIntConstant* x, HLongConstant* y)`, as this
3948  // case is handled as `x >>> static_cast<int>(y)`.
3949  HConstant* Evaluate(HLongConstant* x, HIntConstant* y) const OVERRIDE {
3950    return GetBlock()->GetGraph()->GetLongConstant(
3951        Compute(x->GetValue(), y->GetValue(), kMaxLongShiftValue), GetDexPc());
3952  }
3953  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3954    return GetBlock()->GetGraph()->GetLongConstant(
3955        Compute(x->GetValue(), y->GetValue(), kMaxLongShiftValue), GetDexPc());
3956  }
3957
3958  DECLARE_INSTRUCTION(UShr);
3959
3960 private:
3961  DISALLOW_COPY_AND_ASSIGN(HUShr);
3962};
3963
3964class HAnd : public HBinaryOperation {
3965 public:
3966  HAnd(Primitive::Type result_type,
3967       HInstruction* left,
3968       HInstruction* right,
3969       uint32_t dex_pc = kNoDexPc)
3970      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
3971
3972  bool IsCommutative() const OVERRIDE { return true; }
3973
3974  template <typename T, typename U>
3975  auto Compute(T x, U y) const -> decltype(x & y) { return x & y; }
3976
3977  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3978    return GetBlock()->GetGraph()->GetIntConstant(
3979        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3980  }
3981  HConstant* Evaluate(HIntConstant* x, HLongConstant* y) const OVERRIDE {
3982    return GetBlock()->GetGraph()->GetLongConstant(
3983        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3984  }
3985  HConstant* Evaluate(HLongConstant* x, HIntConstant* y) const OVERRIDE {
3986    return GetBlock()->GetGraph()->GetLongConstant(
3987        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3988  }
3989  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3990    return GetBlock()->GetGraph()->GetLongConstant(
3991        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3992  }
3993
3994  DECLARE_INSTRUCTION(And);
3995
3996 private:
3997  DISALLOW_COPY_AND_ASSIGN(HAnd);
3998};
3999
4000class HOr : public HBinaryOperation {
4001 public:
4002  HOr(Primitive::Type result_type,
4003      HInstruction* left,
4004      HInstruction* right,
4005      uint32_t dex_pc = kNoDexPc)
4006      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
4007
4008  bool IsCommutative() const OVERRIDE { return true; }
4009
4010  template <typename T, typename U>
4011  auto Compute(T x, U y) const -> decltype(x | y) { return x | y; }
4012
4013  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
4014    return GetBlock()->GetGraph()->GetIntConstant(
4015        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4016  }
4017  HConstant* Evaluate(HIntConstant* x, HLongConstant* y) const OVERRIDE {
4018    return GetBlock()->GetGraph()->GetLongConstant(
4019        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4020  }
4021  HConstant* Evaluate(HLongConstant* x, HIntConstant* y) const OVERRIDE {
4022    return GetBlock()->GetGraph()->GetLongConstant(
4023        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4024  }
4025  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
4026    return GetBlock()->GetGraph()->GetLongConstant(
4027        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4028  }
4029
4030  DECLARE_INSTRUCTION(Or);
4031
4032 private:
4033  DISALLOW_COPY_AND_ASSIGN(HOr);
4034};
4035
4036class HXor : public HBinaryOperation {
4037 public:
4038  HXor(Primitive::Type result_type,
4039       HInstruction* left,
4040       HInstruction* right,
4041       uint32_t dex_pc = kNoDexPc)
4042      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
4043
4044  bool IsCommutative() const OVERRIDE { return true; }
4045
4046  template <typename T, typename U>
4047  auto Compute(T x, U y) const -> decltype(x ^ y) { return x ^ y; }
4048
4049  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
4050    return GetBlock()->GetGraph()->GetIntConstant(
4051        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4052  }
4053  HConstant* Evaluate(HIntConstant* x, HLongConstant* y) const OVERRIDE {
4054    return GetBlock()->GetGraph()->GetLongConstant(
4055        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4056  }
4057  HConstant* Evaluate(HLongConstant* x, HIntConstant* y) const OVERRIDE {
4058    return GetBlock()->GetGraph()->GetLongConstant(
4059        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4060  }
4061  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
4062    return GetBlock()->GetGraph()->GetLongConstant(
4063        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4064  }
4065
4066  DECLARE_INSTRUCTION(Xor);
4067
4068 private:
4069  DISALLOW_COPY_AND_ASSIGN(HXor);
4070};
4071
4072// The value of a parameter in this method. Its location depends on
4073// the calling convention.
4074class HParameterValue : public HExpression<0> {
4075 public:
4076  HParameterValue(uint8_t index,
4077                  Primitive::Type parameter_type,
4078                  bool is_this = false)
4079      : HExpression(parameter_type, SideEffects::None(), kNoDexPc),
4080        index_(index),
4081        is_this_(is_this),
4082        can_be_null_(!is_this) {}
4083
4084  uint8_t GetIndex() const { return index_; }
4085
4086  bool CanBeNull() const OVERRIDE { return can_be_null_; }
4087  void SetCanBeNull(bool can_be_null) { can_be_null_ = can_be_null; }
4088
4089  bool IsThis() const { return is_this_; }
4090
4091  DECLARE_INSTRUCTION(ParameterValue);
4092
4093 private:
4094  // The index of this parameter in the parameters list. Must be less
4095  // than HGraph::number_of_in_vregs_.
4096  const uint8_t index_;
4097
4098  // Whether or not the parameter value corresponds to 'this' argument.
4099  const bool is_this_;
4100
4101  bool can_be_null_;
4102
4103  DISALLOW_COPY_AND_ASSIGN(HParameterValue);
4104};
4105
4106class HNot : public HUnaryOperation {
4107 public:
4108  HNot(Primitive::Type result_type, HInstruction* input, uint32_t dex_pc = kNoDexPc)
4109      : HUnaryOperation(result_type, input, dex_pc) {}
4110
4111  bool CanBeMoved() const OVERRIDE { return true; }
4112  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
4113    return true;
4114  }
4115
4116  template <typename T> T Compute(T x) const { return ~x; }
4117
4118  HConstant* Evaluate(HIntConstant* x) const OVERRIDE {
4119    return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue()), GetDexPc());
4120  }
4121  HConstant* Evaluate(HLongConstant* x) const OVERRIDE {
4122    return GetBlock()->GetGraph()->GetLongConstant(Compute(x->GetValue()), GetDexPc());
4123  }
4124
4125  DECLARE_INSTRUCTION(Not);
4126
4127 private:
4128  DISALLOW_COPY_AND_ASSIGN(HNot);
4129};
4130
4131class HBooleanNot : public HUnaryOperation {
4132 public:
4133  explicit HBooleanNot(HInstruction* input, uint32_t dex_pc = kNoDexPc)
4134      : HUnaryOperation(Primitive::Type::kPrimBoolean, input, dex_pc) {}
4135
4136  bool CanBeMoved() const OVERRIDE { return true; }
4137  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
4138    return true;
4139  }
4140
4141  template <typename T> bool Compute(T x) const {
4142    DCHECK(IsUint<1>(x));
4143    return !x;
4144  }
4145
4146  HConstant* Evaluate(HIntConstant* x) const OVERRIDE {
4147    return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue()), GetDexPc());
4148  }
4149  HConstant* Evaluate(HLongConstant* x ATTRIBUTE_UNUSED) const OVERRIDE {
4150    LOG(FATAL) << DebugName() << " is not defined for long values";
4151    UNREACHABLE();
4152  }
4153
4154  DECLARE_INSTRUCTION(BooleanNot);
4155
4156 private:
4157  DISALLOW_COPY_AND_ASSIGN(HBooleanNot);
4158};
4159
4160class HTypeConversion : public HExpression<1> {
4161 public:
4162  // Instantiate a type conversion of `input` to `result_type`.
4163  HTypeConversion(Primitive::Type result_type, HInstruction* input, uint32_t dex_pc)
4164      : HExpression(result_type,
4165                    SideEffectsForArchRuntimeCalls(input->GetType(), result_type),
4166                    dex_pc) {
4167    SetRawInputAt(0, input);
4168    DCHECK_NE(input->GetType(), result_type);
4169  }
4170
4171  HInstruction* GetInput() const { return InputAt(0); }
4172  Primitive::Type GetInputType() const { return GetInput()->GetType(); }
4173  Primitive::Type GetResultType() const { return GetType(); }
4174
4175  // Required by the x86 and ARM code generators when producing calls
4176  // to the runtime.
