ssa_liveness_analysis.cc revision 674f519fe00ae07e0db90c4374f785bb418ae332
1/*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "ssa_liveness_analysis.h"
18
19#include "base/bit_vector-inl.h"
20#include "code_generator.h"
21#include "nodes.h"
22
23namespace art {
24
25void SsaLivenessAnalysis::Analyze() {
26  LinearizeGraph();
27  NumberInstructions();
28  ComputeLiveness();
29}
30
31static bool IsLoop(HLoopInformation* info) {
32  return info != nullptr;
33}
34
35static bool InSameLoop(HLoopInformation* first_loop, HLoopInformation* second_loop) {
36  return first_loop == second_loop;
37}
38
39static bool IsInnerLoop(HLoopInformation* outer, HLoopInformation* inner) {
40  return (inner != outer)
41      && (inner != nullptr)
42      && (outer != nullptr)
43      && inner->IsIn(*outer);
44}
45
46static void AddToListForLinearization(ArenaVector<HBasicBlock*>* worklist, HBasicBlock* block) {
47  HLoopInformation* block_loop = block->GetLoopInformation();
48  auto insert_pos = worklist->rbegin();  // insert_pos.base() will be the actual position.
49  for (auto end = worklist->rend(); insert_pos != end; ++insert_pos) {
50    HBasicBlock* current = *insert_pos;
51    HLoopInformation* current_loop = current->GetLoopInformation();
52    if (InSameLoop(block_loop, current_loop)
53        || !IsLoop(current_loop)
54        || IsInnerLoop(current_loop, block_loop)) {
55      // The block can be processed immediately.
56      break;
57    }
58  }
59  worklist->insert(insert_pos.base(), block);
60}
61
62void SsaLivenessAnalysis::LinearizeGraph() {
63  // Create a reverse post ordering with the following properties:
64  // - Blocks in a loop are consecutive,
65  // - Back-edge is the last block before loop exits.
66
67  // (1): Record the number of forward predecessors for each block. This is to
68  //      ensure the resulting order is reverse post order. We could use the
69  //      current reverse post order in the graph, but it would require making
70  //      order queries to a GrowableArray, which is not the best data structure
71  //      for it.
72  ArenaVector<uint32_t> forward_predecessors(graph_->GetBlocks().size(),
73                                             graph_->GetArena()->Adapter(kArenaAllocSsaLiveness));
74  for (HReversePostOrderIterator it(*graph_); !it.Done(); it.Advance()) {
75    HBasicBlock* block = it.Current();
76    size_t number_of_forward_predecessors = block->GetPredecessors().size();
77    if (block->IsLoopHeader()) {
78      number_of_forward_predecessors -= block->GetLoopInformation()->NumberOfBackEdges();
79    }
80    forward_predecessors[block->GetBlockId()] = number_of_forward_predecessors;
81  }
82
83  // (2): Following a worklist approach, first start with the entry block, and
84  //      iterate over the successors. When all non-back edge predecessors of a
85  //      successor block are visited, the successor block is added in the worklist
86  //      following an order that satisfies the requirements to build our linear graph.
87  graph_->linear_order_.reserve(graph_->GetReversePostOrder().size());
88  ArenaVector<HBasicBlock*> worklist(graph_->GetArena()->Adapter(kArenaAllocSsaLiveness));
89  worklist.push_back(graph_->GetEntryBlock());
90  do {
91    HBasicBlock* current = worklist.back();
92    worklist.pop_back();
93    graph_->linear_order_.push_back(current);
94    for (HBasicBlock* successor : current->GetSuccessors()) {
95      int block_id = successor->GetBlockId();
96      size_t number_of_remaining_predecessors = forward_predecessors[block_id];
97      if (number_of_remaining_predecessors == 1) {
98        AddToListForLinearization(&worklist, successor);
99      }
100      forward_predecessors[block_id] = number_of_remaining_predecessors - 1;
101    }
102  } while (!worklist.empty());
103}
104
105void SsaLivenessAnalysis::NumberInstructions() {
106  int ssa_index = 0;
107  size_t lifetime_position = 0;
108  // Each instruction gets a lifetime position, and a block gets a lifetime
109  // start and end position. Non-phi instructions have a distinct lifetime position than
110  // the block they are in. Phi instructions have the lifetime start of their block as
111  // lifetime position.
