ssa_liveness_analysis.cc revision 56b9ee6fe1d6880c5fca0e7feb28b25a1ded2e2f
1/*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "ssa_liveness_analysis.h"
18
19#include "base/bit_vector-inl.h"
20#include "code_generator.h"
21#include "nodes.h"
22
23namespace art {
24
25void SsaLivenessAnalysis::Analyze() {
26  LinearizeGraph();
27  NumberInstructions();
28  ComputeLiveness();
29}
30
31static bool IsLoopExit(HLoopInformation* current, HLoopInformation* to) {
32  // `to` is either not part of a loop, or `current` is an inner loop of `to`.
33  return to == nullptr || (current != to && current->IsIn(*to));
34}
35
36static bool IsLoop(HLoopInformation* info) {
37  return info != nullptr;
38}
39
40static bool InSameLoop(HLoopInformation* first_loop, HLoopInformation* second_loop) {
41  return first_loop == second_loop;
42}
43
44static bool IsInnerLoop(HLoopInformation* outer, HLoopInformation* inner) {
45  return (inner != outer)
46      && (inner != nullptr)
47      && (outer != nullptr)
48      && inner->IsIn(*outer);
49}
50
51static void VisitBlockForLinearization(HBasicBlock* block,
52                                       GrowableArray<HBasicBlock*>* order,
53                                       ArenaBitVector* visited) {
54  if (visited->IsBitSet(block->GetBlockId())) {
55    return;
56  }
57  visited->SetBit(block->GetBlockId());
58  size_t number_of_successors = block->GetSuccessors().Size();
59  if (number_of_successors == 0) {
60    // Nothing to do.
61  } else if (number_of_successors == 1) {
62    VisitBlockForLinearization(block->GetSuccessors().Get(0), order, visited);
63  } else {
64    DCHECK_EQ(number_of_successors, 2u);
65    HBasicBlock* first_successor = block->GetSuccessors().Get(0);
66    HBasicBlock* second_successor = block->GetSuccessors().Get(1);
67    HLoopInformation* my_loop = block->GetLoopInformation();
68    HLoopInformation* first_loop = first_successor->GetLoopInformation();
69    HLoopInformation* second_loop = second_successor->GetLoopInformation();
70
71    if (!IsLoop(my_loop)) {
72      // Nothing to do. Current order is fine.
73    } else if (IsLoopExit(my_loop, second_loop) && InSameLoop(my_loop, first_loop)) {
74      // Visit the loop exit first in post order.
75      std::swap(first_successor, second_successor);
76    } else if (IsInnerLoop(my_loop, first_loop) && !IsInnerLoop(my_loop, second_loop)) {
77      // Visit the inner loop last in post order.
78      std::swap(first_successor, second_successor);
79    }
80    VisitBlockForLinearization(first_successor, order, visited);
81    VisitBlockForLinearization(second_successor, order, visited);
82  }
83  order->Add(block);
84}
85
86void SsaLivenessAnalysis::LinearizeGraph() {
87  // For simplicity of the implementation, we create post linear order. The order for
88  // computing live ranges is the reverse of that order.
89  ArenaBitVector visited(graph_.GetArena(), graph_.GetBlocks().Size(), false);
90  VisitBlockForLinearization(graph_.GetEntryBlock(), &linear_post_order_, &visited);
91}
92
93void SsaLivenessAnalysis::NumberInstructions() {
94  int ssa_index = 0;
95  size_t lifetime_position = 0;
96  // Each instruction gets a lifetime position, and a block gets a lifetime
97  // start and end position. Non-phi instructions have a distinct lifetime position than
98  // the block they are in. Phi instructions have the lifetime start of their block as
99  // lifetime position.
100  //
101  // Because the register allocator will insert moves in the graph, we need
102  // to differentiate between the start and end of an instruction. Adding 2 to
103  // the lifetime position for each instruction ensures the start of an
104  // instruction is different than the end of the previous instruction.
105  HGraphVisitor* location_builder = codegen_->GetLocationBuilder();
106  for (HLinearOrderIterator it(*this); !it.Done(); it.Advance()) {
107    HBasicBlock* block = it.Current();
108    block->SetLifetimeStart(lifetime_position);
109
110    for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) {
111      HInstruction* current = it.Current();
112      current->Accept(location_builder);
113      LocationSummary* locations = current->GetLocations();
114      if (locations != nullptr && locations->Out().IsValid()) {
115        instructions_from_ssa_index_.Add(current);
116        current->SetSsaIndex(ssa_index++);
117        current->SetLiveInterval(
118            new (graph_.GetArena()) LiveInterval(graph_.GetArena(), current->GetType(), current));
119      }
120      current->SetLifetimePosition(lifetime_position);
121    }
122    lifetime_position += 2;
123
124    // Add a null marker to notify we are starting a block.