4177
4178  bool CanBeMoved() const OVERRIDE { return true; }
4179  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE { return true; }
4180
4181  // Try to statically evaluate the conversion and return a HConstant
4182  // containing the result.  If the input cannot be converted, return nullptr.
4183  HConstant* TryStaticEvaluation() const;
4184
4185  static SideEffects SideEffectsForArchRuntimeCalls(Primitive::Type input_type,
4186                                                    Primitive::Type result_type) {
4187    // Some architectures may not require the 'GC' side effects, but at this point
4188    // in the compilation process we do not know what architecture we will
4189    // generate code for, so we must be conservative.
4190    if ((Primitive::IsFloatingPointType(input_type) && Primitive::IsIntegralType(result_type))
4191        || (input_type == Primitive::kPrimLong && Primitive::IsFloatingPointType(result_type))) {
4192      return SideEffects::CanTriggerGC();
4193    }
4194    return SideEffects::None();
4195  }
4196
4197  DECLARE_INSTRUCTION(TypeConversion);
4198
4199 private:
4200  DISALLOW_COPY_AND_ASSIGN(HTypeConversion);
4201};
4202
4203static constexpr uint32_t kNoRegNumber = -1;
4204
4205class HPhi : public HInstruction {
4206 public:
4207  HPhi(ArenaAllocator* arena,
4208       uint32_t reg_number,
4209       size_t number_of_inputs,
4210       Primitive::Type type,
4211       uint32_t dex_pc = kNoDexPc)
4212      : HInstruction(SideEffects::None(), dex_pc),
4213        inputs_(number_of_inputs, arena->Adapter(kArenaAllocPhiInputs)),
4214        reg_number_(reg_number),
4215        type_(type),
4216        is_live_(false),
4217        can_be_null_(true) {
4218  }
4219
4220  // Returns a type equivalent to the given `type`, but that a `HPhi` can hold.
4221  static Primitive::Type ToPhiType(Primitive::Type type) {
4222    switch (type) {
4223      case Primitive::kPrimBoolean:
4224      case Primitive::kPrimByte:
4225      case Primitive::kPrimShort:
4226      case Primitive::kPrimChar:
4227        return Primitive::kPrimInt;
4228      default:
4229        return type;
4230    }
4231  }
4232
4233  bool IsCatchPhi() const { return GetBlock()->IsCatchBlock(); }
4234
4235  size_t InputCount() const OVERRIDE { return inputs_.size(); }
4236
4237  void AddInput(HInstruction* input);
4238  void RemoveInputAt(size_t index);
4239
4240  Primitive::Type GetType() const OVERRIDE { return type_; }
4241  void SetType(Primitive::Type type) { type_ = type; }
4242
4243  bool CanBeNull() const OVERRIDE { return can_be_null_; }
4244  void SetCanBeNull(bool can_be_null) { can_be_null_ = can_be_null; }
4245
4246  uint32_t GetRegNumber() const { return reg_number_; }
4247
4248  void SetDead() { is_live_ = false; }
4249  void SetLive() { is_live_ = true; }
4250  bool IsDead() const { return !is_live_; }
4251  bool IsLive() const { return is_live_; }
4252
4253  bool IsVRegEquivalentOf(HInstruction* other) const {
4254    return other != nullptr
4255        && other->IsPhi()
4256        && other->AsPhi()->GetBlock() == GetBlock()
4257        && other->AsPhi()->GetRegNumber() == GetRegNumber();
4258  }
4259
4260  // Returns the next equivalent phi (starting from the current one) or null if there is none.
4261  // An equivalent phi is a phi having the same dex register and type.
4262  // It assumes that phis with the same dex register are adjacent.
4263  HPhi* GetNextEquivalentPhiWithSameType() {
4264    HInstruction* next = GetNext();
4265    while (next != nullptr && next->AsPhi()->GetRegNumber() == reg_number_) {
4266      if (next->GetType() == GetType()) {
4267        return next->AsPhi();
4268      }
4269      next = next->GetNext();
4270    }
4271    return nullptr;
4272  }
4273
4274  DECLARE_INSTRUCTION(Phi);
4275
4276 protected:
4277  const HUserRecord<HInstruction*> InputRecordAt(size_t index) const OVERRIDE {
4278    return inputs_[index];
4279  }
4280
4281  void SetRawInputRecordAt(size_t index, const HUserRecord<HInstruction*>& input) OVERRIDE {
4282    inputs_[index] = input;
4283  }
4284
4285 private:
4286  ArenaVector<HUserRecord<HInstruction*> > inputs_;
4287  const uint32_t reg_number_;
4288  Primitive::Type type_;
4289  bool is_live_;
4290  bool can_be_null_;
4291
4292  DISALLOW_COPY_AND_ASSIGN(HPhi);
4293};
4294
4295class HNullCheck : public HExpression<1> {
4296 public:
4297  HNullCheck(HInstruction* value, uint32_t dex_pc)
4298      : HExpression(value->GetType(), SideEffects::None(), dex_pc) {
4299    SetRawInputAt(0, value);
4300  }
4301
4302  bool CanBeMoved() const OVERRIDE { return true; }
4303  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
4304    return true;
4305  }
4306
4307  bool NeedsEnvironment() const OVERRIDE { return true; }
4308
4309  bool CanThrow() const OVERRIDE { return true; }
4310
4311  bool CanBeNull() const OVERRIDE { return false; }
4312
4313
4314  DECLARE_INSTRUCTION(NullCheck);
4315
4316 private:
4317  DISALLOW_COPY_AND_ASSIGN(HNullCheck);
4318};
4319
4320class FieldInfo : public ValueObject {
4321 public:
4322  FieldInfo(MemberOffset field_offset,
4323            Primitive::Type field_type,
4324            bool is_volatile,
4325            uint32_t index,
4326            const DexFile& dex_file,
4327            Handle<mirror::DexCache> dex_cache)
4328      : field_offset_(field_offset),
4329        field_type_(field_type),
4330        is_volatile_(is_volatile),
4331        index_(index),
4332        dex_file_(dex_file),
4333        dex_cache_(dex_cache) {}
4334
4335  MemberOffset GetFieldOffset() const { return field_offset_; }
4336  Primitive::Type GetFieldType() const { return field_type_; }
4337  uint32_t GetFieldIndex() const { return index_; }
4338  const DexFile& GetDexFile() const { return dex_file_; }
4339  bool IsVolatile() const { return is_volatile_; }
4340  Handle<mirror::DexCache> GetDexCache() const { return dex_cache_; }
4341
4342 private:
4343  const MemberOffset field_offset_;
4344  const Primitive::Type field_type_;
4345  const bool is_volatile_;
4346  const uint32_t index_;
4347  const DexFile& dex_file_;
4348  const Handle<mirror::DexCache> dex_cache_;
4349};
4350
4351class HInstanceFieldGet : public HExpression<1> {
4352 public:
4353  HInstanceFieldGet(HInstruction* value,
4354                    Primitive::Type field_type,
4355                    MemberOffset field_offset,
4356                    bool is_volatile,
4357                    uint32_t field_idx,
4358                    const DexFile& dex_file,
4359                    Handle<mirror::DexCache> dex_cache,
4360                    uint32_t dex_pc)
4361      : HExpression(
4362            field_type,
4363            SideEffects::FieldReadOfType(field_type, is_volatile), dex_pc),
4364        field_info_(field_offset, field_type, is_volatile, field_idx, dex_file, dex_cache) {
4365    SetRawInputAt(0, value);
4366  }
4367
4368  bool CanBeMoved() const OVERRIDE { return !IsVolatile(); }
4369
4370  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
4371    HInstanceFieldGet* other_get = other->AsInstanceFieldGet();
4372    return GetFieldOffset().SizeValue() == other_get->GetFieldOffset().SizeValue();
4373  }
4374
4375  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
4376    return (obj == InputAt(0)) && GetFieldOffset().Uint32Value() < kPageSize;
4377  }
4378
4379  size_t ComputeHashCode() const OVERRIDE {
