ssa_liveness_analysis.cc revision 46817b876ab00d6b78905b80ed12b4344c522b6c
1/*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "ssa_liveness_analysis.h"
18
19#include "base/bit_vector-inl.h"
20#include "code_generator.h"
21#include "nodes.h"
22
23namespace art {
24
25void SsaLivenessAnalysis::Analyze() {
26  LinearizeGraph();
27  NumberInstructions();
28  ComputeLiveness();
29}
30
31static bool IsLoop(HLoopInformation* info) {
32  return info != nullptr;
33}
34
35static bool InSameLoop(HLoopInformation* first_loop, HLoopInformation* second_loop) {
36  return first_loop == second_loop;
37}
38
39static bool IsInnerLoop(HLoopInformation* outer, HLoopInformation* inner) {
40  return (inner != outer)
41      && (inner != nullptr)
42      && (outer != nullptr)
43      && inner->IsIn(*outer);
44}
45
46static void AddToListForLinearization(ArenaVector<HBasicBlock*>* worklist, HBasicBlock* block) {
47  HLoopInformation* block_loop = block->GetLoopInformation();
48  auto insert_pos = worklist->rbegin();  // insert_pos.base() will be the actual position.
49  for (auto end = worklist->rend(); insert_pos != end; ++insert_pos) {
50    HBasicBlock* current = *insert_pos;
51    HLoopInformation* current_loop = current->GetLoopInformation();
52    if (InSameLoop(block_loop, current_loop)
53        || !IsLoop(current_loop)
54        || IsInnerLoop(current_loop, block_loop)) {
55      // The block can be processed immediately.
56      break;
57    }
58  }
59  worklist->insert(insert_pos.base(), block);
60}
61
62void SsaLivenessAnalysis::LinearizeGraph() {
63  // Create a reverse post ordering with the following properties:
64  // - Blocks in a loop are consecutive,
65  // - Back-edge is the last block before loop exits.
66
67  // (1): Record the number of forward predecessors for each block. This is to
68  //      ensure the resulting order is reverse post order. We could use the
69  //      current reverse post order in the graph, but it would require making
70  //      order queries to a GrowableArray, which is not the best data structure
71  //      for it.
72  ArenaVector<uint32_t> forward_predecessors(graph_->GetBlocks().size(),
73                                             graph_->GetArena()->Adapter(kArenaAllocSsaLiveness));
74  for (HReversePostOrderIterator it(*graph_); !it.Done(); it.Advance()) {
75    HBasicBlock* block = it.Current();
76    size_t number_of_forward_predecessors = block->GetPredecessors().size();
77    if (block->IsLoopHeader()) {
78      number_of_forward_predecessors -= block->GetLoopInformation()->NumberOfBackEdges();
79    }
80    forward_predecessors[block->GetBlockId()] = number_of_forward_predecessors;
81  }
82
83  // (2): Following a worklist approach, first start with the entry block, and
84  //      iterate over the successors. When all non-back edge predecessors of a
85  //      successor block are visited, the successor block is added in the worklist
86  //      following an order that satisfies the requirements to build our linear graph.
87  graph_->linear_order_.reserve(graph_->GetReversePostOrder().size());
88  ArenaVector<HBasicBlock*> worklist(graph_->GetArena()->Adapter(kArenaAllocSsaLiveness));
89  worklist.push_back(graph_->GetEntryBlock());
90  do {
91    HBasicBlock* current = worklist.back();
92    worklist.pop_back();
93    graph_->linear_order_.push_back(current);
94    for (HBasicBlock* successor : current->GetSuccessors()) {
95      int block_id = successor->GetBlockId();
96      size_t number_of_remaining_predecessors = forward_predecessors[block_id];
97      if (number_of_remaining_predecessors == 1) {
98        AddToListForLinearization(&worklist, successor);
99      }
100      forward_predecessors[block_id] = number_of_remaining_predecessors - 1;
101    }
102  } while (!worklist.empty());
103}
104
105void SsaLivenessAnalysis::NumberInstructions() {
106  int ssa_index = 0;
107  size_t lifetime_position = 0;
108  // Each instruction gets a lifetime position, and a block gets a lifetime
109  // start and end position. Non-phi instructions have a distinct lifetime position than
110  // the block they are in. Phi instructions have the lifetime start of their block as
111  // lifetime position.