125    instructions_from_lifetime_position_.Add(nullptr);
126
127    for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) {
128      HInstruction* current = it.Current();
129      current->Accept(codegen_->GetLocationBuilder());
130      LocationSummary* locations = current->GetLocations();
131      if (locations != nullptr && locations->Out().IsValid()) {
132        instructions_from_ssa_index_.Add(current);
133        current->SetSsaIndex(ssa_index++);
134        current->SetLiveInterval(
135            new (graph_.GetArena()) LiveInterval(graph_.GetArena(), current->GetType(), current));
136      }
137      instructions_from_lifetime_position_.Add(current);
138      current->SetLifetimePosition(lifetime_position);
139      lifetime_position += 2;
140    }
141
142    block->SetLifetimeEnd(lifetime_position);
143  }
144  number_of_ssa_values_ = ssa_index;
145}
146
147void SsaLivenessAnalysis::ComputeLiveness() {
148  for (HLinearOrderIterator it(*this); !it.Done(); it.Advance()) {
149    HBasicBlock* block = it.Current();
150    block_infos_.Put(
151        block->GetBlockId(),
152        new (graph_.GetArena()) BlockInfo(graph_.GetArena(), *block, number_of_ssa_values_));
153  }
154
155  // Compute the live ranges, as well as the initial live_in, live_out, and kill sets.
156  // This method does not handle backward branches for the sets, therefore live_in
157  // and live_out sets are not yet correct.
158  ComputeLiveRanges();
159
160  // Do a fixed point calculation to take into account backward branches,
161  // that will update live_in of loop headers, and therefore live_out and live_in
162  // of blocks in the loop.
163  ComputeLiveInAndLiveOutSets();
164}
165
166void SsaLivenessAnalysis::ComputeLiveRanges() {
167  // Do a post order visit, adding inputs of instructions live in the block where
168  // that instruction is defined, and killing instructions that are being visited.
169  for (HLinearPostOrderIterator it(*this); !it.Done(); it.Advance()) {
170    HBasicBlock* block = it.Current();
171
172    BitVector* kill = GetKillSet(*block);
173    BitVector* live_in = GetLiveInSet(*block);
174
175    // Set phi inputs of successors of this block corresponding to this block
176    // as live_in.
177    for (size_t i = 0, e = block->GetSuccessors().Size(); i < e; ++i) {
178      HBasicBlock* successor = block->GetSuccessors().Get(i);
179      live_in->Union(GetLiveInSet(*successor));
180      size_t phi_input_index = successor->GetPredecessorIndexOf(block);
181      for (HInstructionIterator it(successor->GetPhis()); !it.Done(); it.Advance()) {
182        HInstruction* phi = it.Current();
183        HInstruction* input = phi->InputAt(phi_input_index);
184        input->GetLiveInterval()->AddPhiUse(phi, phi_input_index, block);
185        // A phi input whose last user is the phi dies at the end of the predecessor block,
186        // and not at the phi's lifetime position.
187        live_in->SetBit(input->GetSsaIndex());
188      }
189    }
190
191    // Add a range that covers this block to all instructions live_in because of successors.
192    // Instructions defined in this block will have their start of the range adjusted.
193    for (uint32_t idx : live_in->Indexes()) {
194      HInstruction* current = instructions_from_ssa_index_.Get(idx);
195      current->GetLiveInterval()->AddRange(block->GetLifetimeStart(), block->GetLifetimeEnd());
196    }
197
198    for (HBackwardInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) {
199      HInstruction* current = it.Current();
200      if (current->HasSsaIndex()) {
201        // Kill the instruction and shorten its interval.
202        kill->SetBit(current->GetSsaIndex());
203        live_in->ClearBit(current->GetSsaIndex());
204        current->GetLiveInterval()->SetFrom(current->GetLifetimePosition());
205      }
206
207      // All inputs of an instruction must be live.
208      for (size_t i = 0, e = current->InputCount(); i < e; ++i) {
209        HInstruction* input = current->InputAt(i);
210        // Some instructions 'inline' their inputs, that is they do not need
211        // to be materialized.
