nodes.h revision fb8464ae5f5194dc16278e528cfcbff71498c767
1/*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#ifndef ART_COMPILER_OPTIMIZING_NODES_H_
18#define ART_COMPILER_OPTIMIZING_NODES_H_
19
20#include <algorithm>
21#include <array>
22#include <type_traits>
23
24#include "base/arena_bit_vector.h"
25#include "base/arena_containers.h"
26#include "base/arena_object.h"
27#include "base/stl_util.h"
28#include "dex/compiler_enums.h"
29#include "entrypoints/quick/quick_entrypoints_enum.h"
30#include "handle.h"
31#include "handle_scope.h"
32#include "invoke_type.h"
33#include "locations.h"
34#include "method_reference.h"
35#include "mirror/class.h"
36#include "offsets.h"
37#include "primitive.h"
38#include "utils/array_ref.h"
39
40namespace art {
41
42class GraphChecker;
43class HBasicBlock;
44class HCurrentMethod;
45class HDoubleConstant;
46class HEnvironment;
47class HFakeString;
48class HFloatConstant;
49class HGraphBuilder;
50class HGraphVisitor;
51class HInstruction;
52class HIntConstant;
53class HInvoke;
54class HLongConstant;
55class HNullConstant;
56class HPhi;
57class HSuspendCheck;
58class HTryBoundary;
59class LiveInterval;
60class LocationSummary;
61class SlowPathCode;
62class SsaBuilder;
63
64namespace mirror {
65class DexCache;
66}  // namespace mirror
67
68static const int kDefaultNumberOfBlocks = 8;
69static const int kDefaultNumberOfSuccessors = 2;
70static const int kDefaultNumberOfPredecessors = 2;
71static const int kDefaultNumberOfExceptionalPredecessors = 0;
72static const int kDefaultNumberOfDominatedBlocks = 1;
73static const int kDefaultNumberOfBackEdges = 1;
74
75static constexpr uint32_t kMaxIntShiftValue = 0x1f;
76static constexpr uint64_t kMaxLongShiftValue = 0x3f;
77
78static constexpr uint32_t kUnknownFieldIndex = static_cast<uint32_t>(-1);
79static constexpr uint16_t kUnknownClassDefIndex = static_cast<uint16_t>(-1);
80
81static constexpr InvokeType kInvalidInvokeType = static_cast<InvokeType>(-1);
82
83static constexpr uint32_t kNoDexPc = -1;
84
85enum IfCondition {
86  // All types.
87  kCondEQ,  // ==
88  kCondNE,  // !=
89  // Signed integers and floating-point numbers.
90  kCondLT,  // <
91  kCondLE,  // <=
92  kCondGT,  // >
93  kCondGE,  // >=
94  // Unsigned integers.
95  kCondB,   // <
96  kCondBE,  // <=
97  kCondA,   // >
98  kCondAE,  // >=
99};
100
101class HInstructionList : public ValueObject {
102 public:
103  HInstructionList() : first_instruction_(nullptr), last_instruction_(nullptr) {}
104
105  void AddInstruction(HInstruction* instruction);
106  void RemoveInstruction(HInstruction* instruction);
107
108  // Insert `instruction` before/after an existing instruction `cursor`.
109  void InsertInstructionBefore(HInstruction* instruction, HInstruction* cursor);
110  void InsertInstructionAfter(HInstruction* instruction, HInstruction* cursor);
111
112  // Return true if this list contains `instruction`.
113  bool Contains(HInstruction* instruction) const;
114
115  // Return true if `instruction1` is found before `instruction2` in
116  // this instruction list and false otherwise.  Abort if none
117  // of these instructions is found.
118  bool FoundBefore(const HInstruction* instruction1,
119                   const HInstruction* instruction2) const;
120
121  bool IsEmpty() const { return first_instruction_ == nullptr; }
122  void Clear() { first_instruction_ = last_instruction_ = nullptr; }
123
124  // Update the block of all instructions to be `block`.
125  void SetBlockOfInstructions(HBasicBlock* block) const;
126
127  void AddAfter(HInstruction* cursor, const HInstructionList& instruction_list);
128  void Add(const HInstructionList& instruction_list);
129
130  // Return the number of instructions in the list. This is an expensive operation.
131  size_t CountSize() const;
132
133 private:
134  HInstruction* first_instruction_;
135  HInstruction* last_instruction_;
136
137  friend class HBasicBlock;
138  friend class HGraph;
139  friend class HInstruction;
140  friend class HInstructionIterator;
141  friend class HBackwardInstructionIterator;
142
143  DISALLOW_COPY_AND_ASSIGN(HInstructionList);
144};
145
146// Control-flow graph of a method. Contains a list of basic blocks.
147class HGraph : public ArenaObject<kArenaAllocGraph> {
148 public:
149  HGraph(ArenaAllocator* arena,
150         const DexFile& dex_file,
151         uint32_t method_idx,
152         bool should_generate_constructor_barrier,
153         InstructionSet instruction_set,
154         InvokeType invoke_type = kInvalidInvokeType,
155         bool debuggable = false,
156         int start_instruction_id = 0)
157      : arena_(arena),
158        blocks_(arena->Adapter(kArenaAllocBlockList)),
159        reverse_post_order_(arena->Adapter(kArenaAllocReversePostOrder)),
160        linear_order_(arena->Adapter(kArenaAllocLinearOrder)),
161        entry_block_(nullptr),
162        exit_block_(nullptr),
163        maximum_number_of_out_vregs_(0),
164        number_of_vregs_(0),
165        number_of_in_vregs_(0),
166        temporaries_vreg_slots_(0),
167        has_bounds_checks_(false),
168        has_try_catch_(false),
169        debuggable_(debuggable),
170        current_instruction_id_(start_instruction_id),
171        dex_file_(dex_file),
172        method_idx_(method_idx),
173        invoke_type_(invoke_type),
174        in_ssa_form_(false),
175        should_generate_constructor_barrier_(should_generate_constructor_barrier),
176        instruction_set_(instruction_set),
177        cached_null_constant_(nullptr),
178        cached_int_constants_(std::less<int32_t>(), arena->Adapter(kArenaAllocConstantsMap)),
179        cached_float_constants_(std::less<int32_t>(), arena->Adapter(kArenaAllocConstantsMap)),
180        cached_long_constants_(std::less<int64_t>(), arena->Adapter(kArenaAllocConstantsMap)),
181        cached_double_constants_(std::less<int64_t>(), arena->Adapter(kArenaAllocConstantsMap)),
182        cached_current_method_(nullptr) {
183    blocks_.reserve(kDefaultNumberOfBlocks);
184  }
185
186  ArenaAllocator* GetArena() const { return arena_; }
187  const ArenaVector<HBasicBlock*>& GetBlocks() const { return blocks_; }
188
189  bool IsInSsaForm() const { return in_ssa_form_; }
190
191  HBasicBlock* GetEntryBlock() const { return entry_block_; }
192  HBasicBlock* GetExitBlock() const { return exit_block_; }
193  bool HasExitBlock() const { return exit_block_ != nullptr; }
194
195  void SetEntryBlock(HBasicBlock* block) { entry_block_ = block; }
196  void SetExitBlock(HBasicBlock* block) { exit_block_ = block; }
197
198  void AddBlock(HBasicBlock* block);
199
200  // Try building the SSA form of this graph, with dominance computation and loop
201  // recognition. Returns whether it was successful in doing all these steps.
202  bool TryBuildingSsa() {
203    BuildDominatorTree();
204    // The SSA builder requires loops to all be natural. Specifically, the dead phi
205    // elimination phase checks the consistency of the graph when doing a post-order
206    // visit for eliminating dead phis: a dead phi can only have loop header phi
207    // users remaining when being visited.
208    if (!AnalyzeNaturalLoops()) return false;
209    // Precompute per-block try membership before entering the SSA builder,
210    // which needs the information to build catch block phis from values of
211    // locals at throwing instructions inside try blocks.
212    ComputeTryBlockInformation();
213    TransformToSsa();
214    in_ssa_form_ = true;
215    return true;
216  }
217
218  void ComputeDominanceInformation();
219  void ClearDominanceInformation();
220
221  void BuildDominatorTree();
222  void TransformToSsa();
223  void SimplifyCFG();
224  void SimplifyCatchBlocks();
225
226  // Analyze all natural loops in this graph. Returns false if one
227  // loop is not natural, that is the header does not dominate the
228  // back edge.
229  bool AnalyzeNaturalLoops() const;
230
231  // Iterate over blocks to compute try block membership. Needs reverse post
232  // order and loop information.
233  void ComputeTryBlockInformation();
234
235  // Inline this graph in `outer_graph`, replacing the given `invoke` instruction.
236  // Returns the instruction used to replace the invoke expression or null if the
237  // invoke is for a void method.
238  HInstruction* InlineInto(HGraph* outer_graph, HInvoke* invoke);
239
240  // Need to add a couple of blocks to test if the loop body is entered and
241  // put deoptimization instructions, etc.
242  void TransformLoopHeaderForBCE(HBasicBlock* header);
243
244  // Removes `block` from the graph. Assumes `block` has been disconnected from
245  // other blocks and has no instructions or phis.
246  void DeleteDeadEmptyBlock(HBasicBlock* block);
247
248  // Splits the edge between `block` and `successor` while preserving the
249  // indices in the predecessor/successor lists. If there are multiple edges
250  // between the blocks, the lowest indices are used.
251  // Returns the new block which is empty and has the same dex pc as `successor`.
252  HBasicBlock* SplitEdge(HBasicBlock* block, HBasicBlock* successor);
253
254  void SplitCriticalEdge(HBasicBlock* block, HBasicBlock* successor);
255  void SimplifyLoop(HBasicBlock* header);
256
257  int32_t GetNextInstructionId() {
258    DCHECK_NE(current_instruction_id_, INT32_MAX);
259    return current_instruction_id_++;
260  }
261
262  int32_t GetCurrentInstructionId() const {
263    return current_instruction_id_;
264  }
265
266  void SetCurrentInstructionId(int32_t id) {
267    current_instruction_id_ = id;
268  }
269
270  uint16_t GetMaximumNumberOfOutVRegs() const {
271    return maximum_number_of_out_vregs_;
272  }
273
274  void SetMaximumNumberOfOutVRegs(uint16_t new_value) {
275    maximum_number_of_out_vregs_ = new_value;
276  }
277
278  void UpdateMaximumNumberOfOutVRegs(uint16_t other_value) {
279    maximum_number_of_out_vregs_ = std::max(maximum_number_of_out_vregs_, other_value);
280  }
281
282  void UpdateTemporariesVRegSlots(size_t slots) {
283    temporaries_vreg_slots_ = std::max(slots, temporaries_vreg_slots_);
284  }
285
286  size_t GetTemporariesVRegSlots() const {
287    DCHECK(!in_ssa_form_);
288    return temporaries_vreg_slots_;
289  }
290
291  void SetNumberOfVRegs(uint16_t number_of_vregs) {
292    number_of_vregs_ = number_of_vregs;
293  }
294
295  uint16_t GetNumberOfVRegs() const {
296    return number_of_vregs_;
297  }
298
299  void SetNumberOfInVRegs(uint16_t value) {
300    number_of_in_vregs_ = value;
301  }
302
303  uint16_t GetNumberOfLocalVRegs() const {
304    DCHECK(!in_ssa_form_);
305    return number_of_vregs_ - number_of_in_vregs_;
306  }
307
308  const ArenaVector<HBasicBlock*>& GetReversePostOrder() const {
309    return reverse_post_order_;
310  }
311
312  const ArenaVector<HBasicBlock*>& GetLinearOrder() const {
313    return linear_order_;
314  }
315
316  bool HasBoundsChecks() const {
317    return has_bounds_checks_;
318  }
319
320  void SetHasBoundsChecks(bool value) {
321    has_bounds_checks_ = value;
322  }
323
324  bool ShouldGenerateConstructorBarrier() const {
325    return should_generate_constructor_barrier_;
326  }
327
328  bool IsDebuggable() const { return debuggable_; }
329
330  // Returns a constant of the given type and value. If it does not exist
331  // already, it is created and inserted into the graph. This method is only for
332  // integral types.
333  HConstant* GetConstant(Primitive::Type type, int64_t value, uint32_t dex_pc = kNoDexPc);
334
335  // TODO: This is problematic for the consistency of reference type propagation
336  // because it can be created anytime after the pass and thus it will be left
337  // with an invalid type.
338  HNullConstant* GetNullConstant(uint32_t dex_pc = kNoDexPc);
339
340  HIntConstant* GetIntConstant(int32_t value, uint32_t dex_pc = kNoDexPc) {
341    return CreateConstant(value, &cached_int_constants_, dex_pc);
342  }
343  HLongConstant* GetLongConstant(int64_t value, uint32_t dex_pc = kNoDexPc) {
344    return CreateConstant(value, &cached_long_constants_, dex_pc);
345  }
346  HFloatConstant* GetFloatConstant(float value, uint32_t dex_pc = kNoDexPc) {
347    return CreateConstant(bit_cast<int32_t, float>(value), &cached_float_constants_, dex_pc);
348  }
349  HDoubleConstant* GetDoubleConstant(double value, uint32_t dex_pc = kNoDexPc) {
350    return CreateConstant(bit_cast<int64_t, double>(value), &cached_double_constants_, dex_pc);
351  }
352
353  HCurrentMethod* GetCurrentMethod();
354
355  const DexFile& GetDexFile() const {
356    return dex_file_;
357  }
358
359  uint32_t GetMethodIdx() const {
360    return method_idx_;
361  }
362
363  InvokeType GetInvokeType() const {
364    return invoke_type_;
365  }
366
367  InstructionSet GetInstructionSet() const {
368    return instruction_set_;
369  }
370
371  bool HasTryCatch() const { return has_try_catch_; }
372  void SetHasTryCatch(bool value) { has_try_catch_ = value; }
373
374 private:
375  void FindBackEdges(ArenaBitVector* visited);
376  void RemoveInstructionsAsUsersFromDeadBlocks(const ArenaBitVector& visited) const;
377  void RemoveDeadBlocks(const ArenaBitVector& visited);
378
379  template <class InstructionType, typename ValueType>
380  InstructionType* CreateConstant(ValueType value,
381                                  ArenaSafeMap<ValueType, InstructionType*>* cache,
382                                  uint32_t dex_pc = kNoDexPc) {
383    // Try to find an existing constant of the given value.
384    InstructionType* constant = nullptr;
385    auto cached_constant = cache->find(value);
386    if (cached_constant != cache->end()) {
387      constant = cached_constant->second;
388    }
389
390    // If not found or previously deleted, create and cache a new instruction.
391    // Don't bother reviving a previously deleted instruction, for simplicity.
392    if (constant == nullptr || constant->GetBlock() == nullptr) {
393      constant = new (arena_) InstructionType(value, dex_pc);
394      cache->Overwrite(value, constant);
395      InsertConstant(constant);
396    }
397    return constant;
398  }
399
400  void InsertConstant(HConstant* instruction);
401
402  // Cache a float constant into the graph. This method should only be
403  // called by the SsaBuilder when creating "equivalent" instructions.
404  void CacheFloatConstant(HFloatConstant* constant);
405
406  // See CacheFloatConstant comment.
407  void CacheDoubleConstant(HDoubleConstant* constant);
408
409  ArenaAllocator* const arena_;
410
411  // List of blocks in insertion order.
412  ArenaVector<HBasicBlock*> blocks_;
413
414  // List of blocks to perform a reverse post order tree traversal.
415  ArenaVector<HBasicBlock*> reverse_post_order_;
416
417  // List of blocks to perform a linear order tree traversal.
418  ArenaVector<HBasicBlock*> linear_order_;
419
420  HBasicBlock* entry_block_;
421  HBasicBlock* exit_block_;
422
423  // The maximum number of virtual registers arguments passed to a HInvoke in this graph.
424  uint16_t maximum_number_of_out_vregs_;
425
426  // The number of virtual registers in this method. Contains the parameters.
427  uint16_t number_of_vregs_;
428
429  // The number of virtual registers used by parameters of this method.
430  uint16_t number_of_in_vregs_;
431
432  // Number of vreg size slots that the temporaries use (used in baseline compiler).
433  size_t temporaries_vreg_slots_;
434
435  // Has bounds checks. We can totally skip BCE if it's false.
436  bool has_bounds_checks_;
437
438  // Flag whether there are any try/catch blocks in the graph. We will skip
439  // try/catch-related passes if false.
440  bool has_try_catch_;
441
442  // Indicates whether the graph should be compiled in a way that
443  // ensures full debuggability. If false, we can apply more
444  // aggressive optimizations that may limit the level of debugging.
445  const bool debuggable_;
446
447  // The current id to assign to a newly added instruction. See HInstruction.id_.
448  int32_t current_instruction_id_;
449
450  // The dex file from which the method is from.
451  const DexFile& dex_file_;
452
453  // The method index in the dex file.
454  const uint32_t method_idx_;
455
456  // If inlined, this encodes how the callee is being invoked.
457  const InvokeType invoke_type_;
458
459  // Whether the graph has been transformed to SSA form. Only used
460  // in debug mode to ensure we are not using properties only valid
461  // for non-SSA form (like the number of temporaries).
462  bool in_ssa_form_;
463
464  const bool should_generate_constructor_barrier_;
465
466  const InstructionSet instruction_set_;
467
468  // Cached constants.
469  HNullConstant* cached_null_constant_;
470  ArenaSafeMap<int32_t, HIntConstant*> cached_int_constants_;
471  ArenaSafeMap<int32_t, HFloatConstant*> cached_float_constants_;
472  ArenaSafeMap<int64_t, HLongConstant*> cached_long_constants_;
473  ArenaSafeMap<int64_t, HDoubleConstant*> cached_double_constants_;
474
475  HCurrentMethod* cached_current_method_;
476
477  friend class SsaBuilder;           // For caching constants.
478  friend class SsaLivenessAnalysis;  // For the linear order.
479  ART_FRIEND_TEST(GraphTest, IfSuccessorSimpleJoinBlock1);
480  DISALLOW_COPY_AND_ASSIGN(HGraph);
481};
482
483class HLoopInformation : public ArenaObject<kArenaAllocLoopInfo> {
484 public:
485  HLoopInformation(HBasicBlock* header, HGraph* graph)
486      : header_(header),
487        suspend_check_(nullptr),
488        back_edges_(graph->GetArena()->Adapter(kArenaAllocLoopInfoBackEdges)),
489        // Make bit vector growable, as the number of blocks may change.
490        blocks_(graph->GetArena(), graph->GetBlocks().size(), true) {
491    back_edges_.reserve(kDefaultNumberOfBackEdges);
492  }
493
494  HBasicBlock* GetHeader() const {
495    return header_;
496  }
497
498  void SetHeader(HBasicBlock* block) {
499    header_ = block;
500  }
501
502  HSuspendCheck* GetSuspendCheck() const { return suspend_check_; }
503  void SetSuspendCheck(HSuspendCheck* check) { suspend_check_ = check; }
504  bool HasSuspendCheck() const { return suspend_check_ != nullptr; }
505
506  void AddBackEdge(HBasicBlock* back_edge) {
507    back_edges_.push_back(back_edge);
508  }
509
510  void RemoveBackEdge(HBasicBlock* back_edge) {
511    RemoveElement(back_edges_, back_edge);
512  }
513
514  bool IsBackEdge(const HBasicBlock& block) const {
515    return ContainsElement(back_edges_, &block);
516  }
517
518  size_t NumberOfBackEdges() const {
519    return back_edges_.size();
520  }
521
522  HBasicBlock* GetPreHeader() const;
523
524  const ArenaVector<HBasicBlock*>& GetBackEdges() const {
525    return back_edges_;
526  }
527
528  // Returns the lifetime position of the back edge that has the
529  // greatest lifetime position.
530  size_t GetLifetimeEnd() const;
531
532  void ReplaceBackEdge(HBasicBlock* existing, HBasicBlock* new_back_edge) {
533    ReplaceElement(back_edges_, existing, new_back_edge);
534  }
535
536  // Finds blocks that are part of this loop. Returns whether the loop is a natural loop,
537  // that is the header dominates the back edge.
538  bool Populate();
539
540  // Reanalyzes the loop by removing loop info from its blocks and re-running
541  // Populate(). If there are no back edges left, the loop info is completely
542  // removed as well as its SuspendCheck instruction. It must be run on nested
543  // inner loops first.
544  void Update();
545
546  // Returns whether this loop information contains `block`.
547  // Note that this loop information *must* be populated before entering this function.
548  bool Contains(const HBasicBlock& block) const;
549
550  // Returns whether this loop information is an inner loop of `other`.
551  // Note that `other` *must* be populated before entering this function.
552  bool IsIn(const HLoopInformation& other) const;
553
554  // Returns true if instruction is not defined within this loop or any loop nested inside
555  // this loop. If must_dominate is set, only definitions that actually dominate the loop
556  // header can be invariant. Otherwise, any definition outside the loop, including
557  // definitions that appear after the loop, is invariant.
558  bool IsLoopInvariant(HInstruction* instruction, bool must_dominate) const;
559
560  const ArenaBitVector& GetBlocks() const { return blocks_; }
561
562  void Add(HBasicBlock* block);
563  void Remove(HBasicBlock* block);
564
565 private:
566  // Internal recursive implementation of `Populate`.
567  void PopulateRecursive(HBasicBlock* block);
568
569  HBasicBlock* header_;
570  HSuspendCheck* suspend_check_;
571  ArenaVector<HBasicBlock*> back_edges_;
572  ArenaBitVector blocks_;
573
574  DISALLOW_COPY_AND_ASSIGN(HLoopInformation);
575};
576
577// Stores try/catch information for basic blocks.
578// Note that HGraph is constructed so that catch blocks cannot simultaneously
579// be try blocks.
580class TryCatchInformation : public ArenaObject<kArenaAllocTryCatchInfo> {
581 public:
582  // Try block information constructor.
583  explicit TryCatchInformation(const HTryBoundary& try_entry)
584      : try_entry_(&try_entry),
585        catch_dex_file_(nullptr),
586        catch_type_index_(DexFile::kDexNoIndex16) {
587    DCHECK(try_entry_ != nullptr);
588  }
589
590  // Catch block information constructor.
591  TryCatchInformation(uint16_t catch_type_index, const DexFile& dex_file)
592      : try_entry_(nullptr),
593        catch_dex_file_(&dex_file),
594        catch_type_index_(catch_type_index) {}
595
596  bool IsTryBlock() const { return try_entry_ != nullptr; }
597
598  const HTryBoundary& GetTryEntry() const {
599    DCHECK(IsTryBlock());
600    return *try_entry_;
601  }
602
603  bool IsCatchBlock() const { return catch_dex_file_ != nullptr; }
604
605  bool IsCatchAllTypeIndex() const {
606    DCHECK(IsCatchBlock());
607    return catch_type_index_ == DexFile::kDexNoIndex16;
608  }
609
610  uint16_t GetCatchTypeIndex() const {
611    DCHECK(IsCatchBlock());
612    return catch_type_index_;
613  }
614
615  const DexFile& GetCatchDexFile() const {
616    DCHECK(IsCatchBlock());
617    return *catch_dex_file_;
618  }
619
620 private:
621  // One of possibly several TryBoundary instructions entering the block's try.
622  // Only set for try blocks.
623  const HTryBoundary* try_entry_;
624
625  // Exception type information. Only set for catch blocks.
626  const DexFile* catch_dex_file_;
627  const uint16_t catch_type_index_;
628};
629
630static constexpr size_t kNoLifetime = -1;
631static constexpr uint32_t kInvalidBlockId = static_cast<uint32_t>(-1);
632
633// A block in a method. Contains the list of instructions represented
634// as a double linked list. Each block knows its predecessors and
635// successors.
636
637class HBasicBlock : public ArenaObject<kArenaAllocBasicBlock> {
638 public:
639  HBasicBlock(HGraph* graph, uint32_t dex_pc = kNoDexPc)
640      : graph_(graph),
641        predecessors_(graph->GetArena()->Adapter(kArenaAllocPredecessors)),
642        successors_(graph->GetArena()->Adapter(kArenaAllocSuccessors)),
643        loop_information_(nullptr),
644        dominator_(nullptr),
645        dominated_blocks_(graph->GetArena()->Adapter(kArenaAllocDominated)),
646        block_id_(kInvalidBlockId),
647        dex_pc_(dex_pc),
648        lifetime_start_(kNoLifetime),
649        lifetime_end_(kNoLifetime),
650        try_catch_information_(nullptr) {
651    predecessors_.reserve(kDefaultNumberOfPredecessors);
652    successors_.reserve(kDefaultNumberOfSuccessors);
653    dominated_blocks_.reserve(kDefaultNumberOfDominatedBlocks);
654  }
655
656  const ArenaVector<HBasicBlock*>& GetPredecessors() const {
657    return predecessors_;
658  }
659
660  const ArenaVector<HBasicBlock*>& GetSuccessors() const {
661    return successors_;
662  }
663
664  ArrayRef<HBasicBlock* const> GetNormalSuccessors() const;
665  ArrayRef<HBasicBlock* const> GetExceptionalSuccessors() const;
666
667  bool HasSuccessor(const HBasicBlock* block, size_t start_from = 0u) {
668    return ContainsElement(successors_, block, start_from);
669  }
670
671  const ArenaVector<HBasicBlock*>& GetDominatedBlocks() const {
672    return dominated_blocks_;
673  }
674
675  bool IsEntryBlock() const {
676    return graph_->GetEntryBlock() == this;
677  }
678
679  bool IsExitBlock() const {
680    return graph_->GetExitBlock() == this;
681  }
682
683  bool IsSingleGoto() const;
684  bool IsSingleTryBoundary() const;
685
686  // Returns true if this block emits nothing but a jump.
687  bool IsSingleJump() const {
688    HLoopInformation* loop_info = GetLoopInformation();
689    return (IsSingleGoto() || IsSingleTryBoundary())
690           // Back edges generate a suspend check.
691           && (loop_info == nullptr || !loop_info->IsBackEdge(*this));
692  }
693
694  void AddBackEdge(HBasicBlock* back_edge) {
695    if (loop_information_ == nullptr) {
696      loop_information_ = new (graph_->GetArena()) HLoopInformation(this, graph_);
697    }
698    DCHECK_EQ(loop_information_->GetHeader(), this);
699    loop_information_->AddBackEdge(back_edge);
700  }
701
702  HGraph* GetGraph() const { return graph_; }
703  void SetGraph(HGraph* graph) { graph_ = graph; }
704
705  uint32_t GetBlockId() const { return block_id_; }
706  void SetBlockId(int id) { block_id_ = id; }
707  uint32_t GetDexPc() const { return dex_pc_; }
708
709  HBasicBlock* GetDominator() const { return dominator_; }
710  void SetDominator(HBasicBlock* dominator) { dominator_ = dominator; }
711  void AddDominatedBlock(HBasicBlock* block) { dominated_blocks_.push_back(block); }
712
713  void RemoveDominatedBlock(HBasicBlock* block) {
714    RemoveElement(dominated_blocks_, block);
715  }
716
717  void ReplaceDominatedBlock(HBasicBlock* existing, HBasicBlock* new_block) {
718    ReplaceElement(dominated_blocks_, existing, new_block);
719  }
720
721  void ClearDominanceInformation();
722
723  int NumberOfBackEdges() const {
724    return IsLoopHeader() ? loop_information_->NumberOfBackEdges() : 0;
725  }
726
727  HInstruction* GetFirstInstruction() const { return instructions_.first_instruction_; }
728  HInstruction* GetLastInstruction() const { return instructions_.last_instruction_; }
729  const HInstructionList& GetInstructions() const { return instructions_; }
730  HInstruction* GetFirstPhi() const { return phis_.first_instruction_; }
731  HInstruction* GetLastPhi() const { return phis_.last_instruction_; }
732  const HInstructionList& GetPhis() const { return phis_; }
733
734  void AddSuccessor(HBasicBlock* block) {
735    successors_.push_back(block);
736    block->predecessors_.push_back(this);
737  }
738
739  void ReplaceSuccessor(HBasicBlock* existing, HBasicBlock* new_block) {
740    size_t successor_index = GetSuccessorIndexOf(existing);
741    existing->RemovePredecessor(this);
742    new_block->predecessors_.push_back(this);
743    successors_[successor_index] = new_block;
744  }
745
746  void ReplacePredecessor(HBasicBlock* existing, HBasicBlock* new_block) {
747    size_t predecessor_index = GetPredecessorIndexOf(existing);
748    existing->RemoveSuccessor(this);
749    new_block->successors_.push_back(this);
750    predecessors_[predecessor_index] = new_block;
751  }
752
753  // Insert `this` between `predecessor` and `successor. This method
754  // preserves the indicies, and will update the first edge found between
755  // `predecessor` and `successor`.