4380    return (HInstruction::ComputeHashCode() << 7) | GetFieldOffset().SizeValue();
4381  }
4382
4383  const FieldInfo& GetFieldInfo() const { return field_info_; }
4384  MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
4385  Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); }
4386  bool IsVolatile() const { return field_info_.IsVolatile(); }
4387
4388  DECLARE_INSTRUCTION(InstanceFieldGet);
4389
4390 private:
4391  const FieldInfo field_info_;
4392
4393  DISALLOW_COPY_AND_ASSIGN(HInstanceFieldGet);
4394};
4395
4396class HInstanceFieldSet : public HTemplateInstruction<2> {
4397 public:
4398  HInstanceFieldSet(HInstruction* object,
4399                    HInstruction* value,
4400                    Primitive::Type field_type,
4401                    MemberOffset field_offset,
4402                    bool is_volatile,
4403                    uint32_t field_idx,
4404                    const DexFile& dex_file,
4405                    Handle<mirror::DexCache> dex_cache,
4406                    uint32_t dex_pc)
4407      : HTemplateInstruction(
4408          SideEffects::FieldWriteOfType(field_type, is_volatile), dex_pc),
4409        field_info_(field_offset, field_type, is_volatile, field_idx, dex_file, dex_cache),
4410        value_can_be_null_(true) {
4411    SetRawInputAt(0, object);
4412    SetRawInputAt(1, value);
4413  }
4414
4415  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
4416    return (obj == InputAt(0)) && GetFieldOffset().Uint32Value() < kPageSize;
4417  }
4418
4419  const FieldInfo& GetFieldInfo() const { return field_info_; }
4420  MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
4421  Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); }
4422  bool IsVolatile() const { return field_info_.IsVolatile(); }
4423  HInstruction* GetValue() const { return InputAt(1); }
4424  bool GetValueCanBeNull() const { return value_can_be_null_; }
4425  void ClearValueCanBeNull() { value_can_be_null_ = false; }
4426
4427  DECLARE_INSTRUCTION(InstanceFieldSet);
4428
4429 private:
4430  const FieldInfo field_info_;
4431  bool value_can_be_null_;
4432
4433  DISALLOW_COPY_AND_ASSIGN(HInstanceFieldSet);
4434};
4435
4436class HArrayGet : public HExpression<2> {
4437 public:
4438  HArrayGet(HInstruction* array,
4439            HInstruction* index,
4440            Primitive::Type type,
4441            uint32_t dex_pc,
4442            SideEffects additional_side_effects = SideEffects::None())
4443      : HExpression(type,
4444                    SideEffects::ArrayReadOfType(type).Union(additional_side_effects),
4445                    dex_pc) {
4446    SetRawInputAt(0, array);
4447    SetRawInputAt(1, index);
4448  }
4449
4450  bool CanBeMoved() const OVERRIDE { return true; }
4451  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
4452    return true;
4453  }
4454  bool CanDoImplicitNullCheckOn(HInstruction* obj ATTRIBUTE_UNUSED) const OVERRIDE {
4455    // TODO: We can be smarter here.
4456    // Currently, the array access is always preceded by an ArrayLength or a NullCheck
4457    // which generates the implicit null check. There are cases when these can be removed
4458    // to produce better code. If we ever add optimizations to do so we should allow an
4459    // implicit check here (as long as the address falls in the first page).
4460    return false;
4461  }
4462
4463  void SetType(Primitive::Type type) { type_ = type; }
4464
4465  HInstruction* GetArray() const { return InputAt(0); }
4466  HInstruction* GetIndex() const { return InputAt(1); }
4467
4468  DECLARE_INSTRUCTION(ArrayGet);
4469
4470 private:
4471  DISALLOW_COPY_AND_ASSIGN(HArrayGet);
4472};
4473
4474class HArraySet : public HTemplateInstruction<3> {
4475 public:
4476  HArraySet(HInstruction* array,
4477            HInstruction* index,
4478            HInstruction* value,
4479            Primitive::Type expected_component_type,
4480            uint32_t dex_pc,
4481            SideEffects additional_side_effects = SideEffects::None())
4482      : HTemplateInstruction(
4483            SideEffects::ArrayWriteOfType(expected_component_type).Union(
4484                SideEffectsForArchRuntimeCalls(value->GetType())).Union(
4485                    additional_side_effects),
4486            dex_pc),
4487        expected_component_type_(expected_component_type),
4488        needs_type_check_(value->GetType() == Primitive::kPrimNot),
4489        value_can_be_null_(true),
4490        static_type_of_array_is_object_array_(false) {
4491    SetRawInputAt(0, array);
4492    SetRawInputAt(1, index);
4493    SetRawInputAt(2, value);
4494  }
4495
4496  bool NeedsEnvironment() const OVERRIDE {
4497    // We currently always call a runtime method to catch array store
4498    // exceptions.
4499    return needs_type_check_;
4500  }
4501
4502  // Can throw ArrayStoreException.
4503  bool CanThrow() const OVERRIDE { return needs_type_check_; }
4504
4505  bool CanDoImplicitNullCheckOn(HInstruction* obj ATTRIBUTE_UNUSED) const OVERRIDE {
4506    // TODO: Same as for ArrayGet.
4507    return false;
4508  }
4509
4510  void ClearNeedsTypeCheck() {
4511    needs_type_check_ = false;
4512  }
4513
4514  void ClearValueCanBeNull() {
4515    value_can_be_null_ = false;
4516  }
4517
4518  void SetStaticTypeOfArrayIsObjectArray() {
4519    static_type_of_array_is_object_array_ = true;
4520  }
4521
4522  bool GetValueCanBeNull() const { return value_can_be_null_; }
4523  bool NeedsTypeCheck() const { return needs_type_check_; }
4524  bool StaticTypeOfArrayIsObjectArray() const { return static_type_of_array_is_object_array_; }
4525
4526  HInstruction* GetArray() const { return InputAt(0); }
4527  HInstruction* GetIndex() const { return InputAt(1); }
4528  HInstruction* GetValue() const { return InputAt(2); }
4529
4530  Primitive::Type GetComponentType() const {
4531    // The Dex format does not type floating point index operations. Since the
4532    // `expected_component_type_` is set during building and can therefore not
4533    // be correct, we also check what is the value type. If it is a floating
4534    // point type, we must use that type.
4535    Primitive::Type value_type = GetValue()->GetType();
4536    return ((value_type == Primitive::kPrimFloat) || (value_type == Primitive::kPrimDouble))
4537        ? value_type
4538        : expected_component_type_;
4539  }
4540
4541  Primitive::Type GetRawExpectedComponentType() const {
4542    return expected_component_type_;
4543  }
4544
4545  static SideEffects SideEffectsForArchRuntimeCalls(Primitive::Type value_type) {
4546    return (value_type == Primitive::kPrimNot) ? SideEffects::CanTriggerGC() : SideEffects::None();
4547  }
4548
4549  DECLARE_INSTRUCTION(ArraySet);
4550
4551 private:
4552  const Primitive::Type expected_component_type_;
4553  bool needs_type_check_;
4554  bool value_can_be_null_;
4555  // Cached information for the reference_type_info_ so that codegen
4556  // does not need to inspect the static type.
4557  bool static_type_of_array_is_object_array_;
4558
4559  DISALLOW_COPY_AND_ASSIGN(HArraySet);
4560};
4561
4562class HArrayLength : public HExpression<1> {
4563 public:
4564  HArrayLength(HInstruction* array, uint32_t dex_pc)
4565      : HExpression(Primitive::kPrimInt, SideEffects::None(), dex_pc) {
4566    // Note that arrays do not change length, so the instruction does not
4567    // depend on any write.