112  //
113  // Because the register allocator will insert moves in the graph, we need
114  // to differentiate between the start and end of an instruction. Adding 2 to
115  // the lifetime position for each instruction ensures the start of an
116  // instruction is different than the end of the previous instruction.
117  for (HLinearOrderIterator it(*graph_); !it.Done(); it.Advance()) {
118    HBasicBlock* block = it.Current();
119    block->SetLifetimeStart(lifetime_position);
120
121    for (HInstructionIterator inst_it(block->GetPhis()); !inst_it.Done(); inst_it.Advance()) {
122      HInstruction* current = inst_it.Current();
123      codegen_->AllocateLocations(current);
124      LocationSummary* locations = current->GetLocations();
125      if (locations != nullptr && locations->Out().IsValid()) {
126        instructions_from_ssa_index_.push_back(current);
127        current->SetSsaIndex(ssa_index++);
128        current->SetLiveInterval(
129            LiveInterval::MakeInterval(graph_->GetArena(), current->GetType(), current));
130      }
131      current->SetLifetimePosition(lifetime_position);
132    }
133    lifetime_position += 2;
134
135    // Add a null marker to notify we are starting a block.
136    instructions_from_lifetime_position_.push_back(nullptr);
137
138    for (HInstructionIterator inst_it(block->GetInstructions()); !inst_it.Done();
139         inst_it.Advance()) {
140      HInstruction* current = inst_it.Current();
141      codegen_->AllocateLocations(current);
142      LocationSummary* locations = current->GetLocations();
143      if (locations != nullptr && locations->Out().IsValid()) {
144        instructions_from_ssa_index_.push_back(current);
145        current->SetSsaIndex(ssa_index++);
146        current->SetLiveInterval(
147            LiveInterval::MakeInterval(graph_->GetArena(), current->GetType(), current));
148      }
149      instructions_from_lifetime_position_.push_back(current);
150      current->SetLifetimePosition(lifetime_position);
151      lifetime_position += 2;
152    }
153
154    block->SetLifetimeEnd(lifetime_position);
155  }
156  number_of_ssa_values_ = ssa_index;
157}
158
159void SsaLivenessAnalysis::ComputeLiveness() {
160  for (HLinearOrderIterator it(*graph_); !it.Done(); it.Advance()) {
161    HBasicBlock* block = it.Current();
162    block_infos_[block->GetBlockId()] =
163        new (graph_->GetArena()) BlockInfo(graph_->GetArena(), *block, number_of_ssa_values_);
164  }
165
166  // Compute the live ranges, as well as the initial live_in, live_out, and kill sets.
167  // This method does not handle backward branches for the sets, therefore live_in
168  // and live_out sets are not yet correct.
169  ComputeLiveRanges();
170
171  // Do a fixed point calculation to take into account backward branches,
172  // that will update live_in of loop headers, and therefore live_out and live_in
173  // of blocks in the loop.
174  ComputeLiveInAndLiveOutSets();
175}
176
177static void RecursivelyProcessInputs(HInstruction* current,
178                                     HInstruction* actual_user,
179                                     BitVector* live_in) {
180  for (size_t i = 0, e = current->InputCount(); i < e; ++i) {
181    HInstruction* input = current->InputAt(i);
182    bool has_in_location = current->GetLocations()->InAt(i).IsValid();
183    bool has_out_location = input->GetLocations()->Out().IsValid();
184
185    if (has_in_location) {
186      DCHECK(has_out_location)
187          << "Instruction " << current->DebugName() << current->GetId()
188          << " expects an input value at index " << i << " but "
189          << input->DebugName() << input->GetId() << " does not produce one.";
190      DCHECK(input->HasSsaIndex());
191      // `input` generates a result used by `current`. Add use and update
192      // the live-in set.
193      input->GetLiveInterval()->AddUse(current, /* environment */ nullptr, i, actual_user);
194      live_in->SetBit(input->GetSsaIndex());
195    } else if (has_out_location) {
196      // `input` generates a result but it is not used by `current`.