756  void InsertBetween(HBasicBlock* predecessor, HBasicBlock* successor) {
757    size_t predecessor_index = successor->GetPredecessorIndexOf(predecessor);
758    size_t successor_index = predecessor->GetSuccessorIndexOf(successor);
759    successor->predecessors_[predecessor_index] = this;
760    predecessor->successors_[successor_index] = this;
761    successors_.push_back(successor);
762    predecessors_.push_back(predecessor);
763  }
764
765  void RemovePredecessor(HBasicBlock* block) {
766    predecessors_.erase(predecessors_.begin() + GetPredecessorIndexOf(block));
767  }
768
769  void RemoveSuccessor(HBasicBlock* block) {
770    successors_.erase(successors_.begin() + GetSuccessorIndexOf(block));
771  }
772
773  void ClearAllPredecessors() {
774    predecessors_.clear();
775  }
776
777  void AddPredecessor(HBasicBlock* block) {
778    predecessors_.push_back(block);
779    block->successors_.push_back(this);
780  }
781
782  void SwapPredecessors() {
783    DCHECK_EQ(predecessors_.size(), 2u);
784    std::swap(predecessors_[0], predecessors_[1]);
785  }
786
787  void SwapSuccessors() {
788    DCHECK_EQ(successors_.size(), 2u);
789    std::swap(successors_[0], successors_[1]);
790  }
791
792  size_t GetPredecessorIndexOf(HBasicBlock* predecessor) const {
793    return IndexOfElement(predecessors_, predecessor);
794  }
795
796  size_t GetSuccessorIndexOf(HBasicBlock* successor) const {
797    return IndexOfElement(successors_, successor);
798  }
799
800  HBasicBlock* GetSinglePredecessor() const {
801    DCHECK_EQ(GetPredecessors().size(), 1u);
802    return GetPredecessors()[0];
803  }
804
805  HBasicBlock* GetSingleSuccessor() const {
806    DCHECK_EQ(GetSuccessors().size(), 1u);
807    return GetSuccessors()[0];
808  }
809
810  // Returns whether the first occurrence of `predecessor` in the list of
811  // predecessors is at index `idx`.
812  bool IsFirstIndexOfPredecessor(HBasicBlock* predecessor, size_t idx) const {
813    DCHECK_EQ(GetPredecessors()[idx], predecessor);
814    return GetPredecessorIndexOf(predecessor) == idx;
815  }
816
817  // Create a new block between this block and its predecessors. The new block
818  // is added to the graph, all predecessor edges are relinked to it and an edge
819  // is created to `this`. Returns the new empty block. Reverse post order or
820  // loop and try/catch information are not updated.
821  HBasicBlock* CreateImmediateDominator();
822
823  // Split the block into two blocks just before `cursor`. Returns the newly
824  // created, latter block. Note that this method will add the block to the
825  // graph, create a Goto at the end of the former block and will create an edge
826  // between the blocks. It will not, however, update the reverse post order or
827  // loop and try/catch information.
828  HBasicBlock* SplitBefore(HInstruction* cursor);
829
830  // Split the block into two blocks just after `cursor`. Returns the newly
831  // created block. Note that this method just updates raw block information,
832  // like predecessors, successors, dominators, and instruction list. It does not
833  // update the graph, reverse post order, loop information, nor make sure the
834  // blocks are consistent (for example ending with a control flow instruction).
835  HBasicBlock* SplitAfter(HInstruction* cursor);
836
837  // Split catch block into two blocks after the original move-exception bytecode
838  // instruction, or at the beginning if not present. Returns the newly created,
839  // latter block, or nullptr if such block could not be created (must be dead
840  // in that case). Note that this method just updates raw block information,
841  // like predecessors, successors, dominators, and instruction list. It does not
842  // update the graph, reverse post order, loop information, nor make sure the
843  // blocks are consistent (for example ending with a control flow instruction).
844  HBasicBlock* SplitCatchBlockAfterMoveException();
845
846  // Merge `other` at the end of `this`. Successors and dominated blocks of
847  // `other` are changed to be successors and dominated blocks of `this`. Note
848  // that this method does not update the graph, reverse post order, loop
849  // information, nor make sure the blocks are consistent (for example ending
850  // with a control flow instruction).
851  void MergeWithInlined(HBasicBlock* other);
852
853  // Replace `this` with `other`. Predecessors, successors, and dominated blocks
854  // of `this` are moved to `other`.
855  // Note that this method does not update the graph, reverse post order, loop
856  // information, nor make sure the blocks are consistent (for example ending
857  // with a control flow instruction).
858  void ReplaceWith(HBasicBlock* other);
859
860  // Merge `other` at the end of `this`. This method updates loops, reverse post
861  // order, links to predecessors, successors, dominators and deletes the block
862  // from the graph. The two blocks must be successive, i.e. `this` the only
863  // predecessor of `other` and vice versa.
864  void MergeWith(HBasicBlock* other);
865
866  // Disconnects `this` from all its predecessors, successors and dominator,
867  // removes it from all loops it is included in and eventually from the graph.
868  // The block must not dominate any other block. Predecessors and successors
869  // are safely updated.
870  void DisconnectAndDelete();
871
872  void AddInstruction(HInstruction* instruction);
873  // Insert `instruction` before/after an existing instruction `cursor`.
874  void InsertInstructionBefore(HInstruction* instruction, HInstruction* cursor);
875  void InsertInstructionAfter(HInstruction* instruction, HInstruction* cursor);
876  // Replace instruction `initial` with `replacement` within this block.
877  void ReplaceAndRemoveInstructionWith(HInstruction* initial,
878                                       HInstruction* replacement);
879  void AddPhi(HPhi* phi);
880  void InsertPhiAfter(HPhi* instruction, HPhi* cursor);
881  // RemoveInstruction and RemovePhi delete a given instruction from the respective
882  // instruction list. With 'ensure_safety' set to true, it verifies that the
883  // instruction is not in use and removes it from the use lists of its inputs.
884  void RemoveInstruction(HInstruction* instruction, bool ensure_safety = true);
885  void RemovePhi(HPhi* phi, bool ensure_safety = true);
886  void RemoveInstructionOrPhi(HInstruction* instruction, bool ensure_safety = true);
887
888  bool IsLoopHeader() const {
889    return IsInLoop() && (loop_information_->GetHeader() == this);
890  }
891
892  bool IsLoopPreHeaderFirstPredecessor() const {
893    DCHECK(IsLoopHeader());
894    return GetPredecessors()[0] == GetLoopInformation()->GetPreHeader();
895  }
896
897  HLoopInformation* GetLoopInformation() const {
898    return loop_information_;
899  }
900
901  // Set the loop_information_ on this block. Overrides the current
902  // loop_information if it is an outer loop of the passed loop information.
903  // Note that this method is called while creating the loop information.
904  void SetInLoop(HLoopInformation* info) {
905    if (IsLoopHeader()) {
906      // Nothing to do. This just means `info` is an outer loop.
907    } else if (!IsInLoop()) {
908      loop_information_ = info;
909    } else if (loop_information_->Contains(*info->GetHeader())) {
910      // Block is currently part of an outer loop. Make it part of this inner loop.
911      // Note that a non loop header having a loop information means this loop information
912      // has already been populated
913      loop_information_ = info;
914    } else {
915      // Block is part of an inner loop. Do not update the loop information.
916      // Note that we cannot do the check `info->Contains(loop_information_)->GetHeader()`
917      // at this point, because this method is being called while populating `info`.
918    }
919  }
920
921  // Raw update of the loop information.
922  void SetLoopInformation(HLoopInformation* info) {
923    loop_information_ = info;
924  }
925
926  bool IsInLoop() const { return loop_information_ != nullptr; }
927
928  TryCatchInformation* GetTryCatchInformation() const { return try_catch_information_; }
929
930  void SetTryCatchInformation(TryCatchInformation* try_catch_information) {
931    try_catch_information_ = try_catch_information;
932  }
933
934  bool IsTryBlock() const {
935    return try_catch_information_ != nullptr && try_catch_information_->IsTryBlock();
936  }
937
938  bool IsCatchBlock() const {
939    return try_catch_information_ != nullptr && try_catch_information_->IsCatchBlock();
940  }
941
942  // Returns the try entry that this block's successors should have. They will
943  // be in the same try, unless the block ends in a try boundary. In that case,
944  // the appropriate try entry will be returned.
945  const HTryBoundary* ComputeTryEntryOfSuccessors() const;
946
947  bool HasThrowingInstructions() const;
948
949  // Returns whether this block dominates the blocked passed as parameter.
950  bool Dominates(HBasicBlock* block) const;
951
952  size_t GetLifetimeStart() const { return lifetime_start_; }
953  size_t GetLifetimeEnd() const { return lifetime_end_; }
954
955  void SetLifetimeStart(size_t start) { lifetime_start_ = start; }
956  void SetLifetimeEnd(size_t end) { lifetime_end_ = end; }
957
958  bool EndsWithControlFlowInstruction() const;
959  bool EndsWithIf() const;
960  bool EndsWithTryBoundary() const;
961  bool HasSinglePhi() const;
962
963 private:
964  HGraph* graph_;
965  ArenaVector<HBasicBlock*> predecessors_;
966  ArenaVector<HBasicBlock*> successors_;
967  HInstructionList instructions_;
968  HInstructionList phis_;
969  HLoopInformation* loop_information_;
970  HBasicBlock* dominator_;
971  ArenaVector<HBasicBlock*> dominated_blocks_;
972  uint32_t block_id_;
973  // The dex program counter of the first instruction of this block.
974  const uint32_t dex_pc_;
975  size_t lifetime_start_;
976  size_t lifetime_end_;
977  TryCatchInformation* try_catch_information_;
978
979  friend class HGraph;
980  friend class HInstruction;
981
982  DISALLOW_COPY_AND_ASSIGN(HBasicBlock);
983};
984
985// Iterates over the LoopInformation of all loops which contain 'block'
986// from the innermost to the outermost.
987class HLoopInformationOutwardIterator : public ValueObject {
988 public:
989  explicit HLoopInformationOutwardIterator(const HBasicBlock& block)
990      : current_(block.GetLoopInformation()) {}
991
992  bool Done() const { return current_ == nullptr; }
993
994  void Advance() {
995    DCHECK(!Done());
996    current_ = current_->GetPreHeader()->GetLoopInformation();
997  }
998
999  HLoopInformation* Current() const {
1000    DCHECK(!Done());
1001    return current_;
1002  }
1003
1004 private:
1005  HLoopInformation* current_;
1006
1007  DISALLOW_COPY_AND_ASSIGN(HLoopInformationOutwardIterator);
1008};
1009
1010#define FOR_EACH_CONCRETE_INSTRUCTION_COMMON(M)                         \
1011  M(Above, Condition)                                                   \
1012  M(AboveOrEqual, Condition)                                            \
1013  M(Add, BinaryOperation)                                               \
1014  M(And, BinaryOperation)                                               \
1015  M(ArrayGet, Instruction)                                              \
1016  M(ArrayLength, Instruction)                                           \
1017  M(ArraySet, Instruction)                                              \
1018  M(Below, Condition)                                                   \
1019  M(BelowOrEqual, Condition)                                            \
1020  M(BooleanNot, UnaryOperation)                                         \
1021  M(BoundsCheck, Instruction)                                           \
1022  M(BoundType, Instruction)                                             \
1023  M(CheckCast, Instruction)                                             \
1024  M(ClearException, Instruction)                                        \
1025  M(ClinitCheck, Instruction)                                           \
1026  M(Compare, BinaryOperation)                                           \
1027  M(Condition, BinaryOperation)                                         \
1028  M(CurrentMethod, Instruction)                                         \
1029  M(Deoptimize, Instruction)                                            \
1030  M(Div, BinaryOperation)                                               \
1031  M(DivZeroCheck, Instruction)                                          \
1032  M(DoubleConstant, Constant)                                           \
1033  M(Equal, Condition)                                                   \
1034  M(Exit, Instruction)                                                  \
1035  M(FakeString, Instruction)                                            \
1036  M(FloatConstant, Constant)                                            \
1037  M(Goto, Instruction)                                                  \
1038  M(GreaterThan, Condition)                                             \
1039  M(GreaterThanOrEqual, Condition)                                      \
1040  M(If, Instruction)                                                    \
1041  M(InstanceFieldGet, Instruction)                                      \
1042  M(InstanceFieldSet, Instruction)                                      \
1043  M(InstanceOf, Instruction)                                            \
1044  M(IntConstant, Constant)                                              \
1045  M(InvokeUnresolved, Invoke)                                           \
1046  M(InvokeInterface, Invoke)                                            \
1047  M(InvokeStaticOrDirect, Invoke)                                       \
1048  M(InvokeVirtual, Invoke)                                              \
1049  M(LessThan, Condition)                                                \
1050  M(LessThanOrEqual, Condition)                                         \
1051  M(LoadClass, Instruction)                                             \
1052  M(LoadException, Instruction)                                         \
1053  M(LoadLocal, Instruction)                                             \
1054  M(LoadString, Instruction)                                            \
1055  M(Local, Instruction)                                                 \
1056  M(LongConstant, Constant)                                             \
1057  M(MemoryBarrier, Instruction)                                         \
1058  M(MonitorOperation, Instruction)                                      \
1059  M(Mul, BinaryOperation)                                               \
1060  M(Neg, UnaryOperation)                                                \
1061  M(NewArray, Instruction)                                              \
1062  M(NewInstance, Instruction)                                           \
1063  M(Not, UnaryOperation)                                                \
1064  M(NotEqual, Condition)                                                \
1065  M(NullConstant, Instruction)                                          \
1066  M(NullCheck, Instruction)                                             \
1067  M(Or, BinaryOperation)                                                \
1068  M(PackedSwitch, Instruction)                                          \
1069  M(ParallelMove, Instruction)                                          \
1070  M(ParameterValue, Instruction)                                        \
1071  M(Phi, Instruction)                                                   \
1072  M(Rem, BinaryOperation)                                               \
1073  M(Return, Instruction)                                                \
1074  M(ReturnVoid, Instruction)                                            \
1075  M(Shl, BinaryOperation)                                               \
1076  M(Shr, BinaryOperation)                                               \
1077  M(StaticFieldGet, Instruction)                                        \
1078  M(StaticFieldSet, Instruction)                                        \
1079  M(UnresolvedInstanceFieldGet, Instruction)                            \
1080  M(UnresolvedInstanceFieldSet, Instruction)                            \
1081  M(UnresolvedStaticFieldGet, Instruction)                              \
1082  M(UnresolvedStaticFieldSet, Instruction)                              \
1083  M(StoreLocal, Instruction)                                            \
1084  M(Sub, BinaryOperation)                                               \
1085  M(SuspendCheck, Instruction)                                          \
1086  M(Temporary, Instruction)                                             \
1087  M(Throw, Instruction)                                                 \
1088  M(TryBoundary, Instruction)                                           \
1089  M(TypeConversion, Instruction)                                        \
1090  M(UShr, BinaryOperation)                                              \
1091  M(Xor, BinaryOperation)                                               \
1092
1093#define FOR_EACH_CONCRETE_INSTRUCTION_ARM(M)
1094
1095#ifndef ART_ENABLE_CODEGEN_arm64
1096#define FOR_EACH_CONCRETE_INSTRUCTION_ARM64(M)
1097#else
1098#define FOR_EACH_CONCRETE_INSTRUCTION_ARM64(M)                          \
1099  M(Arm64IntermediateAddress, Instruction)
1100#endif
1101
1102#define FOR_EACH_CONCRETE_INSTRUCTION_MIPS(M)
1103
1104#define FOR_EACH_CONCRETE_INSTRUCTION_MIPS64(M)
1105
1106#ifndef ART_ENABLE_CODEGEN_x86
1107#define FOR_EACH_CONCRETE_INSTRUCTION_X86(M)
1108#else
1109#define FOR_EACH_CONCRETE_INSTRUCTION_X86(M)                            \
1110  M(X86ComputeBaseMethodAddress, Instruction)                           \
1111  M(X86LoadFromConstantTable, Instruction)                              \
1112  M(X86PackedSwitch, Instruction)
1113#endif
1114
1115#define FOR_EACH_CONCRETE_INSTRUCTION_X86_64(M)
1116
1117#define FOR_EACH_CONCRETE_INSTRUCTION(M)                                \
1118  FOR_EACH_CONCRETE_INSTRUCTION_COMMON(M)                               \
1119  FOR_EACH_CONCRETE_INSTRUCTION_ARM(M)                                  \
1120  FOR_EACH_CONCRETE_INSTRUCTION_ARM64(M)                                \
1121  FOR_EACH_CONCRETE_INSTRUCTION_MIPS(M)                                 \
1122  FOR_EACH_CONCRETE_INSTRUCTION_MIPS64(M)                               \
1123  FOR_EACH_CONCRETE_INSTRUCTION_X86(M)                                  \
1124  FOR_EACH_CONCRETE_INSTRUCTION_X86_64(M)
1125
1126#define FOR_EACH_INSTRUCTION(M)                                         \
1127  FOR_EACH_CONCRETE_INSTRUCTION(M)                                      \
1128  M(Constant, Instruction)                                              \
1129  M(UnaryOperation, Instruction)                                        \
1130  M(BinaryOperation, Instruction)                                       \
1131  M(Invoke, Instruction)
1132
1133#define FORWARD_DECLARATION(type, super) class H##type;
1134FOR_EACH_INSTRUCTION(FORWARD_DECLARATION)
1135#undef FORWARD_DECLARATION
1136
1137#define DECLARE_INSTRUCTION(type)                                       \
1138  InstructionKind GetKind() const OVERRIDE { return k##type; }          \
1139  const char* DebugName() const OVERRIDE { return #type; }              \
1140  const H##type* As##type() const OVERRIDE { return this; }             \
1141  H##type* As##type() OVERRIDE { return this; }                         \
1142  bool InstructionTypeEquals(HInstruction* other) const OVERRIDE {      \
1143    return other->Is##type();                                           \
1144  }                                                                     \
1145  void Accept(HGraphVisitor* visitor) OVERRIDE
1146
1147template <typename T> class HUseList;
1148
1149template <typename T>
1150class HUseListNode : public ArenaObject<kArenaAllocUseListNode> {
1151 public:
1152  HUseListNode* GetPrevious() const { return prev_; }
1153  HUseListNode* GetNext() const { return next_; }
1154  T GetUser() const { return user_; }
1155  size_t GetIndex() const { return index_; }
1156  void SetIndex(size_t index) { index_ = index; }
1157
1158 private:
1159  HUseListNode(T user, size_t index)
1160      : user_(user), index_(index), prev_(nullptr), next_(nullptr) {}
1161
1162  T const user_;
1163  size_t index_;
1164  HUseListNode<T>* prev_;
1165  HUseListNode<T>* next_;
1166
1167  friend class HUseList<T>;
1168
1169  DISALLOW_COPY_AND_ASSIGN(HUseListNode);
1170};
1171
1172template <typename T>
1173class HUseList : public ValueObject {
1174 public:
1175  HUseList() : first_(nullptr) {}
1176
1177  void Clear() {
1178    first_ = nullptr;
1179  }
1180
1181  // Adds a new entry at the beginning of the use list and returns
1182  // the newly created node.
1183  HUseListNode<T>* AddUse(T user, size_t index, ArenaAllocator* arena) {
1184    HUseListNode<T>* new_node = new (arena) HUseListNode<T>(user, index);
1185    if (IsEmpty()) {
1186      first_ = new_node;
1187    } else {
1188      first_->prev_ = new_node;
1189      new_node->next_ = first_;
1190      first_ = new_node;
1191    }
1192    return new_node;
1193  }
1194
1195  HUseListNode<T>* GetFirst() const {
1196    return first_;
1197  }
1198
1199  void Remove(HUseListNode<T>* node) {
1200    DCHECK(node != nullptr);
1201    DCHECK(Contains(node));
1202
1203    if (node->prev_ != nullptr) {
1204      node->prev_->next_ = node->next_;
1205    }
1206    if (node->next_ != nullptr) {
1207      node->next_->prev_ = node->prev_;
1208    }
1209    if (node == first_) {
1210      first_ = node->next_;
1211    }
1212  }
1213
1214  bool Contains(const HUseListNode<T>* node) const {
1215    if (node == nullptr) {
1216      return false;
1217    }
1218    for (HUseListNode<T>* current = first_; current != nullptr; current = current->GetNext()) {
1219      if (current == node) {
1220        return true;
1221      }
1222    }
1223    return false;
1224  }
1225
1226  bool IsEmpty() const {
1227    return first_ == nullptr;
1228  }
1229
1230  bool HasOnlyOneUse() const {
1231    return first_ != nullptr && first_->next_ == nullptr;
1232  }
1233
1234  size_t SizeSlow() const {
1235    size_t count = 0;
1236    for (HUseListNode<T>* current = first_; current != nullptr; current = current->GetNext()) {
1237      ++count;
1238    }
1239    return count;
1240  }
1241
1242 private:
1243  HUseListNode<T>* first_;
1244};
1245
1246template<typename T>
1247class HUseIterator : public ValueObject {
1248 public:
1249  explicit HUseIterator(const HUseList<T>& uses) : current_(uses.GetFirst()) {}
1250
1251  bool Done() const { return current_ == nullptr; }
1252
1253  void Advance() {
1254    DCHECK(!Done());
1255    current_ = current_->GetNext();
1256  }
1257
1258  HUseListNode<T>* Current() const {
1259    DCHECK(!Done());
1260    return current_;
1261  }
1262
1263 private:
1264  HUseListNode<T>* current_;
1265
1266  friend class HValue;
1267};
1268
1269// This class is used by HEnvironment and HInstruction classes to record the
1270// instructions they use and pointers to the corresponding HUseListNodes kept
1271// by the used instructions.
1272template <typename T>
1273class HUserRecord : public ValueObject {
1274 public:
1275  HUserRecord() : instruction_(nullptr), use_node_(nullptr) {}
1276  explicit HUserRecord(HInstruction* instruction) : instruction_(instruction), use_node_(nullptr) {}
1277
1278  HUserRecord(const HUserRecord<T>& old_record, HUseListNode<T>* use_node)
1279    : instruction_(old_record.instruction_), use_node_(use_node) {
1280    DCHECK(instruction_ != nullptr);
1281    DCHECK(use_node_ != nullptr);
1282    DCHECK(old_record.use_node_ == nullptr);
1283  }
1284
1285  HInstruction* GetInstruction() const { return instruction_; }
1286  HUseListNode<T>* GetUseNode() const { return use_node_; }
1287
1288 private:
1289  // Instruction used by the user.
1290  HInstruction* instruction_;
1291
1292  // Corresponding entry in the use list kept by 'instruction_'.
1293  HUseListNode<T>* use_node_;
1294};
1295
1296/**
1297 * Side-effects representation.
1298 *
1299 * For write/read dependences on fields/arrays, the dependence analysis uses
1300 * type disambiguation (e.g. a float field write cannot modify the value of an
1301 * integer field read) and the access type (e.g.  a reference array write cannot
1302 * modify the value of a reference field read [although it may modify the
1303 * reference fetch prior to reading the field, which is represented by its own
1304 * write/read dependence]). The analysis makes conservative points-to
1305 * assumptions on reference types (e.g. two same typed arrays are assumed to be
1306 * the same, and any reference read depends on any reference read without
1307 * further regard of its type).
1308 *
1309 * The internal representation uses 38-bit and is described in the table below.
1310 * The first line indicates the side effect, and for field/array accesses the
1311 * second line indicates the type of the access (in the order of the
1312 * Primitive::Type enum).
1313 * The two numbered lines below indicate the bit position in the bitfield (read
1314 * vertically).
1315 *
1316 *   |Depends on GC|ARRAY-R  |FIELD-R  |Can trigger GC|ARRAY-W  |FIELD-W  |
1317 *   +-------------+---------+---------+--------------+---------+---------+
1318 *   |             |DFJISCBZL|DFJISCBZL|              |DFJISCBZL|DFJISCBZL|
1319 *   |      3      |333333322|222222221|       1      |111111110|000000000|
1320 *   |      7      |654321098|765432109|       8      |765432109|876543210|
1321 *
1322 * Note that, to ease the implementation, 'changes' bits are least significant
1323 * bits, while 'dependency' bits are most significant bits.
1324 */
1325class SideEffects : public ValueObject {
1326 public:
1327  SideEffects() : flags_(0) {}
1328
1329  static SideEffects None() {
1330    return SideEffects(0);
1331  }
1332
1333  static SideEffects All() {
1334    return SideEffects(kAllChangeBits | kAllDependOnBits);
1335  }
1336
1337  static SideEffects AllChanges() {
1338    return SideEffects(kAllChangeBits);
1339  }
1340
1341  static SideEffects AllDependencies() {
1342    return SideEffects(kAllDependOnBits);
1343  }
1344
1345  static SideEffects AllExceptGCDependency() {
1346    return AllWritesAndReads().Union(SideEffects::CanTriggerGC());
1347  }
1348
1349  static SideEffects AllWritesAndReads() {
1350    return SideEffects(kAllWrites | kAllReads);
1351  }
1352
1353  static SideEffects AllWrites() {
1354    return SideEffects(kAllWrites);
1355  }
1356
1357  static SideEffects AllReads() {
1358    return SideEffects(kAllReads);
1359  }
1360
1361  static SideEffects FieldWriteOfType(Primitive::Type type, bool is_volatile) {
1362    return is_volatile
1363        ? AllWritesAndReads()
1364        : SideEffects(TypeFlagWithAlias(type, kFieldWriteOffset));
1365  }
1366
1367  static SideEffects ArrayWriteOfType(Primitive::Type type) {
1368    return SideEffects(TypeFlagWithAlias(type, kArrayWriteOffset));
1369  }
1370
1371  static SideEffects FieldReadOfType(Primitive::Type type, bool is_volatile) {
1372    return is_volatile
1373        ? AllWritesAndReads()
1374        : SideEffects(TypeFlagWithAlias(type, kFieldReadOffset));
1375  }
1376
1377  static SideEffects ArrayReadOfType(Primitive::Type type) {
1378    return SideEffects(TypeFlagWithAlias(type, kArrayReadOffset));
1379  }
1380
1381  static SideEffects CanTriggerGC() {
1382    return SideEffects(1ULL << kCanTriggerGCBit);
1383  }
1384
1385  static SideEffects DependsOnGC() {
1386    return SideEffects(1ULL << kDependsOnGCBit);
1387  }
1388
1389  // Combines the side-effects of this and the other.
1390  SideEffects Union(SideEffects other) const {
1391    return SideEffects(flags_ | other.flags_);
1392  }
1393
1394  SideEffects Exclusion(SideEffects other) const {
1395    return SideEffects(flags_ & ~other.flags_);
1396  }
1397
1398  void Add(SideEffects other) {
1399    flags_ |= other.flags_;
1400  }
1401
1402  bool Includes(SideEffects other) const {
1403    return (other.flags_ & flags_) == other.flags_;
1404  }
1405
1406  bool HasSideEffects() const {
1407    return (flags_ & kAllChangeBits);
1408  }
1409
1410  bool HasDependencies() const {
1411    return (flags_ & kAllDependOnBits);
1412  }
1413
1414  // Returns true if there are no side effects or dependencies.
1415  bool DoesNothing() const {
1416    return flags_ == 0;
1417  }
1418
1419  // Returns true if something is written.
1420  bool DoesAnyWrite() const {
1421    return (flags_ & kAllWrites);
1422  }
1423
1424  // Returns true if something is read.
1425  bool DoesAnyRead() const {
1426    return (flags_ & kAllReads);
1427  }
1428
1429  // Returns true if potentially everything is written and read
1430  // (every type and every kind of access).
