ssa_liveness_analysis.cc revision 38207af82afb6f99c687f64b15601ed20d82220a
1/*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "ssa_liveness_analysis.h"
18
19#include "base/bit_vector-inl.h"
20#include "code_generator.h"
21#include "nodes.h"
22
23namespace art {
24
25void SsaLivenessAnalysis::Analyze() {
26  LinearizeGraph();
27  NumberInstructions();
28  ComputeLiveness();
29}
30
31static bool IsLoop(HLoopInformation* info) {
32  return info != nullptr;
33}
34
35static bool InSameLoop(HLoopInformation* first_loop, HLoopInformation* second_loop) {
36  return first_loop == second_loop;
37}
38
39static bool IsInnerLoop(HLoopInformation* outer, HLoopInformation* inner) {
40  return (inner != outer)
41      && (inner != nullptr)
42      && (outer != nullptr)
43      && inner->IsIn(*outer);
44}
45
46static void AddToListForLinearization(GrowableArray<HBasicBlock*>* worklist, HBasicBlock* block) {
47  size_t insert_at = worklist->Size();
48  HLoopInformation* block_loop = block->GetLoopInformation();
49  for (; insert_at > 0; --insert_at) {
50    HBasicBlock* current = worklist->Get(insert_at - 1);
51    HLoopInformation* current_loop = current->GetLoopInformation();
52    if (InSameLoop(block_loop, current_loop)
53        || !IsLoop(current_loop)
54        || IsInnerLoop(current_loop, block_loop)) {
55      // The block can be processed immediately.
56      break;
57    }
58  }
59  worklist->InsertAt(insert_at, block);
60}
61
62void SsaLivenessAnalysis::LinearizeGraph() {
63  // Create a reverse post ordering with the following properties:
64  // - Blocks in a loop are consecutive,
65  // - Back-edge is the last block before loop exits.
66
67  // (1): Record the number of forward predecessors for each block. This is to
68  //      ensure the resulting order is reverse post order. We could use the
69  //      current reverse post order in the graph, but it would require making
70  //      order queries to a GrowableArray, which is not the best data structure
71  //      for it.
72  GrowableArray<uint32_t> forward_predecessors(graph_->GetArena(), graph_->GetBlocks().Size());
73  forward_predecessors.SetSize(graph_->GetBlocks().Size());
74  for (HReversePostOrderIterator it(*graph_); !it.Done(); it.Advance()) {
75    HBasicBlock* block = it.Current();
76    size_t number_of_forward_predecessors = block->GetPredecessors().Size();
77    if (block->IsLoopHeader()) {
78      number_of_forward_predecessors -= block->GetLoopInformation()->NumberOfBackEdges();
79    }
80    forward_predecessors.Put(block->GetBlockId(), number_of_forward_predecessors);
81  }
82
83  // (2): Following a worklist approach, first start with the entry block, and
84  //      iterate over the successors. When all non-back edge predecessors of a
85  //      successor block are visited, the successor block is added in the worklist
86  //      following an order that satisfies the requirements to build our linear graph.
87  GrowableArray<HBasicBlock*> worklist(graph_->GetArena(), 1);
88  worklist.Add(graph_->GetEntryBlock());
89  do {
90    HBasicBlock* current = worklist.Pop();
91    graph_->linear_order_.Add(current);
92    for (size_t i = 0, e = current->GetSuccessors().Size(); i < e; ++i) {
93      HBasicBlock* successor = current->GetSuccessors().Get(i);
94      int block_id = successor->GetBlockId();
95      size_t number_of_remaining_predecessors = forward_predecessors.Get(block_id);
96      if (number_of_remaining_predecessors == 1) {
97        AddToListForLinearization(&worklist, successor);
98      }
99      forward_predecessors.Put(block_id, number_of_remaining_predecessors - 1);
100    }
101  } while (!worklist.IsEmpty());
102}
103
104void SsaLivenessAnalysis::NumberInstructions() {
105  int ssa_index = 0;
106  size_t lifetime_position = 0;
107  // Each instruction gets a lifetime position, and a block gets a lifetime
108  // start and end position. Non-phi instructions have a distinct lifetime position than
109  // the block they are in. Phi instructions have the lifetime start of their block as
110  // lifetime position.
111  //
112  // Because the register allocator will insert moves in the graph, we need
113  // to differentiate between the start and end of an instruction. Adding 2 to
114  // the lifetime position for each instruction ensures the start of an
115  // instruction is different than the end of the previous instruction.