197    } else {
198      // `input` is inlined into `current`. Walk over its inputs and record
199      // uses at `current`.
200      DCHECK(input->IsEmittedAtUseSite());
201      // Check that the inlined input is not a phi. Recursing on loop phis could
202      // lead to an infinite loop.
203      DCHECK(!input->IsPhi());
204      RecursivelyProcessInputs(input, actual_user, live_in);
205    }
206  }
207}
208
209void SsaLivenessAnalysis::ComputeLiveRanges() {
210  // Do a post order visit, adding inputs of instructions live in the block where
211  // that instruction is defined, and killing instructions that are being visited.
212  for (HLinearPostOrderIterator it(*graph_); !it.Done(); it.Advance()) {
213    HBasicBlock* block = it.Current();
214
215    BitVector* kill = GetKillSet(*block);
216    BitVector* live_in = GetLiveInSet(*block);
217
218    // Set phi inputs of successors of this block corresponding to this block
219    // as live_in.
220    for (HBasicBlock* successor : block->GetSuccessors()) {
221      live_in->Union(GetLiveInSet(*successor));
222      if (successor->IsCatchBlock()) {
223        // Inputs of catch phis will be kept alive through their environment
224        // uses, allowing the runtime to copy their values to the corresponding
225        // catch phi spill slots when an exception is thrown.
226        // The only instructions which may not be recorded in the environments
227        // are constants created by the SSA builder as typed equivalents of
228        // untyped constants from the bytecode, or phis with only such constants
229        // as inputs (verified by SSAChecker). Their raw binary value must
230        // therefore be the same and we only need to keep alive one.
231      } else {
232        size_t phi_input_index = successor->GetPredecessorIndexOf(block);
233        for (HInstructionIterator phi_it(successor->GetPhis()); !phi_it.Done(); phi_it.Advance()) {
234          HInstruction* phi = phi_it.Current();
235          HInstruction* input = phi->InputAt(phi_input_index);
236          input->GetLiveInterval()->AddPhiUse(phi, phi_input_index, block);
237          // A phi input whose last user is the phi dies at the end of the predecessor block,
238          // and not at the phi's lifetime position.
239          live_in->SetBit(input->GetSsaIndex());
240        }
241      }
242    }
243
244    // Add a range that covers this block to all instructions live_in because of successors.
245    // Instructions defined in this block will have their start of the range adjusted.
246    for (uint32_t idx : live_in->Indexes()) {
247      HInstruction* current = GetInstructionFromSsaIndex(idx);
248      current->GetLiveInterval()->AddRange(block->GetLifetimeStart(), block->GetLifetimeEnd());
249    }
250
251    for (HBackwardInstructionIterator back_it(block->GetInstructions()); !back_it.Done();
252         back_it.Advance()) {
253      HInstruction* current = back_it.Current();
254      if (current->HasSsaIndex()) {
255        // Kill the instruction and shorten its interval.
256        kill->SetBit(current->GetSsaIndex());
257        live_in->ClearBit(current->GetSsaIndex());
258        current->GetLiveInterval()->SetFrom(current->GetLifetimePosition());
259      }
260
261      // Process the environment first, because we know their uses come after
262      // or at the same liveness position of inputs.
263      for (HEnvironment* environment = current->GetEnvironment();
264           environment != nullptr;
265           environment = environment->GetParent()) {
266        // Handle environment uses. See statements (b) and (c) of the
267        // SsaLivenessAnalysis.
268        for (size_t i = 0, e = environment->Size(); i < e; ++i) {
269          HInstruction* instruction = environment->GetInstructionAt(i);
270          bool should_be_live = ShouldBeLiveForEnvironment(current, instruction);
271          if (should_be_live) {
272            DCHECK(instruction->HasSsaIndex());
273            live_in->SetBit(instruction->GetSsaIndex());
274          }
275          if (instruction != nullptr) {
276            instruction->GetLiveInterval()->AddUse(
277                current, environment, i, /* actual_user */ nullptr, should_be_live);
278          }
279        }
280      }
281
282      // Process inputs of instructions.