1431  bool DoesAllReadWrite() const {
1432    return (flags_ & (kAllWrites | kAllReads)) == (kAllWrites | kAllReads);
1433  }
1434
1435  bool DoesAll() const {
1436    return flags_ == (kAllChangeBits | kAllDependOnBits);
1437  }
1438
1439  // Returns true if `this` may read something written by `other`.
1440  bool MayDependOn(SideEffects other) const {
1441    const uint64_t depends_on_flags = (flags_ & kAllDependOnBits) >> kChangeBits;
1442    return (other.flags_ & depends_on_flags);
1443  }
1444
1445  // Returns string representation of flags (for debugging only).
1446  // Format: |x|DFJISCBZL|DFJISCBZL|y|DFJISCBZL|DFJISCBZL|
1447  std::string ToString() const {
1448    std::string flags = "|";
1449    for (int s = kLastBit; s >= 0; s--) {
1450      bool current_bit_is_set = ((flags_ >> s) & 1) != 0;
1451      if ((s == kDependsOnGCBit) || (s == kCanTriggerGCBit)) {
1452        // This is a bit for the GC side effect.
1453        if (current_bit_is_set) {
1454          flags += "GC";
1455        }
1456        flags += "|";
1457      } else {
1458        // This is a bit for the array/field analysis.
1459        // The underscore character stands for the 'can trigger GC' bit.
1460        static const char *kDebug = "LZBCSIJFDLZBCSIJFD_LZBCSIJFDLZBCSIJFD";
1461        if (current_bit_is_set) {
1462          flags += kDebug[s];
1463        }
1464        if ((s == kFieldWriteOffset) || (s == kArrayWriteOffset) ||
1465            (s == kFieldReadOffset) || (s == kArrayReadOffset)) {
1466          flags += "|";
1467        }
1468      }
1469    }
1470    return flags;
1471  }
1472
1473  bool Equals(const SideEffects& other) const { return flags_ == other.flags_; }
1474
1475 private:
1476  static constexpr int kFieldArrayAnalysisBits = 9;
1477
1478  static constexpr int kFieldWriteOffset = 0;
1479  static constexpr int kArrayWriteOffset = kFieldWriteOffset + kFieldArrayAnalysisBits;
1480  static constexpr int kLastBitForWrites = kArrayWriteOffset + kFieldArrayAnalysisBits - 1;
1481  static constexpr int kCanTriggerGCBit = kLastBitForWrites + 1;
1482
1483  static constexpr int kChangeBits = kCanTriggerGCBit + 1;
1484
1485  static constexpr int kFieldReadOffset = kCanTriggerGCBit + 1;
1486  static constexpr int kArrayReadOffset = kFieldReadOffset + kFieldArrayAnalysisBits;
1487  static constexpr int kLastBitForReads = kArrayReadOffset + kFieldArrayAnalysisBits - 1;
1488  static constexpr int kDependsOnGCBit = kLastBitForReads + 1;
1489
1490  static constexpr int kLastBit = kDependsOnGCBit;
1491  static constexpr int kDependOnBits = kLastBit + 1 - kChangeBits;
1492
1493  // Aliases.
1494
1495  static_assert(kChangeBits == kDependOnBits,
1496                "the 'change' bits should match the 'depend on' bits.");
1497
1498  static constexpr uint64_t kAllChangeBits = ((1ULL << kChangeBits) - 1);
1499  static constexpr uint64_t kAllDependOnBits = ((1ULL << kDependOnBits) - 1) << kChangeBits;
1500  static constexpr uint64_t kAllWrites =
1501      ((1ULL << (kLastBitForWrites + 1 - kFieldWriteOffset)) - 1) << kFieldWriteOffset;
1502  static constexpr uint64_t kAllReads =
1503      ((1ULL << (kLastBitForReads + 1 - kFieldReadOffset)) - 1) << kFieldReadOffset;
1504
1505  // Work around the fact that HIR aliases I/F and J/D.
1506  // TODO: remove this interceptor once HIR types are clean
1507  static uint64_t TypeFlagWithAlias(Primitive::Type type, int offset) {
1508    switch (type) {
1509      case Primitive::kPrimInt:
1510      case Primitive::kPrimFloat:
1511        return TypeFlag(Primitive::kPrimInt, offset) |
1512               TypeFlag(Primitive::kPrimFloat, offset);
1513      case Primitive::kPrimLong:
1514      case Primitive::kPrimDouble:
1515        return TypeFlag(Primitive::kPrimLong, offset) |
1516               TypeFlag(Primitive::kPrimDouble, offset);
1517      default:
1518        return TypeFlag(type, offset);
1519    }
1520  }
1521
1522  // Translates type to bit flag.
1523  static uint64_t TypeFlag(Primitive::Type type, int offset) {
1524    CHECK_NE(type, Primitive::kPrimVoid);
1525    const uint64_t one = 1;
1526    const int shift = type;  // 0-based consecutive enum
1527    DCHECK_LE(kFieldWriteOffset, shift);
1528    DCHECK_LT(shift, kArrayWriteOffset);
1529    return one << (type + offset);
1530  }
1531
1532  // Private constructor on direct flags value.
1533  explicit SideEffects(uint64_t flags) : flags_(flags) {}
1534
1535  uint64_t flags_;
1536};
1537
1538// A HEnvironment object contains the values of virtual registers at a given location.
1539class HEnvironment : public ArenaObject<kArenaAllocEnvironment> {
1540 public:
1541  HEnvironment(ArenaAllocator* arena,
1542               size_t number_of_vregs,
1543               const DexFile& dex_file,
1544               uint32_t method_idx,
1545               uint32_t dex_pc,
1546               InvokeType invoke_type,
1547               HInstruction* holder)
1548     : vregs_(number_of_vregs, arena->Adapter(kArenaAllocEnvironmentVRegs)),
1549       locations_(number_of_vregs, arena->Adapter(kArenaAllocEnvironmentLocations)),
1550       parent_(nullptr),
1551       dex_file_(dex_file),
1552       method_idx_(method_idx),
1553       dex_pc_(dex_pc),
1554       invoke_type_(invoke_type),
1555       holder_(holder) {
1556  }
1557
1558  HEnvironment(ArenaAllocator* arena, const HEnvironment& to_copy, HInstruction* holder)
1559      : HEnvironment(arena,
1560                     to_copy.Size(),
1561                     to_copy.GetDexFile(),
1562                     to_copy.GetMethodIdx(),
1563                     to_copy.GetDexPc(),
1564                     to_copy.GetInvokeType(),
1565                     holder) {}
1566
1567  void SetAndCopyParentChain(ArenaAllocator* allocator, HEnvironment* parent) {
1568    if (parent_ != nullptr) {
1569      parent_->SetAndCopyParentChain(allocator, parent);
1570    } else {
1571      parent_ = new (allocator) HEnvironment(allocator, *parent, holder_);
1572      parent_->CopyFrom(parent);
1573      if (parent->GetParent() != nullptr) {
1574        parent_->SetAndCopyParentChain(allocator, parent->GetParent());
1575      }
1576    }
1577  }
1578
1579  void CopyFrom(const ArenaVector<HInstruction*>& locals);
1580  void CopyFrom(HEnvironment* environment);
1581
1582  // Copy from `env`. If it's a loop phi for `loop_header`, copy the first
1583  // input to the loop phi instead. This is for inserting instructions that
1584  // require an environment (like HDeoptimization) in the loop pre-header.
1585  void CopyFromWithLoopPhiAdjustment(HEnvironment* env, HBasicBlock* loop_header);
1586
1587  void SetRawEnvAt(size_t index, HInstruction* instruction) {
1588    vregs_[index] = HUserRecord<HEnvironment*>(instruction);
1589  }
1590
1591  HInstruction* GetInstructionAt(size_t index) const {
1592    return vregs_[index].GetInstruction();
1593  }
1594
1595  void RemoveAsUserOfInput(size_t index) const;
1596
1597  size_t Size() const { return vregs_.size(); }
1598
1599  HEnvironment* GetParent() const { return parent_; }
1600
1601  void SetLocationAt(size_t index, Location location) {
1602    locations_[index] = location;
1603  }
1604
1605  Location GetLocationAt(size_t index) const {
1606    return locations_[index];
1607  }
1608
1609  uint32_t GetDexPc() const {
1610    return dex_pc_;
1611  }
1612
1613  uint32_t GetMethodIdx() const {
1614    return method_idx_;
1615  }
1616
1617  InvokeType GetInvokeType() const {
1618    return invoke_type_;
1619  }
1620
1621  const DexFile& GetDexFile() const {
1622    return dex_file_;
1623  }
1624
1625  HInstruction* GetHolder() const {
1626    return holder_;
1627  }
1628
1629 private:
1630  // Record instructions' use entries of this environment for constant-time removal.
1631  // It should only be called by HInstruction when a new environment use is added.
1632  void RecordEnvUse(HUseListNode<HEnvironment*>* env_use) {
1633    DCHECK(env_use->GetUser() == this);
1634    size_t index = env_use->GetIndex();
1635    vregs_[index] = HUserRecord<HEnvironment*>(vregs_[index], env_use);
1636  }
1637
1638  ArenaVector<HUserRecord<HEnvironment*>> vregs_;
1639  ArenaVector<Location> locations_;
1640  HEnvironment* parent_;
1641  const DexFile& dex_file_;
1642  const uint32_t method_idx_;
1643  const uint32_t dex_pc_;
1644  const InvokeType invoke_type_;
1645
1646  // The instruction that holds this environment.
1647  HInstruction* const holder_;
1648
1649  friend class HInstruction;
1650
1651  DISALLOW_COPY_AND_ASSIGN(HEnvironment);
1652};
1653
1654class ReferenceTypeInfo : ValueObject {
1655 public:
1656  typedef Handle<mirror::Class> TypeHandle;
1657
1658  static ReferenceTypeInfo Create(TypeHandle type_handle, bool is_exact) {
1659    // The constructor will check that the type_handle is valid.
1660    return ReferenceTypeInfo(type_handle, is_exact);
1661  }
1662
1663  static ReferenceTypeInfo CreateInvalid() { return ReferenceTypeInfo(); }
1664
1665  static bool IsValidHandle(TypeHandle handle) SHARED_REQUIRES(Locks::mutator_lock_) {
1666    return handle.GetReference() != nullptr;
1667  }
1668
1669  bool IsValid() const SHARED_REQUIRES(Locks::mutator_lock_) {
1670    return IsValidHandle(type_handle_);
1671  }
1672
1673  bool IsExact() const { return is_exact_; }
1674
1675  bool IsObjectClass() const SHARED_REQUIRES(Locks::mutator_lock_) {
1676    DCHECK(IsValid());
1677    return GetTypeHandle()->IsObjectClass();
1678  }
1679
1680  bool IsStringClass() const SHARED_REQUIRES(Locks::mutator_lock_) {
1681    DCHECK(IsValid());
1682    return GetTypeHandle()->IsStringClass();
1683  }
1684
1685  bool IsObjectArray() const SHARED_REQUIRES(Locks::mutator_lock_) {
1686    DCHECK(IsValid());
1687    return IsArrayClass() && GetTypeHandle()->GetComponentType()->IsObjectClass();
1688  }
1689
1690  bool IsInterface() const SHARED_REQUIRES(Locks::mutator_lock_) {
1691    DCHECK(IsValid());
1692    return GetTypeHandle()->IsInterface();
1693  }
1694
1695  bool IsArrayClass() const SHARED_REQUIRES(Locks::mutator_lock_) {
1696    DCHECK(IsValid());
1697    return GetTypeHandle()->IsArrayClass();
1698  }
1699
1700  bool IsPrimitiveArrayClass() const SHARED_REQUIRES(Locks::mutator_lock_) {
1701    DCHECK(IsValid());
1702    return GetTypeHandle()->IsPrimitiveArray();
1703  }
1704
1705  bool IsNonPrimitiveArrayClass() const SHARED_REQUIRES(Locks::mutator_lock_) {
1706    DCHECK(IsValid());
1707    return GetTypeHandle()->IsArrayClass() && !GetTypeHandle()->IsPrimitiveArray();
1708  }
1709
1710  bool CanArrayHold(ReferenceTypeInfo rti)  const SHARED_REQUIRES(Locks::mutator_lock_) {
1711    DCHECK(IsValid());
1712    if (!IsExact()) return false;
1713    if (!IsArrayClass()) return false;
1714    return GetTypeHandle()->GetComponentType()->IsAssignableFrom(rti.GetTypeHandle().Get());
1715  }
1716
1717  bool CanArrayHoldValuesOf(ReferenceTypeInfo rti)  const SHARED_REQUIRES(Locks::mutator_lock_) {
1718    DCHECK(IsValid());
1719    if (!IsExact()) return false;
1720    if (!IsArrayClass()) return false;
1721    if (!rti.IsArrayClass()) return false;
1722    return GetTypeHandle()->GetComponentType()->IsAssignableFrom(
1723        rti.GetTypeHandle()->GetComponentType());
1724  }
1725
1726  Handle<mirror::Class> GetTypeHandle() const { return type_handle_; }
1727
1728  bool IsSupertypeOf(ReferenceTypeInfo rti) const SHARED_REQUIRES(Locks::mutator_lock_) {
1729    DCHECK(IsValid());
1730    DCHECK(rti.IsValid());
1731    return GetTypeHandle()->IsAssignableFrom(rti.GetTypeHandle().Get());
1732  }
1733
1734  bool IsStrictSupertypeOf(ReferenceTypeInfo rti) const SHARED_REQUIRES(Locks::mutator_lock_) {
1735    DCHECK(IsValid());
1736    DCHECK(rti.IsValid());
1737    return GetTypeHandle().Get() != rti.GetTypeHandle().Get() &&
1738        GetTypeHandle()->IsAssignableFrom(rti.GetTypeHandle().Get());
1739  }
1740
1741  // Returns true if the type information provide the same amount of details.
1742  // Note that it does not mean that the instructions have the same actual type
1743  // (because the type can be the result of a merge).
1744  bool IsEqual(ReferenceTypeInfo rti) SHARED_REQUIRES(Locks::mutator_lock_) {
1745    if (!IsValid() && !rti.IsValid()) {
1746      // Invalid types are equal.
1747      return true;
1748    }
1749    if (!IsValid() || !rti.IsValid()) {
1750      // One is valid, the other not.
1751      return false;
1752    }
1753    return IsExact() == rti.IsExact()
1754        && GetTypeHandle().Get() == rti.GetTypeHandle().Get();
1755  }
1756
1757 private:
1758  ReferenceTypeInfo();
1759  ReferenceTypeInfo(TypeHandle type_handle, bool is_exact);
1760
1761  // The class of the object.
1762  TypeHandle type_handle_;
1763  // Whether or not the type is exact or a superclass of the actual type.
1764  // Whether or not we have any information about this type.
1765  bool is_exact_;
1766};
1767
1768std::ostream& operator<<(std::ostream& os, const ReferenceTypeInfo& rhs);
1769
1770class HInstruction : public ArenaObject<kArenaAllocInstruction> {
1771 public:
1772  HInstruction(SideEffects side_effects, uint32_t dex_pc)
1773      : previous_(nullptr),
1774        next_(nullptr),
1775        block_(nullptr),
1776        dex_pc_(dex_pc),
1777        id_(-1),
1778        ssa_index_(-1),
1779        environment_(nullptr),
1780        locations_(nullptr),
1781        live_interval_(nullptr),
1782        lifetime_position_(kNoLifetime),
1783        side_effects_(side_effects),
1784        reference_type_info_(ReferenceTypeInfo::CreateInvalid()) {}
1785
1786  virtual ~HInstruction() {}
1787
1788#define DECLARE_KIND(type, super) k##type,
1789  enum InstructionKind {
1790    FOR_EACH_INSTRUCTION(DECLARE_KIND)
1791  };
1792#undef DECLARE_KIND
1793
1794  HInstruction* GetNext() const { return next_; }
1795  HInstruction* GetPrevious() const { return previous_; }
1796
1797  HInstruction* GetNextDisregardingMoves() const;
1798  HInstruction* GetPreviousDisregardingMoves() const;
1799
1800  HBasicBlock* GetBlock() const { return block_; }
1801  ArenaAllocator* GetArena() const { return block_->GetGraph()->GetArena(); }
1802  void SetBlock(HBasicBlock* block) { block_ = block; }
1803  bool IsInBlock() const { return block_ != nullptr; }
1804  bool IsInLoop() const { return block_->IsInLoop(); }
1805  bool IsLoopHeaderPhi() { return IsPhi() && block_->IsLoopHeader(); }
1806
1807  virtual size_t InputCount() const = 0;
1808  HInstruction* InputAt(size_t i) const { return InputRecordAt(i).GetInstruction(); }
1809
1810  virtual void Accept(HGraphVisitor* visitor) = 0;
1811  virtual const char* DebugName() const = 0;
1812
1813  virtual Primitive::Type GetType() const { return Primitive::kPrimVoid; }
1814  void SetRawInputAt(size_t index, HInstruction* input) {
1815    SetRawInputRecordAt(index, HUserRecord<HInstruction*>(input));
1816  }
1817
1818  virtual bool NeedsEnvironment() const { return false; }
1819
1820  uint32_t GetDexPc() const { return dex_pc_; }
1821
1822  virtual bool IsControlFlow() const { return false; }
1823
1824  virtual bool CanThrow() const { return false; }
1825  bool CanThrowIntoCatchBlock() const { return CanThrow() && block_->IsTryBlock(); }
1826
1827  bool HasSideEffects() const { return side_effects_.HasSideEffects(); }
1828  bool DoesAnyWrite() const { return side_effects_.DoesAnyWrite(); }
1829
1830  // Does not apply for all instructions, but having this at top level greatly
1831  // simplifies the null check elimination.
1832  // TODO: Consider merging can_be_null into ReferenceTypeInfo.
1833  virtual bool CanBeNull() const {
1834    DCHECK_EQ(GetType(), Primitive::kPrimNot) << "CanBeNull only applies to reference types";
1835    return true;
1836  }
1837
1838  virtual bool CanDoImplicitNullCheckOn(HInstruction* obj ATTRIBUTE_UNUSED) const {
1839    return false;
1840  }
1841
1842  void SetReferenceTypeInfo(ReferenceTypeInfo rti);
1843
1844  ReferenceTypeInfo GetReferenceTypeInfo() const {
1845    DCHECK_EQ(GetType(), Primitive::kPrimNot);
1846    return reference_type_info_;
1847  }
1848
1849  void AddUseAt(HInstruction* user, size_t index) {
1850    DCHECK(user != nullptr);
1851    HUseListNode<HInstruction*>* use =
1852        uses_.AddUse(user, index, GetBlock()->GetGraph()->GetArena());
1853    user->SetRawInputRecordAt(index, HUserRecord<HInstruction*>(user->InputRecordAt(index), use));
1854  }
1855
1856  void AddEnvUseAt(HEnvironment* user, size_t index) {
1857    DCHECK(user != nullptr);
1858    HUseListNode<HEnvironment*>* env_use =
1859        env_uses_.AddUse(user, index, GetBlock()->GetGraph()->GetArena());
1860    user->RecordEnvUse(env_use);
1861  }
1862
1863  void RemoveAsUserOfInput(size_t input) {
1864    HUserRecord<HInstruction*> input_use = InputRecordAt(input);
1865    input_use.GetInstruction()->uses_.Remove(input_use.GetUseNode());
1866  }
1867
1868  const HUseList<HInstruction*>& GetUses() const { return uses_; }
1869  const HUseList<HEnvironment*>& GetEnvUses() const { return env_uses_; }
1870
1871  bool HasUses() const { return !uses_.IsEmpty() || !env_uses_.IsEmpty(); }
1872  bool HasEnvironmentUses() const { return !env_uses_.IsEmpty(); }
1873  bool HasNonEnvironmentUses() const { return !uses_.IsEmpty(); }
1874  bool HasOnlyOneNonEnvironmentUse() const {
1875    return !HasEnvironmentUses() && GetUses().HasOnlyOneUse();
1876  }
1877
1878  // Does this instruction strictly dominate `other_instruction`?
1879  // Returns false if this instruction and `other_instruction` are the same.
1880  // Aborts if this instruction and `other_instruction` are both phis.
1881  bool StrictlyDominates(HInstruction* other_instruction) const;
1882
1883  int GetId() const { return id_; }
1884  void SetId(int id) { id_ = id; }
1885
1886  int GetSsaIndex() const { return ssa_index_; }
1887  void SetSsaIndex(int ssa_index) { ssa_index_ = ssa_index; }
1888  bool HasSsaIndex() const { return ssa_index_ != -1; }
1889
1890  bool HasEnvironment() const { return environment_ != nullptr; }
1891  HEnvironment* GetEnvironment() const { return environment_; }
1892  // Set the `environment_` field. Raw because this method does not
1893  // update the uses lists.
1894  void SetRawEnvironment(HEnvironment* environment) {
1895    DCHECK(environment_ == nullptr);
1896    DCHECK_EQ(environment->GetHolder(), this);
1897    environment_ = environment;
1898  }
1899
1900  // Set the environment of this instruction, copying it from `environment`. While
1901  // copying, the uses lists are being updated.
1902  void CopyEnvironmentFrom(HEnvironment* environment) {
1903    DCHECK(environment_ == nullptr);
1904    ArenaAllocator* allocator = GetBlock()->GetGraph()->GetArena();
1905    environment_ = new (allocator) HEnvironment(allocator, *environment, this);
1906    environment_->CopyFrom(environment);
1907    if (environment->GetParent() != nullptr) {
1908      environment_->SetAndCopyParentChain(allocator, environment->GetParent());
1909    }
1910  }
1911
1912  void CopyEnvironmentFromWithLoopPhiAdjustment(HEnvironment* environment,
1913                                                HBasicBlock* block) {
1914    DCHECK(environment_ == nullptr);
1915    ArenaAllocator* allocator = GetBlock()->GetGraph()->GetArena();
1916    environment_ = new (allocator) HEnvironment(allocator, *environment, this);
1917    environment_->CopyFromWithLoopPhiAdjustment(environment, block);
1918    if (environment->GetParent() != nullptr) {
1919      environment_->SetAndCopyParentChain(allocator, environment->GetParent());
1920    }
1921  }
1922
1923  // Returns the number of entries in the environment. Typically, that is the
1924  // number of dex registers in a method. It could be more in case of inlining.
1925  size_t EnvironmentSize() const;
1926
1927  LocationSummary* GetLocations() const { return locations_; }
1928  void SetLocations(LocationSummary* locations) { locations_ = locations; }
1929
1930  void ReplaceWith(HInstruction* instruction);
1931  void ReplaceInput(HInstruction* replacement, size_t index);
1932
1933  // This is almost the same as doing `ReplaceWith()`. But in this helper, the
1934  // uses of this instruction by `other` are *not* updated.
1935  void ReplaceWithExceptInReplacementAtIndex(HInstruction* other, size_t use_index) {
1936    ReplaceWith(other);
1937    other->ReplaceInput(this, use_index);
1938  }
1939
1940  // Move `this` instruction before `cursor`.
1941  void MoveBefore(HInstruction* cursor);
1942
1943#define INSTRUCTION_TYPE_CHECK(type, super)                                    \
1944  bool Is##type() const { return (As##type() != nullptr); }                    \
1945  virtual const H##type* As##type() const { return nullptr; }                  \
1946  virtual H##type* As##type() { return nullptr; }
1947
1948  FOR_EACH_INSTRUCTION(INSTRUCTION_TYPE_CHECK)
1949#undef INSTRUCTION_TYPE_CHECK
1950
1951  // Returns whether the instruction can be moved within the graph.
1952  virtual bool CanBeMoved() const { return false; }
1953
1954  // Returns whether the two instructions are of the same kind.
1955  virtual bool InstructionTypeEquals(HInstruction* other ATTRIBUTE_UNUSED) const {
1956    return false;
1957  }
1958
1959  // Returns whether any data encoded in the two instructions is equal.
1960  // This method does not look at the inputs. Both instructions must be
1961  // of the same type, otherwise the method has undefined behavior.
1962  virtual bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const {
1963    return false;
1964  }
1965
1966  // Returns whether two instructions are equal, that is:
1967  // 1) They have the same type and contain the same data (InstructionDataEquals).
1968  // 2) Their inputs are identical.
1969  bool Equals(HInstruction* other) const;
1970
1971  virtual InstructionKind GetKind() const = 0;
1972
1973  virtual size_t ComputeHashCode() const {
1974    size_t result = GetKind();
1975    for (size_t i = 0, e = InputCount(); i < e; ++i) {
1976      result = (result * 31) + InputAt(i)->GetId();
1977    }
1978    return result;
1979  }
1980
1981  SideEffects GetSideEffects() const { return side_effects_; }
1982  void AddSideEffects(SideEffects other) { side_effects_.Add(other); }
1983
1984  size_t GetLifetimePosition() const { return lifetime_position_; }
1985  void SetLifetimePosition(size_t position) { lifetime_position_ = position; }
1986  LiveInterval* GetLiveInterval() const { return live_interval_; }
1987  void SetLiveInterval(LiveInterval* interval) { live_interval_ = interval; }
1988  bool HasLiveInterval() const { return live_interval_ != nullptr; }
1989
1990  bool IsSuspendCheckEntry() const { return IsSuspendCheck() && GetBlock()->IsEntryBlock(); }
1991
1992  // Returns whether the code generation of the instruction will require to have access
1993  // to the current method. Such instructions are:
1994  // (1): Instructions that require an environment, as calling the runtime requires
1995  //      to walk the stack and have the current method stored at a specific stack address.
1996  // (2): Object literals like classes and strings, that are loaded from the dex cache
1997  //      fields of the current method.
1998  bool NeedsCurrentMethod() const {
1999    return NeedsEnvironment() || IsLoadClass() || IsLoadString();
2000  }
2001
2002  // Returns whether the code generation of the instruction will require to have access
2003  // to the dex cache of the current method's declaring class via the current method.
2004  virtual bool NeedsDexCacheOfDeclaringClass() const { return false; }
2005
2006  // Does this instruction have any use in an environment before
2007  // control flow hits 'other'?
2008  bool HasAnyEnvironmentUseBefore(HInstruction* other);
2009
2010  // Remove all references to environment uses of this instruction.
2011  // The caller must ensure that this is safe to do.
2012  void RemoveEnvironmentUsers();
2013
2014 protected:
2015  virtual const HUserRecord<HInstruction*> InputRecordAt(size_t i) const = 0;
2016  virtual void SetRawInputRecordAt(size_t index, const HUserRecord<HInstruction*>& input) = 0;
2017
2018 private:
2019  void RemoveEnvironmentUser(HUseListNode<HEnvironment*>* use_node) { env_uses_.Remove(use_node); }
2020
2021  HInstruction* previous_;
2022  HInstruction* next_;
2023  HBasicBlock* block_;
2024  const uint32_t dex_pc_;
2025
2026  // An instruction gets an id when it is added to the graph.
2027  // It reflects creation order. A negative id means the instruction
2028  // has not been added to the graph.
2029  int id_;
2030
2031  // When doing liveness analysis, instructions that have uses get an SSA index.
2032  int ssa_index_;
2033
2034  // List of instructions that have this instruction as input.
2035  HUseList<HInstruction*> uses_;
2036
2037  // List of environments that contain this instruction.
2038  HUseList<HEnvironment*> env_uses_;
2039
2040  // The environment associated with this instruction. Not null if the instruction
2041  // might jump out of the method.
2042  HEnvironment* environment_;
2043
2044  // Set by the code generator.
2045  LocationSummary* locations_;
2046
2047  // Set by the liveness analysis.
2048  LiveInterval* live_interval_;
2049
2050  // Set by the liveness analysis, this is the position in a linear
2051  // order of blocks where this instruction's live interval start.
2052  size_t lifetime_position_;
2053
2054  SideEffects side_effects_;
2055
2056  // TODO: for primitive types this should be marked as invalid.