112  //
113  // Because the register allocator will insert moves in the graph, we need
114  // to differentiate between the start and end of an instruction. Adding 2 to
115  // the lifetime position for each instruction ensures the start of an
116  // instruction is different than the end of the previous instruction.
117  for (HLinearOrderIterator it(*graph_); !it.Done(); it.Advance()) {
118    HBasicBlock* block = it.Current();
119    block->SetLifetimeStart(lifetime_position);
120
121    for (HInstructionIterator inst_it(block->GetPhis()); !inst_it.Done(); inst_it.Advance()) {
122      HInstruction* current = inst_it.Current();
123      codegen_->AllocateLocations(current);
124      LocationSummary* locations = current->GetLocations();
125      if (locations != nullptr && locations->Out().IsValid()) {
126        instructions_from_ssa_index_.push_back(current);
127        current->SetSsaIndex(ssa_index++);
128        current->SetLiveInterval(
129            LiveInterval::MakeInterval(graph_->GetArena(), current->GetType(), current));
130      }
131      current->SetLifetimePosition(lifetime_position);
132    }
133    lifetime_position += 2;
134
135    // Add a null marker to notify we are starting a block.
136    instructions_from_lifetime_position_.push_back(nullptr);
137
138    for (HInstructionIterator inst_it(block->GetInstructions()); !inst_it.Done();
139         inst_it.Advance()) {
140      HInstruction* current = inst_it.Current();
141      codegen_->AllocateLocations(current);
142      LocationSummary* locations = current->GetLocations();
143      if (locations != nullptr && locations->Out().IsValid()) {
144        instructions_from_ssa_index_.push_back(current);
145        current->SetSsaIndex(ssa_index++);
146        current->SetLiveInterval(
147            LiveInterval::MakeInterval(graph_->GetArena(), current->GetType(), current));
148      }
149      instructions_from_lifetime_position_.push_back(current);
150      current->SetLifetimePosition(lifetime_position);
151      lifetime_position += 2;
152    }
153
154    block->SetLifetimeEnd(lifetime_position);
155  }
156  number_of_ssa_values_ = ssa_index;
157}
158
159void SsaLivenessAnalysis::ComputeLiveness() {
160  for (HLinearOrderIterator it(*graph_); !it.Done(); it.Advance()) {
161    HBasicBlock* block = it.Current();
162    block_infos_[block->GetBlockId()] =
163        new (graph_->GetArena()) BlockInfo(graph_->GetArena(), *block, number_of_ssa_values_);
164  }
165
166  // Compute the live ranges, as well as the initial live_in, live_out, and kill sets.
167  // This method does not handle backward branches for the sets, therefore live_in
168  // and live_out sets are not yet correct.
169  ComputeLiveRanges();
170
171  // Do a fixed point calculation to take into account backward branches,
172  // that will update live_in of loop headers, and therefore live_out and live_in
173  // of blocks in the loop.
174  ComputeLiveInAndLiveOutSets();
175}
176
177static void RecursivelyProcessInputs(HInstruction* current,
178                                     HInstruction* actual_user,
179                                     BitVector* live_in) {
180  for (size_t i = 0, e = current->InputCount(); i < e; ++i) {
181    HInstruction* input = current->InputAt(i);
182    bool has_in_location = current->GetLocations()->InAt(i).IsValid();
183    bool has_out_location = input->GetLocations()->Out().IsValid();
184
185    if (has_in_location) {
186      DCHECK(has_out_location)
187          << "Instruction " << current->DebugName() << current->GetId()
188          << " expects an input value at index " << i << " but "
189          << input->DebugName() << input->GetId() << " does not produce one.";
190      DCHECK(input->HasSsaIndex());
191      // `input` generates a result used by `current`. Add use and update
192      // the live-in set.
