nodes.h revision f652917de5634b30c974c81d35a72871915b352a
1/*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#ifndef ART_COMPILER_OPTIMIZING_NODES_H_
18#define ART_COMPILER_OPTIMIZING_NODES_H_
19
20#include <algorithm>
21#include <array>
22#include <type_traits>
23
24#include "base/arena_bit_vector.h"
25#include "base/arena_containers.h"
26#include "base/arena_object.h"
27#include "base/stl_util.h"
28#include "dex/compiler_enums.h"
29#include "entrypoints/quick/quick_entrypoints_enum.h"
30#include "handle.h"
31#include "handle_scope.h"
32#include "invoke_type.h"
33#include "locations.h"
34#include "method_reference.h"
35#include "mirror/class.h"
36#include "offsets.h"
37#include "primitive.h"
38#include "utils/array_ref.h"
39
40namespace art {
41
42class GraphChecker;
43class HBasicBlock;
44class HCurrentMethod;
45class HDoubleConstant;
46class HEnvironment;
47class HFakeString;
48class HFloatConstant;
49class HGraphBuilder;
50class HGraphVisitor;
51class HInstruction;
52class HIntConstant;
53class HInvoke;
54class HLongConstant;
55class HNullConstant;
56class HPhi;
57class HSuspendCheck;
58class HTryBoundary;
59class LiveInterval;
60class LocationSummary;
61class SlowPathCode;
62class SsaBuilder;
63
64namespace mirror {
65class DexCache;
66}  // namespace mirror
67
68static const int kDefaultNumberOfBlocks = 8;
69static const int kDefaultNumberOfSuccessors = 2;
70static const int kDefaultNumberOfPredecessors = 2;
71static const int kDefaultNumberOfExceptionalPredecessors = 0;
72static const int kDefaultNumberOfDominatedBlocks = 1;
73static const int kDefaultNumberOfBackEdges = 1;
74
75static constexpr uint32_t kMaxIntShiftValue = 0x1f;
76static constexpr uint64_t kMaxLongShiftValue = 0x3f;
77
78static constexpr uint32_t kUnknownFieldIndex = static_cast<uint32_t>(-1);
79static constexpr uint16_t kUnknownClassDefIndex = static_cast<uint16_t>(-1);
80
81static constexpr InvokeType kInvalidInvokeType = static_cast<InvokeType>(-1);
82
83static constexpr uint32_t kNoDexPc = -1;
84
85enum IfCondition {
86  // All types.
87  kCondEQ,  // ==
88  kCondNE,  // !=
89  // Signed integers and floating-point numbers.
90  kCondLT,  // <
91  kCondLE,  // <=
92  kCondGT,  // >
93  kCondGE,  // >=
94  // Unsigned integers.
95  kCondB,   // <
96  kCondBE,  // <=
97  kCondA,   // >
98  kCondAE,  // >=
99};
100
101class HInstructionList : public ValueObject {
102 public:
103  HInstructionList() : first_instruction_(nullptr), last_instruction_(nullptr) {}
104
105  void AddInstruction(HInstruction* instruction);
106  void RemoveInstruction(HInstruction* instruction);
107
108  // Insert `instruction` before/after an existing instruction `cursor`.
109  void InsertInstructionBefore(HInstruction* instruction, HInstruction* cursor);
110  void InsertInstructionAfter(HInstruction* instruction, HInstruction* cursor);
111
112  // Return true if this list contains `instruction`.
113  bool Contains(HInstruction* instruction) const;
114
115  // Return true if `instruction1` is found before `instruction2` in
116  // this instruction list and false otherwise.  Abort if none
117  // of these instructions is found.
118  bool FoundBefore(const HInstruction* instruction1,
119                   const HInstruction* instruction2) const;
120
121  bool IsEmpty() const { return first_instruction_ == nullptr; }
122  void Clear() { first_instruction_ = last_instruction_ = nullptr; }
123
124  // Update the block of all instructions to be `block`.
125  void SetBlockOfInstructions(HBasicBlock* block) const;
126
127  void AddAfter(HInstruction* cursor, const HInstructionList& instruction_list);
128  void Add(const HInstructionList& instruction_list);
129
130  // Return the number of instructions in the list. This is an expensive operation.
131  size_t CountSize() const;
132
133 private:
134  HInstruction* first_instruction_;
135  HInstruction* last_instruction_;
136
137  friend class HBasicBlock;
138  friend class HGraph;
139  friend class HInstruction;
140  friend class HInstructionIterator;
141  friend class HBackwardInstructionIterator;
142
143  DISALLOW_COPY_AND_ASSIGN(HInstructionList);
144};
145
146// Control-flow graph of a method. Contains a list of basic blocks.
147class HGraph : public ArenaObject<kArenaAllocGraph> {
148 public:
149  HGraph(ArenaAllocator* arena,
150         const DexFile& dex_file,
151         uint32_t method_idx,
152         bool should_generate_constructor_barrier,
153         InstructionSet instruction_set,
154         InvokeType invoke_type = kInvalidInvokeType,
155         bool debuggable = false,
156         int start_instruction_id = 0)
157      : arena_(arena),
158        blocks_(arena->Adapter(kArenaAllocBlockList)),
159        reverse_post_order_(arena->Adapter(kArenaAllocReversePostOrder)),
160        linear_order_(arena->Adapter(kArenaAllocLinearOrder)),
161        entry_block_(nullptr),
162        exit_block_(nullptr),
163        maximum_number_of_out_vregs_(0),
164        number_of_vregs_(0),
165        number_of_in_vregs_(0),
166        temporaries_vreg_slots_(0),
167        has_bounds_checks_(false),
168        has_try_catch_(false),
169        debuggable_(debuggable),
170        current_instruction_id_(start_instruction_id),
171        dex_file_(dex_file),
172        method_idx_(method_idx),
173        invoke_type_(invoke_type),
174        in_ssa_form_(false),
175        should_generate_constructor_barrier_(should_generate_constructor_barrier),
176        instruction_set_(instruction_set),
177        cached_null_constant_(nullptr),
178        cached_int_constants_(std::less<int32_t>(), arena->Adapter(kArenaAllocConstantsMap)),
179        cached_float_constants_(std::less<int32_t>(), arena->Adapter(kArenaAllocConstantsMap)),
180        cached_long_constants_(std::less<int64_t>(), arena->Adapter(kArenaAllocConstantsMap)),
181        cached_double_constants_(std::less<int64_t>(), arena->Adapter(kArenaAllocConstantsMap)),
182        cached_current_method_(nullptr) {
183    blocks_.reserve(kDefaultNumberOfBlocks);
184  }
185
186  ArenaAllocator* GetArena() const { return arena_; }
187  const ArenaVector<HBasicBlock*>& GetBlocks() const { return blocks_; }
188
189  bool IsInSsaForm() const { return in_ssa_form_; }
190
191  HBasicBlock* GetEntryBlock() const { return entry_block_; }
192  HBasicBlock* GetExitBlock() const { return exit_block_; }
193  bool HasExitBlock() const { return exit_block_ != nullptr; }
194
195  void SetEntryBlock(HBasicBlock* block) { entry_block_ = block; }
196  void SetExitBlock(HBasicBlock* block) { exit_block_ = block; }
197
198  void AddBlock(HBasicBlock* block);
199
200  // Try building the SSA form of this graph, with dominance computation and loop
201  // recognition. Returns whether it was successful in doing all these steps.
202  bool TryBuildingSsa() {
203    BuildDominatorTree();
204    // The SSA builder requires loops to all be natural. Specifically, the dead phi
205    // elimination phase checks the consistency of the graph when doing a post-order
206    // visit for eliminating dead phis: a dead phi can only have loop header phi
207    // users remaining when being visited.
208    if (!AnalyzeNaturalLoops()) return false;
209    // Precompute per-block try membership before entering the SSA builder,
210    // which needs the information to build catch block phis from values of
211    // locals at throwing instructions inside try blocks.
212    ComputeTryBlockInformation();
213    TransformToSsa();
214    in_ssa_form_ = true;
215    return true;
216  }
217
218  void ComputeDominanceInformation();
219  void ClearDominanceInformation();
220
221  void BuildDominatorTree();
222  void TransformToSsa();
223  void SimplifyCFG();
224  void SimplifyCatchBlocks();
225
226  // Analyze all natural loops in this graph. Returns false if one
227  // loop is not natural, that is the header does not dominate the
228  // back edge.
229  bool AnalyzeNaturalLoops() const;
230
231  // Iterate over blocks to compute try block membership. Needs reverse post
232  // order and loop information.
233  void ComputeTryBlockInformation();
234
235  // Inline this graph in `outer_graph`, replacing the given `invoke` instruction.
236  // Returns the instruction used to replace the invoke expression or null if the
237  // invoke is for a void method.
238  HInstruction* InlineInto(HGraph* outer_graph, HInvoke* invoke);
239
240  // Need to add a couple of blocks to test if the loop body is entered and
241  // put deoptimization instructions, etc.
242  void TransformLoopHeaderForBCE(HBasicBlock* header);
243
244  // Removes `block` from the graph. Assumes `block` has been disconnected from
245  // other blocks and has no instructions or phis.
246  void DeleteDeadEmptyBlock(HBasicBlock* block);
247
248  // Splits the edge between `block` and `successor` while preserving the
249  // indices in the predecessor/successor lists. If there are multiple edges
250  // between the blocks, the lowest indices are used.
251  // Returns the new block which is empty and has the same dex pc as `successor`.
252  HBasicBlock* SplitEdge(HBasicBlock* block, HBasicBlock* successor);
253
254  void SplitCriticalEdge(HBasicBlock* block, HBasicBlock* successor);
255  void SimplifyLoop(HBasicBlock* header);
256
257  int32_t GetNextInstructionId() {
258    DCHECK_NE(current_instruction_id_, INT32_MAX);
259    return current_instruction_id_++;
260  }
261
262  int32_t GetCurrentInstructionId() const {
263    return current_instruction_id_;
264  }
265
266  void SetCurrentInstructionId(int32_t id) {
267    current_instruction_id_ = id;
268  }
269
270  uint16_t GetMaximumNumberOfOutVRegs() const {
271    return maximum_number_of_out_vregs_;
272  }
273
274  void SetMaximumNumberOfOutVRegs(uint16_t new_value) {
275    maximum_number_of_out_vregs_ = new_value;
276  }
277
278  void UpdateMaximumNumberOfOutVRegs(uint16_t other_value) {
279    maximum_number_of_out_vregs_ = std::max(maximum_number_of_out_vregs_, other_value);
280  }
281
282  void UpdateTemporariesVRegSlots(size_t slots) {
283    temporaries_vreg_slots_ = std::max(slots, temporaries_vreg_slots_);
284  }
285
286  size_t GetTemporariesVRegSlots() const {
287    DCHECK(!in_ssa_form_);
288    return temporaries_vreg_slots_;
289  }
290
291  void SetNumberOfVRegs(uint16_t number_of_vregs) {
292    number_of_vregs_ = number_of_vregs;
293  }
294
295  uint16_t GetNumberOfVRegs() const {
296    return number_of_vregs_;
297  }
298
299  void SetNumberOfInVRegs(uint16_t value) {
300    number_of_in_vregs_ = value;
301  }
302
303  uint16_t GetNumberOfLocalVRegs() const {
304    DCHECK(!in_ssa_form_);
305    return number_of_vregs_ - number_of_in_vregs_;
306  }
307
308  const ArenaVector<HBasicBlock*>& GetReversePostOrder() const {
309    return reverse_post_order_;
310  }
311
312  const ArenaVector<HBasicBlock*>& GetLinearOrder() const {
313    return linear_order_;
314  }
315
316  bool HasBoundsChecks() const {
317    return has_bounds_checks_;
318  }
319
320  void SetHasBoundsChecks(bool value) {
321    has_bounds_checks_ = value;
322  }
323
324  bool ShouldGenerateConstructorBarrier() const {
325    return should_generate_constructor_barrier_;
326  }
327
328  bool IsDebuggable() const { return debuggable_; }
329
330  // Returns a constant of the given type and value. If it does not exist
331  // already, it is created and inserted into the graph. This method is only for
332  // integral types.
333  HConstant* GetConstant(Primitive::Type type, int64_t value, uint32_t dex_pc = kNoDexPc);
334
335  // TODO: This is problematic for the consistency of reference type propagation
336  // because it can be created anytime after the pass and thus it will be left
337  // with an invalid type.
338  HNullConstant* GetNullConstant(uint32_t dex_pc = kNoDexPc);
339
340  HIntConstant* GetIntConstant(int32_t value, uint32_t dex_pc = kNoDexPc) {
341    return CreateConstant(value, &cached_int_constants_, dex_pc);
342  }
343  HLongConstant* GetLongConstant(int64_t value, uint32_t dex_pc = kNoDexPc) {
344    return CreateConstant(value, &cached_long_constants_, dex_pc);
345  }
346  HFloatConstant* GetFloatConstant(float value, uint32_t dex_pc = kNoDexPc) {
347    return CreateConstant(bit_cast<int32_t, float>(value), &cached_float_constants_, dex_pc);
348  }
349  HDoubleConstant* GetDoubleConstant(double value, uint32_t dex_pc = kNoDexPc) {
350    return CreateConstant(bit_cast<int64_t, double>(value), &cached_double_constants_, dex_pc);
351  }
352
353  HCurrentMethod* GetCurrentMethod();
354
355  const DexFile& GetDexFile() const {
356    return dex_file_;
357  }
358
359  uint32_t GetMethodIdx() const {
360    return method_idx_;
361  }
362
363  InvokeType GetInvokeType() const {
364    return invoke_type_;
365  }
366
367  InstructionSet GetInstructionSet() const {
368    return instruction_set_;
369  }
370
371  bool HasTryCatch() const { return has_try_catch_; }
372  void SetHasTryCatch(bool value) { has_try_catch_ = value; }
373
374  // Returns an instruction with the opposite boolean value from 'cond'.
375  // The instruction has been inserted into the graph, either as a constant, or
376  // before cursor.
377  HInstruction* InsertOppositeCondition(HInstruction* cond, HInstruction* cursor);
378
379 private:
380  void FindBackEdges(ArenaBitVector* visited);
381  void RemoveInstructionsAsUsersFromDeadBlocks(const ArenaBitVector& visited) const;
382  void RemoveDeadBlocks(const ArenaBitVector& visited);
383
384  template <class InstructionType, typename ValueType>
385  InstructionType* CreateConstant(ValueType value,
386                                  ArenaSafeMap<ValueType, InstructionType*>* cache,
387                                  uint32_t dex_pc = kNoDexPc) {
388    // Try to find an existing constant of the given value.
389    InstructionType* constant = nullptr;
390    auto cached_constant = cache->find(value);
391    if (cached_constant != cache->end()) {
392      constant = cached_constant->second;
393    }
394
395    // If not found or previously deleted, create and cache a new instruction.
396    // Don't bother reviving a previously deleted instruction, for simplicity.
397    if (constant == nullptr || constant->GetBlock() == nullptr) {
398      constant = new (arena_) InstructionType(value, dex_pc);
399      cache->Overwrite(value, constant);
400      InsertConstant(constant);
401    }
402    return constant;
403  }
404
405  void InsertConstant(HConstant* instruction);
406
407  // Cache a float constant into the graph. This method should only be
408  // called by the SsaBuilder when creating "equivalent" instructions.
409  void CacheFloatConstant(HFloatConstant* constant);
410
411  // See CacheFloatConstant comment.
412  void CacheDoubleConstant(HDoubleConstant* constant);
413
414  ArenaAllocator* const arena_;
415
416  // List of blocks in insertion order.
417  ArenaVector<HBasicBlock*> blocks_;
418
419  // List of blocks to perform a reverse post order tree traversal.
420  ArenaVector<HBasicBlock*> reverse_post_order_;
421
422  // List of blocks to perform a linear order tree traversal.
423  ArenaVector<HBasicBlock*> linear_order_;
424
425  HBasicBlock* entry_block_;
426  HBasicBlock* exit_block_;
427
428  // The maximum number of virtual registers arguments passed to a HInvoke in this graph.
429  uint16_t maximum_number_of_out_vregs_;
430
431  // The number of virtual registers in this method. Contains the parameters.
432  uint16_t number_of_vregs_;
433
434  // The number of virtual registers used by parameters of this method.
435  uint16_t number_of_in_vregs_;
436
437  // Number of vreg size slots that the temporaries use (used in baseline compiler).
438  size_t temporaries_vreg_slots_;
439
440  // Has bounds checks. We can totally skip BCE if it's false.
441  bool has_bounds_checks_;
442
443  // Flag whether there are any try/catch blocks in the graph. We will skip
444  // try/catch-related passes if false.
445  bool has_try_catch_;
446
447  // Indicates whether the graph should be compiled in a way that
448  // ensures full debuggability. If false, we can apply more
449  // aggressive optimizations that may limit the level of debugging.
450  const bool debuggable_;
451
452  // The current id to assign to a newly added instruction. See HInstruction.id_.
453  int32_t current_instruction_id_;
454
455  // The dex file from which the method is from.
456  const DexFile& dex_file_;
457
458  // The method index in the dex file.
459  const uint32_t method_idx_;
460
461  // If inlined, this encodes how the callee is being invoked.
462  const InvokeType invoke_type_;
463
464  // Whether the graph has been transformed to SSA form. Only used
465  // in debug mode to ensure we are not using properties only valid
466  // for non-SSA form (like the number of temporaries).
467  bool in_ssa_form_;
468
469  const bool should_generate_constructor_barrier_;
470
471  const InstructionSet instruction_set_;
472
473  // Cached constants.
474  HNullConstant* cached_null_constant_;
475  ArenaSafeMap<int32_t, HIntConstant*> cached_int_constants_;
476  ArenaSafeMap<int32_t, HFloatConstant*> cached_float_constants_;
477  ArenaSafeMap<int64_t, HLongConstant*> cached_long_constants_;
478  ArenaSafeMap<int64_t, HDoubleConstant*> cached_double_constants_;
479
480  HCurrentMethod* cached_current_method_;
481
482  friend class SsaBuilder;           // For caching constants.
483  friend class SsaLivenessAnalysis;  // For the linear order.
484  ART_FRIEND_TEST(GraphTest, IfSuccessorSimpleJoinBlock1);
485  DISALLOW_COPY_AND_ASSIGN(HGraph);
486};
487
488class HLoopInformation : public ArenaObject<kArenaAllocLoopInfo> {
489 public:
490  HLoopInformation(HBasicBlock* header, HGraph* graph)
491      : header_(header),
492        suspend_check_(nullptr),
493        back_edges_(graph->GetArena()->Adapter(kArenaAllocLoopInfoBackEdges)),
494        // Make bit vector growable, as the number of blocks may change.
495        blocks_(graph->GetArena(), graph->GetBlocks().size(), true) {
496    back_edges_.reserve(kDefaultNumberOfBackEdges);
497  }
498
499  HBasicBlock* GetHeader() const {
500    return header_;
501  }
502
503  void SetHeader(HBasicBlock* block) {
504    header_ = block;
505  }
506
507  HSuspendCheck* GetSuspendCheck() const { return suspend_check_; }
508  void SetSuspendCheck(HSuspendCheck* check) { suspend_check_ = check; }
509  bool HasSuspendCheck() const { return suspend_check_ != nullptr; }
510
511  void AddBackEdge(HBasicBlock* back_edge) {
512    back_edges_.push_back(back_edge);
513  }
514
515  void RemoveBackEdge(HBasicBlock* back_edge) {
516    RemoveElement(back_edges_, back_edge);
517  }
518
519  bool IsBackEdge(const HBasicBlock& block) const {
520    return ContainsElement(back_edges_, &block);
521  }
522
523  size_t NumberOfBackEdges() const {
524    return back_edges_.size();
525  }
526
527  HBasicBlock* GetPreHeader() const;
528
529  const ArenaVector<HBasicBlock*>& GetBackEdges() const {
530    return back_edges_;
531  }
532
533  // Returns the lifetime position of the back edge that has the
534  // greatest lifetime position.
535  size_t GetLifetimeEnd() const;
536
537  void ReplaceBackEdge(HBasicBlock* existing, HBasicBlock* new_back_edge) {
538    ReplaceElement(back_edges_, existing, new_back_edge);
539  }
540
541  // Finds blocks that are part of this loop. Returns whether the loop is a natural loop,
542  // that is the header dominates the back edge.
543  bool Populate();
544
545  // Reanalyzes the loop by removing loop info from its blocks and re-running
546  // Populate(). If there are no back edges left, the loop info is completely
547  // removed as well as its SuspendCheck instruction. It must be run on nested
548  // inner loops first.
549  void Update();
550
551  // Returns whether this loop information contains `block`.
552  // Note that this loop information *must* be populated before entering this function.
553  bool Contains(const HBasicBlock& block) const;
554
555  // Returns whether this loop information is an inner loop of `other`.
556  // Note that `other` *must* be populated before entering this function.
557  bool IsIn(const HLoopInformation& other) const;
558
559  // Returns true if instruction is not defined within this loop or any loop nested inside
560  // this loop. If must_dominate is set, only definitions that actually dominate the loop
561  // header can be invariant. Otherwise, any definition outside the loop, including
562  // definitions that appear after the loop, is invariant.
563  bool IsLoopInvariant(HInstruction* instruction, bool must_dominate) const;
564
565  const ArenaBitVector& GetBlocks() const { return blocks_; }
566
567  void Add(HBasicBlock* block);
568  void Remove(HBasicBlock* block);
569
570 private:
571  // Internal recursive implementation of `Populate`.
572  void PopulateRecursive(HBasicBlock* block);
573
574  HBasicBlock* header_;
575  HSuspendCheck* suspend_check_;
576  ArenaVector<HBasicBlock*> back_edges_;
577  ArenaBitVector blocks_;
578
579  DISALLOW_COPY_AND_ASSIGN(HLoopInformation);
580};
581
582// Stores try/catch information for basic blocks.
583// Note that HGraph is constructed so that catch blocks cannot simultaneously
584// be try blocks.
585class TryCatchInformation : public ArenaObject<kArenaAllocTryCatchInfo> {
586 public:
587  // Try block information constructor.
588  explicit TryCatchInformation(const HTryBoundary& try_entry)
589      : try_entry_(&try_entry),
590        catch_dex_file_(nullptr),
591        catch_type_index_(DexFile::kDexNoIndex16) {
592    DCHECK(try_entry_ != nullptr);
593  }
594
595  // Catch block information constructor.
596  TryCatchInformation(uint16_t catch_type_index, const DexFile& dex_file)
597      : try_entry_(nullptr),
598        catch_dex_file_(&dex_file),
599        catch_type_index_(catch_type_index) {}
600
601  bool IsTryBlock() const { return try_entry_ != nullptr; }
602
603  const HTryBoundary& GetTryEntry() const {
604    DCHECK(IsTryBlock());
605    return *try_entry_;
606  }
607
608  bool IsCatchBlock() const { return catch_dex_file_ != nullptr; }
609
610  bool IsCatchAllTypeIndex() const {
611    DCHECK(IsCatchBlock());
612    return catch_type_index_ == DexFile::kDexNoIndex16;
613  }
614
615  uint16_t GetCatchTypeIndex() const {
616    DCHECK(IsCatchBlock());
617    return catch_type_index_;
618  }
619
620  const DexFile& GetCatchDexFile() const {
621    DCHECK(IsCatchBlock());
622    return *catch_dex_file_;
623  }
624
625 private:
626  // One of possibly several TryBoundary instructions entering the block's try.
627  // Only set for try blocks.
628  const HTryBoundary* try_entry_;
629
630  // Exception type information. Only set for catch blocks.
631  const DexFile* catch_dex_file_;
632  const uint16_t catch_type_index_;
633};
634
635static constexpr size_t kNoLifetime = -1;
636static constexpr uint32_t kInvalidBlockId = static_cast<uint32_t>(-1);
637
638// A block in a method. Contains the list of instructions represented
639// as a double linked list. Each block knows its predecessors and
640// successors.
641
642class HBasicBlock : public ArenaObject<kArenaAllocBasicBlock> {
643 public:
644  HBasicBlock(HGraph* graph, uint32_t dex_pc = kNoDexPc)
645      : graph_(graph),
646        predecessors_(graph->GetArena()->Adapter(kArenaAllocPredecessors)),
647        successors_(graph->GetArena()->Adapter(kArenaAllocSuccessors)),
648        loop_information_(nullptr),
649        dominator_(nullptr),
650        dominated_blocks_(graph->GetArena()->Adapter(kArenaAllocDominated)),
651        block_id_(kInvalidBlockId),
652        dex_pc_(dex_pc),
653        lifetime_start_(kNoLifetime),
654        lifetime_end_(kNoLifetime),
655        try_catch_information_(nullptr) {
656    predecessors_.reserve(kDefaultNumberOfPredecessors);
657    successors_.reserve(kDefaultNumberOfSuccessors);
658    dominated_blocks_.reserve(kDefaultNumberOfDominatedBlocks);
659  }
660
661  const ArenaVector<HBasicBlock*>& GetPredecessors() const {
662    return predecessors_;
663  }
664
665  const ArenaVector<HBasicBlock*>& GetSuccessors() const {
666    return successors_;
667  }
668
669  ArrayRef<HBasicBlock* const> GetNormalSuccessors() const;
670  ArrayRef<HBasicBlock* const> GetExceptionalSuccessors() const;
671
672  bool HasSuccessor(const HBasicBlock* block, size_t start_from = 0u) {
673    return ContainsElement(successors_, block, start_from);
674  }
675
676  const ArenaVector<HBasicBlock*>& GetDominatedBlocks() const {
677    return dominated_blocks_;
678  }
679
680  bool IsEntryBlock() const {
681    return graph_->GetEntryBlock() == this;
682  }
683
684  bool IsExitBlock() const {
685    return graph_->GetExitBlock() == this;
686  }
687
688  bool IsSingleGoto() const;
689  bool IsSingleTryBoundary() const;
690
691  // Returns true if this block emits nothing but a jump.
692  bool IsSingleJump() const {
693    HLoopInformation* loop_info = GetLoopInformation();
694    return (IsSingleGoto() || IsSingleTryBoundary())
695           // Back edges generate a suspend check.
696           && (loop_info == nullptr || !loop_info->IsBackEdge(*this));
697  }
698
699  void AddBackEdge(HBasicBlock* back_edge) {
700    if (loop_information_ == nullptr) {
701      loop_information_ = new (graph_->GetArena()) HLoopInformation(this, graph_);
702    }
703    DCHECK_EQ(loop_information_->GetHeader(), this);
704    loop_information_->AddBackEdge(back_edge);
705  }
706
707  HGraph* GetGraph() const { return graph_; }
708  void SetGraph(HGraph* graph) { graph_ = graph; }
709
710  uint32_t GetBlockId() const { return block_id_; }
711  void SetBlockId(int id) { block_id_ = id; }
712  uint32_t GetDexPc() const { return dex_pc_; }
713
714  HBasicBlock* GetDominator() const { return dominator_; }
715  void SetDominator(HBasicBlock* dominator) { dominator_ = dominator; }
716  void AddDominatedBlock(HBasicBlock* block) { dominated_blocks_.push_back(block); }
717
718  void RemoveDominatedBlock(HBasicBlock* block) {
719    RemoveElement(dominated_blocks_, block);
720  }
721
722  void ReplaceDominatedBlock(HBasicBlock* existing, HBasicBlock* new_block) {
723    ReplaceElement(dominated_blocks_, existing, new_block);
724  }
725
726  void ClearDominanceInformation();
727
728  int NumberOfBackEdges() const {
729    return IsLoopHeader() ? loop_information_->NumberOfBackEdges() : 0;
730  }
731
732  HInstruction* GetFirstInstruction() const { return instructions_.first_instruction_; }
733  HInstruction* GetLastInstruction() const { return instructions_.last_instruction_; }
734  const HInstructionList& GetInstructions() const { return instructions_; }
735  HInstruction* GetFirstPhi() const { return phis_.first_instruction_; }
736  HInstruction* GetLastPhi() const { return phis_.last_instruction_; }
737  const HInstructionList& GetPhis() const { return phis_; }
738
739  void AddSuccessor(HBasicBlock* block) {
740    successors_.push_back(block);
741    block->predecessors_.push_back(this);
742  }
743
744  void ReplaceSuccessor(HBasicBlock* existing, HBasicBlock* new_block) {
745    size_t successor_index = GetSuccessorIndexOf(existing);
746    existing->RemovePredecessor(this);
747    new_block->predecessors_.push_back(this);
748    successors_[successor_index] = new_block;
749  }
750
751  void ReplacePredecessor(HBasicBlock* existing, HBasicBlock* new_block) {
752    size_t predecessor_index = GetPredecessorIndexOf(existing);
753    existing->RemoveSuccessor(this);
754    new_block->successors_.push_back(this);
755    predecessors_[predecessor_index] = new_block;
756  }
757
758  // Insert `this` between `predecessor` and `successor. This method
759  // preserves the indicies, and will update the first edge found between
760  // `predecessor` and `successor`.