283      if (current->IsEmittedAtUseSite()) {
284        if (kIsDebugBuild) {
285          DCHECK(!current->GetLocations()->Out().IsValid());
286          for (HUseIterator<HInstruction*> use_it(current->GetUses());
287               !use_it.Done();
288               use_it.Advance()) {
289            HInstruction* user = use_it.Current()->GetUser();
290            size_t index = use_it.Current()->GetIndex();
291            DCHECK(!user->GetLocations()->InAt(index).IsValid());
292          }
293          DCHECK(!current->HasEnvironmentUses());
294        }
295      } else {
296        RecursivelyProcessInputs(current, current, live_in);
297      }
298    }
299
300    // Kill phis defined in this block.
301    for (HInstructionIterator inst_it(block->GetPhis()); !inst_it.Done(); inst_it.Advance()) {
302      HInstruction* current = inst_it.Current();
303      if (current->HasSsaIndex()) {
304        kill->SetBit(current->GetSsaIndex());
305        live_in->ClearBit(current->GetSsaIndex());
306        LiveInterval* interval = current->GetLiveInterval();
307        DCHECK((interval->GetFirstRange() == nullptr)
308               || (interval->GetStart() == current->GetLifetimePosition()));
309        interval->SetFrom(current->GetLifetimePosition());
310      }
311    }
312
313    if (block->IsLoopHeader()) {
314      if (kIsDebugBuild && block->GetLoopInformation()->IsIrreducible()) {
315        // To satisfy our liveness algorithm, we need to ensure loop headers of
316        // irreducible loops do not have any live-in instructions, except constants
317        // and the current method, which can be trivially re-materialized.
318        for (uint32_t idx : live_in->Indexes()) {
319          HInstruction* instruction = GetInstructionFromSsaIndex(idx);
320          DCHECK(instruction->GetBlock()->IsEntryBlock()) << instruction->DebugName();
321          DCHECK(!instruction->IsParameterValue()) << instruction->DebugName();
322          DCHECK(instruction->IsCurrentMethod() || instruction->IsConstant())
323              << instruction->DebugName();
324        }
325      }
326      size_t last_position = block->GetLoopInformation()->GetLifetimeEnd();
327      // For all live_in instructions at the loop header, we need to create a range
328      // that covers the full loop.
329      for (uint32_t idx : live_in->Indexes()) {
330        HInstruction* current = GetInstructionFromSsaIndex(idx);
331        current->GetLiveInterval()->AddLoopRange(block->GetLifetimeStart(), last_position);
332      }
333    }
334  }
335}
336
337void SsaLivenessAnalysis::ComputeLiveInAndLiveOutSets() {
338  bool changed;
339  do {
340    changed = false;
341
342    for (HPostOrderIterator it(*graph_); !it.Done(); it.Advance()) {
343      const HBasicBlock& block = *it.Current();
344
345      // The live_in set depends on the kill set (which does not
346      // change in this loop), and the live_out set.  If the live_out
347      // set does not change, there is no need to update the live_in set.
348      if (UpdateLiveOut(block) && UpdateLiveIn(block)) {
349        changed = true;
350      }
351    }
352  } while (changed);
353}
354
355bool SsaLivenessAnalysis::UpdateLiveOut(const HBasicBlock& block) {
356  BitVector* live_out = GetLiveOutSet(block);
357  bool changed = false;
358  // The live_out set of a block is the union of live_in sets of its successors.
359  for (HBasicBlock* successor : block.GetSuccessors()) {
360    if (live_out->Union(GetLiveInSet(*successor))) {
361      changed = true;
362    }
363  }
364  return changed;
365}
366
367
368bool SsaLivenessAnalysis::UpdateLiveIn(const HBasicBlock& block) {
369  BitVector* live_out = GetLiveOutSet(block);
370  BitVector* kill = GetKillSet(block);
371  BitVector* live_in = GetLiveInSet(block);
372  // If live_out is updated (because of backward branches), we need to make
373  // sure instructions in live_out are also in live_in, unless they are killed
374  // by this block.