4568    SetRawInputAt(0, array);
4569  }
4570
4571  bool CanBeMoved() const OVERRIDE { return true; }
4572  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
4573    return true;
4574  }
4575  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
4576    return obj == InputAt(0);
4577  }
4578
4579  DECLARE_INSTRUCTION(ArrayLength);
4580
4581 private:
4582  DISALLOW_COPY_AND_ASSIGN(HArrayLength);
4583};
4584
4585class HBoundsCheck : public HExpression<2> {
4586 public:
4587  HBoundsCheck(HInstruction* index, HInstruction* length, uint32_t dex_pc)
4588      : HExpression(index->GetType(), SideEffects::None(), dex_pc) {
4589    DCHECK(index->GetType() == Primitive::kPrimInt);
4590    SetRawInputAt(0, index);
4591    SetRawInputAt(1, length);
4592  }
4593
4594  bool CanBeMoved() const OVERRIDE { return true; }
4595  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
4596    return true;
4597  }
4598
4599  bool NeedsEnvironment() const OVERRIDE { return true; }
4600
4601  bool CanThrow() const OVERRIDE { return true; }
4602
4603  HInstruction* GetIndex() const { return InputAt(0); }
4604
4605  DECLARE_INSTRUCTION(BoundsCheck);
4606
4607 private:
4608  DISALLOW_COPY_AND_ASSIGN(HBoundsCheck);
4609};
4610
4611/**
4612 * Some DEX instructions are folded into multiple HInstructions that need
4613 * to stay live until the last HInstruction. This class
4614 * is used as a marker for the baseline compiler to ensure its preceding
4615 * HInstruction stays live. `index` represents the stack location index of the
4616 * instruction (the actual offset is computed as index * vreg_size).
4617 */
4618class HTemporary : public HTemplateInstruction<0> {
4619 public:
4620  explicit HTemporary(size_t index, uint32_t dex_pc = kNoDexPc)
4621      : HTemplateInstruction(SideEffects::None(), dex_pc), index_(index) {}
4622
4623  size_t GetIndex() const { return index_; }
4624
4625  Primitive::Type GetType() const OVERRIDE {
4626    // The previous instruction is the one that will be stored in the temporary location.
4627    DCHECK(GetPrevious() != nullptr);
4628    return GetPrevious()->GetType();
4629  }
4630
4631  DECLARE_INSTRUCTION(Temporary);
4632
4633 private:
4634  const size_t index_;
4635  DISALLOW_COPY_AND_ASSIGN(HTemporary);
4636};
4637
4638class HSuspendCheck : public HTemplateInstruction<0> {
4639 public:
4640  explicit HSuspendCheck(uint32_t dex_pc)
4641      : HTemplateInstruction(SideEffects::CanTriggerGC(), dex_pc), slow_path_(nullptr) {}
4642
4643  bool NeedsEnvironment() const OVERRIDE {
4644    return true;
4645  }
4646
4647  void SetSlowPath(SlowPathCode* slow_path) { slow_path_ = slow_path; }
4648  SlowPathCode* GetSlowPath() const { return slow_path_; }
4649
4650  DECLARE_INSTRUCTION(SuspendCheck);
4651
4652 private:
4653  // Only used for code generation, in order to share the same slow path between back edges
4654  // of a same loop.
4655  SlowPathCode* slow_path_;
4656
4657  DISALLOW_COPY_AND_ASSIGN(HSuspendCheck);
4658};
4659
4660/**
4661 * Instruction to load a Class object.
4662 */
4663class HLoadClass : public HExpression<1> {
4664 public:
4665  HLoadClass(HCurrentMethod* current_method,
4666             uint16_t type_index,
4667             const DexFile& dex_file,
4668             bool is_referrers_class,
4669             uint32_t dex_pc,
4670             bool needs_access_check)
4671      : HExpression(Primitive::kPrimNot, SideEffectsForArchRuntimeCalls(), dex_pc),
4672        type_index_(type_index),
4673        dex_file_(dex_file),
4674        is_referrers_class_(is_referrers_class),
4675        generate_clinit_check_(false),
4676        needs_access_check_(needs_access_check),
4677        loaded_class_rti_(ReferenceTypeInfo::CreateInvalid()) {
4678    // Referrers class should not need access check. We never inline unverified
4679    // methods so we can't possibly end up in this situation.
4680    DCHECK(!is_referrers_class_ || !needs_access_check_);
4681    SetRawInputAt(0, current_method);
4682  }
4683
4684  bool CanBeMoved() const OVERRIDE { return true; }
4685
4686  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
4687    // Note that we don't need to test for generate_clinit_check_.
4688    // Whether or not we need to generate the clinit check is processed in
4689    // prepare_for_register_allocator based on existing HInvokes and HClinitChecks.
4690    return other->AsLoadClass()->type_index_ == type_index_ &&
4691        other->AsLoadClass()->needs_access_check_ == needs_access_check_;
4692  }
4693
4694  size_t ComputeHashCode() const OVERRIDE { return type_index_; }
4695
4696  uint16_t GetTypeIndex() const { return type_index_; }
4697  bool IsReferrersClass() const { return is_referrers_class_; }
4698  bool CanBeNull() const OVERRIDE { return false; }
4699
4700  bool NeedsEnvironment() const OVERRIDE {
4701    // Will call runtime and load the class if the class is not loaded yet.
4702    // TODO: finer grain decision.
4703    return !is_referrers_class_;
4704  }
4705
4706  bool MustGenerateClinitCheck() const {
4707    return generate_clinit_check_;
4708  }
4709  void SetMustGenerateClinitCheck(bool generate_clinit_check) {
4710    generate_clinit_check_ = generate_clinit_check;
4711  }
4712
4713  bool CanCallRuntime() const {
4714    return MustGenerateClinitCheck() || !is_referrers_class_ || needs_access_check_;
4715  }
4716
4717  bool NeedsAccessCheck() const {
4718    return needs_access_check_;
4719  }
4720
4721  bool CanThrow() const OVERRIDE {
4722    // May call runtime and and therefore can throw.
4723    // TODO: finer grain decision.
4724    return CanCallRuntime();
4725  }
4726
4727  ReferenceTypeInfo GetLoadedClassRTI() {
4728    return loaded_class_rti_;
4729  }
4730
4731  void SetLoadedClassRTI(ReferenceTypeInfo rti) {
4732    // Make sure we only set exact types (the loaded class should never be merged).
4733    DCHECK(rti.IsExact());
4734    loaded_class_rti_ = rti;
4735  }
4736
4737  const DexFile& GetDexFile() { return dex_file_; }
4738
4739  bool NeedsDexCache() const OVERRIDE { return !is_referrers_class_; }
4740
4741  static SideEffects SideEffectsForArchRuntimeCalls() {
4742    return SideEffects::CanTriggerGC();
4743  }
4744
4745  DECLARE_INSTRUCTION(LoadClass);
4746
4747 private:
4748  const uint16_t type_index_;
4749  const DexFile& dex_file_;
4750  const bool is_referrers_class_;
4751  // Whether this instruction must generate the initialization check.
4752  // Used for code generation.
4753  bool generate_clinit_check_;
4754  bool needs_access_check_;
4755
4756  ReferenceTypeInfo loaded_class_rti_;
4757
4758  DISALLOW_COPY_AND_ASSIGN(HLoadClass);
4759};
4760
4761class HLoadString : public HExpression<1> {
4762 public:
4763  HLoadString(HCurrentMethod* current_method, uint32_t string_index, uint32_t dex_pc)
4764      : HExpression(Primitive::kPrimNot, SideEffectsForArchRuntimeCalls(), dex_pc),
4765        string_index_(string_index) {
4766    SetRawInputAt(0, current_method);
4767  }
4768
4769  bool CanBeMoved() const OVERRIDE { return true; }
4770
4771  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
4772    return other->AsLoadString()->string_index_ == string_index_;
4773  }
4774
4775  size_t ComputeHashCode() const OVERRIDE { return string_index_; }
4776
4777  uint32_t GetStringIndex() const { return string_index_; }
4778
4779  // TODO: Can we deopt or debug when we resolve a string?
4780  bool NeedsEnvironment() const OVERRIDE { return false; }
4781  bool NeedsDexCache() const OVERRIDE { return true; }
4782  bool CanBeNull() const OVERRIDE { return false; }
4783
4784  static SideEffects SideEffectsForArchRuntimeCalls() {
4785    return SideEffects::CanTriggerGC();
4786  }
4787
4788  DECLARE_INSTRUCTION(LoadString);
4789
4790 private:
4791  const uint32_t string_index_;
4792
4793  DISALLOW_COPY_AND_ASSIGN(HLoadString);
4794};
4795
4796/**
4797 * Performs an initialization check on its Class object input.
