ssa_liveness_analysis.cc revision 46e2a3915aa68c77426b71e95b9f3658250646b7
1/*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "ssa_liveness_analysis.h"
18
19#include "base/bit_vector-inl.h"
20#include "code_generator.h"
21#include "nodes.h"
22
23namespace art {
24
25void SsaLivenessAnalysis::Analyze() {
26  LinearizeGraph();
27  NumberInstructions();
28  ComputeLiveness();
29}
30
31static bool IsLoop(HLoopInformation* info) {
32  return info != nullptr;
33}
34
35static bool InSameLoop(HLoopInformation* first_loop, HLoopInformation* second_loop) {
36  return first_loop == second_loop;
37}
38
39static bool IsInnerLoop(HLoopInformation* outer, HLoopInformation* inner) {
40  return (inner != outer)
41      && (inner != nullptr)
42      && (outer != nullptr)
43      && inner->IsIn(*outer);
44}
45
46static void AddToListForLinearization(GrowableArray<HBasicBlock*>* worklist, HBasicBlock* block) {
47  size_t insert_at = worklist->Size();
48  HLoopInformation* block_loop = block->GetLoopInformation();
49  for (; insert_at > 0; --insert_at) {
50    HBasicBlock* current = worklist->Get(insert_at - 1);
51    HLoopInformation* current_loop = current->GetLoopInformation();
52    if (InSameLoop(block_loop, current_loop)
53        || !IsLoop(current_loop)
54        || IsInnerLoop(current_loop, block_loop)) {
55      // The block can be processed immediately.
56      break;
57    }
58  }
59  worklist->InsertAt(insert_at, block);
60}
61
62void SsaLivenessAnalysis::LinearizeGraph() {
63  // Create a reverse post ordering with the following properties:
64  // - Blocks in a loop are consecutive,
65  // - Back-edge is the last block before loop exits.
66
67  // (1): Record the number of forward predecessors for each block. This is to
68  //      ensure the resulting order is reverse post order. We could use the
69  //      current reverse post order in the graph, but it would require making
70  //      order queries to a GrowableArray, which is not the best data structure
71  //      for it.
72  GrowableArray<uint32_t> forward_predecessors(graph_.GetArena(), graph_.GetBlocks().Size());
73  forward_predecessors.SetSize(graph_.GetBlocks().Size());
74  for (HReversePostOrderIterator it(graph_); !it.Done(); it.Advance()) {
75    HBasicBlock* block = it.Current();
76    size_t number_of_forward_predecessors = block->GetPredecessors().Size();
77    if (block->IsLoopHeader()) {
78      // We rely on having simplified the CFG.
79      DCHECK_EQ(1u, block->GetLoopInformation()->NumberOfBackEdges());
80      number_of_forward_predecessors--;
81    }
82    forward_predecessors.Put(block->GetBlockId(), number_of_forward_predecessors);
83  }
84
85  // (2): Following a worklist approach, first start with the entry block, and
86  //      iterate over the successors. When all non-back edge predecessors of a
87  //      successor block are visited, the successor block is added in the worklist
88  //      following an order that satisfies the requirements to build our linear graph.
89  GrowableArray<HBasicBlock*> worklist(graph_.GetArena(), 1);
90  worklist.Add(graph_.GetEntryBlock());
91  do {
92    HBasicBlock* current = worklist.Pop();
93    linear_order_.Add(current);
94    for (size_t i = 0, e = current->GetSuccessors().Size(); i < e; ++i) {
95      HBasicBlock* successor = current->GetSuccessors().Get(i);
96      int block_id = successor->GetBlockId();
97      size_t number_of_remaining_predecessors = forward_predecessors.Get(block_id);
98      if (number_of_remaining_predecessors == 1) {
99        AddToListForLinearization(&worklist, successor);
100      }
101      forward_predecessors.Put(block_id, number_of_remaining_predecessors - 1);
102    }
103  } while (!worklist.IsEmpty());
104}
105
106void SsaLivenessAnalysis::NumberInstructions() {
107  int ssa_index = 0;
108  size_t lifetime_position = 0;
109  // Each instruction gets a lifetime position, and a block gets a lifetime
110  // start and end position. Non-phi instructions have a distinct lifetime position than
111  // the block they are in. Phi instructions have the lifetime start of their block as
112  // lifetime position.