375  return live_in->UnionIfNotIn(live_out, kill);
376}
377
378static int RegisterOrLowRegister(Location location) {
379  return location.IsPair() ? location.low() : location.reg();
380}
381
382int LiveInterval::FindFirstRegisterHint(size_t* free_until,
383                                        const SsaLivenessAnalysis& liveness) const {
384  DCHECK(!IsHighInterval());
385  if (IsTemp()) return kNoRegister;
386
387  if (GetParent() == this && defined_by_ != nullptr) {
388    // This is the first interval for the instruction. Try to find
389    // a register based on its definition.
390    DCHECK_EQ(defined_by_->GetLiveInterval(), this);
391    int hint = FindHintAtDefinition();
392    if (hint != kNoRegister && free_until[hint] > GetStart()) {
393      return hint;
394    }
395  }
396
397  if (IsSplit() && liveness.IsAtBlockBoundary(GetStart() / 2)) {
398    // If the start of this interval is at a block boundary, we look at the
399    // location of the interval in blocks preceding the block this interval
400    // starts at. If one location is a register we return it as a hint. This
401    // will avoid a move between the two blocks.
402    HBasicBlock* block = liveness.GetBlockFromPosition(GetStart() / 2);
403    size_t next_register_use = FirstRegisterUse();
404    for (HBasicBlock* predecessor : block->GetPredecessors()) {
405      size_t position = predecessor->GetLifetimeEnd() - 1;
406      // We know positions above GetStart() do not have a location yet.
407      if (position < GetStart()) {
408        LiveInterval* existing = GetParent()->GetSiblingAt(position);
409        if (existing != nullptr
410            && existing->HasRegister()
411            // It's worth using that register if it is available until
412            // the next use.
413            && (free_until[existing->GetRegister()] >= next_register_use)) {
414          return existing->GetRegister();
415        }
416      }
417    }
418  }
419
420  UsePosition* use = first_use_;
421  size_t start = GetStart();
422  size_t end = GetEnd();
423  while (use != nullptr && use->GetPosition() <= end) {
424    size_t use_position = use->GetPosition();
425    if (use_position >= start && !use->IsSynthesized()) {
426      HInstruction* user = use->GetUser();
427      size_t input_index = use->GetInputIndex();
428      if (user->IsPhi()) {
429        // If the phi has a register, try to use the same.
430        Location phi_location = user->GetLiveInterval()->ToLocation();
431        if (phi_location.IsRegisterKind()) {
432          DCHECK(SameRegisterKind(phi_location));
433          int reg = RegisterOrLowRegister(phi_location);
434          if (free_until[reg] >= use_position) {
435            return reg;
436          }
437        }
438        // If the instruction dies at the phi assignment, we can try having the
439        // same register.
440        if (end == user->GetBlock()->GetPredecessors()[input_index]->GetLifetimeEnd()) {
441          for (size_t i = 0, e = user->InputCount(); i < e; ++i) {
442            if (i == input_index) {
443              continue;
444            }
445            HInstruction* input = user->InputAt(i);
446            Location location = input->GetLiveInterval()->GetLocationAt(
447                user->GetBlock()->GetPredecessors()[i]->GetLifetimeEnd() - 1);
448            if (location.IsRegisterKind()) {
449              int reg = RegisterOrLowRegister(location);
450              if (free_until[reg] >= use_position) {
451                return reg;
452              }
453            }
454          }
455        }
456      } else {
457        // If the instruction is expected in a register, try to use it.
458        LocationSummary* locations = user->GetLocations();
459        Location expected = locations->InAt(use->GetInputIndex());
460        // We use the user's lifetime position - 1 (and not `use_position`) because the
461        // register is blocked at the beginning of the user.
462        size_t position = user->GetLifetimePosition() - 1;
463        if (expected.IsRegisterKind()) {
464          DCHECK(SameRegisterKind(expected));
465          int reg = RegisterOrLowRegister(expected);
466          if (free_until[reg] >= position) {
467            return reg;
468          }
469        }
470      }
471    }
472    use = use->GetNext();
473  }
474
475  return kNoRegister;
476}
477
478int LiveInterval::FindHintAtDefinition() const {
479  if (defined_by_->IsPhi()) {
480    // Try to use the same register as one of the inputs.