4798 */
4799class HClinitCheck : public HExpression<1> {
4800 public:
4801  HClinitCheck(HLoadClass* constant, uint32_t dex_pc)
4802      : HExpression(
4803            Primitive::kPrimNot,
4804            SideEffects::AllChanges(),  // Assume write/read on all fields/arrays.
4805            dex_pc) {
4806    SetRawInputAt(0, constant);
4807  }
4808
4809  bool CanBeMoved() const OVERRIDE { return true; }
4810  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
4811    return true;
4812  }
4813
4814  bool NeedsEnvironment() const OVERRIDE {
4815    // May call runtime to initialize the class.
4816    return true;
4817  }
4818
4819
4820  HLoadClass* GetLoadClass() const { return InputAt(0)->AsLoadClass(); }
4821
4822  DECLARE_INSTRUCTION(ClinitCheck);
4823
4824 private:
4825  DISALLOW_COPY_AND_ASSIGN(HClinitCheck);
4826};
4827
4828class HStaticFieldGet : public HExpression<1> {
4829 public:
4830  HStaticFieldGet(HInstruction* cls,
4831                  Primitive::Type field_type,
4832                  MemberOffset field_offset,
4833                  bool is_volatile,
4834                  uint32_t field_idx,
4835                  const DexFile& dex_file,
4836                  Handle<mirror::DexCache> dex_cache,
4837                  uint32_t dex_pc)
4838      : HExpression(
4839            field_type,
4840            SideEffects::FieldReadOfType(field_type, is_volatile), dex_pc),
4841        field_info_(field_offset, field_type, is_volatile, field_idx, dex_file, dex_cache) {
4842    SetRawInputAt(0, cls);
4843  }
4844
4845
4846  bool CanBeMoved() const OVERRIDE { return !IsVolatile(); }
4847
4848  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
4849    HStaticFieldGet* other_get = other->AsStaticFieldGet();
4850    return GetFieldOffset().SizeValue() == other_get->GetFieldOffset().SizeValue();
4851  }
4852
4853  size_t ComputeHashCode() const OVERRIDE {
4854    return (HInstruction::ComputeHashCode() << 7) | GetFieldOffset().SizeValue();
4855  }
4856
4857  const FieldInfo& GetFieldInfo() const { return field_info_; }
4858  MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
4859  Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); }
4860  bool IsVolatile() const { return field_info_.IsVolatile(); }
4861
4862  DECLARE_INSTRUCTION(StaticFieldGet);
4863
4864 private:
4865  const FieldInfo field_info_;
4866
4867  DISALLOW_COPY_AND_ASSIGN(HStaticFieldGet);
4868};
4869
4870class HStaticFieldSet : public HTemplateInstruction<2> {
4871 public:
4872  HStaticFieldSet(HInstruction* cls,
4873                  HInstruction* value,
4874                  Primitive::Type field_type,
4875                  MemberOffset field_offset,
4876                  bool is_volatile,
4877                  uint32_t field_idx,
4878                  const DexFile& dex_file,
4879                  Handle<mirror::DexCache> dex_cache,
4880                  uint32_t dex_pc)
4881      : HTemplateInstruction(
4882          SideEffects::FieldWriteOfType(field_type, is_volatile), dex_pc),
4883        field_info_(field_offset, field_type, is_volatile, field_idx, dex_file, dex_cache),
4884        value_can_be_null_(true) {
4885    SetRawInputAt(0, cls);
4886    SetRawInputAt(1, value);
4887  }
4888
4889  const FieldInfo& GetFieldInfo() const { return field_info_; }
4890  MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
4891  Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); }
4892  bool IsVolatile() const { return field_info_.IsVolatile(); }
4893
4894  HInstruction* GetValue() const { return InputAt(1); }
4895  bool GetValueCanBeNull() const { return value_can_be_null_; }
4896  void ClearValueCanBeNull() { value_can_be_null_ = false; }
4897
4898  DECLARE_INSTRUCTION(StaticFieldSet);
4899
4900 private:
4901  const FieldInfo field_info_;
4902  bool value_can_be_null_;
4903
4904  DISALLOW_COPY_AND_ASSIGN(HStaticFieldSet);
4905};
4906
4907class HUnresolvedInstanceFieldGet : public HExpression<1> {
4908 public:
4909  HUnresolvedInstanceFieldGet(HInstruction* obj,
4910                              Primitive::Type field_type,
4911                              uint32_t field_index,
4912                              uint32_t dex_pc)
4913      : HExpression(field_type, SideEffects::AllExceptGCDependency(), dex_pc),
4914        field_index_(field_index) {
4915    SetRawInputAt(0, obj);
4916  }
4917
4918  bool NeedsEnvironment() const OVERRIDE { return true; }
4919  bool CanThrow() const OVERRIDE { return true; }
4920
4921  Primitive::Type GetFieldType() const { return GetType(); }
4922  uint32_t GetFieldIndex() const { return field_index_; }
4923
4924  DECLARE_INSTRUCTION(UnresolvedInstanceFieldGet);
4925
4926 private:
4927  const uint32_t field_index_;
4928
4929  DISALLOW_COPY_AND_ASSIGN(HUnresolvedInstanceFieldGet);
4930};
4931
4932class HUnresolvedInstanceFieldSet : public HTemplateInstruction<2> {
4933 public:
4934  HUnresolvedInstanceFieldSet(HInstruction* obj,
4935                              HInstruction* value,
4936                              Primitive::Type field_type,
4937                              uint32_t field_index,
4938                              uint32_t dex_pc)
4939      : HTemplateInstruction(SideEffects::AllExceptGCDependency(), dex_pc),
4940        field_type_(field_type),
4941        field_index_(field_index) {
4942    DCHECK_EQ(field_type, value->GetType());
4943    SetRawInputAt(0, obj);
4944    SetRawInputAt(1, value);
4945  }
4946
4947  bool NeedsEnvironment() const OVERRIDE { return true; }
4948  bool CanThrow() const OVERRIDE { return true; }
4949
4950  Primitive::Type GetFieldType() const { return field_type_; }
4951  uint32_t GetFieldIndex() const { return field_index_; }
4952
4953  DECLARE_INSTRUCTION(UnresolvedInstanceFieldSet);
4954
4955 private:
4956  const Primitive::Type field_type_;
4957  const uint32_t field_index_;
4958
4959  DISALLOW_COPY_AND_ASSIGN(HUnresolvedInstanceFieldSet);
4960};
4961
4962class HUnresolvedStaticFieldGet : public HExpression<0> {
4963 public:
4964  HUnresolvedStaticFieldGet(Primitive::Type field_type,
4965                            uint32_t field_index,
4966                            uint32_t dex_pc)
4967      : HExpression(field_type, SideEffects::AllExceptGCDependency(), dex_pc),
4968        field_index_(field_index) {
4969  }
4970
4971  bool NeedsEnvironment() const OVERRIDE { return true; }
4972  bool CanThrow() const OVERRIDE { return true; }
4973
4974  Primitive::Type GetFieldType() const { return GetType(); }
4975  uint32_t GetFieldIndex() const { return field_index_; }
4976
4977  DECLARE_INSTRUCTION(UnresolvedStaticFieldGet);
4978
4979 private:
4980  const uint32_t field_index_;
4981
4982  DISALLOW_COPY_AND_ASSIGN(HUnresolvedStaticFieldGet);
4983};
4984
4985class HUnresolvedStaticFieldSet : public HTemplateInstruction<1> {
4986 public:
4987  HUnresolvedStaticFieldSet(HInstruction* value,
4988                            Primitive::Type field_type,
4989                            uint32_t field_index,
4990                            uint32_t dex_pc)
4991      : HTemplateInstruction(SideEffects::AllExceptGCDependency(), dex_pc),
4992        field_type_(field_type),
4993        field_index_(field_index) {
4994    DCHECK_EQ(field_type, value->GetType());
4995    SetRawInputAt(0, value);
4996  }
4997
4998  bool NeedsEnvironment() const OVERRIDE { return true; }
4999  bool CanThrow() const OVERRIDE { return true; }
5000
5001  Primitive::Type GetFieldType() const { return field_type_; }
5002  uint32_t GetFieldIndex() const { return field_index_; }
5003
5004  DECLARE_INSTRUCTION(UnresolvedStaticFieldSet);
5005
5006 private:
5007  const Primitive::Type field_type_;
5008  const uint32_t field_index_;
5009
5010  DISALLOW_COPY_AND_ASSIGN(HUnresolvedStaticFieldSet);
5011};
5012
5013// Implement the move-exception DEX instruction.