116  for (HLinearOrderIterator it(*graph_); !it.Done(); it.Advance()) {
117    HBasicBlock* block = it.Current();
118    block->SetLifetimeStart(lifetime_position);
119
120    for (HInstructionIterator inst_it(block->GetPhis()); !inst_it.Done(); inst_it.Advance()) {
121      HInstruction* current = inst_it.Current();
122      codegen_->AllocateLocations(current);
123      LocationSummary* locations = current->GetLocations();
124      if (locations != nullptr && locations->Out().IsValid()) {
125        instructions_from_ssa_index_.Add(current);
126        current->SetSsaIndex(ssa_index++);
127        current->SetLiveInterval(
128            LiveInterval::MakeInterval(graph_->GetArena(), current->GetType(), current));
129      }
130      current->SetLifetimePosition(lifetime_position);
131    }
132    lifetime_position += 2;
133
134    // Add a null marker to notify we are starting a block.
135    instructions_from_lifetime_position_.Add(nullptr);
136
137    for (HInstructionIterator inst_it(block->GetInstructions()); !inst_it.Done();
138         inst_it.Advance()) {
139      HInstruction* current = inst_it.Current();
140      codegen_->AllocateLocations(current);
141      LocationSummary* locations = current->GetLocations();
142      if (locations != nullptr && locations->Out().IsValid()) {
143        instructions_from_ssa_index_.Add(current);
144        current->SetSsaIndex(ssa_index++);
145        current->SetLiveInterval(
146            LiveInterval::MakeInterval(graph_->GetArena(), current->GetType(), current));
147      }
148      instructions_from_lifetime_position_.Add(current);
149      current->SetLifetimePosition(lifetime_position);
150      lifetime_position += 2;
151    }
152
153    block->SetLifetimeEnd(lifetime_position);
154  }
155  number_of_ssa_values_ = ssa_index;
156}
157
158void SsaLivenessAnalysis::ComputeLiveness() {
159  for (HLinearOrderIterator it(*graph_); !it.Done(); it.Advance()) {
160    HBasicBlock* block = it.Current();
161    block_infos_.Put(
162        block->GetBlockId(),
163        new (graph_->GetArena()) BlockInfo(graph_->GetArena(), *block, number_of_ssa_values_));
164  }
165
166  // Compute the live ranges, as well as the initial live_in, live_out, and kill sets.
167  // This method does not handle backward branches for the sets, therefore live_in
168  // and live_out sets are not yet correct.
169  ComputeLiveRanges();
170
171  // Do a fixed point calculation to take into account backward branches,
172  // that will update live_in of loop headers, and therefore live_out and live_in
173  // of blocks in the loop.
174  ComputeLiveInAndLiveOutSets();
175}
176
177void SsaLivenessAnalysis::ComputeLiveRanges() {
178  // Do a post order visit, adding inputs of instructions live in the block where
179  // that instruction is defined, and killing instructions that are being visited.
180  for (HLinearPostOrderIterator it(*graph_); !it.Done(); it.Advance()) {
181    HBasicBlock* block = it.Current();
182
183    BitVector* kill = GetKillSet(*block);
184    BitVector* live_in = GetLiveInSet(*block);
185
186    // Set phi inputs of successors of this block corresponding to this block
187    // as live_in.
188    for (size_t i = 0, e = block->GetSuccessors().Size(); i < e; ++i) {
189      HBasicBlock* successor = block->GetSuccessors().Get(i);
190      live_in->Union(GetLiveInSet(*successor));
191      size_t phi_input_index = successor->GetPredecessorIndexOf(block);
192      for (HInstructionIterator inst_it(successor->GetPhis()); !inst_it.Done(); inst_it.Advance()) {
193        HInstruction* phi = inst_it.Current();
194        HInstruction* input = phi->InputAt(phi_input_index);
195        input->GetLiveInterval()->AddPhiUse(phi, phi_input_index, block);
196        // A phi input whose last user is the phi dies at the end of the predecessor block,
197        // and not at the phi's lifetime position.
198        live_in->SetBit(input->GetSsaIndex());
199      }
200    }
201
202    // Add a range that covers this block to all instructions live_in because of successors.
203    // Instructions defined in this block will have their start of the range adjusted.