2057  ReferenceTypeInfo reference_type_info_;
2058
2059  friend class GraphChecker;
2060  friend class HBasicBlock;
2061  friend class HEnvironment;
2062  friend class HGraph;
2063  friend class HInstructionList;
2064
2065  DISALLOW_COPY_AND_ASSIGN(HInstruction);
2066};
2067std::ostream& operator<<(std::ostream& os, const HInstruction::InstructionKind& rhs);
2068
2069class HInputIterator : public ValueObject {
2070 public:
2071  explicit HInputIterator(HInstruction* instruction) : instruction_(instruction), index_(0) {}
2072
2073  bool Done() const { return index_ == instruction_->InputCount(); }
2074  HInstruction* Current() const { return instruction_->InputAt(index_); }
2075  void Advance() { index_++; }
2076
2077 private:
2078  HInstruction* instruction_;
2079  size_t index_;
2080
2081  DISALLOW_COPY_AND_ASSIGN(HInputIterator);
2082};
2083
2084class HInstructionIterator : public ValueObject {
2085 public:
2086  explicit HInstructionIterator(const HInstructionList& instructions)
2087      : instruction_(instructions.first_instruction_) {
2088    next_ = Done() ? nullptr : instruction_->GetNext();
2089  }
2090
2091  bool Done() const { return instruction_ == nullptr; }
2092  HInstruction* Current() const { return instruction_; }
2093  void Advance() {
2094    instruction_ = next_;
2095    next_ = Done() ? nullptr : instruction_->GetNext();
2096  }
2097
2098 private:
2099  HInstruction* instruction_;
2100  HInstruction* next_;
2101
2102  DISALLOW_COPY_AND_ASSIGN(HInstructionIterator);
2103};
2104
2105class HBackwardInstructionIterator : public ValueObject {
2106 public:
2107  explicit HBackwardInstructionIterator(const HInstructionList& instructions)
2108      : instruction_(instructions.last_instruction_) {
2109    next_ = Done() ? nullptr : instruction_->GetPrevious();
2110  }
2111
2112  bool Done() const { return instruction_ == nullptr; }
2113  HInstruction* Current() const { return instruction_; }
2114  void Advance() {
2115    instruction_ = next_;
2116    next_ = Done() ? nullptr : instruction_->GetPrevious();
2117  }
2118
2119 private:
2120  HInstruction* instruction_;
2121  HInstruction* next_;
2122
2123  DISALLOW_COPY_AND_ASSIGN(HBackwardInstructionIterator);
2124};
2125
2126template<size_t N>
2127class HTemplateInstruction: public HInstruction {
2128 public:
2129  HTemplateInstruction<N>(SideEffects side_effects, uint32_t dex_pc)
2130      : HInstruction(side_effects, dex_pc), inputs_() {}
2131  virtual ~HTemplateInstruction() {}
2132
2133  size_t InputCount() const OVERRIDE { return N; }
2134
2135 protected:
2136  const HUserRecord<HInstruction*> InputRecordAt(size_t i) const OVERRIDE {
2137    DCHECK_LT(i, N);
2138    return inputs_[i];
2139  }
2140
2141  void SetRawInputRecordAt(size_t i, const HUserRecord<HInstruction*>& input) OVERRIDE {
2142    DCHECK_LT(i, N);
2143    inputs_[i] = input;
2144  }
2145
2146 private:
2147  std::array<HUserRecord<HInstruction*>, N> inputs_;
2148
2149  friend class SsaBuilder;
2150};
2151
2152// HTemplateInstruction specialization for N=0.
2153template<>
2154class HTemplateInstruction<0>: public HInstruction {
2155 public:
2156  explicit HTemplateInstruction<0>(SideEffects side_effects, uint32_t dex_pc)
2157      : HInstruction(side_effects, dex_pc) {}
2158
2159  virtual ~HTemplateInstruction() {}
2160
2161  size_t InputCount() const OVERRIDE { return 0; }
2162
2163 protected:
2164  const HUserRecord<HInstruction*> InputRecordAt(size_t i ATTRIBUTE_UNUSED) const OVERRIDE {
2165    LOG(FATAL) << "Unreachable";
2166    UNREACHABLE();
2167  }
2168
2169  void SetRawInputRecordAt(size_t i ATTRIBUTE_UNUSED,
2170                           const HUserRecord<HInstruction*>& input ATTRIBUTE_UNUSED) OVERRIDE {
2171    LOG(FATAL) << "Unreachable";
2172    UNREACHABLE();
2173  }
2174
2175 private:
2176  friend class SsaBuilder;
2177};
2178
2179template<intptr_t N>
2180class HExpression : public HTemplateInstruction<N> {
2181 public:
2182  HExpression<N>(Primitive::Type type, SideEffects side_effects, uint32_t dex_pc)
2183      : HTemplateInstruction<N>(side_effects, dex_pc), type_(type) {}
2184  virtual ~HExpression() {}
2185
2186  Primitive::Type GetType() const OVERRIDE { return type_; }
2187
2188 protected:
2189  Primitive::Type type_;
2190};
2191
2192// Represents dex's RETURN_VOID opcode. A HReturnVoid is a control flow
2193// instruction that branches to the exit block.
2194class HReturnVoid : public HTemplateInstruction<0> {
2195 public:
2196  explicit HReturnVoid(uint32_t dex_pc = kNoDexPc)
2197      : HTemplateInstruction(SideEffects::None(), dex_pc) {}
2198
2199  bool IsControlFlow() const OVERRIDE { return true; }
2200
2201  DECLARE_INSTRUCTION(ReturnVoid);
2202
2203 private:
2204  DISALLOW_COPY_AND_ASSIGN(HReturnVoid);
2205};
2206
2207// Represents dex's RETURN opcodes. A HReturn is a control flow
2208// instruction that branches to the exit block.
2209class HReturn : public HTemplateInstruction<1> {
2210 public:
2211  explicit HReturn(HInstruction* value, uint32_t dex_pc = kNoDexPc)
2212      : HTemplateInstruction(SideEffects::None(), dex_pc) {
2213    SetRawInputAt(0, value);
2214  }
2215
2216  bool IsControlFlow() const OVERRIDE { return true; }
2217
2218  DECLARE_INSTRUCTION(Return);
2219
2220 private:
2221  DISALLOW_COPY_AND_ASSIGN(HReturn);
2222};
2223
2224// The exit instruction is the only instruction of the exit block.
2225// Instructions aborting the method (HThrow and HReturn) must branch to the
2226// exit block.
2227class HExit : public HTemplateInstruction<0> {
2228 public:
2229  explicit HExit(uint32_t dex_pc = kNoDexPc) : HTemplateInstruction(SideEffects::None(), dex_pc) {}
2230
2231  bool IsControlFlow() const OVERRIDE { return true; }
2232
2233  DECLARE_INSTRUCTION(Exit);
2234
2235 private:
2236  DISALLOW_COPY_AND_ASSIGN(HExit);
2237};
2238
2239// Jumps from one block to another.
2240class HGoto : public HTemplateInstruction<0> {
2241 public:
2242  explicit HGoto(uint32_t dex_pc = kNoDexPc) : HTemplateInstruction(SideEffects::None(), dex_pc) {}
2243
2244  bool IsControlFlow() const OVERRIDE { return true; }
2245
2246  HBasicBlock* GetSuccessor() const {
2247    return GetBlock()->GetSingleSuccessor();
2248  }
2249
2250  DECLARE_INSTRUCTION(Goto);
2251
2252 private:
2253  DISALLOW_COPY_AND_ASSIGN(HGoto);
2254};
2255
2256class HConstant : public HExpression<0> {
2257 public:
2258  explicit HConstant(Primitive::Type type, uint32_t dex_pc = kNoDexPc)
2259      : HExpression(type, SideEffects::None(), dex_pc) {}
2260
2261  bool CanBeMoved() const OVERRIDE { return true; }
2262
2263  virtual bool IsMinusOne() const { return false; }
2264  virtual bool IsZero() const { return false; }
2265  virtual bool IsOne() const { return false; }
2266
2267  virtual uint64_t GetValueAsUint64() const = 0;
2268
2269  DECLARE_INSTRUCTION(Constant);
2270
2271 private:
2272  DISALLOW_COPY_AND_ASSIGN(HConstant);
2273};
2274
2275class HNullConstant : public HConstant {
2276 public:
2277  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
2278    return true;
2279  }
2280
2281  uint64_t GetValueAsUint64() const OVERRIDE { return 0; }
2282
2283  size_t ComputeHashCode() const OVERRIDE { return 0; }
2284
2285  DECLARE_INSTRUCTION(NullConstant);
2286
2287 private:
2288  explicit HNullConstant(uint32_t dex_pc = kNoDexPc) : HConstant(Primitive::kPrimNot, dex_pc) {}
2289
2290  friend class HGraph;
2291  DISALLOW_COPY_AND_ASSIGN(HNullConstant);
2292};
2293
2294// Constants of the type int. Those can be from Dex instructions, or
2295// synthesized (for example with the if-eqz instruction).
2296class HIntConstant : public HConstant {
2297 public:
2298  int32_t GetValue() const { return value_; }
2299
2300  uint64_t GetValueAsUint64() const OVERRIDE {
2301    return static_cast<uint64_t>(static_cast<uint32_t>(value_));
2302  }
2303
2304  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2305    DCHECK(other->IsIntConstant());
2306    return other->AsIntConstant()->value_ == value_;
2307  }
2308
2309  size_t ComputeHashCode() const OVERRIDE { return GetValue(); }
2310
2311  bool IsMinusOne() const OVERRIDE { return GetValue() == -1; }
2312  bool IsZero() const OVERRIDE { return GetValue() == 0; }
2313  bool IsOne() const OVERRIDE { return GetValue() == 1; }
2314
2315  DECLARE_INSTRUCTION(IntConstant);
2316
2317 private:
2318  explicit HIntConstant(int32_t value, uint32_t dex_pc = kNoDexPc)
2319      : HConstant(Primitive::kPrimInt, dex_pc), value_(value) {}
2320  explicit HIntConstant(bool value, uint32_t dex_pc = kNoDexPc)
2321      : HConstant(Primitive::kPrimInt, dex_pc), value_(value ? 1 : 0) {}
2322
2323  const int32_t value_;
2324
2325  friend class HGraph;
2326  ART_FRIEND_TEST(GraphTest, InsertInstructionBefore);
2327  ART_FRIEND_TYPED_TEST(ParallelMoveTest, ConstantLast);
2328  DISALLOW_COPY_AND_ASSIGN(HIntConstant);
2329};
2330
2331class HLongConstant : public HConstant {
2332 public:
2333  int64_t GetValue() const { return value_; }
2334
2335  uint64_t GetValueAsUint64() const OVERRIDE { return value_; }
2336
2337  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2338    DCHECK(other->IsLongConstant());
2339    return other->AsLongConstant()->value_ == value_;
2340  }
2341
2342  size_t ComputeHashCode() const OVERRIDE { return static_cast<size_t>(GetValue()); }
2343
2344  bool IsMinusOne() const OVERRIDE { return GetValue() == -1; }
2345  bool IsZero() const OVERRIDE { return GetValue() == 0; }
2346  bool IsOne() const OVERRIDE { return GetValue() == 1; }
2347
2348  DECLARE_INSTRUCTION(LongConstant);
2349
2350 private:
2351  explicit HLongConstant(int64_t value, uint32_t dex_pc = kNoDexPc)
2352      : HConstant(Primitive::kPrimLong, dex_pc), value_(value) {}
2353
2354  const int64_t value_;
2355
2356  friend class HGraph;
2357  DISALLOW_COPY_AND_ASSIGN(HLongConstant);
2358};
2359
2360// Conditional branch. A block ending with an HIf instruction must have
2361// two successors.
2362class HIf : public HTemplateInstruction<1> {
2363 public:
2364  explicit HIf(HInstruction* input, uint32_t dex_pc = kNoDexPc)
2365      : HTemplateInstruction(SideEffects::None(), dex_pc) {
2366    SetRawInputAt(0, input);
2367  }
2368
2369  bool IsControlFlow() const OVERRIDE { return true; }
2370
2371  HBasicBlock* IfTrueSuccessor() const {
2372    return GetBlock()->GetSuccessors()[0];
2373  }
2374
2375  HBasicBlock* IfFalseSuccessor() const {
2376    return GetBlock()->GetSuccessors()[1];
2377  }
2378
2379  DECLARE_INSTRUCTION(If);
2380
2381 private:
2382  DISALLOW_COPY_AND_ASSIGN(HIf);
2383};
2384
2385
2386// Abstract instruction which marks the beginning and/or end of a try block and
2387// links it to the respective exception handlers. Behaves the same as a Goto in
2388// non-exceptional control flow.
2389// Normal-flow successor is stored at index zero, exception handlers under
2390// higher indices in no particular order.
2391class HTryBoundary : public HTemplateInstruction<0> {
2392 public:
2393  enum BoundaryKind {
2394    kEntry,
2395    kExit,
2396  };
2397
2398  explicit HTryBoundary(BoundaryKind kind, uint32_t dex_pc = kNoDexPc)
2399      : HTemplateInstruction(SideEffects::None(), dex_pc), kind_(kind) {}
2400
2401  bool IsControlFlow() const OVERRIDE { return true; }
2402
2403  // Returns the block's non-exceptional successor (index zero).
2404  HBasicBlock* GetNormalFlowSuccessor() const { return GetBlock()->GetSuccessors()[0]; }
2405
2406  ArrayRef<HBasicBlock* const> GetExceptionHandlers() const {
2407    return ArrayRef<HBasicBlock* const>(GetBlock()->GetSuccessors()).SubArray(1u);
2408  }
2409
2410  // Returns whether `handler` is among its exception handlers (non-zero index
2411  // successors).
2412  bool HasExceptionHandler(const HBasicBlock& handler) const {
2413    DCHECK(handler.IsCatchBlock());
2414    return GetBlock()->HasSuccessor(&handler, 1u /* Skip first successor. */);
2415  }
2416
2417  // If not present already, adds `handler` to its block's list of exception
2418  // handlers.
2419  void AddExceptionHandler(HBasicBlock* handler) {
2420    if (!HasExceptionHandler(*handler)) {
2421      GetBlock()->AddSuccessor(handler);
2422    }
2423  }
2424
2425  bool IsEntry() const { return kind_ == BoundaryKind::kEntry; }
2426
2427  bool HasSameExceptionHandlersAs(const HTryBoundary& other) const;
2428
2429  DECLARE_INSTRUCTION(TryBoundary);
2430
2431 private:
2432  const BoundaryKind kind_;
2433
2434  DISALLOW_COPY_AND_ASSIGN(HTryBoundary);
2435};
2436
2437// Deoptimize to interpreter, upon checking a condition.
2438class HDeoptimize : public HTemplateInstruction<1> {
2439 public:
2440  explicit HDeoptimize(HInstruction* cond, uint32_t dex_pc)
2441      : HTemplateInstruction(SideEffects::None(), dex_pc) {
2442    SetRawInputAt(0, cond);
2443  }
2444
2445  bool NeedsEnvironment() const OVERRIDE { return true; }
2446  bool CanThrow() const OVERRIDE { return true; }
2447
2448  DECLARE_INSTRUCTION(Deoptimize);
2449
2450 private:
2451  DISALLOW_COPY_AND_ASSIGN(HDeoptimize);
2452};
2453
2454// Represents the ArtMethod that was passed as a first argument to
2455// the method. It is used by instructions that depend on it, like
2456// instructions that work with the dex cache.
2457class HCurrentMethod : public HExpression<0> {
2458 public:
2459  explicit HCurrentMethod(Primitive::Type type, uint32_t dex_pc = kNoDexPc)
2460      : HExpression(type, SideEffects::None(), dex_pc) {}
2461
2462  DECLARE_INSTRUCTION(CurrentMethod);
2463
2464 private:
2465  DISALLOW_COPY_AND_ASSIGN(HCurrentMethod);
2466};
2467
2468// PackedSwitch (jump table). A block ending with a PackedSwitch instruction will
2469// have one successor for each entry in the switch table, and the final successor
2470// will be the block containing the next Dex opcode.
2471class HPackedSwitch : public HTemplateInstruction<1> {
2472 public:
2473  HPackedSwitch(int32_t start_value,
2474                uint32_t num_entries,
2475                HInstruction* input,
2476                uint32_t dex_pc = kNoDexPc)
2477    : HTemplateInstruction(SideEffects::None(), dex_pc),
2478      start_value_(start_value),
2479      num_entries_(num_entries) {
2480    SetRawInputAt(0, input);
2481  }
2482
2483  bool IsControlFlow() const OVERRIDE { return true; }
2484
2485  int32_t GetStartValue() const { return start_value_; }
2486
2487  uint32_t GetNumEntries() const { return num_entries_; }
2488
2489  HBasicBlock* GetDefaultBlock() const {
2490    // Last entry is the default block.
2491    return GetBlock()->GetSuccessors()[num_entries_];
2492  }
2493  DECLARE_INSTRUCTION(PackedSwitch);
2494
2495 private:
2496  const int32_t start_value_;
2497  const uint32_t num_entries_;
2498
2499  DISALLOW_COPY_AND_ASSIGN(HPackedSwitch);
2500};
2501
2502class HUnaryOperation : public HExpression<1> {
2503 public:
2504  HUnaryOperation(Primitive::Type result_type, HInstruction* input, uint32_t dex_pc = kNoDexPc)
2505      : HExpression(result_type, SideEffects::None(), dex_pc) {
2506    SetRawInputAt(0, input);
2507  }
2508
2509  HInstruction* GetInput() const { return InputAt(0); }
2510  Primitive::Type GetResultType() const { return GetType(); }
2511
2512  bool CanBeMoved() const OVERRIDE { return true; }
2513  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
2514    return true;
2515  }
2516
2517  // Try to statically evaluate `operation` and return a HConstant
2518  // containing the result of this evaluation.  If `operation` cannot
2519  // be evaluated as a constant, return null.
2520  HConstant* TryStaticEvaluation() const;
2521
2522  // Apply this operation to `x`.
2523  virtual HConstant* Evaluate(HIntConstant* x) const = 0;
2524  virtual HConstant* Evaluate(HLongConstant* x) const = 0;
2525
2526  DECLARE_INSTRUCTION(UnaryOperation);
2527
2528 private:
2529  DISALLOW_COPY_AND_ASSIGN(HUnaryOperation);
2530};
2531
2532class HBinaryOperation : public HExpression<2> {
2533 public:
2534  HBinaryOperation(Primitive::Type result_type,
2535                   HInstruction* left,
2536                   HInstruction* right,
2537                   SideEffects side_effects = SideEffects::None(),
2538                   uint32_t dex_pc = kNoDexPc)
2539      : HExpression(result_type, side_effects, dex_pc) {
2540    SetRawInputAt(0, left);
2541    SetRawInputAt(1, right);
2542  }
2543
2544  HInstruction* GetLeft() const { return InputAt(0); }
2545  HInstruction* GetRight() const { return InputAt(1); }
2546  Primitive::Type GetResultType() const { return GetType(); }
2547
2548  virtual bool IsCommutative() const { return false; }
2549
2550  // Put constant on the right.
2551  // Returns whether order is changed.
2552  bool OrderInputsWithConstantOnTheRight() {
2553    HInstruction* left = InputAt(0);
2554    HInstruction* right = InputAt(1);
2555    if (left->IsConstant() && !right->IsConstant()) {
2556      ReplaceInput(right, 0);
2557      ReplaceInput(left, 1);
2558      return true;
2559    }
2560    return false;
2561  }
2562
2563  // Order inputs by instruction id, but favor constant on the right side.
2564  // This helps GVN for commutative ops.
2565  void OrderInputs() {
2566    DCHECK(IsCommutative());
2567    HInstruction* left = InputAt(0);
2568    HInstruction* right = InputAt(1);
2569    if (left == right || (!left->IsConstant() && right->IsConstant())) {
2570      return;
2571    }
2572    if (OrderInputsWithConstantOnTheRight()) {
2573      return;
2574    }
2575    // Order according to instruction id.
2576    if (left->GetId() > right->GetId()) {
2577      ReplaceInput(right, 0);
2578      ReplaceInput(left, 1);
2579    }
2580  }
2581
2582  bool CanBeMoved() const OVERRIDE { return true; }
2583  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
2584    return true;
2585  }
2586
2587  // Try to statically evaluate `operation` and return a HConstant
2588  // containing the result of this evaluation.  If `operation` cannot
2589  // be evaluated as a constant, return null.
2590  HConstant* TryStaticEvaluation() const;
2591
2592  // Apply this operation to `x` and `y`.
2593  virtual HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const = 0;
2594  virtual HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const = 0;
2595  virtual HConstant* Evaluate(HIntConstant* x ATTRIBUTE_UNUSED,
2596                              HLongConstant* y ATTRIBUTE_UNUSED) const {
2597    VLOG(compiler) << DebugName() << " is not defined for the (int, long) case.";
2598    return nullptr;
2599  }
2600  virtual HConstant* Evaluate(HLongConstant* x ATTRIBUTE_UNUSED,
2601                              HIntConstant* y ATTRIBUTE_UNUSED) const {
2602    VLOG(compiler) << DebugName() << " is not defined for the (long, int) case.";
2603    return nullptr;
2604  }
2605  virtual HConstant* Evaluate(HNullConstant* x ATTRIBUTE_UNUSED,
2606                              HNullConstant* y ATTRIBUTE_UNUSED) const {
2607    VLOG(compiler) << DebugName() << " is not defined for the (null, null) case.";
2608    return nullptr;
2609  }
2610
2611  // Returns an input that can legally be used as the right input and is
2612  // constant, or null.
2613  HConstant* GetConstantRight() const;
2614
2615  // If `GetConstantRight()` returns one of the input, this returns the other
2616  // one. Otherwise it returns null.
2617  HInstruction* GetLeastConstantLeft() const;
2618
2619  DECLARE_INSTRUCTION(BinaryOperation);
2620
2621 private:
2622  DISALLOW_COPY_AND_ASSIGN(HBinaryOperation);
2623};
2624
2625// The comparison bias applies for floating point operations and indicates how NaN
2626// comparisons are treated:
2627enum class ComparisonBias {
2628  kNoBias,  // bias is not applicable (i.e. for long operation)
2629  kGtBias,  // return 1 for NaN comparisons
2630  kLtBias,  // return -1 for NaN comparisons
2631};
2632
2633class HCondition : public HBinaryOperation {
2634 public:
2635  HCondition(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2636      : HBinaryOperation(Primitive::kPrimBoolean, first, second, SideEffects::None(), dex_pc),
2637        needs_materialization_(true),
2638        bias_(ComparisonBias::kNoBias) {}
2639
2640  bool NeedsMaterialization() const { return needs_materialization_; }
2641  void ClearNeedsMaterialization() { needs_materialization_ = false; }
2642
2643  // For code generation purposes, returns whether this instruction is just before
2644  // `instruction`, and disregard moves in between.
2645  bool IsBeforeWhenDisregardMoves(HInstruction* instruction) const;
2646
2647  DECLARE_INSTRUCTION(Condition);
2648
2649  virtual IfCondition GetCondition() const = 0;
2650
2651  virtual IfCondition GetOppositeCondition() const = 0;
2652
2653  bool IsGtBias() const { return bias_ == ComparisonBias::kGtBias; }
2654
2655  void SetBias(ComparisonBias bias) { bias_ = bias; }
2656
2657  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2658    return bias_ == other->AsCondition()->bias_;
2659  }
2660
2661  bool IsFPConditionTrueIfNaN() const {
2662    DCHECK(Primitive::IsFloatingPointType(InputAt(0)->GetType()));
2663    IfCondition if_cond = GetCondition();
2664    return IsGtBias() ? ((if_cond == kCondGT) || (if_cond == kCondGE)) : (if_cond == kCondNE);
2665  }
2666
2667  bool IsFPConditionFalseIfNaN() const {
2668    DCHECK(Primitive::IsFloatingPointType(InputAt(0)->GetType()));
2669    IfCondition if_cond = GetCondition();
2670    return IsGtBias() ? ((if_cond == kCondLT) || (if_cond == kCondLE)) : (if_cond == kCondEQ);
2671  }
2672
2673 private:
2674  // For register allocation purposes, returns whether this instruction needs to be
2675  // materialized (that is, not just be in the processor flags).
2676  bool needs_materialization_;
2677
2678  // Needed if we merge a HCompare into a HCondition.
2679  ComparisonBias bias_;
2680
2681  DISALLOW_COPY_AND_ASSIGN(HCondition);
2682};
2683
2684// Instruction to check if two inputs are equal to each other.