193      input->GetLiveInterval()->AddUse(current, /* environment */ nullptr, i, actual_user);
194      live_in->SetBit(input->GetSsaIndex());
195    } else if (has_out_location) {
196      // `input` generates a result but it is not used by `current`.
197    } else {
198      // `input` is inlined into `current`. Walk over its inputs and record
199      // uses at `current`.
200      DCHECK(input->IsEmittedAtUseSite());
201      // Check that the inlined input is not a phi. Recursing on loop phis could
202      // lead to an infinite loop.
203      DCHECK(!input->IsPhi());
204      RecursivelyProcessInputs(input, actual_user, live_in);
205    }
206  }
207}
208
209void SsaLivenessAnalysis::ComputeLiveRanges() {
210  // Do a post order visit, adding inputs of instructions live in the block where
211  // that instruction is defined, and killing instructions that are being visited.
212  for (HLinearPostOrderIterator it(*graph_); !it.Done(); it.Advance()) {
213    HBasicBlock* block = it.Current();
214
215    BitVector* kill = GetKillSet(*block);
216    BitVector* live_in = GetLiveInSet(*block);
217
218    // Set phi inputs of successors of this block corresponding to this block
219    // as live_in.
220    for (HBasicBlock* successor : block->GetSuccessors()) {
221      live_in->Union(GetLiveInSet(*successor));
222      if (successor->IsCatchBlock()) {
223        // Inputs of catch phis will be kept alive through their environment
224        // uses, allowing the runtime to copy their values to the corresponding
225        // catch phi spill slots when an exception is thrown.
226        // The only instructions which may not be recorded in the environments
227        // are constants created by the SSA builder as typed equivalents of
228        // untyped constants from the bytecode, or phis with only such constants
229        // as inputs (verified by GraphChecker). Their raw binary value must
230        // therefore be the same and we only need to keep alive one.
231      } else {
232        size_t phi_input_index = successor->GetPredecessorIndexOf(block);
233        for (HInstructionIterator phi_it(successor->GetPhis()); !phi_it.Done(); phi_it.Advance()) {
234          HInstruction* phi = phi_it.Current();
235          HInstruction* input = phi->InputAt(phi_input_index);
236          input->GetLiveInterval()->AddPhiUse(phi, phi_input_index, block);
237          // A phi input whose last user is the phi dies at the end of the predecessor block,
238          // and not at the phi's lifetime position.
239          live_in->SetBit(input->GetSsaIndex());
240        }
241      }
242    }
243
244    // Add a range that covers this block to all instructions live_in because of successors.
245    // Instructions defined in this block will have their start of the range adjusted.
246    for (uint32_t idx : live_in->Indexes()) {
247      HInstruction* current = GetInstructionFromSsaIndex(idx);
248      current->GetLiveInterval()->AddRange(block->GetLifetimeStart(), block->GetLifetimeEnd());
249    }
250
251    for (HBackwardInstructionIterator back_it(block->GetInstructions()); !back_it.Done();
252         back_it.Advance()) {
253      HInstruction* current = back_it.Current();
254      if (current->HasSsaIndex()) {
255        // Kill the instruction and shorten its interval.
256        kill->SetBit(current->GetSsaIndex());
257        live_in->ClearBit(current->GetSsaIndex());
258        current->GetLiveInterval()->SetFrom(current->GetLifetimePosition());
259      }
260
261      // Process the environment first, because we know their uses come after
262      // or at the same liveness position of inputs.
263      for (HEnvironment* environment = current->GetEnvironment();
264           environment != nullptr;
265           environment = environment->GetParent()) {
266        // Handle environment uses. See statements (b) and (c) of the
267        // SsaLivenessAnalysis.
268        for (size_t i = 0, e = environment->Size(); i < e; ++i) {
269          HInstruction* instruction = environment->GetInstructionAt(i);
270          bool should_be_live = ShouldBeLiveForEnvironment(current, instruction);
271          if (should_be_live) {
272            DCHECK(instruction->HasSsaIndex());
273            live_in->SetBit(instruction->GetSsaIndex());
274          }
275          if (instruction != nullptr) {
276            instruction->GetLiveInterval()->AddUse(
277                current, environment, i, /* actual_user */ nullptr, should_be_live);
278          }
279        }
280      }
281
282      // Process inputs of instructions.