204    for (uint32_t idx : live_in->Indexes()) {
205      HInstruction* current = instructions_from_ssa_index_.Get(idx);
206      current->GetLiveInterval()->AddRange(block->GetLifetimeStart(), block->GetLifetimeEnd());
207    }
208
209    for (HBackwardInstructionIterator back_it(block->GetInstructions()); !back_it.Done();
210         back_it.Advance()) {
211      HInstruction* current = back_it.Current();
212      if (current->HasSsaIndex()) {
213        // Kill the instruction and shorten its interval.
214        kill->SetBit(current->GetSsaIndex());
215        live_in->ClearBit(current->GetSsaIndex());
216        current->GetLiveInterval()->SetFrom(current->GetLifetimePosition());
217      }
218
219      // Process the environment first, because we know their uses come after
220      // or at the same liveness position of inputs.
221      for (HEnvironment* environment = current->GetEnvironment();
222           environment != nullptr;
223           environment = environment->GetParent()) {
224        // Handle environment uses. See statements (b) and (c) of the
225        // SsaLivenessAnalysis.
226        for (size_t i = 0, e = environment->Size(); i < e; ++i) {
227          HInstruction* instruction = environment->GetInstructionAt(i);
228          bool should_be_live = ShouldBeLiveForEnvironment(instruction);
229          if (should_be_live) {
230            DCHECK(instruction->HasSsaIndex());
231            live_in->SetBit(instruction->GetSsaIndex());
232          }
233          if (instruction != nullptr) {
234            instruction->GetLiveInterval()->AddUse(
235                current, environment, i, should_be_live);
236          }
237        }
238      }
239
240      // All inputs of an instruction must be live.
241      for (size_t i = 0, e = current->InputCount(); i < e; ++i) {
242        HInstruction* input = current->InputAt(i);
243        // Some instructions 'inline' their inputs, that is they do not need
244        // to be materialized.
245        if (input->HasSsaIndex() && current->GetLocations()->InAt(i).IsValid()) {
246          live_in->SetBit(input->GetSsaIndex());
247          input->GetLiveInterval()->AddUse(current, /* environment */ nullptr, i);
248        }
249      }
250    }
251
252    // Kill phis defined in this block.
253    for (HInstructionIterator inst_it(block->GetPhis()); !inst_it.Done(); inst_it.Advance()) {
254      HInstruction* current = inst_it.Current();
255      if (current->HasSsaIndex()) {
256        kill->SetBit(current->GetSsaIndex());
257        live_in->ClearBit(current->GetSsaIndex());
258        LiveInterval* interval = current->GetLiveInterval();
259        DCHECK((interval->GetFirstRange() == nullptr)
260               || (interval->GetStart() == current->GetLifetimePosition()));
261        interval->SetFrom(current->GetLifetimePosition());
262      }
263    }
264
265    if (block->IsLoopHeader()) {
266      size_t last_position = block->GetLoopInformation()->GetLifetimeEnd();
267      // For all live_in instructions at the loop header, we need to create a range
268      // that covers the full loop.
269      for (uint32_t idx : live_in->Indexes()) {
270        HInstruction* current = instructions_from_ssa_index_.Get(idx);
271        current->GetLiveInterval()->AddLoopRange(block->GetLifetimeStart(), last_position);
272      }
273    }
274  }
275}
276
277void SsaLivenessAnalysis::ComputeLiveInAndLiveOutSets() {
278  bool changed;
279  do {
280    changed = false;
281
282    for (HPostOrderIterator it(*graph_); !it.Done(); it.Advance()) {
283      const HBasicBlock& block = *it.Current();
284
285      // The live_in set depends on the kill set (which does not
286      // change in this loop), and the live_out set.  If the live_out
287      // set does not change, there is no need to update the live_in set.
288      if (UpdateLiveOut(block) && UpdateLiveIn(block)) {
289        changed = true;
290      }
291    }
292  } while (changed);
293}
294
295bool SsaLivenessAnalysis::UpdateLiveOut(const HBasicBlock& block) {
296  BitVector* live_out = GetLiveOutSet(block);
297  bool changed = false;
298  // The live_out set of a block is the union of live_in sets of its successors.