761  void InsertBetween(HBasicBlock* predecessor, HBasicBlock* successor) {
762    size_t predecessor_index = successor->GetPredecessorIndexOf(predecessor);
763    size_t successor_index = predecessor->GetSuccessorIndexOf(successor);
764    successor->predecessors_[predecessor_index] = this;
765    predecessor->successors_[successor_index] = this;
766    successors_.push_back(successor);
767    predecessors_.push_back(predecessor);
768  }
769
770  void RemovePredecessor(HBasicBlock* block) {
771    predecessors_.erase(predecessors_.begin() + GetPredecessorIndexOf(block));
772  }
773
774  void RemoveSuccessor(HBasicBlock* block) {
775    successors_.erase(successors_.begin() + GetSuccessorIndexOf(block));
776  }
777
778  void ClearAllPredecessors() {
779    predecessors_.clear();
780  }
781
782  void AddPredecessor(HBasicBlock* block) {
783    predecessors_.push_back(block);
784    block->successors_.push_back(this);
785  }
786
787  void SwapPredecessors() {
788    DCHECK_EQ(predecessors_.size(), 2u);
789    std::swap(predecessors_[0], predecessors_[1]);
790  }
791
792  void SwapSuccessors() {
793    DCHECK_EQ(successors_.size(), 2u);
794    std::swap(successors_[0], successors_[1]);
795  }
796
797  size_t GetPredecessorIndexOf(HBasicBlock* predecessor) const {
798    return IndexOfElement(predecessors_, predecessor);
799  }
800
801  size_t GetSuccessorIndexOf(HBasicBlock* successor) const {
802    return IndexOfElement(successors_, successor);
803  }
804
805  HBasicBlock* GetSinglePredecessor() const {
806    DCHECK_EQ(GetPredecessors().size(), 1u);
807    return GetPredecessors()[0];
808  }
809
810  HBasicBlock* GetSingleSuccessor() const {
811    DCHECK_EQ(GetSuccessors().size(), 1u);
812    return GetSuccessors()[0];
813  }
814
815  // Returns whether the first occurrence of `predecessor` in the list of
816  // predecessors is at index `idx`.
817  bool IsFirstIndexOfPredecessor(HBasicBlock* predecessor, size_t idx) const {
818    DCHECK_EQ(GetPredecessors()[idx], predecessor);
819    return GetPredecessorIndexOf(predecessor) == idx;
820  }
821
822  // Create a new block between this block and its predecessors. The new block
823  // is added to the graph, all predecessor edges are relinked to it and an edge
824  // is created to `this`. Returns the new empty block. Reverse post order or
825  // loop and try/catch information are not updated.
826  HBasicBlock* CreateImmediateDominator();
827
828  // Split the block into two blocks just before `cursor`. Returns the newly
829  // created, latter block. Note that this method will add the block to the
830  // graph, create a Goto at the end of the former block and will create an edge
831  // between the blocks. It will not, however, update the reverse post order or
832  // loop and try/catch information.
833  HBasicBlock* SplitBefore(HInstruction* cursor);
834
835  // Split the block into two blocks just after `cursor`. Returns the newly
836  // created block. Note that this method just updates raw block information,
837  // like predecessors, successors, dominators, and instruction list. It does not
838  // update the graph, reverse post order, loop information, nor make sure the
839  // blocks are consistent (for example ending with a control flow instruction).
840  HBasicBlock* SplitAfter(HInstruction* cursor);
841
842  // Split catch block into two blocks after the original move-exception bytecode
843  // instruction, or at the beginning if not present. Returns the newly created,
844  // latter block, or nullptr if such block could not be created (must be dead
845  // in that case). Note that this method just updates raw block information,
846  // like predecessors, successors, dominators, and instruction list. It does not
847  // update the graph, reverse post order, loop information, nor make sure the
848  // blocks are consistent (for example ending with a control flow instruction).
849  HBasicBlock* SplitCatchBlockAfterMoveException();
850
851  // Merge `other` at the end of `this`. Successors and dominated blocks of
852  // `other` are changed to be successors and dominated blocks of `this`. Note
853  // that this method does not update the graph, reverse post order, loop
854  // information, nor make sure the blocks are consistent (for example ending
855  // with a control flow instruction).
856  void MergeWithInlined(HBasicBlock* other);
857
858  // Replace `this` with `other`. Predecessors, successors, and dominated blocks
859  // of `this` are moved to `other`.
860  // Note that this method does not update the graph, reverse post order, loop
861  // information, nor make sure the blocks are consistent (for example ending
862  // with a control flow instruction).
863  void ReplaceWith(HBasicBlock* other);
864
865  // Merge `other` at the end of `this`. This method updates loops, reverse post
866  // order, links to predecessors, successors, dominators and deletes the block
867  // from the graph. The two blocks must be successive, i.e. `this` the only
868  // predecessor of `other` and vice versa.
869  void MergeWith(HBasicBlock* other);
870
871  // Disconnects `this` from all its predecessors, successors and dominator,
872  // removes it from all loops it is included in and eventually from the graph.
873  // The block must not dominate any other block. Predecessors and successors
874  // are safely updated.
875  void DisconnectAndDelete();
876
877  void AddInstruction(HInstruction* instruction);
878  // Insert `instruction` before/after an existing instruction `cursor`.
879  void InsertInstructionBefore(HInstruction* instruction, HInstruction* cursor);
880  void InsertInstructionAfter(HInstruction* instruction, HInstruction* cursor);
881  // Replace instruction `initial` with `replacement` within this block.
882  void ReplaceAndRemoveInstructionWith(HInstruction* initial,
883                                       HInstruction* replacement);
884  void AddPhi(HPhi* phi);
885  void InsertPhiAfter(HPhi* instruction, HPhi* cursor);
886  // RemoveInstruction and RemovePhi delete a given instruction from the respective
887  // instruction list. With 'ensure_safety' set to true, it verifies that the
888  // instruction is not in use and removes it from the use lists of its inputs.
889  void RemoveInstruction(HInstruction* instruction, bool ensure_safety = true);
890  void RemovePhi(HPhi* phi, bool ensure_safety = true);
891  void RemoveInstructionOrPhi(HInstruction* instruction, bool ensure_safety = true);
892
893  bool IsLoopHeader() const {
894    return IsInLoop() && (loop_information_->GetHeader() == this);
895  }
896
897  bool IsLoopPreHeaderFirstPredecessor() const {
898    DCHECK(IsLoopHeader());
899    return GetPredecessors()[0] == GetLoopInformation()->GetPreHeader();
900  }
901
902  HLoopInformation* GetLoopInformation() const {
903    return loop_information_;
904  }
905
906  // Set the loop_information_ on this block. Overrides the current
907  // loop_information if it is an outer loop of the passed loop information.
908  // Note that this method is called while creating the loop information.
909  void SetInLoop(HLoopInformation* info) {
910    if (IsLoopHeader()) {
911      // Nothing to do. This just means `info` is an outer loop.
912    } else if (!IsInLoop()) {
913      loop_information_ = info;
914    } else if (loop_information_->Contains(*info->GetHeader())) {
915      // Block is currently part of an outer loop. Make it part of this inner loop.
916      // Note that a non loop header having a loop information means this loop information
917      // has already been populated
918      loop_information_ = info;
919    } else {
920      // Block is part of an inner loop. Do not update the loop information.
921      // Note that we cannot do the check `info->Contains(loop_information_)->GetHeader()`
922      // at this point, because this method is being called while populating `info`.
923    }
924  }
925
926  // Raw update of the loop information.
927  void SetLoopInformation(HLoopInformation* info) {
928    loop_information_ = info;
929  }
930
931  bool IsInLoop() const { return loop_information_ != nullptr; }
932
933  TryCatchInformation* GetTryCatchInformation() const { return try_catch_information_; }
934
935  void SetTryCatchInformation(TryCatchInformation* try_catch_information) {
936    try_catch_information_ = try_catch_information;
937  }
938
939  bool IsTryBlock() const {
940    return try_catch_information_ != nullptr && try_catch_information_->IsTryBlock();
941  }
942
943  bool IsCatchBlock() const {
944    return try_catch_information_ != nullptr && try_catch_information_->IsCatchBlock();
945  }
946
947  // Returns the try entry that this block's successors should have. They will
948  // be in the same try, unless the block ends in a try boundary. In that case,
949  // the appropriate try entry will be returned.
950  const HTryBoundary* ComputeTryEntryOfSuccessors() const;
951
952  bool HasThrowingInstructions() const;
953
954  // Returns whether this block dominates the blocked passed as parameter.
955  bool Dominates(HBasicBlock* block) const;
956
957  size_t GetLifetimeStart() const { return lifetime_start_; }
958  size_t GetLifetimeEnd() const { return lifetime_end_; }
959
960  void SetLifetimeStart(size_t start) { lifetime_start_ = start; }
961  void SetLifetimeEnd(size_t end) { lifetime_end_ = end; }
962
963  bool EndsWithControlFlowInstruction() const;
964  bool EndsWithIf() const;
965  bool EndsWithTryBoundary() const;
966  bool HasSinglePhi() const;
967
968 private:
969  HGraph* graph_;
970  ArenaVector<HBasicBlock*> predecessors_;
971  ArenaVector<HBasicBlock*> successors_;
972  HInstructionList instructions_;
973  HInstructionList phis_;
974  HLoopInformation* loop_information_;
975  HBasicBlock* dominator_;
976  ArenaVector<HBasicBlock*> dominated_blocks_;
977  uint32_t block_id_;
978  // The dex program counter of the first instruction of this block.
979  const uint32_t dex_pc_;
980  size_t lifetime_start_;
981  size_t lifetime_end_;
982  TryCatchInformation* try_catch_information_;
983
984  friend class HGraph;
985  friend class HInstruction;
986
987  DISALLOW_COPY_AND_ASSIGN(HBasicBlock);
988};
989
990// Iterates over the LoopInformation of all loops which contain 'block'
991// from the innermost to the outermost.
992class HLoopInformationOutwardIterator : public ValueObject {
993 public:
994  explicit HLoopInformationOutwardIterator(const HBasicBlock& block)
995      : current_(block.GetLoopInformation()) {}
996
997  bool Done() const { return current_ == nullptr; }
998
999  void Advance() {
1000    DCHECK(!Done());
1001    current_ = current_->GetPreHeader()->GetLoopInformation();
1002  }
1003
1004  HLoopInformation* Current() const {
1005    DCHECK(!Done());
1006    return current_;
1007  }
1008
1009 private:
1010  HLoopInformation* current_;
1011
1012  DISALLOW_COPY_AND_ASSIGN(HLoopInformationOutwardIterator);
1013};
1014
1015#define FOR_EACH_CONCRETE_INSTRUCTION_COMMON(M)                         \
1016  M(Above, Condition)                                                   \
1017  M(AboveOrEqual, Condition)                                            \
1018  M(Add, BinaryOperation)                                               \
1019  M(And, BinaryOperation)                                               \
1020  M(ArrayGet, Instruction)                                              \
1021  M(ArrayLength, Instruction)                                           \
1022  M(ArraySet, Instruction)                                              \
1023  M(Below, Condition)                                                   \
1024  M(BelowOrEqual, Condition)                                            \
1025  M(BooleanNot, UnaryOperation)                                         \
1026  M(BoundsCheck, Instruction)                                           \
1027  M(BoundType, Instruction)                                             \
1028  M(CheckCast, Instruction)                                             \
1029  M(ClearException, Instruction)                                        \
1030  M(ClinitCheck, Instruction)                                           \
1031  M(Compare, BinaryOperation)                                           \
1032  M(Condition, BinaryOperation)                                         \
1033  M(CurrentMethod, Instruction)                                         \
1034  M(Deoptimize, Instruction)                                            \
1035  M(Div, BinaryOperation)                                               \
1036  M(DivZeroCheck, Instruction)                                          \
1037  M(DoubleConstant, Constant)                                           \
1038  M(Equal, Condition)                                                   \
1039  M(Exit, Instruction)                                                  \
1040  M(FakeString, Instruction)                                            \
1041  M(FloatConstant, Constant)                                            \
1042  M(Goto, Instruction)                                                  \
1043  M(GreaterThan, Condition)                                             \
1044  M(GreaterThanOrEqual, Condition)                                      \
1045  M(If, Instruction)                                                    \
1046  M(InstanceFieldGet, Instruction)                                      \
1047  M(InstanceFieldSet, Instruction)                                      \
1048  M(InstanceOf, Instruction)                                            \
1049  M(IntConstant, Constant)                                              \
1050  M(InvokeUnresolved, Invoke)                                           \
1051  M(InvokeInterface, Invoke)                                            \
1052  M(InvokeStaticOrDirect, Invoke)                                       \
1053  M(InvokeVirtual, Invoke)                                              \
1054  M(LessThan, Condition)                                                \
1055  M(LessThanOrEqual, Condition)                                         \
1056  M(LoadClass, Instruction)                                             \
1057  M(LoadException, Instruction)                                         \
1058  M(LoadLocal, Instruction)                                             \
1059  M(LoadString, Instruction)                                            \
1060  M(Local, Instruction)                                                 \
1061  M(LongConstant, Constant)                                             \
1062  M(MemoryBarrier, Instruction)                                         \
1063  M(MonitorOperation, Instruction)                                      \
1064  M(Mul, BinaryOperation)                                               \
1065  M(Neg, UnaryOperation)                                                \
1066  M(NewArray, Instruction)                                              \
1067  M(NewInstance, Instruction)                                           \
1068  M(Not, UnaryOperation)                                                \
1069  M(NotEqual, Condition)                                                \
1070  M(NullConstant, Instruction)                                          \
1071  M(NullCheck, Instruction)                                             \
1072  M(Or, BinaryOperation)                                                \
1073  M(PackedSwitch, Instruction)                                          \
1074  M(ParallelMove, Instruction)                                          \
1075  M(ParameterValue, Instruction)                                        \
1076  M(Phi, Instruction)                                                   \
1077  M(Rem, BinaryOperation)                                               \
1078  M(Return, Instruction)                                                \
1079  M(ReturnVoid, Instruction)                                            \
1080  M(Shl, BinaryOperation)                                               \
1081  M(Shr, BinaryOperation)                                               \
1082  M(StaticFieldGet, Instruction)                                        \
1083  M(StaticFieldSet, Instruction)                                        \
1084  M(UnresolvedInstanceFieldGet, Instruction)                            \
1085  M(UnresolvedInstanceFieldSet, Instruction)                            \
1086  M(UnresolvedStaticFieldGet, Instruction)                              \
1087  M(UnresolvedStaticFieldSet, Instruction)                              \
1088  M(StoreLocal, Instruction)                                            \
1089  M(Sub, BinaryOperation)                                               \
1090  M(SuspendCheck, Instruction)                                          \
1091  M(Temporary, Instruction)                                             \
1092  M(Throw, Instruction)                                                 \
1093  M(TryBoundary, Instruction)                                           \
1094  M(TypeConversion, Instruction)                                        \
1095  M(UShr, BinaryOperation)                                              \
1096  M(Xor, BinaryOperation)                                               \
1097
1098#define FOR_EACH_CONCRETE_INSTRUCTION_ARM(M)
1099
1100#ifndef ART_ENABLE_CODEGEN_arm64
1101#define FOR_EACH_CONCRETE_INSTRUCTION_ARM64(M)
1102#else
1103#define FOR_EACH_CONCRETE_INSTRUCTION_ARM64(M)                          \
1104  M(Arm64IntermediateAddress, Instruction)
1105#endif
1106
1107#define FOR_EACH_CONCRETE_INSTRUCTION_MIPS(M)
1108
1109#define FOR_EACH_CONCRETE_INSTRUCTION_MIPS64(M)
1110
1111#ifndef ART_ENABLE_CODEGEN_x86
1112#define FOR_EACH_CONCRETE_INSTRUCTION_X86(M)
1113#else
1114#define FOR_EACH_CONCRETE_INSTRUCTION_X86(M)                            \
1115  M(X86ComputeBaseMethodAddress, Instruction)                           \
1116  M(X86LoadFromConstantTable, Instruction)                              \
1117  M(X86PackedSwitch, Instruction)
1118#endif
1119
1120#define FOR_EACH_CONCRETE_INSTRUCTION_X86_64(M)
1121
1122#define FOR_EACH_CONCRETE_INSTRUCTION(M)                                \
1123  FOR_EACH_CONCRETE_INSTRUCTION_COMMON(M)                               \
1124  FOR_EACH_CONCRETE_INSTRUCTION_ARM(M)                                  \
1125  FOR_EACH_CONCRETE_INSTRUCTION_ARM64(M)                                \
1126  FOR_EACH_CONCRETE_INSTRUCTION_MIPS(M)                                 \
1127  FOR_EACH_CONCRETE_INSTRUCTION_MIPS64(M)                               \
1128  FOR_EACH_CONCRETE_INSTRUCTION_X86(M)                                  \
1129  FOR_EACH_CONCRETE_INSTRUCTION_X86_64(M)
1130
1131#define FOR_EACH_INSTRUCTION(M)                                         \
1132  FOR_EACH_CONCRETE_INSTRUCTION(M)                                      \
1133  M(Constant, Instruction)                                              \
1134  M(UnaryOperation, Instruction)                                        \
1135  M(BinaryOperation, Instruction)                                       \
1136  M(Invoke, Instruction)
1137
1138#define FORWARD_DECLARATION(type, super) class H##type;
1139FOR_EACH_INSTRUCTION(FORWARD_DECLARATION)
1140#undef FORWARD_DECLARATION
1141
1142#define DECLARE_INSTRUCTION(type)                                       \
1143  InstructionKind GetKind() const OVERRIDE { return k##type; }          \
1144  const char* DebugName() const OVERRIDE { return #type; }              \
1145  const H##type* As##type() const OVERRIDE { return this; }             \
1146  H##type* As##type() OVERRIDE { return this; }                         \
1147  bool InstructionTypeEquals(HInstruction* other) const OVERRIDE {      \
1148    return other->Is##type();                                           \
1149  }                                                                     \
1150  void Accept(HGraphVisitor* visitor) OVERRIDE
1151
1152template <typename T> class HUseList;
1153
1154template <typename T>
1155class HUseListNode : public ArenaObject<kArenaAllocUseListNode> {
1156 public:
1157  HUseListNode* GetPrevious() const { return prev_; }
1158  HUseListNode* GetNext() const { return next_; }
1159  T GetUser() const { return user_; }
1160  size_t GetIndex() const { return index_; }
1161  void SetIndex(size_t index) { index_ = index; }
1162
1163 private:
1164  HUseListNode(T user, size_t index)
1165      : user_(user), index_(index), prev_(nullptr), next_(nullptr) {}
1166
1167  T const user_;
1168  size_t index_;
1169  HUseListNode<T>* prev_;
1170  HUseListNode<T>* next_;
1171
1172  friend class HUseList<T>;
1173
1174  DISALLOW_COPY_AND_ASSIGN(HUseListNode);
1175};
1176
1177template <typename T>
1178class HUseList : public ValueObject {
1179 public:
1180  HUseList() : first_(nullptr) {}
1181
1182  void Clear() {
1183    first_ = nullptr;
1184  }
1185
1186  // Adds a new entry at the beginning of the use list and returns
1187  // the newly created node.
1188  HUseListNode<T>* AddUse(T user, size_t index, ArenaAllocator* arena) {
1189    HUseListNode<T>* new_node = new (arena) HUseListNode<T>(user, index);
1190    if (IsEmpty()) {
1191      first_ = new_node;
1192    } else {
1193      first_->prev_ = new_node;
1194      new_node->next_ = first_;
1195      first_ = new_node;
1196    }
1197    return new_node;
1198  }
1199
1200  HUseListNode<T>* GetFirst() const {
1201    return first_;
1202  }
1203
1204  void Remove(HUseListNode<T>* node) {
1205    DCHECK(node != nullptr);
1206    DCHECK(Contains(node));
1207
1208    if (node->prev_ != nullptr) {
1209      node->prev_->next_ = node->next_;
1210    }
1211    if (node->next_ != nullptr) {
1212      node->next_->prev_ = node->prev_;
1213    }
1214    if (node == first_) {
1215      first_ = node->next_;
1216    }
1217  }
1218
1219  bool Contains(const HUseListNode<T>* node) const {
1220    if (node == nullptr) {
1221      return false;
1222    }
1223    for (HUseListNode<T>* current = first_; current != nullptr; current = current->GetNext()) {
1224      if (current == node) {
1225        return true;
1226      }
1227    }
1228    return false;
1229  }
1230
1231  bool IsEmpty() const {
1232    return first_ == nullptr;
1233  }
1234
1235  bool HasOnlyOneUse() const {
1236    return first_ != nullptr && first_->next_ == nullptr;
1237  }
1238
1239  size_t SizeSlow() const {
1240    size_t count = 0;
1241    for (HUseListNode<T>* current = first_; current != nullptr; current = current->GetNext()) {
1242      ++count;
1243    }
1244    return count;
1245  }
1246
1247 private:
1248  HUseListNode<T>* first_;
1249};
1250
1251template<typename T>
1252class HUseIterator : public ValueObject {
1253 public:
1254  explicit HUseIterator(const HUseList<T>& uses) : current_(uses.GetFirst()) {}
1255
1256  bool Done() const { return current_ == nullptr; }
1257
1258  void Advance() {
1259    DCHECK(!Done());
1260    current_ = current_->GetNext();
1261  }
1262
1263  HUseListNode<T>* Current() const {
1264    DCHECK(!Done());
1265    return current_;
1266  }
1267
1268 private:
1269  HUseListNode<T>* current_;
1270
1271  friend class HValue;
1272};
1273
1274// This class is used by HEnvironment and HInstruction classes to record the
1275// instructions they use and pointers to the corresponding HUseListNodes kept
1276// by the used instructions.
1277template <typename T>
1278class HUserRecord : public ValueObject {
1279 public:
1280  HUserRecord() : instruction_(nullptr), use_node_(nullptr) {}
1281  explicit HUserRecord(HInstruction* instruction) : instruction_(instruction), use_node_(nullptr) {}
1282
1283  HUserRecord(const HUserRecord<T>& old_record, HUseListNode<T>* use_node)
1284    : instruction_(old_record.instruction_), use_node_(use_node) {
1285    DCHECK(instruction_ != nullptr);
1286    DCHECK(use_node_ != nullptr);
1287    DCHECK(old_record.use_node_ == nullptr);
1288  }
1289
1290  HInstruction* GetInstruction() const { return instruction_; }
1291  HUseListNode<T>* GetUseNode() const { return use_node_; }
1292
1293 private:
1294  // Instruction used by the user.
1295  HInstruction* instruction_;
1296
1297  // Corresponding entry in the use list kept by 'instruction_'.
1298  HUseListNode<T>* use_node_;
1299};
1300
1301/**
1302 * Side-effects representation.
1303 *
1304 * For write/read dependences on fields/arrays, the dependence analysis uses
1305 * type disambiguation (e.g. a float field write cannot modify the value of an
1306 * integer field read) and the access type (e.g.  a reference array write cannot
1307 * modify the value of a reference field read [although it may modify the
1308 * reference fetch prior to reading the field, which is represented by its own
1309 * write/read dependence]). The analysis makes conservative points-to
1310 * assumptions on reference types (e.g. two same typed arrays are assumed to be
1311 * the same, and any reference read depends on any reference read without
1312 * further regard of its type).
1313 *
1314 * The internal representation uses 38-bit and is described in the table below.
1315 * The first line indicates the side effect, and for field/array accesses the
1316 * second line indicates the type of the access (in the order of the
1317 * Primitive::Type enum).
1318 * The two numbered lines below indicate the bit position in the bitfield (read
1319 * vertically).
1320 *
1321 *   |Depends on GC|ARRAY-R  |FIELD-R  |Can trigger GC|ARRAY-W  |FIELD-W  |
1322 *   +-------------+---------+---------+--------------+---------+---------+
1323 *   |             |DFJISCBZL|DFJISCBZL|              |DFJISCBZL|DFJISCBZL|
1324 *   |      3      |333333322|222222221|       1      |111111110|000000000|
1325 *   |      7      |654321098|765432109|       8      |765432109|876543210|
1326 *
1327 * Note that, to ease the implementation, 'changes' bits are least significant
1328 * bits, while 'dependency' bits are most significant bits.
1329 */
1330class SideEffects : public ValueObject {
1331 public:
1332  SideEffects() : flags_(0) {}
1333
1334  static SideEffects None() {
1335    return SideEffects(0);
1336  }
1337
1338  static SideEffects All() {
1339    return SideEffects(kAllChangeBits | kAllDependOnBits);
1340  }
1341
1342  static SideEffects AllChanges() {
1343    return SideEffects(kAllChangeBits);
1344  }
1345
1346  static SideEffects AllDependencies() {
1347    return SideEffects(kAllDependOnBits);
1348  }
1349
1350  static SideEffects AllExceptGCDependency() {
1351    return AllWritesAndReads().Union(SideEffects::CanTriggerGC());
1352  }
1353
1354  static SideEffects AllWritesAndReads() {
1355    return SideEffects(kAllWrites | kAllReads);
1356  }
1357
1358  static SideEffects AllWrites() {
1359    return SideEffects(kAllWrites);
1360  }
1361
1362  static SideEffects AllReads() {
1363    return SideEffects(kAllReads);
1364  }
1365
1366  static SideEffects FieldWriteOfType(Primitive::Type type, bool is_volatile) {
1367    return is_volatile
1368        ? AllWritesAndReads()
1369        : SideEffects(TypeFlagWithAlias(type, kFieldWriteOffset));
1370  }
1371
1372  static SideEffects ArrayWriteOfType(Primitive::Type type) {
1373    return SideEffects(TypeFlagWithAlias(type, kArrayWriteOffset));
1374  }
1375
1376  static SideEffects FieldReadOfType(Primitive::Type type, bool is_volatile) {
1377    return is_volatile
1378        ? AllWritesAndReads()
1379        : SideEffects(TypeFlagWithAlias(type, kFieldReadOffset));
1380  }
1381
1382  static SideEffects ArrayReadOfType(Primitive::Type type) {
1383    return SideEffects(TypeFlagWithAlias(type, kArrayReadOffset));
1384  }
1385
1386  static SideEffects CanTriggerGC() {
1387    return SideEffects(1ULL << kCanTriggerGCBit);
1388  }
1389
1390  static SideEffects DependsOnGC() {
1391    return SideEffects(1ULL << kDependsOnGCBit);
1392  }
1393
1394  // Combines the side-effects of this and the other.
1395  SideEffects Union(SideEffects other) const {
1396    return SideEffects(flags_ | other.flags_);
1397  }
1398
1399  SideEffects Exclusion(SideEffects other) const {
1400    return SideEffects(flags_ & ~other.flags_);
1401  }
1402
1403  void Add(SideEffects other) {
1404    flags_ |= other.flags_;
1405  }
1406
1407  bool Includes(SideEffects other) const {
1408    return (other.flags_ & flags_) == other.flags_;
1409  }
1410
1411  bool HasSideEffects() const {
1412    return (flags_ & kAllChangeBits);
1413  }
1414
1415  bool HasDependencies() const {
1416    return (flags_ & kAllDependOnBits);
1417  }
1418
1419  // Returns true if there are no side effects or dependencies.
1420  bool DoesNothing() const {
1421    return flags_ == 0;
1422  }
1423
1424  // Returns true if something is written.
1425  bool DoesAnyWrite() const {
1426    return (flags_ & kAllWrites);
1427  }
1428
1429  // Returns true if something is read.
1430  bool DoesAnyRead() const {
1431    return (flags_ & kAllReads);
1432  }
1433
1434  // Returns true if potentially everything is written and read
1435  // (every type and every kind of access).