113  //
114  // Because the register allocator will insert moves in the graph, we need
115  // to differentiate between the start and end of an instruction. Adding 2 to
116  // the lifetime position for each instruction ensures the start of an
117  // instruction is different than the end of the previous instruction.
118  for (HLinearOrderIterator it(*this); !it.Done(); it.Advance()) {
119    HBasicBlock* block = it.Current();
120    block->SetLifetimeStart(lifetime_position);
121
122    for (HInstructionIterator inst_it(block->GetPhis()); !inst_it.Done(); inst_it.Advance()) {
123      HInstruction* current = inst_it.Current();
124      codegen_->AllocateLocations(current);
125      LocationSummary* locations = current->GetLocations();
126      if (locations != nullptr && locations->Out().IsValid()) {
127        instructions_from_ssa_index_.Add(current);
128        current->SetSsaIndex(ssa_index++);
129        current->SetLiveInterval(
130            LiveInterval::MakeInterval(graph_.GetArena(), current->GetType(), current));
131      }
132      current->SetLifetimePosition(lifetime_position);
133    }
134    lifetime_position += 2;
135
136    // Add a null marker to notify we are starting a block.
137    instructions_from_lifetime_position_.Add(nullptr);
138
139    for (HInstructionIterator inst_it(block->GetInstructions()); !inst_it.Done();
140         inst_it.Advance()) {
141      HInstruction* current = inst_it.Current();
142      codegen_->AllocateLocations(current);
143      LocationSummary* locations = current->GetLocations();
144      if (locations != nullptr && locations->Out().IsValid()) {
145        instructions_from_ssa_index_.Add(current);
146        current->SetSsaIndex(ssa_index++);
147        current->SetLiveInterval(
148            LiveInterval::MakeInterval(graph_.GetArena(), current->GetType(), current));
149      }
150      instructions_from_lifetime_position_.Add(current);
151      current->SetLifetimePosition(lifetime_position);
152      lifetime_position += 2;
153    }
154
155    block->SetLifetimeEnd(lifetime_position);
156  }
157  number_of_ssa_values_ = ssa_index;
158}
159
160void SsaLivenessAnalysis::ComputeLiveness() {
161  for (HLinearOrderIterator it(*this); !it.Done(); it.Advance()) {
162    HBasicBlock* block = it.Current();
163    block_infos_.Put(
164        block->GetBlockId(),
165        new (graph_.GetArena()) BlockInfo(graph_.GetArena(), *block, number_of_ssa_values_));
166  }
167
168  // Compute the live ranges, as well as the initial live_in, live_out, and kill sets.
169  // This method does not handle backward branches for the sets, therefore live_in
170  // and live_out sets are not yet correct.
171  ComputeLiveRanges();
172
173  // Do a fixed point calculation to take into account backward branches,
174  // that will update live_in of loop headers, and therefore live_out and live_in
175  // of blocks in the loop.
176  ComputeLiveInAndLiveOutSets();
177}
178
179void SsaLivenessAnalysis::ComputeLiveRanges() {
180  // Do a post order visit, adding inputs of instructions live in the block where
181  // that instruction is defined, and killing instructions that are being visited.
182  for (HLinearPostOrderIterator it(*this); !it.Done(); it.Advance()) {
183    HBasicBlock* block = it.Current();
184
185    BitVector* kill = GetKillSet(*block);
186    BitVector* live_in = GetLiveInSet(*block);
187
188    // Set phi inputs of successors of this block corresponding to this block
189    // as live_in.
190    for (size_t i = 0, e = block->GetSuccessors().Size(); i < e; ++i) {
191      HBasicBlock* successor = block->GetSuccessors().Get(i);
192      live_in->Union(GetLiveInSet(*successor));
193      size_t phi_input_index = successor->GetPredecessorIndexOf(block);
194      for (HInstructionIterator inst_it(successor->GetPhis()); !inst_it.Done(); inst_it.Advance()) {
195        HInstruction* phi = inst_it.Current();
196        HInstruction* input = phi->InputAt(phi_input_index);
197        input->GetLiveInterval()->AddPhiUse(phi, phi_input_index, block);
198        // A phi input whose last user is the phi dies at the end of the predecessor block,
199        // and not at the phi's lifetime position.