299  for (size_t i = 0, e = block.GetSuccessors().Size(); i < e; ++i) {
300    HBasicBlock* successor = block.GetSuccessors().Get(i);
301    if (live_out->Union(GetLiveInSet(*successor))) {
302      changed = true;
303    }
304  }
305  return changed;
306}
307
308
309bool SsaLivenessAnalysis::UpdateLiveIn(const HBasicBlock& block) {
310  BitVector* live_out = GetLiveOutSet(block);
311  BitVector* kill = GetKillSet(block);
312  BitVector* live_in = GetLiveInSet(block);
313  // If live_out is updated (because of backward branches), we need to make
314  // sure instructions in live_out are also in live_in, unless they are killed
315  // by this block.
316  return live_in->UnionIfNotIn(live_out, kill);
317}
318
319static int RegisterOrLowRegister(Location location) {
320  return location.IsPair() ? location.low() : location.reg();
321}
322
323int LiveInterval::FindFirstRegisterHint(size_t* free_until,
324                                        const SsaLivenessAnalysis& liveness) const {
325  DCHECK(!IsHighInterval());
326  if (IsTemp()) return kNoRegister;
327
328  if (GetParent() == this && defined_by_ != nullptr) {
329    // This is the first interval for the instruction. Try to find
330    // a register based on its definition.
331    DCHECK_EQ(defined_by_->GetLiveInterval(), this);
332    int hint = FindHintAtDefinition();
333    if (hint != kNoRegister && free_until[hint] > GetStart()) {
334      return hint;
335    }
336  }
337
338  if (IsSplit() && liveness.IsAtBlockBoundary(GetStart() / 2)) {
339    // If the start of this interval is at a block boundary, we look at the
340    // location of the interval in blocks preceding the block this interval
341    // starts at. If one location is a register we return it as a hint. This
342    // will avoid a move between the two blocks.
343    HBasicBlock* block = liveness.GetBlockFromPosition(GetStart() / 2);
344    size_t next_register_use = FirstRegisterUse();
345    for (size_t i = 0; i < block->GetPredecessors().Size(); ++i) {
346      size_t position = block->GetPredecessors().Get(i)->GetLifetimeEnd() - 1;
347      // We know positions above GetStart() do not have a location yet.
348      if (position < GetStart()) {
349        LiveInterval* existing = GetParent()->GetSiblingAt(position);
350        if (existing != nullptr
351            && existing->HasRegister()
352            // It's worth using that register if it is available until
353            // the next use.
354            && (free_until[existing->GetRegister()] >= next_register_use)) {
355          return existing->GetRegister();
356        }
357      }
358    }
359  }
360
361  UsePosition* use = first_use_;
362  size_t start = GetStart();
363  size_t end = GetEnd();
364  while (use != nullptr && use->GetPosition() <= end) {
365    size_t use_position = use->GetPosition();
366    if (use_position >= start && !use->IsSynthesized()) {
367      HInstruction* user = use->GetUser();
368      size_t input_index = use->GetInputIndex();
369      if (user->IsPhi()) {
370        // If the phi has a register, try to use the same.
371        Location phi_location = user->GetLiveInterval()->ToLocation();
372        if (phi_location.IsRegisterKind()) {
373          DCHECK(SameRegisterKind(phi_location));
374          int reg = RegisterOrLowRegister(phi_location);
375          if (free_until[reg] >= use_position) {
376            return reg;
377          }
378        }
379        const GrowableArray<HBasicBlock*>& predecessors = user->GetBlock()->GetPredecessors();
380        // If the instruction dies at the phi assignment, we can try having the
381        // same register.
382        if (end == predecessors.Get(input_index)->GetLifetimeEnd()) {
383          for (size_t i = 0, e = user->InputCount(); i < e; ++i) {
384            if (i == input_index) {
385              continue;
386            }
387            HInstruction* input = user->InputAt(i);
388            Location location = input->GetLiveInterval()->GetLocationAt(
389                predecessors.Get(i)->GetLifetimeEnd() - 1);
390            if (location.IsRegisterKind()) {
391              int reg = RegisterOrLowRegister(location);
392              if (free_until[reg] >= use_position) {
393                return reg;
394              }
395            }
396          }
397        }
398      } else {
399        // If the instruction is expected in a register, try to use it.
400        LocationSummary* locations = user->GetLocations();
401        Location expected = locations->InAt(use->GetInputIndex());
402        // We use the user's lifetime position - 1 (and not `use_position`) because the
403        // register is blocked at the beginning of the user.