1436  bool DoesAllReadWrite() const {
1437    return (flags_ & (kAllWrites | kAllReads)) == (kAllWrites | kAllReads);
1438  }
1439
1440  bool DoesAll() const {
1441    return flags_ == (kAllChangeBits | kAllDependOnBits);
1442  }
1443
1444  // Returns true if `this` may read something written by `other`.
1445  bool MayDependOn(SideEffects other) const {
1446    const uint64_t depends_on_flags = (flags_ & kAllDependOnBits) >> kChangeBits;
1447    return (other.flags_ & depends_on_flags);
1448  }
1449
1450  // Returns string representation of flags (for debugging only).
1451  // Format: |x|DFJISCBZL|DFJISCBZL|y|DFJISCBZL|DFJISCBZL|
1452  std::string ToString() const {
1453    std::string flags = "|";
1454    for (int s = kLastBit; s >= 0; s--) {
1455      bool current_bit_is_set = ((flags_ >> s) & 1) != 0;
1456      if ((s == kDependsOnGCBit) || (s == kCanTriggerGCBit)) {
1457        // This is a bit for the GC side effect.
1458        if (current_bit_is_set) {
1459          flags += "GC";
1460        }
1461        flags += "|";
1462      } else {
1463        // This is a bit for the array/field analysis.
1464        // The underscore character stands for the 'can trigger GC' bit.
1465        static const char *kDebug = "LZBCSIJFDLZBCSIJFD_LZBCSIJFDLZBCSIJFD";
1466        if (current_bit_is_set) {
1467          flags += kDebug[s];
1468        }
1469        if ((s == kFieldWriteOffset) || (s == kArrayWriteOffset) ||
1470            (s == kFieldReadOffset) || (s == kArrayReadOffset)) {
1471          flags += "|";
1472        }
1473      }
1474    }
1475    return flags;
1476  }
1477
1478  bool Equals(const SideEffects& other) const { return flags_ == other.flags_; }
1479
1480 private:
1481  static constexpr int kFieldArrayAnalysisBits = 9;
1482
1483  static constexpr int kFieldWriteOffset = 0;
1484  static constexpr int kArrayWriteOffset = kFieldWriteOffset + kFieldArrayAnalysisBits;
1485  static constexpr int kLastBitForWrites = kArrayWriteOffset + kFieldArrayAnalysisBits - 1;
1486  static constexpr int kCanTriggerGCBit = kLastBitForWrites + 1;
1487
1488  static constexpr int kChangeBits = kCanTriggerGCBit + 1;
1489
1490  static constexpr int kFieldReadOffset = kCanTriggerGCBit + 1;
1491  static constexpr int kArrayReadOffset = kFieldReadOffset + kFieldArrayAnalysisBits;
1492  static constexpr int kLastBitForReads = kArrayReadOffset + kFieldArrayAnalysisBits - 1;
1493  static constexpr int kDependsOnGCBit = kLastBitForReads + 1;
1494
1495  static constexpr int kLastBit = kDependsOnGCBit;
1496  static constexpr int kDependOnBits = kLastBit + 1 - kChangeBits;
1497
1498  // Aliases.
1499
1500  static_assert(kChangeBits == kDependOnBits,
1501                "the 'change' bits should match the 'depend on' bits.");
1502
1503  static constexpr uint64_t kAllChangeBits = ((1ULL << kChangeBits) - 1);
1504  static constexpr uint64_t kAllDependOnBits = ((1ULL << kDependOnBits) - 1) << kChangeBits;
1505  static constexpr uint64_t kAllWrites =
1506      ((1ULL << (kLastBitForWrites + 1 - kFieldWriteOffset)) - 1) << kFieldWriteOffset;
1507  static constexpr uint64_t kAllReads =
1508      ((1ULL << (kLastBitForReads + 1 - kFieldReadOffset)) - 1) << kFieldReadOffset;
1509
1510  // Work around the fact that HIR aliases I/F and J/D.
1511  // TODO: remove this interceptor once HIR types are clean
1512  static uint64_t TypeFlagWithAlias(Primitive::Type type, int offset) {
1513    switch (type) {
1514      case Primitive::kPrimInt:
1515      case Primitive::kPrimFloat:
1516        return TypeFlag(Primitive::kPrimInt, offset) |
1517               TypeFlag(Primitive::kPrimFloat, offset);
1518      case Primitive::kPrimLong:
1519      case Primitive::kPrimDouble:
1520        return TypeFlag(Primitive::kPrimLong, offset) |
1521               TypeFlag(Primitive::kPrimDouble, offset);
1522      default:
1523        return TypeFlag(type, offset);
1524    }
1525  }
1526
1527  // Translates type to bit flag.
1528  static uint64_t TypeFlag(Primitive::Type type, int offset) {
1529    CHECK_NE(type, Primitive::kPrimVoid);
1530    const uint64_t one = 1;
1531    const int shift = type;  // 0-based consecutive enum
1532    DCHECK_LE(kFieldWriteOffset, shift);
1533    DCHECK_LT(shift, kArrayWriteOffset);
1534    return one << (type + offset);
1535  }
1536
1537  // Private constructor on direct flags value.
1538  explicit SideEffects(uint64_t flags) : flags_(flags) {}
1539
1540  uint64_t flags_;
1541};
1542
1543// A HEnvironment object contains the values of virtual registers at a given location.
1544class HEnvironment : public ArenaObject<kArenaAllocEnvironment> {
1545 public:
1546  HEnvironment(ArenaAllocator* arena,
1547               size_t number_of_vregs,
1548               const DexFile& dex_file,
1549               uint32_t method_idx,
1550               uint32_t dex_pc,
1551               InvokeType invoke_type,
1552               HInstruction* holder)
1553     : vregs_(number_of_vregs, arena->Adapter(kArenaAllocEnvironmentVRegs)),
1554       locations_(number_of_vregs, arena->Adapter(kArenaAllocEnvironmentLocations)),
1555       parent_(nullptr),
1556       dex_file_(dex_file),
1557       method_idx_(method_idx),
1558       dex_pc_(dex_pc),
1559       invoke_type_(invoke_type),
1560       holder_(holder) {
1561  }
1562
1563  HEnvironment(ArenaAllocator* arena, const HEnvironment& to_copy, HInstruction* holder)
1564      : HEnvironment(arena,
1565                     to_copy.Size(),
1566                     to_copy.GetDexFile(),
1567                     to_copy.GetMethodIdx(),
1568                     to_copy.GetDexPc(),
1569                     to_copy.GetInvokeType(),
1570                     holder) {}
1571
1572  void SetAndCopyParentChain(ArenaAllocator* allocator, HEnvironment* parent) {
1573    if (parent_ != nullptr) {
1574      parent_->SetAndCopyParentChain(allocator, parent);
1575    } else {
1576      parent_ = new (allocator) HEnvironment(allocator, *parent, holder_);
1577      parent_->CopyFrom(parent);
1578      if (parent->GetParent() != nullptr) {
1579        parent_->SetAndCopyParentChain(allocator, parent->GetParent());
1580      }
1581    }
1582  }
1583
1584  void CopyFrom(const ArenaVector<HInstruction*>& locals);
1585  void CopyFrom(HEnvironment* environment);
1586
1587  // Copy from `env`. If it's a loop phi for `loop_header`, copy the first
1588  // input to the loop phi instead. This is for inserting instructions that
1589  // require an environment (like HDeoptimization) in the loop pre-header.
1590  void CopyFromWithLoopPhiAdjustment(HEnvironment* env, HBasicBlock* loop_header);
1591
1592  void SetRawEnvAt(size_t index, HInstruction* instruction) {
1593    vregs_[index] = HUserRecord<HEnvironment*>(instruction);
1594  }
1595
1596  HInstruction* GetInstructionAt(size_t index) const {
1597    return vregs_[index].GetInstruction();
1598  }
1599
1600  void RemoveAsUserOfInput(size_t index) const;
1601
1602  size_t Size() const { return vregs_.size(); }
1603
1604  HEnvironment* GetParent() const { return parent_; }
1605
1606  void SetLocationAt(size_t index, Location location) {
1607    locations_[index] = location;
1608  }
1609
1610  Location GetLocationAt(size_t index) const {
1611    return locations_[index];
1612  }
1613
1614  uint32_t GetDexPc() const {
1615    return dex_pc_;
1616  }
1617
1618  uint32_t GetMethodIdx() const {
1619    return method_idx_;
1620  }
1621
1622  InvokeType GetInvokeType() const {
1623    return invoke_type_;
1624  }
1625
1626  const DexFile& GetDexFile() const {
1627    return dex_file_;
1628  }
1629
1630  HInstruction* GetHolder() const {
1631    return holder_;
1632  }
1633
1634 private:
1635  // Record instructions' use entries of this environment for constant-time removal.
1636  // It should only be called by HInstruction when a new environment use is added.
1637  void RecordEnvUse(HUseListNode<HEnvironment*>* env_use) {
1638    DCHECK(env_use->GetUser() == this);
1639    size_t index = env_use->GetIndex();
1640    vregs_[index] = HUserRecord<HEnvironment*>(vregs_[index], env_use);
1641  }
1642
1643  ArenaVector<HUserRecord<HEnvironment*>> vregs_;
1644  ArenaVector<Location> locations_;
1645  HEnvironment* parent_;
1646  const DexFile& dex_file_;
1647  const uint32_t method_idx_;
1648  const uint32_t dex_pc_;
1649  const InvokeType invoke_type_;
1650
1651  // The instruction that holds this environment.
1652  HInstruction* const holder_;
1653
1654  friend class HInstruction;
1655
1656  DISALLOW_COPY_AND_ASSIGN(HEnvironment);
1657};
1658
1659class ReferenceTypeInfo : ValueObject {
1660 public:
1661  typedef Handle<mirror::Class> TypeHandle;
1662
1663  static ReferenceTypeInfo Create(TypeHandle type_handle, bool is_exact) {
1664    // The constructor will check that the type_handle is valid.
1665    return ReferenceTypeInfo(type_handle, is_exact);
1666  }
1667
1668  static ReferenceTypeInfo CreateInvalid() { return ReferenceTypeInfo(); }
1669
1670  static bool IsValidHandle(TypeHandle handle) SHARED_REQUIRES(Locks::mutator_lock_) {
1671    return handle.GetReference() != nullptr;
1672  }
1673
1674  bool IsValid() const SHARED_REQUIRES(Locks::mutator_lock_) {
1675    return IsValidHandle(type_handle_);
1676  }
1677
1678  bool IsExact() const { return is_exact_; }
1679
1680  bool IsObjectClass() const SHARED_REQUIRES(Locks::mutator_lock_) {
1681    DCHECK(IsValid());
1682    return GetTypeHandle()->IsObjectClass();
1683  }
1684
1685  bool IsStringClass() const SHARED_REQUIRES(Locks::mutator_lock_) {
1686    DCHECK(IsValid());
1687    return GetTypeHandle()->IsStringClass();
1688  }
1689
1690  bool IsObjectArray() const SHARED_REQUIRES(Locks::mutator_lock_) {
1691    DCHECK(IsValid());
1692    return IsArrayClass() && GetTypeHandle()->GetComponentType()->IsObjectClass();
1693  }
1694
1695  bool IsInterface() const SHARED_REQUIRES(Locks::mutator_lock_) {
1696    DCHECK(IsValid());
1697    return GetTypeHandle()->IsInterface();
1698  }
1699
1700  bool IsArrayClass() const SHARED_REQUIRES(Locks::mutator_lock_) {
1701    DCHECK(IsValid());
1702    return GetTypeHandle()->IsArrayClass();
1703  }
1704
1705  bool IsPrimitiveArrayClass() const SHARED_REQUIRES(Locks::mutator_lock_) {
1706    DCHECK(IsValid());
1707    return GetTypeHandle()->IsPrimitiveArray();
1708  }
1709
1710  bool IsNonPrimitiveArrayClass() const SHARED_REQUIRES(Locks::mutator_lock_) {
1711    DCHECK(IsValid());
1712    return GetTypeHandle()->IsArrayClass() && !GetTypeHandle()->IsPrimitiveArray();
1713  }
1714
1715  bool CanArrayHold(ReferenceTypeInfo rti)  const SHARED_REQUIRES(Locks::mutator_lock_) {
1716    DCHECK(IsValid());
1717    if (!IsExact()) return false;
1718    if (!IsArrayClass()) return false;
1719    return GetTypeHandle()->GetComponentType()->IsAssignableFrom(rti.GetTypeHandle().Get());
1720  }
1721
1722  bool CanArrayHoldValuesOf(ReferenceTypeInfo rti)  const SHARED_REQUIRES(Locks::mutator_lock_) {
1723    DCHECK(IsValid());
1724    if (!IsExact()) return false;
1725    if (!IsArrayClass()) return false;
1726    if (!rti.IsArrayClass()) return false;
1727    return GetTypeHandle()->GetComponentType()->IsAssignableFrom(
1728        rti.GetTypeHandle()->GetComponentType());
1729  }
1730
1731  Handle<mirror::Class> GetTypeHandle() const { return type_handle_; }
1732
1733  bool IsSupertypeOf(ReferenceTypeInfo rti) const SHARED_REQUIRES(Locks::mutator_lock_) {
1734    DCHECK(IsValid());
1735    DCHECK(rti.IsValid());
1736    return GetTypeHandle()->IsAssignableFrom(rti.GetTypeHandle().Get());
1737  }
1738
1739  bool IsStrictSupertypeOf(ReferenceTypeInfo rti) const SHARED_REQUIRES(Locks::mutator_lock_) {
1740    DCHECK(IsValid());
1741    DCHECK(rti.IsValid());
1742    return GetTypeHandle().Get() != rti.GetTypeHandle().Get() &&
1743        GetTypeHandle()->IsAssignableFrom(rti.GetTypeHandle().Get());
1744  }
1745
1746  // Returns true if the type information provide the same amount of details.
1747  // Note that it does not mean that the instructions have the same actual type
1748  // (because the type can be the result of a merge).
1749  bool IsEqual(ReferenceTypeInfo rti) SHARED_REQUIRES(Locks::mutator_lock_) {
1750    if (!IsValid() && !rti.IsValid()) {
1751      // Invalid types are equal.
1752      return true;
1753    }
1754    if (!IsValid() || !rti.IsValid()) {
1755      // One is valid, the other not.
1756      return false;
1757    }
1758    return IsExact() == rti.IsExact()
1759        && GetTypeHandle().Get() == rti.GetTypeHandle().Get();
1760  }
1761
1762 private:
1763  ReferenceTypeInfo();
1764  ReferenceTypeInfo(TypeHandle type_handle, bool is_exact);
1765
1766  // The class of the object.
1767  TypeHandle type_handle_;
1768  // Whether or not the type is exact or a superclass of the actual type.
1769  // Whether or not we have any information about this type.
1770  bool is_exact_;
1771};
1772
1773std::ostream& operator<<(std::ostream& os, const ReferenceTypeInfo& rhs);
1774
1775class HInstruction : public ArenaObject<kArenaAllocInstruction> {
1776 public:
1777  HInstruction(SideEffects side_effects, uint32_t dex_pc)
1778      : previous_(nullptr),
1779        next_(nullptr),
1780        block_(nullptr),
1781        dex_pc_(dex_pc),
1782        id_(-1),
1783        ssa_index_(-1),
1784        environment_(nullptr),
1785        locations_(nullptr),
1786        live_interval_(nullptr),
1787        lifetime_position_(kNoLifetime),
1788        side_effects_(side_effects),
1789        reference_type_info_(ReferenceTypeInfo::CreateInvalid()) {}
1790
1791  virtual ~HInstruction() {}
1792
1793#define DECLARE_KIND(type, super) k##type,
1794  enum InstructionKind {
1795    FOR_EACH_INSTRUCTION(DECLARE_KIND)
1796  };
1797#undef DECLARE_KIND
1798
1799  HInstruction* GetNext() const { return next_; }
1800  HInstruction* GetPrevious() const { return previous_; }
1801
1802  HInstruction* GetNextDisregardingMoves() const;
1803  HInstruction* GetPreviousDisregardingMoves() const;
1804
1805  HBasicBlock* GetBlock() const { return block_; }
1806  ArenaAllocator* GetArena() const { return block_->GetGraph()->GetArena(); }
1807  void SetBlock(HBasicBlock* block) { block_ = block; }
1808  bool IsInBlock() const { return block_ != nullptr; }
1809  bool IsInLoop() const { return block_->IsInLoop(); }
1810  bool IsLoopHeaderPhi() { return IsPhi() && block_->IsLoopHeader(); }
1811
1812  virtual size_t InputCount() const = 0;
1813  HInstruction* InputAt(size_t i) const { return InputRecordAt(i).GetInstruction(); }
1814
1815  virtual void Accept(HGraphVisitor* visitor) = 0;
1816  virtual const char* DebugName() const = 0;
1817
1818  virtual Primitive::Type GetType() const { return Primitive::kPrimVoid; }
1819  void SetRawInputAt(size_t index, HInstruction* input) {
1820    SetRawInputRecordAt(index, HUserRecord<HInstruction*>(input));
1821  }
1822
1823  virtual bool NeedsEnvironment() const { return false; }
1824
1825  uint32_t GetDexPc() const { return dex_pc_; }
1826
1827  virtual bool IsControlFlow() const { return false; }
1828
1829  virtual bool CanThrow() const { return false; }
1830  bool CanThrowIntoCatchBlock() const { return CanThrow() && block_->IsTryBlock(); }
1831
1832  bool HasSideEffects() const { return side_effects_.HasSideEffects(); }
1833  bool DoesAnyWrite() const { return side_effects_.DoesAnyWrite(); }
1834
1835  // Does not apply for all instructions, but having this at top level greatly
1836  // simplifies the null check elimination.
1837  // TODO: Consider merging can_be_null into ReferenceTypeInfo.
1838  virtual bool CanBeNull() const {
1839    DCHECK_EQ(GetType(), Primitive::kPrimNot) << "CanBeNull only applies to reference types";
1840    return true;
1841  }
1842
1843  virtual bool CanDoImplicitNullCheckOn(HInstruction* obj ATTRIBUTE_UNUSED) const {
1844    return false;
1845  }
1846
1847  void SetReferenceTypeInfo(ReferenceTypeInfo rti);
1848
1849  ReferenceTypeInfo GetReferenceTypeInfo() const {
1850    DCHECK_EQ(GetType(), Primitive::kPrimNot);
1851    return reference_type_info_;
1852  }
1853
1854  void AddUseAt(HInstruction* user, size_t index) {
1855    DCHECK(user != nullptr);
1856    HUseListNode<HInstruction*>* use =
1857        uses_.AddUse(user, index, GetBlock()->GetGraph()->GetArena());
1858    user->SetRawInputRecordAt(index, HUserRecord<HInstruction*>(user->InputRecordAt(index), use));
1859  }
1860
1861  void AddEnvUseAt(HEnvironment* user, size_t index) {
1862    DCHECK(user != nullptr);
1863    HUseListNode<HEnvironment*>* env_use =
1864        env_uses_.AddUse(user, index, GetBlock()->GetGraph()->GetArena());
1865    user->RecordEnvUse(env_use);
1866  }
1867
1868  void RemoveAsUserOfInput(size_t input) {
1869    HUserRecord<HInstruction*> input_use = InputRecordAt(input);
1870    input_use.GetInstruction()->uses_.Remove(input_use.GetUseNode());
1871  }
1872
1873  const HUseList<HInstruction*>& GetUses() const { return uses_; }
1874  const HUseList<HEnvironment*>& GetEnvUses() const { return env_uses_; }
1875
1876  bool HasUses() const { return !uses_.IsEmpty() || !env_uses_.IsEmpty(); }
1877  bool HasEnvironmentUses() const { return !env_uses_.IsEmpty(); }
1878  bool HasNonEnvironmentUses() const { return !uses_.IsEmpty(); }
1879  bool HasOnlyOneNonEnvironmentUse() const {
1880    return !HasEnvironmentUses() && GetUses().HasOnlyOneUse();
1881  }
1882
1883  // Does this instruction strictly dominate `other_instruction`?
1884  // Returns false if this instruction and `other_instruction` are the same.
1885  // Aborts if this instruction and `other_instruction` are both phis.
1886  bool StrictlyDominates(HInstruction* other_instruction) const;
1887
1888  int GetId() const { return id_; }
1889  void SetId(int id) { id_ = id; }
1890
1891  int GetSsaIndex() const { return ssa_index_; }
1892  void SetSsaIndex(int ssa_index) { ssa_index_ = ssa_index; }
1893  bool HasSsaIndex() const { return ssa_index_ != -1; }
1894
1895  bool HasEnvironment() const { return environment_ != nullptr; }
1896  HEnvironment* GetEnvironment() const { return environment_; }
1897  // Set the `environment_` field. Raw because this method does not
1898  // update the uses lists.
1899  void SetRawEnvironment(HEnvironment* environment) {
1900    DCHECK(environment_ == nullptr);
1901    DCHECK_EQ(environment->GetHolder(), this);
1902    environment_ = environment;
1903  }
1904
1905  // Set the environment of this instruction, copying it from `environment`. While
1906  // copying, the uses lists are being updated.
1907  void CopyEnvironmentFrom(HEnvironment* environment) {
1908    DCHECK(environment_ == nullptr);
1909    ArenaAllocator* allocator = GetBlock()->GetGraph()->GetArena();
1910    environment_ = new (allocator) HEnvironment(allocator, *environment, this);
1911    environment_->CopyFrom(environment);
1912    if (environment->GetParent() != nullptr) {
1913      environment_->SetAndCopyParentChain(allocator, environment->GetParent());
1914    }
1915  }
1916
1917  void CopyEnvironmentFromWithLoopPhiAdjustment(HEnvironment* environment,
1918                                                HBasicBlock* block) {
1919    DCHECK(environment_ == nullptr);
1920    ArenaAllocator* allocator = GetBlock()->GetGraph()->GetArena();
1921    environment_ = new (allocator) HEnvironment(allocator, *environment, this);
1922    environment_->CopyFromWithLoopPhiAdjustment(environment, block);
1923    if (environment->GetParent() != nullptr) {
1924      environment_->SetAndCopyParentChain(allocator, environment->GetParent());
1925    }
1926  }
1927
1928  // Returns the number of entries in the environment. Typically, that is the
1929  // number of dex registers in a method. It could be more in case of inlining.
1930  size_t EnvironmentSize() const;
1931
1932  LocationSummary* GetLocations() const { return locations_; }
1933  void SetLocations(LocationSummary* locations) { locations_ = locations; }
1934
1935  void ReplaceWith(HInstruction* instruction);
1936  void ReplaceInput(HInstruction* replacement, size_t index);
1937
1938  // This is almost the same as doing `ReplaceWith()`. But in this helper, the
1939  // uses of this instruction by `other` are *not* updated.
1940  void ReplaceWithExceptInReplacementAtIndex(HInstruction* other, size_t use_index) {
1941    ReplaceWith(other);
1942    other->ReplaceInput(this, use_index);
1943  }
1944
1945  // Move `this` instruction before `cursor`.
1946  void MoveBefore(HInstruction* cursor);
1947
1948#define INSTRUCTION_TYPE_CHECK(type, super)                                    \
1949  bool Is##type() const { return (As##type() != nullptr); }                    \
1950  virtual const H##type* As##type() const { return nullptr; }                  \
1951  virtual H##type* As##type() { return nullptr; }
1952
1953  FOR_EACH_INSTRUCTION(INSTRUCTION_TYPE_CHECK)
1954#undef INSTRUCTION_TYPE_CHECK
1955
1956  // Returns whether the instruction can be moved within the graph.
1957  virtual bool CanBeMoved() const { return false; }
1958
1959  // Returns whether the two instructions are of the same kind.
1960  virtual bool InstructionTypeEquals(HInstruction* other ATTRIBUTE_UNUSED) const {
1961    return false;
1962  }
1963
1964  // Returns whether any data encoded in the two instructions is equal.
1965  // This method does not look at the inputs. Both instructions must be
1966  // of the same type, otherwise the method has undefined behavior.
1967  virtual bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const {
1968    return false;
1969  }
1970
1971  // Returns whether two instructions are equal, that is:
1972  // 1) They have the same type and contain the same data (InstructionDataEquals).
1973  // 2) Their inputs are identical.
1974  bool Equals(HInstruction* other) const;
1975
1976  virtual InstructionKind GetKind() const = 0;
1977
1978  virtual size_t ComputeHashCode() const {
1979    size_t result = GetKind();
1980    for (size_t i = 0, e = InputCount(); i < e; ++i) {
1981      result = (result * 31) + InputAt(i)->GetId();
1982    }
1983    return result;
1984  }
1985
1986  SideEffects GetSideEffects() const { return side_effects_; }
1987  void AddSideEffects(SideEffects other) { side_effects_.Add(other); }
1988
1989  size_t GetLifetimePosition() const { return lifetime_position_; }
1990  void SetLifetimePosition(size_t position) { lifetime_position_ = position; }
1991  LiveInterval* GetLiveInterval() const { return live_interval_; }
1992  void SetLiveInterval(LiveInterval* interval) { live_interval_ = interval; }
1993  bool HasLiveInterval() const { return live_interval_ != nullptr; }
1994
1995  bool IsSuspendCheckEntry() const { return IsSuspendCheck() && GetBlock()->IsEntryBlock(); }
1996
1997  // Returns whether the code generation of the instruction will require to have access
1998  // to the current method. Such instructions are:
1999  // (1): Instructions that require an environment, as calling the runtime requires
2000  //      to walk the stack and have the current method stored at a specific stack address.
2001  // (2): Object literals like classes and strings, that are loaded from the dex cache
2002  //      fields of the current method.
2003  bool NeedsCurrentMethod() const {
2004    return NeedsEnvironment() || IsLoadClass() || IsLoadString();
2005  }
2006
2007  // Returns whether the code generation of the instruction will require to have access
2008  // to the dex cache of the current method's declaring class via the current method.
2009  virtual bool NeedsDexCacheOfDeclaringClass() const { return false; }
2010
2011  // Does this instruction have any use in an environment before
2012  // control flow hits 'other'?
2013  bool HasAnyEnvironmentUseBefore(HInstruction* other);
2014
2015  // Remove all references to environment uses of this instruction.
2016  // The caller must ensure that this is safe to do.
2017  void RemoveEnvironmentUsers();
2018
2019 protected:
2020  virtual const HUserRecord<HInstruction*> InputRecordAt(size_t i) const = 0;
2021  virtual void SetRawInputRecordAt(size_t index, const HUserRecord<HInstruction*>& input) = 0;
2022
2023 private:
2024  void RemoveEnvironmentUser(HUseListNode<HEnvironment*>* use_node) { env_uses_.Remove(use_node); }
2025
2026  HInstruction* previous_;
2027  HInstruction* next_;
2028  HBasicBlock* block_;
2029  const uint32_t dex_pc_;
2030
2031  // An instruction gets an id when it is added to the graph.
2032  // It reflects creation order. A negative id means the instruction
2033  // has not been added to the graph.
2034  int id_;
2035
2036  // When doing liveness analysis, instructions that have uses get an SSA index.
2037  int ssa_index_;
2038
2039  // List of instructions that have this instruction as input.
2040  HUseList<HInstruction*> uses_;
2041
2042  // List of environments that contain this instruction.
2043  HUseList<HEnvironment*> env_uses_;
2044
2045  // The environment associated with this instruction. Not null if the instruction
2046  // might jump out of the method.
2047  HEnvironment* environment_;
2048
2049  // Set by the code generator.
2050  LocationSummary* locations_;
2051
2052  // Set by the liveness analysis.
2053  LiveInterval* live_interval_;
2054
2055  // Set by the liveness analysis, this is the position in a linear
2056  // order of blocks where this instruction's live interval start.
2057  size_t lifetime_position_;
2058
2059  SideEffects side_effects_;
2060
2061  // TODO: for primitive types this should be marked as invalid.