2685class HEqual : public HCondition {
2686 public:
2687  HEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2688      : HCondition(first, second, dex_pc) {}
2689
2690  bool IsCommutative() const OVERRIDE { return true; }
2691
2692  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2693    return GetBlock()->GetGraph()->GetIntConstant(
2694        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2695  }
2696  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2697    return GetBlock()->GetGraph()->GetIntConstant(
2698        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2699  }
2700  HConstant* Evaluate(HNullConstant* x ATTRIBUTE_UNUSED,
2701                      HNullConstant* y ATTRIBUTE_UNUSED) const OVERRIDE {
2702    return GetBlock()->GetGraph()->GetIntConstant(1);
2703  }
2704
2705  DECLARE_INSTRUCTION(Equal);
2706
2707  IfCondition GetCondition() const OVERRIDE {
2708    return kCondEQ;
2709  }
2710
2711  IfCondition GetOppositeCondition() const OVERRIDE {
2712    return kCondNE;
2713  }
2714
2715 private:
2716  template <typename T> bool Compute(T x, T y) const { return x == y; }
2717
2718  DISALLOW_COPY_AND_ASSIGN(HEqual);
2719};
2720
2721class HNotEqual : public HCondition {
2722 public:
2723  HNotEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2724      : HCondition(first, second, dex_pc) {}
2725
2726  bool IsCommutative() const OVERRIDE { return true; }
2727
2728  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2729    return GetBlock()->GetGraph()->GetIntConstant(
2730        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2731  }
2732  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2733    return GetBlock()->GetGraph()->GetIntConstant(
2734        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2735  }
2736  HConstant* Evaluate(HNullConstant* x ATTRIBUTE_UNUSED,
2737                      HNullConstant* y ATTRIBUTE_UNUSED) const OVERRIDE {
2738    return GetBlock()->GetGraph()->GetIntConstant(0);
2739  }
2740
2741  DECLARE_INSTRUCTION(NotEqual);
2742
2743  IfCondition GetCondition() const OVERRIDE {
2744    return kCondNE;
2745  }
2746
2747  IfCondition GetOppositeCondition() const OVERRIDE {
2748    return kCondEQ;
2749  }
2750
2751 private:
2752  template <typename T> bool Compute(T x, T y) const { return x != y; }
2753
2754  DISALLOW_COPY_AND_ASSIGN(HNotEqual);
2755};
2756
2757class HLessThan : public HCondition {
2758 public:
2759  HLessThan(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2760      : HCondition(first, second, dex_pc) {}
2761
2762  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2763    return GetBlock()->GetGraph()->GetIntConstant(
2764        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2765  }
2766  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2767    return GetBlock()->GetGraph()->GetIntConstant(
2768        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2769  }
2770
2771  DECLARE_INSTRUCTION(LessThan);
2772
2773  IfCondition GetCondition() const OVERRIDE {
2774    return kCondLT;
2775  }
2776
2777  IfCondition GetOppositeCondition() const OVERRIDE {
2778    return kCondGE;
2779  }
2780
2781 private:
2782  template <typename T> bool Compute(T x, T y) const { return x < y; }
2783
2784  DISALLOW_COPY_AND_ASSIGN(HLessThan);
2785};
2786
2787class HLessThanOrEqual : public HCondition {
2788 public:
2789  HLessThanOrEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2790      : HCondition(first, second, dex_pc) {}
2791
2792  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2793    return GetBlock()->GetGraph()->GetIntConstant(
2794        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2795  }
2796  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2797    return GetBlock()->GetGraph()->GetIntConstant(
2798        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2799  }
2800
2801  DECLARE_INSTRUCTION(LessThanOrEqual);
2802
2803  IfCondition GetCondition() const OVERRIDE {
2804    return kCondLE;
2805  }
2806
2807  IfCondition GetOppositeCondition() const OVERRIDE {
2808    return kCondGT;
2809  }
2810
2811 private:
2812  template <typename T> bool Compute(T x, T y) const { return x <= y; }
2813
2814  DISALLOW_COPY_AND_ASSIGN(HLessThanOrEqual);
2815};
2816
2817class HGreaterThan : public HCondition {
2818 public:
2819  HGreaterThan(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2820      : HCondition(first, second, dex_pc) {}
2821
2822  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2823    return GetBlock()->GetGraph()->GetIntConstant(
2824        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2825  }
2826  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2827    return GetBlock()->GetGraph()->GetIntConstant(
2828        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2829  }
2830
2831  DECLARE_INSTRUCTION(GreaterThan);
2832
2833  IfCondition GetCondition() const OVERRIDE {
2834    return kCondGT;
2835  }
2836
2837  IfCondition GetOppositeCondition() const OVERRIDE {
2838    return kCondLE;
2839  }
2840
2841 private:
2842  template <typename T> bool Compute(T x, T y) const { return x > y; }
2843
2844  DISALLOW_COPY_AND_ASSIGN(HGreaterThan);
2845};
2846
2847class HGreaterThanOrEqual : public HCondition {
2848 public:
2849  HGreaterThanOrEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2850      : HCondition(first, second, dex_pc) {}
2851
2852  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2853    return GetBlock()->GetGraph()->GetIntConstant(
2854        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2855  }
2856  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2857    return GetBlock()->GetGraph()->GetIntConstant(
2858        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2859  }
2860
2861  DECLARE_INSTRUCTION(GreaterThanOrEqual);
2862
2863  IfCondition GetCondition() const OVERRIDE {
2864    return kCondGE;
2865  }
2866
2867  IfCondition GetOppositeCondition() const OVERRIDE {
2868    return kCondLT;
2869  }
2870
2871 private:
2872  template <typename T> bool Compute(T x, T y) const { return x >= y; }
2873
2874  DISALLOW_COPY_AND_ASSIGN(HGreaterThanOrEqual);
2875};
2876
2877class HBelow : public HCondition {
2878 public:
2879  HBelow(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2880      : HCondition(first, second, dex_pc) {}
2881
2882  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2883    return GetBlock()->GetGraph()->GetIntConstant(
2884        Compute(static_cast<uint32_t>(x->GetValue()),
2885                static_cast<uint32_t>(y->GetValue())), GetDexPc());
2886  }
2887  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2888    return GetBlock()->GetGraph()->GetIntConstant(
2889        Compute(static_cast<uint64_t>(x->GetValue()),
2890                static_cast<uint64_t>(y->GetValue())), GetDexPc());
2891  }
2892
2893  DECLARE_INSTRUCTION(Below);
2894
2895  IfCondition GetCondition() const OVERRIDE {
2896    return kCondB;
2897  }
2898
2899  IfCondition GetOppositeCondition() const OVERRIDE {
2900    return kCondAE;
2901  }
2902
2903 private:
2904  template <typename T> bool Compute(T x, T y) const { return x < y; }
2905
2906  DISALLOW_COPY_AND_ASSIGN(HBelow);
2907};
2908
2909class HBelowOrEqual : public HCondition {
2910 public:
2911  HBelowOrEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2912      : HCondition(first, second, dex_pc) {}
2913
2914  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2915    return GetBlock()->GetGraph()->GetIntConstant(
2916        Compute(static_cast<uint32_t>(x->GetValue()),
2917                static_cast<uint32_t>(y->GetValue())), GetDexPc());
2918  }
2919  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2920    return GetBlock()->GetGraph()->GetIntConstant(
2921        Compute(static_cast<uint64_t>(x->GetValue()),
2922                static_cast<uint64_t>(y->GetValue())), GetDexPc());
2923  }
2924
2925  DECLARE_INSTRUCTION(BelowOrEqual);
2926
2927  IfCondition GetCondition() const OVERRIDE {
2928    return kCondBE;
2929  }
2930
2931  IfCondition GetOppositeCondition() const OVERRIDE {
2932    return kCondA;
2933  }
2934
2935 private:
2936  template <typename T> bool Compute(T x, T y) const { return x <= y; }
2937
2938  DISALLOW_COPY_AND_ASSIGN(HBelowOrEqual);
2939};
2940
2941class HAbove : public HCondition {
2942 public:
2943  HAbove(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2944      : HCondition(first, second, dex_pc) {}
2945
2946  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2947    return GetBlock()->GetGraph()->GetIntConstant(
2948        Compute(static_cast<uint32_t>(x->GetValue()),
2949                static_cast<uint32_t>(y->GetValue())), GetDexPc());
2950  }
2951  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2952    return GetBlock()->GetGraph()->GetIntConstant(
2953        Compute(static_cast<uint64_t>(x->GetValue()),
2954                static_cast<uint64_t>(y->GetValue())), GetDexPc());
2955  }
2956
2957  DECLARE_INSTRUCTION(Above);
2958
2959  IfCondition GetCondition() const OVERRIDE {
2960    return kCondA;
2961  }
2962
2963  IfCondition GetOppositeCondition() const OVERRIDE {
2964    return kCondBE;
2965  }
2966
2967 private:
2968  template <typename T> bool Compute(T x, T y) const { return x > y; }
2969
2970  DISALLOW_COPY_AND_ASSIGN(HAbove);
2971};
2972
2973class HAboveOrEqual : public HCondition {
2974 public:
2975  HAboveOrEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2976      : HCondition(first, second, dex_pc) {}
2977
2978  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2979    return GetBlock()->GetGraph()->GetIntConstant(
2980        Compute(static_cast<uint32_t>(x->GetValue()),
2981                static_cast<uint32_t>(y->GetValue())), GetDexPc());
2982  }
2983  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2984    return GetBlock()->GetGraph()->GetIntConstant(
2985        Compute(static_cast<uint64_t>(x->GetValue()),
2986                static_cast<uint64_t>(y->GetValue())), GetDexPc());
2987  }
2988
2989  DECLARE_INSTRUCTION(AboveOrEqual);
2990
2991  IfCondition GetCondition() const OVERRIDE {
2992    return kCondAE;
2993  }
2994
2995  IfCondition GetOppositeCondition() const OVERRIDE {
2996    return kCondB;
2997  }
2998
2999 private:
3000  template <typename T> bool Compute(T x, T y) const { return x >= y; }
3001
3002  DISALLOW_COPY_AND_ASSIGN(HAboveOrEqual);
3003};
3004
3005// Instruction to check how two inputs compare to each other.
3006// Result is 0 if input0 == input1, 1 if input0 > input1, or -1 if input0 < input1.
3007class HCompare : public HBinaryOperation {
3008 public:
3009  HCompare(Primitive::Type type,
3010           HInstruction* first,
3011           HInstruction* second,
3012           ComparisonBias bias,
3013           uint32_t dex_pc)
3014      : HBinaryOperation(Primitive::kPrimInt,
3015                         first,
3016                         second,
3017                         SideEffectsForArchRuntimeCalls(type),
3018                         dex_pc),
3019        bias_(bias) {
3020    DCHECK_EQ(type, first->GetType());
3021    DCHECK_EQ(type, second->GetType());
3022  }
3023
3024  template <typename T>
3025  int32_t Compute(T x, T y) const { return x == y ? 0 : x > y ? 1 : -1; }
3026
3027  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3028    return GetBlock()->GetGraph()->GetIntConstant(
3029        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3030  }
3031  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3032    return GetBlock()->GetGraph()->GetIntConstant(
3033        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3034  }
3035
3036  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
3037    return bias_ == other->AsCompare()->bias_;
3038  }
3039
3040  ComparisonBias GetBias() const { return bias_; }
3041
3042  bool IsGtBias() { return bias_ == ComparisonBias::kGtBias; }
3043
3044
3045  static SideEffects SideEffectsForArchRuntimeCalls(Primitive::Type type) {
3046    // MIPS64 uses a runtime call for FP comparisons.
3047    return Primitive::IsFloatingPointType(type) ? SideEffects::CanTriggerGC() : SideEffects::None();
3048  }
3049
3050  DECLARE_INSTRUCTION(Compare);
3051
3052 private:
3053  const ComparisonBias bias_;
3054
3055  DISALLOW_COPY_AND_ASSIGN(HCompare);
3056};
3057
3058// A local in the graph. Corresponds to a Dex register.
3059class HLocal : public HTemplateInstruction<0> {
3060 public:
3061  explicit HLocal(uint16_t reg_number)
3062      : HTemplateInstruction(SideEffects::None(), kNoDexPc), reg_number_(reg_number) {}
3063
3064  DECLARE_INSTRUCTION(Local);
3065
3066  uint16_t GetRegNumber() const { return reg_number_; }
3067
3068 private:
3069  // The Dex register number.
3070  const uint16_t reg_number_;
3071
3072  DISALLOW_COPY_AND_ASSIGN(HLocal);
3073};
3074
3075// Load a given local. The local is an input of this instruction.
3076class HLoadLocal : public HExpression<1> {
3077 public:
3078  HLoadLocal(HLocal* local, Primitive::Type type, uint32_t dex_pc = kNoDexPc)
3079      : HExpression(type, SideEffects::None(), dex_pc) {
3080    SetRawInputAt(0, local);
3081  }
3082
3083  HLocal* GetLocal() const { return reinterpret_cast<HLocal*>(InputAt(0)); }
3084
3085  DECLARE_INSTRUCTION(LoadLocal);
3086
3087 private:
3088  DISALLOW_COPY_AND_ASSIGN(HLoadLocal);
3089};
3090
3091// Store a value in a given local. This instruction has two inputs: the value
3092// and the local.
3093class HStoreLocal : public HTemplateInstruction<2> {
3094 public:
3095  HStoreLocal(HLocal* local, HInstruction* value, uint32_t dex_pc = kNoDexPc)
3096      : HTemplateInstruction(SideEffects::None(), dex_pc) {
3097    SetRawInputAt(0, local);
3098    SetRawInputAt(1, value);
3099  }
3100
3101  HLocal* GetLocal() const { return reinterpret_cast<HLocal*>(InputAt(0)); }
3102
3103  DECLARE_INSTRUCTION(StoreLocal);
3104
3105 private:
3106  DISALLOW_COPY_AND_ASSIGN(HStoreLocal);
3107};
3108
3109class HFloatConstant : public HConstant {
3110 public:
3111  float GetValue() const { return value_; }
3112
3113  uint64_t GetValueAsUint64() const OVERRIDE {
3114    return static_cast<uint64_t>(bit_cast<uint32_t, float>(value_));
3115  }
3116
3117  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
3118    DCHECK(other->IsFloatConstant());
3119    return other->AsFloatConstant()->GetValueAsUint64() == GetValueAsUint64();
3120  }
3121
3122  size_t ComputeHashCode() const OVERRIDE { return static_cast<size_t>(GetValue()); }
3123
3124  bool IsMinusOne() const OVERRIDE {
3125    return bit_cast<uint32_t, float>(value_) == bit_cast<uint32_t, float>((-1.0f));
3126  }
3127  bool IsZero() const OVERRIDE {
3128    return value_ == 0.0f;
3129  }
3130  bool IsOne() const OVERRIDE {
3131    return bit_cast<uint32_t, float>(value_) == bit_cast<uint32_t, float>(1.0f);
3132  }
3133  bool IsNaN() const {
3134    return std::isnan(value_);
3135  }
3136
3137  DECLARE_INSTRUCTION(FloatConstant);
3138
3139 private:
3140  explicit HFloatConstant(float value, uint32_t dex_pc = kNoDexPc)
3141      : HConstant(Primitive::kPrimFloat, dex_pc), value_(value) {}
3142  explicit HFloatConstant(int32_t value, uint32_t dex_pc = kNoDexPc)
3143      : HConstant(Primitive::kPrimFloat, dex_pc), value_(bit_cast<float, int32_t>(value)) {}
3144
3145  const float value_;
3146
3147  // Only the SsaBuilder and HGraph can create floating-point constants.
3148  friend class SsaBuilder;
3149  friend class HGraph;
3150  DISALLOW_COPY_AND_ASSIGN(HFloatConstant);
3151};
3152
3153class HDoubleConstant : public HConstant {
3154 public:
3155  double GetValue() const { return value_; }
3156
3157  uint64_t GetValueAsUint64() const OVERRIDE { return bit_cast<uint64_t, double>(value_); }
3158
3159  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
3160    DCHECK(other->IsDoubleConstant());
3161    return other->AsDoubleConstant()->GetValueAsUint64() == GetValueAsUint64();
3162  }
3163
3164  size_t ComputeHashCode() const OVERRIDE { return static_cast<size_t>(GetValue()); }
3165
3166  bool IsMinusOne() const OVERRIDE {
3167    return bit_cast<uint64_t, double>(value_) == bit_cast<uint64_t, double>((-1.0));
3168  }
3169  bool IsZero() const OVERRIDE {
3170    return value_ == 0.0;
3171  }
3172  bool IsOne() const OVERRIDE {
3173    return bit_cast<uint64_t, double>(value_) == bit_cast<uint64_t, double>(1.0);
3174  }
3175  bool IsNaN() const {
3176    return std::isnan(value_);
3177  }
3178
3179  DECLARE_INSTRUCTION(DoubleConstant);
3180
3181 private:
3182  explicit HDoubleConstant(double value, uint32_t dex_pc = kNoDexPc)
3183      : HConstant(Primitive::kPrimDouble, dex_pc), value_(value) {}
3184  explicit HDoubleConstant(int64_t value, uint32_t dex_pc = kNoDexPc)
3185      : HConstant(Primitive::kPrimDouble, dex_pc), value_(bit_cast<double, int64_t>(value)) {}
3186
3187  const double value_;
3188
3189  // Only the SsaBuilder and HGraph can create floating-point constants.
3190  friend class SsaBuilder;
3191  friend class HGraph;
3192  DISALLOW_COPY_AND_ASSIGN(HDoubleConstant);
3193};
3194
3195enum class Intrinsics {
3196#define OPTIMIZING_INTRINSICS(Name, IsStatic, NeedsEnvironmentOrCache) k ## Name,
3197#include "intrinsics_list.h"
3198  kNone,
3199  INTRINSICS_LIST(OPTIMIZING_INTRINSICS)
3200#undef INTRINSICS_LIST
3201#undef OPTIMIZING_INTRINSICS
3202};
3203std::ostream& operator<<(std::ostream& os, const Intrinsics& intrinsic);
3204
3205enum IntrinsicNeedsEnvironmentOrCache {
3206  kNoEnvironmentOrCache,        // Intrinsic does not require an environment or dex cache.
3207  kNeedsEnvironmentOrCache      // Intrinsic requires an environment or requires a dex cache.
3208};
3209
3210class HInvoke : public HInstruction {
3211 public:
3212  size_t InputCount() const OVERRIDE { return inputs_.size(); }
3213
3214  bool NeedsEnvironment() const OVERRIDE;
3215
3216  void SetArgumentAt(size_t index, HInstruction* argument) {
3217    SetRawInputAt(index, argument);
3218  }
3219
3220  // Return the number of arguments.  This number can be lower than
3221  // the number of inputs returned by InputCount(), as some invoke
3222  // instructions (e.g. HInvokeStaticOrDirect) can have non-argument
3223  // inputs at the end of their list of inputs.
3224  uint32_t GetNumberOfArguments() const { return number_of_arguments_; }
3225
3226  Primitive::Type GetType() const OVERRIDE { return return_type_; }
3227
3228
3229  uint32_t GetDexMethodIndex() const { return dex_method_index_; }
3230  const DexFile& GetDexFile() const { return GetEnvironment()->GetDexFile(); }
3231
3232  InvokeType GetOriginalInvokeType() const { return original_invoke_type_; }
3233
3234  Intrinsics GetIntrinsic() const {
3235    return intrinsic_;
3236  }
3237
3238  void SetIntrinsic(Intrinsics intrinsic, IntrinsicNeedsEnvironmentOrCache needs_env_or_cache);
3239
3240  bool IsFromInlinedInvoke() const {
3241    return GetEnvironment()->GetParent() != nullptr;
3242  }
3243
3244  bool CanThrow() const OVERRIDE { return true; }
3245
3246  uint32_t* GetIntrinsicOptimizations() {
3247    return &intrinsic_optimizations_;
3248  }
3249
3250  const uint32_t* GetIntrinsicOptimizations() const {
3251    return &intrinsic_optimizations_;
3252  }
3253
3254  bool IsIntrinsic() const { return intrinsic_ != Intrinsics::kNone; }
3255
3256  DECLARE_INSTRUCTION(Invoke);
3257
3258 protected:
3259  HInvoke(ArenaAllocator* arena,
3260          uint32_t number_of_arguments,
3261          uint32_t number_of_other_inputs,
3262          Primitive::Type return_type,
3263          uint32_t dex_pc,
3264          uint32_t dex_method_index,
3265          InvokeType original_invoke_type)
3266    : HInstruction(
3267          SideEffects::AllExceptGCDependency(), dex_pc),  // Assume write/read on all fields/arrays.
3268      number_of_arguments_(number_of_arguments),
3269      inputs_(number_of_arguments + number_of_other_inputs,
3270              arena->Adapter(kArenaAllocInvokeInputs)),
3271      return_type_(return_type),
3272      dex_method_index_(dex_method_index),
3273      original_invoke_type_(original_invoke_type),
3274      intrinsic_(Intrinsics::kNone),
3275      intrinsic_optimizations_(0) {
3276  }
3277
3278  const HUserRecord<HInstruction*> InputRecordAt(size_t index) const OVERRIDE {
3279    return inputs_[index];
3280  }
3281
3282  void SetRawInputRecordAt(size_t index, const HUserRecord<HInstruction*>& input) OVERRIDE {
3283    inputs_[index] = input;
3284  }
3285
3286  uint32_t number_of_arguments_;
3287  ArenaVector<HUserRecord<HInstruction*>> inputs_;
3288  const Primitive::Type return_type_;
3289  const uint32_t dex_method_index_;
3290  const InvokeType original_invoke_type_;
3291  Intrinsics intrinsic_;
3292
3293  // A magic word holding optimizations for intrinsics. See intrinsics.h.
3294  uint32_t intrinsic_optimizations_;
3295
3296 private:
3297  DISALLOW_COPY_AND_ASSIGN(HInvoke);
3298};
3299
3300class HInvokeUnresolved : public HInvoke {
3301 public:
3302  HInvokeUnresolved(ArenaAllocator* arena,
3303                    uint32_t number_of_arguments,
3304                    Primitive::Type return_type,
3305                    uint32_t dex_pc,
3306                    uint32_t dex_method_index,
3307                    InvokeType invoke_type)
3308      : HInvoke(arena,
3309                number_of_arguments,
3310                0u /* number_of_other_inputs */,
3311                return_type,
3312                dex_pc,
3313                dex_method_index,
3314                invoke_type) {
3315  }
3316
3317  DECLARE_INSTRUCTION(InvokeUnresolved);
3318
3319 private:
3320  DISALLOW_COPY_AND_ASSIGN(HInvokeUnresolved);
3321};
3322
3323class HInvokeStaticOrDirect : public HInvoke {
3324 public:
3325  // Requirements of this method call regarding the class
3326  // initialization (clinit) check of its declaring class.
3327  enum class ClinitCheckRequirement {
3328    kNone,      // Class already initialized.
3329    kExplicit,  // Static call having explicit clinit check as last input.
3330    kImplicit,  // Static call implicitly requiring a clinit check.
3331  };
3332
3333  // Determines how to load the target ArtMethod*.
3334  enum class MethodLoadKind {
3335    // Use a String init ArtMethod* loaded from Thread entrypoints.
3336    kStringInit,
3337
3338    // Use the method's own ArtMethod* loaded by the register allocator.
3339    kRecursive,
3340
3341    // Use ArtMethod* at a known address, embed the direct address in the code.
3342    // Used for app->boot calls with non-relocatable image and for JIT-compiled calls.
3343    kDirectAddress,
3344
3345    // Use ArtMethod* at an address that will be known at link time, embed the direct
3346    // address in the code. If the image is relocatable, emit .patch_oat entry.
3347    // Used for app->boot calls with relocatable image and boot->boot calls, whether
3348    // the image relocatable or not.
3349    kDirectAddressWithFixup,
3350
3351    // Load from resoved methods array in the dex cache using a PC-relative load.
3352    // Used when we need to use the dex cache, for example for invoke-static that
3353    // may cause class initialization (the entry may point to a resolution method),
3354    // and we know that we can access the dex cache arrays using a PC-relative load.
3355    kDexCachePcRelative,
3356
3357    // Use ArtMethod* from the resolved methods of the compiled method's own ArtMethod*.
3358    // Used for JIT when we need to use the dex cache. This is also the last-resort-kind
3359    // used when other kinds are unavailable (say, dex cache arrays are not PC-relative)
3360    // or unimplemented or impractical (i.e. slow) on a particular architecture.
3361    kDexCacheViaMethod,
3362  };
3363
3364  // Determines the location of the code pointer.
3365  enum class CodePtrLocation {
3366    // Recursive call, use local PC-relative call instruction.
3367    kCallSelf,
3368
3369    // Use PC-relative call instruction patched at link time.
3370    // Used for calls within an oat file, boot->boot or app->app.
3371    kCallPCRelative,
3372
3373    // Call to a known target address, embed the direct address in code.
3374    // Used for app->boot call with non-relocatable image and for JIT-compiled calls.
3375    kCallDirect,
3376
3377    // Call to a target address that will be known at link time, embed the direct
3378    // address in code. If the image is relocatable, emit .patch_oat entry.
3379    // Used for app->boot calls with relocatable image and boot->boot calls, whether
3380    // the image relocatable or not.
3381    kCallDirectWithFixup,
3382
3383    // Use code pointer from the ArtMethod*.
3384    // Used when we don't know the target code. This is also the last-resort-kind used when
3385    // other kinds are unimplemented or impractical (i.e. slow) on a particular architecture.
3386    kCallArtMethod,
3387  };
3388
3389  struct DispatchInfo {
3390    MethodLoadKind method_load_kind;
3391    CodePtrLocation code_ptr_location;
3392    // The method load data holds
3393    //   - thread entrypoint offset for kStringInit method if this is a string init invoke.
3394    //     Note that there are multiple string init methods, each having its own offset.
3395    //   - the method address for kDirectAddress
3396    //   - the dex cache arrays offset for kDexCachePcRel.
3397    uint64_t method_load_data;
3398    uint64_t direct_code_ptr;
3399  };
3400
3401  HInvokeStaticOrDirect(ArenaAllocator* arena,
3402                        uint32_t number_of_arguments,
3403                        Primitive::Type return_type,
3404                        uint32_t dex_pc,
3405                        uint32_t method_index,
3406                        MethodReference target_method,
3407                        DispatchInfo dispatch_info,
3408                        InvokeType original_invoke_type,
3409                        InvokeType invoke_type,
3410                        ClinitCheckRequirement clinit_check_requirement)
3411      : HInvoke(arena,
3412                number_of_arguments,
3413                // There is potentially one extra argument for the HCurrentMethod node, and
3414                // potentially one other if the clinit check is explicit, and potentially
3415                // one other if the method is a string factory.
3416                (NeedsCurrentMethodInput(dispatch_info.method_load_kind) ? 1u : 0u) +
3417                    (clinit_check_requirement == ClinitCheckRequirement::kExplicit ? 1u : 0u) +
3418                    (dispatch_info.method_load_kind == MethodLoadKind::kStringInit ? 1u : 0u),
3419                return_type,
3420                dex_pc,
3421                method_index,
3422                original_invoke_type),
3423        invoke_type_(invoke_type),
3424        clinit_check_requirement_(clinit_check_requirement),
3425        target_method_(target_method),
3426        dispatch_info_(dispatch_info) { }
3427
3428  void SetDispatchInfo(const DispatchInfo& dispatch_info) {
3429    bool had_current_method_input = HasCurrentMethodInput();
3430    bool needs_current_method_input = NeedsCurrentMethodInput(dispatch_info.method_load_kind);
3431
3432    // Using the current method is the default and once we find a better
3433    // method load kind, we should not go back to using the current method.
3434    DCHECK(had_current_method_input || !needs_current_method_input);
3435
3436    if (had_current_method_input && !needs_current_method_input) {
3437      DCHECK_EQ(InputAt(GetCurrentMethodInputIndex()), GetBlock()->GetGraph()->GetCurrentMethod());
3438      RemoveInputAt(GetCurrentMethodInputIndex());
3439    }
3440    dispatch_info_ = dispatch_info;
3441  }
3442
3443  void InsertInputAt(size_t index, HInstruction* input);
3444  void RemoveInputAt(size_t index);
3445
3446  bool CanDoImplicitNullCheckOn(HInstruction* obj ATTRIBUTE_UNUSED) const OVERRIDE {
3447    // We access the method via the dex cache so we can't do an implicit null check.
3448    // TODO: for intrinsics we can generate implicit null checks.
3449    return false;
3450  }
3451
3452  bool CanBeNull() const OVERRIDE {
3453    return return_type_ == Primitive::kPrimNot && !IsStringInit();
3454  }
3455
3456  InvokeType GetInvokeType() const { return invoke_type_; }
3457  MethodLoadKind GetMethodLoadKind() const { return dispatch_info_.method_load_kind; }
3458  CodePtrLocation GetCodePtrLocation() const { return dispatch_info_.code_ptr_location; }
3459  bool IsRecursive() const { return GetMethodLoadKind() == MethodLoadKind::kRecursive; }
3460  bool NeedsDexCacheOfDeclaringClass() const OVERRIDE;
3461  bool IsStringInit() const { return GetMethodLoadKind() == MethodLoadKind::kStringInit; }
3462  uint32_t GetCurrentMethodInputIndex() const { return GetNumberOfArguments(); }
3463  bool HasMethodAddress() const { return GetMethodLoadKind() == MethodLoadKind::kDirectAddress; }
3464  bool HasPcRelativeDexCache() const {
3465    return GetMethodLoadKind() == MethodLoadKind::kDexCachePcRelative;
3466  }
3467  bool HasCurrentMethodInput() const {
3468    // This function can be called only after the invoke has been fully initialized by the builder.
3469    if (NeedsCurrentMethodInput(GetMethodLoadKind())) {
3470      DCHECK(InputAt(GetCurrentMethodInputIndex())->IsCurrentMethod());
3471      return true;
3472    } else {
3473      DCHECK(InputCount() == GetCurrentMethodInputIndex() ||
3474             !InputAt(GetCurrentMethodInputIndex())->IsCurrentMethod());
3475      return false;
3476    }
3477  }
3478  bool HasDirectCodePtr() const { return GetCodePtrLocation() == CodePtrLocation::kCallDirect; }
3479  MethodReference GetTargetMethod() const { return target_method_; }
3480
3481  int32_t GetStringInitOffset() const {
3482    DCHECK(IsStringInit());
3483    return dispatch_info_.method_load_data;
3484  }
3485
3486  uint64_t GetMethodAddress() const {
3487    DCHECK(HasMethodAddress());
3488    return dispatch_info_.method_load_data;
3489  }
3490
3491  uint32_t GetDexCacheArrayOffset() const {
3492    DCHECK(HasPcRelativeDexCache());
3493    return dispatch_info_.method_load_data;
3494  }
3495
3496  uint64_t GetDirectCodePtr() const {
3497    DCHECK(HasDirectCodePtr());
3498    return dispatch_info_.direct_code_ptr;
3499  }
3500
3501  ClinitCheckRequirement GetClinitCheckRequirement() const { return clinit_check_requirement_; }
3502
3503  // Is this instruction a call to a static method?
3504  bool IsStatic() const {
3505    return GetInvokeType() == kStatic;
3506  }
3507
3508  // Remove the art::HLoadClass instruction set as last input by
3509  // art::PrepareForRegisterAllocation::VisitClinitCheck in lieu of
3510  // the initial art::HClinitCheck instruction (only relevant for
3511  // static calls with explicit clinit check).
3512  void RemoveLoadClassAsLastInput() {
3513    DCHECK(IsStaticWithExplicitClinitCheck());
3514    size_t last_input_index = InputCount() - 1;
3515    HInstruction* last_input = InputAt(last_input_index);
3516    DCHECK(last_input != nullptr);
3517    DCHECK(last_input->IsLoadClass()) << last_input->DebugName();
3518    RemoveAsUserOfInput(last_input_index);
3519    inputs_.pop_back();
3520    clinit_check_requirement_ = ClinitCheckRequirement::kImplicit;
3521    DCHECK(IsStaticWithImplicitClinitCheck());
3522  }
3523
3524  bool IsStringFactoryFor(HFakeString* str) const {
3525    if (!IsStringInit()) return false;
3526    DCHECK(!HasCurrentMethodInput());
3527    if (InputCount() == (number_of_arguments_)) return false;
3528    return InputAt(InputCount() - 1)->AsFakeString() == str;
3529  }
3530
3531  void RemoveFakeStringArgumentAsLastInput() {
3532    DCHECK(IsStringInit());
3533    size_t last_input_index = InputCount() - 1;
3534    HInstruction* last_input = InputAt(last_input_index);
3535    DCHECK(last_input != nullptr);
3536    DCHECK(last_input->IsFakeString()) << last_input->DebugName();
3537    RemoveAsUserOfInput(last_input_index);
3538    inputs_.pop_back();
3539  }
3540
3541  // Is this a call to a static method whose declaring class has an
3542  // explicit intialization check in the graph?