200        live_in->SetBit(input->GetSsaIndex());
201      }
202    }
203
204    // Add a range that covers this block to all instructions live_in because of successors.
205    // Instructions defined in this block will have their start of the range adjusted.
206    for (uint32_t idx : live_in->Indexes()) {
207      HInstruction* current = instructions_from_ssa_index_.Get(idx);
208      current->GetLiveInterval()->AddRange(block->GetLifetimeStart(), block->GetLifetimeEnd());
209    }
210
211    for (HBackwardInstructionIterator back_it(block->GetInstructions()); !back_it.Done();
212         back_it.Advance()) {
213      HInstruction* current = back_it.Current();
214      if (current->HasSsaIndex()) {
215        // Kill the instruction and shorten its interval.
216        kill->SetBit(current->GetSsaIndex());
217        live_in->ClearBit(current->GetSsaIndex());
218        current->GetLiveInterval()->SetFrom(current->GetLifetimePosition());
219      }
220
221      // All inputs of an instruction must be live.
222      for (size_t i = 0, e = current->InputCount(); i < e; ++i) {
223        HInstruction* input = current->InputAt(i);
224        // Some instructions 'inline' their inputs, that is they do not need
225        // to be materialized.
226        if (input->HasSsaIndex()) {
227          live_in->SetBit(input->GetSsaIndex());
228          input->GetLiveInterval()->AddUse(current, i, false);
229        }
230      }
231
232      if (current->HasEnvironment()) {
233        // Handle environment uses. See statements (b) and (c) of the
234        // SsaLivenessAnalysis.
235        HEnvironment* environment = current->GetEnvironment();
236        for (size_t i = 0, e = environment->Size(); i < e; ++i) {
237          HInstruction* instruction = environment->GetInstructionAt(i);
238          if (ShouldBeLiveForEnvironment(instruction)) {
239            DCHECK(instruction->HasSsaIndex());
240            live_in->SetBit(instruction->GetSsaIndex());
241            instruction->GetLiveInterval()->AddUse(current, i, true);
242          }
243        }
244      }
245    }
246
247    // Kill phis defined in this block.
248    for (HInstructionIterator inst_it(block->GetPhis()); !inst_it.Done(); inst_it.Advance()) {
249      HInstruction* current = inst_it.Current();
250      if (current->HasSsaIndex()) {
251        kill->SetBit(current->GetSsaIndex());
252        live_in->ClearBit(current->GetSsaIndex());
253        LiveInterval* interval = current->GetLiveInterval();
254        DCHECK((interval->GetFirstRange() == nullptr)
255               || (interval->GetStart() == current->GetLifetimePosition()));
256        interval->SetFrom(current->GetLifetimePosition());
257      }
258    }
259
260    if (block->IsLoopHeader()) {
261      HBasicBlock* back_edge = block->GetLoopInformation()->GetBackEdges().Get(0);
262      // For all live_in instructions at the loop header, we need to create a range
263      // that covers the full loop.
264      for (uint32_t idx : live_in->Indexes()) {
265        HInstruction* current = instructions_from_ssa_index_.Get(idx);
266        current->GetLiveInterval()->AddLoopRange(block->GetLifetimeStart(),
267                                                 back_edge->GetLifetimeEnd());
268      }
269    }
270  }
271}
272
273void SsaLivenessAnalysis::ComputeLiveInAndLiveOutSets() {
274  bool changed;
275  do {
276    changed = false;
277
278    for (HPostOrderIterator it(graph_); !it.Done(); it.Advance()) {
279      const HBasicBlock& block = *it.Current();
280
281      // The live_in set depends on the kill set (which does not
282      // change in this loop), and the live_out set.  If the live_out
283      // set does not change, there is no need to update the live_in set.