2062  ReferenceTypeInfo reference_type_info_;
2063
2064  friend class GraphChecker;
2065  friend class HBasicBlock;
2066  friend class HEnvironment;
2067  friend class HGraph;
2068  friend class HInstructionList;
2069
2070  DISALLOW_COPY_AND_ASSIGN(HInstruction);
2071};
2072std::ostream& operator<<(std::ostream& os, const HInstruction::InstructionKind& rhs);
2073
2074class HInputIterator : public ValueObject {
2075 public:
2076  explicit HInputIterator(HInstruction* instruction) : instruction_(instruction), index_(0) {}
2077
2078  bool Done() const { return index_ == instruction_->InputCount(); }
2079  HInstruction* Current() const { return instruction_->InputAt(index_); }
2080  void Advance() { index_++; }
2081
2082 private:
2083  HInstruction* instruction_;
2084  size_t index_;
2085
2086  DISALLOW_COPY_AND_ASSIGN(HInputIterator);
2087};
2088
2089class HInstructionIterator : public ValueObject {
2090 public:
2091  explicit HInstructionIterator(const HInstructionList& instructions)
2092      : instruction_(instructions.first_instruction_) {
2093    next_ = Done() ? nullptr : instruction_->GetNext();
2094  }
2095
2096  bool Done() const { return instruction_ == nullptr; }
2097  HInstruction* Current() const { return instruction_; }
2098  void Advance() {
2099    instruction_ = next_;
2100    next_ = Done() ? nullptr : instruction_->GetNext();
2101  }
2102
2103 private:
2104  HInstruction* instruction_;
2105  HInstruction* next_;
2106
2107  DISALLOW_COPY_AND_ASSIGN(HInstructionIterator);
2108};
2109
2110class HBackwardInstructionIterator : public ValueObject {
2111 public:
2112  explicit HBackwardInstructionIterator(const HInstructionList& instructions)
2113      : instruction_(instructions.last_instruction_) {
2114    next_ = Done() ? nullptr : instruction_->GetPrevious();
2115  }
2116
2117  bool Done() const { return instruction_ == nullptr; }
2118  HInstruction* Current() const { return instruction_; }
2119  void Advance() {
2120    instruction_ = next_;
2121    next_ = Done() ? nullptr : instruction_->GetPrevious();
2122  }
2123
2124 private:
2125  HInstruction* instruction_;
2126  HInstruction* next_;
2127
2128  DISALLOW_COPY_AND_ASSIGN(HBackwardInstructionIterator);
2129};
2130
2131template<size_t N>
2132class HTemplateInstruction: public HInstruction {
2133 public:
2134  HTemplateInstruction<N>(SideEffects side_effects, uint32_t dex_pc)
2135      : HInstruction(side_effects, dex_pc), inputs_() {}
2136  virtual ~HTemplateInstruction() {}
2137
2138  size_t InputCount() const OVERRIDE { return N; }
2139
2140 protected:
2141  const HUserRecord<HInstruction*> InputRecordAt(size_t i) const OVERRIDE {
2142    DCHECK_LT(i, N);
2143    return inputs_[i];
2144  }
2145
2146  void SetRawInputRecordAt(size_t i, const HUserRecord<HInstruction*>& input) OVERRIDE {
2147    DCHECK_LT(i, N);
2148    inputs_[i] = input;
2149  }
2150
2151 private:
2152  std::array<HUserRecord<HInstruction*>, N> inputs_;
2153
2154  friend class SsaBuilder;
2155};
2156
2157// HTemplateInstruction specialization for N=0.
2158template<>
2159class HTemplateInstruction<0>: public HInstruction {
2160 public:
2161  explicit HTemplateInstruction<0>(SideEffects side_effects, uint32_t dex_pc)
2162      : HInstruction(side_effects, dex_pc) {}
2163
2164  virtual ~HTemplateInstruction() {}
2165
2166  size_t InputCount() const OVERRIDE { return 0; }
2167
2168 protected:
2169  const HUserRecord<HInstruction*> InputRecordAt(size_t i ATTRIBUTE_UNUSED) const OVERRIDE {
2170    LOG(FATAL) << "Unreachable";
2171    UNREACHABLE();
2172  }
2173
2174  void SetRawInputRecordAt(size_t i ATTRIBUTE_UNUSED,
2175                           const HUserRecord<HInstruction*>& input ATTRIBUTE_UNUSED) OVERRIDE {
2176    LOG(FATAL) << "Unreachable";
2177    UNREACHABLE();
2178  }
2179
2180 private:
2181  friend class SsaBuilder;
2182};
2183
2184template<intptr_t N>
2185class HExpression : public HTemplateInstruction<N> {
2186 public:
2187  HExpression<N>(Primitive::Type type, SideEffects side_effects, uint32_t dex_pc)
2188      : HTemplateInstruction<N>(side_effects, dex_pc), type_(type) {}
2189  virtual ~HExpression() {}
2190
2191  Primitive::Type GetType() const OVERRIDE { return type_; }
2192
2193 protected:
2194  Primitive::Type type_;
2195};
2196
2197// Represents dex's RETURN_VOID opcode. A HReturnVoid is a control flow
2198// instruction that branches to the exit block.
2199class HReturnVoid : public HTemplateInstruction<0> {
2200 public:
2201  explicit HReturnVoid(uint32_t dex_pc = kNoDexPc)
2202      : HTemplateInstruction(SideEffects::None(), dex_pc) {}
2203
2204  bool IsControlFlow() const OVERRIDE { return true; }
2205
2206  DECLARE_INSTRUCTION(ReturnVoid);
2207
2208 private:
2209  DISALLOW_COPY_AND_ASSIGN(HReturnVoid);
2210};
2211
2212// Represents dex's RETURN opcodes. A HReturn is a control flow
2213// instruction that branches to the exit block.
2214class HReturn : public HTemplateInstruction<1> {
2215 public:
2216  explicit HReturn(HInstruction* value, uint32_t dex_pc = kNoDexPc)
2217      : HTemplateInstruction(SideEffects::None(), dex_pc) {
2218    SetRawInputAt(0, value);
2219  }
2220
2221  bool IsControlFlow() const OVERRIDE { return true; }
2222
2223  DECLARE_INSTRUCTION(Return);
2224
2225 private:
2226  DISALLOW_COPY_AND_ASSIGN(HReturn);
2227};
2228
2229// The exit instruction is the only instruction of the exit block.
2230// Instructions aborting the method (HThrow and HReturn) must branch to the
2231// exit block.
2232class HExit : public HTemplateInstruction<0> {
2233 public:
2234  explicit HExit(uint32_t dex_pc = kNoDexPc) : HTemplateInstruction(SideEffects::None(), dex_pc) {}
2235
2236  bool IsControlFlow() const OVERRIDE { return true; }
2237
2238  DECLARE_INSTRUCTION(Exit);
2239
2240 private:
2241  DISALLOW_COPY_AND_ASSIGN(HExit);
2242};
2243
2244// Jumps from one block to another.
2245class HGoto : public HTemplateInstruction<0> {
2246 public:
2247  explicit HGoto(uint32_t dex_pc = kNoDexPc) : HTemplateInstruction(SideEffects::None(), dex_pc) {}
2248
2249  bool IsControlFlow() const OVERRIDE { return true; }
2250
2251  HBasicBlock* GetSuccessor() const {
2252    return GetBlock()->GetSingleSuccessor();
2253  }
2254
2255  DECLARE_INSTRUCTION(Goto);
2256
2257 private:
2258  DISALLOW_COPY_AND_ASSIGN(HGoto);
2259};
2260
2261class HConstant : public HExpression<0> {
2262 public:
2263  explicit HConstant(Primitive::Type type, uint32_t dex_pc = kNoDexPc)
2264      : HExpression(type, SideEffects::None(), dex_pc) {}
2265
2266  bool CanBeMoved() const OVERRIDE { return true; }
2267
2268  virtual bool IsMinusOne() const { return false; }
2269  virtual bool IsZero() const { return false; }
2270  virtual bool IsOne() const { return false; }
2271
2272  virtual uint64_t GetValueAsUint64() const = 0;
2273
2274  DECLARE_INSTRUCTION(Constant);
2275
2276 private:
2277  DISALLOW_COPY_AND_ASSIGN(HConstant);
2278};
2279
2280class HNullConstant : public HConstant {
2281 public:
2282  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
2283    return true;
2284  }
2285
2286  uint64_t GetValueAsUint64() const OVERRIDE { return 0; }
2287
2288  size_t ComputeHashCode() const OVERRIDE { return 0; }
2289
2290  DECLARE_INSTRUCTION(NullConstant);
2291
2292 private:
2293  explicit HNullConstant(uint32_t dex_pc = kNoDexPc) : HConstant(Primitive::kPrimNot, dex_pc) {}
2294
2295  friend class HGraph;
2296  DISALLOW_COPY_AND_ASSIGN(HNullConstant);
2297};
2298
2299// Constants of the type int. Those can be from Dex instructions, or
2300// synthesized (for example with the if-eqz instruction).
2301class HIntConstant : public HConstant {
2302 public:
2303  int32_t GetValue() const { return value_; }
2304
2305  uint64_t GetValueAsUint64() const OVERRIDE {
2306    return static_cast<uint64_t>(static_cast<uint32_t>(value_));
2307  }
2308
2309  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2310    DCHECK(other->IsIntConstant());
2311    return other->AsIntConstant()->value_ == value_;
2312  }
2313
2314  size_t ComputeHashCode() const OVERRIDE { return GetValue(); }
2315
2316  bool IsMinusOne() const OVERRIDE { return GetValue() == -1; }
2317  bool IsZero() const OVERRIDE { return GetValue() == 0; }
2318  bool IsOne() const OVERRIDE { return GetValue() == 1; }
2319
2320  DECLARE_INSTRUCTION(IntConstant);
2321
2322 private:
2323  explicit HIntConstant(int32_t value, uint32_t dex_pc = kNoDexPc)
2324      : HConstant(Primitive::kPrimInt, dex_pc), value_(value) {}
2325  explicit HIntConstant(bool value, uint32_t dex_pc = kNoDexPc)
2326      : HConstant(Primitive::kPrimInt, dex_pc), value_(value ? 1 : 0) {}
2327
2328  const int32_t value_;
2329
2330  friend class HGraph;
2331  ART_FRIEND_TEST(GraphTest, InsertInstructionBefore);
2332  ART_FRIEND_TYPED_TEST(ParallelMoveTest, ConstantLast);
2333  DISALLOW_COPY_AND_ASSIGN(HIntConstant);
2334};
2335
2336class HLongConstant : public HConstant {
2337 public:
2338  int64_t GetValue() const { return value_; }
2339
2340  uint64_t GetValueAsUint64() const OVERRIDE { return value_; }
2341
2342  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2343    DCHECK(other->IsLongConstant());
2344    return other->AsLongConstant()->value_ == value_;
2345  }
2346
2347  size_t ComputeHashCode() const OVERRIDE { return static_cast<size_t>(GetValue()); }
2348
2349  bool IsMinusOne() const OVERRIDE { return GetValue() == -1; }
2350  bool IsZero() const OVERRIDE { return GetValue() == 0; }
2351  bool IsOne() const OVERRIDE { return GetValue() == 1; }
2352
2353  DECLARE_INSTRUCTION(LongConstant);
2354
2355 private:
2356  explicit HLongConstant(int64_t value, uint32_t dex_pc = kNoDexPc)
2357      : HConstant(Primitive::kPrimLong, dex_pc), value_(value) {}
2358
2359  const int64_t value_;
2360
2361  friend class HGraph;
2362  DISALLOW_COPY_AND_ASSIGN(HLongConstant);
2363};
2364
2365// Conditional branch. A block ending with an HIf instruction must have
2366// two successors.
2367class HIf : public HTemplateInstruction<1> {
2368 public:
2369  explicit HIf(HInstruction* input, uint32_t dex_pc = kNoDexPc)
2370      : HTemplateInstruction(SideEffects::None(), dex_pc) {
2371    SetRawInputAt(0, input);
2372  }
2373
2374  bool IsControlFlow() const OVERRIDE { return true; }
2375
2376  HBasicBlock* IfTrueSuccessor() const {
2377    return GetBlock()->GetSuccessors()[0];
2378  }
2379
2380  HBasicBlock* IfFalseSuccessor() const {
2381    return GetBlock()->GetSuccessors()[1];
2382  }
2383
2384  DECLARE_INSTRUCTION(If);
2385
2386 private:
2387  DISALLOW_COPY_AND_ASSIGN(HIf);
2388};
2389
2390
2391// Abstract instruction which marks the beginning and/or end of a try block and
2392// links it to the respective exception handlers. Behaves the same as a Goto in
2393// non-exceptional control flow.
2394// Normal-flow successor is stored at index zero, exception handlers under
2395// higher indices in no particular order.
2396class HTryBoundary : public HTemplateInstruction<0> {
2397 public:
2398  enum BoundaryKind {
2399    kEntry,
2400    kExit,
2401  };
2402
2403  explicit HTryBoundary(BoundaryKind kind, uint32_t dex_pc = kNoDexPc)
2404      : HTemplateInstruction(SideEffects::None(), dex_pc), kind_(kind) {}
2405
2406  bool IsControlFlow() const OVERRIDE { return true; }
2407
2408  // Returns the block's non-exceptional successor (index zero).
2409  HBasicBlock* GetNormalFlowSuccessor() const { return GetBlock()->GetSuccessors()[0]; }
2410
2411  ArrayRef<HBasicBlock* const> GetExceptionHandlers() const {
2412    return ArrayRef<HBasicBlock* const>(GetBlock()->GetSuccessors()).SubArray(1u);
2413  }
2414
2415  // Returns whether `handler` is among its exception handlers (non-zero index
2416  // successors).
2417  bool HasExceptionHandler(const HBasicBlock& handler) const {
2418    DCHECK(handler.IsCatchBlock());
2419    return GetBlock()->HasSuccessor(&handler, 1u /* Skip first successor. */);
2420  }
2421
2422  // If not present already, adds `handler` to its block's list of exception
2423  // handlers.
2424  void AddExceptionHandler(HBasicBlock* handler) {
2425    if (!HasExceptionHandler(*handler)) {
2426      GetBlock()->AddSuccessor(handler);
2427    }
2428  }
2429
2430  bool IsEntry() const { return kind_ == BoundaryKind::kEntry; }
2431
2432  bool HasSameExceptionHandlersAs(const HTryBoundary& other) const;
2433
2434  DECLARE_INSTRUCTION(TryBoundary);
2435
2436 private:
2437  const BoundaryKind kind_;
2438
2439  DISALLOW_COPY_AND_ASSIGN(HTryBoundary);
2440};
2441
2442// Deoptimize to interpreter, upon checking a condition.
2443class HDeoptimize : public HTemplateInstruction<1> {
2444 public:
2445  explicit HDeoptimize(HInstruction* cond, uint32_t dex_pc)
2446      : HTemplateInstruction(SideEffects::None(), dex_pc) {
2447    SetRawInputAt(0, cond);
2448  }
2449
2450  bool NeedsEnvironment() const OVERRIDE { return true; }
2451  bool CanThrow() const OVERRIDE { return true; }
2452
2453  DECLARE_INSTRUCTION(Deoptimize);
2454
2455 private:
2456  DISALLOW_COPY_AND_ASSIGN(HDeoptimize);
2457};
2458
2459// Represents the ArtMethod that was passed as a first argument to
2460// the method. It is used by instructions that depend on it, like
2461// instructions that work with the dex cache.
2462class HCurrentMethod : public HExpression<0> {
2463 public:
2464  explicit HCurrentMethod(Primitive::Type type, uint32_t dex_pc = kNoDexPc)
2465      : HExpression(type, SideEffects::None(), dex_pc) {}
2466
2467  DECLARE_INSTRUCTION(CurrentMethod);
2468
2469 private:
2470  DISALLOW_COPY_AND_ASSIGN(HCurrentMethod);
2471};
2472
2473// PackedSwitch (jump table). A block ending with a PackedSwitch instruction will
2474// have one successor for each entry in the switch table, and the final successor
2475// will be the block containing the next Dex opcode.
2476class HPackedSwitch : public HTemplateInstruction<1> {
2477 public:
2478  HPackedSwitch(int32_t start_value,
2479                uint32_t num_entries,
2480                HInstruction* input,
2481                uint32_t dex_pc = kNoDexPc)
2482    : HTemplateInstruction(SideEffects::None(), dex_pc),
2483      start_value_(start_value),
2484      num_entries_(num_entries) {
2485    SetRawInputAt(0, input);
2486  }
2487
2488  bool IsControlFlow() const OVERRIDE { return true; }
2489
2490  int32_t GetStartValue() const { return start_value_; }
2491
2492  uint32_t GetNumEntries() const { return num_entries_; }
2493
2494  HBasicBlock* GetDefaultBlock() const {
2495    // Last entry is the default block.
2496    return GetBlock()->GetSuccessors()[num_entries_];
2497  }
2498  DECLARE_INSTRUCTION(PackedSwitch);
2499
2500 private:
2501  const int32_t start_value_;
2502  const uint32_t num_entries_;
2503
2504  DISALLOW_COPY_AND_ASSIGN(HPackedSwitch);
2505};
2506
2507class HUnaryOperation : public HExpression<1> {
2508 public:
2509  HUnaryOperation(Primitive::Type result_type, HInstruction* input, uint32_t dex_pc = kNoDexPc)
2510      : HExpression(result_type, SideEffects::None(), dex_pc) {
2511    SetRawInputAt(0, input);
2512  }
2513
2514  HInstruction* GetInput() const { return InputAt(0); }
2515  Primitive::Type GetResultType() const { return GetType(); }
2516
2517  bool CanBeMoved() const OVERRIDE { return true; }
2518  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
2519    return true;
2520  }
2521
2522  // Try to statically evaluate `operation` and return a HConstant
2523  // containing the result of this evaluation.  If `operation` cannot
2524  // be evaluated as a constant, return null.
2525  HConstant* TryStaticEvaluation() const;
2526
2527  // Apply this operation to `x`.
2528  virtual HConstant* Evaluate(HIntConstant* x) const = 0;
2529  virtual HConstant* Evaluate(HLongConstant* x) const = 0;
2530
2531  DECLARE_INSTRUCTION(UnaryOperation);
2532
2533 private:
2534  DISALLOW_COPY_AND_ASSIGN(HUnaryOperation);
2535};
2536
2537class HBinaryOperation : public HExpression<2> {
2538 public:
2539  HBinaryOperation(Primitive::Type result_type,
2540                   HInstruction* left,
2541                   HInstruction* right,
2542                   SideEffects side_effects = SideEffects::None(),
2543                   uint32_t dex_pc = kNoDexPc)
2544      : HExpression(result_type, side_effects, dex_pc) {
2545    SetRawInputAt(0, left);
2546    SetRawInputAt(1, right);
2547  }
2548
2549  HInstruction* GetLeft() const { return InputAt(0); }
2550  HInstruction* GetRight() const { return InputAt(1); }
2551  Primitive::Type GetResultType() const { return GetType(); }
2552
2553  virtual bool IsCommutative() const { return false; }
2554
2555  // Put constant on the right.
2556  // Returns whether order is changed.
2557  bool OrderInputsWithConstantOnTheRight() {
2558    HInstruction* left = InputAt(0);
2559    HInstruction* right = InputAt(1);
2560    if (left->IsConstant() && !right->IsConstant()) {
2561      ReplaceInput(right, 0);
2562      ReplaceInput(left, 1);
2563      return true;
2564    }
2565    return false;
2566  }
2567
2568  // Order inputs by instruction id, but favor constant on the right side.
2569  // This helps GVN for commutative ops.
2570  void OrderInputs() {
2571    DCHECK(IsCommutative());
2572    HInstruction* left = InputAt(0);
2573    HInstruction* right = InputAt(1);
2574    if (left == right || (!left->IsConstant() && right->IsConstant())) {
2575      return;
2576    }
2577    if (OrderInputsWithConstantOnTheRight()) {
2578      return;
2579    }
2580    // Order according to instruction id.
2581    if (left->GetId() > right->GetId()) {
2582      ReplaceInput(right, 0);
2583      ReplaceInput(left, 1);
2584    }
2585  }
2586
2587  bool CanBeMoved() const OVERRIDE { return true; }
2588  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
2589    return true;
2590  }
2591
2592  // Try to statically evaluate `operation` and return a HConstant
2593  // containing the result of this evaluation.  If `operation` cannot
2594  // be evaluated as a constant, return null.
2595  HConstant* TryStaticEvaluation() const;
2596
2597  // Apply this operation to `x` and `y`.
2598  virtual HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const = 0;
2599  virtual HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const = 0;
2600  virtual HConstant* Evaluate(HIntConstant* x ATTRIBUTE_UNUSED,
2601                              HLongConstant* y ATTRIBUTE_UNUSED) const {
2602    VLOG(compiler) << DebugName() << " is not defined for the (int, long) case.";
2603    return nullptr;
2604  }
2605  virtual HConstant* Evaluate(HLongConstant* x ATTRIBUTE_UNUSED,
2606                              HIntConstant* y ATTRIBUTE_UNUSED) const {
2607    VLOG(compiler) << DebugName() << " is not defined for the (long, int) case.";
2608    return nullptr;
2609  }
2610  virtual HConstant* Evaluate(HNullConstant* x ATTRIBUTE_UNUSED,
2611                              HNullConstant* y ATTRIBUTE_UNUSED) const {
2612    VLOG(compiler) << DebugName() << " is not defined for the (null, null) case.";
2613    return nullptr;
2614  }
2615
2616  // Returns an input that can legally be used as the right input and is
2617  // constant, or null.
2618  HConstant* GetConstantRight() const;
2619
2620  // If `GetConstantRight()` returns one of the input, this returns the other
2621  // one. Otherwise it returns null.
2622  HInstruction* GetLeastConstantLeft() const;
2623
2624  DECLARE_INSTRUCTION(BinaryOperation);
2625
2626 private:
2627  DISALLOW_COPY_AND_ASSIGN(HBinaryOperation);
2628};
2629
2630// The comparison bias applies for floating point operations and indicates how NaN
2631// comparisons are treated:
2632enum class ComparisonBias {
2633  kNoBias,  // bias is not applicable (i.e. for long operation)
2634  kGtBias,  // return 1 for NaN comparisons
2635  kLtBias,  // return -1 for NaN comparisons
2636};
2637
2638class HCondition : public HBinaryOperation {
2639 public:
2640  HCondition(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2641      : HBinaryOperation(Primitive::kPrimBoolean, first, second, SideEffects::None(), dex_pc),
2642        needs_materialization_(true),
2643        bias_(ComparisonBias::kNoBias) {}
2644
2645  bool NeedsMaterialization() const { return needs_materialization_; }
2646  void ClearNeedsMaterialization() { needs_materialization_ = false; }
2647
2648  // For code generation purposes, returns whether this instruction is just before
2649  // `instruction`, and disregard moves in between.
2650  bool IsBeforeWhenDisregardMoves(HInstruction* instruction) const;
2651
2652  DECLARE_INSTRUCTION(Condition);
2653
2654  virtual IfCondition GetCondition() const = 0;
2655
2656  virtual IfCondition GetOppositeCondition() const = 0;
2657
2658  bool IsGtBias() const { return bias_ == ComparisonBias::kGtBias; }
2659
2660  void SetBias(ComparisonBias bias) { bias_ = bias; }
2661
2662  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2663    return bias_ == other->AsCondition()->bias_;
2664  }
2665
2666  bool IsFPConditionTrueIfNaN() const {
2667    DCHECK(Primitive::IsFloatingPointType(InputAt(0)->GetType()));
2668    IfCondition if_cond = GetCondition();
2669    return IsGtBias() ? ((if_cond == kCondGT) || (if_cond == kCondGE)) : (if_cond == kCondNE);
2670  }
2671
2672  bool IsFPConditionFalseIfNaN() const {
2673    DCHECK(Primitive::IsFloatingPointType(InputAt(0)->GetType()));
2674    IfCondition if_cond = GetCondition();
2675    return IsGtBias() ? ((if_cond == kCondLT) || (if_cond == kCondLE)) : (if_cond == kCondEQ);
2676  }
2677
2678 private:
2679  // For register allocation purposes, returns whether this instruction needs to be
2680  // materialized (that is, not just be in the processor flags).
2681  bool needs_materialization_;
2682
2683  // Needed if we merge a HCompare into a HCondition.
2684  ComparisonBias bias_;
2685
2686  DISALLOW_COPY_AND_ASSIGN(HCondition);
2687};
2688
2689// Instruction to check if two inputs are equal to each other.