3543  bool IsStaticWithExplicitClinitCheck() const {
3544    return IsStatic() && (clinit_check_requirement_ == ClinitCheckRequirement::kExplicit);
3545  }
3546
3547  // Is this a call to a static method whose declaring class has an
3548  // implicit intialization check requirement?
3549  bool IsStaticWithImplicitClinitCheck() const {
3550    return IsStatic() && (clinit_check_requirement_ == ClinitCheckRequirement::kImplicit);
3551  }
3552
3553  // Does this method load kind need the current method as an input?
3554  static bool NeedsCurrentMethodInput(MethodLoadKind kind) {
3555    return kind == MethodLoadKind::kRecursive || kind == MethodLoadKind::kDexCacheViaMethod;
3556  }
3557
3558  DECLARE_INSTRUCTION(InvokeStaticOrDirect);
3559
3560 protected:
3561  const HUserRecord<HInstruction*> InputRecordAt(size_t i) const OVERRIDE {
3562    const HUserRecord<HInstruction*> input_record = HInvoke::InputRecordAt(i);
3563    if (kIsDebugBuild && IsStaticWithExplicitClinitCheck() && (i == InputCount() - 1)) {
3564      HInstruction* input = input_record.GetInstruction();
3565      // `input` is the last input of a static invoke marked as having
3566      // an explicit clinit check. It must either be:
3567      // - an art::HClinitCheck instruction, set by art::HGraphBuilder; or
3568      // - an art::HLoadClass instruction, set by art::PrepareForRegisterAllocation.
3569      DCHECK(input != nullptr);
3570      DCHECK(input->IsClinitCheck() || input->IsLoadClass()) << input->DebugName();
3571    }
3572    return input_record;
3573  }
3574
3575 private:
3576  const InvokeType invoke_type_;
3577  ClinitCheckRequirement clinit_check_requirement_;
3578  // The target method may refer to different dex file or method index than the original
3579  // invoke. This happens for sharpened calls and for calls where a method was redeclared
3580  // in derived class to increase visibility.
3581  MethodReference target_method_;
3582  DispatchInfo dispatch_info_;
3583
3584  DISALLOW_COPY_AND_ASSIGN(HInvokeStaticOrDirect);
3585};
3586
3587class HInvokeVirtual : public HInvoke {
3588 public:
3589  HInvokeVirtual(ArenaAllocator* arena,
3590                 uint32_t number_of_arguments,
3591                 Primitive::Type return_type,
3592                 uint32_t dex_pc,
3593                 uint32_t dex_method_index,
3594                 uint32_t vtable_index)
3595      : HInvoke(arena, number_of_arguments, 0u, return_type, dex_pc, dex_method_index, kVirtual),
3596        vtable_index_(vtable_index) {}
3597
3598  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
3599    // TODO: Add implicit null checks in intrinsics.
3600    return (obj == InputAt(0)) && !GetLocations()->Intrinsified();
3601  }
3602
3603  uint32_t GetVTableIndex() const { return vtable_index_; }
3604
3605  DECLARE_INSTRUCTION(InvokeVirtual);
3606
3607 private:
3608  const uint32_t vtable_index_;
3609
3610  DISALLOW_COPY_AND_ASSIGN(HInvokeVirtual);
3611};
3612
3613class HInvokeInterface : public HInvoke {
3614 public:
3615  HInvokeInterface(ArenaAllocator* arena,
3616                   uint32_t number_of_arguments,
3617                   Primitive::Type return_type,
3618                   uint32_t dex_pc,
3619                   uint32_t dex_method_index,
3620                   uint32_t imt_index)
3621      : HInvoke(arena, number_of_arguments, 0u, return_type, dex_pc, dex_method_index, kInterface),
3622        imt_index_(imt_index) {}
3623
3624  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
3625    // TODO: Add implicit null checks in intrinsics.
3626    return (obj == InputAt(0)) && !GetLocations()->Intrinsified();
3627  }
3628
3629  uint32_t GetImtIndex() const { return imt_index_; }
3630  uint32_t GetDexMethodIndex() const { return dex_method_index_; }
3631
3632  DECLARE_INSTRUCTION(InvokeInterface);
3633
3634 private:
3635  const uint32_t imt_index_;
3636
3637  DISALLOW_COPY_AND_ASSIGN(HInvokeInterface);
3638};
3639
3640class HNewInstance : public HExpression<1> {
3641 public:
3642  HNewInstance(HCurrentMethod* current_method,
3643               uint32_t dex_pc,
3644               uint16_t type_index,
3645               const DexFile& dex_file,
3646               bool can_throw,
3647               bool finalizable,
3648               QuickEntrypointEnum entrypoint)
3649      : HExpression(Primitive::kPrimNot, SideEffects::CanTriggerGC(), dex_pc),
3650        type_index_(type_index),
3651        dex_file_(dex_file),
3652        can_throw_(can_throw),
3653        finalizable_(finalizable),
3654        entrypoint_(entrypoint) {
3655    SetRawInputAt(0, current_method);
3656  }
3657
3658  uint16_t GetTypeIndex() const { return type_index_; }
3659  const DexFile& GetDexFile() const { return dex_file_; }
3660
3661  // Calls runtime so needs an environment.
3662  bool NeedsEnvironment() const OVERRIDE { return true; }
3663
3664  // It may throw when called on type that's not instantiable/accessible.
3665  // It can throw OOME.
3666  // TODO: distinguish between the two cases so we can for example allow allocation elimination.
3667  bool CanThrow() const OVERRIDE { return can_throw_ || true; }
3668
3669  bool IsFinalizable() const { return finalizable_; }
3670
3671  bool CanBeNull() const OVERRIDE { return false; }
3672
3673  QuickEntrypointEnum GetEntrypoint() const { return entrypoint_; }
3674
3675  DECLARE_INSTRUCTION(NewInstance);
3676
3677 private:
3678  const uint16_t type_index_;
3679  const DexFile& dex_file_;
3680  const bool can_throw_;
3681  const bool finalizable_;
3682  const QuickEntrypointEnum entrypoint_;
3683
3684  DISALLOW_COPY_AND_ASSIGN(HNewInstance);
3685};
3686
3687class HNeg : public HUnaryOperation {
3688 public:
3689  HNeg(Primitive::Type result_type, HInstruction* input, uint32_t dex_pc = kNoDexPc)
3690      : HUnaryOperation(result_type, input, dex_pc) {}
3691
3692  template <typename T> T Compute(T x) const { return -x; }
3693
3694  HConstant* Evaluate(HIntConstant* x) const OVERRIDE {
3695    return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue()), GetDexPc());
3696  }
3697  HConstant* Evaluate(HLongConstant* x) const OVERRIDE {
3698    return GetBlock()->GetGraph()->GetLongConstant(Compute(x->GetValue()), GetDexPc());
3699  }
3700
3701  DECLARE_INSTRUCTION(Neg);
3702
3703 private:
3704  DISALLOW_COPY_AND_ASSIGN(HNeg);
3705};
3706
3707class HNewArray : public HExpression<2> {
3708 public:
3709  HNewArray(HInstruction* length,
3710            HCurrentMethod* current_method,
3711            uint32_t dex_pc,
3712            uint16_t type_index,
3713            const DexFile& dex_file,
3714            QuickEntrypointEnum entrypoint)
3715      : HExpression(Primitive::kPrimNot, SideEffects::CanTriggerGC(), dex_pc),
3716        type_index_(type_index),
3717        dex_file_(dex_file),
3718        entrypoint_(entrypoint) {
3719    SetRawInputAt(0, length);
3720    SetRawInputAt(1, current_method);
3721  }
3722
3723  uint16_t GetTypeIndex() const { return type_index_; }
3724  const DexFile& GetDexFile() const { return dex_file_; }
3725
3726  // Calls runtime so needs an environment.
3727  bool NeedsEnvironment() const OVERRIDE { return true; }
3728
3729  // May throw NegativeArraySizeException, OutOfMemoryError, etc.
3730  bool CanThrow() const OVERRIDE { return true; }
3731
3732  bool CanBeNull() const OVERRIDE { return false; }
3733
3734  QuickEntrypointEnum GetEntrypoint() const { return entrypoint_; }
3735
3736  DECLARE_INSTRUCTION(NewArray);
3737
3738 private:
3739  const uint16_t type_index_;
3740  const DexFile& dex_file_;
3741  const QuickEntrypointEnum entrypoint_;
3742
3743  DISALLOW_COPY_AND_ASSIGN(HNewArray);
3744};
3745
3746class HAdd : public HBinaryOperation {
3747 public:
3748  HAdd(Primitive::Type result_type,
3749       HInstruction* left,
3750       HInstruction* right,
3751       uint32_t dex_pc = kNoDexPc)
3752      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
3753
3754  bool IsCommutative() const OVERRIDE { return true; }
3755
3756  template <typename T> T Compute(T x, T y) const { return x + y; }
3757
3758  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3759    return GetBlock()->GetGraph()->GetIntConstant(
3760        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3761  }
3762  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3763    return GetBlock()->GetGraph()->GetLongConstant(
3764        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3765  }
3766
3767  DECLARE_INSTRUCTION(Add);
3768
3769 private:
3770  DISALLOW_COPY_AND_ASSIGN(HAdd);
3771};
3772
3773class HSub : public HBinaryOperation {
3774 public:
3775  HSub(Primitive::Type result_type,
3776       HInstruction* left,
3777       HInstruction* right,
3778       uint32_t dex_pc = kNoDexPc)
3779      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
3780
3781  template <typename T> T Compute(T x, T y) const { return x - y; }
3782
3783  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3784    return GetBlock()->GetGraph()->GetIntConstant(
3785        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3786  }
3787  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3788    return GetBlock()->GetGraph()->GetLongConstant(
3789        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3790  }
3791
3792  DECLARE_INSTRUCTION(Sub);
3793
3794 private:
3795  DISALLOW_COPY_AND_ASSIGN(HSub);
3796};
3797
3798class HMul : public HBinaryOperation {
3799 public:
3800  HMul(Primitive::Type result_type,
3801       HInstruction* left,
3802       HInstruction* right,
3803       uint32_t dex_pc = kNoDexPc)
3804      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
3805
3806  bool IsCommutative() const OVERRIDE { return true; }
3807
3808  template <typename T> T Compute(T x, T y) const { return x * y; }
3809
3810  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3811    return GetBlock()->GetGraph()->GetIntConstant(
3812        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3813  }
3814  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3815    return GetBlock()->GetGraph()->GetLongConstant(
3816        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3817  }
3818
3819  DECLARE_INSTRUCTION(Mul);
3820
3821 private:
3822  DISALLOW_COPY_AND_ASSIGN(HMul);
3823};
3824
3825class HDiv : public HBinaryOperation {
3826 public:
3827  HDiv(Primitive::Type result_type,
3828       HInstruction* left,
3829       HInstruction* right,
3830       uint32_t dex_pc)
3831      : HBinaryOperation(result_type, left, right, SideEffectsForArchRuntimeCalls(), dex_pc) {}
3832
3833  template <typename T>
3834  T Compute(T x, T y) const {
3835    // Our graph structure ensures we never have 0 for `y` during
3836    // constant folding.
3837    DCHECK_NE(y, 0);
3838    // Special case -1 to avoid getting a SIGFPE on x86(_64).
3839    return (y == -1) ? -x : x / y;
3840  }
3841
3842  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3843    return GetBlock()->GetGraph()->GetIntConstant(
3844        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3845  }
3846  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3847    return GetBlock()->GetGraph()->GetLongConstant(
3848        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3849  }
3850
3851  static SideEffects SideEffectsForArchRuntimeCalls() {
3852    // The generated code can use a runtime call.
3853    return SideEffects::CanTriggerGC();
3854  }
3855
3856  DECLARE_INSTRUCTION(Div);
3857
3858 private:
3859  DISALLOW_COPY_AND_ASSIGN(HDiv);
3860};
3861
3862class HRem : public HBinaryOperation {
3863 public:
3864  HRem(Primitive::Type result_type,
3865       HInstruction* left,
3866       HInstruction* right,
3867       uint32_t dex_pc)
3868      : HBinaryOperation(result_type, left, right, SideEffectsForArchRuntimeCalls(), dex_pc) {}
3869
3870  template <typename T>
3871  T Compute(T x, T y) const {
3872    // Our graph structure ensures we never have 0 for `y` during
3873    // constant folding.
3874    DCHECK_NE(y, 0);
3875    // Special case -1 to avoid getting a SIGFPE on x86(_64).
3876    return (y == -1) ? 0 : x % y;
3877  }
3878
3879  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3880    return GetBlock()->GetGraph()->GetIntConstant(
3881        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3882  }
3883  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3884    return GetBlock()->GetGraph()->GetLongConstant(
3885        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3886  }
3887
3888
3889  static SideEffects SideEffectsForArchRuntimeCalls() {
3890    return SideEffects::CanTriggerGC();
3891  }
3892
3893  DECLARE_INSTRUCTION(Rem);
3894
3895 private:
3896  DISALLOW_COPY_AND_ASSIGN(HRem);
3897};
3898
3899class HDivZeroCheck : public HExpression<1> {
3900 public:
3901  HDivZeroCheck(HInstruction* value, uint32_t dex_pc)
3902      : HExpression(value->GetType(), SideEffects::None(), dex_pc) {
3903    SetRawInputAt(0, value);
3904  }
3905
3906  Primitive::Type GetType() const OVERRIDE { return InputAt(0)->GetType(); }
3907
3908  bool CanBeMoved() const OVERRIDE { return true; }
3909
3910  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
3911    return true;
3912  }
3913
3914  bool NeedsEnvironment() const OVERRIDE { return true; }
3915  bool CanThrow() const OVERRIDE { return true; }
3916
3917  DECLARE_INSTRUCTION(DivZeroCheck);
3918
3919 private:
3920  DISALLOW_COPY_AND_ASSIGN(HDivZeroCheck);
3921};
3922
3923class HShl : public HBinaryOperation {
3924 public:
3925  HShl(Primitive::Type result_type,
3926       HInstruction* left,
3927       HInstruction* right,
3928       uint32_t dex_pc = kNoDexPc)
3929      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
3930
3931  template <typename T, typename U, typename V>
3932  T Compute(T x, U y, V max_shift_value) const {
3933    static_assert(std::is_same<V, typename std::make_unsigned<T>::type>::value,
3934                  "V is not the unsigned integer type corresponding to T");
3935    return x << (y & max_shift_value);
3936  }
3937
3938  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3939    return GetBlock()->GetGraph()->GetIntConstant(
3940        Compute(x->GetValue(), y->GetValue(), kMaxIntShiftValue), GetDexPc());
3941  }
3942  // There is no `Evaluate(HIntConstant* x, HLongConstant* y)`, as this
3943  // case is handled as `x << static_cast<int>(y)`.
3944  HConstant* Evaluate(HLongConstant* x, HIntConstant* y) const OVERRIDE {
3945    return GetBlock()->GetGraph()->GetLongConstant(
3946        Compute(x->GetValue(), y->GetValue(), kMaxLongShiftValue), GetDexPc());
3947  }
3948  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3949    return GetBlock()->GetGraph()->GetLongConstant(
3950        Compute(x->GetValue(), y->GetValue(), kMaxLongShiftValue), GetDexPc());
3951  }
3952
3953  DECLARE_INSTRUCTION(Shl);
3954
3955 private:
3956  DISALLOW_COPY_AND_ASSIGN(HShl);
3957};
3958
3959class HShr : public HBinaryOperation {
3960 public:
3961  HShr(Primitive::Type result_type,
3962       HInstruction* left,
3963       HInstruction* right,
3964       uint32_t dex_pc = kNoDexPc)
3965      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
3966
3967  template <typename T, typename U, typename V>
3968  T Compute(T x, U y, V max_shift_value) const {
3969    static_assert(std::is_same<V, typename std::make_unsigned<T>::type>::value,
3970                  "V is not the unsigned integer type corresponding to T");
3971    return x >> (y & max_shift_value);
3972  }
3973
3974  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3975    return GetBlock()->GetGraph()->GetIntConstant(
3976        Compute(x->GetValue(), y->GetValue(), kMaxIntShiftValue), GetDexPc());
3977  }
3978  // There is no `Evaluate(HIntConstant* x, HLongConstant* y)`, as this
3979  // case is handled as `x >> static_cast<int>(y)`.
3980  HConstant* Evaluate(HLongConstant* x, HIntConstant* y) const OVERRIDE {
3981    return GetBlock()->GetGraph()->GetLongConstant(
3982        Compute(x->GetValue(), y->GetValue(), kMaxLongShiftValue), GetDexPc());
3983  }
3984  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3985    return GetBlock()->GetGraph()->GetLongConstant(
3986        Compute(x->GetValue(), y->GetValue(), kMaxLongShiftValue), GetDexPc());
3987  }
3988
3989  DECLARE_INSTRUCTION(Shr);
3990
3991 private:
3992  DISALLOW_COPY_AND_ASSIGN(HShr);
3993};
3994
3995class HUShr : public HBinaryOperation {
3996 public:
3997  HUShr(Primitive::Type result_type,
3998        HInstruction* left,
3999        HInstruction* right,
4000        uint32_t dex_pc = kNoDexPc)
4001      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
4002
4003  template <typename T, typename U, typename V>
4004  T Compute(T x, U y, V max_shift_value) const {
4005    static_assert(std::is_same<V, typename std::make_unsigned<T>::type>::value,
4006                  "V is not the unsigned integer type corresponding to T");
4007    V ux = static_cast<V>(x);
4008    return static_cast<T>(ux >> (y & max_shift_value));
4009  }
4010
4011  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
4012    return GetBlock()->GetGraph()->GetIntConstant(
4013        Compute(x->GetValue(), y->GetValue(), kMaxIntShiftValue), GetDexPc());
4014  }
4015  // There is no `Evaluate(HIntConstant* x, HLongConstant* y)`, as this
4016  // case is handled as `x >>> static_cast<int>(y)`.
4017  HConstant* Evaluate(HLongConstant* x, HIntConstant* y) const OVERRIDE {
4018    return GetBlock()->GetGraph()->GetLongConstant(
4019        Compute(x->GetValue(), y->GetValue(), kMaxLongShiftValue), GetDexPc());
4020  }
4021  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
4022    return GetBlock()->GetGraph()->GetLongConstant(
4023        Compute(x->GetValue(), y->GetValue(), kMaxLongShiftValue), GetDexPc());
4024  }
4025
4026  DECLARE_INSTRUCTION(UShr);
4027
4028 private:
4029  DISALLOW_COPY_AND_ASSIGN(HUShr);
4030};
4031
4032class HAnd : public HBinaryOperation {
4033 public:
4034  HAnd(Primitive::Type result_type,
4035       HInstruction* left,
4036       HInstruction* right,
4037       uint32_t dex_pc = kNoDexPc)
4038      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
4039
4040  bool IsCommutative() const OVERRIDE { return true; }
4041
4042  template <typename T, typename U>
4043  auto Compute(T x, U y) const -> decltype(x & y) { return x & y; }
4044
4045  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
4046    return GetBlock()->GetGraph()->GetIntConstant(
4047        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4048  }
4049  HConstant* Evaluate(HIntConstant* x, HLongConstant* y) const OVERRIDE {
4050    return GetBlock()->GetGraph()->GetLongConstant(
4051        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4052  }
4053  HConstant* Evaluate(HLongConstant* x, HIntConstant* y) const OVERRIDE {
4054    return GetBlock()->GetGraph()->GetLongConstant(
4055        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4056  }
4057  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
4058    return GetBlock()->GetGraph()->GetLongConstant(
4059        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4060  }
4061
4062  DECLARE_INSTRUCTION(And);
4063
4064 private:
4065  DISALLOW_COPY_AND_ASSIGN(HAnd);
4066};
4067
4068class HOr : public HBinaryOperation {
4069 public:
4070  HOr(Primitive::Type result_type,
4071      HInstruction* left,
4072      HInstruction* right,
4073      uint32_t dex_pc = kNoDexPc)
4074      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
4075
4076  bool IsCommutative() const OVERRIDE { return true; }
4077
4078  template <typename T, typename U>
4079  auto Compute(T x, U y) const -> decltype(x | y) { return x | y; }
4080
4081  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
4082    return GetBlock()->GetGraph()->GetIntConstant(
4083        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4084  }
4085  HConstant* Evaluate(HIntConstant* x, HLongConstant* y) const OVERRIDE {
4086    return GetBlock()->GetGraph()->GetLongConstant(
4087        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4088  }
4089  HConstant* Evaluate(HLongConstant* x, HIntConstant* y) const OVERRIDE {
4090    return GetBlock()->GetGraph()->GetLongConstant(
4091        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4092  }
4093  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
4094    return GetBlock()->GetGraph()->GetLongConstant(
4095        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4096  }
4097
4098  DECLARE_INSTRUCTION(Or);
4099
4100 private:
4101  DISALLOW_COPY_AND_ASSIGN(HOr);
4102};
4103
4104class HXor : public HBinaryOperation {
4105 public:
4106  HXor(Primitive::Type result_type,
4107       HInstruction* left,
4108       HInstruction* right,
4109       uint32_t dex_pc = kNoDexPc)
4110      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
4111
4112  bool IsCommutative() const OVERRIDE { return true; }
4113
4114  template <typename T, typename U>
4115  auto Compute(T x, U y) const -> decltype(x ^ y) { return x ^ y; }
4116
4117  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
4118    return GetBlock()->GetGraph()->GetIntConstant(
4119        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4120  }
4121  HConstant* Evaluate(HIntConstant* x, HLongConstant* y) const OVERRIDE {
4122    return GetBlock()->GetGraph()->GetLongConstant(
4123        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4124  }
4125  HConstant* Evaluate(HLongConstant* x, HIntConstant* y) const OVERRIDE {
4126    return GetBlock()->GetGraph()->GetLongConstant(
4127        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4128  }
4129  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
4130    return GetBlock()->GetGraph()->GetLongConstant(
4131        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4132  }
4133
4134  DECLARE_INSTRUCTION(Xor);
4135
4136 private:
4137  DISALLOW_COPY_AND_ASSIGN(HXor);
4138};
4139
4140// The value of a parameter in this method. Its location depends on
4141// the calling convention.
4142class HParameterValue : public HExpression<0> {
4143 public:
4144  HParameterValue(const DexFile& dex_file,
4145                  uint16_t type_index,
4146                  uint8_t index,
4147                  Primitive::Type parameter_type,
4148                  bool is_this = false)
4149      : HExpression(parameter_type, SideEffects::None(), kNoDexPc),
4150        dex_file_(dex_file),
4151        type_index_(type_index),
4152        index_(index),
4153        is_this_(is_this),
4154        can_be_null_(!is_this) {}
4155
4156  const DexFile& GetDexFile() const { return dex_file_; }
4157  uint16_t GetTypeIndex() const { return type_index_; }
4158  uint8_t GetIndex() const { return index_; }
4159  bool IsThis() const { return is_this_; }
4160
4161  bool CanBeNull() const OVERRIDE { return can_be_null_; }
4162  void SetCanBeNull(bool can_be_null) { can_be_null_ = can_be_null; }
4163
4164  DECLARE_INSTRUCTION(ParameterValue);
4165
4166 private:
4167  const DexFile& dex_file_;
4168  const uint16_t type_index_;
4169  // The index of this parameter in the parameters list. Must be less
4170  // than HGraph::number_of_in_vregs_.
4171  const uint8_t index_;
4172
4173  // Whether or not the parameter value corresponds to 'this' argument.
4174  const bool is_this_;
4175
4176  bool can_be_null_;
4177
4178  DISALLOW_COPY_AND_ASSIGN(HParameterValue);
4179};
4180
4181class HNot : public HUnaryOperation {
4182 public:
4183  HNot(Primitive::Type result_type, HInstruction* input, uint32_t dex_pc = kNoDexPc)
4184      : HUnaryOperation(result_type, input, dex_pc) {}
4185
4186  bool CanBeMoved() const OVERRIDE { return true; }
4187  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
4188    return true;
4189  }
4190
4191  template <typename T> T Compute(T x) const { return ~x; }
4192
4193  HConstant* Evaluate(HIntConstant* x) const OVERRIDE {
4194    return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue()), GetDexPc());
4195  }
4196  HConstant* Evaluate(HLongConstant* x) const OVERRIDE {
4197    return GetBlock()->GetGraph()->GetLongConstant(Compute(x->GetValue()), GetDexPc());
4198  }
4199
4200  DECLARE_INSTRUCTION(Not);
4201
4202 private:
4203  DISALLOW_COPY_AND_ASSIGN(HNot);
4204};
4205
4206class HBooleanNot : public HUnaryOperation {
4207 public:
4208  explicit HBooleanNot(HInstruction* input, uint32_t dex_pc = kNoDexPc)
4209      : HUnaryOperation(Primitive::Type::kPrimBoolean, input, dex_pc) {}
4210
4211  bool CanBeMoved() const OVERRIDE { return true; }
4212  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
4213    return true;
4214  }
4215
4216  template <typename T> bool Compute(T x) const {
4217    DCHECK(IsUint<1>(x));
4218    return !x;
4219  }
4220
4221  HConstant* Evaluate(HIntConstant* x) const OVERRIDE {
4222    return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue()), GetDexPc());
4223  }
4224  HConstant* Evaluate(HLongConstant* x ATTRIBUTE_UNUSED) const OVERRIDE {
4225    LOG(FATAL) << DebugName() << " is not defined for long values";
4226    UNREACHABLE();
4227  }
4228
4229  DECLARE_INSTRUCTION(BooleanNot);
4230
4231 private:
4232  DISALLOW_COPY_AND_ASSIGN(HBooleanNot);
4233};
4234
4235class HTypeConversion : public HExpression<1> {
4236 public:
4237  // Instantiate a type conversion of `input` to `result_type`.
4238  HTypeConversion(Primitive::Type result_type, HInstruction* input, uint32_t dex_pc)
4239      : HExpression(result_type,
4240                    SideEffectsForArchRuntimeCalls(input->GetType(), result_type),
4241                    dex_pc) {
4242    SetRawInputAt(0, input);
4243    DCHECK_NE(input->GetType(), result_type);
4244  }
4245
4246  HInstruction* GetInput() const { return InputAt(0); }
4247  Primitive::Type GetInputType() const { return GetInput()->GetType(); }
4248  Primitive::Type GetResultType() const { return GetType(); }
4249
4250  // Required by the x86, ARM, MIPS and MIPS64 code generators when producing calls
4251  // to the runtime.
4252
4253  bool CanBeMoved() const OVERRIDE { return true; }
4254  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE { return true; }
4255
4256  // Try to statically evaluate the conversion and return a HConstant
4257  // containing the result.  If the input cannot be converted, return nullptr.
4258  HConstant* TryStaticEvaluation() const;
4259
4260  static SideEffects SideEffectsForArchRuntimeCalls(Primitive::Type input_type,
4261                                                    Primitive::Type result_type) {
4262    // Some architectures may not require the 'GC' side effects, but at this point
4263    // in the compilation process we do not know what architecture we will
4264    // generate code for, so we must be conservative.