5014class HLoadException : public HExpression<0> {
5015 public:
5016  explicit HLoadException(uint32_t dex_pc = kNoDexPc)
5017      : HExpression(Primitive::kPrimNot, SideEffects::None(), dex_pc) {}
5018
5019  bool CanBeNull() const OVERRIDE { return false; }
5020
5021  DECLARE_INSTRUCTION(LoadException);
5022
5023 private:
5024  DISALLOW_COPY_AND_ASSIGN(HLoadException);
5025};
5026
5027// Implicit part of move-exception which clears thread-local exception storage.
5028// Must not be removed because the runtime expects the TLS to get cleared.
5029class HClearException : public HTemplateInstruction<0> {
5030 public:
5031  explicit HClearException(uint32_t dex_pc = kNoDexPc)
5032      : HTemplateInstruction(SideEffects::AllWrites(), dex_pc) {}
5033
5034  DECLARE_INSTRUCTION(ClearException);
5035
5036 private:
5037  DISALLOW_COPY_AND_ASSIGN(HClearException);
5038};
5039
5040class HThrow : public HTemplateInstruction<1> {
5041 public:
5042  HThrow(HInstruction* exception, uint32_t dex_pc)
5043      : HTemplateInstruction(SideEffects::CanTriggerGC(), dex_pc) {
5044    SetRawInputAt(0, exception);
5045  }
5046
5047  bool IsControlFlow() const OVERRIDE { return true; }
5048
5049  bool NeedsEnvironment() const OVERRIDE { return true; }
5050
5051  bool CanThrow() const OVERRIDE { return true; }
5052
5053
5054  DECLARE_INSTRUCTION(Throw);
5055
5056 private:
5057  DISALLOW_COPY_AND_ASSIGN(HThrow);
5058};
5059
5060/**
5061 * Implementation strategies for the code generator of a HInstanceOf
5062 * or `HCheckCast`.
5063 */
5064enum class TypeCheckKind {
5065  kUnresolvedCheck,       // Check against an unresolved type.
5066  kExactCheck,            // Can do a single class compare.
5067  kClassHierarchyCheck,   // Can just walk the super class chain.
5068  kAbstractClassCheck,    // Can just walk the super class chain, starting one up.
5069  kInterfaceCheck,        // No optimization yet when checking against an interface.
5070  kArrayObjectCheck,      // Can just check if the array is not primitive.
5071  kArrayCheck             // No optimization yet when checking against a generic array.
5072};
5073
5074class HInstanceOf : public HExpression<2> {
5075 public:
5076  HInstanceOf(HInstruction* object,
5077              HLoadClass* constant,
5078              TypeCheckKind check_kind,
5079              uint32_t dex_pc)
5080      : HExpression(Primitive::kPrimBoolean,
5081                    SideEffectsForArchRuntimeCalls(check_kind),
5082                    dex_pc),
5083        check_kind_(check_kind),
5084        must_do_null_check_(true) {
5085    SetRawInputAt(0, object);
5086    SetRawInputAt(1, constant);
5087  }
5088
5089  bool CanBeMoved() const OVERRIDE { return true; }
5090
5091  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
5092    return true;
5093  }
5094
5095  bool NeedsEnvironment() const OVERRIDE {
5096    return false;
5097  }
5098
5099  bool IsExactCheck() const { return check_kind_ == TypeCheckKind::kExactCheck; }
5100
5101  TypeCheckKind GetTypeCheckKind() const { return check_kind_; }
5102
5103  // Used only in code generation.
5104  bool MustDoNullCheck() const { return must_do_null_check_; }
5105  void ClearMustDoNullCheck() { must_do_null_check_ = false; }
5106
5107  static SideEffects SideEffectsForArchRuntimeCalls(TypeCheckKind check_kind) {
5108    return (check_kind == TypeCheckKind::kExactCheck)
5109        ? SideEffects::None()
5110        // Mips currently does runtime calls for any other checks.
5111        : SideEffects::CanTriggerGC();
5112  }
5113
5114  DECLARE_INSTRUCTION(InstanceOf);
5115
5116 private:
5117  const TypeCheckKind check_kind_;
5118  bool must_do_null_check_;
5119
5120  DISALLOW_COPY_AND_ASSIGN(HInstanceOf);
5121};
5122
5123class HBoundType : public HExpression<1> {
5124 public:
5125  // Constructs an HBoundType with the given upper_bound.
5126  // Ensures that the upper_bound is valid.
5127  HBoundType(HInstruction* input,
5128             ReferenceTypeInfo upper_bound,
5129             bool upper_can_be_null,
5130             uint32_t dex_pc = kNoDexPc)
5131      : HExpression(Primitive::kPrimNot, SideEffects::None(), dex_pc),
5132        upper_bound_(upper_bound),
5133        upper_can_be_null_(upper_can_be_null),
5134        can_be_null_(upper_can_be_null) {
5135    DCHECK_EQ(input->GetType(), Primitive::kPrimNot);
5136    SetRawInputAt(0, input);
5137    SetReferenceTypeInfo(upper_bound_);
5138  }
5139
5140  // GetUpper* should only be used in reference type propagation.
5141  const ReferenceTypeInfo& GetUpperBound() const { return upper_bound_; }
5142  bool GetUpperCanBeNull() const { return upper_can_be_null_; }
5143
5144  void SetCanBeNull(bool can_be_null) {
5145    DCHECK(upper_can_be_null_ || !can_be_null);
5146    can_be_null_ = can_be_null;
5147  }
5148
5149  bool CanBeNull() const OVERRIDE { return can_be_null_; }
5150
5151  DECLARE_INSTRUCTION(BoundType);
5152
5153 private:
5154  // Encodes the most upper class that this instruction can have. In other words
5155  // it is always the case that GetUpperBound().IsSupertypeOf(GetReferenceType()).
5156  // It is used to bound the type in cases like:
5157  //   if (x instanceof ClassX) {
5158  //     // uper_bound_ will be ClassX
5159  //   }
5160  const ReferenceTypeInfo upper_bound_;
5161  // Represents the top constraint that can_be_null_ cannot exceed (i.e. if this
5162  // is false then can_be_null_ cannot be true).
5163  const bool upper_can_be_null_;
5164  bool can_be_null_;
5165
5166  DISALLOW_COPY_AND_ASSIGN(HBoundType);
5167};
5168
5169class HCheckCast : public HTemplateInstruction<2> {
5170 public:
5171  HCheckCast(HInstruction* object,
5172             HLoadClass* constant,
5173             TypeCheckKind check_kind,
5174             uint32_t dex_pc)
5175      : HTemplateInstruction(SideEffects::CanTriggerGC(), dex_pc),
5176        check_kind_(check_kind),
5177        must_do_null_check_(true) {
5178    SetRawInputAt(0, object);
5179    SetRawInputAt(1, constant);
5180  }
5181
5182  bool CanBeMoved() const OVERRIDE { return true; }
5183
5184  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
5185    return true;
5186  }
5187
5188  bool NeedsEnvironment() const OVERRIDE {
5189    // Instruction may throw a CheckCastError.
5190    return true;
5191  }
5192
5193  bool CanThrow() const OVERRIDE { return true; }
5194
5195  bool MustDoNullCheck() const { return must_do_null_check_; }
5196  void ClearMustDoNullCheck() { must_do_null_check_ = false; }
5197  TypeCheckKind GetTypeCheckKind() const { return check_kind_; }
5198
5199  bool IsExactCheck() const { return check_kind_ == TypeCheckKind::kExactCheck; }
5200
5201  DECLARE_INSTRUCTION(CheckCast);
5202
5203 private:
5204  const TypeCheckKind check_kind_;
5205  bool must_do_null_check_;
5206
5207  DISALLOW_COPY_AND_ASSIGN(HCheckCast);
5208};
5209
5210class HMemoryBarrier : public HTemplateInstruction<0> {
5211 public:
5212  explicit HMemoryBarrier(MemBarrierKind barrier_kind, uint32_t dex_pc = kNoDexPc)
5213      : HTemplateInstruction(
5214            SideEffects::AllWritesAndReads(), dex_pc),  // Assume write/read on all fields/arrays.
5215        barrier_kind_(barrier_kind) {}
5216
5217  MemBarrierKind GetBarrierKind() { return barrier_kind_; }
5218
5219  DECLARE_INSTRUCTION(MemoryBarrier);
5220
5221 private:
5222  const MemBarrierKind barrier_kind_;
5223
5224  DISALLOW_COPY_AND_ASSIGN(HMemoryBarrier);
5225};
5226
5227class HMonitorOperation : public HTemplateInstruction<1> {
5228 public:
5229  enum OperationKind {
5230    kEnter,
5231    kExit,
5232  };
5233
5234  HMonitorOperation(HInstruction* object, OperationKind kind, uint32_t dex_pc)
5235    : HTemplateInstruction(
5236          SideEffects::AllExceptGCDependency(), dex_pc),  // Assume write/read on all fields/arrays.
5237      kind_(kind) {
5238    SetRawInputAt(0, object);
5239  }
5240
5241  // Instruction may throw a Java exception, so we need an environment.