283      if (current->IsEmittedAtUseSite()) {
284        if (kIsDebugBuild) {
285          DCHECK(!current->GetLocations()->Out().IsValid());
286          for (const HUseListNode<HInstruction*>& use : current->GetUses()) {
287            HInstruction* user = use.GetUser();
288            size_t index = use.GetIndex();
289            DCHECK(!user->GetLocations()->InAt(index).IsValid());
290          }
291          DCHECK(!current->HasEnvironmentUses());
292        }
293      } else {
294        RecursivelyProcessInputs(current, current, live_in);
295      }
296    }
297
298    // Kill phis defined in this block.
299    for (HInstructionIterator inst_it(block->GetPhis()); !inst_it.Done(); inst_it.Advance()) {
300      HInstruction* current = inst_it.Current();
301      if (current->HasSsaIndex()) {
302        kill->SetBit(current->GetSsaIndex());
303        live_in->ClearBit(current->GetSsaIndex());
304        LiveInterval* interval = current->GetLiveInterval();
305        DCHECK((interval->GetFirstRange() == nullptr)
306               || (interval->GetStart() == current->GetLifetimePosition()));
307        interval->SetFrom(current->GetLifetimePosition());
308      }
309    }
310
311    if (block->IsLoopHeader()) {
312      if (kIsDebugBuild && block->GetLoopInformation()->IsIrreducible()) {
313        // To satisfy our liveness algorithm, we need to ensure loop headers of
314        // irreducible loops do not have any live-in instructions, except constants
315        // and the current method, which can be trivially re-materialized.
316        for (uint32_t idx : live_in->Indexes()) {
317          HInstruction* instruction = GetInstructionFromSsaIndex(idx);
318          DCHECK(instruction->GetBlock()->IsEntryBlock()) << instruction->DebugName();
319          DCHECK(!instruction->IsParameterValue()) << instruction->DebugName();
320          DCHECK(instruction->IsCurrentMethod() || instruction->IsConstant())
321              << instruction->DebugName();
322        }
323      }
324      size_t last_position = block->GetLoopInformation()->GetLifetimeEnd();
325      // For all live_in instructions at the loop header, we need to create a range
326      // that covers the full loop.
327      for (uint32_t idx : live_in->Indexes()) {
328        HInstruction* current = GetInstructionFromSsaIndex(idx);
329        current->GetLiveInterval()->AddLoopRange(block->GetLifetimeStart(), last_position);
330      }
331    }
332  }
333}
334
335void SsaLivenessAnalysis::ComputeLiveInAndLiveOutSets() {
336  bool changed;
337  do {
338    changed = false;
339
340    for (HPostOrderIterator it(*graph_); !it.Done(); it.Advance()) {
341      const HBasicBlock& block = *it.Current();
342
343      // The live_in set depends on the kill set (which does not
344      // change in this loop), and the live_out set.  If the live_out
345      // set does not change, there is no need to update the live_in set.
346      if (UpdateLiveOut(block) && UpdateLiveIn(block)) {
347        changed = true;
348      }
349    }
350  } while (changed);
351}
352
353bool SsaLivenessAnalysis::UpdateLiveOut(const HBasicBlock& block) {
354  BitVector* live_out = GetLiveOutSet(block);
355  bool changed = false;
356  // The live_out set of a block is the union of live_in sets of its successors.
357  for (HBasicBlock* successor : block.GetSuccessors()) {
358    if (live_out->Union(GetLiveInSet(*successor))) {
359      changed = true;
360    }
361  }
362  return changed;
363}
364
365
366bool SsaLivenessAnalysis::UpdateLiveIn(const HBasicBlock& block) {
367  BitVector* live_out = GetLiveOutSet(block);
368  BitVector* kill = GetKillSet(block);
369  BitVector* live_in = GetLiveInSet(block);
370  // If live_out is updated (because of backward branches), we need to make
371  // sure instructions in live_out are also in live_in, unless they are killed
372  // by this block.