212        if (input->HasSsaIndex()) {
213          live_in->SetBit(input->GetSsaIndex());
214          input->GetLiveInterval()->AddUse(current, i, false);
215        }
216      }
217
218      if (current->HasEnvironment()) {
219        // All instructions in the environment must be live.
220        GrowableArray<HInstruction*>* environment = current->GetEnvironment()->GetVRegs();
221        for (size_t i = 0, e = environment->Size(); i < e; ++i) {
222          HInstruction* instruction = environment->Get(i);
223          if (instruction != nullptr) {
224            DCHECK(instruction->HasSsaIndex());
225            live_in->SetBit(instruction->GetSsaIndex());
226            instruction->GetLiveInterval()->AddUse(current, i, true);
227          }
228        }
229      }
230    }
231
232    // Kill phis defined in this block.
233    for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) {
234      HInstruction* current = it.Current();
235      if (current->HasSsaIndex()) {
236        kill->SetBit(current->GetSsaIndex());
237        live_in->ClearBit(current->GetSsaIndex());
238        LiveInterval* interval = current->GetLiveInterval();
239        DCHECK((interval->GetFirstRange() == nullptr)
240               || (interval->GetStart() == current->GetLifetimePosition()));
241        interval->SetFrom(current->GetLifetimePosition());
242      }
243    }
244
245    if (block->IsLoopHeader()) {
246      HBasicBlock* back_edge = block->GetLoopInformation()->GetBackEdges().Get(0);
247      // For all live_in instructions at the loop header, we need to create a range
248      // that covers the full loop.
249      for (uint32_t idx : live_in->Indexes()) {
250        HInstruction* current = instructions_from_ssa_index_.Get(idx);
251        current->GetLiveInterval()->AddLoopRange(block->GetLifetimeStart(),
252                                                 back_edge->GetLifetimeEnd());
253      }
254    }
255  }
256}
257
258void SsaLivenessAnalysis::ComputeLiveInAndLiveOutSets() {
259  bool changed;
260  do {
261    changed = false;
262
263    for (HPostOrderIterator it(graph_); !it.Done(); it.Advance()) {
264      const HBasicBlock& block = *it.Current();
265
266      // The live_in set depends on the kill set (which does not
267      // change in this loop), and the live_out set.  If the live_out
268      // set does not change, there is no need to update the live_in set.
269      if (UpdateLiveOut(block) && UpdateLiveIn(block)) {
270        changed = true;
271      }
272    }
273  } while (changed);
274}
275
276bool SsaLivenessAnalysis::UpdateLiveOut(const HBasicBlock& block) {
277  BitVector* live_out = GetLiveOutSet(block);
278  bool changed = false;
279  // The live_out set of a block is the union of live_in sets of its successors.
280  for (size_t i = 0, e = block.GetSuccessors().Size(); i < e; ++i) {
281    HBasicBlock* successor = block.GetSuccessors().Get(i);
282    if (live_out->Union(GetLiveInSet(*successor))) {
283      changed = true;
284    }
285  }
286  return changed;
287}
288
289
290bool SsaLivenessAnalysis::UpdateLiveIn(const HBasicBlock& block) {
291  BitVector* live_out = GetLiveOutSet(block);
292  BitVector* kill = GetKillSet(block);
293  BitVector* live_in = GetLiveInSet(block);
294  // If live_out is updated (because of backward branches), we need to make
295  // sure instructions in live_out are also in live_in, unless they are killed
296  // by this block.
297  return live_in->UnionIfNotIn(live_out, kill);
298}
299
300int LiveInterval::FindFirstRegisterHint(size_t* free_until) const {
301  if (GetParent() == this && defined_by_ != nullptr) {
302    // This is the first interval for the instruction. Try to find
303    // a register based on its definition.
304    DCHECK_EQ(defined_by_->GetLiveInterval(), this);
305    int hint = FindHintAtDefinition();
306    if (hint != kNoRegister && free_until[hint] > GetStart()) {
307      return hint;
308    }
309  }
310
311  UsePosition* use = first_use_;
312  size_t start = GetStart();
313  size_t end = GetEnd();
314  while (use != nullptr && use->GetPosition() <= end) {
315    size_t use_position = use->GetPosition();
316    if (use_position >= start && !use->GetIsEnvironment()) {
317      HInstruction* user = use->GetUser();
318      size_t input_index = use->GetInputIndex();
319      if (user->IsPhi()) {
320        // If the phi has a register, try to use the same.