2690class HEqual : public HCondition {
2691 public:
2692  HEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2693      : HCondition(first, second, dex_pc) {}
2694
2695  bool IsCommutative() const OVERRIDE { return true; }
2696
2697  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2698    return GetBlock()->GetGraph()->GetIntConstant(
2699        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2700  }
2701  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2702    return GetBlock()->GetGraph()->GetIntConstant(
2703        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2704  }
2705  HConstant* Evaluate(HNullConstant* x ATTRIBUTE_UNUSED,
2706                      HNullConstant* y ATTRIBUTE_UNUSED) const OVERRIDE {
2707    return GetBlock()->GetGraph()->GetIntConstant(1);
2708  }
2709
2710  DECLARE_INSTRUCTION(Equal);
2711
2712  IfCondition GetCondition() const OVERRIDE {
2713    return kCondEQ;
2714  }
2715
2716  IfCondition GetOppositeCondition() const OVERRIDE {
2717    return kCondNE;
2718  }
2719
2720 private:
2721  template <typename T> bool Compute(T x, T y) const { return x == y; }
2722
2723  DISALLOW_COPY_AND_ASSIGN(HEqual);
2724};
2725
2726class HNotEqual : public HCondition {
2727 public:
2728  HNotEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2729      : HCondition(first, second, dex_pc) {}
2730
2731  bool IsCommutative() const OVERRIDE { return true; }
2732
2733  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2734    return GetBlock()->GetGraph()->GetIntConstant(
2735        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2736  }
2737  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2738    return GetBlock()->GetGraph()->GetIntConstant(
2739        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2740  }
2741  HConstant* Evaluate(HNullConstant* x ATTRIBUTE_UNUSED,
2742                      HNullConstant* y ATTRIBUTE_UNUSED) const OVERRIDE {
2743    return GetBlock()->GetGraph()->GetIntConstant(0);
2744  }
2745
2746  DECLARE_INSTRUCTION(NotEqual);
2747
2748  IfCondition GetCondition() const OVERRIDE {
2749    return kCondNE;
2750  }
2751
2752  IfCondition GetOppositeCondition() const OVERRIDE {
2753    return kCondEQ;
2754  }
2755
2756 private:
2757  template <typename T> bool Compute(T x, T y) const { return x != y; }
2758
2759  DISALLOW_COPY_AND_ASSIGN(HNotEqual);
2760};
2761
2762class HLessThan : public HCondition {
2763 public:
2764  HLessThan(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2765      : HCondition(first, second, dex_pc) {}
2766
2767  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2768    return GetBlock()->GetGraph()->GetIntConstant(
2769        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2770  }
2771  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2772    return GetBlock()->GetGraph()->GetIntConstant(
2773        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2774  }
2775
2776  DECLARE_INSTRUCTION(LessThan);
2777
2778  IfCondition GetCondition() const OVERRIDE {
2779    return kCondLT;
2780  }
2781
2782  IfCondition GetOppositeCondition() const OVERRIDE {
2783    return kCondGE;
2784  }
2785
2786 private:
2787  template <typename T> bool Compute(T x, T y) const { return x < y; }
2788
2789  DISALLOW_COPY_AND_ASSIGN(HLessThan);
2790};
2791
2792class HLessThanOrEqual : public HCondition {
2793 public:
2794  HLessThanOrEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2795      : HCondition(first, second, dex_pc) {}
2796
2797  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2798    return GetBlock()->GetGraph()->GetIntConstant(
2799        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2800  }
2801  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2802    return GetBlock()->GetGraph()->GetIntConstant(
2803        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2804  }
2805
2806  DECLARE_INSTRUCTION(LessThanOrEqual);
2807
2808  IfCondition GetCondition() const OVERRIDE {
2809    return kCondLE;
2810  }
2811
2812  IfCondition GetOppositeCondition() const OVERRIDE {
2813    return kCondGT;
2814  }
2815
2816 private:
2817  template <typename T> bool Compute(T x, T y) const { return x <= y; }
2818
2819  DISALLOW_COPY_AND_ASSIGN(HLessThanOrEqual);
2820};
2821
2822class HGreaterThan : public HCondition {
2823 public:
2824  HGreaterThan(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2825      : HCondition(first, second, dex_pc) {}
2826
2827  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2828    return GetBlock()->GetGraph()->GetIntConstant(
2829        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2830  }
2831  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2832    return GetBlock()->GetGraph()->GetIntConstant(
2833        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2834  }
2835
2836  DECLARE_INSTRUCTION(GreaterThan);
2837
2838  IfCondition GetCondition() const OVERRIDE {
2839    return kCondGT;
2840  }
2841
2842  IfCondition GetOppositeCondition() const OVERRIDE {
2843    return kCondLE;
2844  }
2845
2846 private:
2847  template <typename T> bool Compute(T x, T y) const { return x > y; }
2848
2849  DISALLOW_COPY_AND_ASSIGN(HGreaterThan);
2850};
2851
2852class HGreaterThanOrEqual : public HCondition {
2853 public:
2854  HGreaterThanOrEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2855      : HCondition(first, second, dex_pc) {}
2856
2857  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2858    return GetBlock()->GetGraph()->GetIntConstant(
2859        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2860  }
2861  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2862    return GetBlock()->GetGraph()->GetIntConstant(
2863        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2864  }
2865
2866  DECLARE_INSTRUCTION(GreaterThanOrEqual);
2867
2868  IfCondition GetCondition() const OVERRIDE {
2869    return kCondGE;
2870  }
2871
2872  IfCondition GetOppositeCondition() const OVERRIDE {
2873    return kCondLT;
2874  }
2875
2876 private:
2877  template <typename T> bool Compute(T x, T y) const { return x >= y; }
2878
2879  DISALLOW_COPY_AND_ASSIGN(HGreaterThanOrEqual);
2880};
2881
2882class HBelow : public HCondition {
2883 public:
2884  HBelow(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2885      : HCondition(first, second, dex_pc) {}
2886
2887  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2888    return GetBlock()->GetGraph()->GetIntConstant(
2889        Compute(static_cast<uint32_t>(x->GetValue()),
2890                static_cast<uint32_t>(y->GetValue())), GetDexPc());
2891  }
2892  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2893    return GetBlock()->GetGraph()->GetIntConstant(
2894        Compute(static_cast<uint64_t>(x->GetValue()),
2895                static_cast<uint64_t>(y->GetValue())), GetDexPc());
2896  }
2897
2898  DECLARE_INSTRUCTION(Below);
2899
2900  IfCondition GetCondition() const OVERRIDE {
2901    return kCondB;
2902  }
2903
2904  IfCondition GetOppositeCondition() const OVERRIDE {
2905    return kCondAE;
2906  }
2907
2908 private:
2909  template <typename T> bool Compute(T x, T y) const { return x < y; }
2910
2911  DISALLOW_COPY_AND_ASSIGN(HBelow);
2912};
2913
2914class HBelowOrEqual : public HCondition {
2915 public:
2916  HBelowOrEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2917      : HCondition(first, second, dex_pc) {}
2918
2919  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2920    return GetBlock()->GetGraph()->GetIntConstant(
2921        Compute(static_cast<uint32_t>(x->GetValue()),
2922                static_cast<uint32_t>(y->GetValue())), GetDexPc());
2923  }
2924  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2925    return GetBlock()->GetGraph()->GetIntConstant(
2926        Compute(static_cast<uint64_t>(x->GetValue()),
2927                static_cast<uint64_t>(y->GetValue())), GetDexPc());
2928  }
2929
2930  DECLARE_INSTRUCTION(BelowOrEqual);
2931
2932  IfCondition GetCondition() const OVERRIDE {
2933    return kCondBE;
2934  }
2935
2936  IfCondition GetOppositeCondition() const OVERRIDE {
2937    return kCondA;
2938  }
2939
2940 private:
2941  template <typename T> bool Compute(T x, T y) const { return x <= y; }
2942
2943  DISALLOW_COPY_AND_ASSIGN(HBelowOrEqual);
2944};
2945
2946class HAbove : public HCondition {
2947 public:
2948  HAbove(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2949      : HCondition(first, second, dex_pc) {}
2950
2951  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2952    return GetBlock()->GetGraph()->GetIntConstant(
2953        Compute(static_cast<uint32_t>(x->GetValue()),
2954                static_cast<uint32_t>(y->GetValue())), GetDexPc());
2955  }
2956  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2957    return GetBlock()->GetGraph()->GetIntConstant(
2958        Compute(static_cast<uint64_t>(x->GetValue()),
2959                static_cast<uint64_t>(y->GetValue())), GetDexPc());
2960  }
2961
2962  DECLARE_INSTRUCTION(Above);
2963
2964  IfCondition GetCondition() const OVERRIDE {
2965    return kCondA;
2966  }
2967
2968  IfCondition GetOppositeCondition() const OVERRIDE {
2969    return kCondBE;
2970  }
2971
2972 private:
2973  template <typename T> bool Compute(T x, T y) const { return x > y; }
2974
2975  DISALLOW_COPY_AND_ASSIGN(HAbove);
2976};
2977
2978class HAboveOrEqual : public HCondition {
2979 public:
2980  HAboveOrEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2981      : HCondition(first, second, dex_pc) {}
2982
2983  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2984    return GetBlock()->GetGraph()->GetIntConstant(
2985        Compute(static_cast<uint32_t>(x->GetValue()),
2986                static_cast<uint32_t>(y->GetValue())), GetDexPc());
2987  }
2988  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2989    return GetBlock()->GetGraph()->GetIntConstant(
2990        Compute(static_cast<uint64_t>(x->GetValue()),
2991                static_cast<uint64_t>(y->GetValue())), GetDexPc());
2992  }
2993
2994  DECLARE_INSTRUCTION(AboveOrEqual);
2995
2996  IfCondition GetCondition() const OVERRIDE {
2997    return kCondAE;
2998  }
2999
3000  IfCondition GetOppositeCondition() const OVERRIDE {
3001    return kCondB;
3002  }
3003
3004 private:
3005  template <typename T> bool Compute(T x, T y) const { return x >= y; }
3006
3007  DISALLOW_COPY_AND_ASSIGN(HAboveOrEqual);
3008};
3009
3010// Instruction to check how two inputs compare to each other.
3011// Result is 0 if input0 == input1, 1 if input0 > input1, or -1 if input0 < input1.
3012class HCompare : public HBinaryOperation {
3013 public:
3014  HCompare(Primitive::Type type,
3015           HInstruction* first,
3016           HInstruction* second,
3017           ComparisonBias bias,
3018           uint32_t dex_pc)
3019      : HBinaryOperation(Primitive::kPrimInt,
3020                         first,
3021                         second,
3022                         SideEffectsForArchRuntimeCalls(type),
3023                         dex_pc),
3024        bias_(bias) {
3025    DCHECK_EQ(type, first->GetType());
3026    DCHECK_EQ(type, second->GetType());
3027  }
3028
3029  template <typename T>
3030  int32_t Compute(T x, T y) const { return x == y ? 0 : x > y ? 1 : -1; }
3031
3032  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3033    return GetBlock()->GetGraph()->GetIntConstant(
3034        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3035  }
3036  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3037    return GetBlock()->GetGraph()->GetIntConstant(
3038        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3039  }
3040
3041  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
3042    return bias_ == other->AsCompare()->bias_;
3043  }
3044
3045  ComparisonBias GetBias() const { return bias_; }
3046
3047  bool IsGtBias() { return bias_ == ComparisonBias::kGtBias; }
3048
3049
3050  static SideEffects SideEffectsForArchRuntimeCalls(Primitive::Type type) {
3051    // MIPS64 uses a runtime call for FP comparisons.
3052    return Primitive::IsFloatingPointType(type) ? SideEffects::CanTriggerGC() : SideEffects::None();
3053  }
3054
3055  DECLARE_INSTRUCTION(Compare);
3056
3057 private:
3058  const ComparisonBias bias_;
3059
3060  DISALLOW_COPY_AND_ASSIGN(HCompare);
3061};
3062
3063// A local in the graph. Corresponds to a Dex register.
3064class HLocal : public HTemplateInstruction<0> {
3065 public:
3066  explicit HLocal(uint16_t reg_number)
3067      : HTemplateInstruction(SideEffects::None(), kNoDexPc), reg_number_(reg_number) {}
3068
3069  DECLARE_INSTRUCTION(Local);
3070
3071  uint16_t GetRegNumber() const { return reg_number_; }
3072
3073 private:
3074  // The Dex register number.
3075  const uint16_t reg_number_;
3076
3077  DISALLOW_COPY_AND_ASSIGN(HLocal);
3078};
3079
3080// Load a given local. The local is an input of this instruction.
3081class HLoadLocal : public HExpression<1> {
3082 public:
3083  HLoadLocal(HLocal* local, Primitive::Type type, uint32_t dex_pc = kNoDexPc)
3084      : HExpression(type, SideEffects::None(), dex_pc) {
3085    SetRawInputAt(0, local);
3086  }
3087
3088  HLocal* GetLocal() const { return reinterpret_cast<HLocal*>(InputAt(0)); }
3089
3090  DECLARE_INSTRUCTION(LoadLocal);
3091
3092 private:
3093  DISALLOW_COPY_AND_ASSIGN(HLoadLocal);
3094};
3095
3096// Store a value in a given local. This instruction has two inputs: the value
3097// and the local.
3098class HStoreLocal : public HTemplateInstruction<2> {
3099 public:
3100  HStoreLocal(HLocal* local, HInstruction* value, uint32_t dex_pc = kNoDexPc)
3101      : HTemplateInstruction(SideEffects::None(), dex_pc) {
3102    SetRawInputAt(0, local);
3103    SetRawInputAt(1, value);
3104  }
3105
3106  HLocal* GetLocal() const { return reinterpret_cast<HLocal*>(InputAt(0)); }
3107
3108  DECLARE_INSTRUCTION(StoreLocal);
3109
3110 private:
3111  DISALLOW_COPY_AND_ASSIGN(HStoreLocal);
3112};
3113
3114class HFloatConstant : public HConstant {
3115 public:
3116  float GetValue() const { return value_; }
3117
3118  uint64_t GetValueAsUint64() const OVERRIDE {
3119    return static_cast<uint64_t>(bit_cast<uint32_t, float>(value_));
3120  }
3121
3122  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
3123    DCHECK(other->IsFloatConstant());
3124    return other->AsFloatConstant()->GetValueAsUint64() == GetValueAsUint64();
3125  }
3126
3127  size_t ComputeHashCode() const OVERRIDE { return static_cast<size_t>(GetValue()); }
3128
3129  bool IsMinusOne() const OVERRIDE {
3130    return bit_cast<uint32_t, float>(value_) == bit_cast<uint32_t, float>((-1.0f));
3131  }
3132  bool IsZero() const OVERRIDE {
3133    return value_ == 0.0f;
3134  }
3135  bool IsOne() const OVERRIDE {
3136    return bit_cast<uint32_t, float>(value_) == bit_cast<uint32_t, float>(1.0f);
3137  }
3138  bool IsNaN() const {
3139    return std::isnan(value_);
3140  }
3141
3142  DECLARE_INSTRUCTION(FloatConstant);
3143
3144 private:
3145  explicit HFloatConstant(float value, uint32_t dex_pc = kNoDexPc)
3146      : HConstant(Primitive::kPrimFloat, dex_pc), value_(value) {}
3147  explicit HFloatConstant(int32_t value, uint32_t dex_pc = kNoDexPc)
3148      : HConstant(Primitive::kPrimFloat, dex_pc), value_(bit_cast<float, int32_t>(value)) {}
3149
3150  const float value_;
3151
3152  // Only the SsaBuilder and HGraph can create floating-point constants.
3153  friend class SsaBuilder;
3154  friend class HGraph;
3155  DISALLOW_COPY_AND_ASSIGN(HFloatConstant);
3156};
3157
3158class HDoubleConstant : public HConstant {
3159 public:
3160  double GetValue() const { return value_; }
3161
3162  uint64_t GetValueAsUint64() const OVERRIDE { return bit_cast<uint64_t, double>(value_); }
3163
3164  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
3165    DCHECK(other->IsDoubleConstant());
3166    return other->AsDoubleConstant()->GetValueAsUint64() == GetValueAsUint64();
3167  }
3168
3169  size_t ComputeHashCode() const OVERRIDE { return static_cast<size_t>(GetValue()); }
3170
3171  bool IsMinusOne() const OVERRIDE {
3172    return bit_cast<uint64_t, double>(value_) == bit_cast<uint64_t, double>((-1.0));
3173  }
3174  bool IsZero() const OVERRIDE {
3175    return value_ == 0.0;
3176  }
3177  bool IsOne() const OVERRIDE {
3178    return bit_cast<uint64_t, double>(value_) == bit_cast<uint64_t, double>(1.0);
3179  }
3180  bool IsNaN() const {
3181    return std::isnan(value_);
3182  }
3183
3184  DECLARE_INSTRUCTION(DoubleConstant);
3185
3186 private:
3187  explicit HDoubleConstant(double value, uint32_t dex_pc = kNoDexPc)
3188      : HConstant(Primitive::kPrimDouble, dex_pc), value_(value) {}
3189  explicit HDoubleConstant(int64_t value, uint32_t dex_pc = kNoDexPc)
3190      : HConstant(Primitive::kPrimDouble, dex_pc), value_(bit_cast<double, int64_t>(value)) {}
3191
3192  const double value_;
3193
3194  // Only the SsaBuilder and HGraph can create floating-point constants.
3195  friend class SsaBuilder;
3196  friend class HGraph;
3197  DISALLOW_COPY_AND_ASSIGN(HDoubleConstant);
3198};
3199
3200enum class Intrinsics {
3201#define OPTIMIZING_INTRINSICS(Name, IsStatic, NeedsEnvironmentOrCache) k ## Name,
3202#include "intrinsics_list.h"
3203  kNone,
3204  INTRINSICS_LIST(OPTIMIZING_INTRINSICS)
3205#undef INTRINSICS_LIST
3206#undef OPTIMIZING_INTRINSICS
3207};
3208std::ostream& operator<<(std::ostream& os, const Intrinsics& intrinsic);
3209
3210enum IntrinsicNeedsEnvironmentOrCache {
3211  kNoEnvironmentOrCache,        // Intrinsic does not require an environment or dex cache.
3212  kNeedsEnvironmentOrCache      // Intrinsic requires an environment or requires a dex cache.
3213};
3214
3215class HInvoke : public HInstruction {
3216 public:
3217  size_t InputCount() const OVERRIDE { return inputs_.size(); }
3218
3219  bool NeedsEnvironment() const OVERRIDE;
3220
3221  void SetArgumentAt(size_t index, HInstruction* argument) {
3222    SetRawInputAt(index, argument);
3223  }
3224
3225  // Return the number of arguments.  This number can be lower than
3226  // the number of inputs returned by InputCount(), as some invoke
3227  // instructions (e.g. HInvokeStaticOrDirect) can have non-argument
3228  // inputs at the end of their list of inputs.
3229  uint32_t GetNumberOfArguments() const { return number_of_arguments_; }
3230
3231  Primitive::Type GetType() const OVERRIDE { return return_type_; }
3232
3233
3234  uint32_t GetDexMethodIndex() const { return dex_method_index_; }
3235  const DexFile& GetDexFile() const { return GetEnvironment()->GetDexFile(); }
3236
3237  InvokeType GetOriginalInvokeType() const { return original_invoke_type_; }
3238
3239  Intrinsics GetIntrinsic() const {
3240    return intrinsic_;
3241  }
3242
3243  void SetIntrinsic(Intrinsics intrinsic, IntrinsicNeedsEnvironmentOrCache needs_env_or_cache);
3244
3245  bool IsFromInlinedInvoke() const {
3246    return GetEnvironment()->GetParent() != nullptr;
3247  }
3248
3249  bool CanThrow() const OVERRIDE { return true; }
3250
3251  uint32_t* GetIntrinsicOptimizations() {
3252    return &intrinsic_optimizations_;
3253  }
3254
3255  const uint32_t* GetIntrinsicOptimizations() const {
3256    return &intrinsic_optimizations_;
3257  }
3258
3259  bool IsIntrinsic() const { return intrinsic_ != Intrinsics::kNone; }
3260
3261  DECLARE_INSTRUCTION(Invoke);
3262
3263 protected:
3264  HInvoke(ArenaAllocator* arena,
3265          uint32_t number_of_arguments,
3266          uint32_t number_of_other_inputs,
3267          Primitive::Type return_type,
3268          uint32_t dex_pc,
3269          uint32_t dex_method_index,
3270          InvokeType original_invoke_type)
3271    : HInstruction(
3272          SideEffects::AllExceptGCDependency(), dex_pc),  // Assume write/read on all fields/arrays.
3273      number_of_arguments_(number_of_arguments),
3274      inputs_(number_of_arguments + number_of_other_inputs,
3275              arena->Adapter(kArenaAllocInvokeInputs)),
3276      return_type_(return_type),
3277      dex_method_index_(dex_method_index),
3278      original_invoke_type_(original_invoke_type),
3279      intrinsic_(Intrinsics::kNone),
3280      intrinsic_optimizations_(0) {
3281  }
3282
3283  const HUserRecord<HInstruction*> InputRecordAt(size_t index) const OVERRIDE {
3284    return inputs_[index];
3285  }
3286
3287  void SetRawInputRecordAt(size_t index, const HUserRecord<HInstruction*>& input) OVERRIDE {
3288    inputs_[index] = input;
3289  }
3290
3291  uint32_t number_of_arguments_;
3292  ArenaVector<HUserRecord<HInstruction*>> inputs_;
3293  const Primitive::Type return_type_;
3294  const uint32_t dex_method_index_;
3295  const InvokeType original_invoke_type_;
3296  Intrinsics intrinsic_;
3297
3298  // A magic word holding optimizations for intrinsics. See intrinsics.h.
3299  uint32_t intrinsic_optimizations_;
3300
3301 private:
3302  DISALLOW_COPY_AND_ASSIGN(HInvoke);
3303};
3304
3305class HInvokeUnresolved : public HInvoke {
3306 public:
3307  HInvokeUnresolved(ArenaAllocator* arena,
3308                    uint32_t number_of_arguments,
3309                    Primitive::Type return_type,
3310                    uint32_t dex_pc,
3311                    uint32_t dex_method_index,
3312                    InvokeType invoke_type)
3313      : HInvoke(arena,
3314                number_of_arguments,
3315                0u /* number_of_other_inputs */,
3316                return_type,
3317                dex_pc,
3318                dex_method_index,
3319                invoke_type) {
3320  }
3321
3322  DECLARE_INSTRUCTION(InvokeUnresolved);
3323
3324 private:
3325  DISALLOW_COPY_AND_ASSIGN(HInvokeUnresolved);
3326};
3327
3328class HInvokeStaticOrDirect : public HInvoke {
3329 public:
3330  // Requirements of this method call regarding the class
3331  // initialization (clinit) check of its declaring class.
3332  enum class ClinitCheckRequirement {
3333    kNone,      // Class already initialized.
3334    kExplicit,  // Static call having explicit clinit check as last input.
3335    kImplicit,  // Static call implicitly requiring a clinit check.
3336  };
3337
3338  // Determines how to load the target ArtMethod*.
3339  enum class MethodLoadKind {
3340    // Use a String init ArtMethod* loaded from Thread entrypoints.
3341    kStringInit,
3342
3343    // Use the method's own ArtMethod* loaded by the register allocator.
3344    kRecursive,
3345
3346    // Use ArtMethod* at a known address, embed the direct address in the code.
3347    // Used for app->boot calls with non-relocatable image and for JIT-compiled calls.
3348    kDirectAddress,
3349
3350    // Use ArtMethod* at an address that will be known at link time, embed the direct
3351    // address in the code. If the image is relocatable, emit .patch_oat entry.
3352    // Used for app->boot calls with relocatable image and boot->boot calls, whether
3353    // the image relocatable or not.
3354    kDirectAddressWithFixup,
3355
3356    // Load from resoved methods array in the dex cache using a PC-relative load.
3357    // Used when we need to use the dex cache, for example for invoke-static that
3358    // may cause class initialization (the entry may point to a resolution method),
3359    // and we know that we can access the dex cache arrays using a PC-relative load.
3360    kDexCachePcRelative,
3361
3362    // Use ArtMethod* from the resolved methods of the compiled method's own ArtMethod*.
3363    // Used for JIT when we need to use the dex cache. This is also the last-resort-kind
3364    // used when other kinds are unavailable (say, dex cache arrays are not PC-relative)
3365    // or unimplemented or impractical (i.e. slow) on a particular architecture.
3366    kDexCacheViaMethod,
3367  };
3368
3369  // Determines the location of the code pointer.
3370  enum class CodePtrLocation {
3371    // Recursive call, use local PC-relative call instruction.
3372    kCallSelf,
3373
3374    // Use PC-relative call instruction patched at link time.
3375    // Used for calls within an oat file, boot->boot or app->app.
3376    kCallPCRelative,
3377
3378    // Call to a known target address, embed the direct address in code.
3379    // Used for app->boot call with non-relocatable image and for JIT-compiled calls.
3380    kCallDirect,
3381
3382    // Call to a target address that will be known at link time, embed the direct
3383    // address in code. If the image is relocatable, emit .patch_oat entry.
3384    // Used for app->boot calls with relocatable image and boot->boot calls, whether
3385    // the image relocatable or not.
3386    kCallDirectWithFixup,
3387
3388    // Use code pointer from the ArtMethod*.
3389    // Used when we don't know the target code. This is also the last-resort-kind used when
3390    // other kinds are unimplemented or impractical (i.e. slow) on a particular architecture.
3391    kCallArtMethod,
3392  };
3393
3394  struct DispatchInfo {
3395    MethodLoadKind method_load_kind;
3396    CodePtrLocation code_ptr_location;
3397    // The method load data holds
3398    //   - thread entrypoint offset for kStringInit method if this is a string init invoke.
3399    //     Note that there are multiple string init methods, each having its own offset.
3400    //   - the method address for kDirectAddress
3401    //   - the dex cache arrays offset for kDexCachePcRel.
3402    uint64_t method_load_data;
3403    uint64_t direct_code_ptr;
3404  };
3405
3406  HInvokeStaticOrDirect(ArenaAllocator* arena,
3407                        uint32_t number_of_arguments,
3408                        Primitive::Type return_type,
3409                        uint32_t dex_pc,
3410                        uint32_t method_index,
3411                        MethodReference target_method,
3412                        DispatchInfo dispatch_info,
3413                        InvokeType original_invoke_type,
3414                        InvokeType invoke_type,
3415                        ClinitCheckRequirement clinit_check_requirement)
3416      : HInvoke(arena,
3417                number_of_arguments,
3418                // There is potentially one extra argument for the HCurrentMethod node, and
3419                // potentially one other if the clinit check is explicit, and potentially
3420                // one other if the method is a string factory.
3421                (NeedsCurrentMethodInput(dispatch_info.method_load_kind) ? 1u : 0u) +
3422                    (clinit_check_requirement == ClinitCheckRequirement::kExplicit ? 1u : 0u) +
3423                    (dispatch_info.method_load_kind == MethodLoadKind::kStringInit ? 1u : 0u),
3424                return_type,
3425                dex_pc,
3426                method_index,
3427                original_invoke_type),
3428        invoke_type_(invoke_type),
3429        clinit_check_requirement_(clinit_check_requirement),
3430        target_method_(target_method),
3431        dispatch_info_(dispatch_info) { }
3432
3433  void SetDispatchInfo(const DispatchInfo& dispatch_info) {
3434    bool had_current_method_input = HasCurrentMethodInput();
3435    bool needs_current_method_input = NeedsCurrentMethodInput(dispatch_info.method_load_kind);
3436
3437    // Using the current method is the default and once we find a better
3438    // method load kind, we should not go back to using the current method.
3439    DCHECK(had_current_method_input || !needs_current_method_input);
3440
3441    if (had_current_method_input && !needs_current_method_input) {
3442      DCHECK_EQ(InputAt(GetSpecialInputIndex()), GetBlock()->GetGraph()->GetCurrentMethod());
3443      RemoveInputAt(GetSpecialInputIndex());
3444    }
3445    dispatch_info_ = dispatch_info;
3446  }
3447
3448  void AddSpecialInput(HInstruction* input) {
3449    // We allow only one special input.
3450    DCHECK(!IsStringInit() && !HasCurrentMethodInput());
3451    DCHECK(InputCount() == GetSpecialInputIndex() ||
3452           (InputCount() == GetSpecialInputIndex() + 1 && IsStaticWithExplicitClinitCheck()));
3453    InsertInputAt(GetSpecialInputIndex(), input);
3454  }
3455
3456  bool CanDoImplicitNullCheckOn(HInstruction* obj ATTRIBUTE_UNUSED) const OVERRIDE {
3457    // We access the method via the dex cache so we can't do an implicit null check.
3458    // TODO: for intrinsics we can generate implicit null checks.
3459    return false;
3460  }
3461
3462  bool CanBeNull() const OVERRIDE {
3463    return return_type_ == Primitive::kPrimNot && !IsStringInit();
3464  }
3465
3466  // Get the index of the special input, if any.
3467  //
3468  // If the invoke IsStringInit(), it initially has a HFakeString special argument
3469  // which is removed by the instruction simplifier; if the invoke HasCurrentMethodInput(),
3470  // the "special input" is the current method pointer; otherwise there may be one
3471  // platform-specific special input, such as PC-relative addressing base.
3472  uint32_t GetSpecialInputIndex() const { return GetNumberOfArguments(); }
3473
3474  InvokeType GetInvokeType() const { return invoke_type_; }
3475  MethodLoadKind GetMethodLoadKind() const { return dispatch_info_.method_load_kind; }
3476  CodePtrLocation GetCodePtrLocation() const { return dispatch_info_.code_ptr_location; }
3477  bool IsRecursive() const { return GetMethodLoadKind() == MethodLoadKind::kRecursive; }
3478  bool NeedsDexCacheOfDeclaringClass() const OVERRIDE;
3479  bool IsStringInit() const { return GetMethodLoadKind() == MethodLoadKind::kStringInit; }
3480  bool HasMethodAddress() const { return GetMethodLoadKind() == MethodLoadKind::kDirectAddress; }
3481  bool HasPcRelativeDexCache() const {
3482    return GetMethodLoadKind() == MethodLoadKind::kDexCachePcRelative;
3483  }
3484  bool HasCurrentMethodInput() const {
3485    // This function can be called only after the invoke has been fully initialized by the builder.
3486    if (NeedsCurrentMethodInput(GetMethodLoadKind())) {
3487      DCHECK(InputAt(GetSpecialInputIndex())->IsCurrentMethod());
3488      return true;
3489    } else {
3490      DCHECK(InputCount() == GetSpecialInputIndex() ||
3491             !InputAt(GetSpecialInputIndex())->IsCurrentMethod());
3492      return false;
3493    }
3494  }
3495  bool HasDirectCodePtr() const { return GetCodePtrLocation() == CodePtrLocation::kCallDirect; }
3496  MethodReference GetTargetMethod() const { return target_method_; }
3497
3498  int32_t GetStringInitOffset() const {
3499    DCHECK(IsStringInit());
3500    return dispatch_info_.method_load_data;
3501  }
3502
3503  uint64_t GetMethodAddress() const {
3504    DCHECK(HasMethodAddress());
3505    return dispatch_info_.method_load_data;
3506  }
3507
3508  uint32_t GetDexCacheArrayOffset() const {
3509    DCHECK(HasPcRelativeDexCache());
3510    return dispatch_info_.method_load_data;
3511  }
3512
3513  uint64_t GetDirectCodePtr() const {
3514    DCHECK(HasDirectCodePtr());
3515    return dispatch_info_.direct_code_ptr;
3516  }
3517
3518  ClinitCheckRequirement GetClinitCheckRequirement() const { return clinit_check_requirement_; }
3519
3520  // Is this instruction a call to a static method?
3521  bool IsStatic() const {
3522    return GetInvokeType() == kStatic;
3523  }
3524
3525  // Remove the HClinitCheck or the replacement HLoadClass (set as last input by
3526  // PrepareForRegisterAllocation::VisitClinitCheck() in lieu of the initial HClinitCheck)
3527  // instruction; only relevant for static calls with explicit clinit check.