373  return live_in->UnionIfNotIn(live_out, kill);
374}
375
376static int RegisterOrLowRegister(Location location) {
377  return location.IsPair() ? location.low() : location.reg();
378}
379
380int LiveInterval::FindFirstRegisterHint(size_t* free_until,
381                                        const SsaLivenessAnalysis& liveness) const {
382  DCHECK(!IsHighInterval());
383  if (IsTemp()) return kNoRegister;
384
385  if (GetParent() == this && defined_by_ != nullptr) {
386    // This is the first interval for the instruction. Try to find
387    // a register based on its definition.
388    DCHECK_EQ(defined_by_->GetLiveInterval(), this);
389    int hint = FindHintAtDefinition();
390    if (hint != kNoRegister && free_until[hint] > GetStart()) {
391      return hint;
392    }
393  }
394
395  if (IsSplit() && liveness.IsAtBlockBoundary(GetStart() / 2)) {
396    // If the start of this interval is at a block boundary, we look at the
397    // location of the interval in blocks preceding the block this interval
398    // starts at. If one location is a register we return it as a hint. This
399    // will avoid a move between the two blocks.
400    HBasicBlock* block = liveness.GetBlockFromPosition(GetStart() / 2);
401    size_t next_register_use = FirstRegisterUse();
402    for (HBasicBlock* predecessor : block->GetPredecessors()) {
403      size_t position = predecessor->GetLifetimeEnd() - 1;
404      // We know positions above GetStart() do not have a location yet.
405      if (position < GetStart()) {
406        LiveInterval* existing = GetParent()->GetSiblingAt(position);
407        if (existing != nullptr
408            && existing->HasRegister()
409            // It's worth using that register if it is available until
410            // the next use.
411            && (free_until[existing->GetRegister()] >= next_register_use)) {
412          return existing->GetRegister();
413        }
414      }
415    }
416  }
417
418  UsePosition* use = first_use_;
419  size_t start = GetStart();
420  size_t end = GetEnd();
421  while (use != nullptr && use->GetPosition() <= end) {
422    size_t use_position = use->GetPosition();
423    if (use_position >= start && !use->IsSynthesized()) {
424      HInstruction* user = use->GetUser();
425      size_t input_index = use->GetInputIndex();
426      if (user->IsPhi()) {
427        // If the phi has a register, try to use the same.
428        Location phi_location = user->GetLiveInterval()->ToLocation();
429        if (phi_location.IsRegisterKind()) {
430          DCHECK(SameRegisterKind(phi_location));
431          int reg = RegisterOrLowRegister(phi_location);
432          if (free_until[reg] >= use_position) {
433            return reg;
434          }
435        }
436        // If the instruction dies at the phi assignment, we can try having the
437        // same register.
438        if (end == user->GetBlock()->GetPredecessors()[input_index]->GetLifetimeEnd()) {
439          for (size_t i = 0, e = user->InputCount(); i < e; ++i) {
440            if (i == input_index) {
441              continue;
442            }
443            HInstruction* input = user->InputAt(i);
444            Location location = input->GetLiveInterval()->GetLocationAt(
445                user->GetBlock()->GetPredecessors()[i]->GetLifetimeEnd() - 1);
446            if (location.IsRegisterKind()) {
447              int reg = RegisterOrLowRegister(location);
448              if (free_until[reg] >= use_position) {
449                return reg;
450              }
451            }
452          }
453        }
454      } else {
455        // If the instruction is expected in a register, try to use it.
456        LocationSummary* locations = user->GetLocations();
457        Location expected = locations->InAt(use->GetInputIndex());
458        // We use the user's lifetime position - 1 (and not `use_position`) because the
459        // register is blocked at the beginning of the user.
460        size_t position = user->GetLifetimePosition() - 1;
461        if (expected.IsRegisterKind()) {
462          DCHECK(SameRegisterKind(expected));
463          int reg = RegisterOrLowRegister(expected);
464          if (free_until[reg] >= position) {
465            return reg;
466          }
467        }
468      }
469    }
470    use = use->GetNext();
471  }
472
473  return kNoRegister;
474}
475
476int LiveInterval::FindHintAtDefinition() const {
477  if (defined_by_->IsPhi()) {
478    // Try to use the same register as one of the inputs.