284      if (UpdateLiveOut(block) && UpdateLiveIn(block)) {
285        changed = true;
286      }
287    }
288  } while (changed);
289}
290
291bool SsaLivenessAnalysis::UpdateLiveOut(const HBasicBlock& block) {
292  BitVector* live_out = GetLiveOutSet(block);
293  bool changed = false;
294  // The live_out set of a block is the union of live_in sets of its successors.
295  for (size_t i = 0, e = block.GetSuccessors().Size(); i < e; ++i) {
296    HBasicBlock* successor = block.GetSuccessors().Get(i);
297    if (live_out->Union(GetLiveInSet(*successor))) {
298      changed = true;
299    }
300  }
301  return changed;
302}
303
304
305bool SsaLivenessAnalysis::UpdateLiveIn(const HBasicBlock& block) {
306  BitVector* live_out = GetLiveOutSet(block);
307  BitVector* kill = GetKillSet(block);
308  BitVector* live_in = GetLiveInSet(block);
309  // If live_out is updated (because of backward branches), we need to make
310  // sure instructions in live_out are also in live_in, unless they are killed
311  // by this block.
312  return live_in->UnionIfNotIn(live_out, kill);
313}
314
315static int RegisterOrLowRegister(Location location) {
316  return location.IsPair() ? location.low() : location.reg();
317}
318
319int LiveInterval::FindFirstRegisterHint(size_t* free_until) const {
320  DCHECK(!IsHighInterval());
321  if (GetParent() == this && defined_by_ != nullptr) {
322    // This is the first interval for the instruction. Try to find
323    // a register based on its definition.
324    DCHECK_EQ(defined_by_->GetLiveInterval(), this);
325    int hint = FindHintAtDefinition();
326    if (hint != kNoRegister && free_until[hint] > GetStart()) {
327      return hint;
328    }
329  }
330
331  UsePosition* use = first_use_;
332  size_t start = GetStart();
333  size_t end = GetEnd();
334  while (use != nullptr && use->GetPosition() <= end) {
335    size_t use_position = use->GetPosition();
336    if (use_position >= start && !use->GetIsEnvironment()) {
337      HInstruction* user = use->GetUser();
338      size_t input_index = use->GetInputIndex();
339      if (user->IsPhi()) {
340        // If the phi has a register, try to use the same.
341        Location phi_location = user->GetLiveInterval()->ToLocation();
342        if (phi_location.IsRegisterKind()) {
343          DCHECK(SameRegisterKind(phi_location));
344          int reg = RegisterOrLowRegister(phi_location);
345          if (free_until[reg] >= use_position) {
346            return reg;
347          }
348        }
349        const GrowableArray<HBasicBlock*>& predecessors = user->GetBlock()->GetPredecessors();
350        // If the instruction dies at the phi assignment, we can try having the
351        // same register.
352        if (end == predecessors.Get(input_index)->GetLifetimeEnd()) {
353          for (size_t i = 0, e = user->InputCount(); i < e; ++i) {
354            if (i == input_index) {
355              continue;
356            }
357            HInstruction* input = user->InputAt(i);
358            Location location = input->GetLiveInterval()->GetLocationAt(
359                predecessors.Get(i)->GetLifetimeEnd() - 1);
360            if (location.IsRegisterKind()) {
361              int reg = RegisterOrLowRegister(location);
362              if (free_until[reg] >= use_position) {
363                return reg;
364              }
365            }
366          }
367        }
368      } else {
369        // If the instruction is expected in a register, try to use it.
370        LocationSummary* locations = user->GetLocations();
371        Location expected = locations->InAt(use->GetInputIndex());
372        // We use the user's lifetime position - 1 (and not `use_position`) because the
373        // register is blocked at the beginning of the user.
374        size_t position = user->GetLifetimePosition() - 1;
375        if (expected.IsRegisterKind()) {
376          DCHECK(SameRegisterKind(expected));
377          int reg = RegisterOrLowRegister(expected);
378          if (free_until[reg] >= position) {
379            return reg;
380          }
381        }
382      }
383    }
384    use = use->GetNext();
385  }
386
387  return kNoRegister;
388}
389
390int LiveInterval::FindHintAtDefinition() const {
391  if (defined_by_->IsPhi()) {
392    // Try to use the same register as one of the inputs.