4265    if ((Primitive::IsFloatingPointType(input_type) && Primitive::IsIntegralType(result_type))
4266        || (input_type == Primitive::kPrimLong && Primitive::IsFloatingPointType(result_type))) {
4267      return SideEffects::CanTriggerGC();
4268    }
4269    return SideEffects::None();
4270  }
4271
4272  DECLARE_INSTRUCTION(TypeConversion);
4273
4274 private:
4275  DISALLOW_COPY_AND_ASSIGN(HTypeConversion);
4276};
4277
4278static constexpr uint32_t kNoRegNumber = -1;
4279
4280class HPhi : public HInstruction {
4281 public:
4282  HPhi(ArenaAllocator* arena,
4283       uint32_t reg_number,
4284       size_t number_of_inputs,
4285       Primitive::Type type,
4286       uint32_t dex_pc = kNoDexPc)
4287      : HInstruction(SideEffects::None(), dex_pc),
4288        inputs_(number_of_inputs, arena->Adapter(kArenaAllocPhiInputs)),
4289        reg_number_(reg_number),
4290        type_(type),
4291        is_live_(false),
4292        can_be_null_(true) {
4293  }
4294
4295  // Returns a type equivalent to the given `type`, but that a `HPhi` can hold.
4296  static Primitive::Type ToPhiType(Primitive::Type type) {
4297    switch (type) {
4298      case Primitive::kPrimBoolean:
4299      case Primitive::kPrimByte:
4300      case Primitive::kPrimShort:
4301      case Primitive::kPrimChar:
4302        return Primitive::kPrimInt;
4303      default:
4304        return type;
4305    }
4306  }
4307
4308  bool IsCatchPhi() const { return GetBlock()->IsCatchBlock(); }
4309
4310  size_t InputCount() const OVERRIDE { return inputs_.size(); }
4311
4312  void AddInput(HInstruction* input);
4313  void RemoveInputAt(size_t index);
4314
4315  Primitive::Type GetType() const OVERRIDE { return type_; }
4316  void SetType(Primitive::Type type) { type_ = type; }
4317
4318  bool CanBeNull() const OVERRIDE { return can_be_null_; }
4319  void SetCanBeNull(bool can_be_null) { can_be_null_ = can_be_null; }
4320
4321  uint32_t GetRegNumber() const { return reg_number_; }
4322
4323  void SetDead() { is_live_ = false; }
4324  void SetLive() { is_live_ = true; }
4325  bool IsDead() const { return !is_live_; }
4326  bool IsLive() const { return is_live_; }
4327
4328  bool IsVRegEquivalentOf(HInstruction* other) const {
4329    return other != nullptr
4330        && other->IsPhi()
4331        && other->AsPhi()->GetBlock() == GetBlock()
4332        && other->AsPhi()->GetRegNumber() == GetRegNumber();
4333  }
4334
4335  // Returns the next equivalent phi (starting from the current one) or null if there is none.
4336  // An equivalent phi is a phi having the same dex register and type.
4337  // It assumes that phis with the same dex register are adjacent.
4338  HPhi* GetNextEquivalentPhiWithSameType() {
4339    HInstruction* next = GetNext();
4340    while (next != nullptr && next->AsPhi()->GetRegNumber() == reg_number_) {
4341      if (next->GetType() == GetType()) {
4342        return next->AsPhi();
4343      }
4344      next = next->GetNext();
4345    }
4346    return nullptr;
4347  }
4348
4349  DECLARE_INSTRUCTION(Phi);
4350
4351 protected:
4352  const HUserRecord<HInstruction*> InputRecordAt(size_t index) const OVERRIDE {
4353    return inputs_[index];
4354  }
4355
4356  void SetRawInputRecordAt(size_t index, const HUserRecord<HInstruction*>& input) OVERRIDE {
4357    inputs_[index] = input;
4358  }
4359
4360 private:
4361  ArenaVector<HUserRecord<HInstruction*> > inputs_;
4362  const uint32_t reg_number_;
4363  Primitive::Type type_;
4364  bool is_live_;
4365  bool can_be_null_;
4366
4367  DISALLOW_COPY_AND_ASSIGN(HPhi);
4368};
4369
4370class HNullCheck : public HExpression<1> {
4371 public:
4372  HNullCheck(HInstruction* value, uint32_t dex_pc)
4373      : HExpression(value->GetType(), SideEffects::None(), dex_pc) {
4374    SetRawInputAt(0, value);
4375  }
4376
4377  bool CanBeMoved() const OVERRIDE { return true; }
4378  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
4379    return true;
4380  }
4381
4382  bool NeedsEnvironment() const OVERRIDE { return true; }
4383
4384  bool CanThrow() const OVERRIDE { return true; }
4385
4386  bool CanBeNull() const OVERRIDE { return false; }
4387
4388
4389  DECLARE_INSTRUCTION(NullCheck);
4390
4391 private:
4392  DISALLOW_COPY_AND_ASSIGN(HNullCheck);
4393};
4394
4395class FieldInfo : public ValueObject {
4396 public:
4397  FieldInfo(MemberOffset field_offset,
4398            Primitive::Type field_type,
4399            bool is_volatile,
4400            uint32_t index,
4401            uint16_t declaring_class_def_index,
4402            const DexFile& dex_file,
4403            Handle<mirror::DexCache> dex_cache)
4404      : field_offset_(field_offset),
4405        field_type_(field_type),
4406        is_volatile_(is_volatile),
4407        index_(index),
4408        declaring_class_def_index_(declaring_class_def_index),
4409        dex_file_(dex_file),
4410        dex_cache_(dex_cache) {}
4411
4412  MemberOffset GetFieldOffset() const { return field_offset_; }
4413  Primitive::Type GetFieldType() const { return field_type_; }
4414  uint32_t GetFieldIndex() const { return index_; }
4415  uint16_t GetDeclaringClassDefIndex() const { return declaring_class_def_index_;}
4416  const DexFile& GetDexFile() const { return dex_file_; }
4417  bool IsVolatile() const { return is_volatile_; }
4418  Handle<mirror::DexCache> GetDexCache() const { return dex_cache_; }
4419
4420 private:
4421  const MemberOffset field_offset_;
4422  const Primitive::Type field_type_;
4423  const bool is_volatile_;
4424  const uint32_t index_;
4425  const uint16_t declaring_class_def_index_;
4426  const DexFile& dex_file_;
4427  const Handle<mirror::DexCache> dex_cache_;
4428};
4429
4430class HInstanceFieldGet : public HExpression<1> {
4431 public:
4432  HInstanceFieldGet(HInstruction* value,
4433                    Primitive::Type field_type,
4434                    MemberOffset field_offset,
4435                    bool is_volatile,
4436                    uint32_t field_idx,
4437                    uint16_t declaring_class_def_index,
4438                    const DexFile& dex_file,
4439                    Handle<mirror::DexCache> dex_cache,
4440                    uint32_t dex_pc)
4441      : HExpression(field_type,
4442                    SideEffects::FieldReadOfType(field_type, is_volatile),
4443                    dex_pc),
4444        field_info_(field_offset,
4445                    field_type,
4446                    is_volatile,
4447                    field_idx,
4448                    declaring_class_def_index,
4449                    dex_file,
4450                    dex_cache) {
4451    SetRawInputAt(0, value);
4452  }
4453
4454  bool CanBeMoved() const OVERRIDE { return !IsVolatile(); }
4455
4456  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
4457    HInstanceFieldGet* other_get = other->AsInstanceFieldGet();
4458    return GetFieldOffset().SizeValue() == other_get->GetFieldOffset().SizeValue();
4459  }
4460
4461  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
4462    return (obj == InputAt(0)) && GetFieldOffset().Uint32Value() < kPageSize;
4463  }
4464
4465  size_t ComputeHashCode() const OVERRIDE {
4466    return (HInstruction::ComputeHashCode() << 7) | GetFieldOffset().SizeValue();
4467  }
4468
4469  const FieldInfo& GetFieldInfo() const { return field_info_; }
4470  MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
4471  Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); }
4472  bool IsVolatile() const { return field_info_.IsVolatile(); }
4473
4474  DECLARE_INSTRUCTION(InstanceFieldGet);
4475
4476 private:
4477  const FieldInfo field_info_;
4478
4479  DISALLOW_COPY_AND_ASSIGN(HInstanceFieldGet);
4480};
4481
4482class HInstanceFieldSet : public HTemplateInstruction<2> {
4483 public:
4484  HInstanceFieldSet(HInstruction* object,
4485                    HInstruction* value,
4486                    Primitive::Type field_type,
4487                    MemberOffset field_offset,
4488                    bool is_volatile,
4489                    uint32_t field_idx,
4490                    uint16_t declaring_class_def_index,
4491                    const DexFile& dex_file,
4492                    Handle<mirror::DexCache> dex_cache,
4493                    uint32_t dex_pc)
4494      : HTemplateInstruction(SideEffects::FieldWriteOfType(field_type, is_volatile),
4495                             dex_pc),
4496        field_info_(field_offset,
4497                    field_type,
4498                    is_volatile,
4499                    field_idx,
4500                    declaring_class_def_index,
4501                    dex_file,
4502                    dex_cache),
4503        value_can_be_null_(true) {
4504    SetRawInputAt(0, object);
4505    SetRawInputAt(1, value);
4506  }
4507
4508  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
4509    return (obj == InputAt(0)) && GetFieldOffset().Uint32Value() < kPageSize;
4510  }
4511
4512  const FieldInfo& GetFieldInfo() const { return field_info_; }
4513  MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
4514  Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); }
4515  bool IsVolatile() const { return field_info_.IsVolatile(); }
4516  HInstruction* GetValue() const { return InputAt(1); }
4517  bool GetValueCanBeNull() const { return value_can_be_null_; }
4518  void ClearValueCanBeNull() { value_can_be_null_ = false; }
4519
4520  DECLARE_INSTRUCTION(InstanceFieldSet);
4521
4522 private:
4523  const FieldInfo field_info_;
4524  bool value_can_be_null_;
4525
4526  DISALLOW_COPY_AND_ASSIGN(HInstanceFieldSet);
4527};
4528
4529class HArrayGet : public HExpression<2> {
4530 public:
4531  HArrayGet(HInstruction* array,
4532            HInstruction* index,
4533            Primitive::Type type,
4534            uint32_t dex_pc,
4535            SideEffects additional_side_effects = SideEffects::None())
4536      : HExpression(type,
4537                    SideEffects::ArrayReadOfType(type).Union(additional_side_effects),
4538                    dex_pc) {
4539    SetRawInputAt(0, array);
4540    SetRawInputAt(1, index);
4541  }
4542
4543  bool CanBeMoved() const OVERRIDE { return true; }
4544  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
4545    return true;
4546  }
4547  bool CanDoImplicitNullCheckOn(HInstruction* obj ATTRIBUTE_UNUSED) const OVERRIDE {
4548    // TODO: We can be smarter here.
4549    // Currently, the array access is always preceded by an ArrayLength or a NullCheck
4550    // which generates the implicit null check. There are cases when these can be removed
4551    // to produce better code. If we ever add optimizations to do so we should allow an
4552    // implicit check here (as long as the address falls in the first page).
4553    return false;
4554  }
4555
4556  void SetType(Primitive::Type type) { type_ = type; }
4557
4558  HInstruction* GetArray() const { return InputAt(0); }
4559  HInstruction* GetIndex() const { return InputAt(1); }
4560
4561  DECLARE_INSTRUCTION(ArrayGet);
4562
4563 private:
4564  DISALLOW_COPY_AND_ASSIGN(HArrayGet);
4565};
4566
4567class HArraySet : public HTemplateInstruction<3> {
4568 public:
4569  HArraySet(HInstruction* array,
4570            HInstruction* index,
4571            HInstruction* value,
4572            Primitive::Type expected_component_type,
4573            uint32_t dex_pc,
4574            SideEffects additional_side_effects = SideEffects::None())
4575      : HTemplateInstruction(
4576            SideEffects::ArrayWriteOfType(expected_component_type).Union(
4577                SideEffectsForArchRuntimeCalls(value->GetType())).Union(
4578                    additional_side_effects),
4579            dex_pc),
4580        expected_component_type_(expected_component_type),
4581        needs_type_check_(value->GetType() == Primitive::kPrimNot),
4582        value_can_be_null_(true),
4583        static_type_of_array_is_object_array_(false) {
4584    SetRawInputAt(0, array);
4585    SetRawInputAt(1, index);
4586    SetRawInputAt(2, value);
4587  }
4588
4589  bool NeedsEnvironment() const OVERRIDE {
4590    // We currently always call a runtime method to catch array store
4591    // exceptions.
4592    return needs_type_check_;
4593  }
4594
4595  // Can throw ArrayStoreException.
4596  bool CanThrow() const OVERRIDE { return needs_type_check_; }
4597
4598  bool CanDoImplicitNullCheckOn(HInstruction* obj ATTRIBUTE_UNUSED) const OVERRIDE {
4599    // TODO: Same as for ArrayGet.
4600    return false;
4601  }
4602
4603  void ClearNeedsTypeCheck() {
4604    needs_type_check_ = false;
4605  }
4606
4607  void ClearValueCanBeNull() {
4608    value_can_be_null_ = false;
4609  }
4610
4611  void SetStaticTypeOfArrayIsObjectArray() {
4612    static_type_of_array_is_object_array_ = true;
4613  }
4614
4615  bool GetValueCanBeNull() const { return value_can_be_null_; }
4616  bool NeedsTypeCheck() const { return needs_type_check_; }
4617  bool StaticTypeOfArrayIsObjectArray() const { return static_type_of_array_is_object_array_; }
4618
4619  HInstruction* GetArray() const { return InputAt(0); }
4620  HInstruction* GetIndex() const { return InputAt(1); }
4621  HInstruction* GetValue() const { return InputAt(2); }
4622
4623  Primitive::Type GetComponentType() const {
4624    // The Dex format does not type floating point index operations. Since the
4625    // `expected_component_type_` is set during building and can therefore not
4626    // be correct, we also check what is the value type. If it is a floating
4627    // point type, we must use that type.
4628    Primitive::Type value_type = GetValue()->GetType();
4629    return ((value_type == Primitive::kPrimFloat) || (value_type == Primitive::kPrimDouble))
4630        ? value_type
4631        : expected_component_type_;
4632  }
4633
4634  Primitive::Type GetRawExpectedComponentType() const {
4635    return expected_component_type_;
4636  }
4637
4638  static SideEffects SideEffectsForArchRuntimeCalls(Primitive::Type value_type) {
4639    return (value_type == Primitive::kPrimNot) ? SideEffects::CanTriggerGC() : SideEffects::None();
4640  }
4641
4642  DECLARE_INSTRUCTION(ArraySet);
4643
4644 private:
4645  const Primitive::Type expected_component_type_;
4646  bool needs_type_check_;
4647  bool value_can_be_null_;
4648  // Cached information for the reference_type_info_ so that codegen
4649  // does not need to inspect the static type.
4650  bool static_type_of_array_is_object_array_;
4651
4652  DISALLOW_COPY_AND_ASSIGN(HArraySet);
4653};
4654
4655class HArrayLength : public HExpression<1> {
4656 public:
4657  HArrayLength(HInstruction* array, uint32_t dex_pc)
4658      : HExpression(Primitive::kPrimInt, SideEffects::None(), dex_pc) {
4659    // Note that arrays do not change length, so the instruction does not
4660    // depend on any write.
4661    SetRawInputAt(0, array);
4662  }
4663
4664  bool CanBeMoved() const OVERRIDE { return true; }
4665  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
4666    return true;
4667  }
4668  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
4669    return obj == InputAt(0);
4670  }
4671
4672  DECLARE_INSTRUCTION(ArrayLength);
4673
4674 private:
4675  DISALLOW_COPY_AND_ASSIGN(HArrayLength);
4676};
4677
4678class HBoundsCheck : public HExpression<2> {
4679 public:
4680  HBoundsCheck(HInstruction* index, HInstruction* length, uint32_t dex_pc)
4681      : HExpression(index->GetType(), SideEffects::None(), dex_pc) {
4682    DCHECK(index->GetType() == Primitive::kPrimInt);
4683    SetRawInputAt(0, index);
4684    SetRawInputAt(1, length);
4685  }
4686
4687  bool CanBeMoved() const OVERRIDE { return true; }
4688  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
4689    return true;
4690  }
4691
4692  bool NeedsEnvironment() const OVERRIDE { return true; }
4693
4694  bool CanThrow() const OVERRIDE { return true; }
4695
4696  HInstruction* GetIndex() const { return InputAt(0); }
4697
4698  DECLARE_INSTRUCTION(BoundsCheck);
4699
4700 private:
4701  DISALLOW_COPY_AND_ASSIGN(HBoundsCheck);
4702};
4703
4704/**
4705 * Some DEX instructions are folded into multiple HInstructions that need
4706 * to stay live until the last HInstruction. This class
4707 * is used as a marker for the baseline compiler to ensure its preceding
4708 * HInstruction stays live. `index` represents the stack location index of the
4709 * instruction (the actual offset is computed as index * vreg_size).
4710 */
4711class HTemporary : public HTemplateInstruction<0> {
4712 public:
4713  explicit HTemporary(size_t index, uint32_t dex_pc = kNoDexPc)
4714      : HTemplateInstruction(SideEffects::None(), dex_pc), index_(index) {}
4715
4716  size_t GetIndex() const { return index_; }
4717
4718  Primitive::Type GetType() const OVERRIDE {
4719    // The previous instruction is the one that will be stored in the temporary location.
4720    DCHECK(GetPrevious() != nullptr);
4721    return GetPrevious()->GetType();
4722  }
4723
4724  DECLARE_INSTRUCTION(Temporary);
4725
4726 private:
4727  const size_t index_;
4728  DISALLOW_COPY_AND_ASSIGN(HTemporary);
4729};
4730
4731class HSuspendCheck : public HTemplateInstruction<0> {
4732 public:
4733  explicit HSuspendCheck(uint32_t dex_pc)
4734      : HTemplateInstruction(SideEffects::CanTriggerGC(), dex_pc), slow_path_(nullptr) {}
4735
4736  bool NeedsEnvironment() const OVERRIDE {
4737    return true;
4738  }
4739
4740  void SetSlowPath(SlowPathCode* slow_path) { slow_path_ = slow_path; }
4741  SlowPathCode* GetSlowPath() const { return slow_path_; }
4742
4743  DECLARE_INSTRUCTION(SuspendCheck);
4744
4745 private:
4746  // Only used for code generation, in order to share the same slow path between back edges
4747  // of a same loop.
4748  SlowPathCode* slow_path_;
4749
4750  DISALLOW_COPY_AND_ASSIGN(HSuspendCheck);
4751};
4752
4753/**
4754 * Instruction to load a Class object.
4755 */
4756class HLoadClass : public HExpression<1> {
4757 public:
4758  HLoadClass(HCurrentMethod* current_method,
4759             uint16_t type_index,
4760             const DexFile& dex_file,
4761             bool is_referrers_class,
4762             uint32_t dex_pc,
4763             bool needs_access_check)
4764      : HExpression(Primitive::kPrimNot, SideEffectsForArchRuntimeCalls(), dex_pc),
4765        type_index_(type_index),
4766        dex_file_(dex_file),
4767        is_referrers_class_(is_referrers_class),
4768        generate_clinit_check_(false),
4769        needs_access_check_(needs_access_check),
4770        loaded_class_rti_(ReferenceTypeInfo::CreateInvalid()) {
4771    // Referrers class should not need access check. We never inline unverified
4772    // methods so we can't possibly end up in this situation.
4773    DCHECK(!is_referrers_class_ || !needs_access_check_);
4774    SetRawInputAt(0, current_method);
4775  }
4776
4777  bool CanBeMoved() const OVERRIDE { return true; }
4778
4779  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
4780    // Note that we don't need to test for generate_clinit_check_.
4781    // Whether or not we need to generate the clinit check is processed in
4782    // prepare_for_register_allocator based on existing HInvokes and HClinitChecks.
4783    return other->AsLoadClass()->type_index_ == type_index_ &&
4784        other->AsLoadClass()->needs_access_check_ == needs_access_check_;
4785  }
4786
4787  size_t ComputeHashCode() const OVERRIDE { return type_index_; }
4788
4789  uint16_t GetTypeIndex() const { return type_index_; }
4790  bool IsReferrersClass() const { return is_referrers_class_; }
4791  bool CanBeNull() const OVERRIDE { return false; }
4792
4793  bool NeedsEnvironment() const OVERRIDE {
4794    // Will call runtime and load the class if the class is not loaded yet.
4795    // TODO: finer grain decision.
4796    return !is_referrers_class_;
4797  }
4798
4799  bool MustGenerateClinitCheck() const {
4800    return generate_clinit_check_;
4801  }
4802  void SetMustGenerateClinitCheck(bool generate_clinit_check) {
4803    // The entrypoint the code generator is going to call does not do
4804    // clinit of the class.
4805    DCHECK(!NeedsAccessCheck());
4806    generate_clinit_check_ = generate_clinit_check;
4807  }
4808
4809  bool CanCallRuntime() const {
4810    return MustGenerateClinitCheck() || !is_referrers_class_ || needs_access_check_;
4811  }
4812
4813  bool NeedsAccessCheck() const {
4814    return needs_access_check_;
4815  }
4816
4817  bool CanThrow() const OVERRIDE {
4818    // May call runtime and and therefore can throw.
4819    // TODO: finer grain decision.
4820    return CanCallRuntime();
4821  }
4822
4823  ReferenceTypeInfo GetLoadedClassRTI() {
4824    return loaded_class_rti_;
4825  }
4826
4827  void SetLoadedClassRTI(ReferenceTypeInfo rti) {
4828    // Make sure we only set exact types (the loaded class should never be merged).
4829    DCHECK(rti.IsExact());
4830    loaded_class_rti_ = rti;
4831  }
4832
4833  const DexFile& GetDexFile() { return dex_file_; }
4834
4835  bool NeedsDexCacheOfDeclaringClass() const OVERRIDE { return !is_referrers_class_; }
4836
4837  static SideEffects SideEffectsForArchRuntimeCalls() {
4838    return SideEffects::CanTriggerGC();
4839  }
4840
4841  DECLARE_INSTRUCTION(LoadClass);
4842
4843 private:
4844  const uint16_t type_index_;
4845  const DexFile& dex_file_;
4846  const bool is_referrers_class_;
4847  // Whether this instruction must generate the initialization check.
4848  // Used for code generation.
4849  bool generate_clinit_check_;
4850  bool needs_access_check_;
4851
4852  ReferenceTypeInfo loaded_class_rti_;
4853
4854  DISALLOW_COPY_AND_ASSIGN(HLoadClass);
4855};
4856
4857class HLoadString : public HExpression<1> {
4858 public:
4859  HLoadString(HCurrentMethod* current_method, uint32_t string_index, uint32_t dex_pc)
4860      : HExpression(Primitive::kPrimNot, SideEffectsForArchRuntimeCalls(), dex_pc),
4861        string_index_(string_index) {
4862    SetRawInputAt(0, current_method);
4863  }
4864
4865  bool CanBeMoved() const OVERRIDE { return true; }
4866
4867  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
4868    return other->AsLoadString()->string_index_ == string_index_;
4869  }
4870
4871  size_t ComputeHashCode() const OVERRIDE { return string_index_; }
4872
4873  uint32_t GetStringIndex() const { return string_index_; }
4874
4875  // TODO: Can we deopt or debug when we resolve a string?
4876  bool NeedsEnvironment() const OVERRIDE { return false; }
4877  bool NeedsDexCacheOfDeclaringClass() const OVERRIDE { return true; }
4878  bool CanBeNull() const OVERRIDE { return false; }
4879
4880  static SideEffects SideEffectsForArchRuntimeCalls() {
4881    return SideEffects::CanTriggerGC();
4882  }
4883
4884  DECLARE_INSTRUCTION(LoadString);
4885
4886 private:
4887  const uint32_t string_index_;
4888
4889  DISALLOW_COPY_AND_ASSIGN(HLoadString);
4890};
4891
4892/**
4893 * Performs an initialization check on its Class object input.
4894 */
4895class HClinitCheck : public HExpression<1> {
4896 public:
4897  HClinitCheck(HLoadClass* constant, uint32_t dex_pc)
4898      : HExpression(
4899            Primitive::kPrimNot,
4900            SideEffects::AllChanges(),  // Assume write/read on all fields/arrays.
4901            dex_pc) {
4902    SetRawInputAt(0, constant);
4903  }
4904
4905  bool CanBeMoved() const OVERRIDE { return true; }
4906  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
4907    return true;
4908  }
4909
4910  bool NeedsEnvironment() const OVERRIDE {
4911    // May call runtime to initialize the class.
4912    return true;
4913  }
4914
4915
4916  HLoadClass* GetLoadClass() const { return InputAt(0)->AsLoadClass(); }
4917
4918  DECLARE_INSTRUCTION(ClinitCheck);
4919
4920 private:
4921  DISALLOW_COPY_AND_ASSIGN(HClinitCheck);
4922};
4923
4924class HStaticFieldGet : public HExpression<1> {
4925 public:
4926  HStaticFieldGet(HInstruction* cls,
4927                  Primitive::Type field_type,
4928                  MemberOffset field_offset,
4929                  bool is_volatile,
4930                  uint32_t field_idx,
4931                  uint16_t declaring_class_def_index,
4932                  const DexFile& dex_file,
4933                  Handle<mirror::DexCache> dex_cache,
4934                  uint32_t dex_pc)
4935      : HExpression(field_type,
4936                    SideEffects::FieldReadOfType(field_type, is_volatile),
4937                    dex_pc),
4938        field_info_(field_offset,
4939                    field_type,
4940                    is_volatile,
4941                    field_idx,
4942                    declaring_class_def_index,
4943                    dex_file,
4944                    dex_cache) {
4945    SetRawInputAt(0, cls);
4946  }
4947
4948
4949  bool CanBeMoved() const OVERRIDE { return !IsVolatile(); }
4950
4951  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
4952    HStaticFieldGet* other_get = other->AsStaticFieldGet();
4953    return GetFieldOffset().SizeValue() == other_get->GetFieldOffset().SizeValue();
4954  }
4955
4956  size_t ComputeHashCode() const OVERRIDE {
4957    return (HInstruction::ComputeHashCode() << 7) | GetFieldOffset().SizeValue();
4958  }
4959
4960  const FieldInfo& GetFieldInfo() const { return field_info_; }
4961  MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
4962  Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); }
4963  bool IsVolatile() const { return field_info_.IsVolatile(); }
4964
4965  DECLARE_INSTRUCTION(StaticFieldGet);
4966
4967 private:
4968  const FieldInfo field_info_;
4969
4970  DISALLOW_COPY_AND_ASSIGN(HStaticFieldGet);
4971};
4972
4973class HStaticFieldSet : public HTemplateInstruction<2> {
4974 public:
4975  HStaticFieldSet(HInstruction* cls,
4976                  HInstruction* value,
4977                  Primitive::Type field_type,
4978                  MemberOffset field_offset,
4979                  bool is_volatile,
4980                  uint32_t field_idx,
4981                  uint16_t declaring_class_def_index,
4982                  const DexFile& dex_file,
4983                  Handle<mirror::DexCache> dex_cache,
4984                  uint32_t dex_pc)
4985      : HTemplateInstruction(SideEffects::FieldWriteOfType(field_type, is_volatile),
4986                             dex_pc),
4987        field_info_(field_offset,
4988                    field_type,
4989                    is_volatile,
4990                    field_idx,
4991                    declaring_class_def_index,
4992                    dex_file,
4993                    dex_cache),
4994        value_can_be_null_(true) {
4995    SetRawInputAt(0, cls);
4996    SetRawInputAt(1, value);
4997  }
4998
4999  const FieldInfo& GetFieldInfo() const { return field_info_; }
5000  MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
5001  Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); }
5002  bool IsVolatile() const { return field_info_.IsVolatile(); }
5003
5004  HInstruction* GetValue() const { return InputAt(1); }
5005  bool GetValueCanBeNull() const { return value_can_be_null_; }
5006  void ClearValueCanBeNull() { value_can_be_null_ = false; }
5007
5008  DECLARE_INSTRUCTION(StaticFieldSet);
5009
5010 private:
5011  const FieldInfo field_info_;
5012  bool value_can_be_null_;
5013
5014  DISALLOW_COPY_AND_ASSIGN(HStaticFieldSet);
5015};
5016
5017class HUnresolvedInstanceFieldGet : public HExpression<1> {
5018 public:
5019  HUnresolvedInstanceFieldGet(HInstruction* obj,
5020                              Primitive::Type field_type,
5021                              uint32_t field_index,
5022                              uint32_t dex_pc)
5023      : HExpression(field_type, SideEffects::AllExceptGCDependency(), dex_pc),
5024        field_index_(field_index) {
5025    SetRawInputAt(0, obj);
5026  }
5027
5028  bool NeedsEnvironment() const OVERRIDE { return true; }
5029  bool CanThrow() const OVERRIDE { return true; }
5030
5031  Primitive::Type GetFieldType() const { return GetType(); }
5032  uint32_t GetFieldIndex() const { return field_index_; }
5033
5034  DECLARE_INSTRUCTION(UnresolvedInstanceFieldGet);
5035
5036 private:
5037  const uint32_t field_index_;
5038
5039  DISALLOW_COPY_AND_ASSIGN(HUnresolvedInstanceFieldGet);
5040};
5041
5042class HUnresolvedInstanceFieldSet : public HTemplateInstruction<2> {
5043 public:
5044  HUnresolvedInstanceFieldSet(HInstruction* obj,
5045                              HInstruction* value,
5046                              Primitive::Type field_type,
5047                              uint32_t field_index,
5048                              uint32_t dex_pc)
5049      : HTemplateInstruction(SideEffects::AllExceptGCDependency(), dex_pc),
5050        field_type_(field_type),
5051        field_index_(field_index) {
5052    DCHECK_EQ(field_type, value->GetType());
5053    SetRawInputAt(0, obj);
5054    SetRawInputAt(1, value);
5055  }
5056
5057  bool NeedsEnvironment() const OVERRIDE { return true; }
5058  bool CanThrow() const OVERRIDE { return true; }
5059
5060  Primitive::Type GetFieldType() const { return field_type_; }
5061  uint32_t GetFieldIndex() const { return field_index_; }
5062
5063  DECLARE_INSTRUCTION(UnresolvedInstanceFieldSet);
5064
5065 private:
5066  const Primitive::Type field_type_;
5067  const uint32_t field_index_;
5068
5069  DISALLOW_COPY_AND_ASSIGN(HUnresolvedInstanceFieldSet);
5070};
5071
5072class HUnresolvedStaticFieldGet : public HExpression<0> {
5073 public:
5074  HUnresolvedStaticFieldGet(Primitive::Type field_type,
5075                            uint32_t field_index,
5076                            uint32_t dex_pc)
5077      : HExpression(field_type, SideEffects::AllExceptGCDependency(), dex_pc),
5078        field_index_(field_index) {
5079  }
5080
5081  bool NeedsEnvironment() const OVERRIDE { return true; }
5082  bool CanThrow() const OVERRIDE { return true; }
5083
5084  Primitive::Type GetFieldType() const { return GetType(); }
5085  uint32_t GetFieldIndex() const { return field_index_; }
5086
5087  DECLARE_INSTRUCTION(UnresolvedStaticFieldGet);
5088
5089 private:
5090  const uint32_t field_index_;
5091
5092  DISALLOW_COPY_AND_ASSIGN(HUnresolvedStaticFieldGet);
5093};
5094
5095class HUnresolvedStaticFieldSet : public HTemplateInstruction<1> {
5096 public:
5097  HUnresolvedStaticFieldSet(HInstruction* value,
5098                            Primitive::Type field_type,
5099                            uint32_t field_index,
5100                            uint32_t dex_pc)
5101      : HTemplateInstruction(SideEffects::AllExceptGCDependency(), dex_pc),
5102        field_type_(field_type),
5103        field_index_(field_index) {
5104    DCHECK_EQ(field_type, value->GetType());
5105    SetRawInputAt(0, value);
5106  }
5107
5108  bool NeedsEnvironment() const OVERRIDE { return true; }
5109  bool CanThrow() const OVERRIDE { return true; }
5110
5111  Primitive::Type GetFieldType() const { return field_type_; }
5112  uint32_t GetFieldIndex() const { return field_index_; }
5113
5114  DECLARE_INSTRUCTION(UnresolvedStaticFieldSet);
5115
5116 private:
5117  const Primitive::Type field_type_;
5118  const uint32_t field_index_;
5119
5120  DISALLOW_COPY_AND_ASSIGN(HUnresolvedStaticFieldSet);
5121};
5122
5123// Implement the move-exception DEX instruction.