5242  bool NeedsEnvironment() const OVERRIDE { return CanThrow(); }
5243
5244  bool CanThrow() const OVERRIDE {
5245    // Verifier guarantees that monitor-exit cannot throw.
5246    // This is important because it allows the HGraphBuilder to remove
5247    // a dead throw-catch loop generated for `synchronized` blocks/methods.
5248    return IsEnter();
5249  }
5250
5251
5252  bool IsEnter() const { return kind_ == kEnter; }
5253
5254  DECLARE_INSTRUCTION(MonitorOperation);
5255
5256 private:
5257  const OperationKind kind_;
5258
5259 private:
5260  DISALLOW_COPY_AND_ASSIGN(HMonitorOperation);
5261};
5262
5263/**
5264 * A HInstruction used as a marker for the replacement of new + <init>
5265 * of a String to a call to a StringFactory. Only baseline will see
5266 * the node at code generation, where it will be be treated as null.
5267 * When compiling non-baseline, `HFakeString` instructions are being removed
5268 * in the instruction simplifier.
5269 */
5270class HFakeString : public HTemplateInstruction<0> {
5271 public:
5272  explicit HFakeString(uint32_t dex_pc = kNoDexPc)
5273      : HTemplateInstruction(SideEffects::None(), dex_pc) {}
5274
5275  Primitive::Type GetType() const OVERRIDE { return Primitive::kPrimNot; }
5276
5277  DECLARE_INSTRUCTION(FakeString);
5278
5279 private:
5280  DISALLOW_COPY_AND_ASSIGN(HFakeString);
5281};
5282
5283class MoveOperands : public ArenaObject<kArenaAllocMoveOperands> {
5284 public:
5285  MoveOperands(Location source,
5286               Location destination,
5287               Primitive::Type type,
5288               HInstruction* instruction)
5289      : source_(source), destination_(destination), type_(type), instruction_(instruction) {}
5290
5291  Location GetSource() const { return source_; }
5292  Location GetDestination() const { return destination_; }
5293
5294  void SetSource(Location value) { source_ = value; }
5295  void SetDestination(Location value) { destination_ = value; }
5296
5297  // The parallel move resolver marks moves as "in-progress" by clearing the
5298  // destination (but not the source).
5299  Location MarkPending() {
5300    DCHECK(!IsPending());
5301    Location dest = destination_;
5302    destination_ = Location::NoLocation();
5303    return dest;
5304  }
5305
5306  void ClearPending(Location dest) {
5307    DCHECK(IsPending());
5308    destination_ = dest;
5309  }
5310
5311  bool IsPending() const {
5312    DCHECK(!source_.IsInvalid() || destination_.IsInvalid());
5313    return destination_.IsInvalid() && !source_.IsInvalid();
5314  }
5315
5316  // True if this blocks a move from the given location.
5317  bool Blocks(Location loc) const {
5318    return !IsEliminated() && source_.OverlapsWith(loc);
5319  }
5320
5321  // A move is redundant if it's been eliminated, if its source and
5322  // destination are the same, or if its destination is unneeded.
5323  bool IsRedundant() const {
5324    return IsEliminated() || destination_.IsInvalid() || source_.Equals(destination_);
5325  }
5326
5327  // We clear both operands to indicate move that's been eliminated.
5328  void Eliminate() {
5329    source_ = destination_ = Location::NoLocation();
5330  }
5331
5332  bool IsEliminated() const {
5333    DCHECK(!source_.IsInvalid() || destination_.IsInvalid());
5334    return source_.IsInvalid();
5335  }
5336
5337  Primitive::Type GetType() const { return type_; }
5338
5339  bool Is64BitMove() const {
5340    return Primitive::Is64BitType(type_);
5341  }
5342
5343  HInstruction* GetInstruction() const { return instruction_; }
5344
5345 private:
5346  Location source_;
5347  Location destination_;
5348  // The type this move is for.
5349  Primitive::Type type_;
5350  // The instruction this move is assocatied with. Null when this move is
5351  // for moving an input in the expected locations of user (including a phi user).
5352  // This is only used in debug mode, to ensure we do not connect interval siblings
5353  // in the same parallel move.
5354  HInstruction* instruction_;
5355};
5356
5357static constexpr size_t kDefaultNumberOfMoves = 4;
5358
5359class HParallelMove : public HTemplateInstruction<0> {
5360 public:
5361  explicit HParallelMove(ArenaAllocator* arena, uint32_t dex_pc = kNoDexPc)
5362      : HTemplateInstruction(SideEffects::None(), dex_pc),
5363        moves_(arena->Adapter(kArenaAllocMoveOperands)) {
5364    moves_.reserve(kDefaultNumberOfMoves);
5365  }
5366
5367  void AddMove(Location source,
5368               Location destination,
5369               Primitive::Type type,
5370               HInstruction* instruction) {
5371    DCHECK(source.IsValid());
5372    DCHECK(destination.IsValid());
5373    if (kIsDebugBuild) {
5374      if (instruction != nullptr) {
5375        for (const MoveOperands& move : moves_) {
5376          if (move.GetInstruction() == instruction) {
5377            // Special case the situation where the move is for the spill slot
5378            // of the instruction.
5379            if ((GetPrevious() == instruction)
5380                || ((GetPrevious() == nullptr)
5381                    && instruction->IsPhi()
5382                    && instruction->GetBlock() == GetBlock())) {
5383              DCHECK_NE(destination.GetKind(), move.GetDestination().GetKind())
5384                  << "Doing parallel moves for the same instruction.";
5385            } else {
5386              DCHECK(false) << "Doing parallel moves for the same instruction.";
5387            }
5388          }
5389        }
5390      }
5391      for (const MoveOperands& move : moves_) {
5392        DCHECK(!destination.OverlapsWith(move.GetDestination()))
5393            << "Overlapped destination for two moves in a parallel move: "
5394            << move.GetSource() << " ==> " << move.GetDestination() << " and "
5395            << source << " ==> " << destination;
5396      }
5397    }
5398    moves_.emplace_back(source, destination, type, instruction);
5399  }
5400
5401  MoveOperands* MoveOperandsAt(size_t index) {
5402    return &moves_[index];
5403  }
5404
5405  size_t NumMoves() const { return moves_.size(); }
5406
5407  DECLARE_INSTRUCTION(ParallelMove);
5408
5409 private:
5410  ArenaVector<MoveOperands> moves_;
5411
5412  DISALLOW_COPY_AND_ASSIGN(HParallelMove);
5413};
5414
5415}  // namespace art
5416
5417#ifdef ART_ENABLE_CODEGEN_arm64
5418#include "nodes_arm64.h"
5419#endif
5420#ifdef ART_ENABLE_CODEGEN_x86
5421#include "nodes_x86.h"
5422#endif
5423
5424namespace art {
5425
5426class HGraphVisitor : public ValueObject {
5427 public:
5428  explicit HGraphVisitor(HGraph* graph) : graph_(graph) {}
5429  virtual ~HGraphVisitor() {}
5430
5431  virtual void VisitInstruction(HInstruction* instruction ATTRIBUTE_UNUSED) {}
5432  virtual void VisitBasicBlock(HBasicBlock* block);
5433
5434  // Visit the graph following basic block insertion order.
5435  void VisitInsertionOrder();
5436
5437  // Visit the graph following dominator tree reverse post-order.
5438  void VisitReversePostOrder();
5439
5440  HGraph* GetGraph() const { return graph_; }
5441
5442  // Visit functions for instruction classes.