3528  void RemoveExplicitClinitCheck(ClinitCheckRequirement new_requirement) {
3529    DCHECK(IsStaticWithExplicitClinitCheck());
3530    size_t last_input_index = InputCount() - 1;
3531    HInstruction* last_input = InputAt(last_input_index);
3532    DCHECK(last_input != nullptr);
3533    DCHECK(last_input->IsLoadClass() || last_input->IsClinitCheck()) << last_input->DebugName();
3534    RemoveAsUserOfInput(last_input_index);
3535    inputs_.pop_back();
3536    clinit_check_requirement_ = new_requirement;
3537    DCHECK(!IsStaticWithExplicitClinitCheck());
3538  }
3539
3540  bool IsStringFactoryFor(HFakeString* str) const {
3541    if (!IsStringInit()) return false;
3542    DCHECK(!HasCurrentMethodInput());
3543    if (InputCount() == (number_of_arguments_)) return false;
3544    return InputAt(InputCount() - 1)->AsFakeString() == str;
3545  }
3546
3547  void RemoveFakeStringArgumentAsLastInput() {
3548    DCHECK(IsStringInit());
3549    size_t last_input_index = InputCount() - 1;
3550    HInstruction* last_input = InputAt(last_input_index);
3551    DCHECK(last_input != nullptr);
3552    DCHECK(last_input->IsFakeString()) << last_input->DebugName();
3553    RemoveAsUserOfInput(last_input_index);
3554    inputs_.pop_back();
3555  }
3556
3557  // Is this a call to a static method whose declaring class has an
3558  // explicit initialization check in the graph?
3559  bool IsStaticWithExplicitClinitCheck() const {
3560    return IsStatic() && (clinit_check_requirement_ == ClinitCheckRequirement::kExplicit);
3561  }
3562
3563  // Is this a call to a static method whose declaring class has an
3564  // implicit intialization check requirement?
3565  bool IsStaticWithImplicitClinitCheck() const {
3566    return IsStatic() && (clinit_check_requirement_ == ClinitCheckRequirement::kImplicit);
3567  }
3568
3569  // Does this method load kind need the current method as an input?
3570  static bool NeedsCurrentMethodInput(MethodLoadKind kind) {
3571    return kind == MethodLoadKind::kRecursive || kind == MethodLoadKind::kDexCacheViaMethod;
3572  }
3573
3574  DECLARE_INSTRUCTION(InvokeStaticOrDirect);
3575
3576 protected:
3577  const HUserRecord<HInstruction*> InputRecordAt(size_t i) const OVERRIDE {
3578    const HUserRecord<HInstruction*> input_record = HInvoke::InputRecordAt(i);
3579    if (kIsDebugBuild && IsStaticWithExplicitClinitCheck() && (i == InputCount() - 1)) {
3580      HInstruction* input = input_record.GetInstruction();
3581      // `input` is the last input of a static invoke marked as having
3582      // an explicit clinit check. It must either be:
3583      // - an art::HClinitCheck instruction, set by art::HGraphBuilder; or
3584      // - an art::HLoadClass instruction, set by art::PrepareForRegisterAllocation.
3585      DCHECK(input != nullptr);
3586      DCHECK(input->IsClinitCheck() || input->IsLoadClass()) << input->DebugName();
3587    }
3588    return input_record;
3589  }
3590
3591  void InsertInputAt(size_t index, HInstruction* input);
3592  void RemoveInputAt(size_t index);
3593
3594 private:
3595  const InvokeType invoke_type_;
3596  ClinitCheckRequirement clinit_check_requirement_;
3597  // The target method may refer to different dex file or method index than the original
3598  // invoke. This happens for sharpened calls and for calls where a method was redeclared
3599  // in derived class to increase visibility.
3600  MethodReference target_method_;
3601  DispatchInfo dispatch_info_;
3602
3603  DISALLOW_COPY_AND_ASSIGN(HInvokeStaticOrDirect);
3604};
3605std::ostream& operator<<(std::ostream& os, HInvokeStaticOrDirect::ClinitCheckRequirement rhs);
3606
3607class HInvokeVirtual : public HInvoke {
3608 public:
3609  HInvokeVirtual(ArenaAllocator* arena,
3610                 uint32_t number_of_arguments,
3611                 Primitive::Type return_type,
3612                 uint32_t dex_pc,
3613                 uint32_t dex_method_index,
3614                 uint32_t vtable_index)
3615      : HInvoke(arena, number_of_arguments, 0u, return_type, dex_pc, dex_method_index, kVirtual),
3616        vtable_index_(vtable_index) {}
3617
3618  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
3619    // TODO: Add implicit null checks in intrinsics.
3620    return (obj == InputAt(0)) && !GetLocations()->Intrinsified();
3621  }
3622
3623  uint32_t GetVTableIndex() const { return vtable_index_; }
3624
3625  DECLARE_INSTRUCTION(InvokeVirtual);
3626
3627 private:
3628  const uint32_t vtable_index_;
3629
3630  DISALLOW_COPY_AND_ASSIGN(HInvokeVirtual);
3631};
3632
3633class HInvokeInterface : public HInvoke {
3634 public:
3635  HInvokeInterface(ArenaAllocator* arena,
3636                   uint32_t number_of_arguments,
3637                   Primitive::Type return_type,
3638                   uint32_t dex_pc,
3639                   uint32_t dex_method_index,
3640                   uint32_t imt_index)
3641      : HInvoke(arena, number_of_arguments, 0u, return_type, dex_pc, dex_method_index, kInterface),
3642        imt_index_(imt_index) {}
3643
3644  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
3645    // TODO: Add implicit null checks in intrinsics.
3646    return (obj == InputAt(0)) && !GetLocations()->Intrinsified();
3647  }
3648
3649  uint32_t GetImtIndex() const { return imt_index_; }
3650  uint32_t GetDexMethodIndex() const { return dex_method_index_; }
3651
3652  DECLARE_INSTRUCTION(InvokeInterface);
3653
3654 private:
3655  const uint32_t imt_index_;
3656
3657  DISALLOW_COPY_AND_ASSIGN(HInvokeInterface);
3658};
3659
3660class HNewInstance : public HExpression<1> {
3661 public:
3662  HNewInstance(HCurrentMethod* current_method,
3663               uint32_t dex_pc,
3664               uint16_t type_index,
3665               const DexFile& dex_file,
3666               bool can_throw,
3667               bool finalizable,
3668               QuickEntrypointEnum entrypoint)
3669      : HExpression(Primitive::kPrimNot, SideEffects::CanTriggerGC(), dex_pc),
3670        type_index_(type_index),
3671        dex_file_(dex_file),
3672        can_throw_(can_throw),
3673        finalizable_(finalizable),
3674        entrypoint_(entrypoint) {
3675    SetRawInputAt(0, current_method);
3676  }
3677
3678  uint16_t GetTypeIndex() const { return type_index_; }
3679  const DexFile& GetDexFile() const { return dex_file_; }
3680
3681  // Calls runtime so needs an environment.
3682  bool NeedsEnvironment() const OVERRIDE { return true; }
3683
3684  // It may throw when called on type that's not instantiable/accessible.
3685  // It can throw OOME.
3686  // TODO: distinguish between the two cases so we can for example allow allocation elimination.
3687  bool CanThrow() const OVERRIDE { return can_throw_ || true; }
3688
3689  bool IsFinalizable() const { return finalizable_; }
3690
3691  bool CanBeNull() const OVERRIDE { return false; }
3692
3693  QuickEntrypointEnum GetEntrypoint() const { return entrypoint_; }
3694
3695  DECLARE_INSTRUCTION(NewInstance);
3696
3697 private:
3698  const uint16_t type_index_;
3699  const DexFile& dex_file_;
3700  const bool can_throw_;
3701  const bool finalizable_;
3702  const QuickEntrypointEnum entrypoint_;
3703
3704  DISALLOW_COPY_AND_ASSIGN(HNewInstance);
3705};
3706
3707class HNeg : public HUnaryOperation {
3708 public:
3709  HNeg(Primitive::Type result_type, HInstruction* input, uint32_t dex_pc = kNoDexPc)
3710      : HUnaryOperation(result_type, input, dex_pc) {}
3711
3712  template <typename T> T Compute(T x) const { return -x; }
3713
3714  HConstant* Evaluate(HIntConstant* x) const OVERRIDE {
3715    return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue()), GetDexPc());
3716  }
3717  HConstant* Evaluate(HLongConstant* x) const OVERRIDE {
3718    return GetBlock()->GetGraph()->GetLongConstant(Compute(x->GetValue()), GetDexPc());
3719  }
3720
3721  DECLARE_INSTRUCTION(Neg);
3722
3723 private:
3724  DISALLOW_COPY_AND_ASSIGN(HNeg);
3725};
3726
3727class HNewArray : public HExpression<2> {
3728 public:
3729  HNewArray(HInstruction* length,
3730            HCurrentMethod* current_method,
3731            uint32_t dex_pc,
3732            uint16_t type_index,
3733            const DexFile& dex_file,
3734            QuickEntrypointEnum entrypoint)
3735      : HExpression(Primitive::kPrimNot, SideEffects::CanTriggerGC(), dex_pc),
3736        type_index_(type_index),
3737        dex_file_(dex_file),
3738        entrypoint_(entrypoint) {
3739    SetRawInputAt(0, length);
3740    SetRawInputAt(1, current_method);
3741  }
3742
3743  uint16_t GetTypeIndex() const { return type_index_; }
3744  const DexFile& GetDexFile() const { return dex_file_; }
3745
3746  // Calls runtime so needs an environment.
3747  bool NeedsEnvironment() const OVERRIDE { return true; }
3748
3749  // May throw NegativeArraySizeException, OutOfMemoryError, etc.
3750  bool CanThrow() const OVERRIDE { return true; }
3751
3752  bool CanBeNull() const OVERRIDE { return false; }
3753
3754  QuickEntrypointEnum GetEntrypoint() const { return entrypoint_; }
3755
3756  DECLARE_INSTRUCTION(NewArray);
3757
3758 private:
3759  const uint16_t type_index_;
3760  const DexFile& dex_file_;
3761  const QuickEntrypointEnum entrypoint_;
3762
3763  DISALLOW_COPY_AND_ASSIGN(HNewArray);
3764};
3765
3766class HAdd : public HBinaryOperation {
3767 public:
3768  HAdd(Primitive::Type result_type,
3769       HInstruction* left,
3770       HInstruction* right,
3771       uint32_t dex_pc = kNoDexPc)
3772      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
3773
3774  bool IsCommutative() const OVERRIDE { return true; }
3775
3776  template <typename T> T Compute(T x, T y) const { return x + y; }
3777
3778  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3779    return GetBlock()->GetGraph()->GetIntConstant(
3780        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3781  }
3782  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3783    return GetBlock()->GetGraph()->GetLongConstant(
3784        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3785  }
3786
3787  DECLARE_INSTRUCTION(Add);
3788
3789 private:
3790  DISALLOW_COPY_AND_ASSIGN(HAdd);
3791};
3792
3793class HSub : public HBinaryOperation {
3794 public:
3795  HSub(Primitive::Type result_type,
3796       HInstruction* left,
3797       HInstruction* right,
3798       uint32_t dex_pc = kNoDexPc)
3799      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
3800
3801  template <typename T> T Compute(T x, T y) const { return x - y; }
3802
3803  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3804    return GetBlock()->GetGraph()->GetIntConstant(
3805        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3806  }
3807  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3808    return GetBlock()->GetGraph()->GetLongConstant(
3809        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3810  }
3811
3812  DECLARE_INSTRUCTION(Sub);
3813
3814 private:
3815  DISALLOW_COPY_AND_ASSIGN(HSub);
3816};
3817
3818class HMul : public HBinaryOperation {
3819 public:
3820  HMul(Primitive::Type result_type,
3821       HInstruction* left,
3822       HInstruction* right,
3823       uint32_t dex_pc = kNoDexPc)
3824      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
3825
3826  bool IsCommutative() const OVERRIDE { return true; }
3827
3828  template <typename T> T Compute(T x, T y) const { return x * y; }
3829
3830  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3831    return GetBlock()->GetGraph()->GetIntConstant(
3832        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3833  }
3834  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3835    return GetBlock()->GetGraph()->GetLongConstant(
3836        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3837  }
3838
3839  DECLARE_INSTRUCTION(Mul);
3840
3841 private:
3842  DISALLOW_COPY_AND_ASSIGN(HMul);
3843};
3844
3845class HDiv : public HBinaryOperation {
3846 public:
3847  HDiv(Primitive::Type result_type,
3848       HInstruction* left,
3849       HInstruction* right,
3850       uint32_t dex_pc)
3851      : HBinaryOperation(result_type, left, right, SideEffectsForArchRuntimeCalls(), dex_pc) {}
3852
3853  template <typename T>
3854  T Compute(T x, T y) const {
3855    // Our graph structure ensures we never have 0 for `y` during
3856    // constant folding.
3857    DCHECK_NE(y, 0);
3858    // Special case -1 to avoid getting a SIGFPE on x86(_64).
3859    return (y == -1) ? -x : x / y;
3860  }
3861
3862  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3863    return GetBlock()->GetGraph()->GetIntConstant(
3864        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3865  }
3866  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3867    return GetBlock()->GetGraph()->GetLongConstant(
3868        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3869  }
3870
3871  static SideEffects SideEffectsForArchRuntimeCalls() {
3872    // The generated code can use a runtime call.
3873    return SideEffects::CanTriggerGC();
3874  }
3875
3876  DECLARE_INSTRUCTION(Div);
3877
3878 private:
3879  DISALLOW_COPY_AND_ASSIGN(HDiv);
3880};
3881
3882class HRem : public HBinaryOperation {
3883 public:
3884  HRem(Primitive::Type result_type,
3885       HInstruction* left,
3886       HInstruction* right,
3887       uint32_t dex_pc)
3888      : HBinaryOperation(result_type, left, right, SideEffectsForArchRuntimeCalls(), dex_pc) {}
3889
3890  template <typename T>
3891  T Compute(T x, T y) const {
3892    // Our graph structure ensures we never have 0 for `y` during
3893    // constant folding.
3894    DCHECK_NE(y, 0);
3895    // Special case -1 to avoid getting a SIGFPE on x86(_64).
3896    return (y == -1) ? 0 : x % y;
3897  }
3898
3899  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3900    return GetBlock()->GetGraph()->GetIntConstant(
3901        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3902  }
3903  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3904    return GetBlock()->GetGraph()->GetLongConstant(
3905        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3906  }
3907
3908
3909  static SideEffects SideEffectsForArchRuntimeCalls() {
3910    return SideEffects::CanTriggerGC();
3911  }
3912
3913  DECLARE_INSTRUCTION(Rem);
3914
3915 private:
3916  DISALLOW_COPY_AND_ASSIGN(HRem);
3917};
3918
3919class HDivZeroCheck : public HExpression<1> {
3920 public:
3921  HDivZeroCheck(HInstruction* value, uint32_t dex_pc)
3922      : HExpression(value->GetType(), SideEffects::None(), dex_pc) {
3923    SetRawInputAt(0, value);
3924  }
3925
3926  Primitive::Type GetType() const OVERRIDE { return InputAt(0)->GetType(); }
3927
3928  bool CanBeMoved() const OVERRIDE { return true; }
3929
3930  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
3931    return true;
3932  }
3933
3934  bool NeedsEnvironment() const OVERRIDE { return true; }
3935  bool CanThrow() const OVERRIDE { return true; }
3936
3937  DECLARE_INSTRUCTION(DivZeroCheck);
3938
3939 private:
3940  DISALLOW_COPY_AND_ASSIGN(HDivZeroCheck);
3941};
3942
3943class HShl : public HBinaryOperation {
3944 public:
3945  HShl(Primitive::Type result_type,
3946       HInstruction* left,
3947       HInstruction* right,
3948       uint32_t dex_pc = kNoDexPc)
3949      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
3950
3951  template <typename T, typename U, typename V>
3952  T Compute(T x, U y, V max_shift_value) const {
3953    static_assert(std::is_same<V, typename std::make_unsigned<T>::type>::value,
3954                  "V is not the unsigned integer type corresponding to T");
3955    return x << (y & max_shift_value);
3956  }
3957
3958  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3959    return GetBlock()->GetGraph()->GetIntConstant(
3960        Compute(x->GetValue(), y->GetValue(), kMaxIntShiftValue), GetDexPc());
3961  }
3962  // There is no `Evaluate(HIntConstant* x, HLongConstant* y)`, as this
3963  // case is handled as `x << static_cast<int>(y)`.
3964  HConstant* Evaluate(HLongConstant* x, HIntConstant* y) const OVERRIDE {
3965    return GetBlock()->GetGraph()->GetLongConstant(
3966        Compute(x->GetValue(), y->GetValue(), kMaxLongShiftValue), GetDexPc());
3967  }
3968  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3969    return GetBlock()->GetGraph()->GetLongConstant(
3970        Compute(x->GetValue(), y->GetValue(), kMaxLongShiftValue), GetDexPc());
3971  }
3972
3973  DECLARE_INSTRUCTION(Shl);
3974
3975 private:
3976  DISALLOW_COPY_AND_ASSIGN(HShl);
3977};
3978
3979class HShr : public HBinaryOperation {
3980 public:
3981  HShr(Primitive::Type result_type,
3982       HInstruction* left,
3983       HInstruction* right,
3984       uint32_t dex_pc = kNoDexPc)
3985      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
3986
3987  template <typename T, typename U, typename V>
3988  T Compute(T x, U y, V max_shift_value) const {
3989    static_assert(std::is_same<V, typename std::make_unsigned<T>::type>::value,
3990                  "V is not the unsigned integer type corresponding to T");
3991    return x >> (y & max_shift_value);
3992  }
3993
3994  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3995    return GetBlock()->GetGraph()->GetIntConstant(
3996        Compute(x->GetValue(), y->GetValue(), kMaxIntShiftValue), GetDexPc());
3997  }
3998  // There is no `Evaluate(HIntConstant* x, HLongConstant* y)`, as this
3999  // case is handled as `x >> static_cast<int>(y)`.
4000  HConstant* Evaluate(HLongConstant* x, HIntConstant* y) const OVERRIDE {
4001    return GetBlock()->GetGraph()->GetLongConstant(
4002        Compute(x->GetValue(), y->GetValue(), kMaxLongShiftValue), GetDexPc());
4003  }
4004  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
4005    return GetBlock()->GetGraph()->GetLongConstant(
4006        Compute(x->GetValue(), y->GetValue(), kMaxLongShiftValue), GetDexPc());
4007  }
4008
4009  DECLARE_INSTRUCTION(Shr);
4010
4011 private:
4012  DISALLOW_COPY_AND_ASSIGN(HShr);
4013};
4014
4015class HUShr : public HBinaryOperation {
4016 public:
4017  HUShr(Primitive::Type result_type,
4018        HInstruction* left,
4019        HInstruction* right,
4020        uint32_t dex_pc = kNoDexPc)
4021      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
4022
4023  template <typename T, typename U, typename V>
4024  T Compute(T x, U y, V max_shift_value) const {
4025    static_assert(std::is_same<V, typename std::make_unsigned<T>::type>::value,
4026                  "V is not the unsigned integer type corresponding to T");
4027    V ux = static_cast<V>(x);
4028    return static_cast<T>(ux >> (y & max_shift_value));
4029  }
4030
4031  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
4032    return GetBlock()->GetGraph()->GetIntConstant(
4033        Compute(x->GetValue(), y->GetValue(), kMaxIntShiftValue), GetDexPc());
4034  }
4035  // There is no `Evaluate(HIntConstant* x, HLongConstant* y)`, as this
4036  // case is handled as `x >>> static_cast<int>(y)`.
4037  HConstant* Evaluate(HLongConstant* x, HIntConstant* y) const OVERRIDE {
4038    return GetBlock()->GetGraph()->GetLongConstant(
4039        Compute(x->GetValue(), y->GetValue(), kMaxLongShiftValue), GetDexPc());
4040  }
4041  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
4042    return GetBlock()->GetGraph()->GetLongConstant(
4043        Compute(x->GetValue(), y->GetValue(), kMaxLongShiftValue), GetDexPc());
4044  }
4045
4046  DECLARE_INSTRUCTION(UShr);
4047
4048 private:
4049  DISALLOW_COPY_AND_ASSIGN(HUShr);
4050};
4051
4052class HAnd : public HBinaryOperation {
4053 public:
4054  HAnd(Primitive::Type result_type,
4055       HInstruction* left,
4056       HInstruction* right,
4057       uint32_t dex_pc = kNoDexPc)
4058      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
4059
4060  bool IsCommutative() const OVERRIDE { return true; }
4061
4062  template <typename T, typename U>
4063  auto Compute(T x, U y) const -> decltype(x & y) { return x & y; }
4064
4065  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
4066    return GetBlock()->GetGraph()->GetIntConstant(
4067        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4068  }
4069  HConstant* Evaluate(HIntConstant* x, HLongConstant* y) const OVERRIDE {
4070    return GetBlock()->GetGraph()->GetLongConstant(
4071        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4072  }
4073  HConstant* Evaluate(HLongConstant* x, HIntConstant* y) const OVERRIDE {
4074    return GetBlock()->GetGraph()->GetLongConstant(
4075        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4076  }
4077  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
4078    return GetBlock()->GetGraph()->GetLongConstant(
4079        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4080  }
4081
4082  DECLARE_INSTRUCTION(And);
4083
4084 private:
4085  DISALLOW_COPY_AND_ASSIGN(HAnd);
4086};
4087
4088class HOr : public HBinaryOperation {
4089 public:
4090  HOr(Primitive::Type result_type,
4091      HInstruction* left,
4092      HInstruction* right,
4093      uint32_t dex_pc = kNoDexPc)
4094      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
4095
4096  bool IsCommutative() const OVERRIDE { return true; }
4097
4098  template <typename T, typename U>
4099  auto Compute(T x, U y) const -> decltype(x | y) { return x | y; }
4100
4101  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
4102    return GetBlock()->GetGraph()->GetIntConstant(
4103        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4104  }
4105  HConstant* Evaluate(HIntConstant* x, HLongConstant* y) const OVERRIDE {
4106    return GetBlock()->GetGraph()->GetLongConstant(
4107        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4108  }
4109  HConstant* Evaluate(HLongConstant* x, HIntConstant* y) const OVERRIDE {
4110    return GetBlock()->GetGraph()->GetLongConstant(
4111        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4112  }
4113  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
4114    return GetBlock()->GetGraph()->GetLongConstant(
4115        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4116  }
4117
4118  DECLARE_INSTRUCTION(Or);
4119
4120 private:
4121  DISALLOW_COPY_AND_ASSIGN(HOr);
4122};
4123
4124class HXor : public HBinaryOperation {
4125 public:
4126  HXor(Primitive::Type result_type,
4127       HInstruction* left,
4128       HInstruction* right,
4129       uint32_t dex_pc = kNoDexPc)
4130      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
4131
4132  bool IsCommutative() const OVERRIDE { return true; }
4133
4134  template <typename T, typename U>
4135  auto Compute(T x, U y) const -> decltype(x ^ y) { return x ^ y; }
4136
4137  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
4138    return GetBlock()->GetGraph()->GetIntConstant(
4139        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4140  }
4141  HConstant* Evaluate(HIntConstant* x, HLongConstant* y) const OVERRIDE {
4142    return GetBlock()->GetGraph()->GetLongConstant(
4143        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4144  }
4145  HConstant* Evaluate(HLongConstant* x, HIntConstant* y) const OVERRIDE {
4146    return GetBlock()->GetGraph()->GetLongConstant(
4147        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4148  }
4149  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
4150    return GetBlock()->GetGraph()->GetLongConstant(
4151        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4152  }
4153
4154  DECLARE_INSTRUCTION(Xor);
4155
4156 private:
4157  DISALLOW_COPY_AND_ASSIGN(HXor);
4158};
4159
4160// The value of a parameter in this method. Its location depends on
4161// the calling convention.
4162class HParameterValue : public HExpression<0> {
4163 public:
4164  HParameterValue(const DexFile& dex_file,
4165                  uint16_t type_index,
4166                  uint8_t index,
4167                  Primitive::Type parameter_type,
4168                  bool is_this = false)
4169      : HExpression(parameter_type, SideEffects::None(), kNoDexPc),
4170        dex_file_(dex_file),
4171        type_index_(type_index),
4172        index_(index),
4173        is_this_(is_this),
4174        can_be_null_(!is_this) {}
4175
4176  const DexFile& GetDexFile() const { return dex_file_; }
4177  uint16_t GetTypeIndex() const { return type_index_; }
4178  uint8_t GetIndex() const { return index_; }
4179  bool IsThis() const { return is_this_; }
4180
4181  bool CanBeNull() const OVERRIDE { return can_be_null_; }
4182  void SetCanBeNull(bool can_be_null) { can_be_null_ = can_be_null; }
4183
4184  DECLARE_INSTRUCTION(ParameterValue);
4185
4186 private:
4187  const DexFile& dex_file_;
4188  const uint16_t type_index_;
4189  // The index of this parameter in the parameters list. Must be less
4190  // than HGraph::number_of_in_vregs_.
4191  const uint8_t index_;
4192
4193  // Whether or not the parameter value corresponds to 'this' argument.
4194  const bool is_this_;
4195
4196  bool can_be_null_;
4197
4198  DISALLOW_COPY_AND_ASSIGN(HParameterValue);
4199};
4200
4201class HNot : public HUnaryOperation {
4202 public:
4203  HNot(Primitive::Type result_type, HInstruction* input, uint32_t dex_pc = kNoDexPc)
4204      : HUnaryOperation(result_type, input, dex_pc) {}
4205
4206  bool CanBeMoved() const OVERRIDE { return true; }
4207  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
4208    return true;
4209  }
4210
4211  template <typename T> T Compute(T x) const { return ~x; }
4212
4213  HConstant* Evaluate(HIntConstant* x) const OVERRIDE {
4214    return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue()), GetDexPc());
4215  }
4216  HConstant* Evaluate(HLongConstant* x) const OVERRIDE {
4217    return GetBlock()->GetGraph()->GetLongConstant(Compute(x->GetValue()), GetDexPc());
4218  }
4219
4220  DECLARE_INSTRUCTION(Not);
4221
4222 private:
4223  DISALLOW_COPY_AND_ASSIGN(HNot);
4224};
4225
4226class HBooleanNot : public HUnaryOperation {
4227 public:
4228  explicit HBooleanNot(HInstruction* input, uint32_t dex_pc = kNoDexPc)
4229      : HUnaryOperation(Primitive::Type::kPrimBoolean, input, dex_pc) {}
4230
4231  bool CanBeMoved() const OVERRIDE { return true; }
4232  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
4233    return true;
4234  }
4235
4236  template <typename T> bool Compute(T x) const {
4237    DCHECK(IsUint<1>(x));
4238    return !x;
4239  }
4240
4241  HConstant* Evaluate(HIntConstant* x) const OVERRIDE {
4242    return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue()), GetDexPc());
4243  }
4244  HConstant* Evaluate(HLongConstant* x ATTRIBUTE_UNUSED) const OVERRIDE {
4245    LOG(FATAL) << DebugName() << " is not defined for long values";
4246    UNREACHABLE();
4247  }
4248
4249  DECLARE_INSTRUCTION(BooleanNot);
4250
4251 private:
4252  DISALLOW_COPY_AND_ASSIGN(HBooleanNot);
4253};
4254
4255class HTypeConversion : public HExpression<1> {
4256 public:
4257  // Instantiate a type conversion of `input` to `result_type`.
4258  HTypeConversion(Primitive::Type result_type, HInstruction* input, uint32_t dex_pc)
4259      : HExpression(result_type,
4260                    SideEffectsForArchRuntimeCalls(input->GetType(), result_type),
4261                    dex_pc) {
4262    SetRawInputAt(0, input);
4263    DCHECK_NE(input->GetType(), result_type);
4264  }
4265
4266  HInstruction* GetInput() const { return InputAt(0); }
4267  Primitive::Type GetInputType() const { return GetInput()->GetType(); }
4268  Primitive::Type GetResultType() const { return GetType(); }
4269
4270  // Required by the x86, ARM, MIPS and MIPS64 code generators when producing calls
4271  // to the runtime.
4272
4273  bool CanBeMoved() const OVERRIDE { return true; }
4274  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE { return true; }
4275
4276  // Try to statically evaluate the conversion and return a HConstant
4277  // containing the result.  If the input cannot be converted, return nullptr.
4278  HConstant* TryStaticEvaluation() const;
4279
4280  static SideEffects SideEffectsForArchRuntimeCalls(Primitive::Type input_type,
4281                                                    Primitive::Type result_type) {
4282    // Some architectures may not require the 'GC' side effects, but at this point
4283    // in the compilation process we do not know what architecture we will
4284    // generate code for, so we must be conservative.