5124class HLoadException : public HExpression<0> {
5125 public:
5126  explicit HLoadException(uint32_t dex_pc = kNoDexPc)
5127      : HExpression(Primitive::kPrimNot, SideEffects::None(), dex_pc) {}
5128
5129  bool CanBeNull() const OVERRIDE { return false; }
5130
5131  DECLARE_INSTRUCTION(LoadException);
5132
5133 private:
5134  DISALLOW_COPY_AND_ASSIGN(HLoadException);
5135};
5136
5137// Implicit part of move-exception which clears thread-local exception storage.
5138// Must not be removed because the runtime expects the TLS to get cleared.
5139class HClearException : public HTemplateInstruction<0> {
5140 public:
5141  explicit HClearException(uint32_t dex_pc = kNoDexPc)
5142      : HTemplateInstruction(SideEffects::AllWrites(), dex_pc) {}
5143
5144  DECLARE_INSTRUCTION(ClearException);
5145
5146 private:
5147  DISALLOW_COPY_AND_ASSIGN(HClearException);
5148};
5149
5150class HThrow : public HTemplateInstruction<1> {
5151 public:
5152  HThrow(HInstruction* exception, uint32_t dex_pc)
5153      : HTemplateInstruction(SideEffects::CanTriggerGC(), dex_pc) {
5154    SetRawInputAt(0, exception);
5155  }
5156
5157  bool IsControlFlow() const OVERRIDE { return true; }
5158
5159  bool NeedsEnvironment() const OVERRIDE { return true; }
5160
5161  bool CanThrow() const OVERRIDE { return true; }
5162
5163
5164  DECLARE_INSTRUCTION(Throw);
5165
5166 private:
5167  DISALLOW_COPY_AND_ASSIGN(HThrow);
5168};
5169
5170/**
5171 * Implementation strategies for the code generator of a HInstanceOf
5172 * or `HCheckCast`.
5173 */
5174enum class TypeCheckKind {
5175  kUnresolvedCheck,       // Check against an unresolved type.
5176  kExactCheck,            // Can do a single class compare.
5177  kClassHierarchyCheck,   // Can just walk the super class chain.
5178  kAbstractClassCheck,    // Can just walk the super class chain, starting one up.
5179  kInterfaceCheck,        // No optimization yet when checking against an interface.
5180  kArrayObjectCheck,      // Can just check if the array is not primitive.
5181  kArrayCheck             // No optimization yet when checking against a generic array.
5182};
5183
5184class HInstanceOf : public HExpression<2> {
5185 public:
5186  HInstanceOf(HInstruction* object,
5187              HLoadClass* constant,
5188              TypeCheckKind check_kind,
5189              uint32_t dex_pc)
5190      : HExpression(Primitive::kPrimBoolean,
5191                    SideEffectsForArchRuntimeCalls(check_kind),
5192                    dex_pc),
5193        check_kind_(check_kind),
5194        must_do_null_check_(true) {
5195    SetRawInputAt(0, object);
5196    SetRawInputAt(1, constant);
5197  }
5198
5199  bool CanBeMoved() const OVERRIDE { return true; }
5200
5201  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
5202    return true;
5203  }
5204
5205  bool NeedsEnvironment() const OVERRIDE {
5206    return false;
5207  }
5208
5209  bool IsExactCheck() const { return check_kind_ == TypeCheckKind::kExactCheck; }
5210
5211  TypeCheckKind GetTypeCheckKind() const { return check_kind_; }
5212
5213  // Used only in code generation.
5214  bool MustDoNullCheck() const { return must_do_null_check_; }
5215  void ClearMustDoNullCheck() { must_do_null_check_ = false; }
5216
5217  static SideEffects SideEffectsForArchRuntimeCalls(TypeCheckKind check_kind) {
5218    return (check_kind == TypeCheckKind::kExactCheck)
5219        ? SideEffects::None()
5220        // Mips currently does runtime calls for any other checks.
5221        : SideEffects::CanTriggerGC();
5222  }
5223
5224  DECLARE_INSTRUCTION(InstanceOf);
5225
5226 private:
5227  const TypeCheckKind check_kind_;
5228  bool must_do_null_check_;
5229
5230  DISALLOW_COPY_AND_ASSIGN(HInstanceOf);
5231};
5232
5233class HBoundType : public HExpression<1> {
5234 public:
5235  // Constructs an HBoundType with the given upper_bound.
5236  // Ensures that the upper_bound is valid.
5237  HBoundType(HInstruction* input,
5238             ReferenceTypeInfo upper_bound,
5239             bool upper_can_be_null,
5240             uint32_t dex_pc = kNoDexPc)
5241      : HExpression(Primitive::kPrimNot, SideEffects::None(), dex_pc),
5242        upper_bound_(upper_bound),
5243        upper_can_be_null_(upper_can_be_null),
5244        can_be_null_(upper_can_be_null) {
5245    DCHECK_EQ(input->GetType(), Primitive::kPrimNot);
5246    SetRawInputAt(0, input);
5247    SetReferenceTypeInfo(upper_bound_);
5248  }
5249
5250  // GetUpper* should only be used in reference type propagation.
5251  const ReferenceTypeInfo& GetUpperBound() const { return upper_bound_; }
5252  bool GetUpperCanBeNull() const { return upper_can_be_null_; }
5253
5254  void SetCanBeNull(bool can_be_null) {
5255    DCHECK(upper_can_be_null_ || !can_be_null);
5256    can_be_null_ = can_be_null;
5257  }
5258
5259  bool CanBeNull() const OVERRIDE { return can_be_null_; }
5260
5261  DECLARE_INSTRUCTION(BoundType);
5262
5263 private:
5264  // Encodes the most upper class that this instruction can have. In other words
5265  // it is always the case that GetUpperBound().IsSupertypeOf(GetReferenceType()).
5266  // It is used to bound the type in cases like:
5267  //   if (x instanceof ClassX) {
5268  //     // uper_bound_ will be ClassX
5269  //   }
5270  const ReferenceTypeInfo upper_bound_;
5271  // Represents the top constraint that can_be_null_ cannot exceed (i.e. if this
5272  // is false then can_be_null_ cannot be true).
5273  const bool upper_can_be_null_;
5274  bool can_be_null_;
5275
5276  DISALLOW_COPY_AND_ASSIGN(HBoundType);
5277};
5278
5279class HCheckCast : public HTemplateInstruction<2> {
5280 public:
5281  HCheckCast(HInstruction* object,
5282             HLoadClass* constant,
5283             TypeCheckKind check_kind,
5284             uint32_t dex_pc)
5285      : HTemplateInstruction(SideEffects::CanTriggerGC(), dex_pc),
5286        check_kind_(check_kind),
5287        must_do_null_check_(true) {
5288    SetRawInputAt(0, object);
5289    SetRawInputAt(1, constant);
5290  }
5291
5292  bool CanBeMoved() const OVERRIDE { return true; }
5293
5294  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
5295    return true;
5296  }
5297
5298  bool NeedsEnvironment() const OVERRIDE {
5299    // Instruction may throw a CheckCastError.
5300    return true;
5301  }
5302
5303  bool CanThrow() const OVERRIDE { return true; }
5304
5305  bool MustDoNullCheck() const { return must_do_null_check_; }
5306  void ClearMustDoNullCheck() { must_do_null_check_ = false; }
5307  TypeCheckKind GetTypeCheckKind() const { return check_kind_; }
5308
5309  bool IsExactCheck() const { return check_kind_ == TypeCheckKind::kExactCheck; }
5310
5311  DECLARE_INSTRUCTION(CheckCast);
5312
5313 private:
5314  const TypeCheckKind check_kind_;
5315  bool must_do_null_check_;
5316
5317  DISALLOW_COPY_AND_ASSIGN(HCheckCast);
5318};
5319
5320class HMemoryBarrier : public HTemplateInstruction<0> {
5321 public:
5322  explicit HMemoryBarrier(MemBarrierKind barrier_kind, uint32_t dex_pc = kNoDexPc)
5323      : HTemplateInstruction(
5324            SideEffects::AllWritesAndReads(), dex_pc),  // Assume write/read on all fields/arrays.
5325        barrier_kind_(barrier_kind) {}
5326
5327  MemBarrierKind GetBarrierKind() { return barrier_kind_; }
5328
5329  DECLARE_INSTRUCTION(MemoryBarrier);
5330
5331 private:
5332  const MemBarrierKind barrier_kind_;
5333
5334  DISALLOW_COPY_AND_ASSIGN(HMemoryBarrier);
5335};
5336
5337class HMonitorOperation : public HTemplateInstruction<1> {
5338 public:
5339  enum OperationKind {
5340    kEnter,
5341    kExit,
5342  };
5343
5344  HMonitorOperation(HInstruction* object, OperationKind kind, uint32_t dex_pc)
5345    : HTemplateInstruction(
5346          SideEffects::AllExceptGCDependency(), dex_pc),  // Assume write/read on all fields/arrays.
5347      kind_(kind) {
5348    SetRawInputAt(0, object);
5349  }
5350
5351  // Instruction may throw a Java exception, so we need an environment.
5352  bool NeedsEnvironment() const OVERRIDE { return CanThrow(); }
5353
5354  bool CanThrow() const OVERRIDE {
5355    // Verifier guarantees that monitor-exit cannot throw.
5356    // This is important because it allows the HGraphBuilder to remove
5357    // a dead throw-catch loop generated for `synchronized` blocks/methods.
5358    return IsEnter();
5359  }
5360
5361
5362  bool IsEnter() const { return kind_ == kEnter; }
5363
5364  DECLARE_INSTRUCTION(MonitorOperation);
5365
5366 private:
5367  const OperationKind kind_;
5368
5369 private:
5370  DISALLOW_COPY_AND_ASSIGN(HMonitorOperation);
5371};
5372
5373/**
5374 * A HInstruction used as a marker for the replacement of new + <init>
5375 * of a String to a call to a StringFactory. Only baseline will see
5376 * the node at code generation, where it will be be treated as null.
5377 * When compiling non-baseline, `HFakeString` instructions are being removed
5378 * in the instruction simplifier.
5379 */
5380class HFakeString : public HTemplateInstruction<0> {
5381 public:
5382  explicit HFakeString(uint32_t dex_pc = kNoDexPc)
5383      : HTemplateInstruction(SideEffects::None(), dex_pc) {}
5384
5385  Primitive::Type GetType() const OVERRIDE { return Primitive::kPrimNot; }
5386
5387  DECLARE_INSTRUCTION(FakeString);
5388
5389 private:
5390  DISALLOW_COPY_AND_ASSIGN(HFakeString);
5391};
5392
5393class MoveOperands : public ArenaObject<kArenaAllocMoveOperands> {
5394 public:
5395  MoveOperands(Location source,
5396               Location destination,
5397               Primitive::Type type,
5398               HInstruction* instruction)
5399      : source_(source), destination_(destination), type_(type), instruction_(instruction) {}
5400
5401  Location GetSource() const { return source_; }
5402  Location GetDestination() const { return destination_; }
5403
5404  void SetSource(Location value) { source_ = value; }
5405  void SetDestination(Location value) { destination_ = value; }
5406
5407  // The parallel move resolver marks moves as "in-progress" by clearing the
5408  // destination (but not the source).
5409  Location MarkPending() {
5410    DCHECK(!IsPending());
5411    Location dest = destination_;
5412    destination_ = Location::NoLocation();
5413    return dest;
5414  }
5415
5416  void ClearPending(Location dest) {
5417    DCHECK(IsPending());
5418    destination_ = dest;
5419  }
5420
5421  bool IsPending() const {
5422    DCHECK(!source_.IsInvalid() || destination_.IsInvalid());
5423    return destination_.IsInvalid() && !source_.IsInvalid();
5424  }
5425
5426  // True if this blocks a move from the given location.
5427  bool Blocks(Location loc) const {
5428    return !IsEliminated() && source_.OverlapsWith(loc);
5429  }
5430
5431  // A move is redundant if it's been eliminated, if its source and
5432  // destination are the same, or if its destination is unneeded.
5433  bool IsRedundant() const {
5434    return IsEliminated() || destination_.IsInvalid() || source_.Equals(destination_);
5435  }
5436
5437  // We clear both operands to indicate move that's been eliminated.
5438  void Eliminate() {
5439    source_ = destination_ = Location::NoLocation();
5440  }
5441
5442  bool IsEliminated() const {
5443    DCHECK(!source_.IsInvalid() || destination_.IsInvalid());
5444    return source_.IsInvalid();
5445  }
5446
5447  Primitive::Type GetType() const { return type_; }
5448
5449  bool Is64BitMove() const {
5450    return Primitive::Is64BitType(type_);
5451  }
5452
5453  HInstruction* GetInstruction() const { return instruction_; }
5454
5455 private:
5456  Location source_;
5457  Location destination_;
5458  // The type this move is for.
5459  Primitive::Type type_;
5460  // The instruction this move is assocatied with. Null when this move is
5461  // for moving an input in the expected locations of user (including a phi user).
5462  // This is only used in debug mode, to ensure we do not connect interval siblings
5463  // in the same parallel move.
5464  HInstruction* instruction_;
5465};
5466
5467static constexpr size_t kDefaultNumberOfMoves = 4;
5468
5469class HParallelMove : public HTemplateInstruction<0> {
5470 public:
5471  explicit HParallelMove(ArenaAllocator* arena, uint32_t dex_pc = kNoDexPc)
5472      : HTemplateInstruction(SideEffects::None(), dex_pc),
5473        moves_(arena->Adapter(kArenaAllocMoveOperands)) {
5474    moves_.reserve(kDefaultNumberOfMoves);
5475  }
5476
5477  void AddMove(Location source,
5478               Location destination,
5479               Primitive::Type type,
5480               HInstruction* instruction) {
5481    DCHECK(source.IsValid());
5482    DCHECK(destination.IsValid());
5483    if (kIsDebugBuild) {
5484      if (instruction != nullptr) {
5485        for (const MoveOperands& move : moves_) {
5486          if (move.GetInstruction() == instruction) {
5487            // Special case the situation where the move is for the spill slot
5488            // of the instruction.
5489            if ((GetPrevious() == instruction)
5490                || ((GetPrevious() == nullptr)
5491                    && instruction->IsPhi()
5492                    && instruction->GetBlock() == GetBlock())) {
5493              DCHECK_NE(destination.GetKind(), move.GetDestination().GetKind())
5494                  << "Doing parallel moves for the same instruction.";
5495            } else {
5496              DCHECK(false) << "Doing parallel moves for the same instruction.";
5497            }
5498          }
5499        }
5500      }
5501      for (const MoveOperands& move : moves_) {
5502        DCHECK(!destination.OverlapsWith(move.GetDestination()))
5503            << "Overlapped destination for two moves in a parallel move: "
5504            << move.GetSource() << " ==> " << move.GetDestination() << " and "
5505            << source << " ==> " << destination;
5506      }
5507    }
5508    moves_.emplace_back(source, destination, type, instruction);
5509  }
5510
5511  MoveOperands* MoveOperandsAt(size_t index) {
5512    return &moves_[index];
5513  }
5514
5515  size_t NumMoves() const { return moves_.size(); }
5516
5517  DECLARE_INSTRUCTION(ParallelMove);
5518
5519 private:
5520  ArenaVector<MoveOperands> moves_;
5521
5522  DISALLOW_COPY_AND_ASSIGN(HParallelMove);
5523};
5524
5525}  // namespace art
5526
5527#ifdef ART_ENABLE_CODEGEN_arm64
5528#include "nodes_arm64.h"
5529#endif
5530#ifdef ART_ENABLE_CODEGEN_x86
5531#include "nodes_x86.h"
5532#endif
5533
5534namespace art {
5535
5536class HGraphVisitor : public ValueObject {
5537 public:
5538  explicit HGraphVisitor(HGraph* graph) : graph_(graph) {}
5539  virtual ~HGraphVisitor() {}
5540
5541  virtual void VisitInstruction(HInstruction* instruction ATTRIBUTE_UNUSED) {}
5542  virtual void VisitBasicBlock(HBasicBlock* block);
5543
5544  // Visit the graph following basic block insertion order.
5545  void VisitInsertionOrder();
5546
5547  // Visit the graph following dominator tree reverse post-order.
5548  void VisitReversePostOrder();
5549
5550  HGraph* GetGraph() const { return graph_; }
5551
5552  // Visit functions for instruction classes.
5553#define DECLARE_VISIT_INSTRUCTION(name, super)                                        \
5554  virtual void Visit##name(H##name* instr) { VisitInstruction(instr); }
5555
5556  FOR_EACH_INSTRUCTION(DECLARE_VISIT_INSTRUCTION)
5557
5558#undef DECLARE_VISIT_INSTRUCTION
5559
5560 private:
5561  HGraph* const graph_;
5562
5563  DISALLOW_COPY_AND_ASSIGN(HGraphVisitor);
5564};
5565
5566class HGraphDelegateVisitor : public HGraphVisitor {
5567 public:
5568  explicit HGraphDelegateVisitor(HGraph* graph) : HGraphVisitor(graph) {}
5569  virtual ~HGraphDelegateVisitor() {}
5570
5571  // Visit functions that delegate to to super class.
5572#define DECLARE_VISIT_INSTRUCTION(name, super)                                        \
5573  void Visit##name(H##name* instr) OVERRIDE { Visit##super(instr); }
5574
5575  FOR_EACH_INSTRUCTION(DECLARE_VISIT_INSTRUCTION)
5576
5577#undef DECLARE_VISIT_INSTRUCTION
5578
5579 private:
5580  DISALLOW_COPY_AND_ASSIGN(HGraphDelegateVisitor);
5581};
5582
5583class HInsertionOrderIterator : public ValueObject {
5584 public:
5585  explicit HInsertionOrderIterator(const HGraph& graph) : graph_(graph), index_(0) {}
5586
5587  bool Done() const { return index_ == graph_.GetBlocks().size(); }
5588  HBasicBlock* Current() const { return graph_.GetBlocks()[index_]; }
5589  void Advance() { ++index_; }
5590
5591 private:
5592  const HGraph& graph_;
5593  size_t index_;
5594
5595  DISALLOW_COPY_AND_ASSIGN(HInsertionOrderIterator);
5596};
5597
5598class HReversePostOrderIterator : public ValueObject {
5599 public:
5600  explicit HReversePostOrderIterator(const HGraph& graph) : graph_(graph), index_(0) {
5601    // Check that reverse post order of the graph has been built.
5602    DCHECK(!graph.GetReversePostOrder().empty());
5603  }
5604
5605  bool Done() const { return index_ == graph_.GetReversePostOrder().size(); }
5606  HBasicBlock* Current() const { return graph_.GetReversePostOrder()[index_]; }
5607  void Advance() { ++index_; }
5608
5609 private:
5610  const HGraph& graph_;
5611  size_t index_;
5612
5613  DISALLOW_COPY_AND_ASSIGN(HReversePostOrderIterator);
5614};
5615
5616class HPostOrderIterator : public ValueObject {
5617 public:
5618  explicit HPostOrderIterator(const HGraph& graph)
5619      : graph_(graph), index_(graph_.GetReversePostOrder().size()) {
5620    // Check that reverse post order of the graph has been built.
5621    DCHECK(!graph.GetReversePostOrder().empty());
5622  }
5623
5624  bool Done() const { return index_ == 0; }
5625  HBasicBlock* Current() const { return graph_.GetReversePostOrder()[index_ - 1u]; }
5626  void Advance() { --index_; }
5627
5628 private:
5629  const HGraph& graph_;
5630  size_t index_;
5631
5632  DISALLOW_COPY_AND_ASSIGN(HPostOrderIterator);
5633};
5634
5635class HLinearPostOrderIterator : public ValueObject {
5636 public:
5637  explicit HLinearPostOrderIterator(const HGraph& graph)
5638      : order_(graph.GetLinearOrder()), index_(graph.GetLinearOrder().size()) {}
5639
5640  bool Done() const { return index_ == 0; }
5641
5642  HBasicBlock* Current() const { return order_[index_ - 1u]; }
5643
5644  void Advance() {
5645    --index_;
5646    DCHECK_GE(index_, 0U);
5647  }
5648
5649 private:
5650  const ArenaVector<HBasicBlock*>& order_;
5651  size_t index_;
5652
5653  DISALLOW_COPY_AND_ASSIGN(HLinearPostOrderIterator);
5654};
5655
5656class HLinearOrderIterator : public ValueObject {
5657 public:
5658  explicit HLinearOrderIterator(const HGraph& graph)
5659      : order_(graph.GetLinearOrder()), index_(0) {}
5660
5661  bool Done() const { return index_ == order_.size(); }
5662  HBasicBlock* Current() const { return order_[index_]; }
5663  void Advance() { ++index_; }
5664
5665 private:
5666  const ArenaVector<HBasicBlock*>& order_;
5667  size_t index_;
5668
5669  DISALLOW_COPY_AND_ASSIGN(HLinearOrderIterator);
5670};
5671
5672// Iterator over the blocks that art part of the loop. Includes blocks part
5673// of an inner loop. The order in which the blocks are iterated is on their
5674// block id.
5675class HBlocksInLoopIterator : public ValueObject {
5676 public:
5677  explicit HBlocksInLoopIterator(const HLoopInformation& info)
5678      : blocks_in_loop_(info.GetBlocks()),
5679        blocks_(info.GetHeader()->GetGraph()->GetBlocks()),
5680        index_(0) {
5681    if (!blocks_in_loop_.IsBitSet(index_)) {
5682      Advance();
5683    }
5684  }
5685
5686  bool Done() const { return index_ == blocks_.size(); }
5687  HBasicBlock* Current() const { return blocks_[index_]; }
5688  void Advance() {
5689    ++index_;
5690    for (size_t e = blocks_.size(); index_ < e; ++index_) {
5691      if (blocks_in_loop_.IsBitSet(index_)) {
5692        break;
5693      }
5694    }
5695  }
5696
5697 private:
5698  const BitVector& blocks_in_loop_;
5699  const ArenaVector<HBasicBlock*>& blocks_;
5700  size_t index_;
5701
5702  DISALLOW_COPY_AND_ASSIGN(HBlocksInLoopIterator);
5703};
5704
5705// Iterator over the blocks that art part of the loop. Includes blocks part
5706// of an inner loop. The order in which the blocks are iterated is reverse
5707// post order.
5708class HBlocksInLoopReversePostOrderIterator : public ValueObject {
5709 public:
5710  explicit HBlocksInLoopReversePostOrderIterator(const HLoopInformation& info)
5711      : blocks_in_loop_(info.GetBlocks()),
5712        blocks_(info.GetHeader()->GetGraph()->GetReversePostOrder()),
5713        index_(0) {
5714    if (!blocks_in_loop_.IsBitSet(blocks_[index_]->GetBlockId())) {
5715      Advance();
5716    }
5717  }
5718
5719  bool Done() const { return index_ == blocks_.size(); }
5720  HBasicBlock* Current() const { return blocks_[index_]; }
5721  void Advance() {
5722    ++index_;
5723    for (size_t e = blocks_.size(); index_ < e; ++index_) {
5724      if (blocks_in_loop_.IsBitSet(blocks_[index_]->GetBlockId())) {
5725        break;
5726      }
5727    }
5728  }
5729
5730 private:
5731  const BitVector& blocks_in_loop_;
5732  const ArenaVector<HBasicBlock*>& blocks_;
5733  size_t index_;
5734
5735  DISALLOW_COPY_AND_ASSIGN(HBlocksInLoopReversePostOrderIterator);
5736};
5737
5738inline int64_t Int64FromConstant(HConstant* constant) {
5739  DCHECK(constant->IsIntConstant() || constant->IsLongConstant());
5740  return constant->IsIntConstant() ? constant->AsIntConstant()->GetValue()
5741                                   : constant->AsLongConstant()->GetValue();
5742}
5743
5744inline bool IsSameDexFile(const DexFile& lhs, const DexFile& rhs) {
5745  // For the purposes of the compiler, the dex files must actually be the same object
5746  // if we want to safely treat them as the same. This is especially important for JIT
5747  // as custom class loaders can open the same underlying file (or memory) multiple
5748  // times and provide different class resolution but no two class loaders should ever
5749  // use the same DexFile object - doing so is an unsupported hack that can lead to
5750  // all sorts of weird failures.
5751  return &lhs == &rhs;
5752}
5753
5754}  // namespace art
5755
5756#endif  // ART_COMPILER_OPTIMIZING_NODES_H_
5757