479    const ArenaVector<HBasicBlock*>& predecessors = defined_by_->GetBlock()->GetPredecessors();
480    for (size_t i = 0, e = defined_by_->InputCount(); i < e; ++i) {
481      HInstruction* input = defined_by_->InputAt(i);
482      size_t end = predecessors[i]->GetLifetimeEnd();
483      LiveInterval* input_interval = input->GetLiveInterval()->GetSiblingAt(end - 1);
484      if (input_interval->GetEnd() == end) {
485        // If the input dies at the end of the predecessor, we know its register can
486        // be reused.
487        Location input_location = input_interval->ToLocation();
488        if (input_location.IsRegisterKind()) {
489          DCHECK(SameRegisterKind(input_location));
490          return RegisterOrLowRegister(input_location);
491        }
492      }
493    }
494  } else {
495    LocationSummary* locations = GetDefinedBy()->GetLocations();
496    Location out = locations->Out();
497    if (out.IsUnallocated() && out.GetPolicy() == Location::kSameAsFirstInput) {
498      // Try to use the same register as the first input.
499      LiveInterval* input_interval =
500          GetDefinedBy()->InputAt(0)->GetLiveInterval()->GetSiblingAt(GetStart() - 1);
501      if (input_interval->GetEnd() == GetStart()) {
502        // If the input dies at the start of this instruction, we know its register can
503        // be reused.
504        Location location = input_interval->ToLocation();
505        if (location.IsRegisterKind()) {
506          DCHECK(SameRegisterKind(location));
507          return RegisterOrLowRegister(location);
508        }
509      }
510    }
511  }
512  return kNoRegister;
513}
514
515bool LiveInterval::SameRegisterKind(Location other) const {
516  if (IsFloatingPoint()) {
517    if (IsLowInterval() || IsHighInterval()) {
518      return other.IsFpuRegisterPair();
519    } else {
520      return other.IsFpuRegister();
521    }
522  } else {
523    if (IsLowInterval() || IsHighInterval()) {
524      return other.IsRegisterPair();
525    } else {
526      return other.IsRegister();
527    }
528  }
529}
530
531bool LiveInterval::NeedsTwoSpillSlots() const {
532  return type_ == Primitive::kPrimLong || type_ == Primitive::kPrimDouble;
533}
534
535Location LiveInterval::ToLocation() const {
536  DCHECK(!IsHighInterval());
537  if (HasRegister()) {
538    if (IsFloatingPoint()) {
539      if (HasHighInterval()) {
540        return Location::FpuRegisterPairLocation(GetRegister(), GetHighInterval()->GetRegister());
541      } else {
542        return Location::FpuRegisterLocation(GetRegister());
543      }
544    } else {
545      if (HasHighInterval()) {
546        return Location::RegisterPairLocation(GetRegister(), GetHighInterval()->GetRegister());
547      } else {
548        return Location::RegisterLocation(GetRegister());
549      }
550    }
551  } else {
552    HInstruction* defined_by = GetParent()->GetDefinedBy();
553    if (defined_by->IsConstant()) {
554      return defined_by->GetLocations()->Out();
555    } else if (GetParent()->HasSpillSlot()) {
556      if (NeedsTwoSpillSlots()) {
557        return Location::DoubleStackSlot(GetParent()->GetSpillSlot());
558      } else {
559        return Location::StackSlot(GetParent()->GetSpillSlot());
560      }
561    } else {
562      return Location();
563    }
564  }
565}
566
567Location LiveInterval::GetLocationAt(size_t position) {
568  LiveInterval* sibling = GetSiblingAt(position);
569  DCHECK(sibling != nullptr);
570  return sibling->ToLocation();
571}
572
573LiveInterval* LiveInterval::GetSiblingAt(size_t position) {
574  LiveInterval* current = this;
575  while (current != nullptr && !current->IsDefinedAt(position)) {
576    current = current->GetNextSibling();
577  }
578  return current;
579}
580
581}  // namespace art
582