4285    if ((Primitive::IsFloatingPointType(input_type) && Primitive::IsIntegralType(result_type))
4286        || (input_type == Primitive::kPrimLong && Primitive::IsFloatingPointType(result_type))) {
4287      return SideEffects::CanTriggerGC();
4288    }
4289    return SideEffects::None();
4290  }
4291
4292  DECLARE_INSTRUCTION(TypeConversion);
4293
4294 private:
4295  DISALLOW_COPY_AND_ASSIGN(HTypeConversion);
4296};
4297
4298static constexpr uint32_t kNoRegNumber = -1;
4299
4300class HPhi : public HInstruction {
4301 public:
4302  HPhi(ArenaAllocator* arena,
4303       uint32_t reg_number,
4304       size_t number_of_inputs,
4305       Primitive::Type type,
4306       uint32_t dex_pc = kNoDexPc)
4307      : HInstruction(SideEffects::None(), dex_pc),
4308        inputs_(number_of_inputs, arena->Adapter(kArenaAllocPhiInputs)),
4309        reg_number_(reg_number),
4310        type_(type),
4311        is_live_(false),
4312        can_be_null_(true) {
4313  }
4314
4315  // Returns a type equivalent to the given `type`, but that a `HPhi` can hold.
4316  static Primitive::Type ToPhiType(Primitive::Type type) {
4317    switch (type) {
4318      case Primitive::kPrimBoolean:
4319      case Primitive::kPrimByte:
4320      case Primitive::kPrimShort:
4321      case Primitive::kPrimChar:
4322        return Primitive::kPrimInt;
4323      default:
4324        return type;
4325    }
4326  }
4327
4328  bool IsCatchPhi() const { return GetBlock()->IsCatchBlock(); }
4329
4330  size_t InputCount() const OVERRIDE { return inputs_.size(); }
4331
4332  void AddInput(HInstruction* input);
4333  void RemoveInputAt(size_t index);
4334
4335  Primitive::Type GetType() const OVERRIDE { return type_; }
4336  void SetType(Primitive::Type type) { type_ = type; }
4337
4338  bool CanBeNull() const OVERRIDE { return can_be_null_; }
4339  void SetCanBeNull(bool can_be_null) { can_be_null_ = can_be_null; }
4340
4341  uint32_t GetRegNumber() const { return reg_number_; }
4342
4343  void SetDead() { is_live_ = false; }
4344  void SetLive() { is_live_ = true; }
4345  bool IsDead() const { return !is_live_; }
4346  bool IsLive() const { return is_live_; }
4347
4348  bool IsVRegEquivalentOf(HInstruction* other) const {
4349    return other != nullptr
4350        && other->IsPhi()
4351        && other->AsPhi()->GetBlock() == GetBlock()
4352        && other->AsPhi()->GetRegNumber() == GetRegNumber();
4353  }
4354
4355  // Returns the next equivalent phi (starting from the current one) or null if there is none.
4356  // An equivalent phi is a phi having the same dex register and type.
4357  // It assumes that phis with the same dex register are adjacent.
4358  HPhi* GetNextEquivalentPhiWithSameType() {
4359    HInstruction* next = GetNext();
4360    while (next != nullptr && next->AsPhi()->GetRegNumber() == reg_number_) {
4361      if (next->GetType() == GetType()) {
4362        return next->AsPhi();
4363      }
4364      next = next->GetNext();
4365    }
4366    return nullptr;
4367  }
4368
4369  DECLARE_INSTRUCTION(Phi);
4370
4371 protected:
4372  const HUserRecord<HInstruction*> InputRecordAt(size_t index) const OVERRIDE {
4373    return inputs_[index];
4374  }
4375
4376  void SetRawInputRecordAt(size_t index, const HUserRecord<HInstruction*>& input) OVERRIDE {
4377    inputs_[index] = input;
4378  }
4379
4380 private:
4381  ArenaVector<HUserRecord<HInstruction*> > inputs_;
4382  const uint32_t reg_number_;
4383  Primitive::Type type_;
4384  bool is_live_;
4385  bool can_be_null_;
4386
4387  DISALLOW_COPY_AND_ASSIGN(HPhi);
4388};
4389
4390class HNullCheck : public HExpression<1> {
4391 public:
4392  HNullCheck(HInstruction* value, uint32_t dex_pc)
4393      : HExpression(value->GetType(), SideEffects::None(), dex_pc) {
4394    SetRawInputAt(0, value);
4395  }
4396
4397  bool CanBeMoved() const OVERRIDE { return true; }
4398  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
4399    return true;
4400  }
4401
4402  bool NeedsEnvironment() const OVERRIDE { return true; }
4403
4404  bool CanThrow() const OVERRIDE { return true; }
4405
4406  bool CanBeNull() const OVERRIDE { return false; }
4407
4408
4409  DECLARE_INSTRUCTION(NullCheck);
4410
4411 private:
4412  DISALLOW_COPY_AND_ASSIGN(HNullCheck);
4413};
4414
4415class FieldInfo : public ValueObject {
4416 public:
4417  FieldInfo(MemberOffset field_offset,
4418            Primitive::Type field_type,
4419            bool is_volatile,
4420            uint32_t index,
4421            uint16_t declaring_class_def_index,
4422            const DexFile& dex_file,
4423            Handle<mirror::DexCache> dex_cache)
4424      : field_offset_(field_offset),
4425        field_type_(field_type),
4426        is_volatile_(is_volatile),
4427        index_(index),
4428        declaring_class_def_index_(declaring_class_def_index),
4429        dex_file_(dex_file),
4430        dex_cache_(dex_cache) {}
4431
4432  MemberOffset GetFieldOffset() const { return field_offset_; }
4433  Primitive::Type GetFieldType() const { return field_type_; }
4434  uint32_t GetFieldIndex() const { return index_; }
4435  uint16_t GetDeclaringClassDefIndex() const { return declaring_class_def_index_;}
4436  const DexFile& GetDexFile() const { return dex_file_; }
4437  bool IsVolatile() const { return is_volatile_; }
4438  Handle<mirror::DexCache> GetDexCache() const { return dex_cache_; }
4439
4440 private:
4441  const MemberOffset field_offset_;
4442  const Primitive::Type field_type_;
4443  const bool is_volatile_;
4444  const uint32_t index_;
4445  const uint16_t declaring_class_def_index_;
4446  const DexFile& dex_file_;
4447  const Handle<mirror::DexCache> dex_cache_;
4448};
4449
4450class HInstanceFieldGet : public HExpression<1> {
4451 public:
4452  HInstanceFieldGet(HInstruction* value,
4453                    Primitive::Type field_type,
4454                    MemberOffset field_offset,
4455                    bool is_volatile,
4456                    uint32_t field_idx,
4457                    uint16_t declaring_class_def_index,
4458                    const DexFile& dex_file,
4459                    Handle<mirror::DexCache> dex_cache,
4460                    uint32_t dex_pc)
4461      : HExpression(field_type,
4462                    SideEffects::FieldReadOfType(field_type, is_volatile),
4463                    dex_pc),
4464        field_info_(field_offset,
4465                    field_type,
4466                    is_volatile,
4467                    field_idx,
4468                    declaring_class_def_index,
4469                    dex_file,
4470                    dex_cache) {
4471    SetRawInputAt(0, value);
4472  }
4473
4474  bool CanBeMoved() const OVERRIDE { return !IsVolatile(); }
4475
4476  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
4477    HInstanceFieldGet* other_get = other->AsInstanceFieldGet();
4478    return GetFieldOffset().SizeValue() == other_get->GetFieldOffset().SizeValue();
4479  }
4480
4481  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
4482    return (obj == InputAt(0)) && GetFieldOffset().Uint32Value() < kPageSize;
4483  }
4484
4485  size_t ComputeHashCode() const OVERRIDE {
4486    return (HInstruction::ComputeHashCode() << 7) | GetFieldOffset().SizeValue();
4487  }
4488
4489  const FieldInfo& GetFieldInfo() const { return field_info_; }
4490  MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
4491  Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); }
4492  bool IsVolatile() const { return field_info_.IsVolatile(); }
4493
4494  DECLARE_INSTRUCTION(InstanceFieldGet);
4495
4496 private:
4497  const FieldInfo field_info_;
4498
4499  DISALLOW_COPY_AND_ASSIGN(HInstanceFieldGet);
4500};
4501
4502class HInstanceFieldSet : public HTemplateInstruction<2> {
4503 public:
4504  HInstanceFieldSet(HInstruction* object,
4505                    HInstruction* value,
4506                    Primitive::Type field_type,
4507                    MemberOffset field_offset,
4508                    bool is_volatile,
4509                    uint32_t field_idx,
4510                    uint16_t declaring_class_def_index,
4511                    const DexFile& dex_file,
4512                    Handle<mirror::DexCache> dex_cache,
4513                    uint32_t dex_pc)
4514      : HTemplateInstruction(SideEffects::FieldWriteOfType(field_type, is_volatile),
4515                             dex_pc),
4516        field_info_(field_offset,
4517                    field_type,
4518                    is_volatile,
4519                    field_idx,
4520                    declaring_class_def_index,
4521                    dex_file,
4522                    dex_cache),
4523        value_can_be_null_(true) {
4524    SetRawInputAt(0, object);
4525    SetRawInputAt(1, value);
4526  }
4527
4528  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
4529    return (obj == InputAt(0)) && GetFieldOffset().Uint32Value() < kPageSize;
4530  }
4531
4532  const FieldInfo& GetFieldInfo() const { return field_info_; }
4533  MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
4534  Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); }
4535  bool IsVolatile() const { return field_info_.IsVolatile(); }
4536  HInstruction* GetValue() const { return InputAt(1); }
4537  bool GetValueCanBeNull() const { return value_can_be_null_; }
4538  void ClearValueCanBeNull() { value_can_be_null_ = false; }
4539
4540  DECLARE_INSTRUCTION(InstanceFieldSet);
4541
4542 private:
4543  const FieldInfo field_info_;
4544  bool value_can_be_null_;
4545
4546  DISALLOW_COPY_AND_ASSIGN(HInstanceFieldSet);
4547};
4548
4549class HArrayGet : public HExpression<2> {
4550 public:
4551  HArrayGet(HInstruction* array,
4552            HInstruction* index,
4553            Primitive::Type type,
4554            uint32_t dex_pc,
4555            SideEffects additional_side_effects = SideEffects::None())
4556      : HExpression(type,
4557                    SideEffects::ArrayReadOfType(type).Union(additional_side_effects),
4558                    dex_pc) {
4559    SetRawInputAt(0, array);
4560    SetRawInputAt(1, index);
4561  }
4562
4563  bool CanBeMoved() const OVERRIDE { return true; }
4564  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
4565    return true;
4566  }
4567  bool CanDoImplicitNullCheckOn(HInstruction* obj ATTRIBUTE_UNUSED) const OVERRIDE {
4568    // TODO: We can be smarter here.
4569    // Currently, the array access is always preceded by an ArrayLength or a NullCheck
4570    // which generates the implicit null check. There are cases when these can be removed
4571    // to produce better code. If we ever add optimizations to do so we should allow an
4572    // implicit check here (as long as the address falls in the first page).
4573    return false;
4574  }
4575
4576  void SetType(Primitive::Type type) { type_ = type; }
4577
4578  HInstruction* GetArray() const { return InputAt(0); }
4579  HInstruction* GetIndex() const { return InputAt(1); }
4580
4581  DECLARE_INSTRUCTION(ArrayGet);
4582
4583 private:
4584  DISALLOW_COPY_AND_ASSIGN(HArrayGet);
4585};
4586
4587class HArraySet : public HTemplateInstruction<3> {
4588 public:
4589  HArraySet(HInstruction* array,
4590            HInstruction* index,
4591            HInstruction* value,
4592            Primitive::Type expected_component_type,
4593            uint32_t dex_pc,
4594            SideEffects additional_side_effects = SideEffects::None())
4595      : HTemplateInstruction(
4596            SideEffects::ArrayWriteOfType(expected_component_type).Union(
4597                SideEffectsForArchRuntimeCalls(value->GetType())).Union(
4598                    additional_side_effects),
4599            dex_pc),
4600        expected_component_type_(expected_component_type),
4601        needs_type_check_(value->GetType() == Primitive::kPrimNot),
4602        value_can_be_null_(true),
4603        static_type_of_array_is_object_array_(false) {
4604    SetRawInputAt(0, array);
4605    SetRawInputAt(1, index);
4606    SetRawInputAt(2, value);
4607  }
4608
4609  bool NeedsEnvironment() const OVERRIDE {
4610    // We currently always call a runtime method to catch array store
4611    // exceptions.
4612    return needs_type_check_;
4613  }
4614
4615  // Can throw ArrayStoreException.
4616  bool CanThrow() const OVERRIDE { return needs_type_check_; }
4617
4618  bool CanDoImplicitNullCheckOn(HInstruction* obj ATTRIBUTE_UNUSED) const OVERRIDE {
4619    // TODO: Same as for ArrayGet.
4620    return false;
4621  }
4622
4623  void ClearNeedsTypeCheck() {
4624    needs_type_check_ = false;
4625  }
4626
4627  void ClearValueCanBeNull() {
4628    value_can_be_null_ = false;
4629  }
4630
4631  void SetStaticTypeOfArrayIsObjectArray() {
4632    static_type_of_array_is_object_array_ = true;
4633  }
4634
4635  bool GetValueCanBeNull() const { return value_can_be_null_; }
4636  bool NeedsTypeCheck() const { return needs_type_check_; }
4637  bool StaticTypeOfArrayIsObjectArray() const { return static_type_of_array_is_object_array_; }
4638
4639  HInstruction* GetArray() const { return InputAt(0); }
4640  HInstruction* GetIndex() const { return InputAt(1); }
4641  HInstruction* GetValue() const { return InputAt(2); }
4642
4643  Primitive::Type GetComponentType() const {
4644    // The Dex format does not type floating point index operations. Since the
4645    // `expected_component_type_` is set during building and can therefore not
4646    // be correct, we also check what is the value type. If it is a floating
4647    // point type, we must use that type.
4648    Primitive::Type value_type = GetValue()->GetType();
4649    return ((value_type == Primitive::kPrimFloat) || (value_type == Primitive::kPrimDouble))
4650        ? value_type
4651        : expected_component_type_;
4652  }
4653
4654  Primitive::Type GetRawExpectedComponentType() const {
4655    return expected_component_type_;
4656  }
4657
4658  static SideEffects SideEffectsForArchRuntimeCalls(Primitive::Type value_type) {
4659    return (value_type == Primitive::kPrimNot) ? SideEffects::CanTriggerGC() : SideEffects::None();
4660  }
4661
4662  DECLARE_INSTRUCTION(ArraySet);
4663
4664 private:
4665  const Primitive::Type expected_component_type_;
4666  bool needs_type_check_;
4667  bool value_can_be_null_;
4668  // Cached information for the reference_type_info_ so that codegen
4669  // does not need to inspect the static type.
4670  bool static_type_of_array_is_object_array_;
4671
4672  DISALLOW_COPY_AND_ASSIGN(HArraySet);
4673};
4674
4675class HArrayLength : public HExpression<1> {
4676 public:
4677  HArrayLength(HInstruction* array, uint32_t dex_pc)
4678      : HExpression(Primitive::kPrimInt, SideEffects::None(), dex_pc) {
4679    // Note that arrays do not change length, so the instruction does not
4680    // depend on any write.
4681    SetRawInputAt(0, array);
4682  }
4683
4684  bool CanBeMoved() const OVERRIDE { return true; }
4685  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
4686    return true;
4687  }
4688  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
4689    return obj == InputAt(0);
4690  }
4691
4692  DECLARE_INSTRUCTION(ArrayLength);
4693
4694 private:
4695  DISALLOW_COPY_AND_ASSIGN(HArrayLength);
4696};
4697
4698class HBoundsCheck : public HExpression<2> {
4699 public:
4700  HBoundsCheck(HInstruction* index, HInstruction* length, uint32_t dex_pc)
4701      : HExpression(index->GetType(), SideEffects::None(), dex_pc) {
4702    DCHECK(index->GetType() == Primitive::kPrimInt);
4703    SetRawInputAt(0, index);
4704    SetRawInputAt(1, length);
4705  }
4706
4707  bool CanBeMoved() const OVERRIDE { return true; }
4708  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
4709    return true;
4710  }
4711
4712  bool NeedsEnvironment() const OVERRIDE { return true; }
4713
4714  bool CanThrow() const OVERRIDE { return true; }
4715
4716  HInstruction* GetIndex() const { return InputAt(0); }
4717
4718  DECLARE_INSTRUCTION(BoundsCheck);
4719
4720 private:
4721  DISALLOW_COPY_AND_ASSIGN(HBoundsCheck);
4722};
4723
4724/**
4725 * Some DEX instructions are folded into multiple HInstructions that need
4726 * to stay live until the last HInstruction. This class
4727 * is used as a marker for the baseline compiler to ensure its preceding
4728 * HInstruction stays live. `index` represents the stack location index of the
4729 * instruction (the actual offset is computed as index * vreg_size).
4730 */
4731class HTemporary : public HTemplateInstruction<0> {
4732 public:
4733  explicit HTemporary(size_t index, uint32_t dex_pc = kNoDexPc)
4734      : HTemplateInstruction(SideEffects::None(), dex_pc), index_(index) {}
4735
4736  size_t GetIndex() const { return index_; }
4737
4738  Primitive::Type GetType() const OVERRIDE {
4739    // The previous instruction is the one that will be stored in the temporary location.
4740    DCHECK(GetPrevious() != nullptr);
4741    return GetPrevious()->GetType();
4742  }
4743
4744  DECLARE_INSTRUCTION(Temporary);
4745
4746 private:
4747  const size_t index_;
4748  DISALLOW_COPY_AND_ASSIGN(HTemporary);
4749};
4750
4751class HSuspendCheck : public HTemplateInstruction<0> {
4752 public:
4753  explicit HSuspendCheck(uint32_t dex_pc)
4754      : HTemplateInstruction(SideEffects::CanTriggerGC(), dex_pc), slow_path_(nullptr) {}
4755
4756  bool NeedsEnvironment() const OVERRIDE {
4757    return true;
4758  }
4759
4760  void SetSlowPath(SlowPathCode* slow_path) { slow_path_ = slow_path; }
4761  SlowPathCode* GetSlowPath() const { return slow_path_; }
4762
4763  DECLARE_INSTRUCTION(SuspendCheck);
4764
4765 private:
4766  // Only used for code generation, in order to share the same slow path between back edges
4767  // of a same loop.
4768  SlowPathCode* slow_path_;
4769
4770  DISALLOW_COPY_AND_ASSIGN(HSuspendCheck);
4771};
4772
4773/**
4774 * Instruction to load a Class object.
4775 */
4776class HLoadClass : public HExpression<1> {
4777 public:
4778  HLoadClass(HCurrentMethod* current_method,
4779             uint16_t type_index,
4780             const DexFile& dex_file,
4781             bool is_referrers_class,
4782             uint32_t dex_pc,
4783             bool needs_access_check)
4784      : HExpression(Primitive::kPrimNot, SideEffectsForArchRuntimeCalls(), dex_pc),
4785        type_index_(type_index),
4786        dex_file_(dex_file),
4787        is_referrers_class_(is_referrers_class),
4788        generate_clinit_check_(false),
4789        needs_access_check_(needs_access_check),
4790        loaded_class_rti_(ReferenceTypeInfo::CreateInvalid()) {
4791    // Referrers class should not need access check. We never inline unverified
4792    // methods so we can't possibly end up in this situation.
4793    DCHECK(!is_referrers_class_ || !needs_access_check_);
4794    SetRawInputAt(0, current_method);
4795  }
4796
4797  bool CanBeMoved() const OVERRIDE { return true; }
4798
4799  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
4800    // Note that we don't need to test for generate_clinit_check_.
4801    // Whether or not we need to generate the clinit check is processed in
4802    // prepare_for_register_allocator based on existing HInvokes and HClinitChecks.
4803    return other->AsLoadClass()->type_index_ == type_index_ &&
4804        other->AsLoadClass()->needs_access_check_ == needs_access_check_;
4805  }
4806
4807  size_t ComputeHashCode() const OVERRIDE { return type_index_; }
4808
4809  uint16_t GetTypeIndex() const { return type_index_; }
4810  bool IsReferrersClass() const { return is_referrers_class_; }
4811  bool CanBeNull() const OVERRIDE { return false; }
4812
4813  bool NeedsEnvironment() const OVERRIDE {
4814    // Will call runtime and load the class if the class is not loaded yet.
4815    // TODO: finer grain decision.
4816    return !is_referrers_class_;
4817  }
4818
4819  bool MustGenerateClinitCheck() const {
4820    return generate_clinit_check_;
4821  }
4822  void SetMustGenerateClinitCheck(bool generate_clinit_check) {
4823    // The entrypoint the code generator is going to call does not do
4824    // clinit of the class.
4825    DCHECK(!NeedsAccessCheck());
4826    generate_clinit_check_ = generate_clinit_check;
4827  }
4828
4829  bool CanCallRuntime() const {
4830    return MustGenerateClinitCheck() || !is_referrers_class_ || needs_access_check_;
4831  }
4832
4833  bool NeedsAccessCheck() const {
4834    return needs_access_check_;
4835  }
4836
4837  bool CanThrow() const OVERRIDE {
4838    // May call runtime and and therefore can throw.
4839    // TODO: finer grain decision.
4840    return CanCallRuntime();
4841  }
4842
4843  ReferenceTypeInfo GetLoadedClassRTI() {
4844    return loaded_class_rti_;
4845  }
4846
4847  void SetLoadedClassRTI(ReferenceTypeInfo rti) {
4848    // Make sure we only set exact types (the loaded class should never be merged).
4849    DCHECK(rti.IsExact());
4850    loaded_class_rti_ = rti;
4851  }
4852
4853  const DexFile& GetDexFile() { return dex_file_; }
4854
4855  bool NeedsDexCacheOfDeclaringClass() const OVERRIDE { return !is_referrers_class_; }
4856
4857  static SideEffects SideEffectsForArchRuntimeCalls() {
4858    return SideEffects::CanTriggerGC();
4859  }
4860
4861  DECLARE_INSTRUCTION(LoadClass);
4862
4863 private:
4864  const uint16_t type_index_;
4865  const DexFile& dex_file_;
4866  const bool is_referrers_class_;
4867  // Whether this instruction must generate the initialization check.
4868  // Used for code generation.
4869  bool generate_clinit_check_;
4870  bool needs_access_check_;
4871
4872  ReferenceTypeInfo loaded_class_rti_;
4873
4874  DISALLOW_COPY_AND_ASSIGN(HLoadClass);
4875};
4876
4877class HLoadString : public HExpression<1> {
4878 public:
4879  HLoadString(HCurrentMethod* current_method, uint32_t string_index, uint32_t dex_pc)
4880      : HExpression(Primitive::kPrimNot, SideEffectsForArchRuntimeCalls(), dex_pc),
4881        string_index_(string_index) {
4882    SetRawInputAt(0, current_method);
4883  }
4884
4885  bool CanBeMoved() const OVERRIDE { return true; }
4886
4887  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
4888    return other->AsLoadString()->string_index_ == string_index_;
4889  }
4890
4891  size_t ComputeHashCode() const OVERRIDE { return string_index_; }
4892
4893  uint32_t GetStringIndex() const { return string_index_; }
4894
4895  // TODO: Can we deopt or debug when we resolve a string?
4896  bool NeedsEnvironment() const OVERRIDE { return false; }
4897  bool NeedsDexCacheOfDeclaringClass() const OVERRIDE { return true; }
4898  bool CanBeNull() const OVERRIDE { return false; }
4899
4900  static SideEffects SideEffectsForArchRuntimeCalls() {
4901    return SideEffects::CanTriggerGC();
4902  }
4903
4904  DECLARE_INSTRUCTION(LoadString);
4905
4906 private:
4907  const uint32_t string_index_;
4908
4909  DISALLOW_COPY_AND_ASSIGN(HLoadString);
4910};
4911
4912/**
4913 * Performs an initialization check on its Class object input.
4914 */
4915class HClinitCheck : public HExpression<1> {
4916 public:
4917  HClinitCheck(HLoadClass* constant, uint32_t dex_pc)
4918      : HExpression(
4919            Primitive::kPrimNot,
4920            SideEffects::AllChanges(),  // Assume write/read on all fields/arrays.
4921            dex_pc) {
4922    SetRawInputAt(0, constant);
4923  }
4924
4925  bool CanBeMoved() const OVERRIDE { return true; }
4926  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
4927    return true;
4928  }
4929
4930  bool NeedsEnvironment() const OVERRIDE {
4931    // May call runtime to initialize the class.