321        Location phi_location = user->GetLiveInterval()->ToLocation();
322        if (phi_location.IsRegister() && free_until[phi_location.reg()] >= use_position) {
323          return phi_location.reg();
324        }
325        const GrowableArray<HBasicBlock*>& predecessors = user->GetBlock()->GetPredecessors();
326        // If the instruction dies at the phi assignment, we can try having the
327        // same register.
328        if (end == predecessors.Get(input_index)->GetLifetimeEnd()) {
329          for (size_t i = 0, e = user->InputCount(); i < e; ++i) {
330            if (i == input_index) {
331              continue;
332            }
333            HInstruction* input = user->InputAt(i);
334            Location location = input->GetLiveInterval()->GetLocationAt(
335                predecessors.Get(i)->GetLifetimeEnd() - 1);
336            if (location.IsRegister() && free_until[location.reg()] >= use_position) {
337              return location.reg();
338            }
339          }
340        }
341      } else {
342        // If the instruction is expected in a register, try to use it.
343        LocationSummary* locations = user->GetLocations();
344        Location expected = locations->InAt(use->GetInputIndex());
345        // We use the user's lifetime position - 1 (and not `use_position`) because the
346        // register is blocked at the beginning of the user.
347        size_t position = user->GetLifetimePosition() - 1;
348        if (expected.IsRegister() && free_until[expected.reg()] >= position) {
349          return expected.reg();
350        }
351      }
352    }
353    use = use->GetNext();
354  }
355
356  return kNoRegister;
357}
358
359int LiveInterval::FindHintAtDefinition() const {
360  if (defined_by_->IsPhi()) {
361    // Try to use the same register as one of the inputs.
362    const GrowableArray<HBasicBlock*>& predecessors = defined_by_->GetBlock()->GetPredecessors();
363    for (size_t i = 0, e = defined_by_->InputCount(); i < e; ++i) {
364      HInstruction* input = defined_by_->InputAt(i);
365      size_t end = predecessors.Get(i)->GetLifetimeEnd();
366      const LiveInterval& input_interval = input->GetLiveInterval()->GetIntervalAt(end - 1);
367      if (input_interval.GetEnd() == end) {
368        // If the input dies at the end of the predecessor, we know its register can
369        // be reused.
370        Location input_location = input_interval.ToLocation();
371        if (input_location.IsRegister()) {
372          return input_location.reg();
373        }
374      }
375    }
376  } else {
377    LocationSummary* locations = GetDefinedBy()->GetLocations();
378    Location out = locations->Out();
379    if (out.IsUnallocated() && out.GetPolicy() == Location::kSameAsFirstInput) {
380      // Try to use the same register as the first input.
381      const LiveInterval& input_interval =
382          GetDefinedBy()->InputAt(0)->GetLiveInterval()->GetIntervalAt(GetStart() - 1);
383      if (input_interval.GetEnd() == GetStart()) {
384        // If the input dies at the start of this instruction, we know its register can
385        // be reused.
386        Location location = input_interval.ToLocation();
387        if (location.IsRegister()) {
388          return location.reg();
389        }
390      }
391    }
392  }
393  return kNoRegister;
394}
395
396bool LiveInterval::NeedsTwoSpillSlots() const {
397  return type_ == Primitive::kPrimLong || type_ == Primitive::kPrimDouble;
398}
399
400Location LiveInterval::ToLocation() const {
401  if (HasRegister()) {
402    return Location::RegisterLocation(GetRegister());
403  } else {
404    HInstruction* defined_by = GetParent()->GetDefinedBy();
405    if (defined_by->IsConstant()) {
406      return defined_by->GetLocations()->Out();
407    } else if (GetParent()->HasSpillSlot()) {
408      if (NeedsTwoSpillSlots()) {
409        return Location::DoubleStackSlot(GetParent()->GetSpillSlot());
410      } else {
411        return Location::StackSlot(GetParent()->GetSpillSlot());
412      }
413    } else {
414      return Location();
415    }
416  }
417}
418
419Location LiveInterval::GetLocationAt(size_t position) const {
420  return GetIntervalAt(position).ToLocation();
421}
422
423const LiveInterval& LiveInterval::GetIntervalAt(size_t position) const {
424  const LiveInterval* current = this;
425  while (!current->Covers(position)) {
426    current = current->GetNextSibling();
427    DCHECK(current != nullptr);
428  }
429  return *current;
430}
431
432}  // namespace art
433