404        size_t position = user->GetLifetimePosition() - 1;
405        if (expected.IsRegisterKind()) {
406          DCHECK(SameRegisterKind(expected));
407          int reg = RegisterOrLowRegister(expected);
408          if (free_until[reg] >= position) {
409            return reg;
410          }
411        }
412      }
413    }
414    use = use->GetNext();
415  }
416
417  return kNoRegister;
418}
419
420int LiveInterval::FindHintAtDefinition() const {
421  if (defined_by_->IsPhi()) {
422    // Try to use the same register as one of the inputs.
423    const GrowableArray<HBasicBlock*>& predecessors = defined_by_->GetBlock()->GetPredecessors();
424    for (size_t i = 0, e = defined_by_->InputCount(); i < e; ++i) {
425      HInstruction* input = defined_by_->InputAt(i);
426      size_t end = predecessors.Get(i)->GetLifetimeEnd();
427      LiveInterval* input_interval = input->GetLiveInterval()->GetSiblingAt(end - 1);
428      if (input_interval->GetEnd() == end) {
429        // If the input dies at the end of the predecessor, we know its register can
430        // be reused.
431        Location input_location = input_interval->ToLocation();
432        if (input_location.IsRegisterKind()) {
433          DCHECK(SameRegisterKind(input_location));
434          return RegisterOrLowRegister(input_location);
435        }
436      }
437    }
438  } else {
439    LocationSummary* locations = GetDefinedBy()->GetLocations();
440    Location out = locations->Out();
441    if (out.IsUnallocated() && out.GetPolicy() == Location::kSameAsFirstInput) {
442      // Try to use the same register as the first input.
443      LiveInterval* input_interval =
444          GetDefinedBy()->InputAt(0)->GetLiveInterval()->GetSiblingAt(GetStart() - 1);
445      if (input_interval->GetEnd() == GetStart()) {
446        // If the input dies at the start of this instruction, we know its register can
447        // be reused.
448        Location location = input_interval->ToLocation();
449        if (location.IsRegisterKind()) {
450          DCHECK(SameRegisterKind(location));
451          return RegisterOrLowRegister(location);
452        }
453      }
454    }
455  }
456  return kNoRegister;
457}
458
459bool LiveInterval::SameRegisterKind(Location other) const {
460  if (IsFloatingPoint()) {
461    if (IsLowInterval() || IsHighInterval()) {
462      return other.IsFpuRegisterPair();
463    } else {
464      return other.IsFpuRegister();
465    }
466  } else {
467    if (IsLowInterval() || IsHighInterval()) {
468      return other.IsRegisterPair();
469    } else {
470      return other.IsRegister();
471    }
472  }
473}
474
475bool LiveInterval::NeedsTwoSpillSlots() const {
476  return type_ == Primitive::kPrimLong || type_ == Primitive::kPrimDouble;
477}
478
479Location LiveInterval::ToLocation() const {
480  DCHECK(!IsHighInterval());
481  if (HasRegister()) {
482    if (IsFloatingPoint()) {
483      if (HasHighInterval()) {
484        return Location::FpuRegisterPairLocation(GetRegister(), GetHighInterval()->GetRegister());
485      } else {
486        return Location::FpuRegisterLocation(GetRegister());
487      }
488    } else {
489      if (HasHighInterval()) {
490        return Location::RegisterPairLocation(GetRegister(), GetHighInterval()->GetRegister());
491      } else {
492        return Location::RegisterLocation(GetRegister());
493      }
494    }
495  } else {
496    HInstruction* defined_by = GetParent()->GetDefinedBy();
497    if (defined_by->IsConstant()) {
498      return defined_by->GetLocations()->Out();
499    } else if (GetParent()->HasSpillSlot()) {
500      if (NeedsTwoSpillSlots()) {
501        return Location::DoubleStackSlot(GetParent()->GetSpillSlot());
502      } else {
503        return Location::StackSlot(GetParent()->GetSpillSlot());
504      }
505    } else {
506      return Location();
507    }
508  }
509}
510
511Location LiveInterval::GetLocationAt(size_t position) {
512  LiveInterval* sibling = GetSiblingAt(position);
513  DCHECK(sibling != nullptr);
514  return sibling->ToLocation();
515}
516
517LiveInterval* LiveInterval::GetSiblingAt(size_t position) {
518  LiveInterval* current = this;
519  while (current != nullptr && !current->IsDefinedAt(position)) {
520    current = current->GetNextSibling();
521  }
522  return current;
523}
524
525}  // namespace art
526