5443#define DECLARE_VISIT_INSTRUCTION(name, super)                                        \
5444  virtual void Visit##name(H##name* instr) { VisitInstruction(instr); }
5445
5446  FOR_EACH_INSTRUCTION(DECLARE_VISIT_INSTRUCTION)
5447
5448#undef DECLARE_VISIT_INSTRUCTION
5449
5450 private:
5451  HGraph* const graph_;
5452
5453  DISALLOW_COPY_AND_ASSIGN(HGraphVisitor);
5454};
5455
5456class HGraphDelegateVisitor : public HGraphVisitor {
5457 public:
5458  explicit HGraphDelegateVisitor(HGraph* graph) : HGraphVisitor(graph) {}
5459  virtual ~HGraphDelegateVisitor() {}
5460
5461  // Visit functions that delegate to to super class.
5462#define DECLARE_VISIT_INSTRUCTION(name, super)                                        \
5463  void Visit##name(H##name* instr) OVERRIDE { Visit##super(instr); }
5464
5465  FOR_EACH_INSTRUCTION(DECLARE_VISIT_INSTRUCTION)
5466
5467#undef DECLARE_VISIT_INSTRUCTION
5468
5469 private:
5470  DISALLOW_COPY_AND_ASSIGN(HGraphDelegateVisitor);
5471};
5472
5473class HInsertionOrderIterator : public ValueObject {
5474 public:
5475  explicit HInsertionOrderIterator(const HGraph& graph) : graph_(graph), index_(0) {}
5476
5477  bool Done() const { return index_ == graph_.GetBlocks().size(); }
5478  HBasicBlock* Current() const { return graph_.GetBlocks()[index_]; }
5479  void Advance() { ++index_; }
5480
5481 private:
5482  const HGraph& graph_;
5483  size_t index_;
5484
5485  DISALLOW_COPY_AND_ASSIGN(HInsertionOrderIterator);
5486};
5487
5488class HReversePostOrderIterator : public ValueObject {
5489 public:
5490  explicit HReversePostOrderIterator(const HGraph& graph) : graph_(graph), index_(0) {
5491    // Check that reverse post order of the graph has been built.
5492    DCHECK(!graph.GetReversePostOrder().empty());
5493  }
5494
5495  bool Done() const { return index_ == graph_.GetReversePostOrder().size(); }
5496  HBasicBlock* Current() const { return graph_.GetReversePostOrder()[index_]; }
5497  void Advance() { ++index_; }
5498
5499 private:
5500  const HGraph& graph_;
5501  size_t index_;
5502
5503  DISALLOW_COPY_AND_ASSIGN(HReversePostOrderIterator);
5504};
5505
5506class HPostOrderIterator : public ValueObject {
5507 public:
5508  explicit HPostOrderIterator(const HGraph& graph)
5509      : graph_(graph), index_(graph_.GetReversePostOrder().size()) {
5510    // Check that reverse post order of the graph has been built.
5511    DCHECK(!graph.GetReversePostOrder().empty());
5512  }
5513
5514  bool Done() const { return index_ == 0; }
5515  HBasicBlock* Current() const { return graph_.GetReversePostOrder()[index_ - 1u]; }
5516  void Advance() { --index_; }
5517
5518 private:
5519  const HGraph& graph_;
5520  size_t index_;
5521
5522  DISALLOW_COPY_AND_ASSIGN(HPostOrderIterator);
5523};
5524
5525class HLinearPostOrderIterator : public ValueObject {
5526 public:
5527  explicit HLinearPostOrderIterator(const HGraph& graph)
5528      : order_(graph.GetLinearOrder()), index_(graph.GetLinearOrder().size()) {}
5529
5530  bool Done() const { return index_ == 0; }
5531
5532  HBasicBlock* Current() const { return order_[index_ - 1u]; }
5533
5534  void Advance() {
5535    --index_;
5536    DCHECK_GE(index_, 0U);
5537  }
5538
5539 private:
5540  const ArenaVector<HBasicBlock*>& order_;
5541  size_t index_;
5542
5543  DISALLOW_COPY_AND_ASSIGN(HLinearPostOrderIterator);
5544};
5545
5546class HLinearOrderIterator : public ValueObject {
5547 public:
5548  explicit HLinearOrderIterator(const HGraph& graph)
5549      : order_(graph.GetLinearOrder()), index_(0) {}
5550
5551  bool Done() const { return index_ == order_.size(); }
5552  HBasicBlock* Current() const { return order_[index_]; }
5553  void Advance() { ++index_; }
5554
5555 private:
5556  const ArenaVector<HBasicBlock*>& order_;
5557  size_t index_;
5558
5559  DISALLOW_COPY_AND_ASSIGN(HLinearOrderIterator);
5560};
5561
5562// Iterator over the blocks that art part of the loop. Includes blocks part
5563// of an inner loop. The order in which the blocks are iterated is on their
5564// block id.
5565class HBlocksInLoopIterator : public ValueObject {
5566 public:
5567  explicit HBlocksInLoopIterator(const HLoopInformation& info)
5568      : blocks_in_loop_(info.GetBlocks()),
5569        blocks_(info.GetHeader()->GetGraph()->GetBlocks()),
5570        index_(0) {
5571    if (!blocks_in_loop_.IsBitSet(index_)) {
5572      Advance();
5573    }
5574  }
5575
5576  bool Done() const { return index_ == blocks_.size(); }
5577  HBasicBlock* Current() const { return blocks_[index_]; }
5578  void Advance() {
5579    ++index_;
5580    for (size_t e = blocks_.size(); index_ < e; ++index_) {
5581      if (blocks_in_loop_.IsBitSet(index_)) {
5582        break;
5583      }
5584    }
5585  }
5586
5587 private:
5588  const BitVector& blocks_in_loop_;
5589  const ArenaVector<HBasicBlock*>& blocks_;
5590  size_t index_;
5591
5592  DISALLOW_COPY_AND_ASSIGN(HBlocksInLoopIterator);
5593};
5594
5595// Iterator over the blocks that art part of the loop. Includes blocks part
5596// of an inner loop. The order in which the blocks are iterated is reverse
5597// post order.
5598class HBlocksInLoopReversePostOrderIterator : public ValueObject {
5599 public:
5600  explicit HBlocksInLoopReversePostOrderIterator(const HLoopInformation& info)
5601      : blocks_in_loop_(info.GetBlocks()),
5602        blocks_(info.GetHeader()->GetGraph()->GetReversePostOrder()),
5603        index_(0) {
5604    if (!blocks_in_loop_.IsBitSet(blocks_[index_]->GetBlockId())) {
5605      Advance();
5606    }
5607  }
5608
5609  bool Done() const { return index_ == blocks_.size(); }
5610  HBasicBlock* Current() const { return blocks_[index_]; }
5611  void Advance() {
5612    ++index_;
5613    for (size_t e = blocks_.size(); index_ < e; ++index_) {
5614      if (blocks_in_loop_.IsBitSet(blocks_[index_]->GetBlockId())) {
5615        break;
5616      }
5617    }
5618  }
5619
5620 private:
5621  const BitVector& blocks_in_loop_;
5622  const ArenaVector<HBasicBlock*>& blocks_;
5623  size_t index_;
5624
5625  DISALLOW_COPY_AND_ASSIGN(HBlocksInLoopReversePostOrderIterator);
5626};
5627
5628inline int64_t Int64FromConstant(HConstant* constant) {
5629  DCHECK(constant->IsIntConstant() || constant->IsLongConstant());
5630  return constant->IsIntConstant() ? constant->AsIntConstant()->GetValue()
5631                                   : constant->AsLongConstant()->GetValue();
5632}
5633
5634inline bool IsSameDexFile(const DexFile& lhs, const DexFile& rhs) {
5635  // For the purposes of the compiler, the dex files must actually be the same object
5636  // if we want to safely treat them as the same. This is especially important for JIT
5637  // as custom class loaders can open the same underlying file (or memory) multiple
5638  // times and provide different class resolution but no two class loaders should ever
5639  // use the same DexFile object - doing so is an unsupported hack that can lead to
5640  // all sorts of weird failures.
5641  return &lhs == &rhs;
5642}
5643
5644}  // namespace art
5645
5646#endif  // ART_COMPILER_OPTIMIZING_NODES_H_
5647