4932    return true;
4933  }
4934
4935
4936  HLoadClass* GetLoadClass() const { return InputAt(0)->AsLoadClass(); }
4937
4938  DECLARE_INSTRUCTION(ClinitCheck);
4939
4940 private:
4941  DISALLOW_COPY_AND_ASSIGN(HClinitCheck);
4942};
4943
4944class HStaticFieldGet : public HExpression<1> {
4945 public:
4946  HStaticFieldGet(HInstruction* cls,
4947                  Primitive::Type field_type,
4948                  MemberOffset field_offset,
4949                  bool is_volatile,
4950                  uint32_t field_idx,
4951                  uint16_t declaring_class_def_index,
4952                  const DexFile& dex_file,
4953                  Handle<mirror::DexCache> dex_cache,
4954                  uint32_t dex_pc)
4955      : HExpression(field_type,
4956                    SideEffects::FieldReadOfType(field_type, is_volatile),
4957                    dex_pc),
4958        field_info_(field_offset,
4959                    field_type,
4960                    is_volatile,
4961                    field_idx,
4962                    declaring_class_def_index,
4963                    dex_file,
4964                    dex_cache) {
4965    SetRawInputAt(0, cls);
4966  }
4967
4968
4969  bool CanBeMoved() const OVERRIDE { return !IsVolatile(); }
4970
4971  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
4972    HStaticFieldGet* other_get = other->AsStaticFieldGet();
4973    return GetFieldOffset().SizeValue() == other_get->GetFieldOffset().SizeValue();
4974  }
4975
4976  size_t ComputeHashCode() const OVERRIDE {
4977    return (HInstruction::ComputeHashCode() << 7) | GetFieldOffset().SizeValue();
4978  }
4979
4980  const FieldInfo& GetFieldInfo() const { return field_info_; }
4981  MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
4982  Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); }
4983  bool IsVolatile() const { return field_info_.IsVolatile(); }
4984
4985  DECLARE_INSTRUCTION(StaticFieldGet);
4986
4987 private:
4988  const FieldInfo field_info_;
4989
4990  DISALLOW_COPY_AND_ASSIGN(HStaticFieldGet);
4991};
4992
4993class HStaticFieldSet : public HTemplateInstruction<2> {
4994 public:
4995  HStaticFieldSet(HInstruction* cls,
4996                  HInstruction* value,
4997                  Primitive::Type field_type,
4998                  MemberOffset field_offset,
4999                  bool is_volatile,
5000                  uint32_t field_idx,
5001                  uint16_t declaring_class_def_index,
5002                  const DexFile& dex_file,
5003                  Handle<mirror::DexCache> dex_cache,
5004                  uint32_t dex_pc)
5005      : HTemplateInstruction(SideEffects::FieldWriteOfType(field_type, is_volatile),
5006                             dex_pc),
5007        field_info_(field_offset,
5008                    field_type,
5009                    is_volatile,
5010                    field_idx,
5011                    declaring_class_def_index,
5012                    dex_file,
5013                    dex_cache),
5014        value_can_be_null_(true) {
5015    SetRawInputAt(0, cls);
5016    SetRawInputAt(1, value);
5017  }
5018
5019  const FieldInfo& GetFieldInfo() const { return field_info_; }
5020  MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
5021  Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); }
5022  bool IsVolatile() const { return field_info_.IsVolatile(); }
5023
5024  HInstruction* GetValue() const { return InputAt(1); }
5025  bool GetValueCanBeNull() const { return value_can_be_null_; }
5026  void ClearValueCanBeNull() { value_can_be_null_ = false; }
5027
5028  DECLARE_INSTRUCTION(StaticFieldSet);
5029
5030 private:
5031  const FieldInfo field_info_;
5032  bool value_can_be_null_;
5033
5034  DISALLOW_COPY_AND_ASSIGN(HStaticFieldSet);
5035};
5036
5037class HUnresolvedInstanceFieldGet : public HExpression<1> {
5038 public:
5039  HUnresolvedInstanceFieldGet(HInstruction* obj,
5040                              Primitive::Type field_type,
5041                              uint32_t field_index,
5042                              uint32_t dex_pc)
5043      : HExpression(field_type, SideEffects::AllExceptGCDependency(), dex_pc),
5044        field_index_(field_index) {
5045    SetRawInputAt(0, obj);
5046  }
5047
5048  bool NeedsEnvironment() const OVERRIDE { return true; }
5049  bool CanThrow() const OVERRIDE { return true; }
5050
5051  Primitive::Type GetFieldType() const { return GetType(); }
5052  uint32_t GetFieldIndex() const { return field_index_; }
5053
5054  DECLARE_INSTRUCTION(UnresolvedInstanceFieldGet);
5055
5056 private:
5057  const uint32_t field_index_;
5058
5059  DISALLOW_COPY_AND_ASSIGN(HUnresolvedInstanceFieldGet);
5060};
5061
5062class HUnresolvedInstanceFieldSet : public HTemplateInstruction<2> {
5063 public:
5064  HUnresolvedInstanceFieldSet(HInstruction* obj,
5065                              HInstruction* value,
5066                              Primitive::Type field_type,
5067                              uint32_t field_index,
5068                              uint32_t dex_pc)
5069      : HTemplateInstruction(SideEffects::AllExceptGCDependency(), dex_pc),
5070        field_type_(field_type),
5071        field_index_(field_index) {
5072    DCHECK_EQ(field_type, value->GetType());
5073    SetRawInputAt(0, obj);
5074    SetRawInputAt(1, value);
5075  }
5076
5077  bool NeedsEnvironment() const OVERRIDE { return true; }
5078  bool CanThrow() const OVERRIDE { return true; }
5079
5080  Primitive::Type GetFieldType() const { return field_type_; }
5081  uint32_t GetFieldIndex() const { return field_index_; }
5082
5083  DECLARE_INSTRUCTION(UnresolvedInstanceFieldSet);
5084
5085 private:
5086  const Primitive::Type field_type_;
5087  const uint32_t field_index_;
5088
5089  DISALLOW_COPY_AND_ASSIGN(HUnresolvedInstanceFieldSet);
5090};
5091
5092class HUnresolvedStaticFieldGet : public HExpression<0> {
5093 public:
5094  HUnresolvedStaticFieldGet(Primitive::Type field_type,
5095                            uint32_t field_index,
5096                            uint32_t dex_pc)
5097      : HExpression(field_type, SideEffects::AllExceptGCDependency(), dex_pc),
5098        field_index_(field_index) {
5099  }
5100
5101  bool NeedsEnvironment() const OVERRIDE { return true; }
5102  bool CanThrow() const OVERRIDE { return true; }
5103
5104  Primitive::Type GetFieldType() const { return GetType(); }
5105  uint32_t GetFieldIndex() const { return field_index_; }
5106
5107  DECLARE_INSTRUCTION(UnresolvedStaticFieldGet);
5108
5109 private:
5110  const uint32_t field_index_;
5111
5112  DISALLOW_COPY_AND_ASSIGN(HUnresolvedStaticFieldGet);
5113};
5114
5115class HUnresolvedStaticFieldSet : public HTemplateInstruction<1> {
5116 public:
5117  HUnresolvedStaticFieldSet(HInstruction* value,
5118                            Primitive::Type field_type,
5119                            uint32_t field_index,
5120                            uint32_t dex_pc)
5121      : HTemplateInstruction(SideEffects::AllExceptGCDependency(), dex_pc),
5122        field_type_(field_type),
5123        field_index_(field_index) {
5124    DCHECK_EQ(field_type, value->GetType());
5125    SetRawInputAt(0, value);
5126  }
5127
5128  bool NeedsEnvironment() const OVERRIDE { return true; }
5129  bool CanThrow() const OVERRIDE { return true; }
5130
5131  Primitive::Type GetFieldType() const { return field_type_; }
5132  uint32_t GetFieldIndex() const { return field_index_; }
5133
5134  DECLARE_INSTRUCTION(UnresolvedStaticFieldSet);
5135
5136 private:
5137  const Primitive::Type field_type_;
5138  const uint32_t field_index_;
5139
5140  DISALLOW_COPY_AND_ASSIGN(HUnresolvedStaticFieldSet);
5141};
5142
5143// Implement the move-exception DEX instruction.
5144class HLoadException : public HExpression<0> {
5145 public:
5146  explicit HLoadException(uint32_t dex_pc = kNoDexPc)
5147      : HExpression(Primitive::kPrimNot, SideEffects::None(), dex_pc) {}
5148
5149  bool CanBeNull() const OVERRIDE { return false; }
5150
5151  DECLARE_INSTRUCTION(LoadException);
5152
5153 private:
5154  DISALLOW_COPY_AND_ASSIGN(HLoadException);
5155};
5156
5157// Implicit part of move-exception which clears thread-local exception storage.
5158// Must not be removed because the runtime expects the TLS to get cleared.
5159class HClearException : public HTemplateInstruction<0> {
5160 public:
5161  explicit HClearException(uint32_t dex_pc = kNoDexPc)
5162      : HTemplateInstruction(SideEffects::AllWrites(), dex_pc) {}
5163
5164  DECLARE_INSTRUCTION(ClearException);
5165
5166 private:
5167  DISALLOW_COPY_AND_ASSIGN(HClearException);
5168};
5169
5170class HThrow : public HTemplateInstruction<1> {
5171 public:
5172  HThrow(HInstruction* exception, uint32_t dex_pc)
5173      : HTemplateInstruction(SideEffects::CanTriggerGC(), dex_pc) {
5174    SetRawInputAt(0, exception);
5175  }
5176
5177  bool IsControlFlow() const OVERRIDE { return true; }
5178
5179  bool NeedsEnvironment() const OVERRIDE { return true; }
5180
5181  bool CanThrow() const OVERRIDE { return true; }
5182
5183
5184  DECLARE_INSTRUCTION(Throw);
5185
5186 private:
5187  DISALLOW_COPY_AND_ASSIGN(HThrow);
5188};
5189
5190/**
5191 * Implementation strategies for the code generator of a HInstanceOf
5192 * or `HCheckCast`.
5193 */
5194enum class TypeCheckKind {
5195  kUnresolvedCheck,       // Check against an unresolved type.
5196  kExactCheck,            // Can do a single class compare.
5197  kClassHierarchyCheck,   // Can just walk the super class chain.
5198  kAbstractClassCheck,    // Can just walk the super class chain, starting one up.
5199  kInterfaceCheck,        // No optimization yet when checking against an interface.
5200  kArrayObjectCheck,      // Can just check if the array is not primitive.
5201  kArrayCheck             // No optimization yet when checking against a generic array.
5202};
5203
5204class HInstanceOf : public HExpression<2> {
5205 public:
5206  HInstanceOf(HInstruction* object,
5207              HLoadClass* constant,
5208              TypeCheckKind check_kind,
5209              uint32_t dex_pc)
5210      : HExpression(Primitive::kPrimBoolean,
5211                    SideEffectsForArchRuntimeCalls(check_kind),
5212                    dex_pc),
5213        check_kind_(check_kind),
5214        must_do_null_check_(true) {
5215    SetRawInputAt(0, object);
5216    SetRawInputAt(1, constant);
5217  }
5218
5219  bool CanBeMoved() const OVERRIDE { return true; }
5220
5221  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
5222    return true;
5223  }
5224
5225  bool NeedsEnvironment() const OVERRIDE {
5226    return false;
5227  }
5228
5229  bool IsExactCheck() const { return check_kind_ == TypeCheckKind::kExactCheck; }
5230
5231  TypeCheckKind GetTypeCheckKind() const { return check_kind_; }
5232
5233  // Used only in code generation.
5234  bool MustDoNullCheck() const { return must_do_null_check_; }
5235  void ClearMustDoNullCheck() { must_do_null_check_ = false; }
5236
5237  static SideEffects SideEffectsForArchRuntimeCalls(TypeCheckKind check_kind) {
5238    return (check_kind == TypeCheckKind::kExactCheck)
5239        ? SideEffects::None()
5240        // Mips currently does runtime calls for any other checks.
5241        : SideEffects::CanTriggerGC();
5242  }
5243
5244  DECLARE_INSTRUCTION(InstanceOf);
5245
5246 private:
5247  const TypeCheckKind check_kind_;
5248  bool must_do_null_check_;
5249
5250  DISALLOW_COPY_AND_ASSIGN(HInstanceOf);
5251};
5252
5253class HBoundType : public HExpression<1> {
5254 public:
5255  // Constructs an HBoundType with the given upper_bound.
5256  // Ensures that the upper_bound is valid.
5257  HBoundType(HInstruction* input,
5258             ReferenceTypeInfo upper_bound,
5259             bool upper_can_be_null,
5260             uint32_t dex_pc = kNoDexPc)
5261      : HExpression(Primitive::kPrimNot, SideEffects::None(), dex_pc),
5262        upper_bound_(upper_bound),
5263        upper_can_be_null_(upper_can_be_null),
5264        can_be_null_(upper_can_be_null) {
5265    DCHECK_EQ(input->GetType(), Primitive::kPrimNot);
5266    SetRawInputAt(0, input);
5267    SetReferenceTypeInfo(upper_bound_);
5268  }
5269
5270  // GetUpper* should only be used in reference type propagation.
5271  const ReferenceTypeInfo& GetUpperBound() const { return upper_bound_; }
5272  bool GetUpperCanBeNull() const { return upper_can_be_null_; }
5273
5274  void SetCanBeNull(bool can_be_null) {
5275    DCHECK(upper_can_be_null_ || !can_be_null);
5276    can_be_null_ = can_be_null;
5277  }
5278
5279  bool CanBeNull() const OVERRIDE { return can_be_null_; }
5280
5281  DECLARE_INSTRUCTION(BoundType);
5282
5283 private:
5284  // Encodes the most upper class that this instruction can have. In other words
5285  // it is always the case that GetUpperBound().IsSupertypeOf(GetReferenceType()).
5286  // It is used to bound the type in cases like:
5287  //   if (x instanceof ClassX) {
5288  //     // uper_bound_ will be ClassX
5289  //   }
5290  const ReferenceTypeInfo upper_bound_;
5291  // Represents the top constraint that can_be_null_ cannot exceed (i.e. if this
5292  // is false then can_be_null_ cannot be true).
5293  const bool upper_can_be_null_;
5294  bool can_be_null_;
5295
5296  DISALLOW_COPY_AND_ASSIGN(HBoundType);
5297};
5298
5299class HCheckCast : public HTemplateInstruction<2> {
5300 public:
5301  HCheckCast(HInstruction* object,
5302             HLoadClass* constant,
5303             TypeCheckKind check_kind,
5304             uint32_t dex_pc)
5305      : HTemplateInstruction(SideEffects::CanTriggerGC(), dex_pc),
5306        check_kind_(check_kind),
5307        must_do_null_check_(true) {
5308    SetRawInputAt(0, object);
5309    SetRawInputAt(1, constant);
5310  }
5311
5312  bool CanBeMoved() const OVERRIDE { return true; }
5313
5314  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
5315    return true;
5316  }
5317
5318  bool NeedsEnvironment() const OVERRIDE {
5319    // Instruction may throw a CheckCastError.
5320    return true;
5321  }
5322
5323  bool CanThrow() const OVERRIDE { return true; }
5324
5325  bool MustDoNullCheck() const { return must_do_null_check_; }
5326  void ClearMustDoNullCheck() { must_do_null_check_ = false; }
5327  TypeCheckKind GetTypeCheckKind() const { return check_kind_; }
5328
5329  bool IsExactCheck() const { return check_kind_ == TypeCheckKind::kExactCheck; }
5330
5331  DECLARE_INSTRUCTION(CheckCast);
5332
5333 private:
5334  const TypeCheckKind check_kind_;
5335  bool must_do_null_check_;
5336
5337  DISALLOW_COPY_AND_ASSIGN(HCheckCast);
5338};
5339
5340class HMemoryBarrier : public HTemplateInstruction<0> {
5341 public:
5342  explicit HMemoryBarrier(MemBarrierKind barrier_kind, uint32_t dex_pc = kNoDexPc)
5343      : HTemplateInstruction(
5344            SideEffects::AllWritesAndReads(), dex_pc),  // Assume write/read on all fields/arrays.
5345        barrier_kind_(barrier_kind) {}
5346
5347  MemBarrierKind GetBarrierKind() { return barrier_kind_; }
5348
5349  DECLARE_INSTRUCTION(MemoryBarrier);
5350
5351 private:
5352  const MemBarrierKind barrier_kind_;
5353
5354  DISALLOW_COPY_AND_ASSIGN(HMemoryBarrier);
5355};
5356
5357class HMonitorOperation : public HTemplateInstruction<1> {
5358 public:
5359  enum OperationKind {
5360    kEnter,
5361    kExit,
5362  };
5363
5364  HMonitorOperation(HInstruction* object, OperationKind kind, uint32_t dex_pc)
5365    : HTemplateInstruction(
5366          SideEffects::AllExceptGCDependency(), dex_pc),  // Assume write/read on all fields/arrays.
5367      kind_(kind) {
5368    SetRawInputAt(0, object);
5369  }
5370
5371  // Instruction may throw a Java exception, so we need an environment.
5372  bool NeedsEnvironment() const OVERRIDE { return CanThrow(); }
5373
5374  bool CanThrow() const OVERRIDE {
5375    // Verifier guarantees that monitor-exit cannot throw.
5376    // This is important because it allows the HGraphBuilder to remove
5377    // a dead throw-catch loop generated for `synchronized` blocks/methods.
5378    return IsEnter();
5379  }
5380
5381
5382  bool IsEnter() const { return kind_ == kEnter; }
5383
5384  DECLARE_INSTRUCTION(MonitorOperation);
5385
5386 private:
5387  const OperationKind kind_;
5388
5389 private:
5390  DISALLOW_COPY_AND_ASSIGN(HMonitorOperation);
5391};
5392
5393/**
5394 * A HInstruction used as a marker for the replacement of new + <init>
5395 * of a String to a call to a StringFactory. Only baseline will see
5396 * the node at code generation, where it will be be treated as null.
5397 * When compiling non-baseline, `HFakeString` instructions are being removed
5398 * in the instruction simplifier.
5399 */
5400class HFakeString : public HTemplateInstruction<0> {
5401 public:
5402  explicit HFakeString(uint32_t dex_pc = kNoDexPc)
5403      : HTemplateInstruction(SideEffects::None(), dex_pc) {}
5404
5405  Primitive::Type GetType() const OVERRIDE { return Primitive::kPrimNot; }
5406
5407  DECLARE_INSTRUCTION(FakeString);
5408
5409 private:
5410  DISALLOW_COPY_AND_ASSIGN(HFakeString);
5411};
5412
5413class MoveOperands : public ArenaObject<kArenaAllocMoveOperands> {
5414 public:
5415  MoveOperands(Location source,
5416               Location destination,
5417               Primitive::Type type,
5418               HInstruction* instruction)
5419      : source_(source), destination_(destination), type_(type), instruction_(instruction) {}
5420
5421  Location GetSource() const { return source_; }
5422  Location GetDestination() const { return destination_; }
5423
5424  void SetSource(Location value) { source_ = value; }
5425  void SetDestination(Location value) { destination_ = value; }
5426
5427  // The parallel move resolver marks moves as "in-progress" by clearing the
5428  // destination (but not the source).
5429  Location MarkPending() {
5430    DCHECK(!IsPending());
5431    Location dest = destination_;
5432    destination_ = Location::NoLocation();
5433    return dest;
5434  }
5435
5436  void ClearPending(Location dest) {
5437    DCHECK(IsPending());
5438    destination_ = dest;
5439  }
5440
5441  bool IsPending() const {
5442    DCHECK(!source_.IsInvalid() || destination_.IsInvalid());
5443    return destination_.IsInvalid() && !source_.IsInvalid();
5444  }
5445
5446  // True if this blocks a move from the given location.
5447  bool Blocks(Location loc) const {
5448    return !IsEliminated() && source_.OverlapsWith(loc);
5449  }
5450
5451  // A move is redundant if it's been eliminated, if its source and
5452  // destination are the same, or if its destination is unneeded.
5453  bool IsRedundant() const {
5454    return IsEliminated() || destination_.IsInvalid() || source_.Equals(destination_);
5455  }
5456
5457  // We clear both operands to indicate move that's been eliminated.
5458  void Eliminate() {
5459    source_ = destination_ = Location::NoLocation();
5460  }
5461
5462  bool IsEliminated() const {
5463    DCHECK(!source_.IsInvalid() || destination_.IsInvalid());
5464    return source_.IsInvalid();
5465  }
5466
5467  Primitive::Type GetType() const { return type_; }
5468
5469  bool Is64BitMove() const {
5470    return Primitive::Is64BitType(type_);
5471  }
5472
5473  HInstruction* GetInstruction() const { return instruction_; }
5474
5475 private:
5476  Location source_;
5477  Location destination_;
5478  // The type this move is for.
5479  Primitive::Type type_;
5480  // The instruction this move is assocatied with. Null when this move is
5481  // for moving an input in the expected locations of user (including a phi user).
5482  // This is only used in debug mode, to ensure we do not connect interval siblings
5483  // in the same parallel move.
5484  HInstruction* instruction_;
5485};
5486
5487static constexpr size_t kDefaultNumberOfMoves = 4;
5488
5489class HParallelMove : public HTemplateInstruction<0> {
5490 public:
5491  explicit HParallelMove(ArenaAllocator* arena, uint32_t dex_pc = kNoDexPc)
5492      : HTemplateInstruction(SideEffects::None(), dex_pc),
5493        moves_(arena->Adapter(kArenaAllocMoveOperands)) {
5494    moves_.reserve(kDefaultNumberOfMoves);
5495  }
5496
5497  void AddMove(Location source,
5498               Location destination,
5499               Primitive::Type type,
5500               HInstruction* instruction) {
5501    DCHECK(source.IsValid());
5502    DCHECK(destination.IsValid());
5503    if (kIsDebugBuild) {
5504      if (instruction != nullptr) {
5505        for (const MoveOperands& move : moves_) {
5506          if (move.GetInstruction() == instruction) {
5507            // Special case the situation where the move is for the spill slot
5508            // of the instruction.
5509            if ((GetPrevious() == instruction)
5510                || ((GetPrevious() == nullptr)
5511                    && instruction->IsPhi()
5512                    && instruction->GetBlock() == GetBlock())) {
5513              DCHECK_NE(destination.GetKind(), move.GetDestination().GetKind())
5514                  << "Doing parallel moves for the same instruction.";
5515            } else {
5516              DCHECK(false) << "Doing parallel moves for the same instruction.";
5517            }
5518          }
5519        }
5520      }
5521      for (const MoveOperands& move : moves_) {
5522        DCHECK(!destination.OverlapsWith(move.GetDestination()))
5523            << "Overlapped destination for two moves in a parallel move: "
5524            << move.GetSource() << " ==> " << move.GetDestination() << " and "
5525            << source << " ==> " << destination;
5526      }
5527    }
5528    moves_.emplace_back(source, destination, type, instruction);
5529  }
5530
5531  MoveOperands* MoveOperandsAt(size_t index) {
5532    return &moves_[index];
5533  }
5534
5535  size_t NumMoves() const { return moves_.size(); }
5536
5537  DECLARE_INSTRUCTION(ParallelMove);
5538
5539 private:
5540  ArenaVector<MoveOperands> moves_;
5541
5542  DISALLOW_COPY_AND_ASSIGN(HParallelMove);
5543};
5544
5545}  // namespace art
5546
5547#ifdef ART_ENABLE_CODEGEN_arm64
5548#include "nodes_arm64.h"
5549#endif
5550#ifdef ART_ENABLE_CODEGEN_x86
5551#include "nodes_x86.h"
5552#endif
5553
5554namespace art {
5555
5556class HGraphVisitor : public ValueObject {
5557 public:
5558  explicit HGraphVisitor(HGraph* graph) : graph_(graph) {}
5559  virtual ~HGraphVisitor() {}
5560
5561  virtual void VisitInstruction(HInstruction* instruction ATTRIBUTE_UNUSED) {}
5562  virtual void VisitBasicBlock(HBasicBlock* block);
5563
5564  // Visit the graph following basic block insertion order.
5565  void VisitInsertionOrder();
5566
5567  // Visit the graph following dominator tree reverse post-order.
5568  void VisitReversePostOrder();
5569
5570  HGraph* GetGraph() const { return graph_; }
5571
5572  // Visit functions for instruction classes.
5573#define DECLARE_VISIT_INSTRUCTION(name, super)                                        \
5574  virtual void Visit##name(H##name* instr) { VisitInstruction(instr); }
5575
5576  FOR_EACH_INSTRUCTION(DECLARE_VISIT_INSTRUCTION)
5577
5578#undef DECLARE_VISIT_INSTRUCTION
5579
5580 private:
5581  HGraph* const graph_;
5582
5583  DISALLOW_COPY_AND_ASSIGN(HGraphVisitor);
5584};
5585
5586class HGraphDelegateVisitor : public HGraphVisitor {
5587 public:
5588  explicit HGraphDelegateVisitor(HGraph* graph) : HGraphVisitor(graph) {}
5589  virtual ~HGraphDelegateVisitor() {}
5590
5591  // Visit functions that delegate to to super class.
5592#define DECLARE_VISIT_INSTRUCTION(name, super)                                        \
5593  void Visit##name(H##name* instr) OVERRIDE { Visit##super(instr); }
5594
5595  FOR_EACH_INSTRUCTION(DECLARE_VISIT_INSTRUCTION)
5596
5597#undef DECLARE_VISIT_INSTRUCTION
5598
5599 private:
5600  DISALLOW_COPY_AND_ASSIGN(HGraphDelegateVisitor);
5601};
5602
5603class HInsertionOrderIterator : public ValueObject {
5604 public:
5605  explicit HInsertionOrderIterator(const HGraph& graph) : graph_(graph), index_(0) {}
5606
5607  bool Done() const { return index_ == graph_.GetBlocks().size(); }
5608  HBasicBlock* Current() const { return graph_.GetBlocks()[index_]; }
5609  void Advance() { ++index_; }
5610
5611 private:
5612  const HGraph& graph_;
5613  size_t index_;
5614
5615  DISALLOW_COPY_AND_ASSIGN(HInsertionOrderIterator);
5616};
5617
5618class HReversePostOrderIterator : public ValueObject {
5619 public:
5620  explicit HReversePostOrderIterator(const HGraph& graph) : graph_(graph), index_(0) {
5621    // Check that reverse post order of the graph has been built.
5622    DCHECK(!graph.GetReversePostOrder().empty());
5623  }
5624
5625  bool Done() const { return index_ == graph_.GetReversePostOrder().size(); }
5626  HBasicBlock* Current() const { return graph_.GetReversePostOrder()[index_]; }
5627  void Advance() { ++index_; }
5628
5629 private:
5630  const HGraph& graph_;
5631  size_t index_;
5632
5633  DISALLOW_COPY_AND_ASSIGN(HReversePostOrderIterator);
5634};
5635
5636class HPostOrderIterator : public ValueObject {
5637 public:
5638  explicit HPostOrderIterator(const HGraph& graph)
5639      : graph_(graph), index_(graph_.GetReversePostOrder().size()) {
5640    // Check that reverse post order of the graph has been built.
5641    DCHECK(!graph.GetReversePostOrder().empty());
5642  }
5643
5644  bool Done() const { return index_ == 0; }
5645  HBasicBlock* Current() const { return graph_.GetReversePostOrder()[index_ - 1u]; }
5646  void Advance() { --index_; }
5647
5648 private:
5649  const HGraph& graph_;
5650  size_t index_;
5651
5652  DISALLOW_COPY_AND_ASSIGN(HPostOrderIterator);
5653};
5654
5655class HLinearPostOrderIterator : public ValueObject {
5656 public:
5657  explicit HLinearPostOrderIterator(const HGraph& graph)
5658      : order_(graph.GetLinearOrder()), index_(graph.GetLinearOrder().size()) {}
5659
5660  bool Done() const { return index_ == 0; }
5661
5662  HBasicBlock* Current() const { return order_[index_ - 1u]; }
5663
5664  void Advance() {
5665    --index_;
5666    DCHECK_GE(index_, 0U);
5667  }
5668
5669 private:
5670  const ArenaVector<HBasicBlock*>& order_;
5671  size_t index_;
5672
5673  DISALLOW_COPY_AND_ASSIGN(HLinearPostOrderIterator);
5674};
5675
5676class HLinearOrderIterator : public ValueObject {
5677 public:
5678  explicit HLinearOrderIterator(const HGraph& graph)
5679      : order_(graph.GetLinearOrder()), index_(0) {}
5680
5681  bool Done() const { return index_ == order_.size(); }
5682  HBasicBlock* Current() const { return order_[index_]; }
5683  void Advance() { ++index_; }
5684
5685 private:
5686  const ArenaVector<HBasicBlock*>& order_;
5687  size_t index_;
5688
5689  DISALLOW_COPY_AND_ASSIGN(HLinearOrderIterator);
5690};
5691
5692// Iterator over the blocks that art part of the loop. Includes blocks part
5693// of an inner loop. The order in which the blocks are iterated is on their
5694// block id.
5695class HBlocksInLoopIterator : public ValueObject {
5696 public:
5697  explicit HBlocksInLoopIterator(const HLoopInformation& info)
5698      : blocks_in_loop_(info.GetBlocks()),
5699        blocks_(info.GetHeader()->GetGraph()->GetBlocks()),
5700        index_(0) {
5701    if (!blocks_in_loop_.IsBitSet(index_)) {
5702      Advance();
5703    }
5704  }
5705
5706  bool Done() const { return index_ == blocks_.size(); }
5707  HBasicBlock* Current() const { return blocks_[index_]; }
5708  void Advance() {
5709    ++index_;
5710    for (size_t e = blocks_.size(); index_ < e; ++index_) {
5711      if (blocks_in_loop_.IsBitSet(index_)) {
5712        break;
5713      }
5714    }
5715  }
5716
5717 private:
5718  const BitVector& blocks_in_loop_;
5719  const ArenaVector<HBasicBlock*>& blocks_;
5720  size_t index_;
5721
5722  DISALLOW_COPY_AND_ASSIGN(HBlocksInLoopIterator);
5723};
5724
5725// Iterator over the blocks that art part of the loop. Includes blocks part
5726// of an inner loop. The order in which the blocks are iterated is reverse
5727// post order.
5728class HBlocksInLoopReversePostOrderIterator : public ValueObject {
5729 public:
5730  explicit HBlocksInLoopReversePostOrderIterator(const HLoopInformation& info)
5731      : blocks_in_loop_(info.GetBlocks()),
5732        blocks_(info.GetHeader()->GetGraph()->GetReversePostOrder()),
5733        index_(0) {
5734    if (!blocks_in_loop_.IsBitSet(blocks_[index_]->GetBlockId())) {
5735      Advance();
5736    }
5737  }
5738
5739  bool Done() const { return index_ == blocks_.size(); }
5740  HBasicBlock* Current() const { return blocks_[index_]; }
5741  void Advance() {
5742    ++index_;
5743    for (size_t e = blocks_.size(); index_ < e; ++index_) {
5744      if (blocks_in_loop_.IsBitSet(blocks_[index_]->GetBlockId())) {
5745        break;
5746      }
5747    }
5748  }
5749
5750 private:
5751  const BitVector& blocks_in_loop_;
5752  const ArenaVector<HBasicBlock*>& blocks_;
5753  size_t index_;
5754
5755  DISALLOW_COPY_AND_ASSIGN(HBlocksInLoopReversePostOrderIterator);
5756};
5757
5758inline int64_t Int64FromConstant(HConstant* constant) {
5759  DCHECK(constant->IsIntConstant() || constant->IsLongConstant());
5760  return constant->IsIntConstant() ? constant->AsIntConstant()->GetValue()
5761                                   : constant->AsLongConstant()->GetValue();
5762}
5763
5764inline bool IsSameDexFile(const DexFile& lhs, const DexFile& rhs) {
5765  // For the purposes of the compiler, the dex files must actually be the same object
5766  // if we want to safely treat them as the same. This is especially important for JIT
5767  // as custom class loaders can open the same underlying file (or memory) multiple
5768  // times and provide different class resolution but no two class loaders should ever
5769  // use the same DexFile object - doing so is an unsupported hack that can lead to
5770  // all sorts of weird failures.
5771  return &lhs == &rhs;
5772}
5773
5774}  // namespace art
5775
5776#endif  // ART_COMPILER_OPTIMIZING_NODES_H_
5777