481    const ArenaVector<HBasicBlock*>& predecessors = defined_by_->GetBlock()->GetPredecessors();
482    for (size_t i = 0, e = defined_by_->InputCount(); i < e; ++i) {
483      HInstruction* input = defined_by_->InputAt(i);
484      size_t end = predecessors[i]->GetLifetimeEnd();
485      LiveInterval* input_interval = input->GetLiveInterval()->GetSiblingAt(end - 1);
486      if (input_interval->GetEnd() == end) {
487        // If the input dies at the end of the predecessor, we know its register can
488        // be reused.
489        Location input_location = input_interval->ToLocation();
490        if (input_location.IsRegisterKind()) {
491          DCHECK(SameRegisterKind(input_location));
492          return RegisterOrLowRegister(input_location);
493        }
494      }
495    }
496  } else {
497    LocationSummary* locations = GetDefinedBy()->GetLocations();
498    Location out = locations->Out();
499    if (out.IsUnallocated() && out.GetPolicy() == Location::kSameAsFirstInput) {
500      // Try to use the same register as the first input.
501      LiveInterval* input_interval =
502          GetDefinedBy()->InputAt(0)->GetLiveInterval()->GetSiblingAt(GetStart() - 1);
503      if (input_interval->GetEnd() == GetStart()) {
504        // If the input dies at the start of this instruction, we know its register can
505        // be reused.
506        Location location = input_interval->ToLocation();
507        if (location.IsRegisterKind()) {
508          DCHECK(SameRegisterKind(location));
509          return RegisterOrLowRegister(location);
510        }
511      }
512    }
513  }
514  return kNoRegister;
515}
516
517bool LiveInterval::SameRegisterKind(Location other) const {
518  if (IsFloatingPoint()) {
519    if (IsLowInterval() || IsHighInterval()) {
520      return other.IsFpuRegisterPair();
521    } else {
522      return other.IsFpuRegister();
523    }
524  } else {
525    if (IsLowInterval() || IsHighInterval()) {
526      return other.IsRegisterPair();
527    } else {
528      return other.IsRegister();
529    }
530  }
531}
532
533bool LiveInterval::NeedsTwoSpillSlots() const {
534  return type_ == Primitive::kPrimLong || type_ == Primitive::kPrimDouble;
535}
536
537Location LiveInterval::ToLocation() const {
538  DCHECK(!IsHighInterval());
539  if (HasRegister()) {
540    if (IsFloatingPoint()) {
541      if (HasHighInterval()) {
542        return Location::FpuRegisterPairLocation(GetRegister(), GetHighInterval()->GetRegister());
543      } else {
544        return Location::FpuRegisterLocation(GetRegister());
545      }
546    } else {
547      if (HasHighInterval()) {
548        return Location::RegisterPairLocation(GetRegister(), GetHighInterval()->GetRegister());
549      } else {
550        return Location::RegisterLocation(GetRegister());
551      }
552    }
553  } else {
554    HInstruction* defined_by = GetParent()->GetDefinedBy();
555    if (defined_by->IsConstant()) {
556      return defined_by->GetLocations()->Out();
557    } else if (GetParent()->HasSpillSlot()) {
558      if (NeedsTwoSpillSlots()) {
559        return Location::DoubleStackSlot(GetParent()->GetSpillSlot());
560      } else {
561        return Location::StackSlot(GetParent()->GetSpillSlot());
562      }
563    } else {
564      return Location();
565    }
566  }
567}
568
569Location LiveInterval::GetLocationAt(size_t position) {
570  LiveInterval* sibling = GetSiblingAt(position);
571  DCHECK(sibling != nullptr);
572  return sibling->ToLocation();
573}
574
575LiveInterval* LiveInterval::GetSiblingAt(size_t position) {
576  LiveInterval* current = this;
577  while (current != nullptr && !current->IsDefinedAt(position)) {
578    current = current->GetNextSibling();
579  }
580  return current;
581}
582
583}  // namespace art
584