393    const GrowableArray<HBasicBlock*>& predecessors = defined_by_->GetBlock()->GetPredecessors();
394    for (size_t i = 0, e = defined_by_->InputCount(); i < e; ++i) {
395      HInstruction* input = defined_by_->InputAt(i);
396      size_t end = predecessors.Get(i)->GetLifetimeEnd();
397      const LiveInterval& input_interval = input->GetLiveInterval()->GetIntervalAt(end - 1);
398      if (input_interval.GetEnd() == end) {
399        // If the input dies at the end of the predecessor, we know its register can
400        // be reused.
401        Location input_location = input_interval.ToLocation();
402        if (input_location.IsRegisterKind()) {
403          DCHECK(SameRegisterKind(input_location));
404          return RegisterOrLowRegister(input_location);
405        }
406      }
407    }
408  } else {
409    LocationSummary* locations = GetDefinedBy()->GetLocations();
410    Location out = locations->Out();
411    if (out.IsUnallocated() && out.GetPolicy() == Location::kSameAsFirstInput) {
412      // Try to use the same register as the first input.
413      const LiveInterval& input_interval =
414          GetDefinedBy()->InputAt(0)->GetLiveInterval()->GetIntervalAt(GetStart() - 1);
415      if (input_interval.GetEnd() == GetStart()) {
416        // If the input dies at the start of this instruction, we know its register can
417        // be reused.
418        Location location = input_interval.ToLocation();
419        if (location.IsRegisterKind()) {
420          DCHECK(SameRegisterKind(location));
421          return RegisterOrLowRegister(location);
422        }
423      }
424    }
425  }
426  return kNoRegister;
427}
428
429bool LiveInterval::SameRegisterKind(Location other) const {
430  if (IsFloatingPoint()) {
431    if (IsLowInterval() || IsHighInterval()) {
432      return other.IsFpuRegisterPair();
433    } else {
434      return other.IsFpuRegister();
435    }
436  } else {
437    if (IsLowInterval() || IsHighInterval()) {
438      return other.IsRegisterPair();
439    } else {
440      return other.IsRegister();
441    }
442  }
443}
444
445bool LiveInterval::NeedsTwoSpillSlots() const {
446  return type_ == Primitive::kPrimLong || type_ == Primitive::kPrimDouble;
447}
448
449Location LiveInterval::ToLocation() const {
450  DCHECK(!IsHighInterval());
451  if (HasRegister()) {
452    if (IsFloatingPoint()) {
453      if (HasHighInterval()) {
454        return Location::FpuRegisterPairLocation(GetRegister(), GetHighInterval()->GetRegister());
455      } else {
456        return Location::FpuRegisterLocation(GetRegister());
457      }
458    } else {
459      if (HasHighInterval()) {
460        return Location::RegisterPairLocation(GetRegister(), GetHighInterval()->GetRegister());
461      } else {
462        return Location::RegisterLocation(GetRegister());
463      }
464    }
465  } else {
466    HInstruction* defined_by = GetParent()->GetDefinedBy();
467    if (defined_by->IsConstant()) {
468      return defined_by->GetLocations()->Out();
469    } else if (GetParent()->HasSpillSlot()) {
470      if (NeedsTwoSpillSlots()) {
471        return Location::DoubleStackSlot(GetParent()->GetSpillSlot());
472      } else {
473        return Location::StackSlot(GetParent()->GetSpillSlot());
474      }
475    } else {
476      return Location();
477    }
478  }
479}
480
481Location LiveInterval::GetLocationAt(size_t position) {
482  return GetIntervalAt(position).ToLocation();
483}
484
485const LiveInterval& LiveInterval::GetIntervalAt(size_t position) {
486  LiveInterval* current = this;
487  while (!current->Covers(position)) {
488    current = current->GetNextSibling();
489    DCHECK(current != nullptr);
490  }
491  return *current;
492}
493
494}  // namespace art
495